

Muster der Anwendungsentwicklung

mit KI (Deutsche Ausgabe)

Obie Fernandez

Dieses Buch wird verkauft unter

http://leanpub.com/patterns-of-application-development-using-ai-de

Diese Version wurde veröffentlicht am 2025-01-23

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von

Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die

wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der

Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei

der Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing

unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-de
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Twittere dieses Buch!

Bitte unterstütze Obie Fernandez, indem du dieses Buch auf Twitter weiterempfiehlst!

Vorschlag: Verwende den folgenden Hashtag, wenn du über dieses Buch twitterst:

#poaduai.

Was sagen andere über dieses Buch? Klicke hier, um nach diesem Hashtag auf Twitter

zu suchen:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Für meine unerschrockene Königin, meine Muse, mein Licht und meine Liebe, Victoria

Ebenfalls von Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Inhaltsverzeichnis

Vorwort von Gregor Hohpe . i

Vorwort . ii

Über das Buch . iii

Über die Codebeispiele . iii

Was ich nicht behandle . iii

Für wen ist dieses Buch gedacht . iii

Aufbau eines gemeinsamen Vokabulars . iii

Mitmachen . iii

Danksagungen . iii

Was hat es mit den Illustrationen auf sich? . iv

Über Lean Publishing . iv

Über den Autor . v

Einführung . 1

Gedanken zur Softwarearchitektur . 2

Was ist ein Large Language Model? . 3

Inferenz verstehen . 5

Überlegungen zur Leistung . 28

Experimentieren mit verschiedenen LLM-Modellen 30

Zusammengesetzte KI-Systeme . 31

INHALTSVERZEICHNIS

Teil 1: Grundlegende Ansätze & Techniken . . 39

Den Pfad eingrenzen . 40

Latenter Raum: Unfassbar weit . 42

Wie der Pfad “eingegrenzt” wird . 47

Rohmodelle versus instruktionsoptimierte Modelle 51

Prompt-Engineering . 58

Prompt Distillation . 76

Was ist mit Fine-tuning? . 83

Retrieval Augmented Generation (RAG) . 84

Was ist Retrieval Augmented Generation? . 84

Wie funktioniert RAG? . 84

Warum RAG in Ihren Anwendungen einsetzen? 84

Implementierung von RAG in Ihrer Anwendung 84

Propositions-Chunking . 85

Praxisbeispiele für RAG . 85

Intelligente Abfrageoptimierung (IQO) . 86

Neuordnung . 86

RAG-Bewertung (RAGAs) . 86

Herausforderungen und Zukunftsausblick . 88

Vielzahl von Arbeitern . 90

KI-Arbeiter als unabhängige wiederverwendbare Komponenten 91

Kontoverwaltung . 93

E-Commerce-Anwendungen . 94

Anwendungen im Gesundheitswesen . 103

KI-Worker als Prozess-Manager . 107

Integration von KI-Workern in Ihre Anwendungsarchitektur 111

Komponierbarkeit und Orchestrierung von KI-Workern 115

INHALTSVERZEICHNIS

Kombination von traditionellem NLP mit LLMs 125

Werkzeugnutzung . 128

Was ist Werkzeugnutzung? . 128

Das Potenzial des Werkzeugeinsatzes . 130

Der Werkzeugeinsatz-Workflow . 131

Best Practices für die Werkzeugnutzung . 147

Zusammenstellung und Verkettung von Werkzeugen 152

Zukünftige Entwicklungen . 154

Stream Processing . 157

Implementierung eines ReplyStream . 158

Die “Konversationsschleife” . 164

Automatische Fortsetzung . 167

Fazit . 169

Selbstheilende Daten . 171

Praktische Fallstudie: Reparatur von fehlerhaftem JSON 174

Überlegungen und Gegenanzeigen . 179

Kontextbezogene Inhaltsgenerierung . 195

Personalisierung . 196

Produktivität . 198

Schnelle Iteration und Experimentierung . 201

KI-gestützte Lokalisierung . 204

Die Bedeutung von Benutzertests und Feedback 206

Generative UI . 207

Generierung von Texten für Benutzeroberflächen 209

Definition der Generativen UI . 218

Beispiel . 220

INHALTSVERZEICHNIS

Der Wandel zum ergebnisorientierten Design 223

Herausforderungen und Überlegungen . 224

Zukunftsausblick und Chancen . 226

Intelligente Workflow-Orchestrierung . 230

Geschäftlicher Bedarf . 231

Wichtige Vorteile . 232

Wichtige Muster . 233

Ausnahmebehandlung und Wiederherstellung 235

Implementierung der intelligenten Workflow-Orchestrierung in der Praxis . . 239

Überwachung und Protokollierung . 253

Skalierbarkeits- und Leistungsüberlegungen 259

Testen und Validierung von Workflows . 264

Teil 2: Die Muster . 272

Prompt-Engineering . 273

Chain of Thought . 274

Moduswechsel . 275

Rollenzuweisung . 276

Prompt-Objekt . 277

Prompt-Vorlage . 278

Structured IO . 279

Prompt Chaining . 280

Prompt Rewriter . 281

Response Fencing . 282

Query-Analyzer . 283

Query Rewriter . 284

Ventriloquist . 285

INHALTSVERZEICHNIS

Diskrete Komponenten . 286

Prädikat . 287

API-Fassade . 288

Result Interpreter . 290

Virtuelle Maschine . 291

Spezifikation und Testing . 291

Human In The Loop (HITL) . 293

Übergeordnete Muster . 293

Eskalation . 294

Feedback-Schleife . 295

Passive Informationsabstrahlung . 296

Kollaborative Entscheidungsfindung (CDM) 298

Kontinuierliches Lernen . 299

Ethische Überlegungen . 299

Technologische Fortschritte und Zukunftsausblick 299

Intelligente Fehlerbehandlung . 301

Traditionelle Fehlerbehandlungsansätze . 301

Kontextuelle Fehlerdiagnose . 302

Intelligente Fehlerberichterstattung . 303

Prädiktive Fehlervermeidung . 304

Intelligente Fehlerbehebung . 304

Personalisierte Fehlerkommunikation . 305

Adaptiver Fehlerbehandlungs-Workflow . 306

Qualitätskontrolle . 307

Eval . 308

Schutzmechanismus . 310

Guardrails und Evaluierungen: Zwei Seiten derselben Medaille 310

Glossar . 312
Glossar . 312

Register . 317

Vorwort von Gregor Hohpe
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Vorwort
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Vorwort iii

Über das Buch

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Über die Codebeispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Was ich nicht behandle

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Für wen ist dieses Buch gedacht

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Aufbau eines gemeinsamen Vokabulars

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Mitmachen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Vorwort iv

Danksagungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Was hat es mit den Illustrationen auf sich?

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Über Lean Publishing

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Vorwort v

Über den Autor

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Einführung

Wenn Sie begierig darauf sind, KI-gestützte Large Language Models (LLMs) in

Ihre Programmierprojekte zu integrieren, können Sie direkt mit den Mustern und

Codebeispielen in den späteren Kapiteln beginnen. Um jedoch die Kraft und das

Potenzial dieser Muster vollständig zu verstehen, lohnt es sich, einen Moment

innezuhalten und den breiteren Kontext sowie den kohärenten Ansatz zu erfassen, den

sie darstellen.

Die Muster sind nicht nur eine Sammlung isolierter Techniken, sondern vielmehr

ein einheitliches Framework für die Integration von KI in Ihre Anwendungen.

Ich verwende Ruby on Rails, aber diese Muster sollten in praktisch jeder anderen

Programmierumgebung funktionieren. Sie behandeln ein breites Spektrum

von Aspekten, von Datenverwaltung und Leistungsoptimierung bis hin zu

Benutzererfahrung und Sicherheit, und bieten damit ein umfassendes Werkzeug

zur Erweiterung traditioneller Programmierpraktiken mit KI-Fähigkeiten.

Einführung 2

Jede Kategorie von Mustern geht eine spezifische Herausforderung oder Chance an,

die sich bei der Integration von KI-Komponenten in Ihre Anwendung ergibt. Durch

das Verständnis der Beziehungen und Synergien zwischen diesen Mustern können Sie

fundierte Entscheidungen darüber treffen, wo und wie Sie KI am effektivsten einsetzen

können.

Muster sind niemals präskriptive Lösungen und sollten auch nicht als solche

behandelt werden. Sie sind als anpassbare Bausteine gedacht, die auf die einzigartigen

Anforderungen und Einschränkungen Ihrer eigenen Anwendung zugeschnitten

werden sollten. Die erfolgreiche Anwendung dieser Muster (wie bei allen anderen

im Softwarebereich) basiert auf einem tiefen Verständnis der Problemdomäne, der

Benutzerbedürfnisse und der gesamten technischen Architektur Ihres Projekts.

Gedanken zur Softwarearchitektur

Ich begann in den 1980er Jahren mit dem Programmieren und war in der Hackerszene

aktiv. Diese Hacker-Denkweise habe ich auch nach meinem Einstieg in die

professionelle Softwareentwicklung nie verloren. Von Anfang an hatte ich eine

gesunde Skepsis gegenüber dem tatsächlichen Mehrwert, den Softwarearchitekten in

ihren Elfenbeintürmen lieferten.

Einer der Gründe, warum ich persönlich so begeistert von den Veränderungen bin,

die diese neue, leistungsstarke KI-Technologie mit sich bringt, ist ihre Auswirkung auf

das, was wir als Softwarearchitektur-Entscheidungen betrachten. Sie stellt traditionelle

Vorstellungen darüber in Frage, was die “richtige” Art ist, unsere Softwareprojekte zu

entwerfen und umzusetzen. Sie stellt auch in Frage, ob Architektur noch primär als

die Teile eines Systems, die schwer zu ändern sind betrachtet werden kann, da KI-

Erweiterungen es einfacher als je zuvor machen, jeden Teil Ihres Projekts jederzeit zu

ändern.

Vielleicht betreten wir gerade die Hochphase des “postmodernen” Ansatzes in

der Softwareentwicklung. In diesem Kontext bezieht sich postmodern auf eine

Einführung 3

fundamentale Abkehr von traditionellen Paradigmen, bei denen Entwickler für das

Schreiben und Warten jeder Codezeile verantwortlich waren. Stattdessen wird die

Idee der Delegation von Aufgaben wie Datenmanipulation, komplexen Algorithmen

und sogar ganzen Teilen der Anwendungslogik an Drittanbieter-Bibliotheken und

externe APIs befürwortet. Diese postmoderne Verschiebung stellt einen bedeutenden

Abschied von der konventionellen Weisheit dar, Anwendungen von Grund auf neu

zu entwickeln, und fordert Entwickler heraus, ihre Rolle im Entwicklungsprozess zu

überdenken.

Ich habe immer geglaubt, dass gute Programmierer nur den Code schreiben, der absolut

notwendig ist, basierend auf den Lehren von LarryWall und anderenHacker-Koryphäen

wie ihm. Durch die Minimierung der Menge des geschriebenen Codes können wir

schneller arbeiten, die Angriffsfläche für Fehler reduzieren, die Wartung vereinfachen

und die allgemeine Zuverlässigkeit ihrer Anwendungen verbessern. Weniger Code

ermöglicht es uns, uns auf die zentrale Geschäftslogik und Benutzererfahrung zu

konzentrieren, während andere Arbeiten an andere Dienste delegiert werden.

Jetzt, da KI-gestützte Systeme Aufgaben übernehmen können, die früher ausschließlich

von Menschen geschriebenem Code vorbehalten waren, sollten wir noch produktiver

und agiler sein können, mit einem größeren Fokus denn je auf die Schaffung von

Geschäftswert und Benutzererfahrung.

Natürlich gibt es auch Kompromisse bei der Delegation großer Teile Ihres Projekts

an KI-Systeme, wie den potenziellen Kontrollverlust und die Notwendigkeit robuster

Überwachungs- und Feedback-Mechanismen. Deshalb erfordert es neue Fähigkeiten

und Kenntnisse, einschließlich zumindest eines grundlegenden Verständnisses davon,

wie KI funktioniert.

Was ist ein Large Language Model?

Large Language Models (LLMs) sind eine Art künstlicher Intelligenz, die seit der

Einführung von GPT-3 durch OpenAI im Jahr 2020 erhebliche Aufmerksamkeit

Einführung 4

erregt haben. LLMs sind darauf ausgelegt, menschliche Sprache mit bemerkenswerter

Genauigkeit und Flüssigkeit zu verarbeiten, zu verstehen und zu generieren. In diesem

Abschnitt werfen wir einen kurzen Blick darauf, wie LLMs funktionieren und warum

sie sich gut für den Aufbau intelligenter Systemkomponenten eignen.

Im Kern basieren LLMs auf Deep-Learning-Algorithmen, speziell auf neuronalen

Netzen. Diese Netzwerke bestehen aus miteinander verbundenen Knoten oder

Neuronen, die Informationen verarbeiten und übertragen. Die Architektur der Wahl

für LLMs ist oft das Transformer-Modell, das sich als hocheffektiv bei der Verarbeitung

sequentieller Daten wie Text erwiesen hat.

Transformer-Modelle basieren auf dem Aufmerksamkeitsmechanismus und werden

hauptsächlich für Aufgaben mit sequenziellen Daten wie der Verarbeitung natürlicher

Sprache eingesetzt. Transformer verarbeiten Eingabedaten gleichzeitig statt sequenziell,

wodurch sie weitreichende Abhängigkeiten effektiver erfassen können. Sie verfügen

über Schichten von Aufmerksamkeitsmechanismen, die dem Modell helfen, sich auf

verschiedene Teile der Eingabedaten zu konzentrieren, um Kontext und Beziehungen

zu verstehen.

Der Trainingsprozess für LLMs beinhaltet die Konfrontation des Modells mit riesigen

Mengen an Textdaten, wie Bücher, Artikel, Websites und Code-Repositories. Während

des Trainings lernt das Modell, Muster, Beziehungen und Strukturen innerhalb

des Textes zu erkennen. Es erfasst die statistischen Eigenschaften der Sprache, wie

Grammatikregeln, Wortassoziationen und kontextuelle Bedeutungen.

Eine der wichtigsten Techniken beim Training von LLMs ist das unüberwachte Lernen.

Dies bedeutet, dass das Modell ohne explizite Kennzeichnung oder Anleitung aus

den Daten lernt. Es entdeckt selbstständig Muster und Darstellungen, indem es das

gemeinsame Auftreten von Wörtern und Phrasen in den Trainingsdaten analysiert.

Dies ermöglicht es LLMs, ein tiefes Verständnis von Sprache und ihren Feinheiten zu

entwickeln.

Ein weiterer wichtiger Aspekt von LLMs ist ihre Fähigkeit, Kontext zu verarbeiten. Bei

Einführung 5

der Verarbeitung eines Textes berücksichtigen LLMs nicht nur die einzelnen Wörter,

sondern auch den umgebenden Kontext. Sie berücksichtigen die vorherigen Wörter,

Sätze und sogar Absätze, um die Bedeutung und Absicht des Textes zu verstehen. Dieses

kontextuelle Verständnis ermöglicht es LLMs, kohärente und relevante Antworten

zu generieren. Eine der wichtigsten Methoden zur Bewertung der Fähigkeiten eines

bestimmten LLM-Modells ist die Betrachtung der Kontextgröße, die sie bei der

Generierung von Antworten berücksichtigen können.

Nach dem Training können LLMs für ein breites Spektrum von sprachbezogenen

Aufgaben eingesetzt werden. Sie können menschenähnlichen Text generieren, Fragen

beantworten, Dokumente zusammenfassen, Sprachen übersetzen und sogar Code

schreiben. Die Vielseitigkeit von LLMs macht sie wertvoll für den Aufbau intelligenter

Systemkomponenten, die mit Benutzern interagieren, Textdaten verarbeiten und

analysieren sowie aussagekräftige Ausgaben generieren können.

Durch die Integration von LLMs in die Anwendungsarchitektur können Sie KI-

Komponenten erstellen, die Benutzereingaben verstehen und verarbeiten, dynamische

Inhalte generieren und intelligente Empfehlungen oder Aktionen bereitstellen.

