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EinfUhrung

Wenn Sie begierig darauf sind, Kl-gestiitzte Large Language Models (LLMs) in

Ihre Programmierprojekte zu integrieren, konnen Sie direkt mit den Mustern und
Codebeispielen in den spiteren Kapiteln beginnen. Um jedoch die Kraft und das
Potenzial dieser Muster vollstindig zu verstehen, lohnt es sich, einen Moment
innezuhalten und den breiteren Kontext sowie den kohirenten Ansatz zu erfassen, den

sie darstellen.

Die Muster sind nicht nur eine Sammlung isolierter Techniken, sondern vielmehr
ein einheitliches Framework fiir die Integration von KI in Thre Anwendungen.
Ich verwende Ruby on Rails, aber diese Muster sollten in praktisch jeder anderen
Programmierumgebung funktionieren. Sie behandeln ein breites Spektrum
von Aspekten, von Datenverwaltung und Leistungsoptimierung bis hin zu
Benutzererfahrung und Sicherheit, und bieten damit ein umfassendes Werkzeug

zur Erweiterung traditioneller Programmierpraktiken mit KI-Fahigkeiten.
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Jede Kategorie von Mustern geht eine spezifische Herausforderung oder Chance an,
die sich bei der Integration von KI-Komponenten in Thre Anwendung ergibt. Durch
das Verstandnis der Beziehungen und Synergien zwischen diesen Mustern kénnen Sie
fundierte Entscheidungen dariiber treffen, wo und wie Sie KI am effektivsten einsetzen

konnen.

Muster sind niemals praskriptive Losungen und sollten auch nicht als solche
behandelt werden. Sie sind als anpassbare Bausteine gedacht, die auf die einzigartigen
Anforderungen und Einschrankungen Ihrer eigenen Anwendung zugeschnitten
werden sollten. Die erfolgreiche Anwendung dieser Muster (wie bei allen anderen
im Softwarebereich) basiert auf einem tiefen Verstindnis der Problemdoméine, der

Benutzerbediirfnisse und der gesamten technischen Architektur Thres Projekts.

Gedanken zur Softwarearchitektur

Ich begann in den 1980er Jahren mit dem Programmieren und war in der Hackerszene
aktiv. Diese Hacker-Denkweise habe ich auch nach meinem Einstieg in die
professionelle Softwareentwicklung nie verloren. Von Anfang an hatte ich eine
gesunde Skepsis gegeniiber dem tatsachlichen Mehrwert, den Softwarearchitekten in

ihren Elfenbeintiirmen lieferten.

Einer der Griinde, warum ich personlich so begeistert von den Verdnderungen bin,
die diese neue, leistungsstarke KI-Technologie mit sich bringt, ist ihre Auswirkung auf
das, was wir als Softwarearchitektur-Entscheidungen betrachten. Sie stellt traditionelle
Vorstellungen dartiber in Frage, was die “richtige” Art ist, unsere Softwareprojekte zu
entwerfen und umzusetzen. Sie stellt auch in Frage, ob Architektur noch primar als
die Teile eines Systems, die schwer zu dndern sind betrachtet werden kann, da KI-
Erweiterungen es einfacher als je zuvor machen, jeden Teil Ihres Projekts jederzeit zu

andern.

Vielleicht betreten wir gerade die Hochphase des “postmodernen” Ansatzes in

der Softwareentwicklung. In diesem Kontext bezieht sich postmodern auf eine
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fundamentale Abkehr von traditionellen Paradigmen, bei denen Entwickler fiir das
Schreiben und Warten jeder Codezeile verantwortlich waren. Stattdessen wird die
Idee der Delegation von Aufgaben wie Datenmanipulation, komplexen Algorithmen
und sogar ganzen Teilen der Anwendungslogik an Drittanbieter-Bibliotheken und
externe APIs befiirwortet. Diese postmoderne Verschiebung stellt einen bedeutenden
Abschied von der konventionellen Weisheit dar, Anwendungen von Grund auf neu
zu entwickeln, und fordert Entwickler heraus, ihre Rolle im Entwicklungsprozess zu

uberdenken.

Ich habe immer geglaubt, dass gute Programmierer nur den Code schreiben, der absolut
notwendig ist, basierend auf den Lehren von Larry Wall und anderen Hacker-Koryphéen
wie ihm. Durch die Minimierung der Menge des geschriebenen Codes kénnen wir
schneller arbeiten, die Angriffsfliche fiir Fehler reduzieren, die Wartung vereinfachen
und die allgemeine Zuverlassigkeit ihrer Anwendungen verbessern. Weniger Code
ermoglicht es uns, uns auf die zentrale Geschéaftslogik und Benutzererfahrung zu

konzentrieren, wihrend andere Arbeiten an andere Dienste delegiert werden.

Jetzt, da KI-gestiitzte Systeme Aufgaben iibernehmen konnen, die frither ausschliefllich
von Menschen geschriebenem Code vorbehalten waren, sollten wir noch produktiver
und agiler sein konnen, mit einem grofieren Fokus denn je auf die Schaffung von

Geschaftswert und Benutzererfahrung.

Natiirlich gibt es auch Kompromisse bei der Delegation grofier Teile Thres Projekts
an KI-Systeme, wie den potenziellen Kontrollverlust und die Notwendigkeit robuster
Uberwachungs- und Feedback-Mechanismen. Deshalb erfordert es neue Fahigkeiten
und Kenntnisse, einschliellich zumindest eines grundlegenden Verstandnisses davon,

wie KI funktioniert.

Was ist ein Large Language Model?

Large Language Models (LLMs) sind eine Art kiinstlicher Intelligenz, die seit der
Einfihrung von GPT-3 durch OpenAl im Jahr 2020 erhebliche Aufmerksamkeit
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erregt haben. LLMs sind darauf ausgelegt, menschliche Sprache mit bemerkenswerter
Genauigkeit und Flussigkeit zu verarbeiten, zu verstehen und zu generieren. In diesem
Abschnitt werfen wir einen kurzen Blick darauf, wie LLMs funktionieren und warum

sie sich gut fiir den Aufbau intelligenter Systemkomponenten eignen.

Im Kern basieren LLMs auf Deep-Learning-Algorithmen, speziell auf neuronalen
Netzen. Diese Netzwerke bestehen aus miteinander verbundenen Knoten oder
Neuronen, die Informationen verarbeiten und tbertragen. Die Architektur der Wahl
fir LLMs ist oft das Transformer-Modell, das sich als hocheffektiv bei der Verarbeitung

sequentieller Daten wie Text erwiesen hat.

Transformer-Modelle basieren auf dem Aufmerksamkeitsmechanismus und werden
hauptséchlich fir Aufgaben mit sequenziellen Daten wie der Verarbeitung natiirlicher
Sprache eingesetzt. Transformer verarbeiten Eingabedaten gleichzeitig statt sequenziell,
wodurch sie weitreichende Abhéngigkeiten effektiver erfassen kénnen. Sie verfiigen
uber Schichten von Aufmerksamkeitsmechanismen, die dem Modell helfen, sich auf
verschiedene Teile der Eingabedaten zu konzentrieren, um Kontext und Beziehungen

zu verstehen.

Der Trainingsprozess fiir LLMs beinhaltet die Konfrontation des Modells mit riesigen
Mengen an Textdaten, wie Biicher, Artikel, Websites und Code-Repositories. Wahrend
des Trainings lernt das Modell, Muster, Beziehungen und Strukturen innerhalb
des Textes zu erkennen. Es erfasst die statistischen Eigenschaften der Sprache, wie

Grammatikregeln, Wortassoziationen und kontextuelle Bedeutungen.

Eine der wichtigsten Techniken beim Training von LLMs ist das uniitberwachte Lernen.
Dies bedeutet, dass das Modell ohne explizite Kennzeichnung oder Anleitung aus
den Daten lernt. Es entdeckt selbststindig Muster und Darstellungen, indem es das
gemeinsame Auftreten von Wortern und Phrasen in den Trainingsdaten analysiert.
Dies ermoglicht es LLMs, ein tiefes Verstandnis von Sprache und ihren Feinheiten zu

entwickeln.

Ein weiterer wichtiger Aspekt von LLMs ist ihre Fahigkeit, Kontext zu verarbeiten. Bei
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der Verarbeitung eines Textes beriicksichtigen LLMs nicht nur die einzelnen Worter,
sondern auch den umgebenden Kontext. Sie beriicksichtigen die vorherigen Worter,
Satze und sogar Absitze, um die Bedeutung und Absicht des Textes zu verstehen. Dieses
kontextuelle Verstandnis erméglicht es LLMs, kohdrente und relevante Antworten
zu generieren. Eine der wichtigsten Methoden zur Bewertung der Fahigkeiten eines
bestimmten LLM-Modells ist die Betrachtung der Kontextgrofle, die sie bei der

Generierung von Antworten beriicksichtigen kénnen.

Nach dem Training konnen LLMs fir ein breites Spektrum von sprachbezogenen
Aufgaben eingesetzt werden. Sie kénnen menschendhnlichen Text generieren, Fragen
beantworten, Dokumente zusammenfassen, Sprachen iibersetzen und sogar Code
schreiben. Die Vielseitigkeit von LLMs macht sie wertvoll fiir den Aufbau intelligenter
Systemkomponenten, die mit Benutzern interagieren, Textdaten verarbeiten und

analysieren sowie aussagekraftige Ausgaben generieren konnen.

Durch die Integration von LLMs in die Anwendungsarchitektur konnen Sie KI-
Komponenten erstellen, die Benutzereingaben verstehen und verarbeiten, dynamische
Inhalte generieren und intelligente Empfehlungen oder Aktionen bereitstellen.
Die Arbeit mit LLMs erfordert jedoch eine sorgfaltige Beriicksichtigung der
Ressourcenanforderungen und Leistungskompromisse. LLMs sind rechenintensiv
und konnen erhebliche Rechenleistung und Speicher (mit anderen Worten, Geld)
fir den Betrieb erfordern. Die meisten von uns miissen die Kostenauswirkungen der

Integration von LLMs in unsere Anwendungen bewerten und entsprechend handeln.

Inferenz verstehen

Inferenz bezieht sich auf den Prozess, bei dem ein Modell Vorhersagen oder Ausgaben
basierend auf neuen, ungesehenen Daten generiert. Es ist die Phase, in der das trainierte
Modell verwendet wird, um Entscheidungen zu treffen oder Text, Bilder oder andere

Inhalte als Reaktion auf Benutzereingaben zu generieren.
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Wihrend der Trainingsphase lernt ein KI-Modell aus einem groflen Datensatz, indem
es seine Parameter anpasst, um den Fehler in seinen Vorhersagen zu minimieren. Nach
dem Training kann das Modell das Gelernte auf neue Daten anwenden. Inferenz ist die
Art und Weise, wie das Modell seine gelernten Muster und Kenntnisse zur Generierung

von Ausgaben nutzt.

Fir LLMs beinhaltet die Inferenz die Aufnahme eines Prompts oder Eingabetextes
und die Erzeugung einer kohédrenten und kontextuell relevanten Antwort als Strom
von Token(iiber die wir bald sprechen werden). Dies konnte die Beantwortung einer
Frage, die Vervollstindigung eines Satzes, die Generierung einer Geschichte oder die

Ubersetzung von Text sein, neben vielen anderen Aufgaben.

Im Gegensatz zu der Art und Weise, wie Sie und ich denken, geschieht das
P “Denken” eines KI-Modells durch Inferenz in einer einzigen zustandslosen
Operation. Das heif3t, sein Denken ist auf seinen Generierungsprozess
beschrankt. Es muss buchstablich laut denken, als ob ich Ihnen eine
Frage stelle und nur eine Antwort von Thnen im “Bewusstseinsstrom”-Stil

akzeptiere.

GroRRe Sprachmodelle gibt es in vielen GréBen und
Varianten

Wihrend praktisch alle populdren groflen Sprachmodelle (LLMs) auf der gleichen
Kern-Transformer-Architektur basieren und auf riesigen Textdatensidtzen trainiert
sind, kommen sie in verschiedenen Groflen und sind fiir unterschiedliche Zwecke
feinabgestimmt. Die Grofle eines LLM, gemessen an der Anzahl der Parameter in
seinem neuronalen Netzwerk, hat einen groflen Einfluss auf seine Fahigkeiten. Grofiere
Modelle mit mehr Parametern, wie GPT-4, das Geriichten zufolge 1 bis 2 Billionen
Parameter aufweist, sind im Allgemeinen kenntnisreicher und leistungsfihiger als
kleinere Modelle. Allerdings benétigen grofiere Modelle auch viel mehr Rechenleistung,

was sich in hoheren Kosten bei der Nutzung iiber API-Aufrufe niederschlagt.
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Um LLMs praktischer und fiir spezifische Anwendungsfille mafigeschneiderter zu
machen, werden die Basismodelle oft auf gezielteren Datensétzen feinabgestimmt. Zum
Beispiel kann ein LLM auf einem grofien Korpus von Dialogen trainiert werden, um es
fiir konversationelle KI zu spezialisieren. Andere werden auf Code trainiert, um ihnen
Programmierkenntnisse zu vermitteln. Es gibt sogar Modelle, die speziell fiir Rollenspiel-

artige Interaktionen mit Benutzern trainiert wurden!

Abrufbasierte vs. Generative Modelle

In der Welt der Large Language Models (LLMs) gibt es zwei hauptsachliche Ansétze
zur Generierung von Antworten: abrufbasierte Modelle und generative Modelle.
Jeder Ansatz hat seine eigenen Stirken und Schwichen, und das Verstdndnis der
Unterschiede zwischen ihnen kann Ihnen helfen, das richtige Modell fiir Thren

spezifischen Anwendungsfall zu wihlen.

Abrufbasierte Modelle

Abrufbasierte Modelle, auch bekannt als Informationsabruf-Modelle, generieren
Antworten, indem sie eine grofle Datenbank mit bereits existierenden Texten
durchsuchen und die relevantesten Passagen basierend auf der Eingabeanfrage
auswahlen. Diese Modelle generieren keine neuen Texte von Grund auf, sondern fiigen

stattdessen Auszige aus der Datenbank zu einer kohérenten Antwort zusammen.

Einer der Hauptvorteile von abrufbasierten Modellen ist ihre Fahigkeit, sachlich
korrekte und aktuelle Informationen bereitzustellen. Da sie sich auf eine Datenbank
mit kuratierten Texten stiitzen, konnen sie relevante Informationen aus zuverlassigen
Quellen abrufen und dem Benutzer prasentieren. Dies macht sie besonders geeignet fiir
Anwendungen, die prazise, faktische Antworten erfordern, wie Frage-Antwort-Systeme

oder Wissensdatenbanken.

Allerdings haben abrufbasierte Modelle auch einige Einschrankungen. Sie sind nur so

gut wie die Datenbank, in der sie suchen, sodass die Qualitdt und Abdeckung der


https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
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Datenbank die Leistung des Modells direkt beeinflusst. Zusétzlich konnen diese Modelle
Schwierigkeiten haben, koharente und natiirlich klingende Antworten zu generieren, da

sie auf den in der Datenbank verfiigbaren Text beschrankt sind.

In diesem Buch behandeln wir die Verwendung reiner Abrufmodelle nicht.

Generative Modelle

Generative Modelle hingegen erstellen neue Texte von Grund auf, basierend auf
den Mustern und Beziehungen, die sie wahrend des Trainings gelernt haben. Diese
Modelle nutzen ihr Sprachverstdndnis, um neue Antworten zu generieren, die auf die

Eingabeaufforderung zugeschnitten sind.

Die Hauptstirke generativer Modelle liegt in ihrer Fahigkeit, kreative, kohirente
und kontextuell relevante Texte zu produzieren. Sie koénnen offene Gesprache
fithren, Geschichten generieren und sogar Code schreiben. Dies macht sie ideal fur
Anwendungen, die offenere und dynamischere Interaktionen erfordern, wie Chatbots,

Content-Erstellung und kreative Schreibassistenten.

Allerdings konnen generative Modelle manchmal inkonsistente oder sachlich falsche
Informationen produzieren, da sie sich eher auf die wahrend des Trainings gelernten
Muster verlassen als auf eine kuratierte Faktendatenbank. Sie konnen auch anfilliger
fir Voreingenommenheit und Halluzinationen sein und Texte generieren, die plausibel

erscheinen, aber nicht unbedingt wahr sind.

Beispiele fiir generative LLMs sind OpenAls GPT-Serie (GPT-3, GPT-4) und Anthropics
Claude.

Hybride Modelle

Mehrere kommerziell verfiigbare LLMs kombinieren beide Ansdtze — Abruf und
Generierung - in einem hybriden Modell. Diese Modelle verwenden Abruftechniken,
um relevante Informationen aus einer Datenbank zu finden, und nutzen dann generative

Techniken, um diese Informationen zu einer kohédrenten Antwort zu synthetisieren.
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Hybride Modelle zielen darauf ab, die sachliche Genauigkeit von abrufbasierten
Modellen mit den Fahigkeiten der natiirlichen Sprachgenerierung von generativen
Modellen zu verbinden. Sie konnen zuverldssigere und aktuellere Informationen

bereitstellen und gleichzeitig die Fahigkeit zu offenen Gesprachen beibehalten.

Bei der Wahl zwischen abrufbasierten und generativen Modellen sollten Sie die
spezifischen Anforderungen Ihrer Anwendung beriicksichtigen. Wenn das primére
Ziel darin besteht, genaue, faktische Informationen bereitzustellen, konnte ein
abrufbasiertes Modell die beste Wahl sein. Wenn die Anwendung offenere und
kreativere Interaktionen erfordert, konnte ein generatives Modell besser geeignet sein.
Hybride Modelle bieten ein Gleichgewicht zwischen den beiden Ansétzen und kénnen
eine gute Wahl fir Anwendungen sein, die sowohl faktische Genauigkeit als auch

natiirliche Sprachgenerierung erfordern.

Letztendlich héngt die Wahl zwischen abrufbasierten und generativen Modellen vom
spezifischen Anwendungsfall und den Kompromissen zwischen Genauigkeit, Kreativitat
und Flexibilitdt ab. Durch das Verstdndnis der Starken und Einschrankungen jedes

Ansatzes konnen Sie fundierte Entscheidungen treffen.
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Instruktions-Feinabstimmung

Instruktions-Feinabstimmung ist eine Unterkategorie des Konversationstrainings, die
menschlich geschriebene Prompts und Antworten verwendet, um LLMs besser darin
zu machen, Anweisungen zu verstehen und zu befolgen. Hier sind einige einfache
Beispiele, die veranschaulichen, wie Instruktions-Feinabstimmung mit menschlich
geschriebenen Prompts und Antworten LLMs besser darin macht, Anweisungen zu

verstehen und zu befolgen:

Beispiel 1: Kundenservice

Anweisung: “Geben Sie eine Antwort an einen Kunden, der um eine Riickerstattung

bittet.”

Menschlich geschriebener Prompt: “Ich mochte eine Riickerstattung fiir meinen

kiirzlichen Einkauf beantragen. Das Produkt hat meine Erwartungen nicht erfillt”

Menschlich geschriebene Antwort: “Es tut mir leid zu héren, dass das Produkt Thre
Erwartungen nicht erfiillt hat. Um Ihre Riickerstattung zu bearbeiten, geben Sie
bitte Thre Bestellnummer und den Grund fiir die Riicksendung an. Wir werden Ihre

Anfrage priifen und uns innerhalb von 2-3 Werktagen bei Thnen melden”

Beispiel 2: Bildungsunterstitzung

Anweisung: “Erklaren Sie das Konzept der Photosynthese einem 10-Jahrigen”

Von Menschen geschriebene Anfrage: “Kannst du erkldren, wie Pflanzen ihre

Nahrung herstellen?”

Von Menschen geschriebene Antwort: “Natiirlich! Pflanzen stellen ihre Nahrung
durch einen Prozess namens Photosynthese her. Sie nutzen Sonnenlicht, Wasser

und Kohlendioxid, um Nahrung und Sauerstoff zu erzeugen. Die Blatter der Pflanze

10
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haben einen speziellen Bestandteil namens Chlorophyll, der ihnen hilft, Sonnenlicht

einzufangen.”

Beispiel 3: Persénlicher Assistent

Anweisung: “Plane ein Meeting fiir nichsten Dienstag um 15 Uhr”

Von Menschen geschriebene Anfrage: “Kannst du ein Meeting fir Dienstag um 15

Uhr einrichten?”

Von Menschen geschriebene Antwort: “Natiirlich, ich habe ein Meeting fiir Sie am

nachsten Dienstag um 15 Uhr geplant. Benétigen Sie sonst noch etwas?”

Das Ergebnis ist ein vielfiltiges Okosystem von LLMs in verschiedenen Gréfien und mit
unterschiedlichen Spezialisierungen. Kleinere Modelle im Bereich von 1-7 Milliarden
Parametern bieten gute allgemeine Sprachfahigkeiten bei gleichzeitig hoherer Effizienz

im Betrieb.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Mittelgrofie Modelle mit etwa 30-70 Milliarden Parametern bieten stirkere Fahigkeiten

im Bereich Reasoning und Befolgung von Anweisungen.

« Llama 3 70B
« Qwen2 70B
« Mixtral 8x22B

Bei der Auswahl eines LLM fiir eine Anwendung miissen die Fahigkeiten des Modells

gegen praktische Faktoren wie Kosten, Latenz, Kontextlinge und Inhaltsfilterung
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abgewogen werden. Kleinere, instruktionsoptimierte Modelle sind oft die beste Wahl
fir einfachere Sprachaufgaben, wihrend die grofiten Modelle fiir komplexes Reasoning
oder Analysen erforderlich sein kénnen. Die Trainingsdaten des Modells sind ebenfalls

ein wichtiger Aspekt, da sie den Wissens-Stichtag des Modells bestimmen.

P Bestimmte Modelle, wie einige von Perplexity, sind mit Echtzeit-

Informationsquellen verbunden, sodass sie effektiv keinen Stichtag haben.
Wenn man ihnen Fragen stellt, konnen sie selbststandig entscheiden,
Websuchen durchzufithren und beliebige Webseiten abzurufen, um eine

Antwort zu generieren.

Obie

il \\/ho won the America vs GDL match last night?
. Llama 3 708 Instruct {nitro) %

I'm not aware of any information about a match between "America" and "GDL" last night. Could

you please provide more context or clarify which teams or leagues you are referring to? I'll do C
my best to help you find the answer.

~2811 tokens/s

. Llama3 Sonar 70B Online 2
~

Club América won the match against Guadalajara last night, with a score of 1-0. C

~31.0 tokens/s

Abbildung 1. Llama3 mit und ohne Online-Zugang

Letztendlich gibt es kein universell einsetzbares LLM. Das Verstandnis der Unterschiede
in Modellgrofe, Architektur und Training ist entscheidend fiir die Auswahl des richtigen
Modells fiir einen bestimmten Anwendungsfall. Nur durch das Experimentieren mit
verschiedenen Modellen lésst sich in der Praxis herausfinden, welche die beste Leistung

fir die jeweilige Aufgabe bieten.
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Tokenisierung: Text in Stucke zerlegen

Bevor ein Large Language Model Text verarbeiten kann, muss dieser Text in kleinere
Einheiten, sogenannte Tokens, zerlegt werden. Tokens konnen einzelne Worter,
Wortteile oder sogar einzelne Zeichen sein. Der Prozess der Zerlegung von Text in
Tokens wird als Tokenisierung bezeichnet und ist ein entscheidender Schritt bei der

Vorbereitung von Daten fiir ein Sprachmodell.

The process of splitting text inte tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Abbildung 2. Dieser Satz enthilt 27 Tokens

Verschiedene LLMs verwenden unterschiedliche Tokenisierungsstrategien, die einen
erheblichen Einfluss auf die Leistung und Fahigkeiten des Modells haben kénnen. Einige

gangige Tokenizer, die von LLMs verwendet werden, sind:

+ GPT (Byte Pair Encoding): GPT-Tokenizer verwenden eine Technik namens Byte
Pair Encoding (BPE), um Text in Teilworteinheiten zu zerlegen. BPE verschmilzt
iterativ die haufigsten Byte-Paare in einem Textkorpus und bildet so ein Vokabular
aus Teilwort-Tokens. Dies ermdglicht es dem Tokenizer, seltene und neue Worter
zu verarbeiten, indem er sie in haufigere Teilworter zerlegt. GPT-Tokenizer

werden von Modellen wie GPT-3 und GPT-4 verwendet.

« Llama (SentencePiece): Llama-Tokenisierer verwenden die SentencePiece-
Bibliothek, ein uniiberwachter Text-Tokenisierer und Detokenisierer.
SentencePiece behandelt den Eingabetext als eine Sequenz von Unicode-
Zeichen und lernt ein Teilwort-Vokabular basierend auf einem Trainingskorpus.
Es kann jede Sprache verarbeiten, die in Unicode kodiert werden kann, was
es besonders geeignet fiir mehrsprachige Modelle macht. Llama-Tokenisierer

werden von Modellen wie Meta’s Llama und Alpaca verwendet.
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« SentencePiece (Unigram): SentencePiece-Tokenisierer konnen auch einen
anderen Algorithmus namens Unigram verwenden, der auf einer Teilwort-
Regularisierungstechnik basiert. Die Unigram-Tokenisierung bestimmt das
optimale Teilwort-Vokabular basierend auf einem Unigram-Sprachmodell, das
einzelnen Teilworteinheiten Wahrscheinlichkeiten zuordnet. Dieser Ansatz
kann im Vergleich zu BPE semantisch bedeutungsvollere Teilworter erzeugen.
SentencePiece mit Unigram wird von Modellen wie Google’s T5 und BERT

verwendet.

« Google Gemini (Multimodale Tokenisierung): Google Gemini verwendet
ein Tokenisierungsschema, das fiir die Verarbeitung verschiedener Datentypen,
einschlie3lich Text, Bilder, Audio, Videos und Code, entwickelt wurde. Diese
multimodale Fahigkeit ermoglicht es Gemini, verschiedene Formen von
Informationen zu verarbeiten und zu integrieren. Bemerkenswert ist, dass Google
Gemini 1.5 Pro ein Kontextfenster hat, das Millionen von Token verarbeiten
kann, deutlich mehr als frithere Modelle. Dieses umfangreiche Kontextfenster
ermoglicht es dem Modell, einen gréfieren Kontext zu verarbeiten, was potenziell
zu genaueren Antworten fihrt. Allerdings ist es wichtig zu beachten, dass
Geminis Tokenisierungsschema viel niher an einem Token pro Zeichen liegt
als bei anderen Modellen. Dies bedeutet, dass die tatsichlichen Kosten fiir die
Nutzung von Gemini-Modellen deutlich héher sein konnen als erwartet, wenn
man an Modelle wie GPT gewdohnt ist, da Googles Preisgestaltung auf Zeichen

statt auf Token basiert.

Die Wahl des Tokenisierers beeinflusst verschiedene Aspekte eines LLM, darunter:

« Vokabulargrofle: Der Tokenisierer bestimmt die Grofie des Modellvokabulars,
also die Menge der einzigartigen Token, die es erkennt. Ein grofieres, feiner
granuliertes Vokabular kann dem Modell helfen, eine breitere Palette von Wortern

und Phrasen zu verarbeiten und sogar multimodal zu werden (fahig, mehr als nur
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Text zu verstehen und zu generieren), erhéht aber auch den Speicherbedarf und
die Berechnungskomplexitit des Modells.

« Umgang mit seltenen und unbekannten Wortern: Tokenisierer, die
Teilworteinheiten verwenden, wie BPE und SentencePiece, konnen seltene
und unbekannte Woérter in haufigere Teilworter zerlegen. Dies ermdglicht es dem
Modell, fundierte Vermutungen iiber die Bedeutung von Wortern anzustellen, die
es noch nie gesehen hat, basierend auf den Teilwortern, aus denen sie bestehen.

« Mehrsprachige Unterstiitzung: Tokenisierer wie SentencePiece, die jede
Unicode-kodierbare Sprache verarbeiten konnen, sind gut geeignet fiir
mehrsprachige Modelle, die Text in verschiedenen Sprachen verarbeiten

miissen.

Bei der Auswahl eines LLM fiir eine bestimmte Anwendung ist es wichtig, den
verwendeten Tokenisierer zu beriicksichtigen und wie gut er mit den spezifischen
Sprachverarbeitungsanforderungen der Aufgabe iibereinstimmt. Der Tokenisierer
kann einen erheblichen Einfluss auf die Fahigkeit des Modells haben, fachspezifische

Terminologie, seltene Woérter und mehrsprachigen Text zu verarbeiten.

KontextgroRRe: Wie viele Informationen kann ein
Sprachmodell wahrend der Inferenz nutzen?

Bei der Diskussion von Sprachmodellen bezieht sich die Kontextgrofie auf die
Textmenge, die ein Modell bei der Verarbeitung oder Generierung seiner Antworten
berticksichtigen kann. Es ist im Wesentlichen ein Maf} dafiir, wie viel Information
das Modell “erinnern” und fiir seine Ausgaben nutzen kann (ausgedrickt in Token).
Die Kontextgrofle eines Sprachmodells kann einen erheblichen Einfluss auf seine

Fahigkeiten und die Arten von Aufgaben haben, die es effektiv ausfithren kann.
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Was ist Kontextgro3e?

Technisch gesehen wird die Kontextgrofle durch die Anzahl der Token (Worter
oder Wortteile) bestimmt, die ein Sprachmodell in einer einzelnen Eingabesequenz
verarbeiten kann. Dies wird oft als “Aufmerksamkeitsspanne” oder “Kontextfenster”
des Modells bezeichnet. Je grofler die Kontextgrofie, desto mehr Text kann das Modell
gleichzeitig beriicksichtigen, wenn es eine Antwort generiert oder eine Aufgabe

ausfihrt.

Verschiedene Sprachmodelle haben unterschiedliche Kontextgrofien, die von einigen
hundert Token bis zu Millionen von Token reichen. Zum Vergleich: Ein typischer
Textabsatz enthélt etwa 100-150 Token, wahrend ein ganzes Buch Zehntausende oder

Hunderttausende von Token enthalten kann.

Es gibt sogar Forschung zu effizienten Methoden, um Transformer-basierte Large
Language Models (LLMs) auf unendlich lange Eingaben mit begrenztem Speicher

und Rechenaufwand zu skalieren.

Warum ist die KontextgrofRe wichtig?

Die Kontextgrofle eines Sprachmodells hat einen erheblichen Einfluss auf seine
Fahigkeit, zusammenhéngenden und kontextuell relevanten Text zu verstehen und zu
generieren. Hier sind einige wichtige Griinde, warum die Kontextgréf3e von Bedeutung

ist:

1. Verstehen lingerer Inhalte: Modelle mit gréfleren Kontextfenstern
konnen langere Texte wie Artikel, Berichte oder sogar ganze Biicher
besser verstehen und analysieren. Dies ist entscheidend fiir Aufgaben wie

Dokumentenzusammenfassung, Fragenbeantwortung und Inhaltsanalyse.


https://huggingface.co/papers/2404.07143
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2.

Aufrechterhaltung der Kohirenz: Ein grofleres Kontextfenster ermdglicht
es dem Modell, Kohédrenz und Konsistenz iiber ldngere Textabschnitte hinweg
aufrechtzuerhalten. Dies ist wichtig fiir Aufgaben wie Geschichtengenerierung,
Dialogsysteme und Content-Erstellung, bei denen die Beibehaltung einer
konsistenten Erzdhlung oder Thematik wesentlich ist. Es ist auch absolut
entscheidend bei der Verwendung von LLMs zur Generierung oder

Transformation strukturierter Daten.

. Erfassung langreichweitiger Abhéngigkeiten: Einige sprachliche Aufgaben

erfordern das Verstdndnis von Beziehungen zwischen Wortern oder Phrasen, die
im Text weit voneinander entfernt sind. Modelle mit gréfleren Kontextgrofien
sind besser in der Lage, diese langreichweitigen Abhéngigkeiten zu erfassen,
was fiir Aufgaben wie Stimmungsanalyse, Ubersetzung und Sprachverstindnis

wichtig sein kann.

. Umgang mit komplexen Anweisungen: Bei Anwendungen, in denen

Sprachmodelle komplexe, mehrstufige Anweisungen befolgen sollen, erméglicht
eine grofiere Kontextgrofle dem Modell, den gesamten Satz von Anweisungen bei
der Generierung einer Antwort zu bericksichtigen, anstatt nur die letzten paar

Worter.

Beispiele fur Sprachmodelle mit unterschiedlichen Kontextgrof3en

Hier sind einige Beispiele fiir Sprachmodelle mit unterschiedlichen Kontextgréfien:

OpenAl GPT-3.5 Turbo: 4.095 Tokens
Mistral 7B Instruct: 32.768 Tokens
Anthropic Claude v1: 100.000 Tokens
OpenAl GPT-4 Turbo: 128.000 Tokens
Anthropic Claude v2: 200.000 Tokens
Google Gemini Pro 1.5: 2,8M Tokens
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Wie Sie sehen konnen, gibt es eine grofle Bandbreite an Kontextgréflen bei diesen
Modellen, von etwa 4.000 Tokens beim OpenAI GPT-3.5 Turbo-Modell bis zu 200.000
Tokens beim Anthropic Claude v2-Modell. Einige Modelle, wie Googles PaLM 2 und
OpenAls GPT-4, bieten verschiedene Varianten mit grofleren Kontextgrofien an (z.B.
“32k”-Versionen), die noch ldngere Eingabesequenzen verarbeiten kénnen. Und zum

jetzigen Zeitpunkt (April 2024) prahlt Google Gemini Pro mit fast 3 Millionen Tokens!

Es ist erwahnenswert, dass die Kontextgrofle je nach spezifischer Implementierung und
Version eines bestimmten Modells variieren kann. Zum Beispiel hat das urspriingliche
OpenAl GPT-4-Modell eine Kontextgrofie von 8.191 Tokens, wahrend die spateren GPT-
4-Varianten wie Turbo und 4o eine deutlich gréfiere Kontextgrofie von 128.000 Tokens

aufweisen.

Sam Altman hat die aktuellen Kontextbeschrankungen mit den Kilobytes an
Arbeitsspeicher verglichen, mit denen PC-Programmierer in den 80er Jahren
umgehen mussten, und gesagt, dass wir in naher Zukunft in der Lage sein werden,

“alle personlichen Daten” in den Kontext eines grolen Sprachmodells einzufiigen.

Auswabhl der richtigen KontextgréfR3e

Bei der Auswahl eines Sprachmodells fiir eine bestimmte Anwendung ist es wichtig,
die Kontextgroflenanforderungen der jeweiligen Aufgabe zu beriicksichtigen. Fiir
Aufgaben, die kurze, isolierte Textstiicke betreffen, wie Stimmungsanalyse oder
einfache Fragenbeantwortung, kann eine kleinere Kontextgrofie ausreichend sein. Fiir
Aufgaben, die das Verstehen und Generieren langerer, komplexerer Texte erfordern,

wird jedoch wahrscheinlich eine grofiere Kontextgrofie notwendig sein.

Es ist zu beachten, dass grofiere Kontextgroflen oft mit erhohten Rechenkosten und

langeren Verarbeitungszeiten verbunden sind, da das Modell bei der Generierung einer
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Antwort mehr Informationen berticksichtigen muss. Daher missen Sie bei der Wahl
eines Sprachmodells fiir Ihre Anwendung ein Gleichgewicht zwischen Kontextgrofie

und Leistung finden.

Warum wahlt man nicht einfach das Modell mit der grofiten Kontextgrofle und fittert
es mit so vielen Informationen wie moglich? Nun, neben Leistungsfaktoren ist der
andere Hauptaspekt die Kosten. Im Mérz 2024 kostet ein einziger Prompt-Response-
Zyklus mit Google Gemini Pro 1.5 bei vollem Kontext fast 8 USD. Wenn Sie einen
Anwendungsfall haben, der diese Ausgaben rechtfertigt, nur zu! Aber fiir die meisten

Anwendungen ist es um Groflenordnungen zu teuer.

Nadeln im Heuhaufen finden

Das Konzept, eine Nadel im Heuhaufen zu finden, ist seit langem eine Metapher fiir
die Herausforderungen beim Abruf in groflen Datensitzen. Im Bereich der grofien
Sprachmodelle (LLMs) modifizieren wir diese Analogie ein wenig. Stellen Sie sich vor,
wir suchen nicht nur nach einer einzelnen Information, die in einem umfangreichen Text
verborgen ist (wie etwa in einer vollstandigen Anthologie von Paul Graham Essays),
sondern nach mehreren, Giber den Text verteilten Informationen. Dieses Szenario dhnelt
eher der Suche nach mehreren Nadeln in einem weitldufigen Feld, nicht nur in einem
einzelnen Heuhaufen. Und hier kommt’s: Wir miissen diese Nadeln nicht nur finden,

sondern sie auch zu einem zusammenhéangenden Faden verweben.

Wenn LLMs damit beauftragt werden, mehrere in langen Kontexten eingebettete
Informationen abzurufen und dariiber zu schlussfolgern, stehen sie vor einer zweifachen
Herausforderung. Erstens gibt es das offensichtliche Problem der Abrufgenauigkeit
- sie nimmt naturgemafl ab, je mehr Informationen es gibt. Das ist zu erwarten;
schlieBlich fordert die Verfolgung mehrerer Details in einem weitlaufigen Text selbst

die ausgefeiltesten Modelle heraus.
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Zweitens, und vielleicht noch wichtiger, ist die Herausforderung, mit diesen
Informationen zu argumentieren. Es ist eine Sache, Fakten herauszupicken;
eine ganz andere ist es, sie zu einer kohdrenten Erzdhlung oder Antwort zu
synthetisieren. Hier kommt die wahre Priifung. Die Leistung von LLMs bei
Argumentationsaufgaben tendiert dazu, stirker abzunehmen als bei einfachen
Abrufaufgaben. Diese Verschlechterung betrifft nicht nur das Volumen; es geht um das

komplexe Zusammenspiel von Kontext, Relevanz und Schlussfolgerung.

Warum passiert das? Nun, betrachten wir die Dynamik von Gedichtnis und
Aufmerksamkeit in der menschlichen Kognition, die sich bis zu einem gewissen Grad in
LLMs widerspiegelt. Bei der Verarbeitung grofler Informationsmengen kénnen LLMs,
ahnlich wie Menschen, frithere Details aus den Augen verlieren, wihrend sie neue
aufnehmen. Dies gilt besonders fir Modelle, die nicht explizit darauf ausgelegt sind,

frithere Textabschnitte automatisch zu priorisieren oder zu tiberpriifen.

Dariiber hinaus dhnelt die Fihigkeit eines LLM, diese abgerufenen Fakten zu einer
kohéarenten Antwort zu verweben, dem Aufbau einer Erzahlung. Dies erfordert nicht nur
den Abruf von Informationen, sondern auch ein tiefes Verstindnis und eine kontextuelle

Einordnung, was fiir die aktuelle KI weiterhin eine grofle Herausforderung darstellt.

Was bedeutet das also fiir uns als Entwickler und Integratoren dieser Technologien?
Wir miissen uns dieser Einschrankungen bewusst sein, wenn wir Systeme entwickeln,
die sich auf LLMs fiir komplexe, langere Aufgaben verlassen. Das Verstandnis, dass
die Leistung unter bestimmten Bedingungen nachlassen konnte, hilft uns, realistische
Erwartungen zu setzen und bessere Ausweichmechanismen oder ergénzende Strategien

zu entwickeln.

Modalitdaten: Jenseits des Textes

Wiahrend sich die Mehrheit der Sprachmodelle heute auf die Verarbeitung und
Generierung von Text konzentriert, gibt es einen wachsenden Trend zu multimodalen

Modellen, die verschiedene Arten von Daten wie Bilder, Audio und Video nativ ein-
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und ausgeben koénnen. Diese multimodalen Modelle eréffnen neue Moglichkeiten
fur Kl-gestiitzte Anwendungen, die Inhalte iber verschiedene Modalititen hinweg

verstehen und generieren konnen.

Was sind Modalitaten?

Im Kontext von Sprachmodellen beziehen sich Modalitdten auf die verschiedenen Arten
von Daten, die ein Modell verarbeiten und generieren kann. Die haufigste Modalitat ist
Text, der geschriebene Sprache in verschiedenen Formen wie Biicher, Artikel, Websites
und Social-Media-Beitrige umfasst. Es gibt jedoch mehrere andere Modalitaten, die

zunehmend in Sprachmodelle integriert werden:

« Bilder: Visuelle Daten wie Fotografien, [llustrationen und Diagramme.
« Audio: Klanginformationen wie Sprache, Musik und Umgebungsgerausche.

« Video: Bewegte visuelle Daten, oft begleitet von Audio, wie Videoclips und Filme.

Jede Modalitat stellt eigene Herausforderungen und Chancen fiir Sprachmodelle
dar. Beispielsweise muss das Modell bei Bildern visuelle Konzepte und Beziehungen
verstehen, wahrend es bei Audio Sprache und andere Gerdusche verarbeiten und

generieren muss.

Multimodale Sprachmodelle

Multimodale Sprachmodelle sind darauf ausgelegt, mehrere Modalitdten innerhalb
eines einzelnen Modells zu verarbeiten. Diese Modelle verfiigen typischerweise tiber
spezialisierte Komponenten oder Schichten, die sowohl Eingaben verstehen als auch
Ausgabedaten in verschiedenen Modalititen generieren konnen. Einige bemerkenswerte

Beispiele fiir multimodale Sprachmodelle sind:

« OpenAI’'s GPT-40: GPT-40 ist ein grofies Sprachmodell, das neben Text auch
Sprachaudio nativ versteht und verarbeitet. Diese Fahigkeit ermdoglicht es GPT-

40, Aufgaben wie die Transkription gesprochener Sprache, die Generierung von
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Text aus Audioeingaben und die Bereitstellung von Antworten basierend auf
gesprochenen Anfragen auszufithren.

« OpenATI's GPT-4 mit visueller Eingabe: GPT-4 ist ein grofles Sprachmodell, das
sowohl Text als auch Bilder verarbeiten kann. Wenn GPT-4 ein Bild als Eingabe
erhalt, kann es den Inhalt des Bildes analysieren und Text generieren, der die
visuellen Informationen beschreibt oder darauf reagiert.

« Google’s Gemini: Gemini ist ein multimodales Modell, das Text, Bilder
und Video verarbeiten kann. Es verwendet eine einheitliche Architektur, die
modalitatsiibergreifendes Verstehen und Generieren erméglicht und Aufgaben
wie Bildbeschreibung, Videozusammenfassung und visuelle Fragenbeantwortung

unterstiitzt.

« DALL-E und Stable Diffusion: Obwohl es sich nicht um Sprachmodelle im
traditionellen Sinne handelt, demonstrieren diese Modelle die Leistungsfihigkeit
multimodaler KI durch die Generierung von Bildern aus Textbeschreibungen.
Sie zeigen das Potenzial von Modellen, die zwischen verschiedenen Modalitaten

ubersetzen konnen.

Vorteile und Anwendungen multimodaler Modelle

Multimodale Sprachmodelle bieten mehrere Vorteile und ermoglichen ein breites

Spektrum an Anwendungen, darunter:

« Verbessertes Verstindnis: Durch die Verarbeitung von Informationen aus
mehreren Modalititen kénnen diese Modelle ein umfassenderes Verstandnis der
Welt entwickeln, ahnlich wie Menschen aus verschiedenen Sinneseindriicken
lernen.

« Modalititsiibergreifende Generierung: Multimodale Modelle kénnen Inhalte
in einer Modalitat basierend auf Eingaben aus einer anderen generieren, wie
zum Beispiel die Erstellung eines Bildes aus einer Textbeschreibung oder die

Generierung einer Videozusammenfassung aus einem geschriebenen Artikel.
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« Barrierefreiheit: Multimodale Modelle konnen Informationen zuginglicher
machen, indem sie zwischen Modalitaten ubersetzen, wie etwa durch die
Generierung von Textbeschreibungen von Bildern fiir sehbehinderte Nutzer oder
die Erstellung von Audio-Versionen schriftlicher Inhalte.

+ Kreative Anwendungen: Multimodale Modelle kénnen fiir kreative Aufgaben
wie die Generierung von Kunst, Musik oder Videos basierend auf textuellen
Eingabeaufforderungen verwendet werden, was neue Moglichkeiten fiir Kiinstler

und Content-Ersteller eroffnet.

Mit der fortschreitenden Entwicklung multimodaler Sprachmodelle werden sie
voraussichtlich eine zunehmend wichtige Rolle bei der Entwicklung KI-gestiitzter
Anwendungen spielen, die Inhalte iiber mehrere Modalitaten hinweg verstehen und
generieren konnen. Dies wird natiirlichere und intuitivere Interaktionen zwischen
Menschen und KI-Systemen ermdéglichen sowie neue Méoglichkeiten fiir kreativen

Ausdruck und Wissensvermittlung erschliefen.

Anbieter-Okosysteme

Wenn es darum geht, grofle Sprachmodelle (LLMs) in Anwendungen zu integrieren,
steht eine wachsende Auswahl an Optionen zur Verfiigung. Jeder grofle LLM-Anbieter,
wie OpenAl, Anthropic, Google und Cohere, bietet sein eigenes Okosystem von
Modellen, APIs und Werkzeugen an. Die Wahl des richtigen Anbieters erfordert die
Beriicksichtigung verschiedener Faktoren, einschlieBlich Preisgestaltung, Leistung,

Inhaltsfilterung, Datenschutz und Anpassungsoptionen.

OpenAl

OpenAl ist einer der bekanntesten Anbieter von LLMs, wobei seine GPT-Serie (GPT-
3, GPT-4) in verschiedenen Anwendungen weit verbreitet ist. OpenAl bietet eine

benutzerfreundliche API, die es erméglicht, ihre Modelle einfach in Anwendungen zu
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integrieren. Sie bieten eine Reihe von Modellen mit unterschiedlichen Fihigkeiten und

Preispunkten an, vom Einstiegsmodell Ada bis zum leistungsstarken Davinci-Modell.

Das Okosystem von OpenAl umfasst auch Werkzeuge wie den OpenAl Playground,
der es ermdglicht, mit Prompts zu experimentieren und Modelle fiir spezifische
Anwendungsfille feinabzustimmen. Sie bieten Inhaltsfilterungsoptionen, um die

Generierung unangemessener oder schadlicher Inhalte zu verhindern.

Bei der direkten Verwendung von OpenAl-Modellen verlasse ich mich auf Alex Rudalls
ruby-openai Bibliothek.

Anthropic

Anthropic ist ein weiterer wichtiger Akteur im LLM-Bereich, dessen Claude-Modelle
aufgrund ihrer starken Leistung und ethischen Uberlegungen an Popularitit gewinnen.
Anthropic konzentriert sich auf die Entwicklung sicherer und verantwortungsvoller KI-

Systeme, mit starkem Fokus auf Inhaltsfilterung und Vermeidung schédlicher Ausgaben.

Das Okosystem von Anthropic umfasst die Claude-API, die es erméglicht, das Modell
in ihre Anwendungen zu integrieren, sowie Werkzeuge fiir Prompt-Engineering und
Feinabstimmung. Sie bieten auch das Claude Instant-Modell an, das Websuchfunktionen

fiir aktuellere und faktisch genauere Antworten integriert.

Bei der direkten Verwendung von Anthropic-Modellen verlasse ich mich auf Alex

Rudalls anthropic Bibliothek.

Google

Google hat mehrere leistungsstarke LLMs entwickelt, darunter Gemini, BERT, T5 und
PaLM. Diese Modelle sind fiir ihre starke Leistung bei einer Vielzahl von Aufgaben
zur Verarbeitung natiirlicher Sprache bekannt. Das Google-Okosystem umfasst die
TensorFlow- und Keras-Bibliotheken, die Werkzeuge und Frameworks fiir den Aufbau

und das Training von maschinellen Lernmodellen bereitstellen.


https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic
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Google bietet auch eine Cloud-KI-Plattform an, die es ermdglicht, ihre Modelle einfach
in der Cloud zu implementieren und zu skalieren. Sie stellen eine Reihe vortrainierter
Modelle und APIs fiir Aufgaben wie Stimmungsanalyse, Entitatserkennung und

Ubersetzung zur Verfiigung.

Meta

Meta, friher als Facebook bekannt, investiert stark in die Entwicklung grofler
Sprachmodelle, was durch die Veréffentlichung von Modellen wie LLaMA und
OPT deutlich wird. Diese Modelle zeichnen sich durch ihre starke Leistung bei
verschiedenen Sprachaufgaben aus und werden grofitenteils iiber Open-Source-Kanéle
verfiigbar gemacht, was Metas Engagement fiir Forschung und gemeinschaftliche

Zusammenarbeit unterstreicht.

Das Okosystem von Meta basiert hauptsidchlich auf PyTorch, einer Open-
Source-Bibliothek  fiir ~maschinelles Lernen, die fiir ihre dynamischen
Berechnungsmoglichkeiten und Flexibilitat geschitzt wird und innovative KI-

Forschung und -Entwicklung erméglicht.

Neben ihren technischen Angeboten legt Meta groflen Wert auf die ethische
Entwicklung von KI. Sie implementieren robuste Inhaltsfilterung und konzentrieren
sich darauf, Verzerrungen zu reduzieren, was mit ihren ibergeordneten Zielen der

Sicherheit und Verantwortung in KI-Anwendungen tibereinstimmt.

Cohere

Cohere ist ein neuerer Teilnehmer im LLM-Bereich, der sich darauf konzentriert, LLMs
zuginglicher und einfacher zu nutzen als die Konkurrenz. Thr Okosystem umfasst
die Cohere API, die Zugang zu einer Reihe vortrainierter Modelle fiir Aufgaben wie

Texterstellung, Klassifizierung und Zusammenfassung bietet.

Cohere bietet auch Werkzeuge fiir Prompt-Engineering, Feinabstimmung und
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Inhaltsfilterung an. Sie legen besonderen Wert auf Datenschutz und Sicherheit, mit

Funktionen wie verschliisselter Datenspeicherung und Zugriffskontrollen.

Ollama

Ollama ist eine selbst gehostete Plattform, die es Benutzern ermdglicht, verschiedene
grofle Sprachmodelle (LLMs) lokal auf ihren Maschinen zu verwalten und einzusetzen,
wodurch sie vollstandige Kontrolle iiber ihre KI-Modelle haben, ohne auf externe Cloud-
Dienste angewiesen zu sein. Diese Einrichtung ist ideal fiir diejenigen, die Datenschutz

priorisieren und ihre KI-Operationen intern handhaben méchten.

Die Plattform unterstiitzt eine Reihe von Modellen, einschliefflich Versionen von Llama,
Phi, Gemma und Mistral, die sich in Grofle und Rechenanforderungen unterscheiden.
Ollama macht es einfach, diese Modelle direkt von der Befehlszeile mit einfachen
Befehlen wie ollama run <model_name> herunterzuladen und auszufithren, und ist

fiir verschiedene Betriebssysteme wie macOS, Linux und Windows konzipiert.

Fiir Entwickler, die Open-Source-Modelle in ihre Anwendungen integrieren mochten,
ohne eine Remote-API zu verwenden, bietet Ollama eine CLI zur Verwaltung von
Modell-Lebenszyklen, dhnlich wie Container-Management-Tools. Es unterstiitzt auch
benutzerdefinierte Konfigurationen und Prompts, was ein hohes Mafl an Anpassung
ermoglicht, um die Modelle auf spezifische Bediirfnisse oder Anwendungsfille

zuzuschneiden.

Ollama ist besonders fiir technisch versierte Benutzer und Entwickler geeignet, da es
eine Befehlszeilenschnittstelle und Flexibilitat bei der Verwaltung und Bereitstellung
von KI-Modellen bietet. Dies macht es zu einem leistungsfahigen Werkzeug fiir
Unternehmen und Einzelpersonen, die robuste KI-Fihigkeiten bendtigen, ohne

Kompromisse bei Sicherheit und Kontrolle einzugehen.
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Multi-Modell-Plattformen

Zusatzlich gibt es Anbieter, die eine grofie Vielfalt an Open-Source-Modellen
hosten, wie Togetherai und Groq.. Diese Plattformen bieten Flexibilitdt
und Anpassungsmoglichkeiten und erlauben es Ilhnen, Open-Source-Modelle
auszufiihren und in manchen Fallen sogar nach Ihren spezifischen Bediirfnissen
feinabzustimmen. Together.ai bietet beispielsweise Zugang zu einer Reihe von
Open-Source-LLMs und ermoglicht es Benutzern, mit verschiedenen Modellen
und Konfigurationen zu experimentieren. Groq konzentriert sich darauf, ultrahohe
Verarbeitungsgeschwindigkeiten zu liefern, die zum Zeitpunkt der Entstehung dieses

Buches fast magisch erscheinen

Auswahl eines LLM-Anbieters

Bei der Auswahl eines LLM-Anbieters sollten Sie folgende Faktoren beriicksichtigen:

« Preisgestaltung: Verschiedene Anbieter bieten unterschiedliche Preismodelle an,
von nutzungsbasierter Abrechnung bis hin zu Abonnement-basierten Plénen.
Es ist wichtig, die erwartete Nutzung und das Budget bei der Auswahl eines
Anbieters zu beriicksichtigen.

« Leistung: Die Leistung von LLMs kann zwischen Anbietern erheblich variieren,
daher ist es wichtig, Modelle fiir spezifische Anwendungsfille zu testen und zu
bewerten, bevor eine Entscheidung getroffen wird.

« Inhaltsfilterung: Je nach Anwendung kann Inhaltsfilterung ein kritischer Aspekt
sein. Einige Anbieter bieten robustere Inhaltsfilterungsoptionen als andere.

« Datenschutz: Wenn die Anwendung sensible Benutzerdaten verarbeitet, ist es
wichtig, einen Anbieter mit strengen Datenschutz- und Sicherheitspraktiken zu
wihlen.

« Anpassung: Einige Anbieter bieten mehr Flexibilitit bei der Feinabstimmung und

Anpassung von Modellen fiir spezifische Anwendungsfille.
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Letztendlich hingt die Wahl des LLM-Anbieters von den spezifischen Anforderungen
und Einschrankungen der Anwendung ab. Durch sorgfiltige Bewertung der Optionen
und Beriicksichtigung von Faktoren wie Preisgestaltung, Leistung und Datenschutz

konnen Sie den Anbieter auswihlen, der Thre Bediirfnisse am besten erfiillt.

Es ist auch erwahnenswert, dass sich die LLM-Landschaft stindig weiterentwickelt,
wobei regelmafiig neue Anbieter und Modelle auftauchen. Sie sollten sich iiber die
neuesten Entwicklungen auf dem Laufenden halten und offen fiir die Erkundung neuer

Optionen sein, wenn diese verfiighbar werden.

OpenRouter

In diesem Buch werde ich ausschliellich OpenRouter als meinen API-Anbieter der
Wahl verwenden. Der Grund ist einfach: Es ist eine zentrale Anlaufstelle fiir alle
popularsten kommerziellen und Open-Source-Modelle. Wenn Sie darauf brennen, mit
etwas KI-Programmierung zu beginnen, ist einer der besten Ausgangspunkte meine

eigene OpenRouter Ruby Library.

Uberlegungen zur Leistung

Bei der Integration von Sprachmodellen in Anwendungen ist die Leistung ein
entscheidender Faktor. Die Leistung eines Sprachmodells kann anhand seiner Latenz
(die Zeit, die fiir die Generierung einer Antwort benétigt wird) und seines Durchsatzes
(die Anzahl der Anfragen, die pro Zeiteinheit verarbeitet werden kénnen) gemessen

werden.

Zeit bis zum ersten Token (TTFT) ist eine weitere wichtige Leistungskennzahl,
die besonders fiir Chatbots und Anwendungen relevant ist, die interaktive
Echtzeitantworten erfordern. TTFT misst die Latenz vom Moment des Eingangs
einer Benutzeranfrage bis zum Moment, in dem das erste Wort (oder Token) der

Antwort generiert wird. Diese Kennzahl ist entscheidend fir die Aufrechterhaltung


https://openrouter.ai
https://github.com/OlympiaAI/open_router
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einer nahtlosen und fesselnden Benutzererfahrung, da verzogerte Antworten zu

Frustration und nachlassendem Engagement der Benutzer fithren kénnen.

Diese Leistungskennzahlen koénnen einen erheblichen Einfluss auf die

Benutzererfahrung und die Skalierbarkeit der Anwendung haben.
Mehrere Faktoren konnen die Leistung eines Sprachmodells beeinflussen:

Parameteranzahl: Groflere Modelle mit mehr Parametern benétigen im Allgemeinen
mehr Rechenressourcen und kénnen im Vergleich zu kleineren Modellen eine héhere

Latenz und einen geringeren Durchsatz aufweisen.

Hardware: Die Leistung eines Sprachmodells kann je nach der verwendeten Hardware
erheblich variieren. Cloud-Anbieter bieten GPU- und TPU-Instanzen an, die fir
Machine-Learning-Workloads optimiert sind und die Modellinferenz erheblich

beschleunigen koénnen.

Einer der Vorteile von OpenRouter ist, dass man bei vielen der
angebotenen Modelle die Wahl zwischen verschiedenen Cloud-Anbietern

mit unterschiedlichen Leistungsprofilen und Kosten hat.

Quantisierung: Quantisierungstechniken konnen verwendet werden, um den
Speicherbedarf und die Rechenanforderungen eines Modells zu reduzieren, indem
Gewichte und Aktivierungen mit Datentypen niedrigerer Prazision dargestellt werden.
Dies kann die Leistung verbessern, ohne die Qualitdt wesentlich zu beeintrachtigen.
Als Anwendungsentwickler werden Sie sich wahrscheinlich nicht mit dem Training
eigener Modelle auf verschiedenen Quantisierungsebenen beschéftigen, aber es ist gut,

zumindest mit der Terminologie vertraut zu sein.

Batch-Verarbeitung: Die gleichzeitige Verarbeitung mehrerer Anfragen in Batches
kann den Durchsatz verbessern, indem der Overhead fur das Laden von Modellen und

die Datentibertragung amortisiert wird.
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Zwischenspeicherung: Das Zwischenspeichern der Ergebnisse hiufig verwendeter
Prompts oder Eingabesequenzen kann die Anzahl der Inferenzanfragen reduzieren und

die Gesamtleistung verbessern.

Bei der Auswahl eines Sprachmodells fiir eine Produktionsanwendung ist es wichtig,
dessen Leistung anhand reprasentativer Workloads und Hardwarekonfigurationen zu
bewerten. Dies kann helfen, potenzielle Engpasse zu identifizieren und sicherzustellen,

dass das Modell die erforderlichen Leistungsziele erreichen kann.

Es lohnt sich auch, die Kompromisse zwischen Modellleistung und anderen Faktoren
wie Kosten, Flexibilitdt und Integrationsaufwand zu beriicksichtigen. Beispielsweise
kann die Verwendung eines kleineren, kostengiinstigeren Modells mit geringerer
Latenz fir Anwendungen, die Echtzeitantworten erfordern, vorzuziehen sein, wahrend
ein grofleres, leistungsfihigeres Modell besser fiir Batch-Verarbeitung oder komplexe

Denkaufgaben geeignet sein kann.

Experimentieren mit verschiedenen
LLM-Modellen

Die Wahl eines LLM ist selten eine endgiltige Entscheidung. Da regelmiflig neue
und verbesserte Modelle verdffentlicht werden, ist es gut, Anwendungen modular
zu entwickeln, sodass verschiedene Sprachmodelle im Laufe der Zeit ausgetauscht
werden konnen. Prompts und Datensitze konnen oft mit minimalen Anderungen
iiber verschiedene Modelle hinweg wiederverwendet werden. Dies ermdglicht es, die
neuesten Fortschritte in der Sprachmodellierung zu nutzen, ohne die Anwendungen

komplett neu gestalten zu miissen.

P Die Moglichkeit, einfach zwischen einer grofien Auswahl an Modellen zu

wechseln, ist ein weiterer Grund, warum ich OpenRouter so schatze.

Bei der Aktualisierung auf ein neues Sprachmodell ist es wichtig, dessen Leistung und
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Ausgabequalitit griindlich zu testen und zu validieren, um sicherzustellen, dass es die
Anforderungen der Anwendung erfiillt. Dies kann das Nachtraining oder Fine-Tuning
des Modells mit doméanenspezifischen Daten sowie die Aktualisierung nachgelagerter

Komponenten, die von den Ausgaben des Modells abhadngen, umfassen.

Durch die Entwicklung von Anwendungen unter Beriicksichtigung von Leistung und
Modularitét konnen Sie skalierbare, effiziente und zukunftssichere Systeme erstellen, die
sich an die sich schnell entwickelnde Landschaft der Sprachmodellierungstechnologie

anpassen konnen.

Zusammengesetzte Ki-Systeme

Bevor wir unsere Einfithrung abschlieflen, ist es erwahnenswert, dass vor 2023 und
dem durch ChatGPT ausgelosten Interesse an generativer KI traditionelle KI-Ansétze
meist auf der Integration einzelner, geschlossener Modelle basierten. Im Gegensatz dazu
nutzen Zusammengesetzte KI-Systeme komplexe Pipelines miteinander verbundener

Komponenten, die zusammenarbeiten, um intelligentes Verhalten zu erreichen.

Im Kern bestehen zusammengesetzte KI-Systeme aus mehreren Modulen, von denen
jedes fur die Ausfithrung spezifischer Aufgaben oder Funktionen konzipiert ist. Diese
Module koénnen Generatoren, Abrufsysteme, Rangiersysteme, Klassifikatoren und
verschiedene andere spezialisierte Komponenten umfassen. Indem das Gesamtsystem
in kleinere, fokussierte Einheiten aufgeteilt wird, koénnen Entwickler flexiblere,

skalierbarere und wartbarere KI-Architekturen erstellen.

Einer der wichtigsten Vorteile von zusammengesetzten KI-Systemen ist ihre
Fahigkeit, die Starken verschiedener KI-Techniken und -Modelle zu kombinieren.
Ein System konnte zum Beispiel ein grofies Sprachmodell (LLM) fiir das Verstehen und
Generieren natiirlicher Sprache verwenden und gleichzeitig ein separates Modell fiir
Informationsabruf oder regelbasierte Entscheidungsfindung einsetzen. Dieser modulare
Ansatz ermoglicht es Thnen, die besten Werkzeuge und Techniken fiir jede spezifische

Aufgabe auszuwihlen, anstatt sich auf eine Universallsung zu verlassen.
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Allerdings bringt der Aufbau von zusammengesetzten KI-Systemen auch besondere
Herausforderungen mit sich. Insbesondere erfordert die Sicherstellung der allgemeinen
Kohirenz und Konsistenz des Systemverhaltens robuste Test-, Uberwachungs- und

Steuerungsmechanismen.

Das Aufkommen leistungsfahiger LLMs wie GPT-4 ermoglicht es
P uns, einfacher als je zuvor mit zusammengesetzten KI-Systemen
zu experimentieren, da diese fortgeschrittenen Modelle in der Lage
sind, mehrere Rollen innerhalb eines zusammengesetzten Systems zu
iibernehmen, wie Klassifizierung, Ranking und Generierung, zusétzlich zu
ihren Fahigkeiten zum Verstehen natiirlicher Sprache. Diese Vielseitigkeit
ermoglicht es Entwicklern, schnell Prototypen zu erstellen und an
zusammengesetzten KI-Architekturen zu iterieren, was neue Moglichkeiten

fir die Entwicklung intelligenter Anwendungen eroffnet.

Bereitstellungsmuster fiir zusammengesetzte KI-Systeme

Zusammengesetzte KI-Systeme konnen mit verschiedenen Mustern bereitgestellt
werden, die jeweils fiir spezifische Anforderungen und Anwendungsfille konzipiert
sind. Betrachten wir vier hdufige Bereitstellungsmuster: Frage und Antwort, Multi-

Agent/Agentische Problemléser, Konversations-KI und CoPilots.

Frage und Antwort

Frage-und-Antwort-Systeme (Q&A) konzentrieren sich darauf, Informationsabruf
bereitzustellen, der durch die Verstdndnisfahigkeiten von KI-Modellen erweitert wird,
um mehr als nur eine Suchmaschine zu sein. Durch die Kombination leistungsfahiger
Sprachmodelle mit externen Wissensquellen unter Verwendung von Retrieval-
Augmented Generation (RAG) vermeiden Q&A-Systeme Halluzinationen und liefern

genaue und kontextuell relevante Antworten auf Benutzeranfragen.



Einfithrung 33

Die Schliisselkomponenten eines LLM-basierten Q&A-Systems umfassen:

« Anfrageverstindnis und -umformulierung: Analyse von Benutzeranfragen und
deren Umformulierung, um besser zu den zugrunde liegenden Wissensquellen zu
passen.

« Wissensabruf: Abrufen relevanter Informationen aus strukturierten oder
unstrukturierten Datenquellen basierend auf der umformulierten Anfrage.

« Antwortgenerierung: Generierung kohdrenter und informativer Antworten
durch Integration des abgerufenen Wissens mit den generativen Fahigkeiten des

Sprachmodells.

RAG-Subsysteme sind besonders wichtig in Q& A-Bereichen, in denen die Bereitstellung
genauer und aktueller Informationen entscheidend ist, wie im Kundenservice,

Wissensmanagement oder bei Bildungsanwendungen.

Multi-Agent/Agentische Problemléser

Multi-Agent- oder auch agentische Systeme bestehen aus mehreren autonomen
Agenten, die zusammenarbeiten, um komplexe Probleme zu l6sen. Jeder Agent hat eine
spezifische Rolle, einen Satz von Fahigkeiten und Zugang zu relevanten Werkzeugen
oder Informationsquellen. Durch Zusammenarbeit und Informationsaustausch kénnen
diese Agenten Aufgaben bewdéltigen, die fiir einen einzelnen Agenten schwierig oder

unmoglich zu handhaben wéren.

Die Schlisselprinzipien von Multi-Agent-Problemldsern umfassen:

« Spezialisierung: Jeder Agent konzentriert sich auf einen spezifischen Aspekt des
Problems und nutzt dabei seine einzigartigen Fahigkeiten und sein Wissen.

« Zusammenarbeit: Agenten kommunizieren und koordinieren ihre Aktionen,
um ein gemeinsames Ziel zu erreichen, oft durch Nachrichtenaustausch oder

gemeinsamen Speicher.
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« Anpassungsfihigkeit: Das System kann sich an verinderte Bedingungen oder
Anforderungen anpassen, indem es die Rollen und Verhaltensweisen einzelner

Agenten anpasst.

Multi-Agent-Systeme  eignen sich gut fiir Anwendungen, die verteilte
Probleml6sung erfordern, wie Lieferkettenoptimierung, Verkehrsmanagement oder

Notfalleinsatzplanung.

Konversations-KI

Konversations-KI-Systeme erméglichen natiirlichsprachliche Interaktionen zwischen
Benutzern und intelligenten Agenten. Diese Systeme kombinieren Sprachverstandnis,
Dialogverwaltung und Sprachgenerierung, um ansprechende und personalisierte

Konversationserlebnisse zu bieten.

Die Hauptkomponenten eines Konversations-KI-Systems umfassen:

« Intentionserkennung: Identifizierung der Benutzerabsicht basierend auf ihrer
Eingabe, wie das Stellen einer Frage, das Auflern einer Anfrage oder das
Ausdriicken eines Gefiihls.

« Entititsextraktion: Extraktion relevanter Entititen oder Parameter aus der
Benutzereingabe, wie Daten, Orte oder Produktnamen.

« Dialogverwaltung: Aufrechterhaltung des Gesprachszustands, Bestimmung der
angemessenen Antwort basierend auf der Benutzerabsicht und dem Kontext sowie
Handhabung von Mehrfachinteraktionen.

« Antwortgenerierung: Generierung menschendhnlicher Antworten unter

Verwendung von Sprachmodellen, Vorlagen oder abrufbasierten Methoden.

Konversations-KI-Systeme werden haufig in Kundenservice-Chatbots, virtuellen
Assistenten und sprachgesteuerten Schnittstellen eingesetzt. Wie bereits erwéhnt,
stammen die meisten Ansitze, Muster und Codebeispiele in diesem Buch direkt aus

meiner Arbeit an einem grof3en Konversations-KI-System namens Olympia.


https://olympia.chat
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CoPilots

CoPilots sind KI-gestiitzte Assistenten, die zusammen mit menschlichen Benutzern
arbeiten, um deren Produktivitit und Entscheidungsfindung zu verbessern. Diese
Systeme nutzen eine Kombination aus Natursprachverarbeitung, maschinellem Lernen
und doménenspezifischem Wissen, um intelligente Empfehlungen zu geben, Aufgaben

zu automatisieren und kontextbezogene Unterstiitzung zu bieten.

Zu den wichtigsten Merkmalen von CoPilots gehéren:

« Personalisierung:  Anpassung an individuelle = Benutzerpraferenzen,
Arbeitsabldufe und Kommunikationsstile.

« Proaktive Unterstiitzung: Vorwegnahme von Benutzerbediirfnissen und
Angebot relevanter Vorschldge oder Aktionen ohne ausdriickliche Aufforderung.

« Kontinuierliches Lernen: Verbesserung der Leistung im Laufe der Zeit durch das

Lernen aus Benutzer-Feedback, Interaktionen und Daten.

CoPilots werden zunehmend in verschiedenen Bereichen eingesetzt, wie beispielsweise
in der Softwareentwicklung (z.B. Code-Vervollstindigung und Fehlererkennung), im
kreativen Schreiben (z.B. Inhaltsvorschlage und Bearbeitung) und in der Datenanalyse

(z.B. Erkenntnisse und Visualisierungsempfehlungen)

Diese Einsatzmuster zeigen die Vielseitigkeit und das Potenzial von zusammengesetzten
KI-Systemen. Durch das Verstindnis der Eigenschaften und Anwendungsfille jedes
Musters konnen Sie fundierte Entscheidungen bei der Gestaltung und Implementierung
intelligenter Anwendungen treffen. Obwohl sich dieses Buch nicht speziell mit der
Implementierung von zusammengesetzten KI-Systemen befasst, gelten viele, wenn nicht
alle der gleichen Ansétze und Muster fiir die Integration diskreter KI-Komponenten in

die ansonsten traditionelle Anwendungsentwicklung.
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Rollen in zusammengesetzten KI-Systemen

Zusammengesetzte KI-Systeme basieren auf einer Grundlage miteinander verbundener
Module, die jeweils fir die Ausfilhrung einer bestimmten Rolle konzipiert sind.
Diese Module arbeiten zusammen, um intelligentes Verhalten zu erzeugen und
komplexe Probleme zu l6sen. Es ist niitzlich, diese Rollen zu kennen, wenn man
dariiber nachdenkt, wo man mdglicherweise Teile seiner Anwendung mit diskreten

KI-Komponenten implementieren oder ersetzen konnte.

Generator

Generatoren sind dafiir verantwortlich, neue Daten oder Inhalte basierend auf
gelernten Mustern oder Eingabeaufforderungen zu erzeugen. Die KI-Welt verfigt iiber
viele verschiedene Arten von Generatoren, aber im Kontext der Sprachmodelle, die
in diesem Buch vorgestellt werden, konnen Generatoren menschendhnlichen Text
erstellen, unvollstindige Satze vervollstaindigen oder Antworten auf Benutzeranfragen
generieren. Sie spielen eine entscheidende Rolle bei Aufgaben wie der Inhaltserstellung,

Dialoggenerierung und Datenerweiterung.

Retriever

Retriever werden verwendet, um relevante Informationen aus groflen Datensétzen oder
Wissensdatenbanken zu suchen und zu extrahieren. Sie verwenden Techniken
wie semantische Suche, Keyword-Matching oder Vektor-Ahnlichkeit, um die
relevantesten Datenpunkte basierend auf einer gegebenen Anfrage oder einem
Kontext zu finden. Retriever sind essentiell fiir Aufgaben, die einen schnellen Zugriff
auf spezifische Informationen erfordern, wie beispielsweise Frage-Antwort-Systeme,

Faktentiberpriifung oder Inhaltsempfehlungen.
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Ranker

Ranker sind fiir die Ordnung oder Priorisierung einer Menge von Elementen basierend
auf bestimmten Kriterien oder Relevanzwerten verantwortlich. Sie weisen jedem
Element Gewichtungen oder Punktzahlen zu und sortieren sie entsprechend. Ranker
werden haufig in Suchmaschinen, Empfehlungssystemen oder in jeder Anwendung
eingesetzt, bei der es wichtig ist, den Benutzern die relevantesten Ergebnisse zu

prasentieren.

Classifier

Classifier werden verwendet, um Datenpunkte basierend auf vordefinierten
Klassen oder Kategorien zu kategorisieren oder zu kennzeichnen. Sie lernen aus
gekennzeichneten Trainingsdaten und sagen dann die Klasse neuer, ungesehener
Instanzen vorher. Classifier sind fundamental fir Aufgaben wie Stimmungsanalyse,
Spam-Erkennung oder Bilderkennung, bei denen das Ziel darin besteht, jeder Eingabe

eine spezifische Kategorie zuzuweisen.

Werkzeuge & Agenten

Zusatzlich zu diesen Kernrollen integrieren zusammengesetzte KI-Systeme haufig
Werkzeuge und Agenten, um ihre Funktionalitit und Anpassungsfihigkeit zu

verbessern:

« Werkzeuge: Werkzeuge sind diskrete Softwarekomponenten oder APIs, die
spezifische Aktionen oder Berechnungen ausfithren. Sie konnen von anderen
Modulen wie Generatoren oder Retrievern aufgerufen werden, um Teilaufgaben
zu erfiillen oder zuséitzliche Informationen zu sammeln. Beispiele fiir Werkzeuge
sind Websuchmaschinen, Taschenrechner oder Datenvisualisierungsbibliotheken.

« Agenten: Agenten sind autonome Einheiten, die ihre Umgebung wahrnehmen,

Entscheidungen treffen und Aktionen ausfithren kénnen, um bestimmte Ziele
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zu erreichen. Sie stiitzen sich hiufig auf eine Kombination verschiedener
KI-Techniken wie Planung, Reasoning und Lernen, um in dynamischen oder
unsicheren Bedingungen effektiv zu arbeiten. Agenten konnen verwendet werden,
um komplexe Verhaltensweisen zu modellieren oder die Aktionen mehrerer

Module innerhalb eines zusammengesetzten KI-Systems zu koordinieren.

In einem reinen zusammengesetzten KI-System wird die Interaktion zwischen diesen
Komponenten durch klar definierte Schnittstellen und Kommunikationsprotokolle
orchestriert. Daten flieflen zwischen den Modulen, wobei die Ausgabe einer
Komponente als Eingabe fiir eine andere dient. Diese modulare Architektur erméglicht
Flexibilitdt, Skalierbarkeit und Wartbarkeit, da einzelne Komponenten aktualisiert,

ersetzt oder erweitert werden konnen, ohne das gesamte System zu beeinflussen.

Durch die Nutzung der Leistungsfahigkeit dieser Komponenten und ihrer Interaktionen
konnen zusammengesetzte KI-Systeme komplexe, reale Probleme bewiltigen, die eine
Kombination verschiedener KI-Fahigkeiten erfordern. Wahrend wir die Ansétze und
Muster fiir die Integration von KI in die Anwendungsentwicklung erkunden, sollten
Sie bedenken, dass die gleichen Prinzipien und Techniken, die in zusammengesetzten
KI-Systemen verwendet werden, auch fiir die Erstellung intelligenter, adaptiver und

benutzerzentrierter Anwendungen genutzt werden kénnen.

In den folgenden Kapiteln von Teil 1 werden wir tiefer in die grundlegenden
Ansitze und Techniken fir die Integration von KI-Komponenten in Thren
Anwendungsentwicklungsprozess eintauchen. Von Prompt-Engineering und abruf-
gestitzter Generierung bis hin zu selbstheilenden Daten und intelligenter Workflow-
Orchestrierung werden wir eine breite Palette von Mustern und Best Practices

behandeln, die Thnen beim Aufbau modernster KI-gestiitzter Anwendungen helfen.



Teil 1: Grundlegende
Ansatze & Techniken

Dieser Teil des Buches stellt verschiedene Moglichkeiten vor, wie Sie KI in Thre
Anwendungen integrieren konnen. Die Kapitel behandeln eine Reihe verwandter
Ansatze und Techniken, von iibergeordneten Konzepten wie Den Pfad eingrenzen
und Retrieval Augmented Generation bis hin zu Ideen fiir die Programmierung einer

eigenen Abstraktionsschicht iiber LLM Chat Completion APIs.

Ziel dieses Buchteils ist es, Thnen zu vermitteln, welche Arten von Verhalten
Sie mit KI implementieren konnen, bevor Sie sich zu tief in die spezifischen

Implementierungsmuster vertiefen, die den Schwerpunkt von Teil 2 bilden.

Die Ansitze in Teil 1 basieren auf Ideen, die ich in meinem Code verwendet habe,
klassischen Mustern der Unternehmensanwendungsarchitektur und -integration sowie
Metaphern, die ich beim Erklaren der KI-Fahigkeiten gegeniiber anderen Personen,

einschlieSlich nicht-technischer Geschéftspartner, verwendet habe.



Den Pfad eingrenzen

AR

|
e

“Den Pfad eingrenzen” bezieht sich darauf, die KI auf die aktuelle Aufgabe zu
fokussieren. Ich verwende es als Mantra, wann immer ich frustriert bin, weil die KI
sich “dumm” oder unerwartet verhilt. Das Mantra erinnert mich daran, dass der Fehler
wahrscheinlich bei mir liegt und dass ich den Pfad vermutlich noch weiter eingrenzen

sollte.

Die Notwendigkeit, den Pfad einzugrenzen, ergibt sich aus der gewaltigen Menge
an Wissen, die in groflen Sprachmodellen enthalten ist, insbesondere in Weltklasse-

Modellen wie denen von OpenAl und Anthropic, die buchstiblich Billionen von
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Parametern haben.

Der Zugang zu einem solch breiten Wissensspektrum ist zweifellos machtig und erzeugt
emergentes Verhalten wie Theory of Mind und die Fihigkeit, auf menschenéhnliche
Weise zu denken. Allerdings stellt diese erschiitternde Informationsmenge auch
Herausforderungen dar, wenn es darum geht, préazise und akkurate Antworten auf
spezifische Prompts zu generieren, besonders wenn diese Prompts deterministisches
Verhalten aufweisen sollen, das in die “normale” Softwareentwicklung und Algorithmen

integriert werden kann.
Mehrere Faktoren fiithren zu diesen Herausforderungen.

Informationsiiberflutung: Grofle Sprachmodelle werden mit riesigen Datenmengen
trainiert, die verschiedene Bereiche, Quellen und Zeitrdume umfassen. Dieses
umfangreiche Wissen ermoglicht es ihnen, sich mit verschiedenen Themen
auseinanderzusetzen und Antworten basierend auf einem breiten Weltverstandnis zu
generieren. Wenn das Modell jedoch mit einem spezifischen Prompt konfrontiert wird,
konnte es Schwierigkeiten haben, irrelevante, widerspriichliche oder veraltete/obsolete
Informationen herauszufiltern, was zu Antworten fihrt, denen es an Fokus oder
Genauigkeit mangelt. Je nachdem, was Sie zu erreichen versuchen, kann die schiere
Menge an widerspriichlichen Informationen, die dem Modell zur Verfligung stehen,
leicht seine Fahigkeit tiberfordern, die gewiinschte Antwort oder das gewinschte

Verhalten zu liefern.

Kontextuelle Mehrdeutigkeit: Angesichts des riesigen latenten Raums an Wissen
konnen grofle Sprachmodelle auf Mehrdeutigkeiten stoflen, wenn sie versuchen, den
Kontext Thres Prompts zu verstehen. Ohne angemessene Eingrenzung oder Fihrung
kann das Modell Antworten generieren, die nur am Rande relevant, aber nicht direkt
mit Thren Absichten verbunden sind. Diese Art von Fehler fithrt zu Antworten, die vom
Thema abweichen, inkonsistent sind oder Thre formulierten Bediirfnisse nicht erfullen.
In diesem Fall bezieht sich das Eingrenzen des Pfads auf die Kontext-Disambiguierung,

die sicherstellt, dass der von Thnen bereitgestellte Kontext das Modell dazu veranlasst,
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sich nur auf die relevantesten Informationen in seinem Basiswissen zu konzentrieren.

Hinweis: Wenn Sie mit “Prompt-Engineering” anfangen, werden Sie das
Modell haufig auffordern, Dinge zu tun, ohne das gewiinschte Ergebnis

richtig zu erkldren; es braucht Ubung, nicht mehrdeutig zu sein!

Zeitliche Inkonsistenzen: Da Sprachmodelle mit Daten trainiert werden, die zu
verschiedenen Zeitpunkten erstellt wurden, kénnen sie Wissen besitzen, das veraltet,
iiberholt oder nicht mehr akkurat ist. Zum Beispiel konnen sich Informationen iiber
aktuelle Ereignisse, wissenschaftliche Entdeckungen oder technologische Fortschritte
seit der Erfassung der Trainingsdaten des Modells weiterentwickelt haben. Ohne den
Pfad einzugrenzen, um neueren und zuverldssigeren Quellen Vorrang zu geben, kénnte
das Modell Antworten generieren, die auf veralteten oder falschen Informationen

basieren, was zu Ungenauigkeiten und Inkonsistenzen in seinen Ausgaben fiihrt.

Dominenspezifische Nuancen: Verschiedene Doménen und Fachgebiete haben ihre
eigene spezifische Terminologie, Konventionen und Wissensbasis. Denken Sie an
praktisch jedes TLA (Drei-Buchstaben-Akronym) und Sie werden feststellen, dass die
meisten von ihnen mehr als eine Bedeutung haben. Zum Beispiel kann MSK sich auf
Amazon’s Managed Streaming for Apache Kafka, das Memorial Sloan Kettering Cancer

Center oder das menschliche MuskuloSKeletale System beziehen.

Wenn ein Prompt Expertise in einem bestimmten Bereich erfordert, reicht das
allgemeine Wissen eines groflen Sprachmodells moglicherweise nicht aus, um genaue
und nuancierte Antworten zu liefern. Das Eingrenzen des Pfads durch Fokussierung
auf doménenspezifische Informationen, entweder durch Prompt-Engineering oder
retrieval-augmentierte Generierung, ermdglicht es dem Modell, Antworten zu
generieren, die besser auf die Anforderungen und Erwartungen Threr spezifischen

Doméne abgestimmt sind.
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Latenter Raum: Unfassbar weit

Wenn ich den “latenten Raum” eines Sprachmodells erwihne, beziehe ich mich auf
die riesige, mehrdimensionale Wissens- und Informationslandschaft, die das Modell
wihrend seines Trainingsprozesses gelernt hat. Es ist wie ein verborgenes Reich
innerhalb der neuronalen Netze des Modells, wo alle Muster, Assoziationen und

Sprachreprasentationen gespeichert sind.

Stellen Sie sich vor, Sie erkunden ein riesiges, unerforschtes Gebiet voller unzahliger
miteinander verbundener Knoten. Jeder Knoten reprasentiert ein Informationsstiick, ein
Konzept oder eine Beziehung, die das Modell gelernt hat. Wahrend Sie sich durch diesen
Raum bewegen, werden Sie feststellen, dass einige Knoten niaher beieinander liegen, was
eine starke Verbindung oder Ahnlichkeit anzeigt, wihrend andere weiter voneinander

entfernt sind, was auf eine schwichere oder entferntere Beziehung hindeutet.

Die Herausforderung beim latenten Raum ist seine unglaubliche Komplexitit und
Hochdimensionalitat. Stellen Sie sich vor, er sei so gewaltig wie unser physikalisches
Universum, mit seinen Galaxienhaufen und den unvorstellbar weiten, leeren Rdumen

dazwischen.

Da er tausende von Dimensionen enthalt, ist der latente Raum fiir Menschen weder
direkt beobachtbar noch interpretierbar. Es ist eine abstrakte Darstellung, die das Modell
intern verwendet, um Sprache zu verarbeiten und zu generieren. Wenn Sie dem Modell
eine Eingabeaufforderung geben, wird diese im Wesentlichen auf einen bestimmten Ort
im latenten Raum abgebildet. Das Modell nutzt dann die umgebenden Informationen

und Verbindungen in diesem Raum, um eine Antwort zu generieren.

Die Sache ist die: Das Modell hat eine enorme Menge an Informationen aus seinen
Trainingsdaten gelernt, und nicht alle davon sind fiir eine bestimmte Aufgabe relevant
oder prazise. Deshalb wird die Eingrenzung des Pfades so wichtig. Indem Sie in Ihren
Prompts klare Anweisungen, Beispiele und Kontext bereitstellen, leiten Sie das Modell

im Wesentlichen dazu an, sich auf bestimmte Bereiche innerhalb des latenten Raums zu
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konzentrieren, die fiir Thre gewiinschte Ausgabe am relevantesten sind.

Eine andere Art, dariiber nachzudenken, ist wie die Verwendung eines Scheinwerfers
in einem vollig dunklen Museum. Wenn Sie jemals den Louvre oder das Metropolitan
Museum of Art besucht haben, dann ist das die Art von GréBenordnung, von der
ich spreche. Der latente Raum ist das Museum, gefiillt mit unzahligen Objekten und
Details. Ihr Prompt ist der Scheinwerfer, der bestimmte Bereiche beleuchtet und die
Aufmerksamkeit des Modells auf die wichtigsten Informationen lenkt. Ohne diese
Fihrung konnte das Modell ziellos durch den latenten Raum wandern und dabei

irrelevante oder widerspriichliche Informationen aufsammeln.

Wihrend Sie mit Sprachmodellen arbeiten und Ihre Prompts erstellen, behalten
Sie das Konzept des latenten Raums im Hinterkopf. Thr Ziel ist es, diese riesige
Wissenslandschaft effektiv zu navigieren und das Modell zu den relevantesten und
genauesten Informationen fiir Thre Aufgabe zu fithren. Durch die Eingrenzung des
Pfades und klare Anleitung kénnen Sie das volle Potenzial des latenten Raums des

Modells erschlieffen und qualitativ hochwertige, koharente Antworten generieren.

Wihrend die vorherigen Beschreibungen von Sprachmodellen und dem latenten Raum,
den sie navigieren, etwas magisch oder abstrakt erscheinen mégen, ist es wichtig
zu verstehen, dass Prompts keine Zauberspriiche oder Beschwoérungen sind. Die
Funktionsweise von Sprachmodellen basiert auf den Prinzipien der linearen Algebra

und Wahrscheinlichkeitstheorie.

Im Kern sind Sprachmodelle probabilistische Modelle von Text, dhnlich wie eine
Glockenkurve ein statistisches Modell von Daten ist. Sie werden durch einen
Prozess namens autoregressives Modellieren trainiert, bei dem das Modell lernt,
die Wahrscheinlichkeit des nidchsten Wortes in einer Sequenz basierend auf den
vorhergehenden Wortern vorherzusagen. Wihrend des Trainings beginnt das Modell
mit zufilligen Gewichten und passt diese allmdhlich an, um Text, der den realen

Trainingsbeispielen dhnelt, hohere Wahrscheinlichkeiten zuzuweisen.

Allerdings bietet es keine optimale Intuition fir das Verstdndnis ihres Verhaltens,
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Sprachmodelle als einfache statistische Modelle wie lineare Regression zu betrachten.
Eine treffendere Analogie ist es, sie als probabilistische Programme zu verstehen,
also Modelle, die die Manipulation von Zufallsvariablen erméglichen und komplexe

statistische Beziehungen darstellen kénnen.

Probabilistische Programme kénnen durch grafische Modelle dargestellt werden,
die eine visuelle Moglichkeit bieten, die Abhangigkeiten und Beziehungen zwischen
Variablen im Modell zu verstehen. Diese Perspektive kann wertvolle Einblicke in die

Funktionsweise komplexer Textgenerierungsmodelle wie GPT-4 und Claude liefern.

In der Arbeit “Language Model Cascades” von Dohan et al. gehen die Autoren detailliert
darauf ein, wie probabilistische Programme auf Sprachmodelle angewendet werden
konnen. Sie zeigen, wie dieser Rahmen genutzt werden kann, um das Verhalten dieser

Modelle zu verstehen und die Entwicklung effektiverer Prompting-Strategien zu leiten.

Eine wichtige Erkenntnis aus dieser probabilistischen Perspektive ist, dass das
Sprachmodell im Wesentlichen ein Portal zu einem alternativen Universum erschafft,
in dem die gewinschten Dokumente existieren. Das Modell weist allen moglichen
Dokumenten basierend auf ihrer Wahrscheinlichkeit Gewichte zu und grenzt
damit effektiv den Raum der Moglichkeiten ein, um sich auf die relevantesten zu

konzentrieren.

Dies bringt uns zuriick zum zentralen Thema der “Eingrenzung des Pfades”. Das primére
Ziel des Promptings ist es, das probabilistische Modell so zu konditionieren, dass es die
Masse seiner Vorhersagen fokussiert und sich auf die spezifischen Informationen oder
Verhaltensweisen konzentriert, die wir hervorrufen méchten. Durch sorgfiltig gestaltete
Prompts kénnen wir das Modell anleiten, den latenten Raum effizienter zu navigieren

und relevantere und koharentere Ausgaben zu generieren.

Allerdings ist es wichtig zu bedenken, dass das Sprachmodell letztendlich durch die
Informationen eingeschrankt ist, mit denen es trainiert wurde. Wiahrend es Text
generieren kann, der bestehenden Dokumenten dhnelt oder Ideen auf neuartige Weise

kombiniert, kann es nicht vollig neue Informationen aus dem Nichts erschaffen.
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Zum Beispiel konnen wir nicht erwarten, dass das Modell eine Heilung fiir Krebs
liefert, wenn eine solche Heilung noch nicht entdeckt und in seinen Trainingsdaten

dokumentiert wurde.

Stattdessen liegt die Stirke des Modells in seiner Fahigkeit, Informationen zu finden
und zu synthetisieren, die dem &hneln, womit wir es prompten. Indem wir die
probabilistische Natur dieser Modelle verstehen und wie Prompts zur Konditionierung
ihrer Ausgaben verwendet werden konnen, kénnen wir ihre Fihigkeiten effektiver

nutzen, um wertvolle Erkenntnisse und Inhalte zu generieren.

Betrachten Sie die folgenden Prompts. Im ersten kénnte “Mercury” allein sich auf den
Planeten, das Element oder den romischen Gott beziehen, aber am wahrscheinlichsten
ist der Planet. Tatsachlich liefert GPT-4 eine lange Antwort, die mit Merkur ist der
kleinste und innerste Planet im Sonnensystem... beginnt. Der zweite Prompt bezieht
sich speziell auf das chemische Element. Der dritte bezieht sich auf die rémische
mythologische Figur, die fiir ihre Geschwindigkeit und Rolle als géttlicher Bote bekannt

ist.

# Prompt 1
Tell me about: Mercury

# Prompt 2
Tell me about: Mercury element

# Prompt 3
Tell me about: Mercury messenger of the gods

Durch das Hinzufiigen von nur wenigen zusétzlichen Wortern haben wir die Reaktion
der KI vollig verandert. Wie Sie spéter im Buch erfahren werden, sind ausgekliigelte
Prompt-Engineering-Techniken wie N-Shot-Prompting, strukturierte Ein-/Ausgabe und

Chain of Thought nur clevere Methoden, um die Ausgabe des Modells zu konditionieren.

Letztendlich geht es bei der Kunst des Prompt-Engineerings darum zu verstehen,

wie man durch die weite probabilistische Landschaft des Wissens des Sprachmodells
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navigiert, um den Weg zu den spezifischen Informationen oder dem gewiinschten

Verhalten einzugrenzen.

Fur Leser mit fundierten Mathematikkenntnissen kann es definitiv hilfreich sein, das
Verstandnis dieser Modelle auf den Prinzipien der Wahrscheinlichkeitstheorie und
linearen Algebra aufzubauen! Fiir alle anderen, die effektive Strategien zur Erzeugung

gewlinschter Ausgaben entwickeln méchten, bleiben wir bei intuitiveren Ansétzen.

Wie der Pfad “eingegrenzt” wird

Um diese Herausforderungen des tiberméfligen Wissens zu bewdiltigen, setzen wir
Techniken ein, die den Generierungsprozess des Sprachmodells lenken und seine

Aufmerksamkeit auf die relevantesten und genauesten Informationen fokussieren.

Hier sind die wichtigsten Techniken in der empfohlenen Reihenfolge, das heif}t, Sie
sollten zuerst Prompt-Engineering versuchen, dann RAG und schlie8lich, wenn es sein

muss, Fine-Tuning.

Prompt-Engineering Der grundlegendste Ansatz ist das Erstellen von Prompts,
die spezifische Anweisungen, Einschrankungen oder Beispiele enthalten, um die
Antworterstellung des Modells zu lenken. Dieses Kapitel behandelt die Grundlagen
des Prompt-Engineerings im nachsten Abschnitt, und wir behandeln viele spezifische
Prompt-Engineering-Muster in Teil 2 des Buches. Zu diesen Mustern gehort die Prompt-
Destillation, eine Technik, die sich darauf konzentriert, Prompts zu verfeinern und
zu optimieren, um die von der KI als am relevantesten und priagnantesten erachteten

Informationen zu extrahieren.

Kontexterweiterung Das dynamische Abrufen relevanter Informationen aus externen
Wissensdatenbanken oder Dokumenten, um dem Modell zum Zeitpunkt der Anfrage
gezielten Kontext bereitzustellen. Zu den beliebten Kontexterweiterungstechniken
gehort Retrieval-Augmented Generation (RAG) Sogenannte “Online-Modelle” wie die

von Perplexity konnen ihren Kontext durch Echtzeit-Internetsuchergebnisse erweitern.


https://perplexity.ai
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Trotz ihrer Leistungsfahigkeit sind LLMs nicht auf Ihre einzigartigen
’ Datensatze trainiert, die moglicherweise privat oder spezifisch fiir das
zu 16sende Problem sind. Kontexterweiterungstechniken ermoglichen es
LLMs, auf Daten hinter APIs, in SQL-Datenbanken oder in PDFs und

Prasentationen zuzugreifen.

Fine-Tuning oder Dominenanpassung Das Training des Modells auf
doméanenspezifischen Datensétzen, um sein Wissen und seine Generierungsfihigkeiten

fiir eine bestimmte Aufgabe oder ein bestimmtes Fachgebiet zu spezialisieren.

Die Temperatur herunterregein

Temperatur ist ein Hyperparameter, der in Transformer-basierten Sprachmodellen
verwendet wird und die Zufalligkeit und Kreativitat des generierten Textes steuert. Es
ist ein Wert zwischen 0 und 1, wobei niedrigere Werte die Ausgabe fokussierter und
deterministischer machen, wahrend hohere Werte sie vielfaltiger und unvorhersehbarer

machen.

Wenn die Temperatur auf 1 eingestellt ist, generiert das Sprachmodell Text basierend auf
der vollstandigen Wahrscheinlichkeitsverteilung des néachsten Tokens, was kreativere
und variationsreichere Antworten erméglicht. Dies kann jedoch auch dazu fiihren, dass

das Modell Text generiert, der weniger relevant oder kohérent ist.

Wenn die Temperatur hingegen auf 0 gesetzt wird, wahlt das Sprachmodell immer den
Token mit der hochsten Wahrscheinlichkeit aus und “verengt” damit effektiv seinen
Pfad. Fast alle meine KI-Komponenten verwenden eine Temperatur von oder nahe 0,
da dies zu fokussierteren und vorhersehbareren Antworten fithrt. Dies ist besonders
niitzlich, wenn Sie méchten, dass das Modell Anweisungen befolgt, auf bereitgestellte

Funktionen achtet oder einfach genauere und relevantere Antworten liefert als bisher.

Wenn Sie beispielsweise einen Chatbot entwickeln, der faktische Informationen

bereitstellen soll, méchten Sie die Temperatur méglicherweise auf einen niedrigeren
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Wert einstellen, um sicherzustellen, dass die Antworten préziser und themenbezogener
sind. Umgekehrt méchten Sie bei der Entwicklung eines kreativen Schreibassistenten
die Temperatur moglicherweise auf einen hoheren Wert einstellen, um vielfaltigere und

phantasievollere Ausgaben zu férdern.

Hyperparameter: Regler und Schalter der Inferenz

Wenn Sie mit Sprachmodellen arbeiten, werden Sie haufig auf den Begriff
“Hyperparameter” stoflen. Im Kontext der Inferenz (d.h. wenn Sie das Modell zur
Generierung von Antworten verwenden) sind Hyperparameter wie Regler und
Schalter, die Sie anpassen konnen, um das Verhalten und die Ausgabe des Modells zu

steuern.

Stellen Sie sich vor, Sie wiirden die Einstellungen einer komplexen Maschine anpassen.
So wie Sie einen Knopf drehen kénnten, um die Temperatur zu regeln, oder einen
Schalter umlegen kénnten, um den Betriebsmodus zu #ndern, ermdglichen Thnen
Hyperparameter die Feinabstimmung der Art und Weise, wie das Sprachmodell Text

verarbeitet und generiert.

Einige haufige Hyperparameter, denen Sie bei der Inferenz begegnen werden, sind:

« Temperatur: Wie bereits erwiahnt, steuert dieser Parameter die Zufalligkeit und
Kreativitat des generierten Textes. Eine hohere Temperatur fithrt zu vielfaltigeren
und unvorhersehbareren Ausgaben, wihrend eine niedrigere Temperatur

fokussiertere und deterministischere Antworten erzeugt.

+ Top-p (Nucleus) Sampling: Dieser Parameter steuert die Auswahl der kleinsten
Menge an Tokens, deren kumulative Wahrscheinlichkeit einen bestimmten
Schwellenwert (p) tberschreitet. Er ermoglicht vielfaltigere Ausgaben bei

gleichzeitiger Beibehaltung der Kohérenz.
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« Top-k Sampling: Diese Technik wahlt die k wahrscheinlichsten néchsten
Tokens aus und verteilt die Wahrscheinlichkeitsmasse unter ihnen neu. Dies
kann verhindern, dass das Modell unwahrscheinliche oder irrelevante Tokens

generiert.

 Frequenz- und Prisenzstrafen: Diese Parameter bestrafen das Modell dafiir,
dass es dieselben Worter oder Phrasen zu haufig wiederholt (Frequenzstrafe)
oder Worter generiert, die nicht in der Eingabeaufforderung vorhanden sind
(Prasenzstrafe). Durch Anpassung dieser Werte konnen Sie das Modell ermutigen,

vielfaltigere und relevantere Ausgaben zu erzeugen.

« Maximale Liange: Dieser Hyperparameter legt eine obere Grenze fiir die Anzahl
der Tokens (Worter oder Teilworter) fest, die das Modell in einer einzelnen
Antwort generieren kann. Er hilft dabei, die Ausfiihrlichkeit und Pragnanz des

generierten Textes zu steuern.

Wiahrend Sie mit verschiedenen Hyperparameter-Einstellungen experimentieren,
werden Sie feststellen, dass selbst kleine Anpassungen einen erheblichen Einfluss
auf die Ausgabe des Modells haben konnen. Es ist wie bei der Feinabstimmung
eines Rezepts — eine Prise mehr Salz oder eine etwas ldngere Garzeit konnen den

entscheidenden Unterschied im fertigen Gericht ausmachen.

Der Schliissel liegt darin, zu verstehen, wie sich jeder Hyperparameter auf das Verhalten
des Modells auswirkt und die richtige Balance fiir Thre spezifische Aufgabe zu finden.
Scheuen Sie sich nicht, mit verschiedenen Einstellungen zu experimentieren und zu
beobachten, wie sie den generierten Text beeinflussen. Mit der Zeit entwickeln Sie
ein Gespiir dafiir, welche Hyperparameter Sie anpassen miissen und wie Sie die

gewiinschten Ergebnisse erzielen konnen.

Durch die Kombination dieser Parameter mit Prompt-Engineering, retrievalgestiitzter

Generierung und Feinabstimmung konnen Sie den Weg effektiv eingrenzen und das
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Sprachmodell dazu anleiten, genauere, relevantere und wertvollere Antworten fiir ihren

spezifischen Anwendungsfall zu generieren.

Rohmodelle versus instruktionsoptimierte
Modelle

Rohmodelle sind die unverfeinerten, untrainierten Versionen von LLMs. Stellen Sie
sich diese wie eine leere Leinwand vor, die noch nicht durch spezifisches Training
beeinflusst wurde, um Anweisungen zu verstehen oder zu befolgen. Sie basieren auf
den umfangreichen Daten, mit denen sie urspriinglich trainiert wurden, und sind in der
Lage, eine breite Palette von Ausgaben zu generieren. Ohne zusétzliche Schichten des
anweisungsbasierten Fine-Tunings kénnen ihre Antworten jedoch unvorhersehbar sein
und erfordern nuanciertere, sorgfaltig formulierte Prompts, um sie zur gewiinschten
Ausgabe zu fiihren. Die Arbeit mit Rohmodellen gleicht der Kommunikation mit einem
Inselbegabten, der iber ein enormes Wissen verfiigt, aber keinerlei Intuition dafiir hat,
wonach Sie fragen, es sei denn, Sie sind in Thren Anweisungen duflerst prazise. Sie
wirken oft wie ein Papagei, da sie, soweit sie iiberhaupt etwas Verstindliches von sich

geben, meistens nur etwas wiederholen, das sie von Thnen geho6rt haben.

Instruktionsoptimierte Modelle hingegen haben Trainingsrunden durchlaufen, die
speziell darauf ausgerichtet sind, Anweisungen zu verstehen und zu befolgen.
GPT-4, Claude 3 und viele andere der beliebtesten LLM-Modelle sind alle stark
instruktionsoptimiert. Dieses Training beinhaltet, dem Modell Beispiele von
Anweisungen zusammen mit den gewiinschten Ergebnissen zu préasentieren und ihm
dadurch effektiv beizubringen, wie es eine breite Palette von Befehlen interpretieren
und ausfithren kann. Infolgedessen kénnen instruktionsoptimierte Modelle die Absicht
hinter einem Prompt besser verstehen und Antworten generieren, die eng mit den
Erwartungen des Benutzers ibereinstimmen. Dies macht sie benutzerfreundlicher
und einfacher in der Handhabung, besonders fiir diejenigen, die nicht die Zeit oder

Expertise haben, sich mit umfangreichem Prompt-Engineering zu beschaftigen.
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Rohmodelle: Die ungefilterte Leinwand

Rohmodelle wie Llama 2-70B oder Yi-34B bieten einen ungefilterteren Zugang zu den
Fahigkeiten des Modells, als Sie es vielleicht gewohnt sind, wenn Sie mit populdren
LLMs wie GPT-4 experimentiert haben. Diese Modelle sind nicht vortrainiert, um
spezifische Anweisungen zu befolgen, und bieten Ihnen eine leere Leinwand, um die
Ausgabe des Modells durch sorgfiltiges Prompt-Engineering direkt zu manipulieren.
Dieser Ansatz erfordert ein tiefes Verstandnis dafiir, wie man Prompts erstellt, die die KI
in die gewtiinschte Richtung lenken, ohne sie explizit anzuweisen. Es ist vergleichbar mit
einem direkten Zugriff auf die “rohen” Schichten der zugrundeliegenden KI, ohne dass
vermittelnde Schichten die Antworten des Modells interpretieren oder lenken (daher der

Name).
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Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

# Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

# Mixtral 8x22B (base) 4
No, this time | don't.
By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?
~50.1 tokens/s

Abbildung 3. Test eines Basis-Modells mit einem Teil des klassischen "'Who’s on First’-Sketches von
Abbott und Costello

Die Herausforderung bei Basis-Modellen liegt in ihrer Tendenz, in repetitive Muster
zu verfallen oder zufillige Ausgaben zu produzieren. Jedoch kdénnen Basis-Modelle
durch sorgfiltiges Prompt-Engineering und die Anpassung von Parametern wie
Wiederholungsstrafen dazu gebracht werden, einzigartige und kreative Inhalte zu
generieren. Dieser Prozess ist nicht ohne Kompromisse; wahrend Basis-Modelle eine
unvergleichliche Flexibilitdt fiir Innovationen bieten, erfordern sie auch ein hoéheres

Maf3 an Expertise.
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Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Abbildung 4. Zum Vergleich: Die gleiche mehrdeutige Eingabeaufforderung, die an GPT-4 gesendet
wurde

Instruktionsoptimierte Modelle: Die gefuihrte Erfahrung

Instruktionsoptimierte Modelle sind darauf ausgelegt, spezifische Anweisungen
zu verstehen und zu befolgen, was sie benutzerfreundlicher und fiir ein breiteres
Spektrum von Anwendungen zugénglich macht. Sie verstehen die Mechanik einer
Unterhaltung und wissen, dass sie die Generierung stoppen sollten, wenn es das Ende
ihrer Gesprdchsrunde ist. Fiir viele Entwickler, besonders jene, die an unkomplizierten
Anwendungen arbeiten, bieten instruktionsoptimierte Modelle eine praktische und

effiziente Losung.

Der Prozess des Instruktions-Tunings beinhaltet das Training des Modells an einem
groflen Korpus von menschengenerierten Instruktionseingaben und -antworten.
Ein bemerkenswertes Beispiel ist der Open-Source-databricks-dolly-15k dataset, der
iiber 15.000 Eingabe-/Antwortpaare enthélt, die von Databricks-Mitarbeitern erstellt

wurden und die man selbst inspizieren kann. Der Datensatz umfasst acht verschiedene


https://huggingface.co/datasets/databricks/databricks-dolly-15k
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Instruktionskategorien, einschlie8lich kreatives Schreiben, geschlossene und offene
Fragebeantwortung, Zusammenfassung, Informationsextraktion, Klassifizierung und

Brainstorming.

Wihrend des Datengenerierungsprozesses erhielten die Mitwirkenden Richtlinien zur
Erstellung von Eingabeaufforderungen und Antworten fiir jede Kategorie. Fiir kreative
Schreibaufgaben wurden sie beispielsweise angewiesen, spezifische Einschrankungen,
Anweisungen oder Anforderungen zur Steuerung der Modellausgabe bereitzustellen.
Fiir geschlossene Fragebeantwortungen wurden sie gebeten, Fragen zu formulieren, die

sachlich korrekte Antworten auf Basis einer gegebenen Wikipedia-Passage erfordern.

Der resultierende Datensatz dient als wertvolle Ressource fiir die Feinabstimmung
grofler Sprachmodelle, um die interaktiven und anweisungsbefolgenden Fahigkeiten
von Systemen wie ChatGPT zu entwickeln. Durch das Training an einer vielfaltigen
Auswahl von menschengenerierten Anweisungen und Antworten lernt das Modell,
spezifische Direktiven zu verstehen und zu befolgen, wodurch es geschickter im Umgang

mit einer breiten Palette von Aufgaben wird.

Zusatzlich zur direkten Feinabstimmung koénnen die Instruktionseingaben in
Datensatzen wie databricks-dolly-15k auch fiir die synthetische Datengenerierung
verwendet werden. Indem man von Mitwirkenden erstellte Eingaben als Few-
Shot-Beispiele an ein grofles offenes Sprachmodell {ibermittelt, konnen Entwickler
einen viel grofieren Korpus von Anweisungen in jeder Kategorie generieren. Dieser
im Self-Instruct-Paper beschriebene Ansatz ermoglicht die Erstellung robusterer

instruktionsbefolgender Modelle.

Dartiber hinaus konnen die Anweisungen und Antworten in diesen Datensétzen durch
Techniken wie Paraphrasierung erweitert werden. Indem jede Eingabeaufforderung
oder kurze Antwort neu formuliert und der daraus resultierende Text mit der
entsprechenden Referenzprobe verkniipft wird, konnen Entwickler eine Form der
Regularisierung einfiihren, die die Fahigkeit des Modells verbessert, Anweisungen zu

befolgen.
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Die Benutzerfreundlichkeit der instruktionsoptimierten Modelle geht auf Kosten einer
gewissen Flexibilitdt. Diese Modelle sind oft stark zensiert, was bedeutet, dass sie
nicht immer die kreative Freiheit bieten, die fiir bestimmte Aufgaben erforderlich ist.
Thre Ausgaben werden stark von den Voreingenommenheiten und Einschrankungen

beeinflusst, die ihren Feinabstimmungsdaten innewohnen.

Trotz dieser Einschrankungen sind instruktionsoptimierte Modelle aufgrund ihrer
Benutzerfreundlichkeit und der Fihigkeit, eine breite Palette von Aufgaben mit
minimalem Prompt-Engineering zu bewaltigen, immer beliebter geworden. Mit der
zunehmenden Verfiigbarkeit hochwertiger Instruktionsdatensétze konnen wir weitere

Verbesserungen in der Leistung und Vielseitigkeit dieser Modelle erwarten.

Die Wahl des richtigen Modelltyps fir Ihr Projekt

Die Entscheidung zwischen Basis- und instruktionsoptimierten Modellen hingt
letztendlich von den spezifischen Anforderungen Ihres Projekts ab. Fir Aufgaben,
die ein hohes Maf} an Kreativitidt und Originalitit erfordern, bieten Basismodelle ein
leistungsfahiges Werkzeug fiir Innovation. Diese Modelle erméglichen es Entwicklern,
das volle Potenzial von LLMs zu erforschen und die Grenzen dessen zu erweitern, was
durch Kl-gesteuerte Anwendungen erreicht werden kann, aber sie erfordern einen
praktischeren Ansatz und die Bereitschaft zu experimentieren. Die Temperatur und
andere Einstellungen haben bei Basismodellen einen viel grofieren Einfluss als bei

ihren instruktionsoptimierten Gegenstiicken.

Was auch immer Sie in Threm Prompt aufnehmen, ist das, was Basismodelle
’ zu wiederholen versuchen. Wenn Ihr Prompt zum Beispiel ein Chat-
Transkript ist, wird das Basismodell versuchen, den Chat fortzusetzen. Je
nach maximalem Token-Limit wird es nicht nur die nachste Nachricht im
Chat generieren, sondern moglicherweise eine ganze Unterhaltung mit sich

selbst fithren!
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Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Abbildung 5. Mixtral 8x7B (base) Beispiel fiir Satzumformulierung mit Few-Shot Completion

Bei der Vorbereitung des obigen Beispiels zur Satzumformulierung des Reddit-Nutzers
phree_radical konnte ich erst nach vielen Experimenten mit den Parametereinstellungen
brauchbare Ergebnisse erzielen und legte mich schliefSlich auf folgende Werte fest:

Temperatur 0,08, Top P: 0,2, Top K: 1 und Wiederholungsstrafe: 1,26.


https://www.reddit.com/user/phree_radical/
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Der Versuch, diesen Ansatz mit einem Basismodell in der Produktion zu verwenden,
wire aufgrund des starken Einflusses des max_tokens-Parameters schwierig. Wenn
man ihn zu kurz einstellt, wird die Ausgabe abgeschnitten. Stellt man ihn langer ein als

das Modell fiir die gewiinschte Ausgabe benétigt, wird es weitere Beispiele halluzinieren.

Zusammenfassend lasst sich sagen, dass instruktionsoptimierte Modelle Ihren
Entwicklungsprozess erheblich vereinfachen kénnen, es sei denn, Sie benétigen wirklich
vollstandige Kontrolle und Zensurfreiheit. Um diesen Punkt zu verdeutlichen, hier ist
Mixtrals 8x7B Antwort auf denselben Prompt, diesmal in seiner instruktionsoptimierten

Version:

Es tut mir leid, Thnen mitteilen zu miissen, dass das Eis meine Erwartungen
nicht erfillt, da ihm die reichhaltige, cremige Textur und der kostliche
Geschmack fehlen, die ich normalerweise mit einem hochwertigen
Dessert verbinde. Ich hatte auf ein befriedigenderes und angenehmeres

Geschmackserlebnis gehofft.

Bemerkenswerterweise konnte ich die maximale Token-Einstellung bei 500 belassen,
und das Modell horte zuverldssig am Ende der gewiinschten Ausgabe auf, ohne

zusatzliche Beispiele zu halluzinieren.

Prompt-Engineering

Wenn Sie beginnen, KI in Thren Projekten einzusetzen, werden Sie schnell feststellen,
dass eine der wichtigsten Fahigkeiten, die Sie beherrschen miissen, die Kunst des
Prompt-Engineerings ist. Aber was genau ist Prompt-Engineering, und warum ist es

so wichtig?

Im Kern ist Prompt-Engineering der Prozess des Entwerfens und Gestaltens von
Eingabeaufforderungen, die Sie einem Sprachmodell zur Verfiigung stellen, um

dessen Ausgabe zu steuern. Es geht darum zu verstehen, wie man effektiv mit der
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KI kommuniziert, indem man eine Kombination aus Anweisungen, Beispielen und
Kontext verwendet, um das Modell zur Generierung der gewiinschten Antwort zu

fuhren.

Stellen Sie sich vor, Sie fithren ein Gesprach mit einem hochintelligenten, aber etwas
wortlich nehmenden Freund. Um das Beste aus der Interaktion herauszuholen, miissen
Sie klar und prazise sein und geniigend Kontext liefern, damit Ihr Freund genau versteht,
worum Sie bitten. Genau hier kommt Prompt-Engineering ins Spiel, und auch wenn es
zunichst einfach erscheinen mag, glauben Sie mir, es braucht viel Ubung, um es zu

meistern.