Die Arbeit mit LLMs erfordert jedoch eine sorgfältige Berücksichtigung der

Ressourcenanforderungen und Leistungskompromisse. LLMs sind rechenintensiv

und können erhebliche Rechenleistung und Speicher (mit anderen Worten, Geld)

für den Betrieb erfordern. Die meisten von uns müssen die Kostenauswirkungen der

Integration von LLMs in unsere Anwendungen bewerten und entsprechend handeln.

Inferenz verstehen

Inferenz bezieht sich auf den Prozess, bei dem ein Modell Vorhersagen oder Ausgaben

basierend auf neuen, ungesehenen Daten generiert. Es ist die Phase, in der das trainierte

Modell verwendet wird, um Entscheidungen zu treffen oder Text, Bilder oder andere

Inhalte als Reaktion auf Benutzereingaben zu generieren.

Einführung 6

Während der Trainingsphase lernt ein KI-Modell aus einem großen Datensatz, indem

es seine Parameter anpasst, um den Fehler in seinen Vorhersagen zu minimieren. Nach

dem Training kann das Modell das Gelernte auf neue Daten anwenden. Inferenz ist die

Art und Weise, wie das Modell seine gelernten Muster und Kenntnisse zur Generierung

von Ausgaben nutzt.

Für LLMs beinhaltet die Inferenz die Aufnahme eines Prompts oder Eingabetextes

und die Erzeugung einer kohärenten und kontextuell relevanten Antwort als Strom

von Token(über die wir bald sprechen werden). Dies könnte die Beantwortung einer

Frage, die Vervollständigung eines Satzes, die Generierung einer Geschichte oder die

Übersetzung von Text sein, neben vielen anderen Aufgaben.

Im Gegensatz zu der Art und Weise, wie Sie und ich denken, geschieht das

“Denken” eines KI-Modells durch Inferenz in einer einzigen zustandslosen

Operation. Das heißt, sein Denken ist auf seinen Generierungsprozess

beschränkt. Es muss buchstäblich laut denken, als ob ich Ihnen eine

Frage stelle und nur eine Antwort von Ihnen im “Bewusstseinsstrom”-Stil

akzeptiere.

Große Sprachmodelle gibt es in vielen Größen und
Varianten

Während praktisch alle populären großen Sprachmodelle (LLMs) auf der gleichen

Kern-Transformer-Architektur basieren und auf riesigen Textdatensätzen trainiert

sind, kommen sie in verschiedenen Größen und sind für unterschiedliche Zwecke

feinabgestimmt. Die Größe eines LLM, gemessen an der Anzahl der Parameter in

seinem neuronalen Netzwerk, hat einen großen Einfluss auf seine Fähigkeiten. Größere

Modelle mit mehr Parametern, wie GPT-4, das Gerüchten zufolge 1 bis 2 Billionen

Parameter aufweist, sind im Allgemeinen kenntnisreicher und leistungsfähiger als

kleinere Modelle. Allerdings benötigen größere Modelle auch viel mehr Rechenleistung,

was sich in höheren Kosten bei der Nutzung über API-Aufrufe niederschlägt.

Einführung 7

Um LLMs praktischer und für spezifische Anwendungsfälle maßgeschneiderter zu

machen, werden die Basismodelle oft auf gezielteren Datensätzen feinabgestimmt. Zum

Beispiel kann ein LLM auf einem großen Korpus von Dialogen trainiert werden, um es

für konversationelle KI zu spezialisieren. Andere werden auf Code trainiert, um ihnen

Programmierkenntnisse zu vermitteln. Es gibt sogarModelle, die speziell für Rollenspiel-

artige Interaktionen mit Benutzern trainiert wurden!

Abrufbasierte vs. Generative Modelle

In der Welt der Large Language Models (LLMs) gibt es zwei hauptsächliche Ansätze

zur Generierung von Antworten: abrufbasierte Modelle und generative Modelle.

Jeder Ansatz hat seine eigenen Stärken und Schwächen, und das Verständnis der

Unterschiede zwischen ihnen kann Ihnen helfen, das richtige Modell für Ihren

spezifischen Anwendungsfall zu wählen.

Abrufbasierte Modelle

Abrufbasierte Modelle, auch bekannt als Informationsabruf-Modelle, generieren

Antworten, indem sie eine große Datenbank mit bereits existierenden Texten

durchsuchen und die relevantesten Passagen basierend auf der Eingabeanfrage

auswählen. Diese Modelle generieren keine neuen Texte von Grund auf, sondern fügen

stattdessen Auszüge aus der Datenbank zu einer kohärenten Antwort zusammen.

Einer der Hauptvorteile von abrufbasierten Modellen ist ihre Fähigkeit, sachlich

korrekte und aktuelle Informationen bereitzustellen. Da sie sich auf eine Datenbank

mit kuratierten Texten stützen, können sie relevante Informationen aus zuverlässigen

Quellen abrufen und dem Benutzer präsentieren. Dies macht sie besonders geeignet für

Anwendungen, die präzise, faktische Antworten erfordern, wie Frage-Antwort-Systeme

oder Wissensdatenbanken.

Allerdings haben abrufbasierte Modelle auch einige Einschränkungen. Sie sind nur so

gut wie die Datenbank, in der sie suchen, sodass die Qualität und Abdeckung der

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Einführung 8

Datenbank die Leistung des Modells direkt beeinflusst. Zusätzlich können diese Modelle

Schwierigkeiten haben, kohärente und natürlich klingende Antworten zu generieren, da

sie auf den in der Datenbank verfügbaren Text beschränkt sind.

In diesem Buch behandeln wir die Verwendung reiner Abrufmodelle nicht.

Generative Modelle

Generative Modelle hingegen erstellen neue Texte von Grund auf, basierend auf

den Mustern und Beziehungen, die sie während des Trainings gelernt haben. Diese

Modelle nutzen ihr Sprachverständnis, um neue Antworten zu generieren, die auf die

Eingabeaufforderung zugeschnitten sind.

Die Hauptstärke generativer Modelle liegt in ihrer Fähigkeit, kreative, kohärente

und kontextuell relevante Texte zu produzieren. Sie können offene Gespräche

führen, Geschichten generieren und sogar Code schreiben. Dies macht sie ideal für

Anwendungen, die offenere und dynamischere Interaktionen erfordern, wie Chatbots,

Content-Erstellung und kreative Schreibassistenten.

Allerdings können generative Modelle manchmal inkonsistente oder sachlich falsche

Informationen produzieren, da sie sich eher auf die während des Trainings gelernten

Muster verlassen als auf eine kuratierte Faktendatenbank. Sie können auch anfälliger

für Voreingenommenheit und Halluzinationen sein und Texte generieren, die plausibel

erscheinen, aber nicht unbedingt wahr sind.

Beispiele für generative LLMs sind OpenAIs GPT-Serie (GPT-3, GPT-4) und Anthropics

Claude.

Hybride Modelle

Mehrere kommerziell verfügbare LLMs kombinieren beide Ansätze – Abruf und

Generierung – in einem hybriden Modell. Diese Modelle verwenden Abruftechniken,

um relevante Informationen aus einer Datenbank zu finden, und nutzen dann generative

Techniken, um diese Informationen zu einer kohärenten Antwort zu synthetisieren.

Einführung 9

Hybride Modelle zielen darauf ab, die sachliche Genauigkeit von abrufbasierten

Modellen mit den Fähigkeiten der natürlichen Sprachgenerierung von generativen

Modellen zu verbinden. Sie können zuverlässigere und aktuellere Informationen

bereitstellen und gleichzeitig die Fähigkeit zu offenen Gesprächen beibehalten.

Bei der Wahl zwischen abrufbasierten und generativen Modellen sollten Sie die

spezifischen Anforderungen Ihrer Anwendung berücksichtigen. Wenn das primäre

Ziel darin besteht, genaue, faktische Informationen bereitzustellen, könnte ein

abrufbasiertes Modell die beste Wahl sein. Wenn die Anwendung offenere und

kreativere Interaktionen erfordert, könnte ein generatives Modell besser geeignet sein.

Hybride Modelle bieten ein Gleichgewicht zwischen den beiden Ansätzen und können

eine gute Wahl für Anwendungen sein, die sowohl faktische Genauigkeit als auch

natürliche Sprachgenerierung erfordern.

Letztendlich hängt die Wahl zwischen abrufbasierten und generativen Modellen vom

spezifischenAnwendungsfall und denKompromissen zwischenGenauigkeit, Kreativität

und Flexibilität ab. Durch das Verständnis der Stärken und Einschränkungen jedes

Ansatzes können Sie fundierte Entscheidungen treffen.

Einführung 10

Instruktions-Feinabstimmung

Instruktions-Feinabstimmung ist eine Unterkategorie des Konversationstrainings, die

menschlich geschriebene Prompts und Antworten verwendet, um LLMs besser darin

zu machen, Anweisungen zu verstehen und zu befolgen. Hier sind einige einfache

Beispiele, die veranschaulichen, wie Instruktions-Feinabstimmung mit menschlich

geschriebenen Prompts und Antworten LLMs besser darin macht, Anweisungen zu

verstehen und zu befolgen:

Beispiel 1: Kundenservice

Anweisung: “Geben Sie eine Antwort an einen Kunden, der um eine Rückerstattung

bittet.”

Menschlich geschriebener Prompt: “Ich möchte eine Rückerstattung für meinen

kürzlichen Einkauf beantragen. Das Produkt hat meine Erwartungen nicht erfüllt.”

Menschlich geschriebene Antwort: “Es tut mir leid zu hören, dass das Produkt Ihre

Erwartungen nicht erfüllt hat. Um Ihre Rückerstattung zu bearbeiten, geben Sie

bitte Ihre Bestellnummer und den Grund für die Rücksendung an. Wir werden Ihre

Anfrage prüfen und uns innerhalb von 2-3 Werktagen bei Ihnen melden.”

Beispiel 2: Bildungsunterstützung

Anweisung: “Erklären Sie das Konzept der Photosynthese einem 10-Jährigen.”

Von Menschen geschriebene Anfrage: “Kannst du erklären, wie Pflanzen ihre

Nahrung herstellen?”

Von Menschen geschriebene Antwort: “Natürlich! Pflanzen stellen ihre Nahrung

durch einen Prozess namens Photosynthese her. Sie nutzen Sonnenlicht, Wasser

und Kohlendioxid, um Nahrung und Sauerstoff zu erzeugen. Die Blätter der Pflanze

Einführung 11

haben einen speziellen Bestandteil namens Chlorophyll, der ihnen hilft, Sonnenlicht

einzufangen.”

Beispiel 3: Persönlicher Assistent

Anweisung: “Plane ein Meeting für nächsten Dienstag um 15 Uhr.”

Von Menschen geschriebene Anfrage: “Kannst du ein Meeting für Dienstag um 15

Uhr einrichten?”

Von Menschen geschriebene Antwort: “Natürlich, ich habe ein Meeting für Sie am

nächsten Dienstag um 15 Uhr geplant. Benötigen Sie sonst noch etwas?”

Das Ergebnis ist ein vielfältiges Ökosystem von LLMs in verschiedenen Größen und mit

unterschiedlichen Spezialisierungen. Kleinere Modelle im Bereich von 1-7 Milliarden

Parametern bieten gute allgemeine Sprachfähigkeiten bei gleichzeitig höherer Effizienz

im Betrieb.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Mittelgroße Modelle mit etwa 30-70 Milliarden Parametern bieten stärkere Fähigkeiten

im Bereich Reasoning und Befolgung von Anweisungen.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Bei der Auswahl eines LLM für eine Anwendung müssen die Fähigkeiten des Modells

gegen praktische Faktoren wie Kosten, Latenz, Kontextlänge und Inhaltsfilterung

Einführung 12

abgewogen werden. Kleinere, instruktionsoptimierte Modelle sind oft die beste Wahl

für einfachere Sprachaufgaben, während die größten Modelle für komplexes Reasoning

oder Analysen erforderlich sein können. Die Trainingsdaten des Modells sind ebenfalls

ein wichtiger Aspekt, da sie den Wissens-Stichtag des Modells bestimmen.

Bestimmte Modelle, wie einige von Perplexity, sind mit Echtzeit-

Informationsquellen verbunden, sodass sie effektiv keinen Stichtag haben.

Wenn man ihnen Fragen stellt, können sie selbstständig entscheiden,

Websuchen durchzuführen und beliebige Webseiten abzurufen, um eine

Antwort zu generieren.

Abbildung 1. Llama3 mit und ohne Online-Zugang

Letztendlich gibt es kein universell einsetzbares LLM. Das Verständnis der Unterschiede

inModellgröße, Architektur und Training ist entscheidend für die Auswahl des richtigen

Modells für einen bestimmten Anwendungsfall. Nur durch das Experimentieren mit

verschiedenen Modellen lässt sich in der Praxis herausfinden, welche die beste Leistung

für die jeweilige Aufgabe bieten.

Einführung 13

Tokenisierung: Text in Stücke zerlegen

Bevor ein Large Language Model Text verarbeiten kann, muss dieser Text in kleinere

Einheiten, sogenannte Tokens, zerlegt werden. Tokens können einzelne Wörter,

Wortteile oder sogar einzelne Zeichen sein. Der Prozess der Zerlegung von Text in

Tokens wird als Tokenisierung bezeichnet und ist ein entscheidender Schritt bei der

Vorbereitung von Daten für ein Sprachmodell.

Abbildung 2. Dieser Satz enthält 27 Tokens

Verschiedene LLMs verwenden unterschiedliche Tokenisierungsstrategien, die einen

erheblichen Einfluss auf die Leistung und Fähigkeiten desModells haben können. Einige

gängige Tokenizer, die von LLMs verwendet werden, sind:

• GPT (Byte Pair Encoding):GPT-Tokenizer verwenden eine Technik namens Byte

Pair Encoding (BPE), um Text in Teilworteinheiten zu zerlegen. BPE verschmilzt

iterativ die häufigsten Byte-Paare in einem Textkorpus und bildet so ein Vokabular

aus Teilwort-Tokens. Dies ermöglicht es dem Tokenizer, seltene und neue Wörter

zu verarbeiten, indem er sie in häufigere Teilwörter zerlegt. GPT-Tokenizer

werden von Modellen wie GPT-3 und GPT-4 verwendet.

• Llama (SentencePiece): Llama-Tokenisierer verwenden die SentencePiece-

Bibliothek, ein unüberwachter Text-Tokenisierer und Detokenisierer.

SentencePiece behandelt den Eingabetext als eine Sequenz von Unicode-

Zeichen und lernt ein Teilwort-Vokabular basierend auf einem Trainingskorpus.

Es kann jede Sprache verarbeiten, die in Unicode kodiert werden kann, was

es besonders geeignet für mehrsprachige Modelle macht. Llama-Tokenisierer

werden von Modellen wie Meta’s Llama und Alpaca verwendet.

Einführung 14

• SentencePiece (Unigram): SentencePiece-Tokenisierer können auch einen

anderen Algorithmus namens Unigram verwenden, der auf einer Teilwort-

Regularisierungstechnik basiert. Die Unigram-Tokenisierung bestimmt das

optimale Teilwort-Vokabular basierend auf einem Unigram-Sprachmodell, das

einzelnen Teilworteinheiten Wahrscheinlichkeiten zuordnet. Dieser Ansatz

kann im Vergleich zu BPE semantisch bedeutungsvollere Teilwörter erzeugen.

SentencePiece mit Unigram wird von Modellen wie Google’s T5 und BERT

verwendet.

• Google Gemini (Multimodale Tokenisierung): Google Gemini verwendet

ein Tokenisierungsschema, das für die Verarbeitung verschiedener Datentypen,

einschließlich Text, Bilder, Audio, Videos und Code, entwickelt wurde. Diese

multimodale Fähigkeit ermöglicht es Gemini, verschiedene Formen von

Informationen zu verarbeiten und zu integrieren. Bemerkenswert ist, dass Google

Gemini 1.5 Pro ein Kontextfenster hat, das Millionen von Token verarbeiten

kann, deutlich mehr als frühere Modelle. Dieses umfangreiche Kontextfenster

ermöglicht es dem Modell, einen größeren Kontext zu verarbeiten, was potenziell

zu genaueren Antworten führt. Allerdings ist es wichtig zu beachten, dass

Geminis Tokenisierungsschema viel näher an einem Token pro Zeichen liegt

als bei anderen Modellen. Dies bedeutet, dass die tatsächlichen Kosten für die

Nutzung von Gemini-Modellen deutlich höher sein können als erwartet, wenn

man an Modelle wie GPT gewöhnt ist, da Googles Preisgestaltung auf Zeichen

statt auf Token basiert.