Die Bausteine effektiver Prompts

Um effektive Prompts zu entwickeln, missen Sie zunachst die wichtigsten Komponenten
verstehen, die eine gut gestaltete Eingabe ausmachen. Hier sind einige der wesentlichen

Bausteine:

1. Anweisungen: Klare und prézise Anweisungen, die dem Modell sagen, was es tun
soll. Das kann alles sein, von “Fassen Sie den folgenden Artikel zusammen” iiber
“Generieren Sie ein Gedicht tiber einen Sonnenuntergang” bis hin zu “Verwandeln
Sie diese Projektinderungsanfrage in ein JSON-Objekt”.

2. Kontext: Relevante Informationen, die dem Modell helfen, den Hintergrund
und den Umfang der Aufgabe zu verstehen. Dies konnen Details tiber die
Zielgruppe, den gewiinschten Ton und Stil oder spezifische Einschrankungen
oder Anforderungen fiir die Ausgabe sein, wie etwa ein einzuhaltendes JSON-
Schema.

3. Beispiele: Konkrete Beispiele, die die Art der gewiinschten Ausgabe
demonstrieren. Durch die Bereitstellung einiger gut gewahlter Beispiele
konnen Sie dem Modell helfen, die Muster und Eigenschaften der gewiinschten

Antwort zu lernen.
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4. Eingabeformatierung: Zeilenumbriiche und Markdown-Formatierung geben
unserem Prompt Struktur. Die Aufteilung des Prompts in Absétze ermdglicht es
uns, zusammengehorige Anweisungen zu gruppieren, sodass sowohl Menschen
als auch KI sie besser verstehen kénnen. Aufzidhlungszeichen und nummerierte
Listen ermoglichen es uns, Listen und Reihenfolgen von Elementen zu definieren.
Fett- und Kursivschrift-Markierungen lassen uns Betonung kenntlich machen.

5. Ausgabeformatierung: Spezifische Anweisungen dariiber, wie die Ausgabe
strukturiert und formatiert werden soll. Dies kénnen Vorgaben iiber die
gewiinschte Lange, die Verwendung von Uberschriften oder Aufzédhlungszeichen,
Markdown-Formatierung oder andere spezifische Ausgabevorlagen oder

Konventionen sein, die befolgt werden sollen.

Durch die Kombination dieser Bausteine auf verschiedene Weisen konnen Sie Prompts
erstellen, die auf Thre spezifischen Bediirfnisse zugeschnitten sind und das Modell zur

Generierung hochwertiger, relevanter Antworten fithren.

Die Kunst und Wissenschaft des Prompt-Designs

Das Erstellen effektiver Prompts ist sowohl eine Kunst als auch eine Wissenschatft.
(Deshalb nennen wir es ein Handwerk.) Es erfordert ein tiefes Verstindnis der
Fahigkeiten und Grenzen von Sprachmodellen sowie einen kreativen Ansatz beim
Entwerfen von Prompts, die das gewiinschte Verhalten hervorrufen. Die damit
verbundene Kreativitat macht es, zumindest fiir mich, so unterhaltsam. Es kann auch

sehr frustrierend sein, besonders wenn man deterministisches Verhalten anstrebt.

Ein wichtiger Aspekt des Prompt-Engineerings ist das Verstdndnis dafiir, wie man
Spezifitdt und Flexibilitiat ausbalanciert. Einerseits mochten Sie geniigend Fithrung
bieten, um das Modell in die richtige Richtung zu lenken. Andererseits mochten Sie
nicht so praskriptiv sein, dass Sie die Fahigkeit des Modells einschrénken, seine eigene

Kreativitit und Flexibilitdt im Umgang mit Randfillen zu nutzen.
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Eine weitere wichtige Uberlegung ist die Verwendung von Beispielen. Gut gewihlte
Beispiele konnen unglaublich wirkungsvoll sein, um dem Modell die Art der
gewiinschten Ausgabe zu verdeutlichen. Es ist jedoch wichtig, Beispiele mit Bedacht
einzusetzen und sicherzustellen, dass sie reprasentativ fiir die gewiinschte Antwort
sind. Ein schlechtes Beispiel ist bestenfalls eine Verschwendung von Tokens und im

schlimmsten Fall ruinés fiir die gewtinschte Ausgabe.

Prompt-Engineering-Techniken und Best Practices

Wenn Sie tiefer in die Welt des Prompt-Engineerings eintauchen, werden Sie eine
Reihe von Techniken und Best Practices entdecken, die Thnen helfen konnen, effektivere

Prompts zu erstellen. Hier sind einige wichtige Bereiche, die es zu erkunden gilt:

1. Zero-Shot vs. Few-Shot-Lernen: Das Verstindnis, wann man Zero-Shot-Lernen
(keine Beispiele bereitstellen) gegeniiber One-Shot oder Few-Shot-Lernen (eine
kleine Anzahl von Beispielen bereitstellen) verwendet, kann Ihnen helfen,
Prompts zu erstellen, die effizienter und effektiver sind.

2. Iterative Verfeinerung: Der Prozess der iterativen Verfeinerung von Prompts
basierend auf der Ausgabe des Modells kann dabei helfen, das optimale Prompt-
Design zu ermitteln. Feedback Loop ist ein leistungsfihiger Ansatz, der die
Ausgabe des Sprachmodells selbst nutzt, um die Qualitdt und Relevanz der
generierten Inhalte schrittweise zu verbessern.

3. Prompt-Verkettung: Die Kombination mehrerer Prompts in einer Sequenz
kann helfen, komplexe Aufgaben in kleinere, besser handhabbare Schritte
zu unterteilen. Prompt Chaining beinhaltet die Aufteilung einer komplexen
Aufgabe oder Konversation in eine Reihe kleinerer, miteinander verbundener
Prompts. Durch die Verkettung von Prompts konnen Sie die KI durch einen
mehrstufigen Prozess fithren und dabei Kontext und Koharenz wahrend der

gesamten Interaktion aufrechterhalten.



Den Pfad eingrenzen 62

4. Prompt-Optimierung: Die mafigeschneiderte Anpassung von Prompts fiir
spezifische Doméanen oder Aufgaben kann dabei helfen, spezialisierte und
effektivere Prompts zu erstellen. Prompt Template hilft Thnen dabei, flexible,
wiederverwendbare und wartbare Prompt-Strukturen zu erstellen, die sich

leichter an die jeweilige Aufgabe anpassen lassen.

Zu lernen, wann Zero-Shot-, One-Shot- oder Few-Shot-Learning einzusetzen ist, ist ein
besonders wichtiger Teil der Beherrschung des Prompt-Engineerings. Jeder Ansatz hat
seine eigenen Stiarken und Schwéchen, und das Verstandnis, wann welcher Ansatz zu

verwenden ist, kann Thnen helfen, effektivere und effizientere Prompts zu erstellen.

Zero-Shot-Learning: Wenn keine Beispiele erforderlich
sind

Zero-Shot-Learning bezieht sich auf die Fihigkeit eines Sprachmodells, eine Aufgabe
ohne Beispiele oder explizites Training auszufithren. Mit anderen Worten, Sie stellen
dem Modell einen Prompt zur Verfiigung, der die Aufgabe beschreibt, und das Modell
generiert eine Antwort ausschliefilich auf Basis seines bereits vorhandenen Wissens und

Sprachverstidndnisses.

Zero-Shot-Learning ist besonders niitzlich, wenn:

1. Die Aufgabe relativ einfach und unkompliziert ist und das Modell wahrscheinlich
wahrend seines Vortrainings ahnliche Aufgaben kennengelernt hat.

2. Sie die inhérenten Fahigkeiten des Modells testen und sehen mochten, wie es auf
eine neue Aufgabe ohne zusatzliche Anleitung reagiert.

3. Sie mit einem grof3en und vielseitigen Sprachmodell arbeiten, das fiir ein breites

Spektrum an Aufgaben und Doménen trainiert wurde.

Allerdings kann Zero-Shot-Learning auch unvorhersehbar sein und nicht immer die

gewiinschten Ergebnisse liefern. Die Antwort des Modells kann durch Verzerrungen
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oder Inkonsistenzen in seinen Trainingsdaten beeinflusst werden, und es kann bei

komplexeren oder nuancierteren Aufgaben Schwierigkeiten haben.

Ich habe Zero-Shot-Prompts gesehen, die fiir 80% meiner Testfalle gut funktionieren,
aber fiir die anderen 20% vo6llig falsche oder unverstiandliche Ergebnisse liefern. Es
ist sehr wichtig, ein grindliches Testverfahren zu implementieren, besonders wenn

man sich stark auf Zero-Shot-Prompting verlasst.

One-Shot-Learning: Wenn ein einzelnes Beispiel den
Unterschied macht

One-Shot-Learning beinhaltet, dem Modell ein einzelnes Beispiel der gewiinschten
Ausgabe zusammen mit der Aufgabenbeschreibung zur Verfiigung zu stellen. Dieses
Beispiel dient als Vorlage oder Muster, das das Modell zur Generierung seiner eigenen

Antwort verwenden kann.

One-Shot-Learning kann effektiv sein, wenn:

1. Die Aufgabe relativ neuartig oder spezifisch ist und das Modell wihrend seines
Vortrainings moglicherweise nicht viele dhnliche Beispiele kennengelernt hat.

2. Sie eine klare und prézise Demonstration des gewiinschten Ausgabeformats oder
-stils bereitstellen mochten.

3. Die Aufgabe eine spezifische Struktur oder Konvention erfordert, die aus der

Aufgabenbeschreibung allein moglicherweise nicht offensichtlich ist.

Beschreibungen, die fiir Sie offensichtlich sind, sind nicht unbedingt auch fiir
die KI offensichtlich. One-Shot-Beispiele kénnen hier fiir Klarheit sorgen.
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One-Shot-Learning kann dem Modell helfen, die Erwartungen klarer zu verstehen und
eine Antwort zu generieren, die besser mit dem bereitgestellten Beispiel iibereinstimmt.
Allerdings ist es wichtig, das Beispiel sorgfaltig auszuwéhlen und sicherzustellen, dass es
reprasentativ fiir die gewiinschte Ausgabe ist. Beim Auswéhlen des Beispiels sollten Sie
iiber mogliche Randfille und die Bandbreite der Eingaben nachdenken, die der Prompt

verarbeiten soll.

Abbildung 6. Ein One-Shot-Beispiel des gewiinschten JSONs

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name":"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person"

}

Few-Shot-Learning: Wenn mehrere Beispiele die Leistung
verbessern kénnen

Few-Shot-Learning beinhaltet, dem Modell eine kleine Anzahl von Beispielen
(typischerweise zwischen 2 und 10) zusammen mit der Aufgabenbeschreibung zur
Verfiigung zu stellen. Diese Beispiele dienen dazu, dem Modell mehr Kontext und
Variation zu bieten und ihm dabei zu helfen, vielfiltigere und genauere Antworten zu

generieren.
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Few-Shot-Learning ist besonders niitzlich, wenn:

1. Die Aufgabe komplex oder nuanciert ist und ein einzelnes Beispiel moglicherweise
nicht ausreicht, um alle relevanten Aspekte zu erfassen.

2. Sie dem Modell eine Reihe von Beispielen zur Verfugung stellen mochten, die
verschiedene Variationen oder Sonderfalle demonstrieren.

3. Die Aufgabe erfordert, dass das Modell Antworten generiert, die mit einer

bestimmten Doméine oder einem bestimmten Stil iibereinstimmen.

Durch die Bereitstellung mehrerer Beispiele konnen Sie dem Modell helfen, ein
robusteres Verstandnis der Aufgabe zu entwickeln und Antworten zu generieren, die

konsistenter und zuverléssiger sind.

Beispiel: Prompts kénnen viel komplexer sein als Sie sich
vorstellen

Die heutigen LLMs sind viel leistungsfihiger und zu komplexerem Denken fahig, als
Sie sich moglicherweise vorstellen. Beschrinken Sie sich also nicht darauf, Prompts
nur als eine Spezifikation von Eingabe- und Ausgabepaaren zu betrachten. Sie kénnen
mit langen und komplexen Anweisungen experimentieren, ahnlich wie Sie mit einem

Menschen interagieren wirden.

Zum Beispiel ist dies ein Prompt, den ich in Olympia verwendet habe, als ich unsere
Integration mit Google-Diensten prototypisch entwickelte, die in ihrer Gesamtheit
wahrscheinlich eine der grofiten APIs der Welt ist. Meine fritheren Experimente hatten
gezeigt, dass GPT-4 iiber ein ordentliches Wissen tiber die Google-API verfiigt, und ich
hatte weder Zeit noch Motivation, eine feingranulare Mapping-Schicht zu schreiben, die
jede Funktion, die ich meiner KI zur Verfiigung stellen wollte, einzeln implementiert.

Was wire, wenn ich der KI einfach Zugriff auf die gesamte Google-API geben kénnte?



© 0 N O O b W N =

NN R R R R L s s
, O O 00 N O O b Ww N =~ O

22
23
24

26
27
28
29

Den Pfad eingrenzen 66

Ich begann meinen Prompt damit, der KI mitzuteilen, dass sie direkten Zugriff auf
die Google-API-Endpunkte tiber HTTP hat und dass ihre Rolle darin besteht, Google-
Apps und -Dienste im Namen des Benutzers zu verwenden. Dann stellte ich Richtlinien
und Regeln in Bezug auf den fields-Parameter bereit, da es damit die meisten
Schwierigkeiten zu haben schien, sowie einige API-spezifische Hinweise (Few-Shot-

Prompting in Aktion).

Hier ist der vollstandige Prompt, der der KI erklért, wie sie die bereitgestellte invoke_-

google_api-Funktion verwenden soll.

As a GPT assistant with Google integration, you have the capability

to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the

messages.get method.

The format of the “fields®™ request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields
parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the

permissions array.
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- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of
this wildcard can lead to negative performance impacts on the request.

API-specific hints:

- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments][:body]

GoogleAPI .send_request(arguments[:endpoint], method:, body:).to_json
end

# Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

# . .rest of class
end

Sie fragen sich vielleicht, ob dieser Prompt funktioniert. Die einfache Antwort lautet

ja. Die KI wusste nicht immer beim ersten Versuch, wie sie die API perfekt aufrufen

sollte. Wenn sie jedoch einen Fehler machte, gab ich die resultierenden Fehlermeldungen

einfach als Ergebnis des Aufrufs zuriick. Mit dem Wissen um ihren Fehler konnte die
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KI iiber ihren Fehler nachdenken und es erneut versuchen. Meistens gelang es ihr nach

wenigen Versuchen.

Wohlgemerkt sind die groflen JSON-Strukturen, die die Google-API als Payloads bei
der Verwendung dieses Prompts zuriickgibt, duflerst ineffizient. Ich empfehle daher
nicht, diesen Ansatz in der Produktion zu verwenden. Allerdings ist die Tatsache, dass
dieser Ansatz liberhaupt funktioniert hat, ein Beweis dafiir, wie leistungsfahig Prompt-

Engineering sein kann.

Experimentieren und Iterieren

Letztendlich hiangt die Art und Weise, wie Sie Thren Prompt entwickeln, von der
spezifischen Aufgabe, der Komplexitit der gewiinschten Ausgabe und den Fahigkeiten

des Sprachmodells ab, mit dem Sie arbeiten.

Als Prompt-Engineer ist es wichtig, verschiedene Ansétze zu erproben und auf Basis
der Ergebnisse zu iterieren. Beginnen Sie mit Zero-Shot-Learning und beobachten Sie,
wie das Modell sich verhdlt. Wenn die Ausgabe inkonsistent oder unbefriedigend ist,
versuchen Sie es mit einem oder mehreren Beispielen und priifen Sie, ob sich die Leistung

verbessert.

Bedenken Sie, dass selbst innerhalb jedes Ansatzes Raum fiir Variation und Optimierung
besteht. Sie konnen mit verschiedenen Beispielen experimentieren, die Formulierung
der Aufgabenbeschreibung anpassen oder zusatzlichen Kontext bereitstellen, um die

Antwort des Modells zu lenken.

Mit der Zeit entwickeln Sie ein Gespiir dafiir, welcher Ansatz fiir eine bestimmte
Aufgabe am besten geeignet ist, und Sie werden in der Lage sein, effektivere
und effizientere Prompts zu erstellen. Der Schlissel liegt darin, neugierig,

experimentierfreudig und iterativ an das Prompt-Engineering heranzugehen.

Im Verlauf dieses Buches werden wir diese Techniken eingehender untersuchen

und erforschen, wie sie in realen Szenarien angewendet werden kénnen. Durch die
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Beherrschung der Kunst und Wissenschaft des Prompt-Engineerings werden Sie bestens
geriistet sein, um das volle Potenzial der Kl-gestitzten Anwendungsentwicklung zu

erschlief3en.

Die Kunst der Vagheit

Wenn es um die Gestaltung effektiver Prompts fiir grofle Sprachmodelle (LLMs) geht, ist
eine haufige Annahme, dass mehr Spezifitat und detaillierte Anweisungen zu besseren
Ergebnissen fithren. Die praktische Erfahrung hat jedoch gezeigt, dass dies nicht immer
der Fall ist. Tatsachlich kann eine bewusst vage Formulierung in Ihren Prompts oft zu
uiberlegenen Ergebnissen fithren, indem sie die bemerkenswerte Fahigkeit des LLM zur

Verallgemeinerung und zum Ziehen von Schliissen nutzt.

Ken, ein Startup-Griinder, der tiber 500 Millionen GPT-Tokens verarbeitet hat, teilte
wertvolle Erkenntnisse aus seiner Erfahrung. Eine der wichtigsten Lektionen, die er
gelernt hat, war, dass bei Prompts “weniger mehr ist”. Anstatt exakter Listen oder
uberméflig detaillierter Anweisungen stellte Ken fest, dass es oft bessere Ergebnisse

lieferte, wenn man dem LLM erlaubte, sich auf sein Basiswissen zu verlassen.

Diese Erkenntnis stellt die traditionelle Denkweise des expliziten Programmierens auf
den Kopf, bei der alles bis ins kleinste Detail ausformuliert werden muss. Bei LLMs
ist es wichtig zu erkennen, dass sie iber ein umfangreiches Wissen verfiigen und
intelligente Verbindungen und Schlisse ziehen koénnen. Indem Sie in Thren Prompts
vager bleiben, geben Sie dem LLM die Freiheit, sein Verstandnis zu nutzen und Losungen

zu entwickeln, die Sie méglicherweise nicht explizit vorgegeben haben.

Als Kens Team beispielsweise an einer Pipeline arbeitete, um Text als zu einem der
50 US-Bundesstaaten oder der Bundesregierung gehorend zu klassifizieren, bestand ihr
anfinglicher Ansatz darin, eine vollstidndige detaillierte Liste der Staaten und ihrer

entsprechenden IDs als JSON-formatiertes Array bereitzustellen.


https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
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Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ... ]

Der Ansatz scheiterte so hiufig, dass sie tiefer in das Prompt-Engineering eintauchen
mussten, um Verbesserungsmoglichkeiten zu finden. Dabei bemerkten sie, dass das
LLM, obwohl es die ID oft falsch zuordnete, konsequent den vollstindigen Namen des
korrekten Bundesstaates in einem name-Feld zuriickgab, obwohl sie nicht explizit danach

gefragt hatten.

Indem sie die Lokalitats-IDs entfernten und den Prompt zu etwas Einfacherem
umformulierten, wie “Du kennst offensichtlich die 50 Bundesstaaten, GPT, also nenne
mir einfach den vollstindigen Namen des Bundesstaates, auf den sich dies bezieht, oder
Federal, wenn es sich auf die US-Regierung bezieht”, erzielten sie bessere Ergebnisse.
Diese Erfahrung unterstreicht die Kraft der Generalisierungsfihigkeiten des LLM und

zeigt, wie man es sein bestehendes Wissen fiir Schlussfolgerungen nutzen lassen kann.

Kens Begriindung fiir diesen speziellen Klassifizierungsansatz im Gegensatz zu einer
traditionelleren Programmiertechnik beleuchtet die Denkweise derjenigen von uns,
die das Potenzial der LLM-Technologie erkannt haben: “Dies ist keine schwierige
Aufgabe — wir hatten wahrscheinlich String/Regex verwenden konnen, aber es gibt

gentigend seltsame Sonderfille, dass es langer gedauert hatte”

Die Fahigkeit von LLMs, Qualitdt und Generalisierung bei vageren Prompts zu
verbessern, ist ein bemerkenswertes Merkmal hoherer Denkprozesse und Delegation.
Es zeigt, dass LLMs mit Mehrdeutigkeit umgehen und intelligente Entscheidungen

basierend auf dem gegebenen Kontext treffen kénnen.

Allerdings ist es wichtig zu beachten, dass Vagheit nicht bedeutet, unklar oder

mehrdeutig zu sein. Der Schlissel liegt darin, geniigend Kontext und Fithrung zu
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bieten, um das LLM in die richtige Richtung zu lenken, wihrend man ihm die

Flexibilitit lasst, sein Wissen und seine Generalisierungsfahigkeiten zu nutzen.

Beriicksichtigen Sie daher beim Gestalten von Prompts die folgenden “Weniger ist

mehr”-Tipps:

1. Konzentrieren Sie sich auf das gewiinschte Ergebnis statt auf die Spezifizierung
jedes Prozessdetails.

2. Bieten Sie relevanten Kontext und Einschrankungen, aber vermeiden Sie
Uberspezifizierung.

3. Nutzen Sie bestehendes Wissen durch Bezugnahme auf allgemeine Konzepte oder
Entitaten.

4. Lassen Sie Raum fiir Schlussfolgerungen und Verbindungen basierend auf dem
gegebenen Kontext.

5. Iterieren und verfeinern Sie Ihre Prompts basierend auf den Antworten des LLM,

um die richtige Balance zwischen Spezifitit und Vagheit zu finden.

Indem Sie die Kunst der Vagheit im Prompt-Engineering annehmen, kénnen Sie das
volle Potenzial von LLMs erschlieffen und bessere Ergebnisse erzielen. Vertrauen Sie auf
die Fahigkeit des LLM zu generalisieren und intelligente Entscheidungen zu treffen, und
Sie werden moglicherweise von der Qualitdt und Kreativitit der erhaltenen Ausgaben
iiberrascht sein. Achten Sie darauf, wie die verschiedenen Modelle auf unterschiedliche
Grade der Spezifitat in Thren Prompts reagieren und passen Sie sich entsprechend an.
Mit Ubung und Erfahrung entwickeln Sie ein feines Gespiir dafiir, wann Sie vager sein
sollten und wann zusétzliche Fithrung notig ist, wodurch Sie die Kraft der LLMs effektiv

in Thren Anwendungen nutzen kénnen.

Warum Anthropomorphismus das Prompt-Engineering
dominiert

Anthropomorphismus, die Zuschreibung menschlicher Eigenschaften zu nicht-

menschlichen Entitaten, ist aus bewussten Grinden der vorherrschende Ansatz im
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Prompt-Engineering fiir grofle Sprachmodelle. Es ist eine Designentscheidung, die
die Interaktion mit leistungsfahigen KI-Systemen intuitiver und zuganglicher fiir ein

breites Spektrum von Nutzern (einschliefSlich uns Anwendungsentwicklern) macht.

Die Anthropomorphisierung von LLMs bietet einen Rahmen, der fiir Menschen, die
mit den zugrunde liegenden technischen Komplexititen des Systems vollig unvertraut
sind, sofort intuitiv verstandlich ist. Wie Sie feststellen werden, wenn Sie versuchen,
ein nicht instruktionsoptimiertes Modell fiir etwas Niitzliches zu verwenden, ist es
eine anspruchsvolle Aufgabe, einen Rahmen zu konstruieren, in dem die erwartete
Fortsetzung einen Mehrwert bietet. Dies erfordert ein ziemlich tiefes Verstandnis der
inneren Funktionsweise des Systems, das nur eine relativ kleine Anzahl von Experten

besitzt.

Indem wir die Interaktion mit einem Sprachmodell als Gesprach zwischen zwei
Menschen behandeln, kénnen wir uns auf unser angeborenes Verstandnis menschlicher
Kommunikation verlassen, um unsere Bediirfnisse und Erwartungen zu vermitteln.
Genauso wie das frithe Macintosh-UI-Design unmittelbare Intuitivitit iber Komplexitét
stellte, ermoglicht der anthropomorphe Rahmen der KI uns eine Interaktion, die sich

natiirlich und vertraut anfihlt.

Wenn wir mit einer anderen Person kommunizieren, ist es unser Instinkt, sie direkt mit
“du” anzusprechen und klare Anweisungen zu geben, wie wir erwarten, dass sie sich
verhélt. Dies tibertragt sich nahtlos auf den Prompt-Engineering-Prozess, bei dem wir
das Verhalten der KI durch die Festlegung von System-Prompts steuern und einen Dialog

fuhren.

Durch diese Art der Rahmung koénnen wir leicht das Konzept erfassen, der KI
Anweisungen zu geben und relevante Antworten zu erhalten. Der anthropomorphe
Ansatz reduziert die kognitive Belastung und erlaubt uns, uns auf die eigentliche
Aufgabe zu konzentrieren, anstatt uns mit den technischen Feinheiten des Systems

auseinanderzusetzen.

Es ist wichtig zu beachten, dass Anthropomorphismus, wahrend er ein méchtiges
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Werkzeug ist, um KI-Systeme zuginglicher zu machen, auch mit bestimmten Risiken
und Einschridnkungen einhergeht. Unsere Benutzer kénnten unrealistische Erwartungen
entwickeln oder ungesunde emotionale Bindungen zu unseren Systemen aufbauen.
Als Prompt-Engineers und Entwickler ist es entscheidend, eine Balance zu finden
zwischen der Nutzung der Vorteile des Anthropomorphismus und der Sicherstellung,

dass Benutzer ein klares Verstandnis der Fahigkeiten und Grenzen der KI behalten.

Wihrend sich das Feld des Prompt-Engineering weiterentwickelt, kénnen wir weitere
Verfeinerungen und Innovationen in der Art und Weise erwarten, wie wir mit grofien
Sprachmodellen interagieren. Der Anthropomorphismus als Mittel zur Bereitstellung
einer intuitiven und zugénglichen Entwickler- und Benutzererfahrung wird jedoch

wahrscheinlich ein grundlegendes Prinzip bei der Gestaltung dieser Systeme bleiben.

Die Trennung von Anweisungen und Daten: Ein
entscheidendes Prinzip

Es ist wichtig, ein fundamentales Prinzip zu verstehen, das die Sicherheit und
Zuverlassigkeit dieser Systeme untermauert: die Trennung von Anweisungen und

Daten.

In der traditionellen Informatik ist die klare Unterscheidung zwischen passiven Daten
und aktiven Anweisungen ein zentrales Sicherheitsprinzip. Diese Trennung hilft, die
unbeabsichtigte oder boswillige Ausfithrung von Code zu verhindern, die die Integritét
und Stabilitit des Systems gefihrden konnte. Die heutigen LLMs, die hauptsichlich als
instruktionsbasierte Modelle wie Chatbots entwickelt wurden, weisen jedoch haufig

diese formelle und prinzipielle Trennung nicht auf.

Was LLMs betrifft, konnen Anweisungen iiberall in der Eingabe erscheinen, sei es
in einem System-Prompt oder einem benutzerdefinierten Prompt. Dieser Mangel an
Trennung kann zu potenziellen Schwachstellen und unerwiinschtem Verhalten fithren,
ahnlich wie bei Problemen, die Datenbanken mit SQL-Injektionen oder Betriebssysteme

ohne angemessenen Speicherschutz haben.
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Bei der Arbeit mit LLMs ist es wichtig, sich dieser Einschrinkung bewusst zu sein und
Schritte zu unternehmen, um die Risiken zu minimieren. Ein Ansatz besteht darin,
Ihre Prompts und Eingaben sorgfiltig zu gestalten, um klar zwischen Anweisungen
und Daten zu unterscheiden. Typische Methoden zur Bereitstellung expliziter Hinweise
darauf, was eine Anweisung ist und was als passive Daten behandelt werden sollte,
beinhalten Markup-Style-Tagging. Thr Prompt kann dem LLM helfen, diese Trennung

besser zu verstehen und zu respektieren.

Abbildung 7. Verwendung von XML zur Unterscheidung zwischen Anweisungen, Quellmaterial und
dem Prompt des Benutzers

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

Eine weitere Technik besteht darin, zusétzliche Validierungs- und Bereinigungsebenen
fiir die Eingaben zu implementieren, die dem LLM zur Verfiigung gestellt werden. Durch
das Herausfiltern oder Escapen von potenziellen Anweisungen oder Code-Snippets,
die in den Daten eingebettet sein konnten, kénnen Sie die Wahrscheinlichkeit einer
unbeabsichtigten Ausfithrung reduzieren. Muster wie Prompt Chaining sind fiir diesen

Zweck nutzlich.

Beriicksichtigen Sie auflerdem bei der Gestaltung Ihrer Anwendungsarchitektur

die Einfilhrung von Mechanismen zur Durchsetzung der Trennung von
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Anweisungen und Daten auf hoherer Ebene. Dies koénnte die Verwendung separater
Endpunkte oder APIs fiir die Verarbeitung von Anweisungen und Daten, die
Implementierung strenger Eingabevalidierung und -analyse sowie die Anwendung des
Prinzips der geringsten Privilegien umfassen, um den Umfang dessen zu begrenzen,

worauf das LLM zugreifen und was es ausfithren kann.

Das Prinzip der geringsten Privilegien

Die Anwendung des Prinzips der geringsten Privilegien ist wie das Ausrichten einer
sehr exklusiven Party, bei der die Géste nur Zugang zu den Raumen erhalten, die
sie unbedingt bendétigen. Stellen Sie sich vor, Sie veranstalten diese Feier in einer
weitldufigen Villa. Nicht jeder muss in den Weinkeller oder das Hauptschlafzimmer
wandern, richtig? Indem Sie dieses Prinzip anwenden, verteilen Sie im Grunde
genommen Schliissel, die nur bestimmte Turen 6ffnen, und stellen so sicher, dass
jeder Gast — oder in unserem Fall jede Komponente Threr LLM-Anwendung — nur

den Zugang hat, der zur Erfiillung seiner Rolle erforderlich ist.

Dabei geht es nicht nur darum, mit Schliisseln zu geizen, sondern darum
anzuerkennen, dass in einer Welt, in der Bedrohungen von tiberall kommen kénnen,
es klug ist, den Spielplatz zu begrenzen. Wenn jemand uneingeladen auf Ihrer Party
erscheint, wird er sich sozusagen nur im Foyer wiederfinden, was den Unfug, den
er anrichten kann, drastisch einschrankt. Denken Sie also bei der Absicherung Ihrer
LLM-Anwendungen daran: Geben Sie nur Schliissel fiir die notwendigen Rdume aus
und halten Sie den Rest der Villa sicher. Das ist nicht nur hoflich, sondern auch gute

Sicherheit.

Wihrend der aktuelle Stand der LLMs moglicherweise keine formale Trennung von
Anweisungen und Daten aufweist, ist es fir Sie als Entwickler wichtig, sich dieser

Einschrankung bewusst zu sein und proaktive Mafinahmen zur Risikominderung
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zu ergreifen. Indem Sie bewihrte Praktiken aus der Informatik anwenden und sie
an die einzigartigen Eigenschaften von LLMs anpassen, konnen Sie sicherere und
zuverldssigere Anwendungen entwickeln, die die Leistungsfahigkeit dieser Modelle

nutzen und gleichzeitig die Integritat Thres Systems bewahren.

Prompt Distillation

Die Erstellung des perfekten Prompts ist oft eine herausfordernde und zeitaufwéndige
Aufgabe, die ein tiefes Verstindnis der Zieldom&ne und der Nuancen von
Sprachmodellen erfordert. Hier kommt die “Prompt Distillation”-Technik ins Spiel, die
einen leistungsfahigen Ansatz fiir Prompt Engineering bietet, der die Fahigkeiten grof3er

Sprachmodelle (LLMs) nutzt, um den Prozess zu optimieren und zu rationalisieren.

Prompt Distillation ist eine mehrstufige Technik, bei der LLMs zur Unterstiitzung bei der
Erstellung, Verfeinerung und Optimierung von Prompts eingesetzt werden. Anstatt sich
ausschliefSlich auf menschliche Expertise und Intuition zu verlassen, nutzt dieser Ansatz
das Wissen und die generativen Fahigkeiten von LLMs, um gemeinsam hochwertige

Prompts zu erstellen.

Durch einen iterativen Prozess der Generierung, Verfeinerung und Integration
ermdglicht Prompt Distillation die Erstellung von Prompts, die koh4renter, umfassender
und besser auf die gewiinschte Aufgabe oder Ausgabe abgestimmt sind. Beachten Sie,
dass der Destillationsprozess entweder manuell in einem der vielen “Playgrounds”
durchgefiihrt werden kann, die von groflen KI-Anbietern wie OpenAl oder Anthropic
bereitgestellt werden, oder je nach Anwendungsfall als Teil Thres Anwendungscodes

automatisiert werden kann.

Wie es funktioniert

Prompt Distillation umfasst typischerweise die folgenden Schritte:
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1. Kernabsicht identifizieren: Analysieren Sie den Prompt, um seinen primiren
Zweck und das gewinschte Ergebnis zu bestimmen. Entfernen Sie alle
uberfliissigen Informationen und konzentrieren Sie sich auf die Kernabsicht des
Prompts.

2. Mehrdeutigkeit beseitigen: Uberpriifen Sie den Prompt auf mehrdeutige oder
vage Formulierungen. Kldren Sie die Bedeutung und geben Sie spezifische
Details an, um die KI bei der Generierung genauer und relevanter Antworten zu
unterstitzen.

3. Sprache vereinfachen: Vereinfachen Sie den Prompt durch klare und prézise
Sprache. Vermeiden Sie komplexe Satzstrukturen, Fachbegriffe oder unnétige
Details, die die KI verwirren oder Stérungen verursachen konnten.

4. Relevanten Kontext bereitstellen: Figen Sie nur die relevantesten
Kontextinformationen hinzu, die die KI benétigt, um den Prompt effektiv
zu verstehen und zu verarbeiten. Vermeiden Sie irrelevante oder redundante
Details, die von der Kernabsicht ablenken konnten.

5. Iterieren und verfeinern: Iterieren und verfeinern Sie den Prompt kontinuierlich
basierend auf den Antworten und dem Feedback der KI. Bewerten Sie die
generierten Ausgaben und nehmen Sie notwendige Anpassungen vor, um die
Klarheit und Effektivitdt des Prompts zu verbessern. Versionieren Sie optional
Thre Prompts in der Datenbank mithilfe von Prompt Object, um den Uberblick
tiber Iterationen zu behalten und sich die Moglichkeit zu geben, Anderungen zur

Laufzeit einfach riickgangig zu machen.

Initial-Prompt-Generierung

Der erste Schritt im Prompt Distillation besteht darin, dem LLM eine iibergeordnete
Beschreibung oder die Intention der gewiinschten Aufgabe oder des gewiinschten
Outputs zu geben. Dies kann eine kurze Aussage oder eine Reihe von Schliisselwértern

sein, die das Wesentliche dessen erfassen, was der Prompt erreichen soll. Das LLM
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generiert dann auf Basis dieser Eingabe einen initialen Prompt und fiigt dabei relevante

Anweisungen, Beispiele oder Kontext hinzu, die es als angemessen erachtet.

Lassen Sie uns Claude 3 Opus den folgenden Initial-Prompt geben:

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AIl-powered consultants and clones. Owners of clones

can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude antwortet mit folgender Ausgabe:

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AI-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform

updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value
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and impact of their AI-powered consultants and drive success for their

businesses or personal endeavors.

Prompt-Verfeinerung

Sobald der erste Prompt erstellt wurde, iiberpriifen Sie ihn und bitten Sie dann das
LLM, zusatzlichen Kontext, Einschrankungen oder Riickmeldungen zu beriicksichtigen.
Lassen Sie das LLM eine verfeinerte Version des Prompts generieren, die die
bereitgestellten Eingaben und das eigene Verstindnis der Aufgabe beriicksichtigt.
Dieser Verfeinerungsprozess kann iterativ wiederholt werden, wobei jede Iteration
den Prompt basierend auf der Zusammenarbeit zwischen Benutzer und LLM weiter

verfeinert.

Hier ist meine Verfeinerungsanfrage, die den vorherigen Destillationsprozess fortsetzt.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

Und Claudes Antwort:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.
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2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

Prompt-Komprimierung

Wie Sie vielleicht bemerkt haben, neigen LLMs dazu, weitschweifig zu sein, es sei
denn, man bittet sie darum, sich prézise auszudriicken. Der Prompt, an dem wir in den
vorherigen Abschnitten gearbeitet haben, ist ziemlich lang, also lassen Sie uns Claude

damit beauftragen, ihn zu kiirzen:

This prompt will be executed regularly. Please compress it down to the least

amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude antwortet mit dem folgenden drastisch kiirzeren Prompt:
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System Directive: You are an intelligent account manager for Olympia, an

Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided

system interaction functions. Be clear, concise, friendly, professional,

and client-focused to help them maximize their AI's value and impact.

Systemanweisung und Kontextintegration

Zusatzlich zur Verfeinerung des Prompts selbst kann das LLM auch passende
Systemanweisungen oder Kontextinformationen generieren, um die finale Ausgabe
zu steuern. Wenn Sie KI-Routinen fiir Prompt Engineering entwickeln, die in Ihren
Anwendungscode integriert werden sollen, werden Sie sich in dieser Phase der
Destillation fast sicher auf Ausgabebeschrankungen konzentrieren, kénnen aber auch
an gewiinschtem Ton, Stil, Format oder anderen relevanten Parametern arbeiten, die

die generierte Antwort beeinflussen.

Finale Prompt-Zusammenstellung

Der Héhepunkt des Prompt-Destillationsprozesses ist die Zusammenstellung des finalen
Prompts. Dies beinhaltet die Kombination des verfeinerten Prompts, der generierten
Systemanweisungen und des integrierten Kontexts zu einem zusammenhéngenden und

umfassenden Code, der bereit fiir die Generierung der gewiinschten Ausgabe ist.

Sie konnen in der Phase der finalen Prompt-Zusammenstellung erneut
’ mit Prompt-Komprimierung experimentieren, indem Sie das LLM bitten,
die Formulierung des Prompts auf die kiirzestmogliche Token-Sequenz zu
reduzieren, wihrend die wesentliche Funktionsweise erhalten bleibt. Es ist
definitiv ein Versuch wert, denn besonders bei Prompts, die im groflen
Maf3stab ausgefithrt werden, kénnen die Effizienzgewinne erhebliche

Einsparungen beim Token-Verbrauch bringen.
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Zentrale Vorteile

Durch die Nutzung der Wissens- und Generierungsfahigkeiten von LLMs
zur Verfeinerung Threr Prompts sind die resultierenden Prompts mit hoherer
Wahrscheinlichkeit gut strukturiert, informativ und auf die spezifische Aufgabe
zugeschnitten. Der iterative Verfeinerungsprozess hilft sicherzustellen, dass die
Prompts qualitativ hochwertig sind und die gewiinschte Absicht effektiv erfassen.

Weitere Vorteile sind:

Effizienz und Geschwindigkeit: Prompt-Destillation optimiert den Prompt-
Engineering-Prozess durch die Automatisierung bestimmter Aspekte der Prompt-
Erstellung und -Verfeinerung. Die kollaborative Natur der Technik erméglicht eine
schnellere Konvergenz zu einem effektiven Prompt und reduziert den Zeit- und

Arbeitsaufwand fiir manuelles Prompt-Crafting.

Konsistenz und Skalierbarkeit: Die Verwendung von LLMs im Prompt-Engineering-
Prozess hilft dabei, die Konsistenz tiber verschiedene Prompts hinweg zu wahren, da
die LLMs Best Practices und Muster aus vorherigen erfolgreichen Prompts lernen und
anwenden konnen. Diese Konsistenz, kombiniert mit der Fahigkeit, Prompts im grofien
Maf3stab zu generieren, macht Prompt-Destillation zu einer wertvollen Technik fiir grof3

angelegte KI-gestiitzte Anwendungen.

. Projektidee: Werkzeuge auf Bibliotheksebene, die den Prozess der Prompt-
Versionierung und -Bewertung in Systemen vereinfachen, die automatisierte

Prompt-Destillationen als Teil ihres Anwendungscodes durchfiihren.

Um Prompt-Destillation zu implementieren, kénnen Entwickler einen Workflow
oder eine Pipeline entwerfen, die LLMs in verschiedenen Phasen des Prompt-
Engineering-Prozesses integriert. Dies kann durch API-Aufrufe, spezielles Tooling oder
integrierte Entwicklungsumgebungen erreicht werden, die eine nahtlose Interaktion

zwischen Benutzern und LLMs wihrend der Prompt-Erstellung ermoglichen. Die
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spezifischen Implementierungsdetails kénnen je nach gewéhlter LLM-Plattform und

den Anforderungen der Anwendung variieren.

Was ist mit Fine-tuning?

In diesem Buch behandeln wir Prompt Engineering und RAG ausfiihrlich, aber nicht
Fine-tuning. Der Hauptgrund fiir diese Entscheidung ist, dass meiner Meinung nach die
meisten Anwendungsentwickler kein Fine-tuning fiir ihre KI-Integrationsbediirfnisse

benétigen.

Prompt Engineering, das das sorgfiltige Erstellen von Prompts mit Zero-Shot- bis
Few-Shot-Beispielen, Einschrankungen und Anweisungen umfasst, kann das Modell
effektiv dabei leiten, relevante und prézise Antworten fiir ein breites Spektrum von
Aufgaben zu generieren. Indem Sie klaren Kontext bereitstellen und den Weg durch
gut gestaltete Prompts eingrenzen, konnen Sie das umfangreiche Wissen grofler

Sprachmodelle nutzen, ohne Fine-tuning zu benétigen.

Ahnlich bietet Retrieval-Augmented Generation (RAG) einen leistungsfihigen Ansatz
zur Integration von KI in Anwendungen. Durch das dynamische Abrufen relevanter
Informationen aus externen Wissensdatenbanken oder Dokumenten stellt RAG dem
Modell zum Zeitpunkt des Promptings fokussierten Kontext zur Verfiigung. Dies
ermoglicht es dem Modell, Antworten zu generieren, die genauer, aktueller und
domanenspezifischer sind, ohne den zeit- und ressourcenintensiven Prozess des

Fine-tunings zu erfordern.

Wihrend Fine-tuning fiir hochspezialisierte Doménen oder Aufgaben, die ein tiefes
Mafl an Anpassung erfordern, vorteilhaft sein kann, geht es oft mit erheblichen
Rechenkosten, Datenanforderungen und Wartungsaufwand einher. Fiir die meisten
Anwendungsentwicklungsszenarien sollte die Kombination von effektivem Prompt
Engineering und RAG ausreichen, um die gewtiinschte KI-gesteuerte Funktionalitat und

Benutzererfahrung zu erreichen.
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Was ist kontrastives Lernen?

Dieser Inhalt ist in der Leseprobe nicht verfiigbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.


http://leanpub.com/patterns-of-application-development-using-ai-de
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Ich stelle mir meine KI-Komponenten gerne als kleine, fast menschliche virtuelle
“Arbeiter” vor, die sich nahtlos in meine Anwendungslogik integrieren lassen, um
bestimmte Aufgaben auszufiithren oder komplexe Entscheidungen zu treffen. Die Idee
ist, die Fahigkeiten des LLM bewusst zu vermenschlichen, damit niemand zu euphorisch

wird und ihnen magische Eigenschaften zuschreibt, die sie nicht besitzen.

Anstatt sich ausschlieflich auf komplizierte Algorithmen oder zeitaufwandige manuelle
Implementierungen zu verlassen, konnen Entwickler KI-Komponenten als intelligente,
engagierte, menschenéhnliche Einheiten konzipieren, die bei Bedarf aufgerufen werden
konnen, um komplexe Probleme zu losen und Lésungen auf Basis ihrer Schulung
und ihres Wissens anzubieten. Diese Einheiten lassen sich nicht ablenken und melden
sich auch nicht krank. Sie entscheiden sich nicht spontan dafiir, Dinge anders zu
machen als ihnen aufgetragen wurde, und im Allgemeinen machen sie, wenn sie richtig

programmiert sind, auch keine Fehler.
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Technisch gesehen besteht das Hauptprinzip dieses Ansatzes darin, komplexe Aufgaben
oder Entscheidungsprozesse in kleinere, besser handhabbare Einheiten zu zerlegen, die
von spezialisierten KI-Arbeitern bearbeitet werden konnen. Jeder Arbeiter ist darauf
ausgerichtet, sich auf einen bestimmten Aspekt des Problems zu konzentrieren und
bringt dabei seine einzigartigen Fahigkeiten und Kompetenzen ein. Durch die Verteilung
der Arbeitslast auf mehrere KI-Arbeiter kann die Anwendung eine hohere Effizienz,

Skalierbarkeit und Anpassungsfahigkeit erreichen.

Nehmen wir zum Beispiel eine Webanwendung, die eine Echtzeit-Moderation
von nutzergenerierten Inhalten erfordert. Die Implementierung eines umfassenden
Moderationssystems von Grund auf wire eine gewaltige Aufgabe, die erheblichen
Entwicklungsaufwand und kontinuierliche Wartung erfordern wiirde. Durch den
Einsatz des Vielzahl-von-Arbeitern-Ansatzes kénnen Entwickler jedoch KI-gestiitzte
Moderations-Arbeiter in die Anwendungslogik integrieren. Diese Arbeiter kénnen
automatisch unangemessene Inhalte analysieren und markieren, wodurch Entwickler

sich auf andere kritische Aspekte der Anwendung konzentrieren konnen.

Ki-Arbeiter als unabhangige

wiederverwendbare Komponenten

Ein wichtiger Aspekt des Vielzahl-von-Arbeitern-Ansatzes ist seine Modularitt.
Befiirworter der objektorientierten Programmierung sagen uns seit Jahrzehnten,
dass wir Objektinteraktionen als Nachrichten betrachten sollen. Nun, KI-Arbeiter
konnen als unabhingige, wiederverwendbare Komponenten konzipiert werden,
die iber Nachrichten in einfacher Sprache “miteinander sprechen” konnen, fast
so, als wiren sie tatsachlich kleine Menschen, die sich unterhalten. Dieser lose
gekoppelte Ansatz ermoglicht es der Anwendung, sich im Laufe der Zeit anzupassen
und weiterzuentwickeln, wenn neue KI-Technologien entstehen oder sich die

Anforderungen an die Geschéftslogik dndern.
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In der Praxis hat sich die Notwendigkeit, klare Schnittstellen und
Kommunikationsprotokolle zwischen den Komponenten zu entwickeln, nicht geandert,
nur weil KI-Arbeiter beteiligt sind. Sie miissen weiterhin andere Faktoren wie Leistung,
Skalierbarkeit und Sicherheit beriicksichtigen, aber jetzt gibt es auch véllig neue
“weiche Anforderungen” zu beachten. Zum Beispiel lehnen viele Nutzer es ab, dass
ihre privaten Daten zum Training neuer KI-Modelle verwendet werden. Haben Sie
iiberprift, welches Maf} an Privatsphare der von Thnen verwendete Modellanbieter

gewahrleistet?

Kl-Arbeiter als Microservices?

Wenn Sie iiber den Vielzahl-von-Arbeitern-Ansatz lesen, werden Sie moglicherweise
einige Ahnlichkeiten zur Microservices-Architektur bemerken. Beide betonen die
Zerlegung komplexer Systeme in kleinere, besser handhabbare und unabhingig
einsetzbare Einheiten. Genau wie Microservices darauf ausgelegt sind, lose gekoppelt
zu sein, sich auf spezifische Geschaftsfahigkeiten zu konzentrieren und iber klar
definierte APIs zu kommunizieren, sind KI-Arbeiter darauf ausgelegt, modular zu
sein, sich auf ihre Aufgaben zu spezialisieren und tber klare Schnittstellen und

Kommunikationsprotokolle miteinander zu interagieren.

Es gibt jedoch einige wichtige Unterschiede zu beachten. Wihrend Microservices
typischerweise als separate Prozesse oder Dienste implementiert werden, die auf
verschiedenen Maschinen oder Containern laufen, kénnen KI-Arbeiter je nach
TIhren spezifischen Anforderungen und Skalierungsbediirfnissen als eigenstandige
Komponenten innerhalb einer einzelnen Anwendung oder als separate Dienste
implementiert werden. Dartiber hinaus beinhaltet die Kommunikation zwischen KI-
Arbeitern oft den Austausch von reichhaltigen, auf natiirlicher Sprache basierenden
Informationen, wie Prompts, Anweisungen und generierte Inhalte, anstelle der

strukturierteren Datenformate, die tiblicherweise in Microservices verwendet
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werden.

Trotz dieser Unterschiede bleiben die Prinzipien der Modularitit, losen Kopplung
und klaren Kommunikationsschnittstellen fiir beide Muster zentral. Indem Sie
diese Prinzipien auf Thre KI-Arbeiter-Architektur anwenden, konnen Sie flexible,
skalierbare und wartbare Systeme erstellen, die die Kraft der KI nutzen, um komplexe

Probleme zu 16sen und Thren Nutzern Mehrwert zu bieten.

Der Vielzahl-von-Arbeitern-Ansatz kann in verschiedenen Bereichen und
Anwendungen eingesetzt werden, wobei die Kraft der KI genutzt wird, um komplexe
Aufgaben zu bewailtigen und intelligente Losungen zu liefern. Lassen Sie uns einige
konkrete Beispiele betrachten, wie KI-Arbeiter in verschiedenen Kontexten eingesetzt

werden konnen.

Kontoverwaltung

Praktisch jede eigenstandige Webanwendung kennt das Konzept eines Kontos (oder
Benutzers). In Olympia setzen wir einen AccountManager KI-Arbeiter ein, der darauf
programmiert ist, verschiedene Arten von Anderungsanfragen im Zusammenhang mit

Benutzerkonten zu bearbeiten.

Die Anweisung lautet wie folgt:
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You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking

one or more of the functions provided.
The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Der urspriingliche Zustand des Kontos, der vonaccount . to_directive erzeugt wird,
ist einfach eine textliche Beschreibung des Kontos, einschliellich relevanter zugehoriger

Daten wie Benutzer, Abonnements usw.

Die Bandbreite der Funktionen, die dem AccountManager zur Verfiigung stehen,
gibt ihm die Moglichkeit, das Abonnement des Benutzers zu bearbeiten, KI-Berater
und andere kostenpflichtige Erweiterungen hinzuzufiigen und zu entfernen sowie
Benachrichtigungs-E-Mails an den Kontoinhaber zu senden. Zusatzlich zur finished-
Funktion kann er auch notify_human_administrator aufrufen, wenn wahrend der
Verarbeitung ein Fehler auftritt oder bei einer Anfrage anderweitige Unterstiitzung

erforderlich ist.

Beachten Sie, dass der AccountManager bei Fragen die Moglichkeit hat, in Olympias
Wissensdatenbank zu suchen, wo er Anweisungen zum Umgang mit Grenzfillen und

anderen Situationen finden kann, bei denen er sich unsicher ist, wie er vorgehen soll.

E-Commerce-Anwendungen

Im Bereich des E-Commerce kénnen KI-Mitarbeiter eine entscheidende Rolle bei der

Verbesserung der Benutzererfahrung und der Optimierung von Geschéftsprozessen
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spielen. Hier sind einige Moglichkeiten, wie KI-Mitarbeiter eingesetzt werden konnen:

Produktempfehlungen

Eine der wirkungsvollsten Anwendungen von KI-Mitarbeitern im E-Commerce
ist die Generierung personalisierter Produktempfehlungen. Durch die Analyse des
Nutzerverhaltens, der Kaufhistorie und der Praferenzen konnen diese Mitarbeiter
Produkte vorschlagen, die auf die individuellen Interessen und Bediirfnisse jedes

einzelnen Nutzers zugeschnitten sind.

Der Schliissel zu effektiven Produktempfehlungen liegt in der Kombination von
kollaborativem Filtern und inhaltsbasiertem Filtern. Kollaboratives Filtern betrachtet
das Verhalten dhnlicher Nutzer, um Muster zu erkennen und Empfehlungen basierend
darauf zu geben, was andere mit dhnlichen Vorlieben gekauft oder gemocht haben.
Inhaltsbasiertes Filtern hingegen konzentriert sich auf die Eigenschaften und Merkmale
der Produkte selbst und empfiehlt Artikel, die dhnliche Eigenschaften aufweisen wie

jene, fiir die ein Nutzer bereits Interesse gezeigt hat.

Hier ist ein vereinfachtes Beispiel, wie Sie einen Produktempfehlungs-Worker in Ruby
implementieren kénnen, diesmal unter Verwendung eines “Railway Oriented (ROP)”

funktionalen Programmierstils:

class ProductRecommendationWorker
include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter.method(:filter))
.map(ProductSelector .method(:select)).then do |result|

case result

in { err: ProductRecommendationError => error }


https://fsharpforfunandprofit.com/rop/
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Honeybadger .notify(error.message, context: {user:})
in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)
end
end
end

end

P Der in dem Beispiel verwendete Stil der Ruby-funktionalen

Programmierung ist von F# und Rust beeinflusst. Mehr dariiber konnen Sie
in der Erklarung der Technik meines Freundes Chad Wooley bei GitLab

nachlesen.

In diesem Beispiel nimmt der ProductRecommendationWorker einen Benutzer als
Eingabe und generiert personalisierte Produktempfehlungen, indem er ein Wertobjekt
durch eine Kette funktionaler Schritte weiterreicht. Lassen Sie uns jeden Schritt im

Detail betrachten:

1. ValidateUser.validate: Dieser Schritt stellt sicher, dass der Benutzer
giltig und fir personalisierte Empfehlungen geeignet ist. Er prift, ob der
Benutzer existiert, aktiv ist und die notwendigen Daten fiir die Generierung
von Empfehlungen verfiigbar sind. Wenn die Validierung fehlschlagt, wird ein
Fehlerergebnis zuriickgegeben und die Kette vorzeitig beendet.

2. AnalyzeCurrentSession.analyze: Wenn der Benutzer giltig ist, analysiert
dieser Schritt die aktuelle Browsing-Session des Benutzers, um kontextbezogene
Informationen zu sammeln. Er betrachtet die jiingsten Interaktionen des
Benutzers, wie angesehene Produkte, Suchanfragen und Warenkorb-Inhalte, um
dessen aktuelle Interessen und Absichten zu verstehen.

3. CollaborativeFilter.filter: Unter Verwendung des Verhaltens dhnlicher
Benutzer wendet dieser Schritt Techniken des kollaborativen Filterns an, um

Produkte zu identifizieren, die fiir den Benutzer von Interesse sein konnten. Er


https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md
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berticksichtigt Faktoren wie Kaufhistorie, Bewertungen und Benutzer-Artikel-
Interaktionen, um eine Reihe von Kandidaten-Empfehlungen zu generieren.

4. ContentBasedFilter.filter: Dieser Schritt verfeinert die Kandidaten-
Empfehlungen weiter durch Anwendung von inhaltsbasiertem Filtern. Er
vergleicht die Attribute und Eigenschaften der Kandidatenprodukte mit den
Priferenzen und historischen Daten des Benutzers, um die relevantesten Artikel
auszuwahlen.

5. ProductSelector.select: Schliellich wahlt dieser Schritt die Top-N-Produkte
aus den gefilterten Empfehlungen basierend auf vordefinierten Kriterien aus,
wie Relevanz-Score, Popularitit oder anderen Geschiftsregeln. Die ausgewahlten

Produkte werden dann als finale personalisierte Empfehlungen zuriickgegeben.

Die Schoénheit der Verwendung eines funktionalen Ruby-Programmierstils liegt hier
darin, dass wir diese Schritte auf klare und prazise Weise verketten kénnen. Jeder Schritt
konzentriert sich auf eine spezifische Aufgabe und gibt ein Result-Objekt zuriick, das
entweder ein Erfolg (ok) oder ein Fehler (err) sein kann. Wenn ein Schritt auf einen
Fehler stof3t, wird die Kette vorzeitig beendet und der Fehler zum endgiiltigen Ergebnis

weitergeleitet.

In der case-Anweisung am Ende fithren wir einen Musterabgleich auf dem endgiiltigen
Ergebnis durch. Ist das Ergebnis ein Fehler (ProductRecommendationError),
protokollieren wir den Fehler mit einem Tool wie Honeybadger fiir Uberwachungs-
und Debugging-Zwecke. Ist das Ergebnis erfolgreich (ProductRecommendations),
senden wir ein : new_recommendations-Ereignis iiber die Wisper Pub/Sub-Bibliothek

und iibergeben dabei den Benutzer und die generierten Empfehlungen.