Die Wahl des Tokenisierers beeinflusst verschiedene Aspekte eines LLM, darunter:

• Vokabulargröße: Der Tokenisierer bestimmt die Größe des Modellvokabulars,

also die Menge der einzigartigen Token, die es erkennt. Ein größeres, feiner

granuliertes Vokabular kann demModell helfen, eine breitere Palette vonWörtern

und Phrasen zu verarbeiten und sogar multimodal zu werden (fähig, mehr als nur

Einführung 15

Text zu verstehen und zu generieren), erhöht aber auch den Speicherbedarf und

die Berechnungskomplexität des Modells.

• Umgang mit seltenen und unbekannten Wörtern: Tokenisierer, die

Teilworteinheiten verwenden, wie BPE und SentencePiece, können seltene

und unbekannte Wörter in häufigere Teilwörter zerlegen. Dies ermöglicht es dem

Modell, fundierte Vermutungen über die Bedeutung von Wörtern anzustellen, die

es noch nie gesehen hat, basierend auf den Teilwörtern, aus denen sie bestehen.

• Mehrsprachige Unterstützung: Tokenisierer wie SentencePiece, die jede

Unicode-kodierbare Sprache verarbeiten können, sind gut geeignet für

mehrsprachige Modelle, die Text in verschiedenen Sprachen verarbeiten

müssen.

Bei der Auswahl eines LLM für eine bestimmte Anwendung ist es wichtig, den

verwendeten Tokenisierer zu berücksichtigen und wie gut er mit den spezifischen

Sprachverarbeitungsanforderungen der Aufgabe übereinstimmt. Der Tokenisierer

kann einen erheblichen Einfluss auf die Fähigkeit des Modells haben, fachspezifische

Terminologie, seltene Wörter und mehrsprachigen Text zu verarbeiten.

Kontextgröße: Wie viele Informationen kann ein
Sprachmodell während der Inferenz nutzen?

Bei der Diskussion von Sprachmodellen bezieht sich die Kontextgröße auf die

Textmenge, die ein Modell bei der Verarbeitung oder Generierung seiner Antworten

berücksichtigen kann. Es ist im Wesentlichen ein Maß dafür, wie viel Information

das Modell “erinnern” und für seine Ausgaben nutzen kann (ausgedrückt in Token).

Die Kontextgröße eines Sprachmodells kann einen erheblichen Einfluss auf seine

Fähigkeiten und die Arten von Aufgaben haben, die es effektiv ausführen kann.

Einführung 16

Was ist Kontextgröße?

Technisch gesehen wird die Kontextgröße durch die Anzahl der Token (Wörter

oder Wortteile) bestimmt, die ein Sprachmodell in einer einzelnen Eingabesequenz

verarbeiten kann. Dies wird oft als “Aufmerksamkeitsspanne” oder “Kontextfenster”

des Modells bezeichnet. Je größer die Kontextgröße, desto mehr Text kann das Modell

gleichzeitig berücksichtigen, wenn es eine Antwort generiert oder eine Aufgabe

ausführt.

Verschiedene Sprachmodelle haben unterschiedliche Kontextgrößen, die von einigen

hundert Token bis zu Millionen von Token reichen. Zum Vergleich: Ein typischer

Textabsatz enthält etwa 100-150 Token, während ein ganzes Buch Zehntausende oder

Hunderttausende von Token enthalten kann.

Es gibt sogar Forschung zu effizienten Methoden, um Transformer-basierte Large

Language Models (LLMs) auf unendlich lange Eingaben mit begrenztem Speicher

und Rechenaufwand zu skalieren.

Warum ist die Kontextgröße wichtig?

Die Kontextgröße eines Sprachmodells hat einen erheblichen Einfluss auf seine

Fähigkeit, zusammenhängenden und kontextuell relevanten Text zu verstehen und zu

generieren. Hier sind einige wichtige Gründe, warum die Kontextgröße von Bedeutung

ist:

1. Verstehen längerer Inhalte: Modelle mit größeren Kontextfenstern

können längere Texte wie Artikel, Berichte oder sogar ganze Bücher

besser verstehen und analysieren. Dies ist entscheidend für Aufgaben wie

Dokumentenzusammenfassung, Fragenbeantwortung und Inhaltsanalyse.

https://huggingface.co/papers/2404.07143

Einführung 17

2. Aufrechterhaltung der Kohärenz: Ein größeres Kontextfenster ermöglicht

es dem Modell, Kohärenz und Konsistenz über längere Textabschnitte hinweg

aufrechtzuerhalten. Dies ist wichtig für Aufgaben wie Geschichtengenerierung,

Dialogsysteme und Content-Erstellung, bei denen die Beibehaltung einer

konsistenten Erzählung oder Thematik wesentlich ist. Es ist auch absolut

entscheidend bei der Verwendung von LLMs zur Generierung oder

Transformation strukturierter Daten.

3. Erfassung langreichweitiger Abhängigkeiten: Einige sprachliche Aufgaben

erfordern das Verständnis von Beziehungen zwischen Wörtern oder Phrasen, die

im Text weit voneinander entfernt sind. Modelle mit größeren Kontextgrößen

sind besser in der Lage, diese langreichweitigen Abhängigkeiten zu erfassen,

was für Aufgaben wie Stimmungsanalyse, Übersetzung und Sprachverständnis

wichtig sein kann.

4. Umgang mit komplexen Anweisungen: Bei Anwendungen, in denen

Sprachmodelle komplexe, mehrstufige Anweisungen befolgen sollen, ermöglicht

eine größere Kontextgröße dem Modell, den gesamten Satz von Anweisungen bei

der Generierung einer Antwort zu berücksichtigen, anstatt nur die letzten paar

Wörter.

Beispiele für Sprachmodelle mit unterschiedlichen Kontextgrößen

Hier sind einige Beispiele für Sprachmodelle mit unterschiedlichen Kontextgrößen:

• OpenAI GPT-3.5 Turbo: 4.095 Tokens

• Mistral 7B Instruct: 32.768 Tokens

• Anthropic Claude v1: 100.000 Tokens

• OpenAI GPT-4 Turbo: 128.000 Tokens

• Anthropic Claude v2: 200.000 Tokens

• Google Gemini Pro 1.5: 2,8M Tokens

Einführung 18

Wie Sie sehen können, gibt es eine große Bandbreite an Kontextgrößen bei diesen

Modellen, von etwa 4.000 Tokens beim OpenAI GPT-3.5 Turbo-Modell bis zu 200.000

Tokens beim Anthropic Claude v2-Modell. Einige Modelle, wie Googles PaLM 2 und

OpenAIs GPT-4, bieten verschiedene Varianten mit größeren Kontextgrößen an (z.B.

“32k”-Versionen), die noch längere Eingabesequenzen verarbeiten können. Und zum

jetzigen Zeitpunkt (April 2024) prahlt Google Gemini Pro mit fast 3 Millionen Tokens!

Es ist erwähnenswert, dass die Kontextgröße je nach spezifischer Implementierung und

Version eines bestimmten Modells variieren kann. Zum Beispiel hat das ursprüngliche

OpenAI GPT-4-Modell eine Kontextgröße von 8.191 Tokens, während die späteren GPT-

4-Varianten wie Turbo und 4o eine deutlich größere Kontextgröße von 128.000 Tokens

aufweisen.

Sam Altman hat die aktuellen Kontextbeschränkungen mit den Kilobytes an

Arbeitsspeicher verglichen, mit denen PC-Programmierer in den 80er Jahren

umgehen mussten, und gesagt, dass wir in naher Zukunft in der Lage sein werden,

“alle persönlichen Daten” in den Kontext eines großen Sprachmodells einzufügen.

Auswahl der richtigen Kontextgröße

Bei der Auswahl eines Sprachmodells für eine bestimmte Anwendung ist es wichtig,

die Kontextgrößenanforderungen der jeweiligen Aufgabe zu berücksichtigen. Für

Aufgaben, die kurze, isolierte Textstücke betreffen, wie Stimmungsanalyse oder

einfache Fragenbeantwortung, kann eine kleinere Kontextgröße ausreichend sein. Für

Aufgaben, die das Verstehen und Generieren längerer, komplexerer Texte erfordern,

wird jedoch wahrscheinlich eine größere Kontextgröße notwendig sein.

Es ist zu beachten, dass größere Kontextgrößen oft mit erhöhten Rechenkosten und

längeren Verarbeitungszeiten verbunden sind, da das Modell bei der Generierung einer

Einführung 19

Antwort mehr Informationen berücksichtigen muss. Daher müssen Sie bei der Wahl

eines Sprachmodells für Ihre Anwendung ein Gleichgewicht zwischen Kontextgröße

und Leistung finden.

Warumwähltman nicht einfach dasModell mit der größten Kontextgröße und füttert

es mit so vielen Informationen wie möglich? Nun, neben Leistungsfaktoren ist der

andere Hauptaspekt die Kosten. Im März 2024 kostet ein einziger Prompt-Response-

Zyklus mit Google Gemini Pro 1.5 bei vollem Kontext fast 8 USD. Wenn Sie einen

Anwendungsfall haben, der diese Ausgaben rechtfertigt, nur zu! Aber für die meisten

Anwendungen ist es um Größenordnungen zu teuer.

Nadeln im Heuhaufen finden

Das Konzept, eine Nadel im Heuhaufen zu finden, ist seit langem eine Metapher für

die Herausforderungen beim Abruf in großen Datensätzen. Im Bereich der großen

Sprachmodelle (LLMs) modifizieren wir diese Analogie ein wenig. Stellen Sie sich vor,

wir suchen nicht nur nach einer einzelnen Information, die in einem umfangreichen Text

verborgen ist (wie etwa in einer vollständigen Anthologie von Paul Graham Essays),

sondern nach mehreren, über den Text verteilten Informationen. Dieses Szenario ähnelt

eher der Suche nach mehreren Nadeln in einem weitläufigen Feld, nicht nur in einem

einzelnen Heuhaufen. Und hier kommt’s: Wir müssen diese Nadeln nicht nur finden,

sondern sie auch zu einem zusammenhängenden Faden verweben.

Wenn LLMs damit beauftragt werden, mehrere in langen Kontexten eingebettete

Informationen abzurufen und darüber zu schlussfolgern, stehen sie vor einer zweifachen

Herausforderung. Erstens gibt es das offensichtliche Problem der Abrufgenauigkeit

– sie nimmt naturgemäß ab, je mehr Informationen es gibt. Das ist zu erwarten;

schließlich fordert die Verfolgung mehrerer Details in einem weitläufigen Text selbst

die ausgefeiltesten Modelle heraus.

Einführung 20

Zweitens, und vielleicht noch wichtiger, ist die Herausforderung, mit diesen

Informationen zu argumentieren. Es ist eine Sache, Fakten herauszupicken;

eine ganz andere ist es, sie zu einer kohärenten Erzählung oder Antwort zu

synthetisieren. Hier kommt die wahre Prüfung. Die Leistung von LLMs bei

Argumentationsaufgaben tendiert dazu, stärker abzunehmen als bei einfachen

Abrufaufgaben. Diese Verschlechterung betrifft nicht nur das Volumen; es geht um das

komplexe Zusammenspiel von Kontext, Relevanz und Schlussfolgerung.

Warum passiert das? Nun, betrachten wir die Dynamik von Gedächtnis und

Aufmerksamkeit in der menschlichen Kognition, die sich bis zu einem gewissen Grad in

LLMs widerspiegelt. Bei der Verarbeitung großer Informationsmengen können LLMs,

ähnlich wie Menschen, frühere Details aus den Augen verlieren, während sie neue

aufnehmen. Dies gilt besonders für Modelle, die nicht explizit darauf ausgelegt sind,

frühere Textabschnitte automatisch zu priorisieren oder zu überprüfen.

Darüber hinaus ähnelt die Fähigkeit eines LLM, diese abgerufenen Fakten zu einer

kohärentenAntwort zu verweben, demAufbau einer Erzählung. Dies erfordert nicht nur

den Abruf von Informationen, sondern auch ein tiefes Verständnis und eine kontextuelle

Einordnung, was für die aktuelle KI weiterhin eine große Herausforderung darstellt.

Was bedeutet das also für uns als Entwickler und Integratoren dieser Technologien?

Wir müssen uns dieser Einschränkungen bewusst sein, wenn wir Systeme entwickeln,

die sich auf LLMs für komplexe, längere Aufgaben verlassen. Das Verständnis, dass

die Leistung unter bestimmten Bedingungen nachlassen könnte, hilft uns, realistische

Erwartungen zu setzen und bessere Ausweichmechanismen oder ergänzende Strategien

zu entwickeln.

Modalitäten: Jenseits des Textes

Während sich die Mehrheit der Sprachmodelle heute auf die Verarbeitung und

Generierung von Text konzentriert, gibt es einen wachsenden Trend zu multimodalen

Modellen, die verschiedene Arten von Daten wie Bilder, Audio und Video nativ ein-

Einführung 21

und ausgeben können. Diese multimodalen Modelle eröffnen neue Möglichkeiten

für KI-gestützte Anwendungen, die Inhalte über verschiedene Modalitäten hinweg

verstehen und generieren können.

Was sind Modalitäten?

Im Kontext von Sprachmodellen beziehen sich Modalitäten auf die verschiedenen Arten

von Daten, die ein Modell verarbeiten und generieren kann. Die häufigste Modalität ist

Text, der geschriebene Sprache in verschiedenen Formen wie Bücher, Artikel, Websites

und Social-Media-Beiträge umfasst. Es gibt jedoch mehrere andere Modalitäten, die

zunehmend in Sprachmodelle integriert werden:

• Bilder: Visuelle Daten wie Fotografien, Illustrationen und Diagramme.

• Audio: Klanginformationen wie Sprache, Musik und Umgebungsgeräusche.

• Video: Bewegte visuelle Daten, oft begleitet von Audio, wie Videoclips und Filme.

Jede Modalität stellt eigene Herausforderungen und Chancen für Sprachmodelle

dar. Beispielsweise muss das Modell bei Bildern visuelle Konzepte und Beziehungen

verstehen, während es bei Audio Sprache und andere Geräusche verarbeiten und

generieren muss.

Multimodale Sprachmodelle

Multimodale Sprachmodelle sind darauf ausgelegt, mehrere Modalitäten innerhalb

eines einzelnen Modells zu verarbeiten. Diese Modelle verfügen typischerweise über

spezialisierte Komponenten oder Schichten, die sowohl Eingaben verstehen als auch

Ausgabedaten in verschiedenenModalitäten generieren können. Einige bemerkenswerte

Beispiele für multimodale Sprachmodelle sind:

• OpenAI’s GPT-4o: GPT-4o ist ein großes Sprachmodell, das neben Text auch

Sprachaudio nativ versteht und verarbeitet. Diese Fähigkeit ermöglicht es GPT-

4o, Aufgaben wie die Transkription gesprochener Sprache, die Generierung von

Einführung 22

Text aus Audioeingaben und die Bereitstellung von Antworten basierend auf

gesprochenen Anfragen auszuführen.

• OpenAI’s GPT-4 mit visueller Eingabe: GPT-4 ist ein großes Sprachmodell, das

sowohl Text als auch Bilder verarbeiten kann. Wenn GPT-4 ein Bild als Eingabe

erhält, kann es den Inhalt des Bildes analysieren und Text generieren, der die

visuellen Informationen beschreibt oder darauf reagiert.

• Google’s Gemini: Gemini ist ein multimodales Modell, das Text, Bilder

und Video verarbeiten kann. Es verwendet eine einheitliche Architektur, die

modalitätsübergreifendes Verstehen und Generieren ermöglicht und Aufgaben

wie Bildbeschreibung, Videozusammenfassung und visuelle Fragenbeantwortung

unterstützt.

• DALL-E und Stable Diffusion: Obwohl es sich nicht um Sprachmodelle im

traditionellen Sinne handelt, demonstrieren diese Modelle die Leistungsfähigkeit

multimodaler KI durch die Generierung von Bildern aus Textbeschreibungen.

Sie zeigen das Potenzial von Modellen, die zwischen verschiedenen Modalitäten

übersetzen können.

Vorteile und Anwendungen multimodaler Modelle

Multimodale Sprachmodelle bieten mehrere Vorteile und ermöglichen ein breites

Spektrum an Anwendungen, darunter:

• Verbessertes Verständnis: Durch die Verarbeitung von Informationen aus

mehreren Modalitäten können diese Modelle ein umfassenderes Verständnis der

Welt entwickeln, ähnlich wie Menschen aus verschiedenen Sinneseindrücken

lernen.

• Modalitätsübergreifende Generierung: Multimodale Modelle können Inhalte

in einer Modalität basierend auf Eingaben aus einer anderen generieren, wie

zum Beispiel die Erstellung eines Bildes aus einer Textbeschreibung oder die

Generierung einer Videozusammenfassung aus einem geschriebenen Artikel.

Einführung 23

• Barrierefreiheit: Multimodale Modelle können Informationen zugänglicher

machen, indem sie zwischen Modalitäten übersetzen, wie etwa durch die

Generierung von Textbeschreibungen von Bildern für sehbehinderte Nutzer oder

die Erstellung von Audio-Versionen schriftlicher Inhalte.

• Kreative Anwendungen: Multimodale Modelle können für kreative Aufgaben

wie die Generierung von Kunst, Musik oder Videos basierend auf textuellen

Eingabeaufforderungen verwendet werden, was neue Möglichkeiten für Künstler

und Content-Ersteller eröffnet.

Mit der fortschreitenden Entwicklung multimodaler Sprachmodelle werden sie

voraussichtlich eine zunehmend wichtige Rolle bei der Entwicklung KI-gestützter

Anwendungen spielen, die Inhalte über mehrere Modalitäten hinweg verstehen und

generieren können. Dies wird natürlichere und intuitivere Interaktionen zwischen

Menschen und KI-Systemen ermöglichen sowie neue Möglichkeiten für kreativen

Ausdruck und Wissensvermittlung erschließen.

Anbieter-Ökosysteme

Wenn es darum geht, große Sprachmodelle (LLMs) in Anwendungen zu integrieren,

steht eine wachsende Auswahl an Optionen zur Verfügung. Jeder große LLM-Anbieter,

wie OpenAI, Anthropic, Google und Cohere, bietet sein eigenes Ökosystem von

Modellen, APIs und Werkzeugen an. Die Wahl des richtigen Anbieters erfordert die

Berücksichtigung verschiedener Faktoren, einschließlich Preisgestaltung, Leistung,

Inhaltsfilterung, Datenschutz und Anpassungsoptionen.

OpenAI

OpenAI ist einer der bekanntesten Anbieter von LLMs, wobei seine GPT-Serie (GPT-

3, GPT-4) in verschiedenen Anwendungen weit verbreitet ist. OpenAI bietet eine

benutzerfreundliche API, die es ermöglicht, ihre Modelle einfach in Anwendungen zu

Einführung 24

integrieren. Sie bieten eine Reihe von Modellen mit unterschiedlichen Fähigkeiten und

Preispunkten an, vom Einstiegsmodell Ada bis zum leistungsstarken Davinci-Modell.

Das Ökosystem von OpenAI umfasst auch Werkzeuge wie den OpenAI Playground,

der es ermöglicht, mit Prompts zu experimentieren und Modelle für spezifische

Anwendungsfälle feinabzustimmen. Sie bieten Inhaltsfilterungsoptionen, um die

Generierung unangemessener oder schädlicher Inhalte zu verhindern.

Bei der direkten Verwendung von OpenAI-Modellen verlasse ich mich auf Alex Rudalls

ruby-openai Bibliothek.

Anthropic

Anthropic ist ein weiterer wichtiger Akteur im LLM-Bereich, dessen Claude-Modelle

aufgrund ihrer starken Leistung und ethischen Überlegungen an Popularität gewinnen.

Anthropic konzentriert sich auf die Entwicklung sicherer und verantwortungsvoller KI-

Systeme, mit starkem Fokus auf Inhaltsfilterung und Vermeidung schädlicher Ausgaben.

Das Ökosystem von Anthropic umfasst die Claude-API, die es ermöglicht, das Modell

in ihre Anwendungen zu integrieren, sowie Werkzeuge für Prompt-Engineering und

Feinabstimmung. Sie bieten auch das Claude Instant-Modell an, dasWebsuchfunktionen

für aktuellere und faktisch genauere Antworten integriert.

Bei der direkten Verwendung von Anthropic-Modellen verlasse ich mich auf Alex

Rudalls anthropic Bibliothek.

Google

Google hat mehrere leistungsstarke LLMs entwickelt, darunter Gemini, BERT, T5 und

PaLM. Diese Modelle sind für ihre starke Leistung bei einer Vielzahl von Aufgaben

zur Verarbeitung natürlicher Sprache bekannt. Das Google-Ökosystem umfasst die

TensorFlow- und Keras-Bibliotheken, die Werkzeuge und Frameworks für den Aufbau

und das Training von maschinellen Lernmodellen bereitstellen.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Einführung 25

Google bietet auch eine Cloud-KI-Plattform an, die es ermöglicht, ihre Modelle einfach

in der Cloud zu implementieren und zu skalieren. Sie stellen eine Reihe vortrainierter

Modelle und APIs für Aufgaben wie Stimmungsanalyse, Entitätserkennung und

Übersetzung zur Verfügung.

Meta

Meta, früher als Facebook bekannt, investiert stark in die Entwicklung großer

Sprachmodelle, was durch die Veröffentlichung von Modellen wie LLaMA und

OPT deutlich wird. Diese Modelle zeichnen sich durch ihre starke Leistung bei

verschiedenen Sprachaufgaben aus und werden größtenteils über Open-Source-Kanäle

verfügbar gemacht, was Metas Engagement für Forschung und gemeinschaftliche

Zusammenarbeit unterstreicht.

Das Ökosystem von Meta basiert hauptsächlich auf PyTorch, einer Open-

Source-Bibliothek für maschinelles Lernen, die für ihre dynamischen

Berechnungsmöglichkeiten und Flexibilität geschätzt wird und innovative KI-

Forschung und -Entwicklung ermöglicht.

Neben ihren technischen Angeboten legt Meta großen Wert auf die ethische

Entwicklung von KI. Sie implementieren robuste Inhaltsfilterung und konzentrieren

sich darauf, Verzerrungen zu reduzieren, was mit ihren übergeordneten Zielen der

Sicherheit und Verantwortung in KI-Anwendungen übereinstimmt.

Cohere

Cohere ist ein neuerer Teilnehmer im LLM-Bereich, der sich darauf konzentriert, LLMs

zugänglicher und einfacher zu nutzen als die Konkurrenz. Ihr Ökosystem umfasst

die Cohere API, die Zugang zu einer Reihe vortrainierter Modelle für Aufgaben wie

Texterstellung, Klassifizierung und Zusammenfassung bietet.

Cohere bietet auch Werkzeuge für Prompt-Engineering, Feinabstimmung und

Einführung 26

Inhaltsfilterung an. Sie legen besonderen Wert auf Datenschutz und Sicherheit, mit

Funktionen wie verschlüsselter Datenspeicherung und Zugriffskontrollen.

Ollama

Ollama ist eine selbst gehostete Plattform, die es Benutzern ermöglicht, verschiedene

große Sprachmodelle (LLMs) lokal auf ihren Maschinen zu verwalten und einzusetzen,

wodurch sie vollständige Kontrolle über ihre KI-Modelle haben, ohne auf externe Cloud-

Dienste angewiesen zu sein. Diese Einrichtung ist ideal für diejenigen, die Datenschutz

priorisieren und ihre KI-Operationen intern handhaben möchten.

Die Plattform unterstützt eine Reihe von Modellen, einschließlich Versionen von Llama,

Phi, Gemma und Mistral, die sich in Größe und Rechenanforderungen unterscheiden.

Ollama macht es einfach, diese Modelle direkt von der Befehlszeile mit einfachen

Befehlen wie ollama run <model_name> herunterzuladen und auszuführen, und ist

für verschiedene Betriebssysteme wie macOS, Linux und Windows konzipiert.

Für Entwickler, die Open-Source-Modelle in ihre Anwendungen integrieren möchten,

ohne eine Remote-API zu verwenden, bietet Ollama eine CLI zur Verwaltung von

Modell-Lebenszyklen, ähnlich wie Container-Management-Tools. Es unterstützt auch

benutzerdefinierte Konfigurationen und Prompts, was ein hohes Maß an Anpassung

ermöglicht, um die Modelle auf spezifische Bedürfnisse oder Anwendungsfälle

zuzuschneiden.

Ollama ist besonders für technisch versierte Benutzer und Entwickler geeignet, da es

eine Befehlszeilenschnittstelle und Flexibilität bei der Verwaltung und Bereitstellung

von KI-Modellen bietet. Dies macht es zu einem leistungsfähigen Werkzeug für

Unternehmen und Einzelpersonen, die robuste KI-Fähigkeiten benötigen, ohne

Kompromisse bei Sicherheit und Kontrolle einzugehen.

Einführung 27

Multi-Modell-Plattformen

Zusätzlich gibt es Anbieter, die eine große Vielfalt an Open-Source-Modellen

hosten, wie Together.ai und Groq.. Diese Plattformen bieten Flexibilität

und Anpassungsmöglichkeiten und erlauben es Ihnen, Open-Source-Modelle

auszuführen und in manchen Fällen sogar nach Ihren spezifischen Bedürfnissen

feinabzustimmen. Together.ai bietet beispielsweise Zugang zu einer Reihe von

Open-Source-LLMs und ermöglicht es Benutzern, mit verschiedenen Modellen

und Konfigurationen zu experimentieren. Groq konzentriert sich darauf, ultrahohe

Verarbeitungsgeschwindigkeiten zu liefern, die zum Zeitpunkt der Entstehung dieses

Buches fast magisch erscheinen

Auswahl eines LLM-Anbieters

Bei der Auswahl eines LLM-Anbieters sollten Sie folgende Faktoren berücksichtigen:

• Preisgestaltung: Verschiedene Anbieter bieten unterschiedliche Preismodelle an,

von nutzungsbasierter Abrechnung bis hin zu Abonnement-basierten Plänen.

Es ist wichtig, die erwartete Nutzung und das Budget bei der Auswahl eines

Anbieters zu berücksichtigen.

• Leistung: Die Leistung von LLMs kann zwischen Anbietern erheblich variieren,

daher ist es wichtig, Modelle für spezifische Anwendungsfälle zu testen und zu

bewerten, bevor eine Entscheidung getroffen wird.

• Inhaltsfilterung: Je nach Anwendung kann Inhaltsfilterung ein kritischer Aspekt

sein. Einige Anbieter bieten robustere Inhaltsfilterungsoptionen als andere.

• Datenschutz: Wenn die Anwendung sensible Benutzerdaten verarbeitet, ist es

wichtig, einen Anbieter mit strengen Datenschutz- und Sicherheitspraktiken zu

wählen.

• Anpassung: Einige Anbieter bieten mehr Flexibilität bei der Feinabstimmung und

Anpassung von Modellen für spezifische Anwendungsfälle.

Einführung 28

Letztendlich hängt die Wahl des LLM-Anbieters von den spezifischen Anforderungen

und Einschränkungen der Anwendung ab. Durch sorgfältige Bewertung der Optionen

und Berücksichtigung von Faktoren wie Preisgestaltung, Leistung und Datenschutz

können Sie den Anbieter auswählen, der Ihre Bedürfnisse am besten erfüllt.

Es ist auch erwähnenswert, dass sich die LLM-Landschaft ständig weiterentwickelt,

wobei regelmäßig neue Anbieter und Modelle auftauchen. Sie sollten sich über die

neuesten Entwicklungen auf dem Laufenden halten und offen für die Erkundung neuer

Optionen sein, wenn diese verfügbar werden.

OpenRouter

In diesem Buch werde ich ausschließlich OpenRouter als meinen API-Anbieter der

Wahl verwenden. Der Grund ist einfach: Es ist eine zentrale Anlaufstelle für alle

populärsten kommerziellen und Open-Source-Modelle. Wenn Sie darauf brennen, mit

etwas KI-Programmierung zu beginnen, ist einer der besten Ausgangspunkte meine

eigene OpenRouter Ruby Library.

Überlegungen zur Leistung

Bei der Integration von Sprachmodellen in Anwendungen ist die Leistung ein

entscheidender Faktor. Die Leistung eines Sprachmodells kann anhand seiner Latenz

(die Zeit, die für die Generierung einer Antwort benötigt wird) und seines Durchsatzes

(die Anzahl der Anfragen, die pro Zeiteinheit verarbeitet werden können) gemessen

werden.

Zeit bis zum ersten Token (TTFT) ist eine weitere wichtige Leistungskennzahl,

die besonders für Chatbots und Anwendungen relevant ist, die interaktive

Echtzeitantworten erfordern. TTFT misst die Latenz vom Moment des Eingangs

einer Benutzeranfrage bis zum Moment, in dem das erste Wort (oder Token) der

Antwort generiert wird. Diese Kennzahl ist entscheidend für die Aufrechterhaltung

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Einführung 29

einer nahtlosen und fesselnden Benutzererfahrung, da verzögerte Antworten zu

Frustration und nachlassendem Engagement der Benutzer führen können.

Diese Leistungskennzahlen können einen erheblichen Einfluss auf die

Benutzererfahrung und die Skalierbarkeit der Anwendung haben.

Mehrere Faktoren können die Leistung eines Sprachmodells beeinflussen:

Parameteranzahl: Größere Modelle mit mehr Parametern benötigen im Allgemeinen

mehr Rechenressourcen und können im Vergleich zu kleineren Modellen eine höhere

Latenz und einen geringeren Durchsatz aufweisen.

Hardware: Die Leistung eines Sprachmodells kann je nach der verwendeten Hardware

erheblich variieren. Cloud-Anbieter bieten GPU- und TPU-Instanzen an, die für

Machine-Learning-Workloads optimiert sind und die Modellinferenz erheblich

beschleunigen können.

Einer der Vorteile von OpenRouter ist, dass man bei vielen der

angebotenen Modelle die Wahl zwischen verschiedenen Cloud-Anbietern

mit unterschiedlichen Leistungsprofilen und Kosten hat.

Quantisierung: Quantisierungstechniken können verwendet werden, um den

Speicherbedarf und die Rechenanforderungen eines Modells zu reduzieren, indem

Gewichte und Aktivierungen mit Datentypen niedrigerer Präzision dargestellt werden.

Dies kann die Leistung verbessern, ohne die Qualität wesentlich zu beeinträchtigen.

Als Anwendungsentwickler werden Sie sich wahrscheinlich nicht mit dem Training

eigener Modelle auf verschiedenen Quantisierungsebenen beschäftigen, aber es ist gut,

zumindest mit der Terminologie vertraut zu sein.

Batch-Verarbeitung: Die gleichzeitige Verarbeitung mehrerer Anfragen in Batches

kann den Durchsatz verbessern, indem der Overhead für das Laden von Modellen und

die Datenübertragung amortisiert wird.

Einführung 30

Zwischenspeicherung: Das Zwischenspeichern der Ergebnisse häufig verwendeter

Prompts oder Eingabesequenzen kann die Anzahl der Inferenzanfragen reduzieren und

die Gesamtleistung verbessern.

Bei der Auswahl eines Sprachmodells für eine Produktionsanwendung ist es wichtig,

dessen Leistung anhand repräsentativer Workloads und Hardwarekonfigurationen zu

bewerten. Dies kann helfen, potenzielle Engpässe zu identifizieren und sicherzustellen,

dass das Modell die erforderlichen Leistungsziele erreichen kann.

Es lohnt sich auch, die Kompromisse zwischen Modellleistung und anderen Faktoren

wie Kosten, Flexibilität und Integrationsaufwand zu berücksichtigen. Beispielsweise

kann die Verwendung eines kleineren, kostengünstigeren Modells mit geringerer

Latenz für Anwendungen, die Echtzeitantworten erfordern, vorzuziehen sein, während

ein größeres, leistungsfähigeres Modell besser für Batch-Verarbeitung oder komplexe

Denkaufgaben geeignet sein kann.