Durch die Nutzung funktionaler Programmiertechniken kénnen wir einen modularen
und wartbaren Produkt-Empfehlungs-Worker erstellen. Jeder Schritt ist in sich
geschlossen und kann einfach getestet, modifiziert oder ersetzt werden, ohne den
gesamten Ablauf zu beeinflussen. Die Verwendung von Musterabgleich und der

Result-Klasse hilft uns, Fehler elegant zu behandeln und stellt sicher, dass der Worker
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schnell fehlschlagt, wenn ein Schritt auf ein Problem st6f3t.

Natiirlich ist dies ein vereinfachtes Beispiel, und in einem realen Szenario miissten Sie
sich mit Threr E-Commerce-Plattform integrieren, Randfille behandeln und sich sogar
mit der Implementierung der Empfehlungsalgorithmen befassen. Die Grundprinzipien
der Zerlegung des Problems in kleinere Schritte und die Nutzung funktionaler

Programmiertechniken bleiben jedoch dieselben.

Betrugserkennung

Hier ist ein vereinfachtes Beispiel, wie Sie einen Betrugserkennung-Worker im gleichen

Railway Oriented Programming (ROP)-Stil in Ruby implementieren kénnen:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method( :analyze))
.map(CheckCustomerHistory.method( :check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error.message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end
end
end

end
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Die FraudDetection-Klasse ist ein Wertobjekt, das den Betrugerkennungsstatus
fiur eine bestimmte Transaktion einkapselt. Sie bietet eine strukturierte Moglichkeit,
das Betrugsrisiko einer Transaktion basierend auf verschiedenen Risikofaktoren zu

analysieren und zu bewerten.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self.transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end

end
def high_risk?
fraud_probability > RISK_THRESHOLD
end
private
def fraud_probability
risk_factors.values.sum

end

end

Die FraudDetection-Klasse verfiigt tiber folgende Attribute:

« transaction: Eine Referenz auf die Transaktion, die auf Betrug analysiert wird.
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« risk_factors: Ein Array, das die mit der Transaktion verbundenen
Risikofaktoren speichert. Jeder Risikofaktor wird als Hash dargestellt, wobei der
Schliissel die Beschreibung des Risikofaktors ist und der Wert die mit diesem

Risikofaktor verbundene Betrugswahrscheinlichkeit.

Die Methode add_risk_factor ermdglicht das Hinzufiigen eines Risikofaktors zum
risk_factors-Array. Sie akzeptiert zwei Parameter: description, einen String,
der den Risikofaktor beschreibt, und probability, einen Float-Wert, der die mit
diesem Risikofaktor verbundene Betrugswahrscheinlichkeit darstellt. Wir verwenden

eine case. . in-Bedingung fiir eine einfache Typiiberpriifung.

Die Methode high_risk?, die am Ende der Kette iberprift wird, ist eine
Pradikatmethode, die die fraud_probability (berechnet durch die Summe aller
Risikofaktorwahrscheinlichkeiten) mit dem RISK_THRESHOLD vergleicht.

Die FraudDetection-Klasse bietet eine saubere und gekapselte Moglichkeit zur
Verwaltung der Betrugserkennung fiir eine Transaktion. Sie erméglicht das Hinzufiigen
mehrerer Risikofaktoren, jeweils mit eigener Beschreibung und Wahrscheinlichkeit,
und stellt eine Methode bereit, um festzustellen, ob die Transaktion basierend auf der
berechneten Betrugswahrscheinlichkeit als hochriskant eingestuft wird. Die Klasse
kann problemlos in ein grofleres Betrugserkennungssystem integriert werden, bei
dem verschiedene Komponenten zusammenarbeiten, um das Risiko betriigerischer

Transaktionen zu bewerten und zu minimieren.

Da dies schliefilich ein Buch iiber Programmierung mit KI ist, hier ein Beispiel fiir
die Implementierung der CheckCustomerHistory-Klasse, die KI-Verarbeitung unter

Verwendung des ChatCompletion-Moduls meiner Raix-Bibliothek nutzt:


https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Vielzahl von Arbeitern 101

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new( fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }
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tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

In diesem Beispiel definiert CheckCustomerHistory eine INSTRUCTION-Konstante,
die der KI spezifische Anweisungen zur Analyse des Transaktionsverlaufs des Kunden

auf potenzielle Betrugshinweise mittels einer Systemanweisung bereitstellt.

Die self.check-Methode ist eine Klassenmethode, die eine neue Instanz von
CheckCustomerHistory mit dem fraud_detection-Objekt initialisiert und die

call-Methode aufruft, um die Kundenhistorieanalyse durchzufiihren.

Innerhalb der call-Methode wird der Transaktionsverlauf des Kunden abgerufen und
in ein Transkript formatiert, das an das KI-Modell tibergeben wird. Das KI-Modell
analysiert den Transaktionsverlauf basierend auf den bereitgestellten Anweisungen und

gibt eine Zusammenfassung seiner Erkenntnisse zuriick.

Die Erkenntnisse werden dem fraud_detection-Objekt hinzugefiigt, und das

aktualisierte fraud_detection-Objekt wird als erfolgreiches Result zuriickgegeben.

Durch die Nutzung des ChatCompletion-Moduls kann die CheckCustomerHistory-
Klasse die Leistungsfahigkeit der KI nutzen, um den Transaktionsverlauf des Kunden
zu analysieren und potenzielle Betrugshinweise zu identifizieren. Dies ermoglicht
sophistiziertere und adaptive Betrugserkennung, da das KI-Modell neue Muster und

Anomalien im Laufe der Zeit lernen und sich anpassen kann.

Der aktualisierte FraudDetectionWorker und die CheckCustomerHistory-Klasse
zeigen, wie KI-Worker nahtlos integriert werden konnen und den Betrugserkennung-

Prozess durch intelligente Analyse- und Entscheidungsfahigkeiten verbessern.
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Kundensentimentanalyse

Hier ist ein weiteres &hnliches Beispiel dafiir, wie Sie einen Worker zur
Kundensentimentanalyse implementieren kénnen. Diesmal mit weniger Erklarungen,

da Sie allméhlich verstehen sollten, wie diese Art der Programmierung funktioniert:

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok( feedback)
.and_then(PreprocessFeedback .method( : preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method( :extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end

end

In diesem Beispiel umfassen die Schritte des CustomerSentimentAnalysisWorker
die Vorverarbeitung des Feedbacks (z.B. Entfernung von Stérungen, Tokenisierung), die
Durchfithrung einer Stimmungsanalyse zur Bestimmung der allgemeinen Stimmung
(positiv, negativ oder neutral), die Extraktion von Schliisselphrasen und Themen,
die Identifizierung von Trends und Mustern sowie die Generierung umsetzbarer

Erkenntnisse auf Basis der Analyse.
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Anwendungen im Gesundheitswesen

Im Gesundheitsbereich kénnen KI-Worker medizinisches Fachpersonal und Forscher bei
verschiedenen Aufgaben unterstiitzen, was zu verbesserten Patientenergebnissen und

beschleunigten medizinischen Entdeckungen fiihrt. Einige Beispiele sind:

Patientenaufnahme

KI-Worker koénnen den Patientenaufnahmeprozess durch Automatisierung

verschiedener Aufgaben und intelligente Unterstiitzung optimieren.

Terminplanung: KI-Worker koénnen die Terminplanung iibernehmen, indem sie
Patientenpraferenzen, Verfugbarkeit und die Dringlichkeit ihrer medizinischen
Bediirfnisse beriicksichtigen. Sie konnen iiber Konversationsschnittstellen mit Patienten
interagieren, sie durch den Planungsprozess fithren und die am besten geeigneten
Terminslots basierend auf den Anforderungen des Patienten und der Verfiigbarkeit des

Gesundheitsdienstleisters finden.

Erfassung der Krankengeschichte: Wihrend der Patientenaufnahme koénnen KI-
Worker bei der Erfassung und Dokumentation der Krankengeschichte des Patienten
unterstiitzen. Sie konnen interaktive Dialoge mit Patienten fithren und relevante Fragen
zu friheren Erkrankungen, Medikamenten, Allergien und Familienvorgeschichte
stellen. Die KI-Worker konnen Techniken zur Verarbeitung natirlicher Sprache
nutzen, um die gesammelten Informationen zu interpretieren und zu strukturieren und

sicherzustellen, dass sie korrekt in der elektronischen Patientenakte erfasst werden.

Symptombeurteilung  und  Stratifizierung: = KI-Worker = konnen  erste
Symptombeurteilungen durchfithren, indem sie Patienten nach ihren aktuellen
Symptomen, deren Dauer, Schweregrad und damit verbundenen Faktoren befragen.
Durch die Nutzung medizinischer Wissensdatenbanken und maschineller Lernmodelle

konnen diese Worker die bereitgestellten Informationen analysieren und vorlaufige
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Differentialdiagnosen erstellen oder geeignete néchste Schritte empfehlen, wie etwa
die Vereinbarung einer Konsultation mit einem Gesundheitsdienstleister oder die

Empfehlung von Selbstpflegemafinahmen.

Versicherungsiiberpriifung: KI-Worker kénnen bei der Versicherungsiiberprifung
wiahrend der Patientenaufnahme unterstiitzen. Sie konnen Versicherungsdaten
der Patienten sammeln, iiber APIs oder Webservices mit Versicherungsanbietern
kommunizieren und die Anspruchsberechtigung und Leistungen tberpriifen. Diese
Automatisierung hilft dabei, den Versicherungsiiberpriifungsprozess zu optimieren,
den Verwaltungsaufwand zu reduzieren und eine genaue Informationserfassung

sicherzustellen.

Patientenaufklirung und Anweisungen: KI-Worker koénnen Patienten relevantes
Aufklarungsmaterial und Anweisungen basierend auf ihren spezifischen Erkrankungen
oder bevorstehenden Eingriffen zur Verfiigung stellen. Sie konnen personalisierte
Inhalte bereitstellen, hiufige Fragen beantworten und Anleitungen zu Vorbereitungen
vor dem Termin, Medikamentenanweisungen oder Nachsorge geben. Dies hilft,
Patienten wahrend ihrer gesamten Gesundheitsreise informiert und engagiert zu

halten.

Durch den Einsatz von KI-Workern bei der Patientenaufnahme konnen
Gesundheitsorganisationen die Effizienz steigern, Wartezeiten reduzieren und
das gesamte Patientenerlebnis verbessern. Diese Worker kénnen Routineaufgaben
tibernehmen, genaue Informationen sammeln und personalisierte Unterstiitzung
bieten, sodass sich das Gesundheitspersonal auf die Bereitstellung hochwertiger

Patientenversorgung konzentrieren kann.

Patientenrisikobewertung

KI-Worker konnen eine entscheidende Rolle bei der Bewertung von Patientenrisiken
spielen, indem sie verschiedene Datenquellen analysieren und fortgeschrittene

Analysetechniken anwenden.
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Datenintegration: KI-Worker koénnen Patientendaten aus verschiedenen Quellen
sammeln und auswerten, wie etwa elektronische Patientenakten, medizinische
Bildgebung, Laborergebnisse, tragbare Gerate und soziale Gesundheitsdeterminanten.
Durch die Zusammenfithrung dieser Informationen zu einem umfassenden
Patientenprofil konnen KI-Worker einen ganzheitlichen Uberblick tber den

Gesundheitszustand und die Risikofaktoren des Patienten bieten.

Risikostratifizierung: KI-Worker konnen préadiktive Modelle verwenden, um
Patienten basierend auf ihren individuellen Merkmalen und Gesundheitsdaten in
verschiedene Risikokategorien einzuteilen. Diese Risikostratifizierung ermoglicht
es Gesundheitsdienstleistern, Patienten zu priorisieren, die eine unmittelbarere
Aufmerksamkeit oder Intervention benétigen. Beispielsweise konnen Patienten, die
als Hochrisikopatienten fiir eine bestimmte Erkrankung identifiziert wurden, fiir
eine engere Uberwachung, praventive Mafnahmen oder frithzeitige Intervention

gekennzeichnet werden.

Personalisierte Risikoprofile: KI-Worker konnen fiir jeden Patienten personalisierte
Risikoprofile erstellen, die die spezifischen Faktoren hervorheben, die zu
ihren Risikobewertungen beitragen. Diese Profile koénnen Einblicke in den
Lebensstil des Patienten, genetische Veranlagungen, Umweltfaktoren und soziale
Gesundheitsdeterminanten enthalten. Durch die Bereitstellung einer detaillierten
Aufschlisselung der Risikofaktoren koénnen KI-Worker Gesundheitsdienstleistern
helfen, Praventionsstrategien und Behandlungspline auf die individuellen

Patientenbedurfnisse abzustimmen.

Kontinuierliche = Risikoitberwachung: = KI-Worker = koénnen  Patientendaten
kontinuierlich tiberwachen und Risikobewertungen in Echtzeit aktualisieren. Wenn
neue Informationen verfiiggbar werden, wie etwa Anderungen der Vitalzeichen,
Laborergebnisse oder Medikamentenadhéirenz, kénnen KI-Worker Risikobewertungen
neu berechnen und Gesundheitsdienstleister tiber signifikante Anderungen informieren.

Diese proaktive Uberwachung ermoglicht zeitnahe Interventionen und Anpassungen
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der Patientenversorgungsplane.

Klinische Entscheidungsunterstiitzung: KI-Worker konnen Risikobewertungsergebnisse
in klinische Entscheidungsunterstiitzungssysteme integrieren und Gesundheitsdienstleistern
evidenzbasierte Empfehlungen und Warnungen bereitstellen. Wenn beispielsweise
der Risikowert eines Patienten fiir eine bestimmte Erkrankung einen bestimmten
Schwellenwert Uberschreitet, kann der KI-Worker den Gesundheitsdienstleister
auffordern, bestimmte diagnostische Tests, praventive Mafinahmen oder
Behandlungsoptionen basierend auf klinischen Leitlinien und bew&hrten Praktiken in

Betracht zu ziehen.

Diese Worker konnen riesige Mengen an Patientendaten verarbeiten, anspruchsvolle
Analysen durchfithren und verwertbare Erkenntnisse zur Unterstiitzung klinischer
Entscheidungsfindung generieren. Dies fiithrt letztendlich zu verbesserten
Patientenergebnissen, reduzierten Gesundheitskosten und einem verbesserten

Management der Bevolkerungsgesundheit.
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KIl-Worker als Prozess-Manager

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

Im Kontext Kl-gesteuerter Anwendungen kann ein Worker als Process Manager

konzipiert werden, wie im Buch “Enterprise Integration Patterns” von Gregor Hohpe
beschrieben. Ein Process Manager ist eine zentrale Komponente, die den Status
eines Prozesses verwaltet und basierend auf Zwischenergebnissen die nachsten

Verarbeitungsschritte bestimmt.

Wenn ein KI-Worker als Process Manager agiert, empfangt er eine eingehende
Nachricht, die den Prozess initialisiert, bekannt als Triggernachricht. Der KI-
Worker verwaltet dann den Status der Prozessausfithrung (als Gesprachsprotokoll)
und bearbeitet die Nachricht durch eine Reihe von Verarbeitungsschritten, die als
Werkzeugfunktionen implementiert sind. Diese koénnen sequentiell oder parallel

ausgefithrt werden und werden nach seinem Ermessen aufgerufen.
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’ Wenn Sie eine KI-Modellklasse wie GPT-4 verwenden, die weif}, wie

man Funktionen parallel ausfiihrt, dann kann Thr Worker mehrere Schritte

gleichzeitig ausfithren. Zugegeben, ich habe das selbst noch nicht versucht,

und mein Bauchgefiihl sagt mir, dass die Ergebnisse variieren konnen.

Nach jedem einzelnen Verarbeitungsschritt wird die Kontrolle zuriick an den KI-

Worker iibergeben, wodurch er basierend auf dem aktuellen Status und den erhaltenen

Ergebnissen die nichsten Verarbeitungsschritte bestimmen kann.

Speichern Sie lhre Triggernachrichten

Meiner Erfahrung nach ist es klug, Thre Triggernachricht als datenbankgestiitztes Objekt

zu implementieren. Auf diese Weise wird jede Prozessinstanz durch einen eindeutigen

Primarschliissel identifiziert und Sie haben einen Platz, um den mit der Ausfithrung

verbundenen Status zu speichern, einschliefSlich des KI-Gesprachsprotokolls.

Hier ist beispielsweise eine vereinfachte Version von Olympias AccountChange-

Modelklasse, die eine Anfrage zur Anderung eines Benutzerkontos darstellt.

id
description
state
transcript
created_at
updated_at
account_id

Indexes

# ¥ ¥ ¥ OH H ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ OH #

Foreign Keys

== Schema Information

Table name: account_changes

ruuid
:string
:string
:jsonb
:datetime
:datetime

ruuid

not

not

not

not
not

null, primary key
null
null

null

null

index_account_changes_on_account_id (account_id)
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32
33
34
35
36
37
38
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#

# fk_rails_... (account_id => accounts.id)
#

class AccountChange < ApplicationRecord
belongs_to :account

validates :description, presence: true

after_commit -> {
broadcast(:account_change_requested, self)
}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end

end

Die AccountChange-Klasse dient als Trigger-Nachricht, die einen Prozess zur
Behandlung der Kontodnderungsanfrage initiiert. Beachten Sie, wie sie an
Olympias Wisper-basiertes Pub/Sub-Subsystem gesendet wird, nachdem die

Erstellungstransaktion abgeschlossen ist.

Die Speicherung der Trigger-Nachricht in der Datenbank auf diese Weise bietet
eine dauerhafte Aufzeichnung jeder Kontodnderungsanfrage. Jeder Instanz der
AccountChange-Klasse wird ein eindeutiger Primérschliissel zugewiesen, was
eine einfache Identifizierung und Verfolgung einzelner Anfragen ermoglicht. Dies
ist besonders nitzlich fir Audit-Logging-Zwecke, da das System dadurch einen
historischen Uberblick tiber alle Kontoanderungen behalten kann, einschlieBlich des
Zeitpunkts der Anfrage, der gewiinschten Anderungen und des aktuellen Status jeder

Anfrage.

Im gegebenen Beispiel enthilt die AccountChange-Klasse Felder wie description zur


https://github.com/krisleech/wisper
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Erfassung der Details der angeforderten Anderung, state zur Darstellung des aktuellen
Status der Anfrage (z.B. angefordert, abgeschlossen, benétigt_manuelle_iiberpriifung)
und transcript zur Speicherung des KI-Gesprachsprotokolls im Zusammenhang mit
der Anfrage. Das description-Feld ist der eigentliche Prompt, der verwendet wird,
um die erste Chat-Completion mit der KI zu initiieren. Die Speicherung dieser Daten
bietet wertvollen Kontext und erméglicht eine bessere Nachverfolgung und Analyse des

Kontoanderungsprozesses.

Die Speicherung von Trigger-Nachrichten in der Datenbank ermdéglicht eine robuste
Fehlerbehandlung und Wiederherstellung. Wenn wéahrend der Verarbeitung einer
Kontodnderungsanfrage ein Fehler auftritt, markiert das System die Anfrage als
fehlgeschlagen und tiberfiihrt sie in einen Status, der menschliches Eingreifen erfordert.
Dies stellt sicher, dass keine Anfrage verloren geht oder vergessen wird und alle

Probleme ordnungsgemifl behandelt und gel6st werden konnen.

Der KI-Worker als Process Manager bietet einen zentralen Kontrollpunkt und erméglicht
leistungsfahige Prozessberichts- und Debugging-Funktionen. Es ist jedoch wichtig
zu beachten, dass die Verwendung eines KI-Workers als Process Manager fiir jedes

Workflow-Szenario in Ihrer Anwendung moglicherweise tibertrieben sein kénnte.

Integration von KI-Workern in lhre

Anwendungsarchitektur

Bei der Integration von KI-Workern in Ihre Anwendungsarchitektur miissen
verschiedene technische Aspekte beriicksichtigt werden, um eine reibungslose
Integration und effektive Kommunikation zwischen den KI-Workern und anderen
Anwendungskomponenten zu gewahrleisten. Dieser Abschnitt behandelt wichtige
Aspekte der Gestaltung dieser Schnittstellen, der Handhabung des Datenflusses und
der Verwaltung des Lebenszyklus von KI-Workern.
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Gestaltung klarer Schnittstellen und
Kommunikationsprotokolle

Um eine nahtlose Integration zwischen KI-Workern und anderen Anwendungskomponenten
zu ermoglichen, ist es entscheidend, klare Schnittstellen und Kommunikationsprotokolle

zu definieren. Beriicksichtigen Sie die folgenden Ansatze:

API-basierte Integration: Stellen Sie die Funktionalitdt von KI-Workern tiber klar
definierte APIs bereit, wie beispielsweise RESTful-Endpunkte oder GraphQL-Schemas.
Dies ermoglicht anderen Komponenten die Interaktion mit den KI-Workern iber
Standard-HTTP-Anfragen und -Antworten. Die API-basierte Integration bietet einen
klaren Vertrag zwischen den KI-Workern und den verbrauchenden Komponenten, was

die Entwicklung, das Testen und die Wartung der Integrationspunkte erleichtert.

Nachrichtenbasierte Kommunikation: Implementieren Sie nachrichtenbasierte
Kommunikationsmuster, wie Nachrichtenwarteschlangen oder Publish-Subscribe-
Systeme, um eine asynchrone Interaktion zwischen KI-Workern und anderen
Komponenten zu ermoglichen. Dieser Ansatz entkoppelt die KI-Worker vom Rest
der Anwendung und ermdglicht eine bessere Skalierbarkeit, Fehlertoleranz und lose
Kopplung. Nachrichtenbasierte Kommunikation ist besonders niitzlich, wenn die
Verarbeitung durch KI-Worker zeitaufwindig oder ressourcenintensiv ist, da sie
anderen Teilen der Anwendung ermoglicht, ohne Wartezeit auf den Abschluss der

KI-Worker-Aufgaben weiterzuarbeiten.

Ereignisgesteuerte Architektur: Gestalten Sie Ihr System um Ereignisse und Trigger
herum, die KI-Worker aktivieren, wenn bestimmte Bedingungen erfiillt sind. KI-
Worker konnen relevante Ereignisse abonnieren und entsprechend reagieren, indem
sie ihre zugewiesenen Aufgaben ausfithren, wenn die Ereignisse eintreten. Eine
ereignisgesteuerte Architektur ermoglicht Echtzeit-Verarbeitung und erlaubt es,
KI-Worker bei Bedarf aufzurufen, wodurch unnétiger Ressourcenverbrauch reduziert
wird. Dieser Ansatz eignet sich gut fiir Szenarien, in denen KI-Worker auf bestimmte

Aktionen oder Anderungen im Anwendungszustand reagieren miissen.
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Umgang mit Datenfluss und Synchronisation

Bei der Integration von KI-Workern in Thre Anwendung ist es entscheidend, einen
reibungslosen Datenfluss sicherzustellen und die Datenkonsistenz zwischen den
KI-Workern und anderen Komponenten aufrechtzuerhalten. Beriicksichtigen Sie die

folgenden Aspekte:

Datenvorbereitung: Bevor Daten in KI-Worker eingespeist werden, miissen
moglicherweise verschiedene Datenvorbereitungsaufgaben durchgefithrt werden,
wie das Bereinigen, Formatieren und/oder Transformieren der Eingabedaten. Sie
mochten nicht nur sicherstellen, dass die KI-Worker effektiv arbeiten kénnen, sondern
auch, dass Sie keine Token fir Informationen verschwenden, die der Worker bestenfalls
als nutzlos, schlimmstenfalls als storend empfinden konnte. Die Datenvorbereitung
kann Aufgaben wie das Entfernen von Rauschen, den Umgang mit fehlenden Werten

oder die Konvertierung von Datentypen umfassen.

Datenpersistenz: Wie werden Sie die Daten speichern und persistent halten, die
in KI-Worker ein- und ausfliefen? Bertcksichtigen Sie Faktoren wie Datenvolumen,
Abfragemuster und Skalierbarkeit. Miissen Sie das Transkript der KI als Reflexion ihres
“Gedankenprozesses” fiir Audit- oder Debugging-Zwecke speichern, oder reicht es aus,

nur eine Aufzeichnung der Ergebnisse zu haben?

Datenabruf: Das Abrufen der von Workern benétigten Daten kann Datenbankabfragen,
Lesen aus Dateien oder Zugriff auf externe APIs umfassen. Beriicksichtigen Sie die
Latenzzeit und wie KI-Worker Zugriff auf die aktuellsten Daten erhalten. Benétigen
sie vollen Zugriff auf Thre Datenbank oder sollten Sie den Umfang ihres Zugriffs eng
nach ihren Aufgaben definieren? Was ist mit der Skalierung? Erwagen Sie Caching-
Mechanismen zur Verbesserung der Leistung und Reduzierung der Last auf die zugrunde

liegenden Datenquellen.

Datensynchronisation: Wenn mehrere Komponenten, einschlieSlich KI-Worker,

auf gemeinsame Daten zugreifen und diese &ndern, ist es wichtig, geeignete
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Synchronisationsmechanismen zu implementieren, um die Datenkonsistenz zu
gewihrleisten. Datenbank-Sperrmechanismen, wie optimistisches oder pessimistisches
Sperren, konnen dabei helfen, Konflikte zu vermeiden und die Datenintegritat
sicherzustellen. Implementieren Sie Transaktionsmanagement-Techniken, um
zusammenhingende Datenoperationen zu gruppieren und die ACID-Eigenschaften

(Atomaritét, Konsistenz, Isolation und Dauerhaftigkeit) zu gewéhrleisten.

Fehlerbehandlung und Wiederherstellung: Implementieren Sie robuste
Fehlerbehandlungs- und Wiederherstellungsmechanismen, um mit datenbezogenen
Problemen umzugehen, die wéahrend des Datenflussprozesses auftreten
konnen. Behandeln Sie Ausnahmen elegant und stellen Sie aussagekraftige
Fehlermeldungen zur Unterstiitzung der Fehlerbehebung bereit. Implementieren
Sie Wiederholungsmechanismen und Fallback-Strategien, um tempordre Ausfille
oder Netzwerkunterbrechungen zu behandeln. Definieren Sie klare Verfahren fiir die

Datenwiederherstellung im Fall von Datenbeschadigung oder -verlust.

Durch sorgfiltiges Design und Implementierung von Datenfluss- und
Synchronisationsmechanismen konnen Sie sicherstellen, dass Ihre KI-Worker Zugriff
auf genaue, konsistente und aktuelle Daten haben. Dies erméglicht ihnen, ihre Aufgaben

effektiv auszufithren und zuverléssige Ergebnisse zu liefern.

Verwaltung des Lebenszyklus von KI-Workern

Entwickeln Sie einen standardisierten Prozess fiir die Initialisierung und Konfiguration
von KI-Workern. Ich bevorzuge Frameworks, die standardisieren, wie Sie Einstellungen
wie Modellnamen, Systemanweisungen und Funktionsdefinitionen festlegen. Stellen Sie
sicher, dass der Initialisierungsprozess automatisiert und reproduzierbar ist, um die

Bereitstellung und Skalierung zu erleichtern.

Implementieren Sie umfassende Uberwachungs- und Protokollierungsmechanismen,
um den Zustand und die Leistung von KI-Workern zu verfolgen. Erfassen Sie Metriken

wie Ressourcennutzung, Verarbeitungszeit, Fehlerraten und Durchsatz. Verwenden
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Sie zentralisierte Protokollierungssysteme wie den ELK-Stack (Elasticsearch, Logstash,

Kibana), um Protokolle von mehreren KI-Workern zu aggregieren und zu analysieren.

Bauen Sie Fehlertoleranz und Resilienz in die KI-Worker-Architektur ein.
Implementieren Sie Fehlerbehandlungs- und Wiederherstellungsmechanismen,
um Ausfille oder Ausnahmen elegant zu behandeln. Large Language Models sind
noch Bleeding-Edge-Technologie; Anbieter fallen oft zu unerwarteten Zeiten aus.
Verwenden Sie Wiederholungsmechanismen und Schutzschalter, um Kaskadenausfille

zu verhindern.

Komponierbarkeit und Orchestrierung von
KI-Workern

Einer der wichtigsten Vorteile der KI-Worker-Architektur ist ihre Komponierbarkeit, die
es ermoglicht, mehrere KI-Worker zu kombinieren und zu orchestrieren, um komplexe
Probleme zu 16sen. Indem Sie eine groflere Aufgabe in kleinere, besser handhabbare
Teilaufgaben aufteilen, die jeweils von einem spezialisierten KI-Worker bearbeitet
werden, konnen Sie leistungsfahige und flexible Systeme erstellen. In diesem Abschnitt
werden wir verschiedene Ansitze zur Komposition und Orchestrierung “einer Vielzahl”

von KI-Workern untersuchen.

Verkettung von Kil-Workern fir mehrstufige Workflows

In vielen Szenarien kann eine komplexe Aufgabe in eine Reihe sequentieller Schritte
zerlegt werden, wobei die Ausgabe eines KI-Workers zur Eingabe fiir den néchsten
wird. Diese Verkettung von KI-Workern erstellt einen mehrstufigen Workflow oder eine
Pipeline. Jeder KI-Worker in der Kette konzentriert sich auf eine spezifische Teilaufgabe,
und die endgiiltige Ausgabe ist das Ergebnis der kombinierten Bemithungen aller

Worker.
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Betrachten wir ein Beispiel im Kontext einer Ruby on Rails-Anwendung zur
Verarbeitung von nutzergenerierten Inhalten. Der Workflow umfasst die folgenden
Schritte, die zugegebenermafien in realen Anwendungsfallen wahrscheinlich jeweils zu
einfach sind, um eine solche Zerlegung zu rechtfertigen, aber sie machen das Beispiel

leichter verstandlich:

1. Textbereinigung: Ein KI-Worker, der fiir das Entfernen von HTML-Tags, die
Konvertierung in Kleinbuchstaben und die Handhabung der Unicode-Normalisierung

zustandig ist.

2. Spracherkennung: Ein KI-Worker, der die Sprache des bereinigten Textes

identifiziert.

3. Stimmungsanalyse: Ein KI-Worker, der die Stimmung (positiv, negativ oder neutral)

des Textes basierend auf der erkannten Sprache bestimmt.

4. Inhaltskategorisierung: Ein KI-Worker, der den Text mithilfe von Techniken der

natiirlichen Sprachverarbeitung in vordefinierte Kategorien einordnet.

Hier ist ein sehr vereinfachtes Beispiel, wie Sie diese KI-Worker mit Ruby verketten

konnen:

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker .new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }

end

end

In diesem Beispiel initialisiert die ContentProcessor-Klasse mit dem Rohtext und
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verkettet die AI-Worker in der process-Methode miteinander. Jeder AI-Worker fiihrt
seine spezifische Aufgabe aus und tibergibt das Ergebnis an den nichsten Worker in
der Kette. Die endgiiltige Ausgabe ist ein Hash, der den bereinigten Text, die erkannte
Sprache, die Stimmung und die Inhaltskategorie enthélt.

Parallelverarbeitung fiir unabhangige Al-Worker

Im vorherigen Beispiel sind die AI-Worker sequentiell verkettet, wobei jeder Worker den
Text verarbeitet und das Ergebnis an den nidchsten Worker weitergibt. Wenn Sie jedoch
mehrere AI-Worker haben, die unabhéngig voneinander mit derselben Eingabe arbeiten

koénnen, konnen Sie den Arbeitsablauf optimieren, indem Sie sie parallel verarbeiten.

Im gegebenen Szenario konnen nach der Textbereinigung durch den
TextCleanupWorker die Worker LanguageDetectionWorker,SentimentAnalysisWorker
und CategorizationWorker alle den bereinigten Text unabhéngig voneinander
verarbeiten. Durch die parallele Ausfithrung dieser Worker konnen Sie potenziell die

gesamte Verarbeitungszeit reduzieren und die Effizienz Ihres Arbeitsablaufs verbessern.

Um Parallelverarbeitung in Ruby zu erreichen, konnen Sie Nebenldufigkeitstechniken
wie Threads oder asynchrone Programmierung nutzen. Hier ist ein Beispiel, wie Sie die
ContentProcessor-Klasse modifizieren konnen, um die letzten drei Worker parallel

mithilfe von Threads zu verarbeiten:
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require 'concurrent'

class ContentProcessor
def initialize(text)
Otext = text
end

def process
cleaned_text = TextCleanupWorker.new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker .new(cleaned_text).call
end

category_future = Concurrent::Future.execute do
CategorizationWorker .new(cleaned_text).call
end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end

end

In dieser optimierten Version verwenden wir die concurrent-ruby-Bibliothek, um
Concurrent: :Future-Objekte fiir jeden der unabhangigen KI-Worker zu erstellen.
Ein Future représentiert eine Berechnung, die asynchron in einem separaten Thread

ausgefiihrt wird.

Nach dem Text-Bereinigungsschritt erstellen wir drei Future-Objekte:
language_future, sentiment_future und category_future. Jedes
Future fiihrt seinen entsprechenden KI-Worker (LanguageDetectionWorker,

SentimentAnalysisWorker und CategorizationWorker) in einem separaten
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Thread aus und iibergibt dabei den cleaned_text als Eingabe.

Durch den Aufruf der value-Methode auf jedem Future warten wir auf den Abschluss
der Berechnung und erhalten das Ergebnis. Die value-Methode blockiert, bis das
Ergebnis verfiigbar ist, und stellt damit sicher, dass alle parallelen Worker ihre

Verarbeitung abgeschlossen haben, bevor fortgefahren wird.

SchlieSlich erstellen wir den Ausgabe-Hash mit dem bereinigten Text und den

Ergebnissen der parallelen Worker, genau wie im urspriinglichen Beispiel.

Durch die parallele Verarbeitung der unabhingigen KI-Worker koénnen Sie die
gesamte Verarbeitungszeit im Vergleich zur sequenziellen Ausfithrung moglicherweise
reduzieren. Diese Optimierung ist besonders vorteilhaft bei zeitaufwandigen Aufgaben

oder bei der Verarbeitung grofier Datenmengen.

Es ist jedoch wichtig zu beachten, dass die tatsdchlichen Leistungsgewinne von
verschiedenen Faktoren abhangen, wie der Komplexitit jedes Workers, den verfiigbaren
Systemressourcen und dem Overhead des Thread-Managements. Es ist immer eine
gute Praxis, Ihr Code zu benchmarken und zu profilieren, um den optimalen Grad der

Parallelisierung fiir Ihren spezifischen Anwendungsfall zu ermitteln.

Achten Sie auflerdem bei der Implementierung der parallelen Verarbeitung auf
gemeinsam genutzte Ressourcen oder Abhangigkeiten zwischen den Workern. Stellen
Sie sicher, dass die Worker unabhingig voneinander arbeiten kénnen, ohne Konflikte
oder Race Conditions zu verursachen. Bei Abhéngigkeiten oder gemeinsam genutzten
Ressourcen miissen Sie moglicherweise geeignete Synchronisationsmechanismen
implementieren, um die Datenintegritat zu gewéhrleisten und Probleme wie Deadlocks

oder inkonsistente Ergebnisse zu vermeiden.

Rubys Global Interpreter Lock und asynchrone
Verarbeitung
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Es ist wichtig, die Auswirkungen von Rubys Global Interpreter Lock (GIL) zu
verstehen, wenn man asynchrone Thread-basierte Verarbeitung in Ruby in Betracht

zieht.

Der GIL ist ein Mechanismus im Ruby-Interpreter, der sicherstellt, dass nur ein
Thread gleichzeitig Ruby-Code ausfithren kann, selbst auf Mehrkern-Prozessoren.
Das bedeutet, dass zwar mehrere Threads innerhalb eines Ruby-Prozesses erstellt und
verwaltet werden konnen, aber nur ein Thread zu einem bestimmten Zeitpunkt aktiv

Ruby-Code ausfithren kann.

Der GIL wurde entwickelt, um die Implementierung des Ruby-Interpreters
zu vereinfachen und Threadsicherheit fiir Rubys interne Datenstrukturen zu
gewahrleisten. Allerdings begrenzt er auch das Potenzial fir echte parallele

Ausfihrung von Ruby-Code.

Wenn Sie Threads in Ruby verwenden, wie zum Beispiel mit der concurrent-ruby-
Bibliothek oder der eingebauten Thread-Klasse, unterliegen die Threads den
Einschrankungen des GIL. Der GIL erlaubt jedem Thread, Ruby-Code fiir eine
kurze Zeitscheibe auszufiihren, bevor er zu einem anderen Thread wechselt, was die

Illusion einer gleichzeitigen Ausfiihrung erzeugt.

Aufgrund des GIL bleibt die tatsachliche Ausfithrung von Ruby-Code jedoch
sequenziell. Wahrend ein Thread Ruby-Code ausfiihrt, sind andere Threads im
Wesentlichen pausiert und warten darauf, dass sie an der Reihe sind, den GIL zu

erhalten und ausgefiihrt zu werden.

Dies bedeutet, dass Thread-basierte asynchrone Verarbeitung in Ruby am effektivsten
fir I/O-gebundene Aufgaben ist, wie das Warten auf externe API-Antworten (wie
von extern gehosteten Large Language Models) oder das Ausfithren von Datei-
I/O-Operationen. Wenn ein Thread auf eine I/O-Operation trifft, kann er den GIL
freigeben und anderen Threads die Ausfithrung ermdglichen, wéhrend er auf den

Abschluss der I/O wartet.
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Andererseits kann der GIL bei CPU-gebundenen Aufgaben, wie intensiven
Berechnungen oder lang laufender KI-Worker-Verarbeitung, die potenziellen
Leistungsgewinne der Thread-basierten Parallelisierung einschranken. Da nur ein
Thread gleichzeitig Ruby-Code ausfithren kann, wird die Gesamtausfiihrungszeit
moglicherweise nicht signifikant im Vergleich zur sequenziellen Verarbeitung

reduziert.

Um eine echte parallele Ausfithrung fiir CPU-gebundene Aufgaben in Ruby zu
erreichen, miissen Sie moglicherweise alternative Ansétze in Betracht ziehen, wie

zum Beispiel:

+ Verwendung von prozessbasierter Parallelitdt mit mehreren Ruby-Prozessen,
die jeweils auf einem separaten CPU-Kern laufen.

« Nutzung externer Bibliotheken oder Frameworks, die native Erweiterungen
oder Schnittstellen zu Sprachen ohne GIL bereitstellen, wie C oder Rust.,

« Einsatz von verteilten Computing-Frameworks oder Message Queues, um

Aufgaben iiber mehrere Maschinen oder Prozesse zu verteilen.

Es ist entscheidend, die Art Ihrer Aufgaben und die durch den GIL auferlegten
Einschrankungen zu beriicksichtigen, wenn Sie asynchrone Verarbeitung in
Ruby entwerfen und implementieren. Wahrend Thread-basierte asynchrone
Verarbeitung Vorteile fiir I/O-gebundene Aufgaben bieten kann, bietet sie
aufgrund der Einschrinkungen des GIL moglicherweise keine signifikanten

Leistungsverbesserungen fiir CPU-gebundene Aufgaben.

Ensemble-Techniken fiir verbesserte Genauigkeit

Ensemble-Techniken beinhalten die Kombination der Ausgaben mehrerer KI-Worker,
um die Gesamtgenauigkeit oder Robustheit des Systems zu verbessern. Anstatt sich

auf einen einzelnen KI-Worker zu verlassen, nutzen Ensemble-Techniken die kollektive
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Intelligenz mehrerer Worker, um fundiertere Entscheidungen zu treffen.

Ensembles sind besonders wichtig, wenn verschiedene Teile TIhres
’ Workflows am besten mit unterschiedlichen KI-Modellen funktionieren,
was haufiger vorkommt, als Sie vielleicht denken. Leistungsstarke Modelle
wie GPT-4 sind im Vergleich zu weniger leistungsfahigen Open-Source-
Optionen extrem teuer und werden wahrscheinlich nicht fiir jeden

einzelnen Workflow-Schritt Ihrer Anwendung benétigt.

Eine haufig verwendete Ensemble-Technik ist die Mehrheitsentscheidung, bei der
mehrere KI-Worker unabhéngig voneinander dieselbe Eingabe verarbeiten und die
endgiltige Ausgabe durch den Mehrheitskonsens bestimmt wird. Dieser Ansatz kann
dazu beitragen, die Auswirkungen von Fehlern einzelner Worker zu minimieren und

die Gesamtzuverlassigkeit des Systems zu verbessern.

Betrachten wir ein Beispiel, bei dem wir drei KI-Worker fiir die Stimmungsanalyse
haben, die jeweils ein unterschiedliches Modell verwenden oder mit verschiedenen
Kontexten ausgestattet sind. Wir kénnen ihre Ausgaben mittels Mehrheitsentscheidung

kombinieren, um die endgiltige Stimmungsvorhersage zu bestimmen.

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorkerl.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,
SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst
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end

end

In diesem Beispiel initialisiert die Klasse SentimentAnalysisEnsemble mit dem Text
und ruft drei verschiedene KI-Worker fiir die Stimmungsanalyse auf. Die Methode
analyze sammelt die Vorhersagen von jedem Worker und bestimmt die mehrheitliche
Stimmung mithilfe der Methoden group_by und max_by. Das endgiltige Ergebnis ist

die Stimmung, die die meisten Stimmen vom Ensemble der Worker erhalt.

’ Ensembles sind eindeutig ein Fall, bei dem sich Experimente mit

Parallelisierung lohnen konnen.

Dynamische Auswahl und Aufruf von KI-Workern

In einigen, wenn nicht sogar den meisten Féllen, kann die Auswahl des spezifischen KI-
Workers von Laufzeitbedingungen oder Benutzereingaben abhiangen. Die dynamische
Auswahl und Aufruf von KI-Workern ermoéglicht Flexibilitdt und Anpassungsfahigkeit

im System.

’ Méglicherweise werden Sie versucht sein, viel Funktionalitit in einen
einzigen KI-Worker zu packen, ihm viele Funktionen und einen grofien,
komplizierten Prompt zu geben, der erklart, wie man sie aufruft.
Widerstehen Sie dieser Versuchung, vertrauen Sie mir. Einer der Griinde,
warum der Ansatz, den wir in diesem Kapitel besprechen, “Vielzahl von
Workern” genannt wird, ist, uns daran zu erinnern, dass es wiinschenswert
ist, viele spezialisierte Worker zu haben, die jeweils ihre kleine Aufgabe im

Dienste des grofieren Zwecks erfiillen.

Betrachten Sie zum Beispiel eine Chatbot-Anwendung, bei der verschiedene KI-Worker

fur die Bearbeitung unterschiedlicher Arten von Benutzeranfragen zustandig sind.
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Basierend auf der Benutzereingabe wihlt die Anwendung dynamisch den geeigneten

KI-Worker aus, um die Anfrage zu verarbeiten.

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker .new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker .new(query).generate_response
else

response = DefaultResponseWorker .new(query).generate_response
end

render json: { response: response }
end

end

In diesem Beispiel empfangt der ChatbotController eine Benutzeranfrage durch
die process_query-Aktion. Zunichst verwendet er einen QueryClassi fierWorker,
um den Typ der Anfrage zu bestimmen. Basierend auf dem klassifizierten Anfragetyp
wahlt der Controller dynamisch den passenden KI-Worker aus, um die Antwort zu
generieren. Diese dynamische Auswahl ermdglicht es dem Chatbot, verschiedene Arten

von Anfragen zu verarbeiten und sie an die relevanten KI-Worker weiterzuleiten.
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Da die Arbeit des QueryClassifierWorker relativ einfach ist und
’ nicht viel Kontext oder Funktionsdefinitionen erfordert, konnen
Sie ihn wahrscheinlich mit einem ultraschnellen kleinen LLM wie
mistralai/mixtral-8x7b-instruct:nitro  implementieren. Es
verfugt iiber Fahigkeiten, die bei vielen Aufgaben nahe an das GPT-4-
Niveau heranreichen, und zum Zeitpunkt, als ich dies schreibe, kann Groq
es mit einem beeindruckenden Durchsatz von 444 Token pro Sekunde

bereitstellen.

Kombination von traditionellem NLP mit LLMs

Wiahrend Large Language Models (LLMs) das Gebiet der Verarbeitung natiirlicher
Sprache (NLP) revolutioniert haben und eine unvergleichliche Vielseitigkeit
und Leistung bei einer Vielzahl von Aufgaben bieten, sind sie nicht immer die
effizienteste oder kostengiinstigste Losung fiir jedes Problem. In vielen Féllen kann die
Kombination traditioneller NLP-Techniken mit LLMs zu optimierteren, gezielteren und

wirtschaftlicheren Ansitzen zur Losung spezifischer NLP-Herausforderungen fiithren.

Stellen Sie sich LLMs als Schweizer Taschenmesser des NLP vor - unglaublich
vielseitig und leistungsstark, aber nicht unbedingt das beste Werkzeug fiir jede
Aufgabe. Manchmal kann ein spezielles Werkzeug wie ein Korkenzieher oder ein
Dosenéffner fiir eine bestimmte Aufgabe effektiver und effizienter sein. Ahnlich konnen
traditionelle NLP-Techniken wie Dokumenten-Clustering, Themenidentifizierung und
Klassifizierung oft gezieltere und kostengiinstigere Losungen fir bestimmte Aspekte

Threr NLP-Pipeline bieten.

Einer der wichtigsten Vorteile traditioneller NLP-Techniken ist ihre rechnerische
Effizienz. Diese Methoden, die oft auf einfacheren statistischen Modellen oder
regelbasierten Ansitzen basieren, kénnen grofle Mengen an Textdaten viel schneller

und mit geringerem Rechenaufwand verarbeiten als LLMs. Dies macht sie besonders gut


https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro
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geeignet fur Aufgaben, die die Analyse und Organisation grofler Dokumentenkorpora
umfassen, wie zum Beispiel das Clustering dhnlicher Artikel oder die Identifizierung

wichtiger Themen innerhalb einer Textsammlung.

Dariiber hinaus koénnen traditionelle NLP-Techniken oft eine hohe Genauigkeit
und Prazision fiir spezifische Aufgaben erreichen, besonders wenn sie mit
domainenspezifischen Datensatzen trainiert wurden. Zum Beispiel kann ein gut
abgestimmter Dokumentenklassifikator, der traditionelle maschinelle Lernalgorithmen
wie Support-Vector-Maschinen (SVM) oder Naive-Bayes verwendet, Dokumente mit

minimalem Rechenaufwand préazise in vordefinierte Kategorien einordnen.

LLMs glanzen jedoch besonders bei Aufgaben, die ein tieferes Verstindnis von
Sprache, Kontext und Argumentation erfordern. Thre Fahigkeit, kohérenten und
kontextuell relevanten Text zu generieren, Fragen zu beantworten und lange Passagen
zusammenzufassen, ist mit traditionellen NLP-Methoden unerreicht. LLMs konnen
komplexe sprachliche Phanomene wie Mehrdeutigkeit, Koreferenz und idiomatische
Ausdriicke effektiv handhaben, was sie fiir Aufgaben, die natiirliche Sprachgenerierung

oder -verstandnis erfordern, unschiatzbar macht.

Die wahre Starke liegt in der Kombination traditioneller NLP-Techniken mit LLMs, um
hybride Ansétze zu schaffen, die die Starken beider nutzen. Durch die Verwendung
traditioneller NLP-Methoden fir Aufgaben wie Dokumentenvorverarbeitung,
Clustering und Themenextraktion kénnen Sie Ihre Textdaten effizient organisieren
und strukturieren. Diese strukturierten Informationen kénnen dann in LLMs
fur fortgeschrittenere Aufgaben eingespeist werden, wie das Generieren von
Zusammenfassungen, das Beantworten von Fragen oder das Erstellen umfassender

Berichte.

Betrachten wir zum Beispiel einen Anwendungsfall, bei dem Sie einen Trendbericht
fir einen bestimmten Bereich basierend auf einem groflen Korpus einzelner
Trenddokumente erstellen mochten. Anstatt sich ausschlie8lich auf LLMs zu verlassen,

was fir die Verarbeitung grofler Textmengen rechenintensiv und zeitaufwindig sein
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kann, kénnen Sie einen hybriden Ansatz verwenden:

1. Verwenden Sie traditionelle NLP-Techniken wie Topic Modeling (z.B. Latente
Dirichlet-Allokation) oder Clustering-Algorithmen (z.B. K-Means), um dhnliche
Trenddokumente zu gruppieren und Schliisselthemen innerhalb des Korpus zu
identifizieren.

2. Speisen Sie die geclusterten Dokumente und identifizierten Themen in
ein LLM ein und nutzen Sie dessen tiiberlegene Sprachverstdndnis- und
Generierungsfihigkeiten, um kohirente und informative Zusammenfassungen
fir jeden Cluster oder jedes Thema zu erstellen.

3. Verwenden Sie schlieBSlich das LLM, um einen umfassenden Trendbericht zu
generieren, indem Sie die einzelnen Zusammenfassungen kombinieren, die
wichtigsten Trends hervorheben und Einblicke sowie Empfehlungen basierend

auf den aggregierten Informationen bereitstellen.

Durch die Kombination traditioneller NLP-Techniken mit LLMs auf diese Weise kénnen
Sie groflie Mengen an Textdaten effizient verarbeiten, aussagekriftige Erkenntnisse
gewinnen und qualitativ hochwertige Berichte generieren, wahrend Sie gleichzeitig

Rechenressourcen und Kosten optimieren.

Wenn Sie sich auf Ihre NLP-Projekte einlassen, ist es wichtig, die spezifischen
Anforderungen und Einschrankungen jeder Aufgabe sorgfiltig zu evaluieren und zu
uberlegen, wie traditionelle NLP-Methoden und LLMs gemeinsam genutzt werden
konnen, um die besten Ergebnisse zu erzielen. Durch die Kombination der Effizienz
und Prézision traditioneller Techniken mit der Vielseitigkeit und Leistungsfahigkeit
von LLMs kénnen Sie hocheffektive und wirtschaftliche NLP-Losungen entwickeln, die

Thren Nutzern und Stakeholdern einen echten Mehrwert bieten.



Werkzeugnutzung

Im Bereich der KI-gesteuerten Anwendungsentwicklung hat sich das Konzept der

“Werkzeugnutzung” oder des “Funktionsaufrufs” als leistungsstarke Technik etabliert,
die es Threm LLM ermoglicht, sich mit externen Werkzeugen, APIs, Funktionen,
Datenbanken und anderen Ressourcen zu verbinden. Dieser Ansatz ermoglicht
ein reichhaltigeres Spektrum an Verhaltensweisen als die blofle Textausgabe und
dynamischere Interaktionen zwischen Ihren KI-Komponenten und dem restlichen
Okosystem Threr Anwendung. Wie wir in diesem Kapitel untersuchen werden, bietet
die Werkzeugnutzung auch die Moglichkeit, Ihr KI-Modell Daten auf strukturierte

Weise generieren zu lassen.
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Was ist Werkzeugnutzung?

Werkzeugnutzung, auch bekannt als Funktionsaufruf, ist eine Technik, die es
Entwicklern ermoglicht, eine Liste von Funktionen zu definieren, mit denen ein LLM
wihrend des Generierungsprozesses interagieren kann. Diese Werkzeuge konnen von
einfachen Hilfsfunktionen bis hin zu komplexen APIs oder Datenbankabfragen reichen.
Indem sie dem LLM Zugriff auf diese Werkzeuge gewéhren, konnen Entwickler die
Fahigkeiten des Modells erweitern und es in die Lage versetzen, Aufgaben auszufiihren,

die externes Wissen oder Aktionen erfordern.

Abbildung 8. Beispiel einer Funktionsdefinition fiir einen KI-Arbeiter, der Dokumente analysiert

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
},
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"

}
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document™
}
}

}I

"required": %w[title summary tags]
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}. freeze

Der Kerngedanke hinter dem Werkzeugeinsatz besteht darin, dem LLM die Fahigkeit zu
geben, basierend auf der Benutzereingabe oder der jeweiligen Aufgabe dynamisch die
geeigneten Werkzeuge auszuwéhlen und auszufithren. Anstatt sich ausschlieilich auf
das vortrainierte Wissen des Modells zu verlassen, ermoglicht der Werkzeugeinsatz dem
LLM, externe Ressourcen zu nutzen, um genauere, relevantere und handlungsorientierte
Antworten zu generieren. Der Werkzeugeinsatz macht Techniken wie RAG (Retrieval

Augmented Generation) deutlich einfacher zu implementieren, als sie es sonst wiren.

Beachten Sie, dass dieses Buch, sofern nicht anders angegeben, davon ausgeht,
dass Thr KI-Modell keinen Zugriff auf integrierte serverseitige Werkzeuge hat. Alle
Werkzeuge, die Sie Threr KI zur Verfiigung stellen mochten, miissen von Ihnen
explizit in jeder API-Anfrage deklariert werden, einschlieflich Vorkehrungen fiir
deren Ausfithrung, falls und wenn Thre KI Ihnen mitteilt, dass sie dieses Werkzeug in

ihrer Antwort verwenden mochte.

Das Potenzial des Werkzeugeinsatzes

Der Werkzeugeinsatz er6ffnet ein breites Spektrum an Moglichkeiten fir KI-gesteuerte
Anwendungen. Hier sind einige Beispiele fiir das, was mit Werkzeugeinsatz erreicht

werden kann:

1. Chatbots und Virtuelle Assistenten: Durch die Verbindung eines LLM mit
externen Werkzeugen koénnen Chatbots und virtuelle Assistenten komplexere
Aufgaben ausfithren, wie zum Beispiel Informationen aus Datenbanken abrufen,

API-Aufrufe ausfithren oder mit anderen Systemen interagieren. Ein Chatbot
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konnte beispielsweise ein CRM-Werkzeug verwenden, um den Status eines
Geschifts basierend auf der Benutzeranfrage zu édndern.

2. Datenanalyse und Erkenntnisse: LLMs konnen mit Datenanalyse-
Werkzeugen oder -Bibliotheken verbunden werden, um fortgeschrittene
Datenverarbeitungsaufgaben durchzufiihren. Dies erméglicht Anwendungen,
Erkenntnisse zu generieren, vergleichende Analysen durchzufithren oder
datengesteuerte Empfehlungen basierend auf Benutzeranfragen bereitzustellen.

3. Suche und Informationsabruf: Der Werkzeugeinsatz ermoglicht LLMs
die Interaktion mit Suchmaschinen, Vektordatenbanken oder anderen
Informationsabrufsystemen. Durch die Umwandlung von Benutzeranfragen
in Suchanfragen kann das LLM relevante Informationen aus mehreren Quellen
abrufen und umfassende Antworten auf Benutzerfragen liefern.

4. Integration mit externen Diensten: Der Werkzeugeinsatz ermoglicht eine
nahtlose Integration zwischen KI-gesteuerten Anwendungen und externen
Diensten oder APIs. Ein LLM konnte beispielsweise mit einer Wetter-
API interagieren, um Echtzeit-Wetterupdates bereitzustellen, oder mit einer

Ubersetzungs-API, um mehrsprachige Antworten zu generieren.

Der Werkzeugeinsatz-Workflow

Der Werkzeugeinsatz-Workflow umfasst typischerweise vier Hauptschritte:

1. Einbindung von Funktionsdefinitionen in Ihren Anfrage-Kontext
2. Dynamische (oder explizite) Werkzeugauswahl
3. Ausfihrung der Funktion(en)

4. Optionale Fortsetzung des urspriinglichen Prompts

Lassen Sie uns jeden dieser Schritte im Detail betrachten.



O© 0 N O O b W N =

O O = T T O T Y
© 00 N O O b W N =~ o

Werkzeugnutzung 132

Einbindung von Funktionsdefinitionen in lhren
Anfrage-Kontext

Die KI weif3, welche Werkzeuge ihr zur Verfiigung stehen, weil Sie ihr eine Liste als
Teil Threr Completion-Anfrage iibergeben (typischerweise definiert als Funktionen unter

Verwendung einer Variante des JSON-Schemas).
Die genaue Syntax der Werkzeugdefinition ist modellspezifisch.

So definieren Sie eine get_weather-Funktion in Claude 3:

{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature”
}
3,
"required": ["location"]
}
}

Und so wurdest du dieselbe Funktion fur GPT-4 definieren, indem du sie als Wert des

tools-Parameters ibergibst:
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"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",

}
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"

}7
}7

"required": ["location"],

} ’

Fast gleich, aber ohne ersichtlichen Grund trotzdem anders! Wie érgerlich.

Funktionsdefinitionen legen Name, Beschreibung und Eingabeparameter fest.
Eingabeparameter konnen durch Attribute weiter definiert werden, zum Beispiel durch
Enums zur Einschriankung der zuldssigen Werte, sowie durch die Angabe, ob ein

Parameter erforderlich ist oder nicht.

Zusétzlich zu den eigentlichen Funktionsdefinitionen kénnen Sie auch Anweisungen
oder Kontext dafiir einbinden, warum und wie die Funktion in der Systemdirektive

verwendet werden soll.