Experimentieren mit verschiedenen

LLM-Modellen

Die Wahl eines LLM ist selten eine endgültige Entscheidung. Da regelmäßig neue

und verbesserte Modelle veröffentlicht werden, ist es gut, Anwendungen modular

zu entwickeln, sodass verschiedene Sprachmodelle im Laufe der Zeit ausgetauscht

werden können. Prompts und Datensätze können oft mit minimalen Änderungen

über verschiedene Modelle hinweg wiederverwendet werden. Dies ermöglicht es, die

neuesten Fortschritte in der Sprachmodellierung zu nutzen, ohne die Anwendungen

komplett neu gestalten zu müssen.

Die Möglichkeit, einfach zwischen einer großen Auswahl an Modellen zu

wechseln, ist ein weiterer Grund, warum ich OpenRouter so schätze.

Bei der Aktualisierung auf ein neues Sprachmodell ist es wichtig, dessen Leistung und

Einführung 31

Ausgabequalität gründlich zu testen und zu validieren, um sicherzustellen, dass es die

Anforderungen der Anwendung erfüllt. Dies kann das Nachtraining oder Fine-Tuning

des Modells mit domänenspezifischen Daten sowie die Aktualisierung nachgelagerter

Komponenten, die von den Ausgaben des Modells abhängen, umfassen.

Durch die Entwicklung von Anwendungen unter Berücksichtigung von Leistung und

Modularität können Sie skalierbare, effiziente und zukunftssichere Systeme erstellen, die

sich an die sich schnell entwickelnde Landschaft der Sprachmodellierungstechnologie

anpassen können.

Zusammengesetzte KI-Systeme

Bevor wir unsere Einführung abschließen, ist es erwähnenswert, dass vor 2023 und

dem durch ChatGPT ausgelösten Interesse an generativer KI traditionelle KI-Ansätze

meist auf der Integration einzelner, geschlossener Modelle basierten. Im Gegensatz dazu

nutzen Zusammengesetzte KI-Systeme komplexe Pipelines miteinander verbundener

Komponenten, die zusammenarbeiten, um intelligentes Verhalten zu erreichen.

Im Kern bestehen zusammengesetzte KI-Systeme aus mehreren Modulen, von denen

jedes für die Ausführung spezifischer Aufgaben oder Funktionen konzipiert ist. Diese

Module können Generatoren, Abrufsysteme, Rangiersysteme, Klassifikatoren und

verschiedene andere spezialisierte Komponenten umfassen. Indem das Gesamtsystem

in kleinere, fokussierte Einheiten aufgeteilt wird, können Entwickler flexiblere,

skalierbarere und wartbarere KI-Architekturen erstellen.

Einer der wichtigsten Vorteile von zusammengesetzten KI-Systemen ist ihre

Fähigkeit, die Stärken verschiedener KI-Techniken und -Modelle zu kombinieren.

Ein System könnte zum Beispiel ein großes Sprachmodell (LLM) für das Verstehen und

Generieren natürlicher Sprache verwenden und gleichzeitig ein separates Modell für

Informationsabruf oder regelbasierte Entscheidungsfindung einsetzen. Dieser modulare

Ansatz ermöglicht es Ihnen, die besten Werkzeuge und Techniken für jede spezifische

Aufgabe auszuwählen, anstatt sich auf eine Universallösung zu verlassen.

Einführung 32

Allerdings bringt der Aufbau von zusammengesetzten KI-Systemen auch besondere

Herausforderungen mit sich. Insbesondere erfordert die Sicherstellung der allgemeinen

Kohärenz und Konsistenz des Systemverhaltens robuste Test-, Überwachungs- und

Steuerungsmechanismen.

Das Aufkommen leistungsfähiger LLMs wie GPT-4 ermöglicht es

uns, einfacher als je zuvor mit zusammengesetzten KI-Systemen

zu experimentieren, da diese fortgeschrittenen Modelle in der Lage

sind, mehrere Rollen innerhalb eines zusammengesetzten Systems zu

übernehmen, wie Klassifizierung, Ranking und Generierung, zusätzlich zu

ihren Fähigkeiten zum Verstehen natürlicher Sprache. Diese Vielseitigkeit

ermöglicht es Entwicklern, schnell Prototypen zu erstellen und an

zusammengesetzten KI-Architekturen zu iterieren, was neue Möglichkeiten

für die Entwicklung intelligenter Anwendungen eröffnet.

Bereitstellungsmuster für zusammengesetzte KI-Systeme

Zusammengesetzte KI-Systeme können mit verschiedenen Mustern bereitgestellt

werden, die jeweils für spezifische Anforderungen und Anwendungsfälle konzipiert

sind. Betrachten wir vier häufige Bereitstellungsmuster: Frage und Antwort, Multi-

Agent/Agentische Problemlöser, Konversations-KI und CoPilots.

Frage und Antwort

Frage-und-Antwort-Systeme (Q&A) konzentrieren sich darauf, Informationsabruf

bereitzustellen, der durch die Verständnisfähigkeiten von KI-Modellen erweitert wird,

um mehr als nur eine Suchmaschine zu sein. Durch die Kombination leistungsfähiger

Sprachmodelle mit externen Wissensquellen unter Verwendung von Retrieval-

Augmented Generation (RAG) vermeiden Q&A-Systeme Halluzinationen und liefern

genaue und kontextuell relevante Antworten auf Benutzeranfragen.

Einführung 33

Die Schlüsselkomponenten eines LLM-basierten Q&A-Systems umfassen:

• Anfrageverständnis und -umformulierung:Analyse von Benutzeranfragen und

deren Umformulierung, um besser zu den zugrunde liegenden Wissensquellen zu

passen.

• Wissensabruf: Abrufen relevanter Informationen aus strukturierten oder

unstrukturierten Datenquellen basierend auf der umformulierten Anfrage.

• Antwortgenerierung: Generierung kohärenter und informativer Antworten

durch Integration des abgerufenen Wissens mit den generativen Fähigkeiten des

Sprachmodells.

RAG-Subsysteme sind besonders wichtig in Q&A-Bereichen, in denen die Bereitstellung

genauer und aktueller Informationen entscheidend ist, wie im Kundenservice,

Wissensmanagement oder bei Bildungsanwendungen.

Multi-Agent/Agentische Problemlöser

Multi-Agent- oder auch agentische Systeme bestehen aus mehreren autonomen

Agenten, die zusammenarbeiten, um komplexe Probleme zu lösen. Jeder Agent hat eine

spezifische Rolle, einen Satz von Fähigkeiten und Zugang zu relevanten Werkzeugen

oder Informationsquellen. Durch Zusammenarbeit und Informationsaustausch können

diese Agenten Aufgaben bewältigen, die für einen einzelnen Agenten schwierig oder

unmöglich zu handhaben wären.

Die Schlüsselprinzipien von Multi-Agent-Problemlösern umfassen:

• Spezialisierung: Jeder Agent konzentriert sich auf einen spezifischen Aspekt des

Problems und nutzt dabei seine einzigartigen Fähigkeiten und sein Wissen.

• Zusammenarbeit: Agenten kommunizieren und koordinieren ihre Aktionen,

um ein gemeinsames Ziel zu erreichen, oft durch Nachrichtenaustausch oder

gemeinsamen Speicher.

Einführung 34

• Anpassungsfähigkeit: Das System kann sich an veränderte Bedingungen oder

Anforderungen anpassen, indem es die Rollen und Verhaltensweisen einzelner

Agenten anpasst.

Multi-Agent-Systeme eignen sich gut für Anwendungen, die verteilte

Problemlösung erfordern, wie Lieferkettenoptimierung, Verkehrsmanagement oder

Notfalleinsatzplanung.

Konversations-KI

Konversations-KI-Systeme ermöglichen natürlichsprachliche Interaktionen zwischen

Benutzern und intelligenten Agenten. Diese Systeme kombinieren Sprachverständnis,

Dialogverwaltung und Sprachgenerierung, um ansprechende und personalisierte

Konversationserlebnisse zu bieten.

Die Hauptkomponenten eines Konversations-KI-Systems umfassen:

• Intentionserkennung: Identifizierung der Benutzerabsicht basierend auf ihrer

Eingabe, wie das Stellen einer Frage, das Äußern einer Anfrage oder das

Ausdrücken eines Gefühls.

• Entitätsextraktion: Extraktion relevanter Entitäten oder Parameter aus der

Benutzereingabe, wie Daten, Orte oder Produktnamen.

• Dialogverwaltung: Aufrechterhaltung des Gesprächszustands, Bestimmung der

angemessenenAntwort basierend auf der Benutzerabsicht und demKontext sowie

Handhabung von Mehrfachinteraktionen.

• Antwortgenerierung: Generierung menschenähnlicher Antworten unter

Verwendung von Sprachmodellen, Vorlagen oder abrufbasierten Methoden.

Konversations-KI-Systeme werden häufig in Kundenservice-Chatbots, virtuellen

Assistenten und sprachgesteuerten Schnittstellen eingesetzt. Wie bereits erwähnt,

stammen die meisten Ansätze, Muster und Codebeispiele in diesem Buch direkt aus

meiner Arbeit an einem großen Konversations-KI-System namens Olympia.

https://olympia.chat

Einführung 35

CoPilots

CoPilots sind KI-gestützte Assistenten, die zusammen mit menschlichen Benutzern

arbeiten, um deren Produktivität und Entscheidungsfindung zu verbessern. Diese

Systeme nutzen eine Kombination aus Natursprachverarbeitung, maschinellem Lernen

und domänenspezifischem Wissen, um intelligente Empfehlungen zu geben, Aufgaben

zu automatisieren und kontextbezogene Unterstützung zu bieten.

Zu den wichtigsten Merkmalen von CoPilots gehören:

• Personalisierung: Anpassung an individuelle Benutzerpräferenzen,

Arbeitsabläufe und Kommunikationsstile.

• Proaktive Unterstützung: Vorwegnahme von Benutzerbedürfnissen und

Angebot relevanter Vorschläge oder Aktionen ohne ausdrückliche Aufforderung.

• Kontinuierliches Lernen: Verbesserung der Leistung im Laufe der Zeit durch das

Lernen aus Benutzer-Feedback, Interaktionen und Daten.

CoPilots werden zunehmend in verschiedenen Bereichen eingesetzt, wie beispielsweise

in der Softwareentwicklung (z.B. Code-Vervollständigung und Fehlererkennung), im

kreativen Schreiben (z.B. Inhaltsvorschläge und Bearbeitung) und in der Datenanalyse

(z.B. Erkenntnisse und Visualisierungsempfehlungen)

Diese Einsatzmuster zeigen die Vielseitigkeit und das Potenzial von zusammengesetzten

KI-Systemen. Durch das Verständnis der Eigenschaften und Anwendungsfälle jedes

Musters können Sie fundierte Entscheidungen bei der Gestaltung und Implementierung

intelligenter Anwendungen treffen. Obwohl sich dieses Buch nicht speziell mit der

Implementierung von zusammengesetzten KI-Systemen befasst, gelten viele, wenn nicht

alle der gleichen Ansätze und Muster für die Integration diskreter KI-Komponenten in

die ansonsten traditionelle Anwendungsentwicklung.

Einführung 36

Rollen in zusammengesetzten KI-Systemen

Zusammengesetzte KI-Systeme basieren auf einer Grundlage miteinander verbundener

Module, die jeweils für die Ausführung einer bestimmten Rolle konzipiert sind.

Diese Module arbeiten zusammen, um intelligentes Verhalten zu erzeugen und

komplexe Probleme zu lösen. Es ist nützlich, diese Rollen zu kennen, wenn man

darüber nachdenkt, wo man möglicherweise Teile seiner Anwendung mit diskreten

KI-Komponenten implementieren oder ersetzen könnte.

Generator

Generatoren sind dafür verantwortlich, neue Daten oder Inhalte basierend auf

gelernten Mustern oder Eingabeaufforderungen zu erzeugen. Die KI-Welt verfügt über

viele verschiedene Arten von Generatoren, aber im Kontext der Sprachmodelle, die

in diesem Buch vorgestellt werden, können Generatoren menschenähnlichen Text

erstellen, unvollständige Sätze vervollständigen oder Antworten auf Benutzeranfragen

generieren. Sie spielen eine entscheidende Rolle bei Aufgaben wie der Inhaltserstellung,

Dialoggenerierung und Datenerweiterung.

Retriever

Retriever werden verwendet, um relevante Informationen aus großen Datensätzen oder

Wissensdatenbanken zu suchen und zu extrahieren. Sie verwenden Techniken

wie semantische Suche, Keyword-Matching oder Vektor-Ähnlichkeit, um die

relevantesten Datenpunkte basierend auf einer gegebenen Anfrage oder einem

Kontext zu finden. Retriever sind essentiell für Aufgaben, die einen schnellen Zugriff

auf spezifische Informationen erfordern, wie beispielsweise Frage-Antwort-Systeme,

Faktenüberprüfung oder Inhaltsempfehlungen.

Einführung 37

Ranker

Ranker sind für die Ordnung oder Priorisierung einer Menge von Elementen basierend

auf bestimmten Kriterien oder Relevanzwerten verantwortlich. Sie weisen jedem

Element Gewichtungen oder Punktzahlen zu und sortieren sie entsprechend. Ranker

werden häufig in Suchmaschinen, Empfehlungssystemen oder in jeder Anwendung

eingesetzt, bei der es wichtig ist, den Benutzern die relevantesten Ergebnisse zu

präsentieren.

Classifier

Classifier werden verwendet, um Datenpunkte basierend auf vordefinierten

Klassen oder Kategorien zu kategorisieren oder zu kennzeichnen. Sie lernen aus

gekennzeichneten Trainingsdaten und sagen dann die Klasse neuer, ungesehener

Instanzen vorher. Classifier sind fundamental für Aufgaben wie Stimmungsanalyse,

Spam-Erkennung oder Bilderkennung, bei denen das Ziel darin besteht, jeder Eingabe

eine spezifische Kategorie zuzuweisen.

Werkzeuge & Agenten

Zusätzlich zu diesen Kernrollen integrieren zusammengesetzte KI-Systeme häufig

Werkzeuge und Agenten, um ihre Funktionalität und Anpassungsfähigkeit zu

verbessern:

• Werkzeuge: Werkzeuge sind diskrete Softwarekomponenten oder APIs, die

spezifische Aktionen oder Berechnungen ausführen. Sie können von anderen

Modulen wie Generatoren oder Retrievern aufgerufen werden, um Teilaufgaben

zu erfüllen oder zusätzliche Informationen zu sammeln. Beispiele für Werkzeuge

sindWebsuchmaschinen, Taschenrechner oder Datenvisualisierungsbibliotheken.

• Agenten: Agenten sind autonome Einheiten, die ihre Umgebung wahrnehmen,

Entscheidungen treffen und Aktionen ausführen können, um bestimmte Ziele

Einführung 38

zu erreichen. Sie stützen sich häufig auf eine Kombination verschiedener

KI-Techniken wie Planung, Reasoning und Lernen, um in dynamischen oder

unsicheren Bedingungen effektiv zu arbeiten. Agenten können verwendet werden,

um komplexe Verhaltensweisen zu modellieren oder die Aktionen mehrerer

Module innerhalb eines zusammengesetzten KI-Systems zu koordinieren.

In einem reinen zusammengesetzten KI-System wird die Interaktion zwischen diesen

Komponenten durch klar definierte Schnittstellen und Kommunikationsprotokolle

orchestriert. Daten fließen zwischen den Modulen, wobei die Ausgabe einer

Komponente als Eingabe für eine andere dient. Diese modulare Architektur ermöglicht

Flexibilität, Skalierbarkeit und Wartbarkeit, da einzelne Komponenten aktualisiert,

ersetzt oder erweitert werden können, ohne das gesamte System zu beeinflussen.

Durch die Nutzung der Leistungsfähigkeit dieser Komponenten und ihrer Interaktionen

können zusammengesetzte KI-Systeme komplexe, reale Probleme bewältigen, die eine

Kombination verschiedener KI-Fähigkeiten erfordern. Während wir die Ansätze und

Muster für die Integration von KI in die Anwendungsentwicklung erkunden, sollten

Sie bedenken, dass die gleichen Prinzipien und Techniken, die in zusammengesetzten

KI-Systemen verwendet werden, auch für die Erstellung intelligenter, adaptiver und

benutzerzentrierter Anwendungen genutzt werden können.

In den folgenden Kapiteln von Teil 1 werden wir tiefer in die grundlegenden

Ansätze und Techniken für die Integration von KI-Komponenten in Ihren

Anwendungsentwicklungsprozess eintauchen. Von Prompt-Engineering und abruf-

gestützter Generierung bis hin zu selbstheilenden Daten und intelligenter Workflow-

Orchestrierung werden wir eine breite Palette von Mustern und Best Practices

behandeln, die Ihnen beim Aufbau modernster KI-gestützter Anwendungen helfen.

Teil 1: Grundlegende
Ansätze & Techniken

Dieser Teil des Buches stellt verschiedene Möglichkeiten vor, wie Sie KI in Ihre

Anwendungen integrieren können. Die Kapitel behandeln eine Reihe verwandter

Ansätze und Techniken, von übergeordneten Konzepten wie Den Pfad eingrenzen

und Retrieval Augmented Generation bis hin zu Ideen für die Programmierung einer

eigenen Abstraktionsschicht über LLM Chat Completion APIs.

Ziel dieses Buchteils ist es, Ihnen zu vermitteln, welche Arten von Verhalten

Sie mit KI implementieren können, bevor Sie sich zu tief in die spezifischen

Implementierungsmuster vertiefen, die den Schwerpunkt von Teil 2 bilden.

Die Ansätze in Teil 1 basieren auf Ideen, die ich in meinem Code verwendet habe,

klassischen Mustern der Unternehmensanwendungsarchitektur und -integration sowie

Metaphern, die ich beim Erklären der KI-Fähigkeiten gegenüber anderen Personen,

einschließlich nicht-technischer Geschäftspartner, verwendet habe.

Den Pfad eingrenzen

“Den Pfad eingrenzen” bezieht sich darauf, die KI auf die aktuelle Aufgabe zu

fokussieren. Ich verwende es als Mantra, wann immer ich frustriert bin, weil die KI

sich “dumm” oder unerwartet verhält. Das Mantra erinnert mich daran, dass der Fehler

wahrscheinlich bei mir liegt und dass ich den Pfad vermutlich noch weiter eingrenzen

sollte.

Die Notwendigkeit, den Pfad einzugrenzen, ergibt sich aus der gewaltigen Menge

an Wissen, die in großen Sprachmodellen enthalten ist, insbesondere in Weltklasse-

Modellen wie denen von OpenAI und Anthropic, die buchstäblich Billionen von

Den Pfad eingrenzen 41

Parametern haben.

Der Zugang zu einem solch breitenWissensspektrum ist zweifellos mächtig und erzeugt

emergentes Verhalten wie Theory of Mind und die Fähigkeit, auf menschenähnliche

Weise zu denken. Allerdings stellt diese erschütternde Informationsmenge auch

Herausforderungen dar, wenn es darum geht, präzise und akkurate Antworten auf

spezifische Prompts zu generieren, besonders wenn diese Prompts deterministisches

Verhalten aufweisen sollen, das in die “normale” Softwareentwicklung und Algorithmen

integriert werden kann.

Mehrere Faktoren führen zu diesen Herausforderungen.

Informationsüberflutung: Große Sprachmodelle werden mit riesigen Datenmengen

trainiert, die verschiedene Bereiche, Quellen und Zeiträume umfassen. Dieses

umfangreiche Wissen ermöglicht es ihnen, sich mit verschiedenen Themen

auseinanderzusetzen und Antworten basierend auf einem breiten Weltverständnis zu

generieren. Wenn das Modell jedoch mit einem spezifischen Prompt konfrontiert wird,

könnte es Schwierigkeiten haben, irrelevante, widersprüchliche oder veraltete/obsolete

Informationen herauszufiltern, was zu Antworten führt, denen es an Fokus oder

Genauigkeit mangelt. Je nachdem, was Sie zu erreichen versuchen, kann die schiere

Menge an widersprüchlichen Informationen, die dem Modell zur Verfügung stehen,

leicht seine Fähigkeit überfordern, die gewünschte Antwort oder das gewünschte

Verhalten zu liefern.

Kontextuelle Mehrdeutigkeit: Angesichts des riesigen latenten Raums an Wissen

können große Sprachmodelle auf Mehrdeutigkeiten stoßen, wenn sie versuchen, den

Kontext Ihres Prompts zu verstehen. Ohne angemessene Eingrenzung oder Führung

kann das Modell Antworten generieren, die nur am Rande relevant, aber nicht direkt

mit Ihren Absichten verbunden sind. Diese Art von Fehler führt zu Antworten, die vom

Thema abweichen, inkonsistent sind oder Ihre formulierten Bedürfnisse nicht erfüllen.

In diesem Fall bezieht sich das Eingrenzen des Pfads auf die Kontext-Disambiguierung,

die sicherstellt, dass der von Ihnen bereitgestellte Kontext das Modell dazu veranlasst,

Den Pfad eingrenzen 42

sich nur auf die relevantesten Informationen in seinem Basiswissen zu konzentrieren.

Hinweis: Wenn Sie mit “Prompt-Engineering” anfangen, werden Sie das

Modell häufig auffordern, Dinge zu tun, ohne das gewünschte Ergebnis

richtig zu erklären; es braucht Übung, nicht mehrdeutig zu sein!

Zeitliche Inkonsistenzen: Da Sprachmodelle mit Daten trainiert werden, die zu

verschiedenen Zeitpunkten erstellt wurden, können sie Wissen besitzen, das veraltet,

überholt oder nicht mehr akkurat ist. Zum Beispiel können sich Informationen über

aktuelle Ereignisse, wissenschaftliche Entdeckungen oder technologische Fortschritte

seit der Erfassung der Trainingsdaten des Modells weiterentwickelt haben. Ohne den

Pfad einzugrenzen, um neueren und zuverlässigeren Quellen Vorrang zu geben, könnte

das Modell Antworten generieren, die auf veralteten oder falschen Informationen

basieren, was zu Ungenauigkeiten und Inkonsistenzen in seinen Ausgaben führt.

Domänenspezifische Nuancen: Verschiedene Domänen und Fachgebiete haben ihre

eigene spezifische Terminologie, Konventionen und Wissensbasis. Denken Sie an

praktisch jedes TLA (Drei-Buchstaben-Akronym) und Sie werden feststellen, dass die

meisten von ihnen mehr als eine Bedeutung haben. Zum Beispiel kann MSK sich auf

Amazon’s Managed Streaming for Apache Kafka, das Memorial Sloan Kettering Cancer

Center oder das menschliche MuskuloSKeletale System beziehen.

Wenn ein Prompt Expertise in einem bestimmten Bereich erfordert, reicht das

allgemeine Wissen eines großen Sprachmodells möglicherweise nicht aus, um genaue

und nuancierte Antworten zu liefern. Das Eingrenzen des Pfads durch Fokussierung

auf domänenspezifische Informationen, entweder durch Prompt-Engineering oder

retrieval-augmentierte Generierung, ermöglicht es dem Modell, Antworten zu

generieren, die besser auf die Anforderungen und Erwartungen Ihrer spezifischen

Domäne abgestimmt sind.

Den Pfad eingrenzen 43

Latenter Raum: Unfassbar weit

Wenn ich den “latenten Raum” eines Sprachmodells erwähne, beziehe ich mich auf

die riesige, mehrdimensionale Wissens- und Informationslandschaft, die das Modell

während seines Trainingsprozesses gelernt hat. Es ist wie ein verborgenes Reich

innerhalb der neuronalen Netze des Modells, wo alle Muster, Assoziationen und

Sprachrepräsentationen gespeichert sind.

Stellen Sie sich vor, Sie erkunden ein riesiges, unerforschtes Gebiet voller unzähliger

miteinander verbundener Knoten. Jeder Knoten repräsentiert ein Informationsstück, ein

Konzept oder eine Beziehung, die das Modell gelernt hat. Während Sie sich durch diesen

Raum bewegen, werden Sie feststellen, dass einige Knoten näher beieinander liegen, was

eine starke Verbindung oder Ähnlichkeit anzeigt, während andere weiter voneinander

entfernt sind, was auf eine schwächere oder entferntere Beziehung hindeutet.

Die Herausforderung beim latenten Raum ist seine unglaubliche Komplexität und

Hochdimensionalität. Stellen Sie sich vor, er sei so gewaltig wie unser physikalisches

Universum, mit seinen Galaxienhaufen und den unvorstellbar weiten, leeren Räumen

dazwischen.

Da er tausende von Dimensionen enthält, ist der latente Raum für Menschen weder

direkt beobachtbar noch interpretierbar. Es ist eine abstrakte Darstellung, die das Modell

intern verwendet, um Sprache zu verarbeiten und zu generieren. Wenn Sie dem Modell

eine Eingabeaufforderung geben, wird diese imWesentlichen auf einen bestimmten Ort

im latenten Raum abgebildet. Das Modell nutzt dann die umgebenden Informationen

und Verbindungen in diesem Raum, um eine Antwort zu generieren.

Die Sache ist die: Das Modell hat eine enorme Menge an Informationen aus seinen

Trainingsdaten gelernt, und nicht alle davon sind für eine bestimmte Aufgabe relevant

oder präzise. Deshalb wird die Eingrenzung des Pfades so wichtig. Indem Sie in Ihren

Prompts klare Anweisungen, Beispiele und Kontext bereitstellen, leiten Sie das Modell

imWesentlichen dazu an, sich auf bestimmte Bereiche innerhalb des latenten Raums zu

Den Pfad eingrenzen 44

konzentrieren, die für Ihre gewünschte Ausgabe am relevantesten sind.

Eine andere Art, darüber nachzudenken, ist wie die Verwendung eines Scheinwerfers

in einem völlig dunklen Museum. Wenn Sie jemals den Louvre oder das Metropolitan

Museum of Art besucht haben, dann ist das die Art von Größenordnung, von der

ich spreche. Der latente Raum ist das Museum, gefüllt mit unzähligen Objekten und

Details. Ihr Prompt ist der Scheinwerfer, der bestimmte Bereiche beleuchtet und die

Aufmerksamkeit des Modells auf die wichtigsten Informationen lenkt. Ohne diese

Führung könnte das Modell ziellos durch den latenten Raum wandern und dabei

irrelevante oder widersprüchliche Informationen aufsammeln.

Während Sie mit Sprachmodellen arbeiten und Ihre Prompts erstellen, behalten

Sie das Konzept des latenten Raums im Hinterkopf. Ihr Ziel ist es, diese riesige

Wissenslandschaft effektiv zu navigieren und das Modell zu den relevantesten und

genauesten Informationen für Ihre Aufgabe zu führen. Durch die Eingrenzung des

Pfades und klare Anleitung können Sie das volle Potenzial des latenten Raums des

Modells erschließen und qualitativ hochwertige, kohärente Antworten generieren.

Während die vorherigen Beschreibungen von Sprachmodellen und dem latenten Raum,

den sie navigieren, etwas magisch oder abstrakt erscheinen mögen, ist es wichtig

zu verstehen, dass Prompts keine Zaubersprüche oder Beschwörungen sind. Die

Funktionsweise von Sprachmodellen basiert auf den Prinzipien der linearen Algebra

und Wahrscheinlichkeitstheorie.

Im Kern sind Sprachmodelle probabilistische Modelle von Text, ähnlich wie eine

Glockenkurve ein statistisches Modell von Daten ist. Sie werden durch einen

Prozess namens autoregressives Modellieren trainiert, bei dem das Modell lernt,

die Wahrscheinlichkeit des nächsten Wortes in einer Sequenz basierend auf den

vorhergehenden Wörtern vorherzusagen. Während des Trainings beginnt das Modell

mit zufälligen Gewichten und passt diese allmählich an, um Text, der den realen

Trainingsbeispielen ähnelt, höhere Wahrscheinlichkeiten zuzuweisen.

Allerdings bietet es keine optimale Intuition für das Verständnis ihres Verhaltens,

Den Pfad eingrenzen 45

Sprachmodelle als einfache statistische Modelle wie lineare Regression zu betrachten.

Eine treffendere Analogie ist es, sie als probabilistische Programme zu verstehen,

also Modelle, die die Manipulation von Zufallsvariablen ermöglichen und komplexe

statistische Beziehungen darstellen können.

Probabilistische Programme können durch grafische Modelle dargestellt werden,

die eine visuelle Möglichkeit bieten, die Abhängigkeiten und Beziehungen zwischen

Variablen im Modell zu verstehen. Diese Perspektive kann wertvolle Einblicke in die

Funktionsweise komplexer Textgenerierungsmodelle wie GPT-4 und Claude liefern.

In der Arbeit “Language Model Cascades” von Dohan et al. gehen die Autoren detailliert

darauf ein, wie probabilistische Programme auf Sprachmodelle angewendet werden

können. Sie zeigen, wie dieser Rahmen genutzt werden kann, um das Verhalten dieser

Modelle zu verstehen und die Entwicklung effektiverer Prompting-Strategien zu leiten.

Eine wichtige Erkenntnis aus dieser probabilistischen Perspektive ist, dass das

Sprachmodell im Wesentlichen ein Portal zu einem alternativen Universum erschafft,

in dem die gewünschten Dokumente existieren. Das Modell weist allen möglichen

Dokumenten basierend auf ihrer Wahrscheinlichkeit Gewichte zu und grenzt

damit effektiv den Raum der Möglichkeiten ein, um sich auf die relevantesten zu

konzentrieren.

Dies bringt uns zurück zum zentralen Thema der “Eingrenzung des Pfades”. Das primäre

Ziel des Promptings ist es, das probabilistische Modell so zu konditionieren, dass es die

Masse seiner Vorhersagen fokussiert und sich auf die spezifischen Informationen oder

Verhaltensweisen konzentriert, die wir hervorrufenmöchten. Durch sorgfältig gestaltete

Prompts können wir das Modell anleiten, den latenten Raum effizienter zu navigieren

und relevantere und kohärentere Ausgaben zu generieren.

Allerdings ist es wichtig zu bedenken, dass das Sprachmodell letztendlich durch die

Informationen eingeschränkt ist, mit denen es trainiert wurde. Während es Text

generieren kann, der bestehenden Dokumenten ähnelt oder Ideen auf neuartige Weise

kombiniert, kann es nicht völlig neue Informationen aus dem Nichts erschaffen.

Den Pfad eingrenzen 46

Zum Beispiel können wir nicht erwarten, dass das Modell eine Heilung für Krebs

liefert, wenn eine solche Heilung noch nicht entdeckt und in seinen Trainingsdaten

dokumentiert wurde.

Stattdessen liegt die Stärke des Modells in seiner Fähigkeit, Informationen zu finden

und zu synthetisieren, die dem ähneln, womit wir es prompten. Indem wir die

probabilistische Natur dieser Modelle verstehen und wie Prompts zur Konditionierung

ihrer Ausgaben verwendet werden können, können wir ihre Fähigkeiten effektiver

nutzen, um wertvolle Erkenntnisse und Inhalte zu generieren.

Betrachten Sie die folgenden Prompts. Im ersten könnte “Mercury” allein sich auf den

Planeten, das Element oder den römischen Gott beziehen, aber am wahrscheinlichsten

ist der Planet. Tatsächlich liefert GPT-4 eine lange Antwort, die mit Merkur ist der

kleinste und innerste Planet im Sonnensystem… beginnt. Der zweite Prompt bezieht

sich speziell auf das chemische Element. Der dritte bezieht sich auf die römische

mythologische Figur, die für ihre Geschwindigkeit und Rolle als göttlicher Bote bekannt

ist.

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Durch das Hinzufügen von nur wenigen zusätzlichen Wörtern haben wir die Reaktion

der KI völlig verändert. Wie Sie später im Buch erfahren werden, sind ausgeklügelte

Prompt-Engineering-Techniken wie N-Shot-Prompting, strukturierte Ein-/Ausgabe und

Chain of Thought nur clevereMethoden, um die Ausgabe desModells zu konditionieren.