Zum Beispiel enthélt mein Web-Suchwerkzeug in Olympia diese Systemdirektive, die

die KI daran erinnert, dass sie iiber die erwdhnten Werkzeuge verfiigt:
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The “google_search™ and “realtime_search™ functions let you do research

on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

Die Bereitstellung detaillierter Beschreibungen gilt als wichtigster Faktor fir die

Leistung eines Tools. Ihre Beschreibungen sollten jedes Detail tiber das Tool erlautern,

einschlief3lich:

+ Was das Tool leistet
« Wann es eingesetzt werden sollte (und wann nicht)
+ Was jeder Parameter bedeutet und wie er das Verhalten des Tools beeinflusst

« Alle wichtigen Vorbehalte oder Einschrankungen, die fiir die Implementierung

des Tools gelten

Je mehr Kontext Sie der KI iiber Thre Tools geben koénnen, desto besser wird sie bei
der Entscheidung sein, wann und wie sie diese einsetzen soll. Beispielsweise empfiehlt
Anthropic fir seine Claude 3-Serie mindestens 3-4 Sitze pro Tool-Beschreibung, bei

komplexeren Tools auch mehr.

Es mag nicht unbedingt intuitiv sein, aber Beschreibungen werden auch als wichtiger
erachtet als Beispiele. Wahrend Sie in der Beschreibung eines Tools oder im begleitenden
Prompt Beispiele fiir dessen Verwendung aufnehmen kénnen, ist dies weniger wichtig
als eine klare und umfassende Erklarung des Zwecks und der Parameter des Tools. Figen

Sie Beispiele erst hinzu, nachdem Sie die Beschreibung vollstindig ausgearbeitet haben.

Hier ist ein Beispiel fiir eine Stripe-dhnliche API-Funktionsspezifikation:
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"name": "createPayment",
"description": "Create a new payment request",
"parameters": {

"type": "object",

"properties": {
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"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
1,
"description": {
"type": "string",
"description": "A brief description of the payment"
b
"payment_method_id": {
"type": "string",
"description”: "The payment method to be used"
1
"payer": {
"type": "object",
"description": "Information about the payer, including their
email, and identification number",
"properties": {
"name": {
"type": "string",

"description": "The payer's name"
3,
"email": {
"type": "string",
"description": "The payer's email address"”
}

"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",

name,

"description": "Identification document (e.g. CPF, CNPJ)"

} ’

"number": {
"type": "string",
"description": "The identification number"
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}
3
"required": [ "type", "number" ]
}
1,
"required": [ "name", "email", "identification" ]

’ In der Praxis haben einige Modelle Schwierigkeiten im Umgang

mit  verschachtelten  Funktionsspezifikationen = und  komplexen
Ausgabedatentypen wie Arrays, Dictionaries usw. Theoretisch sollten
Sie jedoch JSON-Schema-Spezifikationen beliebiger Tiefe bereitstellen

konnen!

Dynamische Werkzeugauswahl

Wenn Sie eine Chat-Completion mit Werkzeugdefinitionen ausfithren, wahlt das LLM
dynamisch die am besten geeigneten Werkzeuge aus und generiert die erforderlichen

Eingangsparameter fiir jedes Werkzeug.

In der Praxis ist die Fahigkeit der KI, genau die richtige Funktion aufzurufen und
genau Threr Spezifikation fiir die Eingaben zu folgen, nicht immer zuverlissig.
Das Heruntersetzen des Temperatur-Hyperparameters auf 0,0 hilft erheblich, aber
nach meiner Erfahrung werden Sie trotzdem gelegentlich Fehler sehen. Zu diesen
Fehlern gehoren halluzinierte Funktionsnamen, falsch benannte oder schlicht fehlende
Eingangsparameter. Parameter werden als JSON tbergeben, was bedeutet, dass Sie
manchmal Fehler sehen werden, die durch abgeschnittenes, falsch zitiertes oder

anderweitig fehlerhaftes JSON verursacht werden.

Selbstheilende Daten-Muster konnen helfen, fehlerhafte JSON automatisch
zu korrigieren bei Funktionsaufrufen, die aufgrund von Syntaxfehlern

fehlschlagen.
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Erzwungene (bzw. Explizite) Werkzeugauswahl

Einige Modelle bieten die Moglichkeit, den Aufruf einer bestimmten Funktion als
Parameter in der Anfrage zu erzwingen. Andernfalls liegt es vollstindig im Ermessen

der KI, ob die Funktion aufgerufen wird oder nicht.

Die Fahigkeit, einen Funktionsaufruf zu erzwingen, ist in bestimmten Szenarien
entscheidend, in denen Sie sicherstellen mochten, dass ein spezifisches Werkzeug
oder eine spezifische Funktion ausgefilhrt wird, unabhingig vom dynamischen

Auswahlprozess der KI. Dafiir gibt es mehrere wichtige Griinde:

1. Explizite Kontrolle: Moglicherweise verwenden Sie die KI als Diskrete
Komponente oder in einem vordefinierten Workflow, der die Ausfithrung einer
bestimmten Funktion zu einem bestimmten Zeitpunkt erfordert. Durch das
Erzwingen des Aufrufs kénnen Sie garantieren, dass die gewiinschte Funktion
aufgerufen wird, anstatt die KI hoflich darum bitten zu miissen.

2. Debugging und Testen: Bei der Entwicklung und dem Testen von
KI-gesteuerten Anwendungen ist die Moglichkeit, Funktionsaufrufe zu
erzwingen, fur Debugging-Zwecke unschitzbar wertvoll. Durch das explizite
Auslosen bestimmter Funktionen konnen Sie einzelne Komponenten Ihrer
Anwendung isolieren und testen. Dies ermdglicht es Ihnen, die Korrektheit
der Funktionsimplementierungen zu uberpriifen, die Eingangsparameter zu
validieren und sicherzustellen, dass die erwarteten Ergebnisse zuriickgegeben
werden.

3. Umgang mit Grenzfillen: Es kann Grenzfille oder Ausnahmesituationen geben,
in denen der dynamische Auswahlprozess der KI eine Funktion moglicherweise
nicht auswahlt, obwohl Sie aufgrund externer Prozesse wissen, dass sie ausgefiihrt
werden sollte. In solchen Fallen erméglicht die Fahigkeit, einen Funktionsaufruf
zu erzwingen, diese Situationen explizit zu behandeln. Definieren Sie Regeln oder
Bedingungen in Threr Anwendungslogik, um zu bestimmen, wann das Ermessen

der KI iiberschrieben werden soll.
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4. Konsistenz und Reproduzierbarkeit: Wenn Sie eine bestimmte Abfolge von
Funktionen haben, die in einer bestimmten Reihenfolge ausgefiihrt werden
miissen, garantiert das Erzwingen der Aufrufe, dass dieselbe Sequenz jedes
Mal eingehalten wird. Dies ist besonders wichtig in Anwendungen, bei denen
Konsistenz und vorhersehbares Verhalten kritisch sind, wie beispielsweise in
Finanzsystemen oder wissenschaftlichen Simulationen.

5. Leistungsoptimierung: In manchen Fillen kann das Erzwingen eines
Funktionsaufrufs zu Leistungsoptimierungen fithren. Wenn Sie wissen, dass
eine bestimmte Funktion fiir eine bestimmte Aufgabe erforderlich ist und
der dynamische Auswahlprozess der KI moglicherweise unnétigen Overhead
verursacht, konnen Sie den Auswahlprozess umgehen und die erforderliche
Funktion direkt aufrufen. Dies kann dazu beitragen, die Latenzzeit zu reduzieren

und die Gesamteffizienz Threr Anwendung zu verbessern.

Zusammenfassend lasst sich sagen, dass die Moglichkeit, Funktionsaufrufe in KI-
gesteuerten Anwendungen zu erzwingen, explizite Kontrolle bietet, beim Debugging
und Testen hilft, Grenzfille handhabt und Konsistenz und Reproduzierbarkeit
gewihrleistet. Es ist ein leistungsstarkes Werkzeug in Threm Arsenal, aber wir miissen

noch einen weiteren Aspekt dieser wichtigen Funktion besprechen.

In vielen Entscheidungsfindungsfillen mochten wir, dass das Modell immer
’ einen Funktionsaufruf durchfithrt und moéglicherweise nie nur mit seinem
internen Wissen antwortet. Wenn Sie zum Beispiel zwischen mehreren
Modellen routing betreiben, die auf verschiedene Aufgaben spezialisiert sind
(mehrsprachige Eingabe, Mathematik usw.), verwenden Sie moglicherweise
das funktionsaufrufende Modell, um Anfragen an eines der Hilfsmodelle zu

delegieren und nie unabhéngig zu antworten.
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Werkzeugauswahlparameter

GPT-4 und andere Sprachmodelle, die Funktionsaufrufe unterstiitzen, bieten einen
tool_choice-Parameter zur Steuerung, ob die Werkzeugverwendung als Teil einer

Completion erforderlich ist. Dieser Parameter hat drei mogliche Werte:

« auto gibt der KI volle Entscheidungsfreiheit iiber die Verwendung eines
Werkzeugs oder eine einfache Antwort

« required teilt der KI mit, dass sie zwingend ein Werkzeug aufrufen muss anstatt
zu antworten, iiberldsst aber die Auswahl des Werkzeugs der KI

o Die dritte Option besteht darin, den Parameter des name_of_function

festzulegen, den Sie erzwingen méchten. Mehr dazu im néchsten Abschnitt.

Beachten Sie, dass wenn Sie tool choice auf required setzen, das
P Modell gezwungen wird, die relevanteste Funktion aus den bereitgestellten
auszuwéhlen, auch wenn keine wirklich zum Prompt passt. Zum Zeitpunkt
der Veroffentlichung ist mir kein Modell bekannt, das eine leere tool_-
calls-Antwort zuriickgibt oder auf andere Weise mitteilt, dass es keine

geeignete Funktion zum Aufrufen gefunden hat.

Erzwingen einer Funktion fiur strukturierte Ausgabe

Die Moglichkeit, einen Funktionsaufruf zu erzwingen, bietet Thnen einen Weg,
strukturierte Daten aus einer Chat-Completion zu erhalten, anstatt diese selbst aus der

Klartext-Antwort extrahieren zu miissen.
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Warum ist das Erzwingen von Funktionen fiir strukturierte Ausgabe so wichtig? Ganz
einfach, weil die Extraktion strukturierter Daten aus LLM-Ausgaben eine mithsame
Angelegenheit ist. Sie konnen sich das Leben etwas erleichtern, indem Sie nach Daten
in XML fragen, aber dann miissen Sie XML parsen. Und was machen Sie, wenn dieses
XML fehlt, weil Thre KI antwortet: “Es tut mir leid, aber ich kann die angeforderten

Daten nicht generieren, weil bla, bla, bla..”

Bei der Verwendung von Werkzeugen auf diese Weise:

« Sollten Sie wahrscheinlich nur ein einzelnes Werkzeug in Threr Anfrage definieren

« Denken Sie daran, die Verwendung seiner Funktion iiber den tool_choice-
Parameter zu erzwingen

« Bedenken Sie, dass das Modell die Eingabe an das Werkzeug weiterleitet, daher
sollten der Name des Werkzeugs und die Beschreibung aus der Perspektive des

Modells erfolgen, nicht aus Ihrer

Dieser letzte Punkt verdient ein Beispiel zur Verdeutlichung. Angenommen, Sie bitten
die KI um eine Stimmungsanalyse eines Benutzertextes. Der Name der Funktion wére
nicht analyze_sentiment, sondern eher etwas wie save_sentiment_analysis.
Die KI ist diejenige, die die Stimmungsanalyse durchfithrt, nicht das Werkzeug.
Alles, was das Werkzeug tut (aus der Perspektive der KI), ist das Speichern der

Analyseergebnisse.

Hier ist ein Beispiel fiir die Verwendung von Claude 3, um eine Zusammenfassung eines
Bildes in gut strukturiertem JSON zu erfassen, diesmal von der Kommandozeile aus mit

curl:
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curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \
{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

" {
"type": "number",
"description": "red value [0.0, 1.0]"
1,
"g": {
"type": "number",
"description": "green value [0.0, 1.0]"
3,
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
},
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
3,
"required": [ "r", "g", "b", "name" ]

} ’
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"description": "Key colors in the image. Four or less."
},
"description": {

"type": "string",

"description": "Image description. 1-2 sentences max."
3,
"estimated_year": {

"type": "integer",

"description": "Estimated year that the image was taken,
if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

}
3
"required": [ "key_colors", "description" ]
}
3,
"messages": |
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "baseb64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

} '

In dem bereitgestellten Beispiel verwenden wir das Claude 3-Modell von Anthropic,
um eine strukturierte JSON-Zusammenfassung eines Bildes zu generieren. Hier ist die

Funktionsweise:
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1. Wir definieren ein einzelnes Tool namens record_summary im tools-Array der
Anfrage-Payload. Dieses Tool ist dafiir verantwortlich, eine Zusammenfassung
des Bildes in wohlstrukturiertem JSON zu erfassen.

2. Das record_summary-Tool verfiigt iiber ein input_schema, das die erwartete

Struktur der JSON-Ausgabe festlegt. Es definiert drei Eigenschaften:

+ key_colors: Ein Array von Objekten, die die wichtigsten Farben im Bild
darstellen. Jedes Farbobjekt hat Eigenschaften fiir die Rot-, Griin- und Blau-
Werte (von 0,0 bis 1,0) und einen menschenlesbaren Farbnamen im snake_-
case-Format.

+ description: Eine String-Eigenschaft fiir eine kurze Beschreibung des
Bildes, begrenzt auf 1-2 Satze.

+ estimated_year: Eine optionale Integer-Eigenschaft fiir das geschatzte
Jahr, in dem das Bild aufgenommen wurde, falls es sich um ein nicht-

fiktionales Foto zu handeln scheint.

3. Im messages-Array stellen wir die Bilddaten als base64-codierten String
zusammen mit dem Medientyp bereit. Dies erméglicht es dem Modell, das Bild
als Teil der Eingabe zu verarbeiten.

4. Wir weisen Claude aulerdem an, das record_summary-Tool zu verwenden, um
das Bild zu beschreiben.

5. Wenn die Anfrage an das Claude 3-Modell gesendet wird, analysiert es das
Bild und generiert eine JSON-Zusammenfassung basierend auf dem spezifizierten
input_schema. Das Modell extrahiert die wichtigsten Farben, liefert eine kurze
Beschreibung und schitzt das Jahr der Aufnahme (falls zutreffend).

6. Die generierte JSON-Zusammenfassung wird als Parameter an das
record_summary-Tool tbergeben und bietet eine strukturierte Darstellung

der wichtigsten Eigenschaften des Bildes.

Durch die Verwendung des record_summary-Tools mit einem klar definierten

input_schema konnen wir eine strukturierte JSON-Zusammenfassung eines Bildes
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erhalten, ohne auf reine Textextraktion angewiesen zu sein. Dieser Ansatz stellt
sicher, dass die Ausgabe einem einheitlichen Format folgt und von nachgelagerten

Komponenten der Anwendung einfach geparst und verarbeitet werden kann.

Die Fahigkeit, einen Funktionsaufruf zu erzwingen und die erwartete Ausgabestruktur
zu spezifizieren, ist eine leistungsstarke Funktion der Tool-Nutzung in KI-gesteuerten
Anwendungen. Sie ermdglicht es Entwicklern, mehr Kontrolle iiber die generierte
Ausgabe zu haben und vereinfacht die Integration von KI-generierten Daten in den

Arbeitsablauf ihrer Anwendung.

Ausfuhrung von Funktion(en)

Sie haben Funktionen definiert und Ihre KI aufgefordert, die daraufthin beschlossen hat,
eine Threr Funktionen aufzurufen. Jetzt ist es Zeit fiir Thren Anwendungscode oder Thre
Bibliothek, wenn Sie ein Ruby-Gem wie raix-rails verwenden, den Funktionsaufruf
und seine Parameter an die entsprechende Implementierung in Ihrem Anwendungscode

weiterzuleiten.

Thr Anwendungscode entscheidet, was mit den Ergebnissen der Funktionsausfithrung
geschehen soll. Vielleicht besteht die Aktion aus einer einzigen Codezeile in einem
Lambda, oder vielleicht beinhaltet sie den Aufruf einer externen API. Méglicherweise
umfasst sie den Aufruf einer anderen KI-Komponente oder sogar Hunderte oder

Tausende von Codezeilen im Rest Thres Systems. Das liegt ganz bei Thnen.

Manchmal ist der Funktionsaufruf das Ende der Operation, aber wenn die Ergebnisse
Informationen in einer Chain of Thought darstellen, die von der KI fortgesetzt werden
soll, muss Thr Anwendungscode die Ausfithrungsergebnisse in das Chat-Transkript

einfiigen und die KI mit der Verarbeitung fortfahren lassen.

Hier ist zum Beispiel eine Raix-Funktionsdeklaration, die von Olympias
AccountManager zur Kommunikation mit unseren Kunden als Teil einer Intelligenten

Workflow-Orchestrierung fiir den Kundenservice verwendet wird.


https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails
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class AccountManager

include Raix::ChatCompletion

include Raix::FunctionDispatch

# Jots of other functions...

function :notify_account_owner,

"Don't share UUID. Mention dollars if subscription changed",

message: { type: "string" } do |arguments]|

account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]

)

"Notified account owner"

end

Moglicherweise ist nicht sofort klar, was hier passiert, daher werde ich es aufschliisseln.

Nach
wird

dafur

. Die AccountManager-Klasse definiert viele Funktionen im Zusammenhang mit

der Kontoverwaltung. Sie kann Thren Plan dndern, Teammitglieder hinzufiigen

und entfernen, und vieles mehr.

. Die iibergeordneten Anweisungen teilen AccountManager mit, dass er den

Kontoinhaber iiber die Ergebnisse der Kontodnderungsanfrage mittels der

Funktion notify_account_owner benachrichtigen soll.

. Die prazise Definition der Funktion enthalt:

Name
Beschreibung
Parameter message: { type: "string" }

einen Block, der bei Funktionsaufruf ausgefithrt wird

der Aktualisierung des Transkripts mit den Ergebnissen des Funktionsblocks
die chat_completion-Methode erneut aufgerufen. Diese Methode ist

verantwortlich, das aktualisierte Konversationstranskript zur weiteren
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Verarbeitung an das KI-Modell zuriickzusenden. Wir bezeichnen diesen Prozess

als Konversationsschleife.

Wenn das KI-Modell eine neue Chat-Vervollstindigungsanfrage mit einem
aktualisierten Transkript erhélt, hat es Zugriff auf die Ergebnisse der zuvor ausgefithrten
Funktion. Es kann diese Ergebnisse analysieren, sie in seinen Entscheidungsprozess
einbeziehen und die nichste Antwort oder Aktion basierend auf dem kumulativen
Kontext der Konversation generieren. Es kann basierend auf dem aktualisierten Kontext
weitere Funktionen ausfiithren oder eine abschliefende Antwort auf die urspriingliche
Anfrage generieren, wenn es feststellt, dass keine weiteren Funktionsaufrufe erforderlich

sind.

Optionale Fortsetzung der urspriinglichen Anfrage

Wenn Sie die Werkzeugergebnisse zuriick an das LLM senden und die Verarbeitung der
urspriinglichen Anfrage fortsetzen, verwendet die KI diese Ergebnisse, um entweder

zusatzliche Funktionen aufzurufen oder eine endgiltige Textantwort zu generieren.

Einige Modelle wie Coheres Command-R kénnen in ihren Antworten die
spezifischen Werkzeuge zitieren, die sie verwendet haben, was zusatzliche

Transparenz und Nachverfolgbarkeit bietet.

Je nach verwendetem Modell befinden sich die Ergebnisse des Funktionsaufrufs in
Transkriptnachrichten mit einer eigenen speziellen Rolle oder werden in einer anderen
Syntax dargestellt. Der wichtige Teil ist jedoch, dass diese Daten im Transkript enthalten
sind, damit die KI sie bei der Entscheidung tiber das weitere Vorgehen beriicksichtigen

kann.


https://openrouter.ai/models/cohere/command-r
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Ein haufiger (und potenziell teurer) Fehler besteht darin, zu vergessen, die
’ Funktionsergebnisse dem Transkript hinzuzufiigen, bevor man fortfahrt.
Infolgedessen wird die KI im Wesentlichen auf die gleiche Weise
aufgefordert wie vor dem ersten Funktionsaufruf. Mit anderen Worten: Aus
Sicht der KI hat sie die Funktion noch nicht aufgerufen. Also ruft sie sie
wieder auf. Und wieder. Und wieder, bis Sie sie unterbrechen. Hoffentlich

war Thr Kontext nicht zu grofl und Ihr Modell nicht zu teuer!

Best Practices fur die Werkzeugnutzung

Um das Beste aus der Werkzeugnutzung herauszuholen, beachten Sie die folgenden Best

Practices.

Beschreibende Definitionen

Stellen Sie klare und beschreibende Namen und Beschreibungen fiir jedes Werkzeug
und seine Eingangsparameter bereit. Dies hilft dem LLM besser zu verstehen, welchen

Zweck und welche Fihigkeiten jedes Werkzeug hat.

Aus Erfahrung kann ich Thnen sagen, dass die allgemeine Weisheit, die besagt, dass
“Benennung schwierig ist”, auch hier zutrifft; ich habe dramatisch unterschiedliche
Ergebnisse von LLMs gesehen, nur durch die Anderung von Funktionsnamen oder
der Formulierung von Beschreibungen. Manchmal verbessert das Entfernen von

Beschreibungen sogar die Leistung.
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Verarbeitung von Werkzeugergebnissen

Achten Sie beim Zuriicksenden von Werkzeugergebnissen an das LLM darauf, dass
diese gut strukturiert und umfassend sind. Verwenden Sie aussagekraftige Schliissel
und Werte, um die Ausgabe jedes Werkzeugs darzustellen. Experimentieren Sie mit
verschiedenen Formaten und finden Sie heraus, welches am besten funktioniert, von

JSON bis hin zu Klartext.

Der Ergebnisinterpreter geht diese Herausforderung an, indem er KI einsetzt, um die
Ergebnisse zu analysieren und benutzerfreundliche Erklarungen, Zusammenfassungen

oder wichtige Erkenntnisse bereitzustellen.

Fehlerbehandlung

Implementieren Sie robuste Fehlerbehandlungsmechanismen, um Félle zu behandeln, in
denen das LLM moglicherweise ungiiltige oder nicht unterstiitzte Eingangsparameter
fiir Werkzeugaufrufe generiert. Behandeln und beheben Sie alle Fehler, die wéhrend der

Werkzeugausfithrung auftreten kénnen, auf elegante Weise.

Eine dufierst angenehme Eigenschaft der KI ist, dass sie Fehlermeldungen versteht!
Das bedeutet, wenn Sie in einer schnellen und einfachen Denkweise arbeiten, konnen
Sie einfach alle Ausnahmen abfangen, die bei der Implementierung eines Werkzeugs

generiert werden, und sie an die KI zuriickgeben, damit sie weif, was passiert ist!

Hier ist zum Beispiel eine verschlankte Version der Implementierung der Google-Suche

in Olympia:
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def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Google-Suchen in Olympia sind ein zweistufiger Prozess. Zuerst fithren Sie die Suche
durch, dann fassen Sie die Ergebnisse zusammen. Bei einem Fehler, egal welcher Art,
wird die Fehlermeldung verpackt und an die KI zuriickgesendet. Diese Technik ist die

Grundlage fur praktisch alle Intelligente Fehlerbehandlung-Muster.

Nehmen wir zum Beispiel an, dass der GoogleSearch-API-Aufruf aufgrund
einer 503 Service-Unavailable-Ausnahme fehlschldgt. Diese wird bis zur obersten
Fehlerbehandlung weitergereicht, und die Beschreibung des Fehlers wird als
Funktionsergebnis an die KI zuriickgesendet. Anstatt dem Benutzer einfach einen
leeren Bildschirm oder einen technischen Fehler anzuzeigen, sagt die KI etwa: “Es tut
mir leid, aber ich kann derzeit nicht auf meine Google-Such-Funktionen zugreifen. Ich

kann es spater noch einmal versuchen, wenn Sie méchten”

Dies mag wie ein cleverer Trick erscheinen, aber betrachten Sie eine andere Art von
Fehler, bei dem die KI eine externe API aufruft und direkte Kontrolle iber die zu
uibergebenden Parameter hat. Vielleicht hat sie einen Fehler bei der Generierung dieser
Parameter gemacht? Vorausgesetzt, die Fehlermeldung der externen API ist detailliert
genug, bedeutet die Riickgabe der Fehlermeldung an die aufrufende KI, dass sie diese
Parameter tiberdenken und es erneut versuchen kann. Automatisch. Egal, was der Fehler

war.

Denken Sie nun dariiber nach, was es bedeuten wiirde, diese Art von robuster

Fehlerbehandlung in normalem Code zu replizieren. Es ist praktisch unméglich.
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Iterative Verfeinerung

Wenn das LLM nicht die geeigneten Werkzeuge empfiehlt oder suboptimale
Antworten generiert, iterieren Sie die Werkzeugdefinitionen, Beschreibungen
und Eingabeparameter. Verfeinern und verbessern Sie die Werkzeugeinrichtung
kontinuierlich basierend auf dem beobachteten Verhalten und den gewiinschten

Ergebnissen.

1. Beginnen Sie mit einfachen Werkzeugdefinitionen: Fangen Sie an,
indem Sie Werkzeuge mit klaren und prézisen Namen, Beschreibungen
und Eingabeparametern definieren. Vermeiden Sie es zunichst, die
Werkzeugeinrichtung zu verkomplizieren, und konzentrieren Sie sich
auf die Kernfunktionalitit. Wenn Sie zum Beispiel die Ergebnisse einer
Stimmungsanalyse speichern moéchten, beginnen Sie mit einer grundlegenden

Definition wie:

{
"name": "save_sentiment_score”,
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {
"type": "object",
"properties": {
"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
},
"required": ["score"]
}
}

2. Testen und beobachten: Sobald Sie die ersten Werkzeugdefinitionen erstellt haben,
testen Sie diese mit verschiedenen Prompts und beobachten Sie, wie das LLM

mit dem Werkzeug interagiert. Achten Sie auf die Qualitat und Relevanz der
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generierten Antworten. Wenn das LLM suboptimale Antworten generiert, ist es
Zeit, die Werkzeugdefinitionen zu verfeinern.

3. Beschreibungen verfeinern: Wenn das LLM den Zweck eines Werkzeugs
missversteht, versuchen Sie, die Beschreibung des Werkzeugs zu verfeinern.
Stellen Sie mehr Kontext, Beispiele oder Erlauterungen bereit, um das LLM
bei der effektiven Nutzung des Werkzeugs zu unterstiitzen. Sie kénnen zum
Beispiel die Beschreibung des Stimmungsanalyse-Werkzeugs aktualisieren, um

spezifischer auf den emotionalen Ton des zu analysierenden Textes einzugehen:

"name": "save_sentiment_score”,
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Eingabeparameter anpassen: Wenn das LLM ungiiltige oder irrelevante
Eingabeparameter fiir ein Werkzeug generiert, sollten Sie die
Parameterdefinitionen anpassen. Fiigen Sie spezifischere Einschriankungen,
Validierungsregeln oder Beispiele hinzu, um das erwartete Eingabeformat zu
verdeutlichen.

5. Auf Basis von Feedback iterieren: Uberwachen Sie kontinuierlich die Leistung
Threr Werkzeuge und sammeln Sie Feedback von Benutzern oder Stakeholdern.
Nutzen Sie dieses Feedback, um Verbesserungsbereiche zu identifizieren und
nehmen Sie iterative Verfeinerungen an den Werkzeugdefinitionen vor. Wenn
Benutzer zum Beispiel berichten, dass die Analyse Sarkasmus nicht gut erkennt,

kénnen Sie einen entsprechenden Hinweis in die Beschreibung aufnehmen:
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"name": "save_sentiment_score",

"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",

Durch die iterative Verfeinerung Threr Werkzeugdefinitionen basierend auf
beobachtetem Verhalten und Feedback koénnen Sie die Leistung und Effektivitat
Ihrer KI-gesteuerten Anwendung schrittweise verbessern. Denken Sie daran, die
Werkzeugdefinitionen klar, prazise und auf die spezifische Aufgabe fokussiert
zu halten. Testen und validieren Sie die Werkzeuginteraktionen regelmiflig, um

sicherzustellen, dass sie mit Ihren gewiinschten Ergebnissen tibereinstimmen.

Zusammenstellung und Verkettung von

Werkzeugen

Einer der leistungsfahigsten Aspekte der Werkzeugnutzung, der bisher nur angedeutet
wurde, ist die Moglichkeit, mehrere Werkzeuge zusammenzustellen und zu
verketten, um komplexe Aufgaben zu bewdltigen. Durch sorgfaltige Gestaltung Ihrer
Werkzeugdefinitionen und deren Ein-/Ausgabeformate kénnen Sie wiederverwendbare

Bausteine erstellen, die sich auf verschiedene Weise kombinieren lassen.

Betrachten wir ein Beispiel, bei dem Sie eine Datenanalysepipeline fiir Thre KI-gesteuerte

Anwendung erstellen. Sie konnten die folgenden Werkzeuge haben:

1. DataRetrieval: Ein Werkzeug, das Daten aus einer Datenbank oder API
basierend auf festgelegten Kriterien abruft.
2. DataProcessing: Ein Werkzeug, das Berechnungen, Transformationen oder

Aggregationen der abgerufenen Daten durchfiihrt.
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3. DataVisualization: Ein Werkzeug, das die verarbeiteten Daten in einem

benutzerfreundlichen Format wie Diagrammen oder Grafiken darstellt.

Durch die Verkettung dieser Werkzeuge kénnen Sie einen leistungsfahigen Workflow
erstellen, der relevante Daten abruft, verarbeitet und die Ergebnisse aussagekriftig

prasentiert. So konnte der Werkzeugnutzungs-Workflow aussehen:

1. Das LLM erhélt eine Benutzeranfrage nach Erkenntnissen iiber Verkaufsdaten fiir
eine bestimmte Produktkategorie.

2. Das LLM wahlt das DataRetrieval-Werkzeug aus und generiert die
entsprechenden Eingangsparameter, um die relevanten Verkaufsdaten aus
der Datenbank abzurufen.

3. Die abgerufenen Daten werden an das DataProcessing-Werkzeug
“weitergegeben”, das Metriken wie Gesamtumsatz, durchschnittlichen
Verkaufspreis und Wachstumsrate berechnet.

4. Die verarbeiteten Daten werden dann vom DataVisualization-Werkzeug
verarbeitet, das ein ansprechendes Diagramm oder eine Grafik erstellt, um
die Erkenntnisse darzustellen, wobei die URL des Diagramms an das LLM
zuriickgegeben wird.

5. Schlief3lich generiert das LLM eine formatierte Antwort auf die Benutzeranfrage
unter Verwendung von Markdown, die die visualisierten Daten einbindet und eine

Zusammenfassung der wichtigsten Erkenntnisse liefert.

Durch die Zusammenstellung dieser Werkzeuge konnen Sie einen nahtlosen
Datenanalyse-Workflow erstellen, der sich leicht in Ihre Anwendung integrieren
lasst. Die Schonheit dieses Ansatzes liegt darin, dass jedes Werkzeug unabhingig
entwickelt und getestet und dann auf verschiedene Weise kombiniert werden kann, um

verschiedene Probleme zu l6sen.

Um eine reibungslose Zusammenstellung und Verkettung von Werkzeugen zu
ermoglichen, ist es wichtig, klare Ein- und Ausgabeformate fiir jedes Werkzeug zu

definieren.
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Zum  Beispiel konnte das DataRetrieval-Werkzeug Parameter wie
Datenbankverbindungsdetails, Tabellenname und Abfragebedingungen akzeptieren
und das Ergebnis als strukturiertes JSON-Objekt zuriickgeben. Das DataProcessing-
Werkzeug kann dann dieses JSON-Objekt als Eingabe erwarten und ein transformiertes
JSON-Objekt als Ausgabe produzieren. Durch die Standardisierung des Datenflusses
zwischen Werkzeugen konnen Sie Kompatibilitit und Wiederverwendbarkeit

gewahrleisten.

Wenn Sie Thr Werkzeug-Okosystem entwerfen, denken Sie dariiber nach, wie
verschiedene Werkzeuge kombiniert werden konnen, um héufige Anwendungsfalle
in Threr Anwendung zu adressieren. Erwagen Sie die Erstellung von High-Level-
Werkzeugen, die hiufige Workflows oder Geschéftslogik kapseln und es dem LLM

erleichtern, diese effektiv auszuwahlen und zu nutzen.

Denken Sie daran, dass die Starke der Werkzeugnutzung in der Flexibilitdt
und Modularitat liegt, die sie bietet. Indem Sie komplexe Aufgaben in
kleinere, wiederverwendbare Werkzeuge aufteilen, konnen Sie eine robuste und
anpassungsfahige Kl-gesteuerte Anwendung erstellen, die eine breite Palette von

Herausforderungen bewdéltigen kann.

Zukunftige Entwicklungen

Mit der Weiterentwicklung des Bereichs der KI-gesteuerten Anwendungsentwicklung
konnen wir weitere Fortschritte bei den Werkzeugnutzungsfahigkeiten erwarten. Einige

mogliche zukiinftige Richtungen sind:

1. Mehrstufige Werkzeugnutzung: LLMs konnten in der Lage sein zu entscheiden,
wie oft sie Werkzeuge nutzen miissen, um eine zufriedenstellende Antwort zu
generieren. Dies konnte mehrere Runden der Werkzeugauswahl und -ausfithrung

basierend auf Zwischenergebnissen umfassen.
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2. Vordefinierte Werkzeuge: KI-Plattformen konnten einen Satz vordefinierter
Werkzeuge bereitstellen, die Entwickler sofort nutzen koénnen, wie Python-
Interpreter, Websuchtools oder gangige Hilfsfunktionen.

3. Nahtlose Integration: Mit zunehmender Verbreitung der Werkzeugnutzung
konnen wir eine bessere Integration zwischen KI-Plattformen und beliebten
Entwicklungsframeworks erwarten, wodurch es fir Entwickler einfacher wird,

die Werkzeugnutzung in ihre Anwendungen zu integrieren.

Die Werkzeugnutzung ist eine leistungsfahige Technik, die es Entwicklern ermoglicht,
das volle Potenzial von LLMs in KI-gesteuerten Anwendungen zu nutzen. Durch
die Verbindung von LLMs mit externen Werkzeugen und Ressourcen konnen Sie
dynamischere, intelligentere und kontextbewusstere Systeme erstellen, die sich an
Benutzerbediirfnisse anpassen und wertvolle Erkenntnisse und Aktionen bereitstellen

konnen.

Wihrend die Werkzeugnutzung immense Moglichkeiten bietet, ist es wichtig,
sich potenzieller Herausforderungen und Uberlegungen bewusst zu sein. Ein
wichtiger Aspekt ist die Verwaltung der Komplexitdt von Werkzeuginteraktionen
und die Gewahrleistung der Stabilitdit und Zuverldssigkeit des Gesamtsystems. Sie
missen Szenarien behandeln, in denen Werkzeugaufrufe fehlschlagen, unerwartete
Ergebnisse liefern oder Auswirkungen auf die Leistung haben konnen. Dariiber hinaus
sollten Sie Sicherheits- und Zugriffskontrollen beriicksichtigen, um unbefugte oder
boswillige Nutzung von Werkzeugen zu verhindern. Angemessene Fehlerbehandlung,
Protokollierung und Uberwachungsmechanismen sind entscheidend, um die Integritét

und Leistung Threr KI-gesteuerten Anwendung zu erhalten.

Wihrend Sie die Moglichkeiten des Werkzeugeinsatzes in Thren eigenen Projekten
erkunden, denken Sie daran, mit klaren Zielsetzungen zu beginnen, gut strukturierte

Werkzeugdefinitionen zu erstellen und auf Basis von Feedback und Ergebnissen
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zu iterieren. Mit dem richtigen Ansatz und der richtigen Denkweise kann der
Werkzeugeinsatz neue Ebenen der Innovation und des Mehrwerts in Thren KI-

gesteuerten Anwendungen erschlieflen
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Die Ubertragung von Streaming-Daten iiber HTTP, auch bekannt als serverseitige
Ereignisse (SSE), ist ein Mechanismus, bei dem der Server kontinuierlich Daten an
den Client sendet, sobald diese verfiighar sind, ohne dass der Client diese explizit
anfordern muss. Da die Antwort der KI schrittweise generiert wird, ist es sinnvoll,
eine reaktionsschnelle Benutzererfahrung zu bieten, indem die Ausgabe der KI bereits
wahrend der Generierung angezeigt wird. Tatsachlich bieten alle mir bekannten KI-

Provider-APIs Streaming-Antworten als Option in ihren Completion-Endpunkten an.

Der Grund, warum dieses Kapitel hier im Buch, direkt nach Using Tools erscheint,
liegt in der groflen Wirkung, die durch die Kombination von Werkzeugen mit
Live-KI-Antworten fiir Benutzer erzielt werden kann. Dies ermdglicht dynamische
und interaktive Erfahrungen, bei denen die KI Benutzereingaben verarbeiten,
verschiedene Werkzeuge und Funktionen nach eigenem Ermessen nutzen und dann

Echtzeitantworten liefern kann.
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Um diese nahtlose Interaktion zu erreichen, miissen Sie Stream-Handler schreiben,
die sowohl von der KI aufgerufene Werkzeugfunktionen als auch reine Textausgaben
an den Endbenutzer weiterleiten konnen. Die Notwendigkeit, nach der Verarbeitung
einer Werkzeugfunktion eine Schleife durchzufiihren, fiigt der Aufgabe eine interessante

Herausforderung hinzu.

Implementierung eines ReplyStream

Um zu demonstrieren, wie Datenstromverarbeitung implementiert werden kann, wird
dieses Kapitel eine vereinfachte Version der ReplyStream-Klasse, die in Olympia
verwendet wird, eingehend behandeln. Instanzen dieser Klasse kénnen als stream-
Parameter in KI-Client-Bibliotheken wie ruby-openai und openrouter iibergeben

werden.
Hier ist ein Beispiel, wie ichReplyStream in Olympias PromptSubscriber verwende,

der iiber Wisper auf die Erstellung neuer Benutzernachrichten lauscht.

class PromptSubscriber
include Raix::ChatCompletion

include Raix::PromptDeclarations

# many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },

until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper
return unless message.role.user? && message.content?

# rest of the implementation omitted. ..

Neben einer context-Referenz auf den Prompt-Subscriber, der sie instanziiert hat,

verfiigt die ReplyStream-Klasse auch iiber Instanzvariablen zur Speicherung eines


https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router
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Puffers fiir empfangene Daten sowie iber Arrays zur Verfolgung von Funktionsnamen

und Argumenten, die wihrend der Stream-Verarbeitung aufgerufen werden.

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

Die initialize-Methode richtet den Anfangszustand der ReplyStream-Instanz ein,

wobei der Puffer, der Kontext und andere Variablen initialisiert werden.

Die call-Methode ist der Haupteinstiegspunkt fiir die Verarbeitung der Streaming-
Daten. Sie nimmt einen chunk von Daten (dargestellt als Hash) und einen optionalen
bytesize-Parameter entgegen, der in unserem Beispiel nicht verwendet wird.
Innerhalb dieser Methode verwendet die Klasse Mustererkennung, um verschiedene

Szenarien basierend auf der Struktur des empfangenen Chunks zu behandeln.

Der Aufruf von deep_symbolize_keys auf dem Chunk macht die
Mustererkennung eleganter, da wir dadurch mit Symbolen statt mit

Zeichenketten arbeiten kénnen.
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def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {
tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Das erste Muster, nach dem wir suchen, ist ein Werkzeugaufruf zusammen mit seinem
zugehorigen Funktionsnamen. Wenn wir einen erkennen, fiigen wir ihn in das £_name-
Array ein. Wir speichern Funktionsnamen in einem indizierten Array, da das Modell
zum parallelen Funktionsaufruf fahig ist und mehrere Funktionen gleichzeitig zur

Ausfithrung senden kann.

Paralleler Funktionsaufruf ist die Fahigkeit eines KI-Modells, mehrere
Funktionsaufrufe gemeinsam durchzufithren, wodurch die Effekte und Ergebnisse
dieser Funktionsaufrufe parallel verarbeitet werden konnen. Dies ist besonders
nitzlich, wenn Funktionen lange dauern, und reduziert die Kommunikation mit der
API, was wiederum zu erheblichen Einsparungen beim Token-Verbrauch fithren

kann.

Als Néchstes miissen wir nach den Argumenten suchen, die zu den Funktionsaufrufen

gehoren.
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in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Ahnlich wie bei den Funktionsnamen speichern wir die Argumente in einem indizierten

Array.

Als Néichstes achten wir auf normale Benutzernachrichten, die vom Server einzeln als
Token ankommen und der Variable new_content zugewiesen werden. Wir miissen
auch finish_reason im Auge behalten. Dieser Wert bleibt nil, bis der letzte Teil der
Ausgabesequenz erreicht ist.
in {
choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

I}

# you could transmit every chunk to the user here. ..
buffer << new_content.to_s

if finish_reason.present?

finalize
elsif new_content.to_s.match?(/\n\n/)

send_to_client # ...or buffer and transmit once per paragraph
end

Wichtig ist, dass wir einen Musterabgleichsausdruck hinzufiigen, um Fehlermeldungen

zu behandeln, die vom KI-Modellanbieter gesendet werden. In lokalen
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Entwicklungsumgebungen werfen wir eine Exception, aber in der Produktion

protokollieren wir den Fehler und schlieflen ab.

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("AI Error: #{message}")
finalize

end

Der letzte else-Zweig der case-Anweisung wird ausgefithrt, wenn keines der vorherigen
Muster iibereinstimmt. Es ist lediglich eine Absicherung, damit wir erfahren, falls das

KI-Modell beginnt, uns unerkannte Chunks zu senden.

else

Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

Die send_to_client-Methode ist fiir das Senden der gepufferten Inhalte an den Client
verantwortlich. Sie iiberpriift, dass der Puffer nicht leer ist, aktualisiert den Inhalt der
Bot-Nachricht, rendert die Bot-Nachricht und speichert den Inhalt in der Datenbank,

um die Datenpersistenz sicherzustellen.
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def send_to_client
# no need to process pure whitespace

return if buffer.join.squish.blank?

# set the buffer content on the bot message
content = buffer. join
bot_message.content = content

# save to database so that we never lose data
# even 1f the stream doesn't terminate correctly

bot_message.update_column( :content, content)

# update content via websocket
ConversationRenderer .update(bot_message)
end

Die finalize-Methode wird aufgerufen, wenn die Streamverarbeitung abgeschlossen
ist. Sie fithrt die Funktionsaufrufe aus, falls wahrend des Streams welche empfangen
wurden, aktualisiert die Bot-Nachricht mit dem endgiltigen Inhalt und anderen

relevanten Informationen und setzt den Funktionsaufrufsverlauf zurick.

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
# takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments[index]))
end

# reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer . update(bot_message)

end

end

Wenn das Modell beschliefit, eine Funktion aufzurufen, miissen Sie diesen

Funktionsaufruf (Name und Argumente) so “weiterleiten”, dass er ausgefithrt wird und
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die function_call- und function_result-Nachrichten zum Gesprichsprotokoll

hinzugefiigt werden.

Meiner Erfahrung nach ist es besser, die Erstellung von Funktionsnachrichten
an einer zentralen Stelle in Threr Codebasis zu behandeln, anstatt sich auf die
Werkzeugimplementierungen zu verlassen. Das ist nicht nur tibersichtlicher, sondern
hat auch einen sehr wichtigen praktischen Grund: Wenn das KI-Modell eine
Funktion aufruft und beim erneuten Durchlauf keine entsprechenden Aufrufs- und
Ergebnisnachrichten im Protokoll sieht, wird es dieselbe Funktion erneut aufrufen.
Moglicherweise endlos. Denken Sie daran, dass die KI vollstindig zustandslos ist -
wenn Sie diese Funktionsaufrufe also nicht an sie zuriickgeben, sind sie fiir sie nie

passiert.
# PromptSubscriber#dispatch

def dispatch(name:, arguments:)
# adds a function_call message to the conversation transcript
# plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]
# add function result message to the transcript
conversation. function_result!(name, result)
end

end

Das Loschen des Funktionsaufrufverlaufs nach dem Ausfiihren ist genauso
wichtig wie sicherzustellen, dass der Aufruf und die Ergebnisse in
Threm Protokoll landen, damit Sie nicht einfach immer wieder dieselben

Funktionen bei jeder Schleifenausfithrung aufrufen.

Die “Konversationsschleife”

Ich erwihne immer wieder Schleifen, aber wenn Sie neu im Bereich Funktionsaufrufe

sind, ist moglicherweise nicht offensichtlich, warum wir eine Schleife benétigen. Der
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Grund ist, dass sobald die KI Sie auffordert, Werkzeugfunktionen in ihrem Namen
auszufithren, sie aufhort zu antworten. Es liegt dann an IThnen, diese Funktionen
auszufithren, die Ergebnisse zu sammeln, sie dem Protokoll hinzuzufiigen und
dann den urspriinglichen Prompt erneut einzureichen, um einen neuen Satz von

Funktionsaufrufen oder benutzerorientierten Ergebnissen zu erhalten.

In der PromptSubscriber-Klasse verwenden wir die prompt-Methode aus dem
PromptDeclarations-Modul, um das Verhalten der Konversationsschleife zu
definieren. Der until-Parameter ist auf -> { bot_message.complete? } gesetzt,
was bedeutet, dass die Schleife so lange fortgesetzt wird, bis die bot_message als

vollstandig markiert ist.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

Aber wann wird bot_message als abgeschlossen markiert? Falls Sie es
vergessen haben, schauen Sie noch einmal in Zeile 13 der finalize-

Methode nach.
Lassen Sie uns die gesamte Streamverarbeitungslogik tiberpriifen.

1. Der PromptSubscriber empfiangt eine neue Benutzernachricht iiber die
message_created-Methode, die durch das Wisper Pub/Sub-System jedes Mal
aufgerufen wird, wenn der Endbenutzer einen neuen Prompt erstellt.

2. Die prompt-Klassenmethode definiert deklarativ das Verhalten der Chat-
Vervollstandigungslogik fiir den PromptSubscriber. Das KI-Modell fiihrt eine
Chat-Vervollstandigung mit dem Nachrichteninhalt des Benutzers aus, einer
neuen Instanz von ReplyStream als Stream-Parameter und der angegebenen

Schleifenbedingung.
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10.

11.

. Das KI-Modell verarbeitet den Prompt und beginnt mit der Generierung einer

Antwort. Wahrend die Antwort gestreamt wird, wird die call-Methode der

ReplyStream-Instanz fiir jeden Datenblock aufgerufen.

. Wenn das KI-Modell beschlief3t, eine Werkzeugfunktion aufzurufen, werden der

Funktionsname und die Argumente aus dem Block extrahiert und jeweils in den

Arrays f_name und f_arguments gespeichert.

. Wenn das KI-Modell benutzersichtbare Inhalte generiert, werden diese gepuffert

und iiber die send_to_client-Methode an den Client gesendet.

. Sobald die Streamverarbeitung abgeschlossen ist, wird die finalize-Methode

aufgerufen. Wenn wihrend des Streams Werkzeugfunktionen aufgerufen wurden,

werden diese tiber die dispatch-Methode des PromptSubscriber ausgefiihrt.

. Die dispatch-Methode fiigt dem Gespréichsprotokoll eine function_call-

Nachricht hinzu, fithrt die entsprechende Werkzeugfunktion aus und fugt
dem Protokoll eine function_result-Nachricht mit dem Ergebnis des

Funktionsaufrufs hinzu.

. Nach dem Ausfithren der Werkzeugfunktionen wird der Funktionsaufrufverlauf

geloscht, um doppelte Funktionsaufrufe in nachfolgenden Durchldufen zu

verhindern.

. Wenn keine Werkzeugfunktionen aufgerufen wurden, aktualisiert die finalize-

Methode die bot_message mit dem endgiltigen Inhalt, markiert sie als
abgeschlossen und sendet die aktualisierte Nachricht an den Client.

Die Schleifenbedingung -> { bot_message.complete? } wird ausgewertet.
Wenn die bot_message nicht als abgeschlossen markiert ist, wird die
Schleife fortgesetzt und der urspriingliche Prompt wird mit dem aktualisierten
Gesprachsprotokoll erneut eingereicht.

Die Schritte 3-10 werden wiederholt, bis die bot_message als abgeschlossen
markiert ist, was anzeigt, dass das KI-Modell seine Antwort fertig generiert hat

und keine weiteren Werkzeugfunktionen ausgefiihrt werden miissen.
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Durch die Implementierung dieser Konversationsschleife ermoglichen Sie dem KI-
Modell, in eine Hin-und-her-Interaktion mit der Anwendung zu treten, bei der es nach
Bedarf Werkzeugfunktionen ausfiihrt und benutzersichtbare Antworten generiert, bis

das Gesprach zu einem natiirlichen Abschluss kommt.

Die Kombination aus Streamverarbeitung und Konversationsschleife ermdglicht
dynamische und interaktive KI-gestiitzte Erlebnisse, bei denen das KI-Modell
Benutzereingaben verarbeiten, verschiedene Werkzeuge und Funktionen nutzen
und Echtzeitantworten basierend auf dem sich entwickelnden Gesprachskontext

bereitstellen kann.

Automatische Fortsetzung

Es ist wichtig, sich der Ausgabebeschriankungen der KI bewusst zu sein. Die meisten
Modelle haben eine maximale Anzahl von Tokens, die sie in einer einzelnen Antwort
generieren konnen, die durch den Parameter max_tokens festgelegt wird. Wenn das KI-
Modell diese Grenze wihrend der Generierung einer Antwort erreicht, wird es abrupt

stoppen und anzeigen, dass die Ausgabe abgeschnitten wurde.

In der Streaming-Antwort der KI-Plattform-API konnen Sie diese Situation
erkennen, indem Sie die Variable finish_reason im Block tiberprifen. Wenn
die finish_reason auf "length" gesetzt ist (oder einen anderen modellspezifischen
Schlisselwert), bedeutet dies, dass das Modell wahrend der Generierung sein maximales

Token-Limit erreicht hat und die Ausgabe vorzeitig beendet wurde.

Eine Moglichkeit, dieses Szenario elegant zu handhaben und eine nahtlose
Benutzererfahrung zu bieten, ist die Implementierung eines automatischen
Fortsetzungsmechanismus in Threr Streamverarbeitungslogik. Durch das Hinzufiigen
einer Mustererkennung fiir langenbezogene Beendigungsgriinde konnen Sie wihlen,
die Schleife fortzusetzen und die Ausgabe automatisch dort fortzusetzen, wo sie

unterbrochen wurde.
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Hier ist ein absichtlich vereinfachtes Beispiel, wie Sie die call-Methode in der
ReplyStream-Klasse modifizieren koénnen, um die automatische Fortsetzung zu

unterstiitzen:
LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},
finish_reason: finish_reason } | }

buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize
end

end

end
private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)
conversation.user_message! ("please continue", visible: false)
bot_message.update_column( :created_at, Time.current)

end

In dieser modifizierten Version fiigen wir, wenn der finish_reason auf abgeschnittene
Ausgabe hinweist, anstatt den Stream zu beenden, ein Nachrichtenpaar zum Transkript

hinzu, ohne es zu finalisieren, verschieben die urspriingliche benutzgergerichtete
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Antwortnachricht durch Aktualisierung ihres created_at-Attributs an das “Ende”
des Transkripts und lassen dann die Schleife weiterlaufen, sodass die KI dort

weitergeneriert, wo sie aufgehort hat.

Denken Sie daran, dass der KI-Completion-Endpunkt zustandslos ist. Er “kennt” nur
das, was Sie ihm tber das Transkript mitteilen. In diesem Fall kommunizieren wir
der KI, dass sie unterbrochen wurde, indem wir (fiir den Endbenutzer) “unsichtbare”
Nachrichten zum Transkript hinzufiigen. Beachten Sie jedoch, dass dies ein bewusst
vereinfachtes Beispiel ist. Eine echte Implementierung miisste ein weitergehendes
Transkript-Management durchfithren, um sicherzustellen, dass wir keine Token
verschwenden und/oder die KI nicht durch duplizierte Assistenten-Nachrichten im

Transkript verwirren.

Eine echte Implementierung der automatischen Fortsetzung sollte auch eine sogenannte
“Circuit-Breaker-Logik” enthalten, um unkontrollierte Schleifen zu verhindern. Der
Grund dafiir ist, dass die KI bei bestimmten Arten von Benutzeranfragen und niedrigen
max_tokens-Einstellungen endlos benutzgergerichtete Ausgaben in Schleifen erzeugen

konnte.

Bedenken Sie, dass jede Schleife eine separate Anfrage erfordert und jede Anfrage Ihr
gesamtes Transkript erneut verbraucht. Sie sollten definitiv die Vor- und Nachteile
zwischen Benutzererfahrung und API-Nutzung abwéagen, wenn Sie entscheiden, ob
Sie die automatische Fortsetzung in Ihrer Anwendung implementieren mochten.
Automatische Fortsetzung kann besonders bei der Verwendung von Premium-

Geschiftsmodellen gefihrlich teuer werden.
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Fazit

Stream-Verarbeitung ist ein entscheidender Aspekt beim Aufbau von KI-gesteuerten
Anwendungen, die Werkzeugnutzung mit Live-KI-Antworten kombinieren. Durch
effiziente Handhabung der Streaming-Daten von KI-Plattform-APIs konnen Sie eine
nahtlose und interaktive Benutzererfahrung bieten, grofle Antworten verarbeiten, die

Ressourcennutzung optimieren und Fehler elegant behandeln.

Die bereitgestellte Conversation: :ReplyStream-Klasse demonstriert, wie Stream-
Verarbeitung in einer Ruby-Anwendung mithilfe von Pattern Matching und
ereignisgesteuerter Architektur implementiert werden kann. Durch das Verstdndnis
und die Nutzung von Stream-Verarbeitungstechniken konnen Sie das volle Potenzial
der Kl-Integration in Ihren Anwendungen erschlieflen und leistungsstarke sowie

fesselnde Benutzererlebnisse bereitstellen.
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Selbstheilende Daten ist ein leistungsfahiger Ansatz zur Sicherstellung von
Datenintegritat, -konsistenz und -qualitdt in Anwendungen durch die Nutzung
der Fihigkeiten von Large Language Models (LLMs). Diese Kategorie von Mustern
konzentriert sich auf die Idee, KI zu nutzen, um automatisch Datenanomalien,
Inkonsistenzen oder Fehler zu erkennen, zu diagnostizieren und zu korrigieren, wodurch
die Belastung fiir Entwickler reduziert und ein hohes Maf§ an Datenzuverléssigkeit

aufrechterhalten wird.

Im Kern erkennen die Muster fiir selbstheilende Daten an, dass Daten die Lebensader
jeder Anwendung sind und die Sicherstellung ihrer Genauigkeit und Integritat
entscheidend fiir das ordnungsgeméfle Funktionieren und die Benutzererfahrung der
Anwendung ist. Die Verwaltung und Aufrechterhaltung der Datenqualitat kann jedoch
eine komplexe und zeitaufwindige Aufgabe sein, besonders wenn Anwendungen in

Grofle und Komplexitit wachsen. Hier kommt die Kraft der KI ins Spiel.
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Bei den Mustern fiir selbstheilende Daten werden KI-Worker eingesetzt, um die
Daten Ihrer Anwendung kontinuierlich zu iberwachen und zu analysieren. Diese
Modelle haben die Fahigkeit, Muster, Beziehungen und Anomalien innerhalb der
Daten zu verstehen und zu interpretieren. Durch die Nutzung ihrer Fahigkeiten zur
Verarbeitung und zum Verstindnis natiirlicher Sprache konnen sie potenzielle Probleme
oder Inkonsistenzen in den Daten identifizieren und geeignete Mafinahmen zu deren

Behebung ergreifen.

Der Prozess der selbstheilenden Daten umfasst typischerweise mehrere

Schliisselschritte:

1. Dateniiberwachung: KI-Worker tberwachen stindig die Datenstrome,
Datenbanken oder Speichersysteme der Anwendung und suchen nach Anzeichen
von Anomalien, Inkonsistenzen oder Fehlern. Alternativ konnen Sie eine
KI-Komponente als Reaktion auf eine Ausnahme aktivieren.

2. Anomalieerkennung: Wenn ein Problem erkannt wird, analysiert der KI-Worker
die Daten im Detail, um die spezifische Art und den Umfang des Problems
zu identifizieren. Dies konnte die Erkennung fehlender Werte, inkonsistenter
Formate oder Daten umfassen, die vordefinierte Regeln oder Einschrankungen
verletzen.

3. Diagnose und Korrektur: Sobald das Problem identifiziert ist, nutzt der KI-
Worker sein Wissen und Verstdndnis der Datendomine, um den geeigneten
Handlungsablauf zu bestimmen. Dies konnte die automatische Korrektur der
Daten, das Ausfillen fehlender Werte oder das Markieren des Problems fiir
menschliches Eingreifen umfassen, falls erforderlich.

4. Kontinuierliches Lernen (optional, je nach Anwendungsfall): Wihrend Thr
KI-Worker verschiedene Datenprobleme erkennt und 16st, kann er Ausgaben
erstellen, die beschreiben, was passiert ist und wie er darauf reagiert hat.
Diese Metadaten konnen in Lernprozesse eingespeist werden, die es Thnen (und

moglicherweise dem zugrundeliegenden Modell durch Fine-tuning) erméglichen,



Selbstheilende Daten 173

im Laufe der Zeit effektiver und effizienter bei der Identifizierung und Lésung

von Datenanomalien zu werden.

Durch die automatische Erkennung und Korrektur von Datenproblemen konnen Sie
sicherstellen, dass Ihre Anwendung mit hochwertigen, zuverlassigen Daten arbeitet.
Dies reduziert das Risiko, dass Fehler, Inkonsistenzen oder datenbezogene Bugs die

Funktionalitat oder Benutzererfahrung der Anwendung beeintréchtigen.

Sobald Sie KI-Worker haben, die sich um die Aufgabe der Dateniiberwachung und
-korrektur kitmmern, kénnen Sie Thre Bemithungen auf andere kritische Aspekte der
Anwendung konzentrieren. Dies spart Zeit und Ressourcen, die sonst fiir manuelle
Datenbereinigung und -wartung aufgewendet wiirden. Tatsdchlich wird die manuelle
Verwaltung der Datenqualitit mit zunehmender Groéfle und Komplexitat Threr
Anwendungen immer schwieriger. Die Muster fiir “Selbstheilende Daten” skalieren
effektiv, indem sie die Kraft der KI nutzen, um grofie Datenmengen zu verarbeiten und

Probleme in Echtzeit zu erkennen.

Aufgrund ihrer Natur konnen sich KI-Modelle mit wenig oder gar
P keiner Uberwachung an sich #ndernde Datenmuster, Schemata oder
Anforderungen anpassen. Solange ihre Anweisungen ausreichende
Orientierung bieten, insbesondere hinsichtlich der beabsichtigten
Ergebnisse, kann sich Ihre Anwendung méglicherweise weiterentwickeln
und neue Datenszenarien bewaltigen, ohne dass umfangreiche manuelle

Eingriffe oder Codednderungen erforderlich sind.

Die Muster fiir selbstheilende Daten passen gut zu den anderen Kategorien von Mustern,
die wir besprochen haben, wie zum Beispiel “Multitude of Workers”. Die Fihigkeit
zur Selbstheilung von Daten kann als eine spezialisierte Art von Worker betrachtet
werden, der sich speziell auf die Sicherstellung von Datenqualitit und -integritat
konzentriert. Diese Art von Worker arbeitet neben anderen KI-Workern, wobei jeder

zu verschiedenen Aspekten der Anwendungsfunktionalitat beitrégt.
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Die praktische Implementierung von Mustern fiir selbstheilende Daten erfordert ein
sorgfaltiges Design und die Integration von KI-Modellen in die Anwendungsarchitektur.
Aufgrund der Risiken von Datenverlust und -korruption sollten Sie klare Richtlinien
fiir die Verwendung dieser Technik definieren. Sie sollten auch Faktoren wie Leistung,

Skalierbarkeit und Datensicherheit beriicksichtigen.

Praktische Fallstudie: Reparatur von
fehlerhaftem JSON

Eine der praktischsten und bequemsten Méglichkeiten, selbstheilende Daten zu nutzen,

ist auch sehr einfach zu erkldren: die Reparatur von fehlerhaftem JSON.

Diese Technik kann auf die haufige Herausforderung angewendet werden, mit
unvollkommenen oder inkonsistenten Daten umzugehen, die von LLMs generiert
werden, wie zum Beispiel fehlerhaftes JSON, und bietet einen Ansatz zur automatischen

Erkennung und Korrektur dieser Probleme.

Bei Olympia begegne ich regelméaflig Szenarien, in denen LLMs JSON-Daten generieren,
die nicht vollstdndig valide sind. Dies kann aus verschiedenen Griinden geschehen,
etwa wenn das LLM Kommentare vor oder nach dem eigentlichen JSON-Code
hinzufiigt oder Syntaxfehler wie fehlende Kommata oder nicht maskierte doppelte
Anfiithrungszeichen einfiihrt. Diese Probleme konnen zu Parse-Fehlern fithren und

Storungen in der Funktionalitat der Anwendung verursachen.

Um dieses Problem zu 19sen, habe ich eine praktische Losung in Form einer JsonFixer-
Klasse implementiert. Diese Klasse verkorpert das “Self-Healing Data” Pattern, indem
sie das fehlerhafte JSON als Eingabe nimmt und ein LLM nutzt, um es zu reparieren,

wihrend dabei so viel Information und Absicht wie moglich erhalten bleibt.
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class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)
raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse

exception. Do your best to fix it while preserving the
original content and intent as much as possible." }

transcript << { user: bad_json }

transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n " json\n" }

self.stop = [" "]

chat_completion(json: true)
end

def model
"mistralai/mixtral-8xTb-instruct:nitro"
end
end

Beachten Sie, wie JsonFixer Ventriloquist verwendet, um die Antworten

der KI zu steuern.

Der Prozess der selbstheilenden JSON-Daten funktioniert wie folgt:

1. JSON-Generierung: Ein LLM wird verwendet, um JSON-Daten basierend
auf bestimmten Prompts oder Anforderungen zu generieren. Aufgrund der
Beschaffenheit von LLMs ist das generierte JSON jedoch nicht immer vollstandig
giltig. Der JSON-Parser wird natiirlich einen ParserError ausgeben, wenn

man ihm ungiiltiges JSON iibergibt.



a s W N -

Selbstheilende Daten 176

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Beachten Sie, dass die Fehlermeldung auch an den JSONF i xer-Aufruf tibergeben wird,
sodass dieser nicht vollstindig vermuten muss, was mit den Daten nicht stimmt,

insbesondere da der Parser oft genau angibt, wo der Fehler liegt.

2. LLM-basierte Korrektur: Die JSONFixer-Klasse sendet das fehlerhafte
JSON zuriick an ein LLM, zusammen mit einer spezifischen Aufforderung oder
Anweisung, das JSON zu korrigieren und dabei die urspriinglichen Informationen
und Absichten so weit wie moglich zu bewahren. Das LLM, das auf groflen
Datenmengen trainiert wurde und JSON-Syntax versteht, versucht, die Fehler zu
korrigieren und einen giiltigen JSON-String zu generieren. Response Fencing wird
verwendet, um die Ausgabe des LLM einzuschrinken, und wir wihlen Mixtral
8x7B als KI-Modell, da es fiir diese Art von Aufgabe besonders gut geeignet ist.

3. Validierung und Integration: Der vom LLM zuriickgegebene korrigierte
JSON-String wird von der JSONFixer-Klasse selbst geparst, da sie
chat_completion(json: true) aufruft. Wenn das korrigierte JSON die
Validierung besteht, wird es wieder in den Arbeitsablauf der Anwendung
integriert, wodurch die Anwendung die Datenverarbeitung nahtlos fortsetzen

kann. Das fehlerhafte JSON wurde “geheilt”.

Obwohl ich meine eigene JSONFixer-Implementierung mehrmals geschrieben und
uberarbeitet habe, bezweifle ich, dass die Gesamtzeit, die in alle diese Versionen

investiert wurde, mehr als ein oder zwei Stunden betrégt.

Beachten Sie, dass die Bewahrung der Absicht ein Schliisselelement jedes
selbstheilenden Datenmusters ist. Der LLM-basierte Korrekturprozess zielt darauf

ab, die urspriinglichen Informationen und Absichten des generierten JSONs so weit wie
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moglich zu bewahren. Dies stellt sicher, dass das korrigierte JSON seine semantische

Bedeutung beibehilt und effektiv im Kontext der Anwendung verwendet werden kann.

Diese praktische Implementierung des “Selbstheilende Daten”-Ansatzes in Olympia
zeigt deutlich, wie KI, insbesondere LLMs, zur Losung realer Datenherausforderungen
eingesetzt werden konnen. Sie demonstriert die Leistungsfahigkeit der Kombination
traditioneller Programmiertechniken mit KI-Fihigkeiten zum Aufbau robuster und

effizienter Anwendungen.

Postels Gesetz und das “Selbstheilende Daten”-
Muster

“Selbstheilende Daten”, wie sie durch die JSONFixer-Klasse veranschaulicht werden,
stimmen gut mit dem als Postels Gesetz bekannten Prinzip tiberein, das auch als

Robustheitsprinzip bezeichnet wird. Postels Gesetz besagt:

“Sei konservativ in dem, was du tust, sei liberal in dem, was du von anderen

akzeptierst.”

Dieses Prinzip, urspriinglich von Jon Postel, einem Pionier des frithen Internets,
formuliert, betont die Wichtigkeit, Systeme zu entwickeln, die tolerant gegeniiber
verschiedenen oder sogar leicht fehlerhaften Eingaben sind, wihrend sie beim Senden

von Ausgaben strikt die spezifizierten Protokolle einhalten.

Im Kontext von “Selbstheilenden Daten” verkorpert die JSONFixer-Klasse Postels
Gesetz, indem sie liberal in der Akzeptanz von fehlerhaften oder unvollkommenen
JSON-Daten ist, die von LLMs generiert wurden. Sie lehnt nicht sofort ab oder schlagt
fehl, wenn sie auf JSON sto3t, das nicht strikt dem erwarteten Format entspricht.
Stattdessen verfolgt sie einen toleranten Ansatz und versucht, das JSON mithilfe der

Leistungsfahigkeit von LLMs zu korrigieren.

Durch die liberale Akzeptanz von unvollkommenem JSON demonstriert die
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JSONFixer-Klasse Robustheit und Flexibilitat. Sie erkennt an, dass Daten in der
realen Welt oft in verschiedenen Formen vorliegen und nicht immer strengen
Spezifikationen entsprechen. Durch die geschickte Handhabung und Korrektur
dieser Abweichungen stellt die Klasse sicher, dass die Anwendung auch bei

unvollkommenen Daten reibungslos funktionieren kann.

Andererseits halt sich die JSONFixer-Klasse auch an den konservativen Aspekt von
Postels Gesetz, wenn es um die Ausgabe geht. Nach der Korrektur des JSONs mithilfe
von LLMs validiert die Klasse das korrigierte JSON, um sicherzustellen, dass es
strikt dem erwarteten Format entspricht. Sie wahrt die Integritat und Korrektheit der
Daten, bevor sie sie an andere Teile der Anwendung weitergibt. Dieser konservative
Ansatz garantiert, dass die Ausgabe der JSONFixer-Klasse zuverlassig und konsistent

ist und fordert die Interoperabilitat und verhindert die Ausbreitung von Fehlern.

Interessante Fakten tiber Jon Postel:

o Jon Postel (1943-1998) war ein amerikanischer Informatiker, der eine
entscheidende Rolle bei der Entwicklung des Internets spielte. Er war als
“Gott des Internets” fiir seine bedeutenden Beitrége zu den grundlegenden
Protokollen und Standards bekannt.

« Postel war der Herausgeber der Request for Comments (RFC)-Dokumentreihe,
einer Serie technischer und organisatorischer Notizen iiber das Internet.
Er verfasste oder war Mitverfasser von iiber 200 RFCs, einschlieflich der
grundlegenden Protokolle wie TCP, IP und SMTP.

« Neben seinen technischen Beitrdgen war Postel fiir seinen bescheidenen
und kollaborativen Ansatz bekannt. Er glaubte an die Bedeutung der
Konsensfindung und der Zusammenarbeit beim Aufbau eines robusten und
interoperablen Netzwerks.

« Postel war von 1977 bis zu seinem vorzeitigen Tod 1998 Direktor der Computer
Networks Division am Information Sciences Institute (ISI) der University of
Southern California (USC).

 In Anerkennung seiner immensen Beitrige wurde Postel 1998 posthum der
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prestigetrachtige Turing Award verliehen, der oft als der “Nobelpreis der

Informatik” bezeichnet wird.

Die JSONFixer-Klasse fordert Robustheit, Flexibilitit und Interoperabilitit
- Kernwerte, die Postel wahrend seiner gesamten Karriere hochhielt. Indem
wir Systeme aufbauen, die tolerant gegeniiber Unvollkommenheiten sind und
gleichzeitig strikt Protokolle einhalten, kénnen wir Anwendungen erstellen, die
angesichts realer Herausforderungen widerstandsfahiger und anpassungsfahiger

sind.

Uberlegungen und Gegenanzeigen

Die Anwendbarkeit von selbstheilenden Datenansitzen héngt vollstandig von der Art
der Daten ab, die Thre Anwendung verarbeitet. Es gibt einen Grund, warum Sie
moglicherweise nicht einfach JSON.parse per Monkeypatch so modifizieren sollten,
dass automatisch alle JSON-Parsing-Fehler in Threr Anwendung korrigiert werden:

Nicht alle Fehler kénnen oder sollten automatisch korrigiert werden.

Selbstheilung ist besonders heikel, wenn sie mit regulatorischen oder Compliance-
Anforderungen in Bezug auf Datenhandhabung und -verarbeitung gekoppelt ist.
Einige Branchen, wie das Gesundheitswesen und das Finanzwesen, haben so strenge
Vorschriften beziiglich Datenintegritiat und Nachvollziehbarkeit, dass jegliche Art von
“Black Box”-Datenkorrektur ohne angemessene Uberwachung oder Protokollierung
gegen diese Vorschriften verstoflen konnte. Es ist entscheidend sicherzustellen, dass
alle selbstheilenden Datentechniken, die Sie entwickeln, mit den geltenden rechtlichen

und regulatorischen Rahmenbedingungen tibereinstimmen.

Die Anwendung von selbstheilenden Datentechniken, insbesondere solcher mit

KI-Modellen, kann auch erhebliche Auswirkungen auf die Anwendungsleistung und
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Ressourcennutzung haben. Die Verarbeitung grofler Datenmengen durch KI-Modelle
zur Fehlererkennung und -korrektur kann rechnerisch intensiv sein. Es ist wichtig,
die Abwagungen zwischen den Vorteilen selbstheilender Daten und den damit

verbundenen Leistungs- und Ressourcenkosten zu bewerten.

Lassen Sie uns nun die Faktoren untersuchen, die bei der Entscheidung eine Rolle

spielen, wann und wo dieser leistungsstarke Ansatz anzuwenden ist.

Datenkritikalitat

Bei der Erwédgung der Anwendung von selbstheilenden Datentechniken ist es
entscheidend, die Kritikalitit der zu verarbeitenden Daten zu bewerten. Die
Kritikalitatsstufe bezieht sich auf die Wichtigkeit und Sensibilitit der Daten im

Kontext Threr Anwendung und ihrer Geschaftsdomane.

In manchen Fillen ist die automatische Korrektur von Datenfehlern méglicherweise
nicht angemessen, besonders wenn die Daten hochsensibel sind oder rechtliche

Auswirkungen haben. Betrachten Sie beispielsweise die folgenden Szenarien:

1. Finanztransaktionen: In Finanzanwendungen wie Banksystemen oder
Handelsplattformen ist die Datengenauigkeit von hochster Bedeutung. Selbst
kleine Fehler in Finanzdaten konnen erhebliche Konsequenzen haben, wie falsche
Kontostanden, fehlgeleitete Gelder oder fehlerhafte Handelsentscheidungen. In
diesen Fillen kénnen automatisierte Korrekturen ohne griindliche Uberpriifung
und Prifung inakzeptable Risiken bergen.

2. Medizinische Aufzeichnungen: Gesundheitsanwendungen arbeiten mit
hochsensiblen und vertraulichen Patientendaten. Ungenauigkeiten in
medizinischen Aufzeichnungen koénnen schwerwiegende Auswirkungen
auf die Patientensicherheit und Behandlungsentscheidungen haben. Die
automatische Anderung medizinischer Daten ohne angemessene Uberwachung

und Validierung durch qualifiziertes medizinisches Fachpersonal konnte gegen
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regulatorische Anforderungen verstolen und das Wohlergehen der Patienten
gefahrden.

3. Rechtsdokumente: Anwendungen, die rechtliche Dokumente wie Vertréige,
Vereinbarungen oder Gerichtsakten verarbeiten, erfordern strenge Genauigkeit
und Integritit. Selbst kleine Fehler in rechtlichen Daten kénnen erhebliche
rechtliche Konsequenzen haben. Automatisierte Korrekturen sind in diesem
Bereich moglicherweise nicht angemessen, da die Daten oft eine manuelle
Uberprifung und Verifizierung durch Rechtsexperten erfordern, um ihre

Giiltigkeit und Durchsetzbarkeit sicherzustellen.

In diesen kritischen Datenszenarien iberwiegen die Risiken automatisierter Korrekturen
oft die potenziellen Vorteile. Die Folgen der Einfithrung von Fehlern oder falscher
Datenmodifikation konnen schwerwiegend sein und zu finanziellen Verlusten,

rechtlichen Haftungen oder sogar Schaden fir Einzelpersonen fithren.

Bei hochkritischen Daten ist es wichtig, manuelle Uberpriifungs- und
Validierungsprozesse zu priorisieren. Menschliche Uberwachung und Expertise
sind entscheidend fiir die Sicherstellung der Genauigkeit und Integritiat der Daten.
Automatisierte selbstheilende Techniken konnen zwar weiterhin eingesetzt werden,
um potenzielle Fehler oder Inkonsistenzen zu kennzeichnen, aber die endgiiltige
Entscheidung tiber Korrekturen sollte menschliches Urteilsvermégen und Genehmigung

einbeziehen.

Es ist jedoch wichtig zu beachten, dass nicht alle Daten in einer Anwendung die
gleiche Kritikalititsstufe haben miissen. Innerhalb derselben Anwendung kann es
Teilmengen von Daten geben, die weniger sensibel sind oder bei denen Fehler geringere
Auswirkungen haben. In solchen Fillen kénnen selbstheilende Datentechniken selektiv
auf diese spezifischen Datenteilmengen angewendet werden, wihrend kritische Daten

weiterhin manueller Uberpriifung unterliegen.

Der Schliissel liegt darin, die Kritikalitit jeder Datenkategorie in Threr Anwendung

sorgfiltig zu bewerten und klare Richtlinien und Prozesse fir die Handhabung
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von Korrekturen basierend auf den damit verbundenen Risiken und Auswirkungen
zu definieren. Indem Sie zwischen kritischen (z.B. Hauptbiicher, medizinische
Aufzeichnungen) und nicht-kritischen Daten (z.B. Postadressen, Ressourcenwarnungen)
unterscheiden, konnen Sie eine Balance zwischen der Nutzung der Vorteile
selbstheilender Datentechniken, wo angemessen, und der Aufrechterhaltung strenger

Kontrolle und Uberwachung, wo notwendig, finden.

Letztendlich sollte die Entscheidung, selbstheilende Datentechniken auf kritische
Daten anzuwenden, in Absprache mit Doménenexperten, Rechtsberatern und anderen
relevanten Interessengruppen getroffen werden. Es ist wichtig, die spezifischen
Anforderungen, Vorschriften und Risiken im Zusammenhang mit den Daten Ihrer
Anwendung zu bericksichtigen und die Datenkorrekturstrategien entsprechend

anzupassen.

Fehlerschweregrad

Bei der Anwendung selbstheilender Datentechniken ist es wichtig, den Schweregrad
und die Auswirkungen der Datenfehler zu bewerten. Nicht alle Fehler sind gleich, und

die angemessene Vorgehensweise kann je nach Schweregrad des Problems variieren.

Kleinere Inkonsistenzen oder Formatierungsprobleme kénnen fiir eine automatische
Korrektur geeignet sein. Beispielsweise kann ein selbstheilender Datenworker,
der defektes JSON reparieren soll, fehlende Kommas oder nicht maskierte doppelte
Anfiihrungszeichen behandeln, ohne die Bedeutung oder Struktur der Daten wesentlich
zu verandern. Diese Art von Fehlern lasst sich oft unkompliziert korrigieren und hat

minimale Auswirkungen auf die allgemeine Datenintegritat.

Schwerwiegendere Fehler jedoch, die die Bedeutung oder Integritit der Daten
grundlegend verandern, erfordern moglicherweise einen anderen Ansatz. In solchen
Fallen reichen automatisierte Korrekturen eventuell nicht aus, und menschliches
Eingreifen kann erforderlich sein, um die Genauigkeit und Giltigkeit der Daten

sicherzustellen.
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Hier kommt das Konzept zum Tragen, KI selbst zur Bestimmung der Fehlerschwere
einzusetzen. Durch die Nutzung der Fihigkeiten von KI-Modellen koénnen wir
selbstheilende Datenarbeiter entwickeln, die nicht nur Fehler korrigieren, sondern auch
deren Schweregrad bewerten und fundierte Entscheidungen iiber den Umgang mit

ihnen treffen.

Betrachten wir beispielsweise einen selbstheilenden Datenarbeiter, der fiir die Korrektur
von Inkonsistenzen in Daten zustindig ist, die in eine Kundendatenbank einfliefen.
Der Arbeiter kann so konzipiert werden, dass er die Daten analysiert und potenzielle
Fehler identifiziert, wie etwa fehlende oder widerspriichliche Informationen. Anstatt
jedoch alle Fehler automatisch zu korrigieren, kann der Arbeiter mit zusatzlichen
Werkzeugaufrufen ausgestattet werden, die es ihm erméglichen, schwerwiegende Fehler

zur manuellen Uberpriifung zu markieren.

Hier ist ein Beispiel, wie dies implementiert werden kann:

class CustomerDataReviewer
include Raix::ChatCompletion
include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params]|
AdminNotifier.review_request(customer, params|:reason])
end

def initialize(customer)
self.customer = customer

end
def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the
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“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }
transcript << { assistant: "Reviewed/corrected data:\n"json\n" }

self.stop = [" "]

chat_completion(json: true).then do |result]|
return if result.blank?

customer .update(result)
end
end

end

In diesem Beispiel ist der CustomerDataHealer-Worker darauf ausgelegt,
Inkonsistenzen in Kundendaten zu erkennen und zu korrigieren. Auch hier verwenden
wir Response Fencing und Ventriloquist, um strukturierte Ausgaben zu erhalten.
Wichtig ist, dass die Systemanweisung des Workers Instruktionen enthalt, die Funktion

flag_for_review zu verwenden, wenn schwerwiegende Fehler auftreten.

Wenn der Worker die Kundendaten verarbeitet, analysiert er die Daten und versucht,
etwaige Inkonsistenzen zu korrigieren. Wenn der Worker feststellt, dass die Fehler
schwerwiegend sind und menschliches Eingreifen erfordern, kann er das flag_for_-
review-Tool verwenden, um die Daten zu kennzeichnen und einen Grund fiir die

Kennzeichnung anzugeben.

Die chat_completion-Methode wird mit json: true aufgerufen, um die
korrigierten Kundendaten als JSON zu parsen. Es gibt keine Moglichkeit fiir eine
Schleife nach einem Funktionsaufruf, daher wird das Ergebnis leer sein, wenn
flag_for_review aufgerufen wurde. Andernfalls wird der Kunde mit den iiberpriften

und moglicherweise korrigierten Daten aktualisiert.

Durch die Integration der Fehlerschwerebewertung und die Option, Daten fir die
manuelle Uberpriifung zu kennzeichnen, wird der selbstheilende Daten-Worker

intelligenter und anpassungsfihiger. Er kann kleinere Fehler automatisch behandeln



Selbstheilende Daten 185

und gleichzeitig schwerwiegende Fehler an menschliche Experten zur manuellen

Intervention eskalieren.

Die spezifischen Kriterien zur Bestimmung der Fehlerschwere konnen in der Anweisung
des Workers basierend auf dem Doménenwissen und den geschaftlichen Anforderungen
definiert werden. Faktoren wie die Auswirkungen auf die Datenintegritét, das Potenzial
fir Datenverlust oder -beschadigung und die Folgen falscher Daten koénnen bei der

Bewertung der Schwere beriicksichtigt werden.

Durch den Einsatz von KI zur Bewertung der Fehlerschwere und die Bereitstellung
von Optionen fiir menschliches Eingreifen konnen selbstheilende Datentechniken
eine Balance zwischen Automatisierung und Aufrechterhaltung der Datengenauigkeit
schaffen. Dieser Ansatz stellt sicher, dass kleinere Fehler effizient korrigiert werden,
wahrend schwerwiegende Fehler die notwendige Aufmerksamkeit und Expertise von

menschlichen Prifern erhalten.

Domanenkomplexitat

Bei der Betrachtung der Anwendung von selbstheilenden Datentechniken ist es wichtig,
die Komplexitat der Datendoméane und die Regeln, die ihre Struktur und Beziehungen
bestimmen, zu bewerten. Die Komplexitit der Doméne kann die Effektivitat und

Durchfithrbarkeit automatisierter Datenkorrekturansitze erheblich beeinflussen.

Selbstheilende Datentechniken funktionieren gut, wenn die Daten klar definierten
Mustern und Einschrankungen folgen. In Doménen, in denen die Datenstruktur
relativ einfach ist und die Beziehungen zwischen Datenelementen unkompliziert sind,
konnen automatisierte Korrekturen mit hoher Zuverlédssigkeit angewendet werden.
Zum Beispiel konnen Formatierungsprobleme oder die Durchsetzung grundlegender
Datentypbeschrankungen oft effektiv von selbstheilenden Daten-Workern behandelt

werden.

Mit zunehmender Komplexitdt der Datendomine wachsen jedoch auch die

Herausforderungen bei der automatisierten Datenkorrektur. In Doméinen mit
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komplexer Geschiftslogik, komplexen Beziehungen zwischen Datenentititen oder
domanenspezifischen Regeln und Ausnahmen koénnen selbstheilende Datentechniken
moglicherweise nicht alle Nuancen erfassen und unbeabsichtigte Konsequenzen

verursachen.

Betrachten wir ein Beispiel einer komplexen Domaine: ein Finanzhandelssystem. In
dieser Doméane umfassen die Daten verschiedene Finanzinstrumente, Marktdaten,
Handelsregeln und regulatorische Anforderungen. Die Beziehungen zwischen
verschiedenen Datenelementen konnen komplex sein, und die Regeln fiir Datenvaliditat

und Konsistenz kénnen hochspezifisch fiir die Doméne sein.

In einer solch komplexen Doméne miisste ein selbstheilender Daten-Worker, der mit
der Korrektur von Inkonsistenzen in Handelsdaten beauftragt ist, ein tiefes Verstdndnis
der dominenspezifischen Regeln und Einschrankungen haben. Er miisste Faktoren
wie Marktvorschriften, Handelslimits, Risikoberechnungen und Abwicklungsverfahren
berticksichtigen. Automatisierte Korrekturen kénnen in diesem Kontext moglicherweise
nicht die volle Komplexitiat der Doméne erfassen und konnten versehentlich Fehler

einfithren oder doménenspezifische Regeln verletzen.

Um die Herausforderungen der Doménenkomplexitdt zu bewdltigen, konnen
selbstheilende Datentechniken durch die Integration von domaénenspezifischem
Wissen und Regeln in die KI-Modelle und Worker verbessert werden. Dies kann durch

folgende Techniken erreicht werden:

1. Doménenspezifisches Training: Die fir selbstheilende Daten verwendeten
KI-Modelle konnen auf doméanenspezifischen Datensétzen trainiert oder sogar
feinabgestimmt werden, die die Feinheiten und Regeln der jeweiligen Doméne
erfassen. Indem die Modelle reprasentativen Daten und Szenarien ausgesetzt
werden, konnen sie die doménenspezifischen Muster, Einschriankungen und
Ausnahmen lernen.

2. Regelbasierte Einschrinkungen: Selbstheilende Daten-Worker koénnen

mit expliziten regelbasierten Einschrankungen erweitert werden, die
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domaénenspezifisches Wissen kodieren. Diese Regeln konnen von
Doménenexperten definiert und in den Datenkorrekturprozess integriert werden.
Die KI-Modelle konnen diese Regeln dann nutzen, um ihre Entscheidungen zu
steuern und die Einhaltung domanenspezifischer Anforderungen sicherzustellen.

3. Zusammenarbeit mit Dominenexperten: In komplexen Doménen ist es
entscheidend, Doménenexperten in die Gestaltung und Entwicklung von
selbstheilenden Datentechniken einzubeziehen. Doménenexperten kénnen
wertvolle Einblicke in die Feinheiten der Daten, die Geschéftsregeln und die
moglichen Randfille liefern. Thr Wissen kann in die KI-Modelle und Worker
integriert werden, um die Genauigkeit und Zuverldssigkeit automatisierter
Datenkorrekturen unter Verwendung von Human In The Loop-Mustern zu
verbessern.

4. Inkrementeller und iterativer Ansatz: Bei komplexen Doméinen ist es oft
vorteilhaft, einen inkrementellen und iterativen Ansatz fur selbstheilende Daten
zu wahlen. Anstatt zu versuchen, Korrekturen fiir die gesamte Doméne auf
einmal zu automatisieren, konzentriert man sich auf spezifische Teildoméanen
oder Datenkategorien, bei denen die Regeln und Einschrankungen gut verstanden
sind. Der Umfang der selbstheilenden Techniken wird schrittweise erweitert,
wihrend das Verstdndnis der Doméne wiachst und sich die Techniken als effektiv

erweisen.

Durch die Berucksichtigung der Komplexitiat der Datendoméne und die Integration
von doménenspezifischem Wissen in selbstheilende Datentechniken kénnen Sie ein
Gleichgewicht zwischen Automatisierung und Genauigkeit erreichen. Es ist wichtig
zu erkennen, dass selbstheilende Daten keine Universallosung darstellen und dass der
Ansatz auf die spezifischen Anforderungen und Herausforderungen jeder Doméne

zugeschnitten werden sollte.

In komplexen Doménen kann ein hybrider Ansatz, der selbstheilende Datentechniken

mit menschlicher Expertise und Aufsicht kombiniert, am effektivsten sein.
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Automatisierte Korrekturen koénnen Routine- und klar definierte Fille behandeln,
wihrend komplexe Szenarien oder Ausnahmen fiir menschliche Uberpriifung und
Intervention markiert werden konnen. Dieser kollaborative Ansatz stellt sicher, dass
die Vorteile der Automatisierung realisiert werden, wahrend die notwendige Kontrolle

und Genauigkeit in komplexen Datendoméanen gew#hrleistet bleibt.

Erklarbarkeit und Transparenz

Erklarbarkeit bezieht sich auf die Fihigkeit, die Argumentation hinter den
Entscheidungen von KI-Modellen zu verstehen und zu interpretieren, wahrend

Transparenz die klare Sichtbarkeit des Datenkorrekturprozesses beinhaltet.

In vielen Kontexten miissen Datendnderungen nachvollziehbar und begriindbar
sein.  Interessenvertreter, einschliefSlich  Geschaftsanwender, Priufer und
Regulierungsbehoérden, koénnen Erklarungen dafiir verlangen, warum bestimmte
Datenkorrekturen vorgenommen wurden und wie die KI-Modelle zu diesen
Entscheidungen gekommen sind. Dies ist besonders wichtig in Bereichen, in denen
Datengenauigkeit und -integritit bedeutende Auswirkungen haben, wie Finanzen,

Gesundheitswesen und rechtliche Angelegenheiten.

Um dem Bedarf an Erklarbarkeit und Transparenz gerecht zu werden, sollten
selbstheilende Datentechniken Mechanismen enthalten, die Einblicke in den
Entscheidungsprozess von KI-Modellen gewéhren. Dies kann durch verschiedene

Ansatze erreicht werden:

1. Gedankenkette: Indem das Modell aufgefordert wird, sein Denken “laut” zu
erkldren, bevor es Anderungen an Daten vornimmt, kann das Verstindnis des
Entscheidungsprozesses erleichtert werden und es konnen menschenlesbare
Erkldrungen fir die vorgenommenen Korrekturen generiert werden. Der
Kompromiss ist eine etwas hohere Komplexitét bei der Trennung der Erklarung

von der strukturierten Datenausgabe, was durch... angegangen werden kann.
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2. Erklirungsgenerierung: Selbstheilende Datenarbeiter konnen mit der Fahigkeit
ausgestattet werden, menschenlesbare Erklarungen fir ihre Korrekturen
zu generieren. Dies kann erreicht werden, indem das Modell seinen
Entscheidungsprozess als leicht verstandliche Erklarungen direkt in die
Daten integriert ausgibt. Zum Beispiel konnte ein selbstheilender Datenarbeiter
einen Bericht erstellen, der die spezifischen Dateninkonsistenzen aufzeigt, die
er identifiziert hat, die angewandten Korrekturen und die Begriindung fiir diese
Korrekturen.

3. Merkmalsbedeutung: KI-Modelle kénnen mit Informationen tiber die Bedeutung
verschiedener Merkmale oder Attribute im Datenkorrekturprozess als Teil ihrer
Direktiven ausgestattet werden. Diese Direktiven konnen wiederum den
menschlichen Interessenvertretern zuginglich gemacht werden. Durch die
Identifizierung der Schliisselfaktoren, die die Entscheidungen des Modells
beeinflussen, konnen Interessenvertreter Einblicke in die Begriindung der
Korrekturen gewinnen und deren Giiltigkeit bewerten.

4. Protokollierung wund Priifung: Die Implementierung umfassender
Protokollierungs- und Prifmechanismen ist entscheidend fir die
Aufrechterhaltung der Transparenz im selbstheilenden Datenprozess. Jede
von KI-Modellen vorgenommene Datenkorrektur sollte protokolliert werden,
einschliefflich der urspriinglichen Daten, der korrigierten Daten und der
spezifischen durchgefithrten Aktionen. Dieser Priifpfad ermoglicht eine
retrospektive Analyse und bietet eine klare Aufzeichnung der an den Daten
vorgenommenen Anderungen.

5. Mensch-in-der-Schleife-Ansatz: Die Einbindung eines Mensch-in-der-
Schleife-Ansatzes kann die Erklarbarkeit und Transparenz von selbstheilenden
Datentechniken verbessern. Durch die Einbeziehung menschlicher Experten
in die Uberprifung und Validierung von Kl-generierten Korrekturen konnen
Organisationen sicherstellen, dass die Korrekturen mit dem Doméanenwissen und

den geschéftlichen Anforderungen iibereinstimmen. Die menschliche Aufsicht
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figt eine zusitzliche Ebene der Verantwortlichkeit hinzu und erméglicht die
Identifizierung potenzieller Verzerrungen oder Fehler in den KI-Modellen.

6. Kontinuierliche Uberwachung und Bewertung: Die regelméfige Uberwachung
und Bewertung der Leistung von selbstheilenden Datentechniken ist wesentlich
fur die Aufrechterhaltung von Transparenz und Vertrauen. Durch die
Beurteilung der Genauigkeit und Effektivitat der KI-Modelle im Laufe der
Zeit konnen Organisationen Abweichungen oder Anomalien identifizieren
und Korrekturmainahmen ergreifen. Kontinuierliche Uberwachung hilft
sicherzustellen, dass der selbstheilende Datenprozess zuverlassig bleibt und mit

den gewiinschten Ergebnissen iibereinstimmt.

Erklarbarkeit und Transparenz sind kritische Uberlegungen bei der Implementierung
von selbstheilenden Datentechniken. Durch die Bereitstellung klarer Erklarungen fiir
Datenkorrekturen, die Aufrechterhaltung umfassender Priifpfade und die Einbeziehung
menschlicher Aufsicht konnen Organisationen Vertrauen in den selbstheilenden
Datenprozess aufbauen und sicherstellen, dass die an den Daten vorgenommenen

Anderungen gerechtfertigt und mit den Geschéftszielen abgestimmt sind.

Es ist wichtig, ein Gleichgewicht zwischen den Vorteilen der Automatisierung und
dem Bedarf an Transparenz zu finden. Wahrend selbstheilende Datentechniken die
Datenqualitat und Effizienz erheblich verbessern konnen, sollte dies nicht auf Kosten der
Sichtbarkeit und Kontrolle iiber den Datenkorrekturprozess gehen. Durch die Gestaltung
selbstheilender Datenarbeiter mit Fokus auf Erklarbarkeit und Transparenz koénnen
Organisationen die Kraft der KI nutzen und gleichzeitig das notwendige Maf} an

Verantwortlichkeit und Vertrauen in die Daten aufrechterhalten.

Unbeabsichtigte Folgen

Wiahrend selbstheilende Datentechniken darauf abzielen, die Datenqualitdt und
-konsistenz zu verbessern, ist es wichtig, sich der méglichen unbeabsichtigten Folgen

bewusst zu sein. Automatisierte Korrekturen koénnen, wenn sie nicht sorgfiltig
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konzipiert und tiberwacht werden, unbeabsichtigt die Bedeutung oder den Kontext der

Daten verandern und zu nachgelagerten Problemen fiithren.

Eines der Hauptrisiken selbstheilender Daten ist die Einfithrung von Verzerrungen
oder Fehlern im Datenkorrekturprozess. KI-Modelle kénnen, wie jedes andere
Softwaresystem auch, Verzerrungen unterliegen, die in den Trainingsdaten vorhanden
sind oder durch die Gestaltung der Algorithmen eingefithrt werden. Wenn diese
Verzerrungen nicht identifiziert und gemildert werden, koénnen sie sich durch
den selbstheilenden Datenprozess fortpflanzen und zu verzerrten oder falschen

Datenanderungen fiihren.

Betrachten wir zum Beispiel einen selbstheilenden Datenarbeiter, der mit der
Korrektur von Inkonsistenzen in demografischen Kundendaten beauftragt ist.
Wenn das KI-Modell Voreingenommenheiten aus historischen Daten gelernt
hat, wie etwa die Verkniipfung bestimmter Berufe oder Einkommensniveaus mit
spezifischen Geschlechtern oder ethnischen Gruppen, konnte es falsche Annahmen
treffen und die Daten so modifizieren, dass diese Vorurteile verstirkt werden. Dies
kann zu ungenauen Kundenprofilen, fehlgeleiteten Geschiftsentscheidungen und

moglicherweise diskriminierenden Ergebnissen fiithren.

Eine weitere potenzielle unbeabsichtigte Folge ist der Verlust wertvoller Informationen
oder Kontexte wahrend des Datenkorrekturprozesses. Selbstheilende Datentechniken
konzentrieren sich oft darauf, Daten zu standardisieren und zu normalisieren, um
Konsistenz zu gewahrleisten. In manchen Fallen kénnen die urspriinglichen Daten
jedoch Nuancen, Ausnahmen oder kontextuelle Informationen enthalten, die firr das
Verstandnis des Gesamtbildes wichtig sind. Automatisierte Korrekturen, die blind eine
Standardisierung erzwingen, konnen diese wertvollen Informationen unbeabsichtigt

entfernen oder verschleiern.

Stellen Sie sich zum Beispiel einen selbstheilenden Datenarbeiter vor, der fiir die
Korrektur von Inkonsistenzen in medizinischen Aufzeichnungen zustandig ist. Wenn

der Arbeiter auf die Krankengeschichte eines Patienten mit einer seltenen Erkrankung
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oder einem ungewdohnlichen Behandlungsplan st683t, konnte er versuchen, die Daten an
ein haufigeres Muster anzupassen. Dabei konnten jedoch die spezifischen Details und
der Kontext verloren gehen, die fiir die genaue Darstellung der einzigartigen Situation
des Patienten entscheidend sind. Dieser Informationsverlust kann schwerwiegende

Auswirkungen auf die Patientenversorgung und medizinische Entscheidungsfindung

haben.

Um die Risiken unbeabsichtigter Folgen zu minimieren, ist es wichtig, bei der
Konzeption und Implementierung selbstheilender Datentechniken einen proaktiven

Ansatz zu verfolgen:

1. Griindliche Tests und Validierung: Vor dem Einsatz selbstheilender
Datenarbeiter in der Produktion ist es entscheidend, ihr Verhalten griindlich
anhand verschiedener Szenarien zu testen und zu validieren. Dies umfasst
Tests mit reprasentativen Datensatzen, die verschiedene Grenzfille, Ausnahmen
und potenzielle Voreingenommenheiten abdecken. Rigorose Tests helfen dabei,
unbeabsichtigte Folgen zu erkennen und zu beheben, bevor sie sich auf reale
Daten auswirken.

2. Kontinuierliche Uberwachung und Auswertung: Die Implementierung
kontinuierlicher Uberwachungs- und Auswertungsmechanismen ist wichtig,
um unbeabsichtigte Folgen im Laufe der Zeit zu erkennen und zu
minimieren. Die regelmaBige Uberpriifung der Ergebnisse selbstheilender
Datenprozesse, die Analyse der Auswirkungen auf nachgelagerte Systeme
und Entscheidungsfindungen sowie das Einholen von Feedback von
Stakeholdern koénnen helfen, negative Auswirkungen zu identifizieren und
zeitnahe Korrekturmainahmen einzuleiten. Wenn Thre Organisation iber
Betriebsdashboards verfiigt, ist es wahrscheinlich eine gute Idee, gut sichtbare
Metriken zu automatisierten Datenédnderungen hinzuzufiigen. Noch besser ist
es vermutlich, Alarme einzurichten, die bei groflen Abweichungen von der

normalen Datendnderungsaktivitit ausgelost werden!
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3. Menschliche Aufsicht und Intervention: Die Aufrechterhaltung menschlicher
Aufsicht und die Moglichkeit zur Intervention im selbstheilenden Datenprozess
ist entscheidend. Wahrend Automatisierung die Effizienz stark verbessern kann,
ist es wichtig, dass menschliche Experten die von KI-Modellen vorgenommenen
Korrekturen tberpriifen und validieren, besonders in kritischen oder sensiblen
Bereichen. Menschliches Urteilsvermogen und Fachwissen konnen helfen,

auftretende unbeabsichtigte Folgen zu erkennen und zu beheben.

4. Erklarbare KI (XAI) und Transparenz: Wie im vorherigen Abschnitt diskutiert,
kann die Einbindung erklarbarer KI-Techniken und die Gewahrleistung von
Transparenz im selbstheilenden Datenprozess dazu beitragen, unbeabsichtigte
Folgen zu minimieren. Durch die Bereitstellung klarer FErklarungen
fir Datenkorrekturen und die Fihrung umfassender Prifpfade konnen
Organisationen die Argumentation hinter den von KI-Modellen vorgenommenen
Anderungen besser verstehen und nachverfolgen.

5. Inkrementeller und iterativer Ansatz: Die Anwendung eines inkrementellen
und iterativen Ansatzes fiir selbstheilende Daten kann dazu beitragen, das Risiko
unbeabsichtigter Folgen zu minimieren. Anstatt automatisierte Korrekturen sofort
auf den gesamten Datensatz anzuwenden, beginnen Sie mit einer Teilmenge der
Daten und erweitern Sie den Umfang schrittweise, wenn sich die Techniken als
effektiv und zuverlissig erweisen. Dies erméglicht eine sorgfiltige Uberwachung
und Anpassung wahrend des Prozesses und reduziert die Auswirkungen
unbeabsichtigter Folgen.

6. Zusammenarbeit und Feedback: Die Einbindung von Stakeholdern aus
verschiedenen Bereichen und die Férderung von Zusammenarbeit und Feedback
wiahrend des selbstheilenden Datenprozesses kann helfen, unbeabsichtigte
Folgen zu erkennen und zu beheben. Das regelméafiige Einholen von Input
von Doménenexperten, Datenkonsumenten und Endnutzern kann wertvolle
Einblicke in die realen Auswirkungen der Datenkorrekturen liefern und mogliche

tibersehene Probleme aufzeigen.
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Durch die proaktive Bewaltigung des Risikos unbeabsichtigter Folgen und die
Implementierung geeigneter Schutzmafinahmen konnen Organisationen die
Vorteile selbstheilender Datentechniken nutzen und gleichzeitig potenzielle negative
Auswirkungen minimieren. Es ist wichtig, selbstheilende Daten als einen iterativen
und kollaborativen Prozess zu betrachten, der kontinuierlich tiberwacht, ausgewertet
und verfeinert wird, um sicherzustellen, dass sie mit den gewiinschten Ergebnissen

tibereinstimmen und die Integritat und Zuverlassigkeit der Daten gewahrleisten.

Bei der Erwégung des Einsatzes selbstheilender Datenmuster ist es wichtig, diese
Faktoren sorgfaltig zu evaluieren und die Vorteile gegen die potenziellen Risiken und
Einschrankungen abzuwigen. In manchen Féllen konnte ein hybrider Ansatz, der
automatisierte Korrekturen mit menschlicher Aufsicht und Intervention kombiniert, die

am besten geeignete Losung sein.

Es ist auch erwahnenswert, dass selbstheilende Datentechniken nicht als Ersatz fiir
robuste Datenvalidierung, Eingabebereinigung und Fehlerbehandlungsmechanismen
gesehen werden sollten. Diese grundlegenden Praktiken bleiben fiir die Gewahrleistung
der Datenintegritdt und -sicherheit von entscheidender Bedeutung. Selbstheilende
Daten sollten als ergédnzender Ansatz betrachtet werden, der diese bestehenden

Maf3inahmen erweitern und verbessern kann.

Letztendlich héngt die Entscheidung fiir den Einsatz selbstheilender Datenmuster von
den spezifischen Anforderungen, Einschrinkungen und Prioritaten Threr Anwendung
ab. Durch sorgfiltige Berticksichtigung der oben genannten Uberlegungen und deren
Abstimmung mit den Zielen und der Architektur Threr Anwendung kénnen Sie fundierte
Entscheidungen dariiber treffen, wann und wie selbstheilende Datentechniken effektiv

eingesetzt werden konnen.
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Muster der kontextbezogenen Inhaltsgenerierung nutzen die Leistungsfihigkeit von
Large Language Models (LLMs), um dynamische und kontextspezifische Inhalte
innerhalb von Anwendungen zu generieren. Diese Kategorie von Mustern erkennt
die Bedeutung der Bereitstellung personalisierter und relevanter Inhalte fiir Benutzer,
basierend auf deren spezifischen Bediirfnissen, Priferenzen und sogar fritheren sowie

aktuellen Interaktionen mit der Anwendung.

In diesem Ansatz bezieht sich “Inhalt” sowohl auf primére Inhalte (z.B. Blogbeitrige,

Artikel usw.) als auch auf Meta-Inhalte, wie etwa Empfehlungen zu priméren
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Inhalten.

Muster der kontextbezogenen Inhaltsgenerierung kénnen eine entscheidende Rolle
bei der Verbesserung Threr Benutzerinteraktionsniveaus spielen, mafigeschneiderte
Erfahrungen bieten und Aufgaben der Inhaltserstellung sowohl fiir Sie als auch fiir
Thre Benutzer automatisieren. Durch die Nutzung der in diesem Kapitel beschriebenen
Muster konnen Sie Anwendungen erstellen, die Inhalte dynamisch generieren und sich

in Echtzeit an den Kontext und die Eingaben anpassen.

Die Muster funktionieren durch die Integration von LLMs in die Ausgaben der
Anwendung, von der Benutzeroberfliche (manchmal als “Chrome” bezeichnet)
iber E-Mails und andere Benachrichtigungsformen bis hin zu allen Arten von

Inhaltsgenerierungspipelines.

Wenn ein Benutzer mit der Anwendung interagiert oder eine bestimmte Inhaltsanfrage
auslost, erfasst die Anwendung den relevanten Kontext, wie etwa Benutzerpraferenzen,
vorherige Interaktionen oder spezifische Eingabeaufforderungen. Diese kontextuellen
Informationen werden dann zusammen mit allen erforderlichen Vorlagen oder
Richtlinien in das LLM eingespeist und zur Erzeugung von Textausgaben verwendet,
die sonst entweder fest codiert, in einer Datenbank gespeichert oder algorithmisch

generiert werden miissten.

Die von LLMs generierten Inhalte konnen verschiedene Formen annehmen, wie
personalisierte Empfehlungen, dynamische Produktbeschreibungen, mafigeschneiderte
E-Mail-Antworten oder sogar vollstindige Artikel oder Blogbeitrage. Eine der
radikalsten Anwendungen dieser Inhalte, die ich vor iiber einem Jahr entwickelt
habe, ist die dynamische Generierung von UI-Elementen wie Formularbezeichnungen,

Tooltips und anderen Arten von erlauterndem Text.
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Personalisierung

Einer der wichtigsten Vorteile von Mustern der kontextbezogenen Inhaltsgenerierung
ist die Fahigkeit, hochgradig personalisierte Erfahrungen fiir Benutzer bereitzustellen.
Durch die Generierung von Inhalten basierend auf benutzerspezifischem Kontext
ermoglichen diese Muster Anwendungen, Inhalte auf die individuellen Interessen,

Praferenzen und Interaktionen der Benutzer zuzuschneiden.

Personalisierung geht tiber das einfache Einfiigen eines Benutzernamens in generische
Inhalte hinaus. Es beinhaltet die Nutzung des reichhaltigen Kontexts, der iiber jeden
Benutzer verfiigbar ist, um Inhalte zu generieren, die mit ihren spezifischen Bediirfnissen
und Wiinschen resonieren. Dieser Kontext kann eine Vielzahl von Faktoren umfassen,

wie:

1. Benutzerprofilinformationen: Auf der allgemeinsten Ebene der Anwendung
dieser Technik konnen demografische Daten, Interessen, Praferenzen und andere
Profilattribute genutzt werden, um Inhalte zu generieren, die mit dem Hintergrund
und den Eigenschaften des Benutzers iibereinstimmen.

2. Verhaltensdaten: Die vergangenen Interaktionen eines Benutzers mit der
Anwendung, wie angesehene Seiten, angeklickte Links oder gekaufte Produkte,
konnen wertvolle Einblicke in ihr Verhalten und ihre Interessen liefern. Diese
Daten konnen verwendet werden, um Inhaltsvorschlage zu generieren, die ihre
Interaktionsmuster widerspiegeln und ihre zukinftigen Bediirfnisse vorhersagen.

3. Kontextuelle Faktoren: Der aktuelle Kontext des Benutzers, wie Standort,
Gerat, Tageszeit oder sogar das Wetter, kann den Inhaltsgenerierungsprozess
beeinflussen. Beispielsweise konnte eine Reise-Anwendung {iiber einen KI-
Worker verfiigen, der personalisierte Empfehlungen basierend auf dem aktuellen
Standort des Benutzers und den vorherrschenden Wetterbedingungen generieren

kann.
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Durch die Nutzung dieser kontextuellen Faktoren ermoglichen Muster der
kontextbezogenen Inhaltsgenerierung Anwendungen, Inhalte bereitzustellen, die
sich fir jeden einzelnen Benutzer mafigeschneidert anfithlen. Diese Ebene der

Personalisierung hat mehrere bedeutende Vorteile:

1. Erhohte Interaktion: Personalisierte Inhalte fesseln die Aufmerksamkeit der
Benutzer und halten sie bei der Anwendung engagiert. Wenn Benutzer das Gefiihl
haben, dass die Inhalte relevant sind und direkt ihre Bediirfnisse ansprechen,
verbringen sie mit hoherer Wahrscheinlichkeit mehr Zeit mit der Interaktion mit
der Anwendung und der Erkundung ihrer Funktionen.

2. Verbesserte Benutzerzufriedenheit: Personalisierte Inhalte zeigen, dass
die Anwendung die einzigartigen Anforderungen des Benutzers versteht
und beriicksichtigt. Durch die Bereitstellung von Inhalten, die hilfreich,
informativ und auf ihre Interessen abgestimmt sind, kann die Anwendung die
Benutzerzufriedenheit steigern und eine stiarkere Verbindung zu ihren Benutzern
aufbauen.

3. Hohere Konversionsraten: Im Kontext von E-Commerce- oder Marketing-
Anwendungen konnen personalisierte Inhalte die Konversionsraten erheblich
beeinflussen. Indem Benutzern Produkte, Angebote oder Empfehlungen
prasentiert werden, die auf ihre Priferenzen und ihr Verhalten zugeschnitten
sind, kann die Anwendung die Wahrscheinlichkeit erhchen, dass Benutzer
gewiinschte Aktionen ausfithren, wie einen Kauf zu tatigen oder sich fiir einen

Dienst anzumelden.

Produktivitat

Muster der kontextbezogenen Inhaltsgenerierung konnen bestimmte Arten der
Produktivitat erheblich steigern, indem sie den Bedarf an manueller Inhaltsgenerierung

und -bearbeitung in kreativen Prozessen reduzieren. Durch die Nutzung der
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Leistungsfahigkeit von LLMs konnen Sie qualitativ hochwertige Inhalte im groflen
Maf3stab generieren und dabei Zeit und Aufwand sparen, die Thre Content-Ersteller

und Entwickler sonst fur mithsame manuelle Arbeit aufwenden miussten.

Traditionell miissen Content-Ersteller Inhalte recherchieren, schreiben, bearbeiten und
formatieren, um sicherzustellen, dass diese den Anforderungen der Anwendung und
den Erwartungen der Nutzer entsprechen. Dieser Prozess kann zeitaufwendig und

ressourcenintensiv sein, besonders wenn die Menge der Inhalte wichst.

Mit Mustern der kontextuellen Inhaltsgenerierung kann der Content-Erstellungsprozess
jedoch weitgehend automatisiert werden. LLMs konnen auf Basis der bereitgestellten
Prompts und Richtlinien koharente, grammatikalisch korrekte und kontextuell relevante

Inhalte generieren. Diese Automatisierung bietet mehrere Produktivitatsvorteile:

1. Reduzierter = manueller Aufwand: Durch die Delegation von
Inhaltsgenerierungsaufgaben an LLMs konnen sich Content-Ersteller
auf ubergeordnete Aufgaben wie Content-Strategie, Ideenfindung und
Qualitatssicherung konzentrieren. Sie konnen dem LLM den notwendigen
Kontext, Vorlagen und Richtlinien zur Verfiigung stellen und ihm die eigentliche
Inhaltsgenerierung tberlassen. Dies reduziert den manuellen Aufwand fir das
Schreiben und Bearbeiten und erméglicht es Content-Erstellern, produktiver und
effizienter zu arbeiten.

2. Schnellere Inhaltserstellung: LLMs konnen Inhalte viel schneller generieren als
menschliche Autoren. Mit den richtigen Prompts und Richtlinien kann ein LLM
mehrere Inhaltsstiicke in wenigen Sekunden oder Minuten produzieren. Diese
Geschwindigkeit erméglicht es Anwendungen, Inhalte in einem viel schnelleren
Tempo zu generieren und mit den Anforderungen der Nutzer und der sich standig

verandernden digitalen Landschaft Schritt zu halten.



Kontextbezogene Inhaltsgenerierung 200

Fithrt schnellere Inhaltserstellung zu einer “Tragik der Allmende” Situation, in der
das Internet in Inhalten ertrinkt, die niemand liest? Leider vermute ich, dass die

Antwort ja lautet.

3. Konsistenz und Qualitit: LLMs kénnen Inhalte problemlos so iiberarbeiten, dass
sie in Stil, Ton und Qualitat konsistent sind. Mit klaren Richtlinien und Beispielen
konnen bestimmte Arten von Anwendungen (z.B. Nachrichtenredaktionen,
PR etc.) sicherstellen, dass ihre von Menschen erstellten Inhalte mit ihrer
Markenstimme iibereinstimmen und den gewdiinschten Qualitatsstandards
entsprechen. Diese Konsistenz reduziert den Bedarf an umfangreichen
Uberarbeitungen und Korrekturen und spart Zeit und Aufwand im Content-
Erstellungsprozess.

4. Iteration und Optimierung: Muster der kontextuellen Inhaltsgenerierung
ermoglichen schnelle Iteration und Optimierung von Inhalten. Durch Anpassung
der Prompts, Vorlagen oder Richtlinien fir das LLM konnen Thre Anwendungen
schnell Inhaltsvariationen generieren und verschiedene Ansitze auf eine
automatisierte Weise testen, die in der Vergangenheit nie moglich war. Dieser
iterative Prozess ermdglicht schnelleres Experimentieren und Verfeinern von
Content-Strategien, was im Laufe der Zeit zu effektiveren und ansprechenderen
Inhalten fithrt. Diese spezielle Technik kann ein echter Game-Changer fiir
Anwendungen wie E-Commerce sein, die von Absprungraten und Engagement

leben oder sterben.
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Es ist wichtig zu beachten, dass Muster der kontextuellen Inhaltsgenerierung
’ zwar die Produktivitat erheblich steigern kénnen, aber den Bedarf an
menschlicher Beteiligung nicht vollstandig eliminieren. Content-Ersteller
und Redakteure spielen weiterhin eine entscheidende Rolle bei der
Definition der iibergeordneten Content-Strategie, der Anleitung des LLM
und der Sicherstellung der Qualitidt und Angemessenheit der generierten

Inhalte.