Letztendlich geht es bei der Kunst des Prompt-Engineerings darum zu verstehen,

wie man durch die weite probabilistische Landschaft des Wissens des Sprachmodells

Den Pfad eingrenzen 47

navigiert, um den Weg zu den spezifischen Informationen oder dem gewünschten

Verhalten einzugrenzen.

Für Leser mit fundierten Mathematikkenntnissen kann es definitiv hilfreich sein, das

Verständnis dieser Modelle auf den Prinzipien der Wahrscheinlichkeitstheorie und

linearen Algebra aufzubauen! Für alle anderen, die effektive Strategien zur Erzeugung

gewünschter Ausgaben entwickeln möchten, bleiben wir bei intuitiveren Ansätzen.

Wie der Pfad “eingegrenzt” wird

Um diese Herausforderungen des übermäßigen Wissens zu bewältigen, setzen wir

Techniken ein, die den Generierungsprozess des Sprachmodells lenken und seine

Aufmerksamkeit auf die relevantesten und genauesten Informationen fokussieren.

Hier sind die wichtigsten Techniken in der empfohlenen Reihenfolge, das heißt, Sie

sollten zuerst Prompt-Engineering versuchen, dann RAG und schließlich, wenn es sein

muss, Fine-Tuning.

Prompt-Engineering Der grundlegendste Ansatz ist das Erstellen von Prompts,

die spezifische Anweisungen, Einschränkungen oder Beispiele enthalten, um die

Antworterstellung des Modells zu lenken. Dieses Kapitel behandelt die Grundlagen

des Prompt-Engineerings im nächsten Abschnitt, und wir behandeln viele spezifische

Prompt-Engineering-Muster in Teil 2 des Buches. Zu diesen Mustern gehört die Prompt-

Destillation, eine Technik, die sich darauf konzentriert, Prompts zu verfeinern und

zu optimieren, um die von der KI als am relevantesten und prägnantesten erachteten

Informationen zu extrahieren.

Kontexterweiterung Das dynamische Abrufen relevanter Informationen aus externen

Wissensdatenbanken oder Dokumenten, um dem Modell zum Zeitpunkt der Anfrage

gezielten Kontext bereitzustellen. Zu den beliebten Kontexterweiterungstechniken

gehört Retrieval-Augmented Generation (RAG) Sogenannte “Online-Modelle” wie die

von Perplexity können ihren Kontext durch Echtzeit-Internetsuchergebnisse erweitern.

https://perplexity.ai

Den Pfad eingrenzen 48

Trotz ihrer Leistungsfähigkeit sind LLMs nicht auf Ihre einzigartigen

Datensätze trainiert, die möglicherweise privat oder spezifisch für das

zu lösende Problem sind. Kontexterweiterungstechniken ermöglichen es

LLMs, auf Daten hinter APIs, in SQL-Datenbanken oder in PDFs und

Präsentationen zuzugreifen.

Fine-Tuning oder Domänenanpassung Das Training des Modells auf

domänenspezifischen Datensätzen, um sein Wissen und seine Generierungsfähigkeiten

für eine bestimmte Aufgabe oder ein bestimmtes Fachgebiet zu spezialisieren.

Die Temperatur herunterregeln

Temperatur ist ein Hyperparameter, der in Transformer-basierten Sprachmodellen

verwendet wird und die Zufälligkeit und Kreativität des generierten Textes steuert. Es

ist ein Wert zwischen 0 und 1, wobei niedrigere Werte die Ausgabe fokussierter und

deterministischer machen, während höhere Werte sie vielfältiger und unvorhersehbarer

machen.

Wenn die Temperatur auf 1 eingestellt ist, generiert das Sprachmodell Text basierend auf

der vollständigen Wahrscheinlichkeitsverteilung des nächsten Tokens, was kreativere

und variationsreichere Antworten ermöglicht. Dies kann jedoch auch dazu führen, dass

das Modell Text generiert, der weniger relevant oder kohärent ist.

Wenn die Temperatur hingegen auf 0 gesetzt wird, wählt das Sprachmodell immer den

Token mit der höchsten Wahrscheinlichkeit aus und “verengt” damit effektiv seinen

Pfad. Fast alle meine KI-Komponenten verwenden eine Temperatur von oder nahe 0,

da dies zu fokussierteren und vorhersehbareren Antworten führt. Dies ist besonders

nützlich, wenn Sie möchten, dass das Modell Anweisungen befolgt, auf bereitgestellte

Funktionen achtet oder einfach genauere und relevantere Antworten liefert als bisher.

Wenn Sie beispielsweise einen Chatbot entwickeln, der faktische Informationen

bereitstellen soll, möchten Sie die Temperatur möglicherweise auf einen niedrigeren

Den Pfad eingrenzen 49

Wert einstellen, um sicherzustellen, dass die Antworten präziser und themenbezogener

sind. Umgekehrt möchten Sie bei der Entwicklung eines kreativen Schreibassistenten

die Temperatur möglicherweise auf einen höheren Wert einstellen, um vielfältigere und

phantasievollere Ausgaben zu fördern.

Hyperparameter: Regler und Schalter der Inferenz

Wenn Sie mit Sprachmodellen arbeiten, werden Sie häufig auf den Begriff

“Hyperparameter” stoßen. Im Kontext der Inferenz (d.h. wenn Sie das Modell zur

Generierung von Antworten verwenden) sind Hyperparameter wie Regler und

Schalter, die Sie anpassen können, um das Verhalten und die Ausgabe des Modells zu

steuern.

Stellen Sie sich vor, Sie würden die Einstellungen einer komplexen Maschine anpassen.

So wie Sie einen Knopf drehen könnten, um die Temperatur zu regeln, oder einen

Schalter umlegen könnten, um den Betriebsmodus zu ändern, ermöglichen Ihnen

Hyperparameter die Feinabstimmung der Art und Weise, wie das Sprachmodell Text

verarbeitet und generiert.

Einige häufige Hyperparameter, denen Sie bei der Inferenz begegnen werden, sind:

• Temperatur: Wie bereits erwähnt, steuert dieser Parameter die Zufälligkeit und

Kreativität des generierten Textes. Eine höhere Temperatur führt zu vielfältigeren

und unvorhersehbareren Ausgaben, während eine niedrigere Temperatur

fokussiertere und deterministischere Antworten erzeugt.

• Top-p (Nucleus) Sampling: Dieser Parameter steuert die Auswahl der kleinsten

Menge an Tokens, deren kumulative Wahrscheinlichkeit einen bestimmten

Schwellenwert (p) überschreitet. Er ermöglicht vielfältigere Ausgaben bei

gleichzeitiger Beibehaltung der Kohärenz.

Den Pfad eingrenzen 50

• Top-k Sampling: Diese Technik wählt die k wahrscheinlichsten nächsten

Tokens aus und verteilt die Wahrscheinlichkeitsmasse unter ihnen neu. Dies

kann verhindern, dass das Modell unwahrscheinliche oder irrelevante Tokens

generiert.

• Frequenz- und Präsenzstrafen: Diese Parameter bestrafen das Modell dafür,

dass es dieselben Wörter oder Phrasen zu häufig wiederholt (Frequenzstrafe)

oder Wörter generiert, die nicht in der Eingabeaufforderung vorhanden sind

(Präsenzstrafe). Durch Anpassung dieser Werte können Sie das Modell ermutigen,

vielfältigere und relevantere Ausgaben zu erzeugen.

• Maximale Länge: Dieser Hyperparameter legt eine obere Grenze für die Anzahl

der Tokens (Wörter oder Teilwörter) fest, die das Modell in einer einzelnen

Antwort generieren kann. Er hilft dabei, die Ausführlichkeit und Prägnanz des

generierten Textes zu steuern.

Während Sie mit verschiedenen Hyperparameter-Einstellungen experimentieren,

werden Sie feststellen, dass selbst kleine Anpassungen einen erheblichen Einfluss

auf die Ausgabe des Modells haben können. Es ist wie bei der Feinabstimmung

eines Rezepts – eine Prise mehr Salz oder eine etwas längere Garzeit können den

entscheidenden Unterschied im fertigen Gericht ausmachen.

Der Schlüssel liegt darin, zu verstehen, wie sich jeder Hyperparameter auf das Verhalten

des Modells auswirkt und die richtige Balance für Ihre spezifische Aufgabe zu finden.

Scheuen Sie sich nicht, mit verschiedenen Einstellungen zu experimentieren und zu

beobachten, wie sie den generierten Text beeinflussen. Mit der Zeit entwickeln Sie

ein Gespür dafür, welche Hyperparameter Sie anpassen müssen und wie Sie die

gewünschten Ergebnisse erzielen können.

Durch die Kombination dieser Parameter mit Prompt-Engineering, retrievalgestützter

Generierung und Feinabstimmung können Sie den Weg effektiv eingrenzen und das

Den Pfad eingrenzen 51

Sprachmodell dazu anleiten, genauere, relevantere und wertvollere Antworten für ihren

spezifischen Anwendungsfall zu generieren.

Rohmodelle versus instruktionsoptimierte

Modelle

Rohmodelle sind die unverfeinerten, untrainierten Versionen von LLMs. Stellen Sie

sich diese wie eine leere Leinwand vor, die noch nicht durch spezifisches Training

beeinflusst wurde, um Anweisungen zu verstehen oder zu befolgen. Sie basieren auf

den umfangreichen Daten, mit denen sie ursprünglich trainiert wurden, und sind in der

Lage, eine breite Palette von Ausgaben zu generieren. Ohne zusätzliche Schichten des

anweisungsbasierten Fine-Tunings können ihre Antworten jedoch unvorhersehbar sein

und erfordern nuanciertere, sorgfältig formulierte Prompts, um sie zur gewünschten

Ausgabe zu führen. Die Arbeit mit Rohmodellen gleicht der Kommunikation mit einem

Inselbegabten, der über ein enormes Wissen verfügt, aber keinerlei Intuition dafür hat,

wonach Sie fragen, es sei denn, Sie sind in Ihren Anweisungen äußerst präzise. Sie

wirken oft wie ein Papagei, da sie, soweit sie überhaupt etwas Verständliches von sich

geben, meistens nur etwas wiederholen, das sie von Ihnen gehört haben.

Instruktionsoptimierte Modelle hingegen haben Trainingsrunden durchlaufen, die

speziell darauf ausgerichtet sind, Anweisungen zu verstehen und zu befolgen.

GPT-4, Claude 3 und viele andere der beliebtesten LLM-Modelle sind alle stark

instruktionsoptimiert. Dieses Training beinhaltet, dem Modell Beispiele von

Anweisungen zusammen mit den gewünschten Ergebnissen zu präsentieren und ihm

dadurch effektiv beizubringen, wie es eine breite Palette von Befehlen interpretieren

und ausführen kann. Infolgedessen können instruktionsoptimierte Modelle die Absicht

hinter einem Prompt besser verstehen und Antworten generieren, die eng mit den

Erwartungen des Benutzers übereinstimmen. Dies macht sie benutzerfreundlicher

und einfacher in der Handhabung, besonders für diejenigen, die nicht die Zeit oder

Expertise haben, sich mit umfangreichem Prompt-Engineering zu beschäftigen.

Den Pfad eingrenzen 52

Rohmodelle: Die ungefilterte Leinwand

Rohmodelle wie Llama 2-70B oder Yi-34B bieten einen ungefilterteren Zugang zu den

Fähigkeiten des Modells, als Sie es vielleicht gewohnt sind, wenn Sie mit populären

LLMs wie GPT-4 experimentiert haben. Diese Modelle sind nicht vortrainiert, um

spezifische Anweisungen zu befolgen, und bieten Ihnen eine leere Leinwand, um die

Ausgabe des Modells durch sorgfältiges Prompt-Engineering direkt zu manipulieren.

Dieser Ansatz erfordert ein tiefes Verständnis dafür, wie man Prompts erstellt, die die KI

in die gewünschte Richtung lenken, ohne sie explizit anzuweisen. Es ist vergleichbar mit

einem direkten Zugriff auf die “rohen” Schichten der zugrundeliegenden KI, ohne dass

vermittelnde Schichten die Antworten desModells interpretieren oder lenken (daher der

Name).

Den Pfad eingrenzen 53

Abbildung 3. Test eines Basis-Modells mit einem Teil des klassischen ’Who’s on First’-Sketches von
Abbott und Costello

Die Herausforderung bei Basis-Modellen liegt in ihrer Tendenz, in repetitive Muster

zu verfallen oder zufällige Ausgaben zu produzieren. Jedoch können Basis-Modelle

durch sorgfältiges Prompt-Engineering und die Anpassung von Parametern wie

Wiederholungsstrafen dazu gebracht werden, einzigartige und kreative Inhalte zu

generieren. Dieser Prozess ist nicht ohne Kompromisse; während Basis-Modelle eine

unvergleichliche Flexibilität für Innovationen bieten, erfordern sie auch ein höheres

Maß an Expertise.

Den Pfad eingrenzen 54

Abbildung 4. Zum Vergleich: Die gleiche mehrdeutige Eingabeaufforderung, die an GPT-4 gesendet
wurde

Instruktionsoptimierte Modelle: Die geführte Erfahrung

Instruktionsoptimierte Modelle sind darauf ausgelegt, spezifische Anweisungen

zu verstehen und zu befolgen, was sie benutzerfreundlicher und für ein breiteres

Spektrum von Anwendungen zugänglich macht. Sie verstehen die Mechanik einer

Unterhaltung und wissen, dass sie die Generierung stoppen sollten, wenn es das Ende

ihrer Gesprächsrunde ist. Für viele Entwickler, besonders jene, die an unkomplizierten

Anwendungen arbeiten, bieten instruktionsoptimierte Modelle eine praktische und

effiziente Lösung.

Der Prozess des Instruktions-Tunings beinhaltet das Training des Modells an einem

großen Korpus von menschengenerierten Instruktionseingaben und -antworten.

Ein bemerkenswertes Beispiel ist der Open-Source-databricks-dolly-15k dataset, der

über 15.000 Eingabe-/Antwortpaare enthält, die von Databricks-Mitarbeitern erstellt

wurden und die man selbst inspizieren kann. Der Datensatz umfasst acht verschiedene

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Den Pfad eingrenzen 55

Instruktionskategorien, einschließlich kreatives Schreiben, geschlossene und offene

Fragebeantwortung, Zusammenfassung, Informationsextraktion, Klassifizierung und

Brainstorming.

Während des Datengenerierungsprozesses erhielten die Mitwirkenden Richtlinien zur

Erstellung von Eingabeaufforderungen und Antworten für jede Kategorie. Für kreative

Schreibaufgaben wurden sie beispielsweise angewiesen, spezifische Einschränkungen,

Anweisungen oder Anforderungen zur Steuerung der Modellausgabe bereitzustellen.

Für geschlossene Fragebeantwortungen wurden sie gebeten, Fragen zu formulieren, die

sachlich korrekte Antworten auf Basis einer gegebenen Wikipedia-Passage erfordern.

Der resultierende Datensatz dient als wertvolle Ressource für die Feinabstimmung

großer Sprachmodelle, um die interaktiven und anweisungsbefolgenden Fähigkeiten

von Systemen wie ChatGPT zu entwickeln. Durch das Training an einer vielfältigen

Auswahl von menschengenerierten Anweisungen und Antworten lernt das Modell,

spezifische Direktiven zu verstehen und zu befolgen, wodurch es geschickter imUmgang

mit einer breiten Palette von Aufgaben wird.

Zusätzlich zur direkten Feinabstimmung können die Instruktionseingaben in

Datensätzen wie databricks-dolly-15k auch für die synthetische Datengenerierung

verwendet werden. Indem man von Mitwirkenden erstellte Eingaben als Few-

Shot-Beispiele an ein großes offenes Sprachmodell übermittelt, können Entwickler

einen viel größeren Korpus von Anweisungen in jeder Kategorie generieren. Dieser

im Self-Instruct-Paper beschriebene Ansatz ermöglicht die Erstellung robusterer

instruktionsbefolgender Modelle.

Darüber hinaus können die Anweisungen und Antworten in diesen Datensätzen durch

Techniken wie Paraphrasierung erweitert werden. Indem jede Eingabeaufforderung

oder kurze Antwort neu formuliert und der daraus resultierende Text mit der

entsprechenden Referenzprobe verknüpft wird, können Entwickler eine Form der

Regularisierung einführen, die die Fähigkeit des Modells verbessert, Anweisungen zu

befolgen.