Durch die Automatisierung der eher repetitiven und zeitaufwendigen Aspekte der
Inhaltserstellung setzen Muster der kontextuellen Inhaltsgenerierung wertvolle
menschliche Zeit und Ressourcen frei, die fiir héherwertige Aufgaben eingesetzt
werden konnen. Diese gesteigerte Produktivitat ermdoglicht es Thnen, personalisierte
und ansprechendere Inhalte fiir Nutzer bereitzustellen und gleichzeitig die Workflows

der Inhaltserstellung zu optimieren.

Schnelle Iteration und Experimentierung

Muster der kontextuellen Inhaltsgenerierung ermoglichen es Ihnen, schnell zu iterieren
und mit verschiedenen Inhaltsvariationen zu experimentieren, was eine schnellere
Optimierung und Verfeinerung Ihrer Content-Strategie ermoglicht. Sie kénnen in
Sekundenschnelle mehrere Versionen von Inhalten generieren, indem Sie einfach den

Kontext, die Vorlagen oder die Richtlinien fiir das Modell anpassen.

Diese Fahigkeit zur schnellen Iteration bietet mehrere wichtige Vorteile:

1. Testen und Optimierung: Mit der Moglichkeit, schnell Inhaltsvariationen
zu generieren, konnen Sie einfach verschiedene Ansitze testen und deren
Wirksamkeit messen. Sie konnen zum Beispiel mehrere Versionen einer
Produktbeschreibung oder einer Marketing-Botschaft generieren, die jeweils auf
ein bestimmtes Nutzersegment oder einen bestimmten Kontext zugeschnitten

sind. Durch die Analyse von Nutzerinteraktionsmetriken wie Klickraten oder
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Konversionsraten konnen Sie die effektivsten Inhaltsvariationen identifizieren

und Thre Content-Strategie entsprechend optimieren.

2. A/B-Tests: Muster der kontextuellen Inhaltsgenerierung ermdéglichen nahtloses
A/B-Testing von Inhalten. Sie kénnen zwei oder mehr Variationen von Inhalten
generieren und diese zufallig verschiedenen Nutzergruppen prasentieren. Durch
den Vergleich der Leistung jeder Variation kénnen Sie feststellen, welche Inhalte
bei Threr Zielgruppe am besten ankommen. Dieser datengesteuerte Ansatz
ermoglicht es Thnen, fundierte Entscheidungen zu treffen und Ihre Inhalte
kontinuierlich zu verfeinern, um die Nutzerinteraktion zu maximieren und Thre
gewiinschten Ergebnisse zu erzielen.

3. Personalisierungsexperimente: Schnelle Iteration und Experimentierung
sind besonders wertvoll, wenn es um Personalisierung geht. Mit Mustern
der kontextuellen Inhaltsgenerierung koénnen Sie schnell personalisierte
Inhaltsvariationen basierend auf verschiedenen Nutzersegmenten, Praferenzen
oder Verhaltensweisen generieren. Durch das Experimentieren mit verschiedenen
Personalisierungsstrategien konnen Sie die effektivsten Ansitze identifizieren,
um einzelne Nutzer anzusprechen und mafigeschneiderte Erlebnisse zu bieten.

4. Anpassung an sich dndernde Trends: Die Fahigkeit zur schnellen Iteration
und zum Experimentieren ermoglicht es Ihnen, agil zu bleiben und sich an
verandernde Trends und Benutzerpriferenzen anzupassen. Wenn neue Themen,
Schliisselworter oder Benutzerverhalten auftauchen, konnen Sie schnell Inhalte
erstellen, die mit diesen Trends ubereinstimmen. Durch kontinuierliches
Experimentieren und Verfeinern Threr Inhalte konnen Sie relevant bleiben und
sich einen Wettbewerbsvorteil in der sich stdndig weiterentwickelnden digitalen
Landschaft sichern.

5. Kosteneffektives Experimentieren: Traditionelles Content-Experimentieren
erfordert oft erheblichen Zeit- und Ressourcenaufwand, da Content-
Ersteller verschiedene Variationen manuell entwickeln und testen miissen.

Mit Kontextbezogenen Inhaltsgenerierungsmustern werden die Kosten
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fir Experimente jedoch deutlich reduziert. Grofle Sprachmodelle konnen
Inhaltsvariationen schnell und in groflem Umfang generieren, sodass Sie eine
breite Palette von Ideen und Ansétzen erkunden konnen, ohne erhebliche Kosten

zu verursachen.

Um das Beste aus schneller Iteration und Experimentieren herauszuholen, ist es
wichtig, ein gut definiertes Experimentier-Framework zu haben. Dieses Framework

sollte Folgendes umfassen:

« Klare Ziele und Hypothesen fiir jedes Experiment

« Geeignete Metriken und Tracking-Mechanismen zur Messung der Content-
Performance

« Segmentierungs- und Targeting-Strategien, um sicherzustellen, dass relevante
Inhaltsvariationen den richtigen Benutzern bereitgestellt werden

« Analyse- und Berichtswerkzeuge zur Ableitung von Erkenntnissen aus den
experimentellen Daten

« Ein Prozess zur Integration von Erkenntnissen und Optimierungen in Ihre

Content-Strategie

Durch die Einbindung von schneller Iteration und Experimentieren kénnen Sie
Thre Inhalte kontinuierlich verfeinern und optimieren und sicherstellen, dass sie
ansprechend, relevant und effektiv bei der Erreichung der Ziele Threr Anwendung
bleiben. Dieser agile Ansatz zur Inhaltserstellung ermoglicht es Ihnen, der Entwicklung

voraus zu sein und auflergewdhnliche Benutzererfahrungen zu liefern.

Skalierbarkeit und Effizienz

Mit dem Wachstum von Anwendungen und der steigenden Nachfrage nach
personalisierten Inhalten ermoglichen kontextbezogene Inhaltsgenerierungsmuster

eine effiziente Skalierung der Inhaltserstellung. Grofle Sprachmodelle kénnen
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Inhalte fir eine grofie Anzahl von Benutzern und Kontexten gleichzeitig generieren,
ohne dass die personellen Ressourcen proportional erhoht werden mussen. Diese
Skalierbarkeit ermoglicht es Anwendungen, personalisierte Erlebnisse fir eine
wachsende Benutzerbasis bereitzustellen, ohne ihre Inhaltserstellungskapazititen zu

uiberlasten.

Beachten Sie, dass kontextbezogene Inhaltsgenerierung effektiv zur
P Internationalisierung Ihrer Anwendung “im laufenden Betrieb” verwendet
werden kann. Tatsachlich ist genau das, was ich mit meinem Instant18n Gem
gemacht habe, um Olympia in mehr als einem halben Dutzend Sprachen

bereitzustellen, obwohl wir noch nicht einmal ein Jahr alt sind.

Kl-gestiitzte Lokalisierung

Wenn Sie mir einen Moment der Prahlerei erlauben: Ich denke, dass meine Instant18n-
Bibliothek fiir Rails-Anwendungen ein bahnbrechendes Beispiel fiir das Muster der
“Kontextbezogenen Inhaltsgenerierung” in Aktion ist und das transformative Potenzial
von KI in der Anwendungsentwicklung zeigt. Dieses Gem nutzt die Leistungsfahigkeit
von OpenAls GPT-Sprachmodell, um die Art und Weise zu revolutionieren, wie

Internationalisierung und Lokalisierung in Rails-Anwendungen gehandhabt werden.

Traditionell erfordert die Internationalisierung einer Rails-Anwendung die manuelle
Definition von Ubersetzungsschliisseln und die Bereitstellung entsprechender
Ubersetzungen fiir jede unterstiitzte Sprache. Dieser Prozess kann zeitaufwindig,
ressourcenintensiv und anfillig firr Inkonsistenzen sein. Mit dem Instant18n Gem wird

das Paradigma der Lokalisierung jedoch vollstandig neu definiert.

Durch die Integration eines grofien Sprachmodells erméglicht das Instant18n Gem die
Generierung von Ubersetzungen im laufenden Betrieb, basierend auf dem Kontext und

der Bedeutung des Textes. Anstatt sich auf vordefinierte Ubersetzungsschliissel und
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statische Ubersetzungen zu verlassen, iibersetzt das Gem Texte dynamisch mithilfe der

KL Dieser Ansatz bietet mehrere wichtige Vorteile:

Das

. Nahtlose Lokalisierung: Mit dem Instant18n Gem miissen Entwickler keine

Ubersetzungsdateien fiir jede unterstiitzte Sprache mehr manuell definieren
und pflegen. Das Gem generiert automatisch Ubersetzungen basierend
auf dem bereitgestellten Text und der gewiinschten Zielsprache, was den

Lokalisierungsprozess miihelos und nahtlos macht.

. Kontextuelle Genauigkeit: KI kann geniigend Kontext erhalten, um die Nuancen

des zu tbersetzenden Textes zu erfassen. Sie kann den umgebenden Kontext,
Redewendungen und kulturelle Referenzen berticksichtigen, um Ubersetzungen

zu generieren, die prazise, natiirlich klingend und kontextuell angemessen sind.

. Umfangreiche Sprachunterstiitzung: Das Instant18n Gem nutzt die

umfassenden Kenntnisse und linguistischen Fahigkeiten von GPT und
ermoglicht Ubersetzungen in eine grofle Auswahl an Sprachen. Von gingigen
Sprachen wie Spanisch und Franzosisch bis hin zu selteneren oder fiktiven
Sprachen wie Klingonisch und Elbisch kann das Gem eine Vielzahl von

Ubersetzungsanforderungen bewiltigen.

. Flexibilitit und Kreativitit: Das Gem geht iber traditionelle

Sprachiibersetzungen hinaus und ermoéglicht kreative und unkonventionelle
Lokalisierungsoptionen. Entwickler konnen Text in verschiedene Stile, Dialekte
oder sogar fiktive Sprachen tibersetzen und er6ffnen damit neue Moglichkeiten

fiir einzigartige Benutzererlebnisse und ansprechende Inhalte.

. Leistungsoptimierung: Das Instant18n Gem integriert Caching-Mechanismen

zur Verbesserung der Leistung und Reduzierung des Overheads bei wiederholten
Ubersetzungen. Ubersetzte Texte werden zwischengespeichert, sodass
nachfolgende Anfragen fiir dieselbe Ubersetzung schnell und ohne redundante

API-Aufrufe bereitgestellt werden konnen.

Instant18n Gem veranschaulicht die Leistungsfahigkeit des Musters
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“Kontextbezogene Inhaltsgenerierung”, indem es KI nutzt, um lokalisierte Inhalte
dynamisch zu generieren. Es zeigt, wie KI in die Kernfunktionalitat einer Rails-
Anwendung integriert werden kann und dabei die Art und Weise verandert, wie

Entwickler an Internationalisierung und Lokalisierung herangehen.

Durch die Eliminierung der Notwendigkeit manueller Ubersetzungsverwaltung und
die Ermoglichung von Echtzeit-Ubersetzungen basierend auf dem Kontext spart das
Instant18n Gem Entwicklern erheblich Zeit und Aufwand. Es erméglicht ihnen, sich
auf die Entwicklung der Kernfunktionen ihrer Anwendung zu konzentrieren, wahrend

sichergestellt wird, dass der Lokalisierungsaspekt nahtlos und prézise gehandhabt wird.

Die Bedeutung von Benutzertests und Feedback

Behalten Sie schlief}lich immer die Bedeutung von Benutzertests und Feedback im Auge.
Es ist entscheidend zu validieren, dass die kontextbezogene Inhaltsgenerierung die
Erwartungen der Benutzer erfiillt und mit den Zielen der Anwendung iibereinstimmt.
Entwickeln und verfeinern Sie generierte Inhalte kontinuierlich basierend auf
Benutzereinblicken und Analysen. Wenn Sie dynamische Inhalte in einem Umfang
generieren, der eine manuelle Validierung durch Sie und Ihr Team unméglich macht,
sollten Sie Feedback-Mechanismen einbauen, die es Benutzern ermdglichen, seltsame
oder falsche Inhalte zu melden, zusammen mit einer Erkldrung warum. Dieses wertvolle
Feedback kann sogar an einen KI-Worker weitergeleitet werden, der damit beauftragt

ist, Anpassungen an der Komponente vorzunehmen, die den Inhalt generiert hat!
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Aufmerksamkeit ist heutzutage ein so knappes Gut, dass effektives Nutzerengagement

inzwischen Softwareerlebnisse erfordert, die nicht nur nahtlos und intuitiv,
sondern auch hochgradig auf individuelle Bediirfnisse, Praferenzen und Kontexte
zugeschnitten sind. Infolgedessen stehen Designer und Entwickler zunehmend vor der
Herausforderung, Benutzeroberfliachen zu erstellen, die sich im groflen Mafistab an die

einzigartigen Anforderungen jedes Nutzers anpassen konnen.

Generative Ul (GenU]) ist ein wahrhaft revolutionirer Ansatz fir das Design von
Benutzeroberflichen, der die Leistungsfihigkeit von Large Language Models (LLMs)
nutzt, um hochgradig personalisierte und dynamische Nutzererlebnisse in Echtzeit zu
erstellen. Ich wollte Thnen in diesem Buch unbedingt zumindest eine Einfithrung in
GenUI geben, da ich glaube, dass es eine der vielversprechendsten neuen Moglichkeiten
ist, die derzeit im Bereich des Anwendungsdesigns und der Frameworks existieren. Ich

bin iiberzeugt, dass in dieser speziellen Nische Dutzende oder mehr neue erfolgreiche
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kommerzielle und Open-Source-Projekte entstehen werden.

Im Kern kombiniert GenUI die Prinzipien der Kontextbasierten Inhaltsgenerierung
mit fortschrittlichen KI-Techniken, um Benutzeroberflachen-Elemente wie Text, Bilder
und Layouts dynamisch zu generieren, basierend auf einem tiefgehenden Verstindnis
des Nutzerkontexts, der Praferenzen und Ziele. GenUI ermoglicht es Designern und
Entwicklern, Schnittstellen zu erstellen, die sich als Reaktion auf Nutzerinteraktionen
anpassen und weiterentwickeln und damit ein Mafl an Personalisierung bieten, das

bisher unerreichbar war.

GenUI stellt eine grundlegende Verdnderung in unserem Ansatz zum Design von
Benutzeroberflachen dar. Statt fiir die Masse zu designen, ermoglicht GenUI das Design
fir den Einzelnen. Personalisierte Inhalte und Schnittstellen haben das Potenzial,
Nutzererlebnisse zu schaffen, die bei jedem Nutzer auf einer tieferen Ebene resonieren

und dadurch Engagement, Zufriedenheit und Loyalitit steigern.

Als Technologie an vorderster Front ist der Ubergang zu GenUI voller konzeptioneller
und praktischer Herausforderungen. Die Integration von KI in den Designprozess und
die Sicherstellung, dass die generierten Schnittstellen nicht nur personalisiert, sondern
auch nutzbar, zugénglich und mit dem Gesamtmarkenauftritt und der Nutzererfahrung
tibereinstimmen - all diese Herausforderungen machen GenUI zu einer Aufgabe fiir
die wenigen, nicht die vielen. Dariiber hinaus wirft der Einsatz von KI Fragen zum
Datenschutz, zur Transparenz und moglicherweise sogar zu ethischen Implikationen

auf.

Trotz der Herausforderungen haben personalisierte Erlebnisse im groflen Mafistab
die Kraft, die Art und Weise, wie wir mit digitalen Produkten und Dienstleistungen
interagieren, vollstandig zu transformieren. Es er6ffnet Moglichkeiten zur Schaffung
inklusiver und zugénglicher Schnittstellen, die den vielfaltigen Bediirfnissen der Nutzer

gerecht werden, unabhéngig von ihren Fahigkeiten, Hintergriinden oder Praferenzen.

In diesem Kapitel werden wir das Konzept von GenUI erkunden und einige

charakteristische Merkmale, zentrale Vorteile und potenzielle Herausforderungen
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untersuchen. Wir beginnen mit der grundlegendsten und zuginglichsten Form von
GenUL: der Generierung von Textkopien fir ansonsten traditionell gestaltete und

implementierte Benutzeroberflachen.

Generierung von Texten fur

Benutzeroberflachen

Textelemente, die in der Benutzeroberfliche Ihrer Anwendung existieren, wie
Formularfelder, Tooltips und erklirende Texte, sind typischerweise fest in den
Templates oder UI-Komponenten codiert und bieten allen Nutzern ein konsistentes, aber
generisches Erlebnis. Mithilfe von kontextbasierten Inhaltsgenerierungsmustern kénnen
Sie diese statischen Elemente in dynamische, kontextbewusste und personalisierte

Komponenten umwandeln.

Personalisierte Formulare

Formulare sind ein allgegenwartiger Bestandteil von Web- und Mobile-Anwendungen
und dienen als priméres Mittel zur Erfassung von Nutzereingaben. Traditionelle
Formulare bieten jedoch oft ein generisches und unpersonliches Erlebnis mit
Standardbeschriftungen und -feldern, die nicht immer mit dem spezifischen
Kontext oder den Bedirfnissen des Nutzers tbereinstimmen. Nutzer fiilllen mit
hoherer Wahrscheinlichkeit Formulare aus, die auf ihre Bedurfnisse und Praferenzen

zugeschnitten sind, was zu hoheren Konversionsraten und grofierer Nutzerzufriedenheit

fuhrt.

Es ist jedoch wichtig, ein Gleichgewicht zwischen Personalisierung und Konsistenz zu
finden. Wahrend die Anpassung von Formularen an einzelne Nutzer vorteilhaft sein
kann, ist es entscheidend, ein gewisses Mafy an Vertrautheit und Vorhersehbarkeit zu
bewahren. Nutzer sollten Formulare auch mit personalisierten Elementen noch leicht

erkennen und navigieren konnen.
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Hier sind einige Ideen fiir personalisierte Formulare zur Inspiration:

Kontextbezogene Feldvorschlage

GenUI kann die vorherigen Interaktionen, Praferenzen und Daten des Nutzers
analysieren, um intelligente Feldvorschlige als Vorhersagen anzubieten. Wenn der
Nutzer beispielsweise zuvor seine Lieferadresse eingegeben hat, kann das Formular
die relevanten Felder automatisch mit seinen gespeicherten Informationen ausfiillen.
Dies spart nicht nur Zeit, sondern zeigt auch, dass die Anwendung die Praferenzen des

Nutzers versteht und sich daran erinnert.

Moment mal, ist diese Technik nicht auch ohne KI-Einsatz moglich? Natiirlich, aber der
Reiz, solche Funktionalitit mit KI zu steuern, liegt in zweierlei Hinsicht: 1) wie einfach
sie sich implementieren lasst und 2) wie widerstandsfahig sie ist, wihrend sich Thre

Benutzeroberflache im Laufe der Zeit verandert und weiterentwickelt.

Lassen Sie uns einen Service fiir unser theoretisches Auftragsabwicklungssystem

erstellen, der versucht, proaktiv die richtige Lieferadresse fiir den Benutzer auszufiillen.

class OrderShippingAddressSubscriber
include Raix: :ChatCompletion

attr_accessor :order

delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address

for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear
transcript << { system: DIRECTIVE }
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transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
# extract the shipping address from the response. ..
# . ..and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

def order_history
customer .orders.successful .1imit(100) .map do |order|

{
date: order .date,
description: order.description,
shipping_address: order.shipping_address
}
end
end

end

Dieses Beispiel ist sehr vereinfacht, sollte aber fiir die meisten Falle funktionieren. Die
Idee ist es, die KI auf die gleiche Weise eine Vermutung anstellen zu lassen wie ein
Mensch es tun wiirde. Um zu verdeutlichen, wovon ich spreche, betrachten wir einige

Beispieldaten:
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Order History:

[

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":

"789 Suburb St, Quietville"},
{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",

"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},
{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",

"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

212
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Ist dir das Muster in den Daten aufgefallen? Ich garantiere dir, das ist ein Kinderspiel fiir
ein LLM. Zur Demonstration fragen wir GPT-4, was die wahrscheinlichste Lieferadresse

fiir ein “Thermometer” ist.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction
essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Wenn Sie denken, dass es tibertrieben ist, ein teures Modell wie GPT-4 fiir diese Aufgabe
zu verwenden, haben Sie Recht! Ich habe denselben Prompt mit Mistral 7B Instruct
getestet, und es lieferte die folgende Antwort mit 75 Token pro Sekunde, zu minimalen

Kosten von 0,000218 USD.
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Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Ist der Aufwand und die Kosten dieser Technik es wert, um ein Checkout-Erlebnis
magischer zu gestalten? Fiir viele Online-Héndler auf jeden Fall. Und wie es aussieht,
werden die Kosten fiir KI-Berechnungen nur noch weiter sinken, besonders bei den

Anbietern von Open-Source-Modell-Hosting, die sich in einem Preiskampf befinden.

Verwenden Sie ein Prompt Template und StructuredlO zusammen mit

Response Fencing, um diese Art von Chat-Completion zu optimieren.

Adaptive Feldanordnung

Die Reihenfolge, in der Formularfelder prasentiert werden, kann einen erheblichen
Einfluss auf das Benutzererlebnis und die Abschlussquoten haben. Mit GenUI kénnen
Sie die Feldanordnung dynamisch an den Kontext des Benutzers und die Wichtigkeit
jedes Feldes anpassen. Wenn ein Benutzer beispielsweise ein Registrierungsformular
fir eine Fitness-App ausfiillt, konnte das Formular Felder priorisieren, die mit seinen
Fitnesszielen und Préaferenzen zusammenhéangen, wodurch der Prozess relevanter und

ansprechender wird.
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Personalisierte Microcopy

Der Anleitungstext, Fehlermeldungen und andere Microcopy in Verbindung mit
Formularen konnen ebenfalls mit GenUI personalisiert werden. Anstatt generische
Fehlermeldungen wie “Ungiiltige E-Mail-Adresse” anzuzeigen, konnen Sie hilfreichere
und kontextbezogene Nachrichten generieren, wie zum Beispiel “Bitte geben Sie
eine giltige E-Mail-Adresse ein, um Ihre Bestellbestitigung zu erhalten” Diese
personalisierten Anpassungen kénnen das Formularerlebnis benutzerfreundlicher und

weniger frustrierend gestalten.

Personalisierte Validierung

Ahnlich wie bei der Personalisierten Microcopy kénnten Sie KI nutzen, um das Formular
auf eine scheinbar magische Weise zu validieren. Stellen Sie sich vor, eine KI validiert
ein Benutzerprofil-Formular und sucht nach méglichen Fehlern auf einer semantischen

Ebene.
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Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

---------------- n

) Nice work. This is an excellent password.

Abbildung 9. Konnen Sie die semantische Validierung erkennen?

Progressive Disclosure

GenUI kann intelligent bestimmen, welche Formularfelder basierend auf dem
Benutzerkontext essentiell sind und zusatzliche Felder nach Bedarf schrittweise
einblenden. Diese Progressive-Disclosure-Technik hilft dabei, die kognitive Belastung

zu reduzieren und macht den Prozess des Formularausfiillens tiberschaubarer. Wenn
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sich ein Benutzer beispielsweise fiir ein Basis-Abonnement anmeldet, kann das
Formular zunéchst nur die wesentlichen Felder anzeigen, und wahrend der Benutzer
fortschreitet oder bestimmte Optionen auswahlt, konnen zusétzliche relevante Felder

dynamisch eingefiihrt werden.

Kontextbezogener Erklarungstext

Tooltips werden haufig verwendet, um Benutzern zusitzliche Informationen oder
Anleitungen zu geben, wenn sie iber bestimmte Elemente hovern oder mit ihnen
interagieren. Mit einem “Kontextbezogenen Content-Generierungs’-Ansatz kénnen
Sie Tooltips erstellen, die sich an den Kontext des Benutzers anpassen und relevante
Informationen liefern. Wenn ein Benutzer beispielsweise eine komplexe Funktion
erkundet, kann der Tooltip personalisierte Tipps oder Beispiele basierend auf seinen

vorherigen Interaktionen oder seinem Kenntnisstand anbieten.

Erkldrungstexte, wie Anweisungen, Beschreibungen oder Hilfemeldungen, kénnen
dynamisch basierend auf dem Benutzerkontext generiert werden. Anstatt generische
Erklarungen zu présentieren, konnen Sie LLMs verwenden, um Text zu generieren, der
auf die spezifischen Bediirfnisse oder Fragen des Benutzers zugeschnitten ist. Wenn ein
Benutzer beispielsweise bei einem bestimmten Schritt in einem Prozess Schwierigkeiten
hat, kann der Erklarungstext personalisierte Anleitungen oder Fehlerbehebungstipps

bereitstellen.

Microcopy bezieht sich auf die kleinen Textelemente, die Benutzer durch Thre
Anwendung fithren, wie Schaltflichenbeschriftungen, Fehlermeldungen oder
Bestatigungsaufforderungen. Durch die Anwendung des Kontextbezogenen Content-
Generierungs-Ansatzes auf Microcopy konnen Sie eine adaptive Benutzeroberflache
erstellen, die auf die Aktionen des Benutzers reagiert und relevanten und hilfreichen
Text bereitstellt. Wenn ein Benutzer beispielsweise im Begriff ist, eine kritische Aktion
durchzufiihren, kann die Bestitigungsaufforderung dynamisch generiert werden, um

eine klare und personalisierte Nachricht bereitzustellen.
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Personalisierte Erkldrungstexte und Tooltips konnen den Onboarding-Prozess fiir
neue Benutzer erheblich verbessern. Durch die Bereitstellung kontextspezifischer
Anleitungen und Beispiele konnen Sie Benutzern helfen, die Anwendung schnell zu
verstehen und zu navigieren, wodurch die Lernkurve reduziert und die Akzeptanz

erhoht wird.

Dynamische und kontextbezogene Chrome-Elemente konnen die Anwendung auch
intuitiver und ansprechender gestalten. Benutzer sind eher geneigt, mit Funktionen zu
interagieren und diese zu erkunden, wenn der begleitende Text auf ihre spezifischen

Bediirfnisse und Interessen zugeschnitten ist.

Bisher haben wir Ideen zur Verbesserung bestehender UI-Paradigmen mit KI behandelt,
aber wie steht es damit, die Art und Weise, wie Benutzeroberflichen gestaltet und

implementiert werden, auf radikalere Weise zu iiberdenken?

Definition der Generativen Ul

Im Gegensatz zum traditionellen UI-Design, bei dem Designer feste, statische
Schnittstellen erstellen, deutet GenUI auf eine Zukunft hin, in der unsere Software
flexible, personalisierte Erlebnisse bietet, die sich in Echtzeit entwickeln und anpassen
konnen. Jedes Mal, wenn wir eine Kl-gesteuerte Konversationsschnittstelle nutzen,
lassen wir die KI sich an die speziellen Bediirfnisse des Benutzers anpassen. GenUI
geht noch einen Schritt weiter, indem es diesen Grad der Anpassungsfahigkeit auf die

visuelle Schnittstelle der Software anwendet.

Der Grund, warum es heute moglich ist, mit GenUI-Ideen zu experimentieren, liegt
darin, dass grofe Sprachmodelle bereits Programmierung verstehen und ihr Basiswissen
Ul-Technologien und Frameworks umfasst. Die Frage ist also, ob grofie Sprachmodelle

zur Generierung von Ul-Elementen wie Text, Bildern, Layouts und sogar ganzen
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Schnittstellen genutzt werden konnen, die auf jeden einzelnen Benutzer zugeschnitten
sind. Das Modell kénnte angewiesen werden, verschiedene Faktoren zu beriicksichtigen,
wie etwa frithere Interaktionen des Benutzers, angegebene Praferenzen, demografische
Informationen und den aktuellen Nutzungskontext, um hochgradig personalisierte und

relevante Schnittstellen zu erstellen.

GenUI unterscheidet sich in mehreren wesentlichen Punkten vom traditionellen Design

von Benutzeroberflachen:

1. Dynamisch und Adaptiv: Traditionelles UI-Design beinhaltet die Erstellung
fester, statischer Schnittstellen, die fiir alle Benutzer gleich bleiben. Im Gegensatz
dazu ermoglicht GenUI Schnittstellen, die sich dynamisch an Benutzerbediirfnisse
und Kontext anpassen konnen. Das bedeutet, dass dieselbe Anwendung
verschiedenen Benutzern unterschiedliche Schnittstellen prasentieren kann oder
sogar demselben Benutzer in unterschiedlichen Situationen.

2. Personalisierung im groflen Maf3stab: Beim traditionellen Design ist die
Erstellung personalisierter Erlebnisse fiir jeden Benutzer oft aufgrund des
Zeit- und Ressourcenaufwands unpraktisch. GenUI hingegen ermdglicht
Personalisierung im groflen Maf3stab. Durch den Einsatz von KI konnen Designer
Schnittstellen erstellen, die sich automatisch an die einzigartigen Bediirfnisse und
Praferenzen jedes Benutzers anpassen, ohne manuell separate Schnittstellen fiir
jedes Benutzersegment entwickeln zu miissen.

3. Fokus auf Ergebnisse: Traditionelles UI-Design konzentriert sich oft auf die
Erstellung visuell ansprechender und funktionaler Schnittstellen. Wahrend diese
Aspekte auch bei GenUI wichtig bleiben, verlagert sich der Hauptfokus auf das
Erreichen gewiinschter Benutzerergebnisse. GenUI zielt darauf ab, Schnittstellen
zu erstellen, die fiir die spezifischen Ziele und Aufgaben jedes Benutzers optimiert
sind, wobei Benutzerfreundlichkeit und Effektivitit Vorrang vor rein asthetischen
Uberlegungen haben.

4. Kontinuierliches Lernen und Verbessern: GenUI-Systeme konnen basierend auf

Benutzerinteraktionen und Feedback kontinuierlich lernen und sich verbessern.
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Wihrend Benutzer mit den generierten Schnittstellen interagieren, kénnen die
KI-Modelle Daten iiber Benutzerverhalten, Priferenzen und Ergebnisse sammeln
und diese Informationen nutzen, um zukiinftige Schnittstellengenerationen
zu verfeinern und zu optimieren. Dieser iterative Lernprozess ermdglicht es
GenUI-Systemen, im Laufe der Zeit immer effektiver bei der Erfillung von

Benutzerbediirfnissen zu werden.

Es ist wichtig zu beachten, dass GenUI nicht dasselbe ist wie Kl-unterstiitzte
Designwerkzeuge, wie solche, die Vorschlage machen oder bestimmte Designaufgaben
automatisieren. Wahrend diese Werkzeuge bei der Optimierung des Designprozesses
hilfreich sein konnen, sind sie immer noch auf Designer angewiesen, die endgiltige
Entscheidungen treffen und statische Schnittstellen erstellen. Bei GenUI hingegen
tbernimmt das KI-System eine aktivere Rolle bei der tatsachlichen Generierung und

Anpassung von Schnittstellen basierend auf Benutzerdaten und Kontext.

GenUI stellt eine bedeutende Verdnderung in unserem Ansatz zum Design von
Benutzeroberflichen dar, weg von Einheitslosungen und hin zu hochgradig
personalisierten, adaptiven Erlebnissen. Durch die Nutzung der Kraft der KI hat
GenUI das Potenzial, die Art und Weise zu revolutionieren, wie wir mit digitalen
Produkten und Dienstleistungen interagieren, indem es Schnittstellen schafft, die fiir

jeden einzelnen Benutzer intuitiver, ansprechender und effektiver sind.

Beispiel

Um das Konzept von GenUI zu veranschaulichen, betrachten wir eine hypothetische
Fitness-Anwendung namens “FitAI”. Diese App zielt darauf ab, personalisierte
Trainingspléne und Erndhrungsberatung fiir Benutzer basierend auf ihren individuellen

Zielen, Fitnessleveln und Praferenzen bereitzustellen.

In einem traditionellen UI-Design-Ansatz hitte FitAl moglicherweise einen festen Satz

von Bildschirmen und Elementen, die fiir alle Benutzer gleich sind. Mit GenUI kénnte
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sich die Schnittstelle der App jedoch dynamisch an die einzigartigen Bediirfnisse und

den Kontext jedes Benutzers anpassen.

Dieser Ansatz ist fiir 2024 schwer vorstellbar und kénnte moglicherweise nicht einmal

einen angemessenen ROI haben, aber er ist moglich.

So konnte es funktionieren:

1. Onboarding:

Anstelle eines standardisierten Fragebogens verwendet FitAl eine
Konversations-KI, um Informationen iiber die Ziele, das aktuelle Fitnesslevel

und die Praferenzen des Benutzers zu sammeln.

Basierend auf dieser ersten Interaktion generiert die KI ein personalisiertes
Dashboard-Layout, das die fir die Ziele des Benutzers relevantesten

Funktionen und Informationen hervorhebt.

Die aktuelle KI-Technologie konnte iiber eine Auswahl von
Bildschirmkomponenten verfiigen, die sie zur Zusammenstellung des

personalisierten Dashboards verwenden kann.

Zukinftige KI-Technologie konnte die Rolle eines erfahrenen Ul-Designers

iibernehmen und das Dashboard tatsachlich von Grund auf neu erstellen.

2. Trainingsplaner:

Die Trainingsplaner-Schnittstelle wird von der KI speziell an das

Erfahrungsniveau und die verfiighbare Ausristung des Nutzers angepasst.

Fir einen Anfinger ohne Ausristung konnte sie einfache

Koérpergewichtsiibungen mit detaillierten Anleitungen und Videos anzeigen.

Fir einen fortgeschrittenen Nutzer mit Zugang zu einem Fitnessstudio

konnte sie komplexere Routinen mit weniger Erklarungen darstellen.

Der Inhalt des Trainingsplaners wird nicht einfach aus einer grofien
Ubergruppe gefiltert. Er kann spontan aus einer Wissensbasis generiert
werden, die mit Kontext abgefragt wird, der alles iiber den Nutzer Bekannte

einschlief3t.
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3. Fortschrittsverfolgung:

« Die Fortschrittsverfolgungsschnittstelle entwickelt sich basierend auf den

Zielen und Nutzungsmustern des Anwenders.

« Wenn ein Nutzer hauptsidchlich auf Gewichtsverlust fokussiert ist,
konnte die Oberfliche prominent eine Gewichtsentwicklungsgrafik und
Kalorienverbrauchsstatistiken anzeigen.

o Fir einen Nutzer, der Muskeln aufbaut, konnte sie Kraftzuwéachse und

Kérperzusammensetzungsinderungen hervorheben.

+ Die KI kann diesen Teil der Anwendung an den tatséchlichen Fortschritt
des Nutzers anpassen. Wenn der Fortschritt fiir eine Zeit lang stoppt, kann
die App in einen Modus wechseln, in dem sie versucht, den Nutzer dazu zu

bringen, die Griinde fiir den Riickschlag zu offenbaren, um sie zu beheben.

4. Erndhrungsberatung:

« Der Ernahrungsbereich passt sich an die Erndahrungspriferenzen und -
einschrankungen des Nutzers an.

» Fiir einen veganen Nutzer kénnte er pflanzliche Mahlzeitenvorschliage und
Proteinquellen anzeigen.

« Fir einen Nutzer mit Glutenunvertriglichkeit wiirde er automatisch

glutenhaltige Lebensmittel aus den Empfehlungen herausfiltern.

« Auch hier wird der Inhalt nicht aus einer riesigen Ubergruppe von
Mahlzeitendaten gezogen, die fur alle Nutzer gilt, sondern aus einer
Wissensbasis synthetisiert, die Informationen enthalt, die basierend auf der
spezifischen Situation und den Einschrankungen des Nutzers anpassbar
sind.

« Zum Beispiel werden Rezepte mit Zutatenspezifikationen generiert, die dem
sich standig andernden Kalorienbedarf des Nutzers entsprechen, wahrend

sich sein Fitnesslevel und seine Korperwerte entwickeln.

5. Motivationselemente:
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« Die motivierenden Inhalte und Benachrichtigungen der App werden
basierend auf dem Personlichkeitstyp des Nutzers und seiner Reaktion auf
verschiedene Motivationsstrategien personalisiert.

+ Einige Nutzer erhalten moéglicherweise ermutigende Nachrichten, wahrend

andere eher datengesteuerte Riickmeldungen bekommen.

In diesem Beispiel ermoglicht GenUT FitAl, eine hochgradig personalisierte Erfahrung
fir jeden Nutzer zu schaffen, was potenziell das Engagement, die Zufriedenheit und die
Wabhrscheinlichkeit der Erreichung von Fitnesszielen erhoht. Die Schnittstellenelemente,
Inhalte und sogar die “Personlichkeit” der App passen sich an, um den individuellen

Bediirfnissen und Préferenzen jedes Nutzers optimal zu dienen.

Der Wandel zum ergebnisorientierten Design

GenUI stellt einen fundamentalen Wandel im Ansatz des Benutzeroberflachen-Designs
dar, der sich von einem Fokus auf die Erstellung spezifischer Schnittstellenelemente
zu einem ganzheitlicheren, ergebnisorientierten Ansatz bewegt. Dieser Wandel hat

mehrere wichtige Auswirkungen:
1. Fokus auf Nutzerziele:

+ Designer miissen intensiver iiber Nutzerziele und gewiinschte Ergebnisse
nachdenken, anstatt iiber spezifische Schnittstellenkomponenten.

+ Der Schwerpunkt wird darauf liegen, Systeme zu schaffen, die Schnittstellen
generieren konnen, die Nutzern effizient und effektiv bei der Erreichung
ihrer Ziele helfen.

+ Neue Ul-Frameworks werden entstehen, die KI-basierten Designern
die Werkzeuge geben, die sie benétigen, um Nutzererfahrungen
spontan und von Grund auf zu generieren, anstatt auf vordefinierte

Bildschirmspezifikationen zu setzen.
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2. Verinderte Rolle der Designer:

+ Designer werden sich von der Erstellung fester Layouts hin zur Definition
von Regeln, Einschrankungen und Richtlinien entwickeln, denen KI-Systeme
bei der Generierung von Schnittstellen folgen.

« Sie missen Fahigkeiten in Bereichen wie Datenanalyse, KI-Prompt-
Engineering und Systemdenken entwickeln, um GenUI-Systeme effektiv zu

steuern.

3. Bedeutung der Nutzerforschung:

+ Nutzerforschung wird in einem GenUI-Kontext noch wichtiger, da Designer
nicht nur Nutzerpraferenzen verstehen miissen, sondern auch, wie sich diese

Praferenzen und Bedurfnisse in verschiedenen Kontexten dndern.

« Kontinuierliche Nutzertests und Feedback-Schleifen werden essentiell
sein, um die Fahigkeit der KI zur Generierung effektiver Schnittstellen zu

verfeinern und zu verbessern.

4. Design fiir Variabilitit:

« Anstatt eine einzige “perfekte” Schnittstelle zu erstellen, miissen Designer
mehrere mogliche Variationen beriicksichtigen und sicherstellen, dass das
System angemessene Schnittstellen fir verschiedene Nutzerbediirfnisse

generieren kann.

+ Dies beinhaltet das Design fiir Randfille und die Sicherstellung, dass
die generierten Schnittstellen iiber verschiedene Konfigurationen hinweg

Benutzerfreundlichkeit und Zugénglichkeit bewahren.

Produktdifferenzierung erhalt neue Dimensionen, die unterschiedliche
Perspektiven auf Nutzerpsychologie und die Nutzung einzigartiger
Datensatze und Wissensbasen einbeziehen, die Wettbewerbern nicht zur

Verfiigung stehen.
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Herausforderungen und Uberlegungen

Wiahrend GenUI spannende Moglichkeiten bietet, bringt es auch mehrere

Herausforderungen und Uberlegungen mit sich:

1. Technische Einschrinkungen:

» Die aktuelle KI-Technologie hat trotz ihrer Fortschrittlichkeit noch
Einschrankungen beim Verstandnis komplexer Nutzerabsichten und der
Generierung wirklich kontextbewusster Schnittstellen.

» Leistungsprobleme im Zusammenhang mit der Echtzeit-Generierung von

Schnittstellenelementen, besonders auf weniger leistungsfahigen Geréten.

2. Datenanforderungen:

+ Je nach Anwendungsfall konnten effektive GenUI-Systeme erhebliche
Mengen an Nutzerdaten benétigen, um personalisierte Benutzeroberflachen
zu generieren.

« Die Herausforderungen bei der ethischen Beschaffung authentischer
Nutzerdaten werfen Bedenken hinsichtlich Datenschutz und Sicherheit
sowie moglicher Verzerrungen in den Daten auf, die zum Training von

GenUI-Modellen verwendet werden.

3. Benutzbarkeit und Konsistenz:

+ Zumindest bis sich die Praxis weitgehend durchgesetzt hat, koénnte
eine Anwendung mit sich stindig #ndernden Benutzeroberflichen zu
Benutzbarkeitsproblemen fithren, da Nutzer Schwierigkeiten haben

konnten, vertraute Elemente zu finden oder effizient zu navigieren.

+ Es wird entscheidend sein, eine Balance zwischen Personalisierung und der
Aufrechterhaltung einer konsistenten, erlernbaren Benutzeroberfliche zu

finden.
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4. Ubermiflige Abhingigkeit von KI:

« Es besteht das Risiko, Design-Entscheidungen zu sehr an KI-Systeme zu
delegieren, was zu uninspirierten, problematischen oder einfach fehlerhaften
Schnittstellenlosungen fithren kénnte.

+ Menschliche Aufsicht und die Moglichkeit, KI-generierte Designs zu

iibersteuern, werden in absehbarer Zukunft wichtig bleiben.

5. Bedenken zur Barrierefreiheit:

« Die Sicherstellung, dass dynamisch generierte Benutzeroberflichen
fur Nutzer mit Behinderungen zuginglich bleiben, stellt vollig neue
Herausforderungen dar, was angesichts des mangelhaften Niveaus der
Barrierefreiheit in typischen Systemen besorgniserregend ist.

« Andererseits konnten KI-Designer mit eingebauter Bericksichtigung der
Barrierefreiheit implementiert werden und Fahigkeiten zur spontanen
Erstellung barrierefreier Benutzeroberflachen entwickeln, dhnlich wie sie
UI fiir nicht-beeintrachtigte Nutzer erstellen.

+ In jedem Fall sollten GenUI-Systeme mit robusten Richtlinien und

Testprozessen fiir Barrierefreiheit entwickelt werden.

6. Nutzervertrauen und Transparenz:

« Nutzer konnten sich unwohl fithlen mit Benutzeroberflichen, die “zu viel”
iiber sie zu wissen scheinen oder sich auf unverstindliche Weise dndern.

+ Es wird wichtig sein, Transparenz dariiber zu schaffen, wie und
warum Benutzeroberflichen personalisiert werden, um Nutzervertrauen

aufzubauen.



Generative UI 227

Zukunftsausblick und Chancen

Die Zukunft von Generative UI (GenUI) verspricht eine revolutiondre Veranderung
in der Art und Weise, wie wir mit digitalen Produkten und Dienstleistungen
interagieren. Wahrend sich diese Technologie weiterentwickelt, kénnen wir einen
grundlegenden Wandel in der Art und Weise erwarten, wie Benutzeroberflichen
gestaltet, implementiert und erlebt werden. Ich denke, GenUI ist das Phanomen,
das unsere Software endlich in den Bereich dessen bringen wird, was heute als

Science-Fiction gilt.

Eine der spannendsten Aussichten von GenUI ist sein Potenzial, Barrierefreiheit in
einem Ausmafl zu verbessern, das iiber die blofle Sicherstellung hinausgeht, dass
Menschen mit schweren Behinderungen nicht vollig von der Nutzung Threr Software
ausgeschlossen werden. Durch die automatische Anpassung von Benutzeroberflachen
an individuelle Nutzerbediirfnisse konnte GenUI digitale Erlebnisse inklusiver machen
als je zuvor. Stellen Sie sich Benutzeroberflichen vor, die sich nahtlos anpassen,
um grofleren Text fiir jiingere oder sehbehinderte Nutzer oder vereinfachte Layouts
fiir Menschen mit kognitiven Einschrankungen bereitzustellen, ohne dass manuelle
Konfigurationen oder separate “barrierefreie” Versionen von Anwendungen erforderlich

sind.

Die Personalisierungsmoglichkeiten von GenUI werden voraussichtlich zu einer
erhohten Nutzereinbindung, -zufriedenheit und -loyalitiat bei einer breiten Palette
digitaler Produkte fithren. Wenn Benutzeroberflichen besser auf individuelle
Praferenzen und Verhaltensweisen abgestimmt sind, werden Nutzer digitale Erlebnisse
intuitiver und angenehmer finden, was potenziell zu tieferen und bedeutungsvolleren

Interaktionen mit Technologie fiihrt.

GenUI hat auch das Potenzial, den FEinarbeitungsprozess fiir neue Nutzer zu
transformieren. Durch die Schaffung intuitiver, personalisierter Erstnutzererfahrungen,

die sich schnell an das Expertenniveau jedes Nutzers anpassen, konnte GenUI die
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Lernkurve fir neue Anwendungen deutlich reduzieren. Dies koénnte zu schnelleren
Adoptionsraten und erhohtem Nutzervertrauen bei der Erkundung neuer Funktionen

fuhren.

Eine weitere spannende Moglichkeit ist die Fahigkeit von GenUI, eine konsistente
Nutzererfahrung tiber verschiedene Gerite und Plattformen hinweg zu gewéhrleisten
und dabei fiir jeden spezifischen Nutzungskontext zu optimieren. Dies konnte
die langjdhrige Herausforderung losen, kohérente Erlebnisse in einer zunehmend
fragmentierten Geratelandschaft zu bieten, von Smartphones und Tablets bis hin
zu Desktop-Computern und aufkommenden Technologien wie Augmented-Reality-

Brillen.

Die datengetriebene Natur von GenUI eroffnet Moglichkeiten fiir schnelle Iteration
und Verbesserung im Ul-Design. Durch die Sammlung von Echtzeitdaten dariiber,
wie Nutzer mit generierten Benutzeroberflachen interagieren, konnen Designer und
Entwickler beispiellose Einblicke in Nutzerverhalten und -préferenzen gewinnen. Diese
Feedback-Schleife konnte zu kontinuierlichen Verbesserungen im Ul-Design fiihren, die
von tatsachlichen Nutzungsmustern statt von Annahmen oder begrenzten Nutzertests

getrieben werden.

Um sich auf diesen Wandel vorzubereiten, miissen Designer ihre Fahigkeiten und
Denkweisen weiterentwickeln. Der Fokus wird sich von der Erstellung fester Layouts
hin zur Entwicklung umfassender Design-Systeme und Richtlinien verschieben, die die
KI-gesteuerte Schnittstellengenerierung informieren konnen. Designer werden ein tiefes
Verstandnis von Datenanalyse, KI-Technologien und Systemdenken entwickeln miissen,

um GenUI-Systeme effektiv zu steuern.

Dariiber hinaus werden Designer, da GenUI die Grenzen zwischen Design und
Technologie verwischt, enger mit Entwicklern und Data Scientists zusammenarbeiten
miissen. Dieser interdisziplindre Ansatz wird entscheidend sein, um GenUI-Systeme
zu schaffen, die nicht nur visuell ansprechend und benutzerfreundlich, sondern auch

technisch robust und ethisch einwandfrei sind.
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Die ethischen Implikationen von GenUI werden mit der Weiterentwicklung der
Technologie ebenfalls in den Vordergrund riicken. Designer werden eine entscheidende
Rolle bei der Entwicklung von Rahmenwerken fiir den verantwortungsvollen Einsatz
von KI im Schnittstellendesign spielen und dabei sicherstellen, dass Personalisierung
die Benutzererfahrung verbessert, ohne dabei die Privatsphire zu gefahrden oder das

Nutzerverhalten auf unethische Weise zu manipulieren.

Mit Blick auf die Zukunft bietet GenUI sowohl spannende Moglichkeiten als auch
erhebliche Herausforderungen. Die Technologie hat das Potenzial, intuitivere,
effizientere und zufriedenstellendere digitale Erfahrungen fir Nutzer weltweit zu
schaffen. Wahrend Designer sich anpassen und neue Fahigkeiten erwerben miissen,
bietet sich auch eine beispiellose Gelegenheit, die Zukunft der Mensch-Computer-
Interaktion auf tiefgreifende und bedeutungsvolle Weise zu gestalten. Der Weg zu
vollstandig entwickelten GenUI-Systemen wird zweifellos komplex sein, aber die
potenziellen Vorteile im Hinblick auf verbesserte Benutzererfahrungen und digitale

Barrierefreiheit machen es zu einer Zukunft, fur die es sich zu streben lohnt.



Intelligente
Workflow-Orchestrierung

Im Bereich der Anwendungsentwicklung spielen Workflows eine entscheidende Rolle

bei der Definition, wie Aufgaben, Prozesse und Benutzerinteraktionen strukturiert
und ausgefithrt werden. Mit zunehmender Komplexitit von Anwendungen und
steigenden Benutzererwartungen wird der Bedarf an intelligenter und adaptiver

Workflow-Orchestrierung immer deutlicher.

Der Ansatz der “Intelligenten Workflow-Orchestrierung” konzentriert sich darauf,
KI-Komponenten zu nutzen, um komplexe Workflows innerhalb von Anwendungen
dynamisch zu orchestrieren und zu optimieren. Das Ziel ist es, Anwendungen zu
erstellen, die effizienter, reaktionsschneller und anpassungsfahiger an Echtzeitdaten

und Kontext sind.
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In diesem Kapitel werden wir die wichtigsten Prinzipien und Muster erkunden,
die dem Ansatz der intelligenten Workflow-Orchestrierung zugrunde liegen. Wir
werden betrachten, wie KI eingesetzt werden kann, um Aufgaben intelligent zu leiten,
Entscheidungsfindung zu automatisieren und Workflows dynamisch an verschiedene
Faktoren wie Benutzerverhalten, Systemleistung und Geschéftsregeln anzupassen.
Anhand praktischer Beispiele und realer Szenarien werden wir das transformative

Potenzial von KI bei der Optimierung von Anwendungs-Workflows demonstrieren.

Ob Sie Unternehmensanwendungen mit komplexen Geschéftsprozessen oder
kundenorientierte Anwendungen mit dynamischen Benutzerreisen entwickeln,
die in diesem Kapitel diskutierten Muster und Techniken werden Sie mit dem Wissen
und den Werkzeugen ausstatten, um intelligente und effiziente Workflows zu erstellen,

die die gesamte Benutzererfahrung verbessern und geschéftlichen Mehrwert schaffen.

Geschaftlicher Bedarf

Traditionelle Ansitze zum Workflow-Management basieren oft auf vordefinierten
Regeln und statischen Entscheidungsbdumen, die starr und unflexibel sein kénnen und

nicht mit der dynamischen Natur moderner Anwendungen Schritt halten kénnen.

Betrachten Sie ein Szenario, in dem eine E-Commerce-Anwendung einen komplexen
Auftragsabwicklungsprozess handhaben muss. Der Workflow kann mehrere Schritte
umfassen, wie Auftragsvalidierung, Bestandspriiffung, Zahlungsabwicklung, Versand
und Kundenbenachrichtigungen. Jeder Schritt kann eigene Regeln, Abhangigkeiten,
externe Integrationen und Mechanismen zur Ausnahmebehandlung haben.
Die manuelle Verwaltung eines solchen Workflows oder die Verwendung fest
programmierter Logik kann schnell umsténdlich, fehleranfallig und schwer zu warten

werden.

Dartiber hinaus muss sich der Workflow méglicherweise mit zunehmender Skalierung

der Anwendung und wachsender Anzahl gleichzeitiger Benutzer auf Basis von
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Echtzeitdaten und Systemleistung anpassen und optimieren. Beispielsweise muss die
Anwendung wahrend Spitzenverkehrszeiten den Workflow moglicherweise dynamisch
anpassen, um bestimmte Aufgaben zu priorisieren, Ressourcen effizient zuzuweisen

und eine reibungslose Benutzererfahrung sicherzustellen.

Hier kommt der Ansatz der “Intelligenten Workflow-Orchestrierung” ins Spiel.
Durch den Einsatz von KI-Komponenten kénnen Entwickler Workflows erstellen,
die intelligent, adaptiv und selbstoptimierend sind. KI kann grofle Mengen an
Daten analysieren, aus vergangenen Erfahrungen lernen und in Echtzeit fundierte

Entscheidungen treffen, um den Workflow effektiv zu orchestrieren.

Wichtige Vorteile

1. Gesteigerte Effizienz: KI kann die Aufgabenzuweisung, Ressourcennutzung und
Workflow-Ausfithrung optimieren, was zu schnelleren Verarbeitungszeiten und
verbesserter Gesamteffizienz fithrt.

2. Anpassungsfihigkeit: KI-gesteuerte Workflows konnen sich dynamisch an
veranderte Bedingungen anpassen, wie Schwankungen in der Benutzernachfrage,
Systemleistung oder geschiftlichen Anforderungen, und stellen sicher, dass die
Anwendung reaktionsfahig und widerstandsfihig bleibt.

3. Automatisierte Entscheidungsfindung: KI kann komplexe Entscheidungsprozesse
innerhalb des Workflows automatisieren, wodurch manuelle Eingriffe reduziert
und das Risiko menschlicher Fehler minimiert werden.

4. Personalisierung: KI kann Benutzerverhalten, Préferenzen und Kontext
analysieren, um den Workflow zu personalisieren und maf3geschneiderte
Erlebnisse fiir einzelne Benutzer zu liefern.

5. Skalierbarkeit: KI-gesteuerte Workflows konnen nahtlos skalieren, um steigende
Datenmengen und Benutzerinteraktionen zu bewéltigen, ohne die Leistung oder

Zuverldssigkeit zu beeintrichtigen.
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In den folgenden Abschnitten werden wir die wichtigsten Muster und Techniken
erkunden, die die Implementierung intelligenter Workflows erméglichen, und reale
Beispiele aufzeigen, wie KI das Workflow-Management in modernen Anwendungen

transformiert.

Wichtige Muster

Um intelligente Workflow-Orchestrierung in Anwendungen zu implementieren,
koénnen Entwickler verschiedene wichtige Muster nutzen, die die Kraft der KI nutzen.
Diese Muster bieten einen strukturierten Ansatz fiir das Design und Management
von Workflows und ermoglichen es Anwendungen, sich anzupassen, zu optimieren
und Prozesse basierend auf Echtzeitdaten und Kontext zu automatisieren. Lassen Sie
uns einige der grundlegenden Muster in der intelligenten Workflow-Orchestrierung

erkunden.

Dynamische Aufgabenweiterleitung

Dieses Muster beinhaltet die Verwendung von KI zur intelligenten Weiterleitung
von Aufgaben innerhalb eines Workflows basierend auf verschiedenen Faktoren wie
Aufgabenprioritit, Ressourcenverfiigbarkeit und Systemleistung. KI-Algorithmen
konnen die Eigenschaften jeder Aufgabe analysieren, den aktuellen Systemzustand
beriicksichtigen und fundierte Entscheidungen treffen, um Aufgaben den am besten
geeigneten Ressourcen oder Verarbeitungspfaden zuzuweisen. Die dynamische
Aufgabenweiterleitung stellt sicher, dass Aufgaben effizient verteilt und ausgefiihrt

werden, wodurch die Gesamtleistung des Workflows optimiert wird.
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class TaskRouter

include Raix::ChatCompletion

include Raix::FunctionDispatch

attr_accessor :task

# list of functions that can be called by the AI entirely at its

# discretion depending on the task received

function

ranalyze_task_priority do

TaskPriorityAnalyzer .perform(task)

end

function
function
function

:check_resource_availability, # ...
:assess_system_per formance, # ...

rassign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently

assigning tasks to available resources based on priority, resource

availability, and system performance..."

def initialize(task)
self . task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }

end

def perform

while task.unassigned?

chat_completion

# todo: add max loop counter and break

end

# capture the transcript for later analysis

task.update(routing_transcript: transcript)

end
end

Beachten Sie die Schleife, die durch den while-Ausdruck in Zeile 29 erstellt wird, die

die KI so lange auffordert, bis die Aufgabe zugewiesen ist. In Zeile 35 speichern wir das
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Protokoll der Aufgabe fiir spatere Analysen und Debugging, falls dies erforderlich wird.

Kontextbezogene Entscheidungsfindung

Sie konnen sehr adhnlichen Code verwenden, um kontextbezogene Entscheidungen
innerhalb eines Workflows zu treffen. Durch die Analyse relevanter Datenpunkte wie
Benutzerpraferenzen, historische Muster und Echtzeitdaten kénnen KI-Komponenten
den am besten geeigneten Handlungsablauf an jedem Entscheidungspunkt im Workflow
bestimmen. Passen Sie das Verhalten Thres Workflows basierend auf dem spezifischen
Kontext jedes Benutzers oder Szenarios an und bieten Sie personalisierte und optimierte

Erfahrungen.

Adaptive Workflow-Zusammenstellung

Dieses Muster konzentriert sich auf die dynamische Zusammenstellung und Anpassung
von Workflows basierend auf sich dndernden Anforderungen oder Bedingungen. KI
kann den aktuellen Zustand des Workflows analysieren, Engpésse oder Ineffizienzen
identifizieren und die Workflow-Struktur automatisch modifizieren, um die Leistung zu
optimieren. Die adaptive Workflow-Zusammenstellung erméglicht es Anwendungen,
sich kontinuierlich weiterzuentwickeln und ihre Prozesse zu verbessern, ohne manuelle

Eingriffe zu erfordern.

Ausnahmebehandlung und Wiederherstellung

Ausnahmebehandlung und Wiederherstellung sind kritische Aspekte der intelligenten
Workflow-Orchestrierung. Bei der Arbeit mit KI-Komponenten und komplexen
Workflows ist es wichtig, Ausnahmen vorauszusehen und elegant zu behandeln, um

die Stabilitat und Zuverléssigkeit des Systems sicherzustellen.

Hier sind einige wichtige Uberlegungen und Techniken fiir die Ausnahmebehandlung

und Wiederherstellung in intelligenten Workflows:
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1. Ausnahmeweiterleitung: Implementieren Sie einen einheitlichen Ansatz fir die
Weiterleitung von Ausnahmen tiber Workflow-Komponenten hinweg. Wenn eine
Ausnahme innerhalb einer Komponente auftritt, sollte sie erfasst, protokolliert
und an den Orchestrator oder eine separate Komponente weitergeleitet
werden, die fiir die Behandlung von Ausnahmen zustindig ist. Die Idee ist, die
Ausnahmebehandlung zu zentralisieren und zu verhindern, dass Ausnahmen
stillschweigend verschluckt werden, sowie Moglichkeiten fiir Intelligente
Fehlerbehandlung zu eréffnen.

2. Wiederholungsmechanismen: Wiederholungsmechanismen helfen
dabei, die Widerstandsfahigkeit des Workflows zu verbessern und
voribergehende Ausfille elegant zu behandeln. Implementieren Sie
unbedingt Wiederholungsmechanismen fiir voriibergehende oder behebbare
Ausnahmen, wie beispielsweise Probleme mit der Netzwerkkonnektivitat oder
Ressourcenverfiigbarkeit, die nach einer bestimmten Verzégerung automatisch
wiederholt werden konnen. Mit einem KI-gesteuerten Orchestrator oder
Ausnahmebehandler miissen Ihre Wiederholungsstrategien nicht mechanischer
Natur sein und sich auf feste Algorithmen wie exponentiellen Riickzug verlassen.
Sie konnen die Handhabung der Wiederholung dem “Ermessen” der KI-
Komponente tberlassen, die fiir die Entscheidung tiber den Umgang mit der
Ausnahme verantwortlich ist.

3. Fallback-Strategien: Wenn eine KI-Komponente keine giiltige Antwort liefern
kann oder einen Fehler verursacht - ein hiufiges Vorkommnis angesichts ihrer
hochmodernen Natur - sollten Sie einen Fallback-Mechanismus einrichten,
um sicherzustellen, dass der Workflow fortgesetzt werden kann. Dies kénnte
die Verwendung von Standardwerten, alternativen Algorithmen oder einem
Menschen im Regelkreis umfassen, um Entscheidungen zu treffen und den
Workflow voranzutreiben.

4. Kompensationsmafinahmen:  Die  Anweisungen des  Orchestrators

sollten Instruktionen iber Kompensationsmafinahmen enthalten, um
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Ausnahmen zu behandeln, die nicht automatisch gelost werden konnen.
Kompensationsmafinahmen sind Schritte, die unternommen werden, um
die Auswirkungen einer fehlgeschlagenen Operation riickgingig zu machen
oder abzumildern. Wenn beispielsweise ein Zahlungsverarbeitungsschritt
fehlschlagt, konnte eine Kompensationsmafinahme darin bestehen, die
Transaktion riickgdngig zu machen und den Benutzer zu benachrichtigen.
Kompensationsmafinahmen helfen, die Datenkonsistenz und -integritat bei
Ausnahmen aufrechtzuerhalten.

5. Ausnahmeiiberwachung und -alarmierung: Richten Sie Uberwachungs- und
Alarmierungsmechanismen ein, um kritische Ausnahmen zu erkennen und
relevante Interessengruppen zu benachrichtigen. Der Orchestrator kann iiber
Schwellenwerte und Regeln informiert werden, um Alarme auszul6sen, wenn
Ausnahmen bestimmte Grenzen iiberschreiten oder wenn bestimmte Arten von
Ausnahmen auftreten. Dies ermdglicht eine proaktive Identifizierung und Losung

von Problemen, bevor sie das Gesamtsystem beeintrachtigen.

Hier ist ein Beispiel fir Ausnahmebehandlung und Wiederherstellung in einer Ruby-

Workflow-Komponente:

class InventoryManager
def check_availability(order)
begin
# Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
# Log the exception

logger .error("Inventory check failed: #{e.message}")

# Retry the operation after a delay
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retry_count |[= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
# Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

In diesem Beispiel tiberprift die InventoryManager-Komponente die Verfiigbarkeit
eines Produkts fiir eine bestimmte Bestellung. Wenn die verfiigbare Menge nicht
ausreicht, wird eine InsufficientInventoryError ausgeldst. Die Ausnahme wird
abgefangen, protokolliert und ein Wiederholungsmechanismus wird implementiert.
Wenn das Wiederholungslimit tiberschritten wird, greift die Komponente auf manuelle

Intervention zuriick, indem sie einen Administrator benachrichtigt.

Durch die Implementierung robuster Ausnahmebehandlungs- und Wiederherstellungsmechanismen

konnen Sie sicherstellen, dass lhre intelligenten Workflows widerstandsfahig und

wartbar sind sowie unerwartete Situationen elegant bewaltigen kénnen.

Diese Muster bilden die Grundlage der intelligenten Workflow-Orchestrierung
und koénnen kombiniert und an die spezifischen Anforderungen verschiedener
Anwendungen angepasst werden. Durch die Nutzung dieser Muster kénnen Entwickler
Workflows erstellen, die flexibel und widerstandsfihig sind sowie fiir Leistung und

Benutzererfahrung optimiert sind.

Im nachsten Abschnitt werden wir untersuchen, wie diese Muster in der Praxis

implementiert werden konnen, wobei wir reale Beispiele und Code-Snippets
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verwenden, um die Integration von KI-Komponenten in das Workflow-Management

zu veranschaulichen.

Implementierung der intelligenten

Workflow-Orchestrierung in der Praxis

Nachdem wir die wichtigsten Muster in der intelligenten Workflow-Orchestrierung
erkundet haben, lassen Sie uns nun betrachten, wie diese Muster in realen
Anwendungen implementiert werden koénnen. Wir werden praktische Beispiele
und Code-Snippets bereitstellen, um die Integration von KI-Komponenten in das

Workflow-Management zu veranschaulichen.

Intelligenter Auftragsverarbeiter

Lassen Sie uns ein praktisches Beispiel fiir die Implementierung einer intelligenten
Workflow-Orchestrierung anhand einer KI-gestiitzten OrderProcessor-Komponente
in einer Ruby on Rails-E-Commerce-Anwendung betrachten. Der OrderProcessor
verwirklicht das Konzept des Process Manager Enterprise Integration, das wir
erstmals in Kapitel 3 bei der Diskussion iiber Multitude of Workers kennengelernt
haben. Die Komponente ist fiir die Verwaltung des Auftragsabwicklungs-Workflows
verantwortlich, trifft Routing-Entscheidungen basierend auf Zwischenergebnissen und

orchestriert die Ausfithrung verschiedener Verarbeitungsschritte.

Der Auftragsabwicklungsprozess umfasst mehrere Schritte wie Auftragsvalidierung,
Bestandsprifung, Zahlungsabwicklung und Versand. Jeder Schritt wird als separater
Worker-Prozess implementiert, der eine bestimmte Aufgabe ausfithrt und das Ergebnis
an den OrderProcessor zuriickgibt. Die Schritte sind nicht obligatorisch und miissen

nicht einmal unbedingt in einer bestimmten Reihenfolge ausgefiihrt werden.

Hier ist ein Beispiel fiir die Implementierung des OrderProcessor. Er enthilt

zwei Mixins von Raix. Das erste (ChatCompletion) verleiht ihm die Fahigkeit


https://github.com/OlympiaAI/raix-rails

Intelligente Workflow-Orchestrierung 240

zur Chat-Vervollstindigung, was ihn zu einer KI-Komponente macht. Das zweite
(FunctionDispatch) ermoglicht den Funktionsaufruf durch die KI, sodass sie auf

eine Aufforderung mit einem Funktionsaufruf statt einer Textnachricht reagieren kann.

Die Worker-Funktionen (validate_order, check_inventory, et al) delegieren an
ihre jeweiligen Worker-Klassen, die KI- oder Nicht-KI-Komponenten sein konnen,
wobei die einzige Anforderung darin besteht, dass sie die Ergebnisse ihrer Arbeit in

einem Format zuriickgeben, das als String dargestellt werden kann.

Wie bei allen anderen Beispielen in diesem Teil des Buches handelt es
sich hierbei praktisch um Pseudo-Code, der nur dazu dient, die Bedeutung
des Musters zu vermitteln und Thre eigenen Kreationen zu inspirieren.
Vollstandige Beschreibungen der Muster und vollstandige Code-Beispiele

sind in Teil 2 enthalten.

class OrderProcessor
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform
# will continue looping until “stop_looping!" is called
chat_completion(loop: true)

end

# list of functions available to be called by the AI

# truncated for brevity

def functions

[
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name: "validate_order",
description: "Invoke to check validity of order",

parameters: {
}I

]

end

# implementation of functions that can be called by the AI
# entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order )
end

def process_payment
PaymentProcessingWorker . per form(@order)
end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

In diesem Beispiel wird der OrderProcessor mit einem Bestellobjekt initialisiert und

fihrt ein Protokoll der Workflow-Ausfithrung im typischen Konversationsformat,
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das fir grofle Sprachmodelle charakteristisch ist. Die KI erhélt die vollstindige
Kontrolle tber die Orchestrierung der verschiedenen Verarbeitungsschritte, wie

Bestellungsvalidierung, Bestandspriifung, Zahlungsabwicklung und Versand.

Jedes Mal, wenn die Methode chat_completion aufgerufen wird, wird das
Protokoll an die KI gesendet, damit diese eine Vervollstandigung in Form eines
Funktionsaufrufs bereitstellt. Es liegt vollstandig in der Verantwortung der KI, das
Ergebnis des vorherigen Schritts zu analysieren und die entsprechende Aktion zu
bestimmen. Wenn beispielsweise die Bestandspriifung einen niedrigen Lagerbestand
aufzeigt, kann der OrderProcessor eine Nachbestellungsaufgabe einplanen. Falls
die Zahlungsabwicklung fehlschldgt, kann er einen erneuten Versuch starten oder den

Kundenservice benachrichtigen.

Das obige Beispiel enthalt zwar keine definierten Funktionen fiir Nachbestellung oder

Kundenservice-Benachrichtigung, kénnte diese aber durchaus haben.

Das Protokoll wichst mit jedem Funktionsaufruf und dient als Aufzeichnung
der Workflow-Ausfithrung, einschliefflich der Ergebnisse jedes Schritts und der
KI-generierten Anweisungen fiir die nichsten Schritte. Dieses Protokoll kann fiir
Fehlerbehebung, Priifung und Einblick in den Bestellabwicklungsprozess verwendet

werden.

Durch den Einsatz von KIim OrderProcessor kann die E-Commerce-Anwendung den
Workflow dynamisch an Echtzeitdaten anpassen und Ausnahmen intelligent behandeln.
Die KI-Komponente kann fundierte Entscheidungen treffen, den Workflow optimieren

und eine reibungslose Bestellverarbeitung auch in komplexen Szenarien gewahrleisten.

Da die einzige Anforderung an die Arbeitsprozesse darin besteht, eine verstindliche
Ausgabe zu liefern, die die KI bei der Entscheidung iiber das weitere Vorgehen

beriicksichtigen kann, wird moglicherweise deutlich, wie dieser Ansatz den Aufwand
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fir die Eingabe-/Ausgabe-Zuordnung reduzieren kann, der typischerweise bei der

Integration verschiedener Systeme anfallt.

Intelligenter Inhaltsmoderator

Social-Media-Anwendungen erfordern im Allgemeinen mindestens eine grundlegende
Inhaltsmoderation, um eine sichere und gesunde Community zu gewahrleisten.
Dieses Beispiel einer ContentModerator-Komponente nutzt KI, um den
Moderationsworkflow intelligent zu orchestrieren und trifft Entscheidungen
basierend auf den Eigenschaften der Inhalte und den Ergebnissen verschiedener

Moderationsschritte.

Der Moderationsprozess umfasst mehrere Schritte wie Textanalyse, Bilderkennung,
Bewertung der Benutzerreputation und manuelle Uberpriifung. Jeder Schritt wird als
separater Arbeitsprozess implementiert, der eine spezifische Aufgabe ausfiithrt und das

Ergebnis an den ContentModerator zuriickgibt.

Hier ist eine Beispielimplementierung des ContentModerator:

class ContentModerator
include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,
tasked with the workflow involved in moderating user-generated content..."

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end
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def model
"openai/gpt-4"
end

# list of functions available to be called by the AI
# truncated for brevity

def functions

(

name: "analyze_text",
# PR
}/
name: "recognize_image",
description: "Invoke to describe images...",
#
}I
name: "assess_user_reputation”,
#
}I
name: "escalate_to_manual_review",
#
}I
name: "approve_content",
#
}I
name: "reject_content”,
#

end

# implementation of functions that can be called by the AI

# entirely at its discretion, depending on the needs of the order

def analyze_text
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result = TextAnalysisWorker .perform(@content)
continue_with(result)
end

def recognize_image
result = ImageRecognitionWorker .perform(@content)
continue_with(result)

end

def assess_user_reputation
result = UserReputationWorker .per form(@content.user)
continue_with(result)

end

def escalate_to_manual_review
ManualReviewWorker . per form(@content)
@content.update! (status: 'pending', transcript: @transcript)
end

def approve_content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject_content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

end

In diesem Beispiel wird der ContentModerator mit einem Inhaltsobjekt initialisiert
und fiithrt ein Moderationsprotokoll im Gesprachsformat. Die KI-Komponente hat die
vollstandige Kontrolle iiber den Moderationsarbeitsablauf und entscheidet basierend
auf den Eigenschaften des Inhalts und den Ergebnissen jedes Schritts, welche Schritte

ausgefiihrt werden sollen.
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Die verfugbaren Arbeitsfunktionen, die die KI aufrufen kann, umfassen analyze_-
text,recognize_image,assess_user_reputation undescalate_to_manual_-
review. Jede Funktion delegiert die Aufgabe an einen entsprechenden Arbeitsprozess
(TextAnalysisWorker, ImageRecognitionWorker, usw.) und fiigt das Ergebnis dem
Moderationsprotokoll hinzu, mit Ausnahme der Eskalationsfunktion, die als Endzustand
fungiert. Auch die Funktionen approve_content undre ject_content fungieren als

Endzustinde.

Die KI-Komponente analysiert den Inhalt und bestimmt die angemessene
Vorgehensweise. Wenn der Inhalt Bildreferenzen enthélt, kann sie den
recognize_image-Worker zur Unterstiitzung bei einer visuellen Uberpriifung
aufrufen. Wenn ein Worker vor potenziell schadlichen Inhalten warnt, kann die KI
entscheiden, den Inhalt zur manuellen Uberpriifung weiterzuleiten oder ihn direkt
abzulehnen. Je nach Schwere der Warnung kann die KI aber auch die Ergebnisse
der Benutzerreputationsbewertung bei der Entscheidung beriicksichtigen, wie sie mit
Inhalten umgeht, bei denen sie sich nicht sicher ist. Je nach Anwendungsfall haben
vertrauenswiirdige Benutzer moglicherweise mehr Spielraum bei dem, was sie posten

konnen. Und so weiter und so fort...

Wie beim vorherigen Beispiel des Prozessmanagers dient das Moderationsprotokoll als
Aufzeichnung der Workflow-Ausfithrung, einschlieflich der Ergebnisse jedes Schritts
und der KI-generierten Entscheidungen. Dieses Protokoll kann fiir Audits, Transparenz

und die Verbesserung des Moderationsprozesses im Laufe der Zeit verwendet werden.

Durch den Einsatz von KI im ContentModerator kann die Social-Media-Anwendung
den Moderationsarbeitsablauf dynamisch an die Eigenschaften der Inhalte anpassen
und komplexe Moderationsszenarien intelligent handhaben. Die KI-Komponente kann
fundierte Entscheidungen treffen, den Arbeitsablauf optimieren und eine sichere und

gesunde Community-Erfahrung gewéhrleisten.

Lassen Sie uns zwei weitere Beispiele betrachten, die die pradiktive Aufgabenplanung

sowie die Ausnahmebehandlung und -wiederherstellung im Kontext der intelligenten
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Workflow-Orchestrierung demonstrieren.

Pradiktive Aufgabenplanung in einem
Kundenbetreuungssystem

In einer mit Ruby on Rails entwickelten Kundenbetreuungsanwendung ist die effiziente
Verwaltung und Priorisierung von Support-Tickets entscheidend fir eine zeitnahe
Unterstitzung der Kunden. Die SupportTicketScheduler-Komponente nutzt KI, um
Support-Tickets vorausschauend zu planen und verfiigbaren Mitarbeitern zuzuweisen,
basierend auf verschiedenen Faktoren wie Dringlichkeit des Tickets, Expertise der

Mitarbeiter und Arbeitsauslastung.

class SupportTicketScheduler
include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[
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{
name: "analyze_ticket_urgency",
#...

}I

{
name: "list_available_agents",
description: "Includes expertise of available agents",
#...

}I

{
name: "predict_agent_workload",
description: "Uses historical data to predict upcoming workloads",

}/

{
name: "assign_ticket_to_agent",

}I
name: "reschedule_ticket",
#...

}

]
end

# implementation of functions that can be called by the AI

# entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer.perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor.perform
continue_with(result)

end

248



68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

Intelligente Workflow-Orchestrierung 249

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

In diesem Beispiel wird der SupportTicketScheduler mit einem Support-Ticket-
Objekt initialisiert und fithrt ein Planungsprotokoll. Die KI-Komponente analysiert die
Ticket-Details und plant die Ticket-Zuweisung pradiktiv auf Basis von Faktoren wie

Ticket-Dringlichkeit, Mitarbeiter-Expertise und prognostizierter Mitarbeiterauslastung.

Die fur die KI verfigbaren Funktionen umfassen analyze_ticket_urgency,
list_available_agents, predict_agent_workload und assign_ticket_-
to_agent. Jede Funktion delegiert die Aufgabe an eine entsprechende Analyse- oder
Prognosekomponente und fiigt das Ergebnis dem Planungsprotokoll hinzu. Die KI hat
auch die Moglichkeit, die Zuweisung mittels der Funktion delay_assignment zu

verzogern.

Die KI-Komponente untersucht das Planungsprotokoll und trifft fundierte
Entscheidungen zur Ticket-Zuweisung. Sie beriicksichtigt die Dringlichkeit des Tickets,
die Expertise der verfigbaren Mitarbeiter und die prognostizierte Arbeitsbelastung
jedes Mitarbeiters, um den am besten geeigneten Mitarbeiter fiir die Bearbeitung des

Tickets zu bestimmen.

Durch den Einsatz der pradiktiven Aufgabenplanung kann die Kundenservice-
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Anwendung die Ticket-Zuweisung optimieren, Reaktionszeiten verkirzen und die
allgemeine Kundenzufriedenheit verbessern. Die proaktive und effiziente Verwaltung
von Support-Tickets stellt sicher, dass die richtigen Tickets zur richtigen Zeit an die

richtigen Mitarbeiter zugewiesen werden.

Ausnahmebehandlung und Wiederherstellung in einer
Datenverarbeitungs-Pipeline

Die Behandlung von Ausnahmen und die Wiederherstellung nach Fehlern
sind essentiell, um die Datenintegritit zu gewdhrleisten und Datenverlust zu
verhindern. Die DataProcessingOrchestrator-Komponente nutzt KI, um
intelligent mit Ausnahmen umzugehen und den Wiederherstellungsprozess in

einer Datenverarbeitungs-Pipeline zu orchestrieren

class DataProcessingOrchestrator
include Raix::ChatCompletion

include Raix::FunctionDispatch
SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"

end

def functions
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{
name: "validate_data",
#

}I

{
name: "process_data",
#

}I

{
name: "request_fix",
#

}I

{
name: "retry_processing",
#

}I

{
name: "mark_data_as_failed",
#

}I

{
name: "finished",
#

}

]
end

# implementation of functions that can be called by the AI
# entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
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handle_processing_exception(e)
end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

In diesem Beispiel wird der DataProcessingOrchestrator mit einem Daten-

Batch-Objekt initialisiert und fiithrt ein Verarbeitungsprotokoll. Die KI-Komponente
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orchestriert die Datenverarbeitungspipeline, behandelt Ausnahmen und erholt sich

nach Bedarf von Fehlern.

Die der KI zur Verfigung stehenden Funktionen umfassen validate_data,
process_data, request_fix, retry_processing und mark_data_-
as_failed. Jede Funktion delegiert die Aufgabe an eine entsprechende
Datenverarbeitungskomponente und fiigt das Ergebnis oder die Ausnahmedetails

dem Verarbeitungsprotokoll hinzu.

Wenn wiahrend des validate_data-Schritts eine Validierungsausnahme auftritt, figt
die handle_validation_exception-Funktion die Ausnahmedaten dem Protokoll
hinzu und gibt die Kontrolle an die KI zuriick. Ahnlich verhélt es sich, wenn wihrend
des process_data-Schritts eine Verarbeitungsausnahme auftritt - hier kann die KI iiber

die Wiederherstellungsstrategie entscheiden.

Je nach Art der aufgetretenen Ausnahme kann die KI nach eigenem Ermessen
entscheiden, request_fix aufzurufen, was an eine KI-gesteuerte SmartDataF ixer-
Komponente delegiert wird (siehe Kapitel tber Selbstheilende Daten). Der
Datenkorrektor erhilt eine einfache Beschreibung in natiirlicher Sprache, wie er
den @data_batch modifizieren soll, damit die Verarbeitung wiederholt werden kann.
Vielleicht wiirde eine erfolgreiche Wiederholung bedeuten, dass Datensitze aus dem
Daten-Batch entfernt werden, die die Validierung nicht bestanden haben, und/oder dass
sie zur manuellen Uberprifung in eine andere Verarbeitungspipeline kopiert werden?

Die Méglichkeiten sind nahezu endlos.

Durch die Integration von KI-gesteuerter Ausnahmebehandlung und Wiederherstellung
wird die  Datenverarbeitungsanwendung  robuster und  fehlertoleranter.
Der DataProcessingOrchestrator verwaltet ~ Ausnahmen intelligent,
minimiert Datenverluste und gewahrleistet die reibungslose Ausfiihrung des

Datenverarbeitungsworkflows.
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Uberwachung und Protokollierung

Uberwachung und Protokollierung bieten Einblick in den Fortschritt, die Leistung
und den Zustand von Kl-gesteuerten Workflow-Komponenten und ermdglichen
es Entwicklern, das Verhalten des Systems zu verfolgen und zu analysieren. Die
Implementierung effektiver Uberwachungs- und Protokollierungsmechanismen ist
essentiell fiir das Debugging, die Priiffung und die kontinuierliche Verbesserung

intelligenter Workflows.

Uberwachung des Workflow-Fortschritts und der Leistung

Um die reibungslose Ausfithrung intelligenter Workflows sicherzustellen, ist es wichtig,
den Fortschritt und die Leistung jeder Workflow-Komponente zu iiberwachen. Dies
beinhaltet die Verfolgung wichtiger Metriken und Ereignisse wihrend des gesamten

Workflow-Lebenszyklus.
Wichtige zu tiberwachende Aspekte sind:

1. Workflow-Ausfithrungszeit: Messen der Zeit, die jede Workflow-Komponente
fir die Ausfithrung ihrer Aufgabe benétigt. Dies hilft dabei, Leistungsengpésse zu

identifizieren und die Gesamteffizienz des Workflows zu optimieren.

2. Ressourcennutzung: Uberwachung der Nutzung von Systemressourcen wie CPU,
Arbeitsspeicher und Speicherplatz durch jede Workflow-Komponente. Dies hilft
sicherzustellen, dass das System innerhalb seiner Kapazitat arbeitet und die Arbeitslast

effektiv bewéltigen kann.

3. Fehlerraten und Ausnahmen: Verfolgung des Auftretens von Fehlern und
Ausnahmen innerhalb der Workflow-Komponenten. Dies hilft dabei, potenzielle
Probleme zu identifizieren und ermdglicht proaktive Fehlerbehandlung und

Wiederherstellung.
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4. Entscheidungspunkte und Ergebnisse: Uberwachung der Entscheidungspunkte
innerhalb des Workflows und der Ergebnisse KI-gesteuerter Entscheidungen. Dies liefert

Einblicke in das Verhalten und die Effektivitat der KI-Komponenten.

Die durch Uberwachungsprozesse erfassten Daten konnen in Dashboards angezeigt oder
als Eingaben fiir geplante Berichte verwendet werden, die Systemadministratoren iiber

den Systemzustand informieren.

Uberwachungsdaten kénnen an einen KI-gesteuerten
Systemadministrationsprozess ~ zur ~ Uberpriifung und  méglichen

Mafinahmen weitergeleitet werden!

Protokollierung wichtiger Ereignisse und Entscheidungen

Die Protokollierung ist eine wesentliche Praxis, bei der relevante Informationen
iiber wichtige Ereignisse, Entscheidungen und Ausnahmen wihrend der Workflow-

Ausfithrung erfasst und gespeichert werden.
Wichtige zu protokollierende Aspekte sind:

1. Workflow-Initiierung und -Abschluss: Protokollierung der Start- und Endzeiten
jeder Workflow-Instanz zusammen mit relevanten Metadaten wie den Eingabedaten

und dem Benutzerkontext.

2. Komponentenausfithrung: Protokollierung der Ausfithrungsdetails jeder Workflow-
Komponente, einschlieSlich der Eingabeparameter, Ausgabeergebnisse und aller

erzeugten Zwischendaten.

3. KI-Entscheidungen und -Begriindungen: Protokollierung der von KI-Komponenten
getroffenen Entscheidungen zusammen mit den zugrundeliegenden Begriindungen oder
Konfidenzwerten. Dies sorgt fir Transparenz und ermdoglicht die Uberpriifung KI-

gesteuerter Entscheidungen.



© 0 N O O b W N =

I = =N
s W N o

Intelligente Workflow-Orchestrierung 256

4. Ausnahmen und Fehlermeldungen: Protokollierung aller wihrend der Workflow-
Ausfithrung aufgetretenen Ausnahmen oder Fehlermeldungen, einschliellich des Stack-

Trace und relevanter Kontextinformationen.

Die Protokollierung kann mit verschiedenen Techniken implementiert werden, wie dem
Schreiben in Protokolldateien, dem Speichern von Protokollen in einer Datenbank oder
dem Senden von Protokollen an einen zentralisierten Protokollierungsdienst. Es ist
wichtig, ein Protokollierungsframework zu wahlen, das Flexibilitat, Skalierbarkeit und

einfache Integration in die Anwendungsarchitektur bietet.

Hier ist ein Beispiel dafiir, wie die Protokollierung in einer Ruby on Rails-Anwendung

mit der Klasse ActiveSupport: :Logger implementiert werden kann:

class WorkflowLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new( 'workflow.log")
@logger . formatter ||= proc do |severity, datetime, progname, msgl|
"#{datetime} [#{severity}] #{msg}\n"
end

@logger .send(severity, message)
end

end

# Usage example

Work flowLogger . log("Workflow initiated for order ##{@order.id}")

Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Durch die strategische Platzierung von Protokollierungsanweisungen in den
Workflow-Komponenten und KI-Entscheidungspunkten konnen Entwickler wertvolle

Informationen fiir Fehlersuche, Priiffung und Analyse erfassen.

Vorteile von Uberwachung und Protokollierung

Die Implementierung von Uberwachung und Protokollierung in der intelligenten

Workflow-Orchestrierung bietet mehrere Vorteile:



Intelligente Workflow-Orchestrierung 257

1. Fehlersuche und Fehlerbehebung: Detaillierte Protokolle und Uberwachungsdaten
helfen Entwicklern dabei, Probleme schnell zu identifizieren und zu diagnostizieren. Sie
bieten Einblicke in den Workflow-Ausfithrungsablauf, Komponenteninteraktionen und

aufgetretene Fehler oder Ausnahmen.

2. Leistungsoptimierung: Die Uberwachung von Leistungsmetriken ermoglicht es
Entwicklern, Engpésse zu identifizieren und die Workflow-Komponenten fiir bessere
Effizienz zu optimieren. Durch die Analyse von Ausfithrungszeiten, Ressourcennutzung
und anderen Metriken kénnen Entwickler fundierte Entscheidungen zur Verbesserung

der Gesamtleistung des Systems treffen.

3. Prifung und Compliance: Die Protokollierung wichtiger Ereignisse und
Entscheidungen bietet einen Priifpfad fiir regulatorische Compliance und
Verantwortlichkeit. Dies ermoglicht es Organisationen, die von KI-Komponenten
getroffenen Maflnahmen zu verfolgen und zu tberpriifen sowie die Einhaltung von

Geschiftsregeln und rechtlichen Anforderungen sicherzustellen.

4. Kontinuierliche Verbesserung: Uberwachungs- und Protokollierungsdaten dienen
als wertvolle Eingaben fiir die kontinuierliche Verbesserung intelligenter Workflows.
Durch die Analyse historischer Daten, die Identifizierung von Mustern und die
Messung der Effektivitit von KI-Entscheidungen konnen Entwickler die Workflow-

Orchestrierungslogik iterativ verfeinern und verbessern.

Uberlegungen und Best Practices

Bei der Implementierung von Uberwachung und Protokollierung in der intelligenten

Workflow-Orchestrierung sind folgende Best Practices zu beachten:

1. Klare Uberwachungsmetriken definieren: Identifizieren Sie die wichtigsten
Metriken und Ereignisse, die basierend auf den spezifischen Anforderungen des
Workflows tiberwacht werden miissen. Konzentrieren Sie sich auf Metriken, die
aussagekriftige Einblicke in die Leistung, den Zustand und das Verhalten des Systems

liefern.
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2. Granulare Protokollierung implementieren: Stellen Sie sicher, dass
Protokollierungsanweisungen an geeigneten Stellen innerhalb der Workflow-
Komponenten und KI-Entscheidungspunkte platziert sind. Erfassen Sie relevante
Kontextinformationen wie Eingabeparameter, Ausgabeergebnisse und generierte

Zwischendaten.

3. Strukturierte Protokollierung verwenden: Verwenden Sie ein strukturiertes
Protokollierungsformat, um das Parsen und die Analyse von Protokolldaten zu
erleichtern. Strukturierte Protokollierung ermdglicht eine bessere Durchsuchbarkeit,

Filterung und Aggregation von Protokolleintragen.

4. Protokollaufbewahrung und -rotation verwalten: Implementieren Sie Richtlinien
fiir die Protokollaufbewahrung und -rotation, um die Speicherung und den Lebenszyklus
von Protokolldateien zu verwalten. Legen Sie die angemessene Aufbewahrungsfrist
basierend auf gesetzlichen Anforderungen, Speicherbeschriankungen und Analysebedarf
fest. Wenn moglich, lagern Sie die Protokollierung an einen Drittanbieterdienst wie

Papertrail aus.

5. Sensible Informationen schiitzen: Seien Sie vorsichtig bei der Protokollierung
sensibler Informationen wie personenbezogener Daten (PII) oder vertraulicher
Geschiftsdaten. Implementieren Sie geeignete  Sicherheitsmafinahmen wie
Datenmasking oder Verschlisselung zum Schutz sensibler Informationen in

Protokolldateien.

6. Integration mit Uberwachungs- und Alarmierungswerkzeugen: Nutzen Sie
Uberwachungs- und Alarmierungswerkzeuge zur Zentralisierung der Sammlung,
Analyse und Visualisierung von Uberwachungs- und Protokollierungsdaten. Diese
Tools konnen Echtzeit-Einblicke liefern, Warnungen basierend auf vordefinierten
Schwellenwerten generieren und die proaktive Erkennung und Behebung von

Problemen erleichtern. Mein Lieblingswerkzeug dafiir ist Datadog.

Durch die Implementierung umfassender Uberwachungs- und Protokollierungsmechanismen

koénnen Entwickler wertvolle Einblicke in das Verhalten und die Leistung intelligenter
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Workflows gewinnen. Diese Einblicke ermoglichen eine effektive Fehlersuche,
Optimierung und kontinuierliche Verbesserung von KI-gestiitzten Workflow-

Orchestrierungssystemen.

Skalierbarkeits- und Leistungsuberlegungen

Skalierbarkeit und Leistung sind kritische Aspekte, die bei der Konzeption und
Implementierung intelligenter Workflow-Orchestrierungssysteme zu beriicksichtigen
sind. Mit zunehmendem Volumen gleichzeitiger Workflows und steigender Komplexitat
KI-gestiitzter Komponenten wird es essentiell, sicherzustellen, dass das System die
Arbeitslast effizient bewailtigen und sich nahtlos an wachsende Anforderungen

anpassen kann.

Umgang mit hohen Volumen gleichzeitiger Workflows

Intelligente Workflow-Orchestrierungssysteme miissen oft eine grofle Anzahl
gleichzeitiger Workflows bewdéltigen. Um Skalierbarkeit zu gewéhrleisten, sollten

folgende Strategien beriicksichtigt werden:

1. Asynchrone Verarbeitung: Implementieren Sie asynchrone Verarbeitungsmechanismen,
um die Ausfithrung von Workflow-Komponenten zu entkoppeln. Dies erméglicht es
dem System, mehrere Workflows gleichzeitig zu bearbeiten, ohne dass einzelne
Komponenten blockieren oder auf deren Abschluss gewartet werden muss. Asynchrone
Verarbeitung kann durch Nachrichtenwarteschlangen, ereignisgesteuerte Architekturen

oder Hintergrundverarbeitungs-Frameworks wie Sidekiq erreicht werden.

2. Verteilte Architektur: Gestalten Sie die Systemarchitektur so, dass sie serverlose
Komponenten (wie AWS Lambda) verwendet oder die Arbeitslast einfach auf mehrere
Knoten oder Server neben Ihrem Hauptanwendungsserver verteilt. Dies ermdglicht
horizontale Skalierbarkeit, bei der zusitzliche Knoten hinzugefiigt werden kénnen, um

erhohte Workflow-Volumen zu bewaltigen.
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3. Parallele Ausfithrung: Identifizieren Sie Moglichkeiten zur parallelen Ausfithrung
innerhalb von Workflows. Einige Workflow-Komponenten koénnen unabhéingig
voneinander sein und gleichzeitig ausgefithrt werden. Durch die Nutzung paralleler
Verarbeitungstechniken wie Multi-Threading oder verteilte Task-Warteschlangen
kann das System die Ressourcennutzung optimieren und die gesamte Workflow-

Ausfithrungszeit reduzieren.

Optimierung der Leistung von Kl-gestutzten
Komponenten

KI-gestiitzte Komponenten wie maschinelle Lernmodelle oder Systeme zur Verarbeitung
natiirlicher Sprache konnen rechenintensiv sein und die Gesamtleistung des Workflow-
Orchestrierungssystems beeintrachtigen. Um die Leistung von KI-Komponenten zu

optimieren, sollten folgende Techniken in Betracht gezogen werden:

1. Caching: Wenn Thre KI-Verarbeitung rein generativ ist und keine Echtzeit-
Informationsabfragen oder externe Integrationen fiir die Erstellung von Chat-
Antworten erfordert, konnen Sie Caching-Mechanismen zur Speicherung und
Wiederverwendung der Ergebnisse hiufig genutzter oder rechenintensiver Operationen

in Betracht ziehen.

2. Modelloptimierung: Optimieren Sie kontinuierlich die Verwendung der KI-Modelle
in Workflow-Komponenten. Dies kann Techniken wie Prompt-Destillation umfassen

oder einfach das Testen neuer Modelle, sobald diese verfiigbar werden.

3. Batch-Verarbeitung: Wenn Sie mit GPT-4-Klasse-Modellen arbeiten, kénnen Sie
moglicherweise Batch-Verarbeitungstechniken nutzen, um mehrere Datenpunkte oder
Anfragen in einem einzigen Durchgang zu verarbeiten, anstatt sie einzeln zu bearbeiten.
Durch die Verarbeitung von Daten in Batches kann das System die Ressourcennutzung

optimieren und den Overhead wiederholter Modellanfragen reduzieren.
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Uberwachung und Profiling der Leistung

Um Leistungsengpésse zu identifizieren und die Skalierbarkeit des intelligenten
Workflow-Orchestrierungssystems zu optimieren, ist es entscheidend, Uberwachungs-

und Profiling-Mechanismen zu implementieren. Beriicksichtigen Sie folgende Ansétze:

1. Leistungskennzahlen: Definieren und verfolgen Sie wichtige Leistungskennzahlen
wie Antwortzeit, Durchsatz, Ressourcennutzung und Latenz. Diese Metriken
liefern Einblicke in die Systemleistung und helfen bei der Identifizierung von
Optimierungsbereichen. Der beliebte KI-Modell-Aggregator OpenRouter enthalt Host!-
und Speed®-Metriken in jeder API-Antwort, wodurch die Verfolgung dieser wichtigen

Kennzahlen trivial wird.

2. Profiling-Tools: Nutzen Sie Profiling-Tools zur Analyse der Leistung einzelner
Workflow-Komponenten und KI-Operationen. Profiling-Tools koénnen helfen,
Leistungs-Hotspots, ineffiziente Code-Pfade oder ressourcenintensive Operationen
zu identifizieren. Beliebte Profiling-Tools sind New Relic, Scout oder die in der

Programmiersprache oder dem Framework integrierten Profiler.

3. Lasttests: Fihren Sie Lasttests durch, um die Systemleistung unter verschiedenen
gleichzeitigen Arbeitslasten zu bewerten. Lasttests helfen dabei, die Skalierungsgrenzen
des Systems zu identifizieren, Leistungseinbuf3en zu erkennen und sicherzustellen, dass

das System den erwarteten Datenverkehr ohne Leistungseinbuflen bewaltigen kann.

4. Kontinuierliche Uberwachung: Implementieren Sie kontinuierliche Uberwachungs-
und Alarmmechanismen, um Leistungsprobleme und Engpésse proaktiv zu
erkennen. Richten Sie Uberwachungs-Dashboards und Alarme ein, um wichtige
Leistungsindikatoren (KPIs) zu verfolgen und Benachrichtigungen zu erhalten, wenn
vordefinierte Schwellenwerte iberschritten werden. Dies ermdglicht eine schnelle

Identifizierung und Behebung von Leistungsproblemen.

"Host ist die Zeit, die bendtigt wurde, um das erste Byte der gestreamten Generierung vom Modell-Host
zu empfangen, auch bekannt als “Time to First Byte”.

2Speed wird berechnet als die Anzahl der Completion-Tokens geteilt durch die gesamte Generierungszeit.
Bei nicht-gestreamten Anfragen wird die Latenz als Teil der Generierungszeit betrachtet.
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Skalierungsstrategien

Um steigende Arbeitslasten zu bewdltigen und die Skalierbarkeit des
intelligenten Workflow-Orchestrierungssystems sicherzustellen, sollten folgende

Skalierungsstrategien in Betracht gezogen werden:

1. Vertikale Skalierung: Vertikale Skalierung beinhaltet die Erh6hung der Ressourcen
(zB. CPU, Speicher) einzelner Knoten oder Server, um hohere Arbeitslasten zu
bewaltigen. Dieser Ansatz ist geeignet, wenn das System mehr Rechenleistung oder

Speicher benoétigt, um komplexe Workflows oder KI-Operationen zu verarbeiten.

2. Horizontale Skalierung: Horizontale Skalierung beinhaltet das Hinzufiigen weiterer
Knoten oder Server zum System, um die Arbeitslast zu verteilen. Dieser Ansatz ist
effektiv, wenn das System eine grof3e Anzahl gleichzeitiger Workflows verarbeiten muss
oder wenn die Arbeitslast leicht auf mehrere Knoten verteilt werden kann. Horizontale
Skalierung erfordert eine verteilte Architektur und Lastausgleichsmechanismen, um

eine gleichméaflige Verkehrsverteilung sicherzustellen.

3. Automatische Skalierung: Implementieren Sie automatische Skalierungsmechanismen,
um die Anzahl der Knoten oder Ressourcen basierend auf der Arbeitsauslastung
automatisch anzupassen. Automatische Skalierung erméglicht es dem System, sich
je nach eingehendem Datenverkehr dynamisch nach oben oder unten zu skalieren
und dabei eine optimale Ressourcennutzung und Kosteneffizienz sicherzustellen.
Cloud-Plattformen wie Amazon Web Services (AWS) oder Google Cloud Platform
(GCP) bieten automatische Skalierungsfunktionen, die fiir intelligente Workflow-

Orchestrierungssysteme genutzt werden kénnen.

Leistungsoptimierungstechniken

Zusatzlich zu den Skalierungsstrategien sollten folgende Leistungsoptimierungstechniken
in Betracht gezogen werden, um die Effizienz des intelligenten Workflow-

Orchestrierungssystems zu verbessern:
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1. Effiziente Datenspeicherung und -abruf: Optimieren Sie die von den Workflow-
Komponenten verwendeten Mechanismen zur Datenspeicherung und zum Datenabruf.
Verwenden Sie effiziente Datenbankindizierung, Abfrageoptimierungstechniken und
Daten-Caching, um die Latenz zu minimieren und die Leistung datenintensiver

Operationen zu verbessern.

2. Asynchrone E/A: Nutzen Sie asynchrone Ein-/Ausgabe-Operationen, um
Blockierungen zu vermeiden und die Reaktionsfihigkeit des Systems zu verbessern.
Asynchrone E/A ermoglicht es dem System, mehrere Anfragen gleichzeitig zu
verarbeiten, ohne auf den Abschluss von E/A-Operationen warten zu miissen, wodurch

die Ressourcennutzung maximiert wird.

3. Effiziente Serialisierung und Deserialisierung: Optimieren Sie die Serialisierungs-
und Deserialisierungsprozesse, die fiir den Datenaustausch zwischen Workflow-
Komponenten verwendet werden. Verwenden Sie effiziente Serialisierungsformate
wie Protocol Buffers oder MessagePack, um den Overhead der Datenserialisierung
zu reduzieren und die Leistung der Kommunikation zwischen den Komponenten zu

verbessern.

Fiir Ruby-basierte Anwendungen sollten Sie die Verwendung von Universal
’ ID in Betracht ziehen. Universal ID nutzt sowohl MessagePack als auch
Brotli (eine Kombination, die fiir Geschwindigkeit und erstklassige
Datenkompression entwickelt wurde). In Kombination sind diese
Bibliotheken bis zu 30% schneller und erreichen Kompressionsraten,

die nur 2-5% von Protocol Buffers abweichen.

4. Komprimierung und Kodierung: Wenden Sie Kompressions- und
Kodierungstechniken an, um die Grofle der zwischen Workflow-Komponenten
ubertragenen Daten zu reduzieren. Kompressionsalgorithmen wie gzip oder
Brotli konnen den Netzwerkbandbreitenverbrauch erheblich reduzieren und die

Gesamtleistung des Systems verbessern.


https://github.com/hopsoft/universalid
https://github.com/hopsoft/universalid

Intelligente Workflow-Orchestrierung 264

Durch die Beriicksichtigung von Skalierbarkeits- und Leistungsaspekten wahrend der
Konzeption und Implementierung intelligenter Workflow-Orchestrierungssysteme
konnen Sie sicherstellen, dass Ihr System hohe Volumina gleichzeitiger Workflows
bewaltigen, die Leistung KI-gestiitzter Komponenten optimieren und nahtlos
skalieren kann, um wachsenden Anforderungen gerecht zu werden. Kontinuierliche
Uberwachung, Profiling und Optimierungsbemithungen sind unerldsslich, um die
Leistung und Reaktionsfihigkeit des Systems aufrechtzuerhalten, wahrend die

Arbeitslast und Komplexitdt im Laufe der Zeit zunehmen.

Testen und Validierung von Workflows

Testen und Validierung sind kritische Aspekte bei der Entwicklung und Wartung
intelligenter Workflow-Orchestrierungssysteme. Angesichts der komplexen Natur KI-
gestiitzter Workflows ist es wichtig sicherzustellen, dass jede Komponente wie erwartet
funktioniert, der Gesamtworkflow korrekt arbeitet und die KI-Entscheidungen prazise
und zuverldssig sind. In diesem Abschnitt werden wir verschiedene Techniken und

Uberlegungen fiir das Testen und Validieren intelligenter Workflows untersuchen.

Unit-Testing von Workflow-Komponenten

Unit-Testing beinhaltet das isolierte Testen einzelner Workflow-Komponenten, um
ihre Korrektheit und Robustheit zu iberpriifen. Beim Unit-Testing von KI-gestiitzten

Workflow-Komponenten sind folgende Aspekte zu beriicksichtigen:

1. Eingabevalidierung: Testen Sie die Fahigkeit der Komponente, verschiedene Arten
von Eingaben zu verarbeiten, einschlieBlich giiltiger und ungiiltiger Daten. Uberpriifen
Sie, ob die Komponente Grenzfille angemessen behandelt und entsprechende

Fehlermeldungen oder Ausnahmen bereitstellt.

2. Ausgabeiiberpriifung: Stellen Sie sicher, dass die Komponente fiir einen bestimmten

Satz von Eingaben die erwarteten Ausgaben erzeugt. Vergleichen Sie die tatsachlichen
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Ausgaben mit den erwarteten Ergebnissen, um die Korrektheit zu gewéhrleisten.

3. Fehlerbehandlung: Testen Sie die Fehlerbehandlungsmechanismen der Komponente,
indem Sie verschiedene Fehlerszenarien simulieren, wie ungiltige Eingaben, nicht
verfiigbare Ressourcen oder unerwartete Ausnahmen. Uberpriifen Sie, ob die

Komponente Fehler angemessen abfiangt und behandelt.

4. Randbedingungen: Testen Sie das Verhalten der Komponente unter
Randbedingungen, wie leere Eingaben, maximale Eingabegrofle oder extreme
Werte. Stellen Sie sicher, dass die Komponente diese Bedingungen elegant handhabt,

ohne abzustiirzen oder falsche Ergebnisse zu produzieren.

Hier ist ein Beispiel eines Unit-Tests fiir eine Workflow-Komponente in Ruby unter

Verwendung des RSpec-Testing-Frameworks:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end

end

In diesem Beispiel wird die OrderVal idator-Komponente mit zwei Testfallen getestet:

einem fir eine giiltige Bestellung und einem fiir eine ungiltige Bestellung. Die Testfalle
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iiberpriifen, ob die validate-Methode den erwarteten booleschen Wert basierend auf

der Giltigkeit der Bestellung zuriickgibt.

Integration Testing von Workflow-Interaktionen

Integrationstests konzentrieren sich darauf, die Interaktionen und den Datenfluss
zwischen verschiedenen Workflow-Komponenten zu iiberpriifen. Sie stellen sicher,
dass die Komponenten nahtlos zusammenarbeiten und die erwarteten Ergebnisse
liefern. Bei der Integration von intelligenten Workflows sollten folgende Aspekte

berticksichtigt werden:

1. Komponenteninteraktion: Testen Sie die Kommunikation und den Datenaustausch
zwischen Workflow-Komponenten. Uberpriifen Sie, ob die Ausgabe einer Komponente

korrekt als Eingabe an die nachste Komponente im Workflow weitergegeben wird.

2. Datenkonsistenz: Stellen Sie sicher, dass die Daten wahrend des Durchlaufs
durch den Workflow konsistent und genau bleiben. Uberpriifen Sie, ob
Datentransformationen, Berechnungen und Aggregationen korrekt durchgefiihrt

werden.

3. Ausnahmeweiterleitung: Testen Sie, wie Ausnahmen und Fehler tber
Workflow-Komponenten weitergeleitet und behandelt werden. Uberpriifen Sie,
ob Ausnahmen entsprechend erfasst, protokolliert und behandelt werden, um

Workflow-Unterbrechungen zu vermeiden.

4. Asynchrones Verhalten: Wenn der Workflow asynchrone Komponenten
oder parallele Ausfithrung beinhaltet, testen Sie die Koordinations- und
Synchronisationsmechanismen. Stellen Sie sicher, dass der Workflow sich in

gleichzeitigen und asynchronen Szenarien korrekt verhélt.

Hier ist ein Beispiel eines Integrationstests fiir einen Workflow in Ruby unter

Verwendung des RSpec-Testframeworks:
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RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

In diesem Beispiel wird der OrderProcessingWorkflow getestet, indem die
Interaktionen zwischen verschiedenen Workflow-Komponenten iberpriift werden.
Der Testfall legt die Erwartungen fiir das Verhalten jeder Komponente fest und stellt
sicher, dass der Workflow die Bestellung erfolgreich verarbeitet und den Bestellstatus

entsprechend aktualisiert.

Testen von KI-Entscheidungspunkten

Das Testen von KI-Entscheidungspunkten ist entscheidend, um die Genauigkeit und
Zuverlassigkeit von Kl-gesteuerten Workflows sicherzustellen. Beim Testen von KI-

Entscheidungspunkten sollten folgende Aspekte beriicksichtigt werden:

1. Entscheidungsgenauigkeit: Uberpriifen Sie, ob die KI-Komponente auf Grundlage
der FEingabedaten und des trainierten Modells akkurate Entscheidungen trifft.

Vergleichen Sie die KI-Entscheidungen mit erwarteten Ergebnissen oder Referenzdaten.

2. Randfille: Testen Sie das Verhalten der KI-Komponente in Randfillen und
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ungewohnlichen Szenarien. Uberpriifen Sie, ob die KI-Komponente diese Fille

angemessen behandelt und verntnftige Entscheidungen trifft.

3. Verzerrung und Fairness: Bewerten Sie die KI-Komponente auf mogliche
Verzerrungen und stellen Sie sicher, dass sie faire und unvoreingenommene
Entscheidungen trifft. Testen Sie die Komponente mit verschiedenartigen Eingabedaten

und analysieren Sie die Ergebnisse auf diskriminierende Muster.

4. Erklarbarkeit: Falls die KI-Komponente Erklarungen oder Begriindungen fiir
ihre Entscheidungen liefert, iiberpriifen Sie die Richtigkeit und Klarheit dieser
Erklarungen. Stellen Sie sicher, dass die Erklirungen mit dem zugrundeliegenden

Entscheidungsprozess iibereinstimmen.

Hier ist ein Beispiel fiir das Testen eines KI-Entscheidungspunkts in Ruby mit dem RSpec

Test-Framework:

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country"')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end
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In diesem Beispiel wird die KI-Komponente FraudDetector mit zwei Testfallen
geprift: einem fiur eine betrigerische Transaktion und einem fiir eine legitime
Transaktion. Die Testfalle iiberpriifen, ob die Methode detect_fraud basierend auf

den Eigenschaften der Transaktion den erwarteten booleschen Wert zuriickgibt.

End-to-End-Testing

End-to-End-Testing umfasst das Testen des gesamten Workflows von Anfang bis Ende,
wobei reale Szenarien und Benutzerinteraktionen simuliert werden. Es stellt sicher,
dass der Workflow sich korrekt verhdlt und die gewiinschten Ergebnisse liefert. Bei
der Durchfithrung von End-to-End-Tests fiir intelligente Workflows sollten folgende
Aspekte beriicksichtigt werden:

1. Benutzerszenarien: Identifizieren Sie haufige Benutzerszenarien und testen Sie das
Verhalten des Workflows unter diesen Szenarien. Uberpriifen Sie, ob der Workflow
Benutzereingaben korrekt verarbeitet, angemessene Entscheidungen trifft und die

erwarteten Ausgaben erzeugt.

2. Datenvalidierung: Stellen Sie sicher, dass der Workflow Benutzereingaben validiert
und bereinigt, um Dateninkonsistenzen oder Sicherheitsliicken zu verhindern. Testen
Sie den Workflow mit verschiedenen Arten von Eingabedaten, einschlieBlich giiltiger

und ungiiltiger Daten.

3. Fehlerbehebung: Testen Sie die Fahigkeit des Workflows, sich von Fehlern und
Ausnahmen zu erholen. Simulieren Sie Fehlerszenarien und iiberpriifen Sie, ob
der Workflow diese angemessen behandelt, die Fehler protokolliert und geeignete

Wiederherstellungsmafinahmen ergreift.

4. Leistung und Skalierbarkeit: Bewerten Sie die Leistung und Skalierbarkeit
des Workflows unter verschiedenen Lastbedingungen. Testen Sie den Workflow
mit einer grofflen Anzahl gleichzeitiger Anfragen und messen Sie Antwortzeiten,

Ressourcenauslastung und allgemeine Systemstabilitat.



© 0 N O O b W N =

N
W N~

Intelligente Workflow-Orchestrierung 270

Hier ist ein Beispiel eines End-to-End-Tests firr einen Workflow in Ruby unter
Verwendung des RSpec Test-Frameworks und der Capybara-Bibliothek zur Simulation

von Benutzerinteraktionen:

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'
fill_in 'Quantity', with: '2'
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order’

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed')
end
end

In diesem Beispiel simuliert der End-to-End-Test einen Benutzer, der eine Bestellung
uiber die Weboberflache aufgibt. Er filllt die erforderlichen Formularfelder aus, sendet
die Bestellung ab und iiberpriift, ob die Bestellung erfolgreich verarbeitet wird, indem
er die entsprechende Bestatigungsnachricht anzeigt und den Bestellstatus in der

Datenbank aktualisiert.

Kontinuierliche Integration und Bereitstellung

Um die Zuverlassigkeit und Wartbarkeit intelligenter Workflows sicherzustellen, wird
empfohlen, Tests und Validierung in die Pipeline der kontinuierlichen Integration
und Bereitstellung (CI/CD) zu integrieren. Dies ermdglicht automatisierte Tests und
Validierung von Workflow-Anderungen, bevor diese in Produktion bereitgestellt

werden. Beriicksichtigen Sie die folgenden Praktiken:

1. Automatisierte Testausfithrung: Konfigurieren Sie die CI/CD-Pipeline so, dass

die Testsuite automatisch ausgefiihrt wird, wenn Anderungen am Workflow-Code
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vorgenommen werden. Dies stellt sicher, dass Regressionen oder Fehler frih im

Entwicklungsprozess erkannt werden.

2. Uberwachung der Testabdeckung: Messen und iiberwachen Sie die Testabdeckung
der Workflow-Komponenten und KI-Entscheidungspunkte. Streben Sie eine hohe
Testabdeckung an, um sicherzustellen, dass kritische Pfade und Szenarien griindlich

getestet werden.

3. Kontinuierliches Feedback: Integrieren Sie Testergebnisse und Code-
Qualitatsmetriken in den Entwicklungsworkflow. Bieten Sie Entwicklern
kontinuierliches Feedback tiber den Status der Tests, die Code-Qualitat und eventuelle

Probleme, die wihrend des CI/CD-Prozesses erkannt wurden.

4. Staging-Umgebungen: Stellen Sie den Workflow in Staging-Umgebungen bereit,
die der Produktionsumgebung sehr dhnlich sind. Fithren Sie zusétzliche Tests und
Validierungen in der Staging-Umgebung durch, um Probleme im Zusammenhang mit

Infrastruktur, Konfiguration oder Datenintegration zu erkennen.

5. Rollback-Mechanismen: Implementieren Sie Rollback-Mechanismen fiir den Fall
von Bereitstellungsfehlern oder kritischen Problemen in der Produktion. Stellen Sie
sicher, dass der Workflow schnell auf eine frithere stabile Version zuriickgesetzt werden

kann, um Ausfallzeiten und Auswirkungen auf die Benutzer zu minimieren.

Durch die Integration von Tests und Validierung wahrend des gesamten
Entwicklungslebenszyklus intelligenter Workflows konnen Organisationen die
Zuverlassigkeit, Genauigkeit und Wartbarkeit ihrer KI-gestiitzten Systeme sicherstellen.
Regelméflige Tests und Validierung helfen dabei, Fehler zu erkennen, Regressionen
zu verhindern und das Vertrauen in das Verhalten und die Ergebnisse des Workflows

aufzubauen.
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