Den Pfad eingrenzen 56

Die Benutzerfreundlichkeit der instruktionsoptimierten Modelle geht auf Kosten einer

gewissen Flexibilität. Diese Modelle sind oft stark zensiert, was bedeutet, dass sie

nicht immer die kreative Freiheit bieten, die für bestimmte Aufgaben erforderlich ist.

Ihre Ausgaben werden stark von den Voreingenommenheiten und Einschränkungen

beeinflusst, die ihren Feinabstimmungsdaten innewohnen.

Trotz dieser Einschränkungen sind instruktionsoptimierte Modelle aufgrund ihrer

Benutzerfreundlichkeit und der Fähigkeit, eine breite Palette von Aufgaben mit

minimalem Prompt-Engineering zu bewältigen, immer beliebter geworden. Mit der

zunehmenden Verfügbarkeit hochwertiger Instruktionsdatensätze können wir weitere

Verbesserungen in der Leistung und Vielseitigkeit dieser Modelle erwarten.

Die Wahl des richtigen Modelltyps für Ihr Projekt

Die Entscheidung zwischen Basis- und instruktionsoptimierten Modellen hängt

letztendlich von den spezifischen Anforderungen Ihres Projekts ab. Für Aufgaben,

die ein hohes Maß an Kreativität und Originalität erfordern, bieten Basismodelle ein

leistungsfähiges Werkzeug für Innovation. Diese Modelle ermöglichen es Entwicklern,

das volle Potenzial von LLMs zu erforschen und die Grenzen dessen zu erweitern, was

durch KI-gesteuerte Anwendungen erreicht werden kann, aber sie erfordern einen

praktischeren Ansatz und die Bereitschaft zu experimentieren. Die Temperatur und

andere Einstellungen haben bei Basismodellen einen viel größeren Einfluss als bei

ihren instruktionsoptimierten Gegenstücken.

Was auch immer Sie in Ihrem Prompt aufnehmen, ist das, was Basismodelle

zu wiederholen versuchen. Wenn Ihr Prompt zum Beispiel ein Chat-

Transkript ist, wird das Basismodell versuchen, den Chat fortzusetzen. Je

nach maximalem Token-Limit wird es nicht nur die nächste Nachricht im

Chat generieren, sondern möglicherweise eine ganze Unterhaltung mit sich

selbst führen!

Den Pfad eingrenzen 57

Abbildung 5. Mixtral 8x7B (base) Beispiel für Satzumformulierung mit Few-Shot Completion

Bei der Vorbereitung des obigen Beispiels zur Satzumformulierung des Reddit-Nutzers

phree_radical konnte ich erst nach vielen Experimentenmit den Parametereinstellungen

brauchbare Ergebnisse erzielen und legte mich schließlich auf folgende Werte fest:

Temperatur 0,08, Top P: 0,2, Top K: 1 und Wiederholungsstrafe: 1,26.

https://www.reddit.com/user/phree_radical/

Den Pfad eingrenzen 58

Der Versuch, diesen Ansatz mit einem Basismodell in der Produktion zu verwenden,

wäre aufgrund des starken Einflusses des max_tokens-Parameters schwierig. Wenn

man ihn zu kurz einstellt, wird die Ausgabe abgeschnitten. Stellt man ihn länger ein als

dasModell für die gewünschte Ausgabe benötigt, wird esweitere Beispiele halluzinieren.

Zusammenfassend lässt sich sagen, dass instruktionsoptimierte Modelle Ihren

Entwicklungsprozess erheblich vereinfachen können, es sei denn, Sie benötigen wirklich

vollständige Kontrolle und Zensurfreiheit. Um diesen Punkt zu verdeutlichen, hier ist

Mixtrals 8x7B Antwort auf denselben Prompt, diesmal in seiner instruktionsoptimierten

Version:

Es tut mir leid, Ihnen mitteilen zu müssen, dass das Eis meine Erwartungen

nicht erfüllt, da ihm die reichhaltige, cremige Textur und der köstliche

Geschmack fehlen, die ich normalerweise mit einem hochwertigen

Dessert verbinde. Ich hatte auf ein befriedigenderes und angenehmeres

Geschmackserlebnis gehofft.

Bemerkenswerterweise konnte ich die maximale Token-Einstellung bei 500 belassen,

und das Modell hörte zuverlässig am Ende der gewünschten Ausgabe auf, ohne

zusätzliche Beispiele zu halluzinieren.

Prompt-Engineering

Wenn Sie beginnen, KI in Ihren Projekten einzusetzen, werden Sie schnell feststellen,

dass eine der wichtigsten Fähigkeiten, die Sie beherrschen müssen, die Kunst des

Prompt-Engineerings ist. Aber was genau ist Prompt-Engineering, und warum ist es

so wichtig?

Im Kern ist Prompt-Engineering der Prozess des Entwerfens und Gestaltens von

Eingabeaufforderungen, die Sie einem Sprachmodell zur Verfügung stellen, um

dessen Ausgabe zu steuern. Es geht darum zu verstehen, wie man effektiv mit der

Den Pfad eingrenzen 59

KI kommuniziert, indem man eine Kombination aus Anweisungen, Beispielen und

Kontext verwendet, um das Modell zur Generierung der gewünschten Antwort zu

führen.

Stellen Sie sich vor, Sie führen ein Gespräch mit einem hochintelligenten, aber etwas

wörtlich nehmenden Freund. Um das Beste aus der Interaktion herauszuholen, müssen

Sie klar und präzise sein und genügend Kontext liefern, damit Ihr Freund genau versteht,

worum Sie bitten. Genau hier kommt Prompt-Engineering ins Spiel, und auch wenn es

zunächst einfach erscheinen mag, glauben Sie mir, es braucht viel Übung, um es zu

meistern.

Die Bausteine effektiver Prompts

Umeffektive Prompts zu entwickeln, müssen Sie zunächst die wichtigsten Komponenten

verstehen, die eine gut gestaltete Eingabe ausmachen. Hier sind einige der wesentlichen

Bausteine:

1. Anweisungen: Klare und präzise Anweisungen, die demModell sagen, was es tun

soll. Das kann alles sein, von “Fassen Sie den folgenden Artikel zusammen” über

“Generieren Sie ein Gedicht über einen Sonnenuntergang” bis hin zu “Verwandeln

Sie diese Projektänderungsanfrage in ein JSON-Objekt”.

2. Kontext: Relevante Informationen, die dem Modell helfen, den Hintergrund

und den Umfang der Aufgabe zu verstehen. Dies können Details über die

Zielgruppe, den gewünschten Ton und Stil oder spezifische Einschränkungen

oder Anforderungen für die Ausgabe sein, wie etwa ein einzuhaltendes JSON-

Schema.

3. Beispiele: Konkrete Beispiele, die die Art der gewünschten Ausgabe

demonstrieren. Durch die Bereitstellung einiger gut gewählter Beispiele

können Sie dem Modell helfen, die Muster und Eigenschaften der gewünschten

Antwort zu lernen.

Den Pfad eingrenzen 60

4. Eingabeformatierung: Zeilenumbrüche und Markdown-Formatierung geben

unserem Prompt Struktur. Die Aufteilung des Prompts in Absätze ermöglicht es

uns, zusammengehörige Anweisungen zu gruppieren, sodass sowohl Menschen

als auch KI sie besser verstehen können. Aufzählungszeichen und nummerierte

Listen ermöglichen es uns, Listen und Reihenfolgen von Elementen zu definieren.

Fett- und Kursivschrift-Markierungen lassen uns Betonung kenntlich machen.

5. Ausgabeformatierung: Spezifische Anweisungen darüber, wie die Ausgabe

strukturiert und formatiert werden soll. Dies können Vorgaben über die

gewünschte Länge, die Verwendung von Überschriften oder Aufzählungszeichen,

Markdown-Formatierung oder andere spezifische Ausgabevorlagen oder

Konventionen sein, die befolgt werden sollen.

Durch die Kombination dieser Bausteine auf verschiedene Weisen können Sie Prompts

erstellen, die auf Ihre spezifischen Bedürfnisse zugeschnitten sind und das Modell zur

Generierung hochwertiger, relevanter Antworten führen.

Die Kunst und Wissenschaft des Prompt-Designs

Das Erstellen effektiver Prompts ist sowohl eine Kunst als auch eine Wissenschaft.

(Deshalb nennen wir es ein Handwerk.) Es erfordert ein tiefes Verständnis der

Fähigkeiten und Grenzen von Sprachmodellen sowie einen kreativen Ansatz beim

Entwerfen von Prompts, die das gewünschte Verhalten hervorrufen. Die damit

verbundene Kreativität macht es, zumindest für mich, so unterhaltsam. Es kann auch

sehr frustrierend sein, besonders wenn man deterministisches Verhalten anstrebt.

Ein wichtiger Aspekt des Prompt-Engineerings ist das Verständnis dafür, wie man

Spezifität und Flexibilität ausbalanciert. Einerseits möchten Sie genügend Führung

bieten, um das Modell in die richtige Richtung zu lenken. Andererseits möchten Sie

nicht so präskriptiv sein, dass Sie die Fähigkeit des Modells einschränken, seine eigene

Kreativität und Flexibilität im Umgang mit Randfällen zu nutzen.

Den Pfad eingrenzen 61

Eine weitere wichtige Überlegung ist die Verwendung von Beispielen. Gut gewählte

Beispiele können unglaublich wirkungsvoll sein, um dem Modell die Art der

gewünschten Ausgabe zu verdeutlichen. Es ist jedoch wichtig, Beispiele mit Bedacht

einzusetzen und sicherzustellen, dass sie repräsentativ für die gewünschte Antwort

sind. Ein schlechtes Beispiel ist bestenfalls eine Verschwendung von Tokens und im

schlimmsten Fall ruinös für die gewünschte Ausgabe.

Prompt-Engineering-Techniken und Best Practices

Wenn Sie tiefer in die Welt des Prompt-Engineerings eintauchen, werden Sie eine

Reihe von Techniken und Best Practices entdecken, die Ihnen helfen können, effektivere

Prompts zu erstellen. Hier sind einige wichtige Bereiche, die es zu erkunden gilt:

1. Zero-Shot vs. Few-Shot-Lernen: Das Verständnis, wann man Zero-Shot-Lernen

(keine Beispiele bereitstellen) gegenüber One-Shot oder Few-Shot-Lernen (eine

kleine Anzahl von Beispielen bereitstellen) verwendet, kann Ihnen helfen,

Prompts zu erstellen, die effizienter und effektiver sind.

2. Iterative Verfeinerung: Der Prozess der iterativen Verfeinerung von Prompts

basierend auf der Ausgabe des Modells kann dabei helfen, das optimale Prompt-

Design zu ermitteln. Feedback Loop ist ein leistungsfähiger Ansatz, der die

Ausgabe des Sprachmodells selbst nutzt, um die Qualität und Relevanz der

generierten Inhalte schrittweise zu verbessern.

3. Prompt-Verkettung: Die Kombination mehrerer Prompts in einer Sequenz

kann helfen, komplexe Aufgaben in kleinere, besser handhabbare Schritte

zu unterteilen. Prompt Chaining beinhaltet die Aufteilung einer komplexen

Aufgabe oder Konversation in eine Reihe kleinerer, miteinander verbundener

Prompts. Durch die Verkettung von Prompts können Sie die KI durch einen

mehrstufigen Prozess führen und dabei Kontext und Kohärenz während der

gesamten Interaktion aufrechterhalten.

Den Pfad eingrenzen 62

4. Prompt-Optimierung: Die maßgeschneiderte Anpassung von Prompts für

spezifische Domänen oder Aufgaben kann dabei helfen, spezialisierte und

effektivere Prompts zu erstellen. Prompt Template hilft Ihnen dabei, flexible,

wiederverwendbare und wartbare Prompt-Strukturen zu erstellen, die sich

leichter an die jeweilige Aufgabe anpassen lassen.

Zu lernen, wann Zero-Shot-, One-Shot- oder Few-Shot-Learning einzusetzen ist, ist ein

besonders wichtiger Teil der Beherrschung des Prompt-Engineerings. Jeder Ansatz hat

seine eigenen Stärken und Schwächen, und das Verständnis, wann welcher Ansatz zu

verwenden ist, kann Ihnen helfen, effektivere und effizientere Prompts zu erstellen.

Zero-Shot-Learning: Wenn keine Beispiele erforderlich
sind

Zero-Shot-Learning bezieht sich auf die Fähigkeit eines Sprachmodells, eine Aufgabe

ohne Beispiele oder explizites Training auszuführen. Mit anderen Worten, Sie stellen

dem Modell einen Prompt zur Verfügung, der die Aufgabe beschreibt, und das Modell

generiert eine Antwort ausschließlich auf Basis seines bereits vorhandenenWissens und

Sprachverständnisses.

Zero-Shot-Learning ist besonders nützlich, wenn:

1. Die Aufgabe relativ einfach und unkompliziert ist und das Modell wahrscheinlich

während seines Vortrainings ähnliche Aufgaben kennengelernt hat.

2. Sie die inhärenten Fähigkeiten des Modells testen und sehen möchten, wie es auf

eine neue Aufgabe ohne zusätzliche Anleitung reagiert.

3. Sie mit einem großen und vielseitigen Sprachmodell arbeiten, das für ein breites

Spektrum an Aufgaben und Domänen trainiert wurde.

Allerdings kann Zero-Shot-Learning auch unvorhersehbar sein und nicht immer die

gewünschten Ergebnisse liefern. Die Antwort des Modells kann durch Verzerrungen

Den Pfad eingrenzen 63

oder Inkonsistenzen in seinen Trainingsdaten beeinflusst werden, und es kann bei

komplexeren oder nuancierteren Aufgaben Schwierigkeiten haben.

Ich habe Zero-Shot-Prompts gesehen, die für 80% meiner Testfälle gut funktionieren,

aber für die anderen 20% völlig falsche oder unverständliche Ergebnisse liefern. Es

ist sehr wichtig, ein gründliches Testverfahren zu implementieren, besonders wenn

man sich stark auf Zero-Shot-Prompting verlässt.

One-Shot-Learning: Wenn ein einzelnes Beispiel den
Unterschied macht

One-Shot-Learning beinhaltet, dem Modell ein einzelnes Beispiel der gewünschten

Ausgabe zusammen mit der Aufgabenbeschreibung zur Verfügung zu stellen. Dieses

Beispiel dient als Vorlage oder Muster, das das Modell zur Generierung seiner eigenen

Antwort verwenden kann.

One-Shot-Learning kann effektiv sein, wenn:

1. Die Aufgabe relativ neuartig oder spezifisch ist und das Modell während seines

Vortrainings möglicherweise nicht viele ähnliche Beispiele kennengelernt hat.

2. Sie eine klare und präzise Demonstration des gewünschten Ausgabeformats oder

-stils bereitstellen möchten.

3. Die Aufgabe eine spezifische Struktur oder Konvention erfordert, die aus der

Aufgabenbeschreibung allein möglicherweise nicht offensichtlich ist.

Beschreibungen, die für Sie offensichtlich sind, sind nicht unbedingt auch für

die KI offensichtlich. One-Shot-Beispiele können hier für Klarheit sorgen.

Den Pfad eingrenzen 64

One-Shot-Learning kann dem Modell helfen, die Erwartungen klarer zu verstehen und

eine Antwort zu generieren, die besser mit dem bereitgestellten Beispiel übereinstimmt.

Allerdings ist es wichtig, das Beispiel sorgfältig auszuwählen und sicherzustellen, dass es

repräsentativ für die gewünschte Ausgabe ist. Beim Auswählen des Beispiels sollten Sie

über mögliche Randfälle und die Bandbreite der Eingaben nachdenken, die der Prompt

verarbeiten soll.

Abbildung 6. Ein One-Shot-Beispiel des gewünschten JSONs

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Few-Shot-Learning: Wenn mehrere Beispiele die Leistung
verbessern können

Few-Shot-Learning beinhaltet, dem Modell eine kleine Anzahl von Beispielen

(typischerweise zwischen 2 und 10) zusammen mit der Aufgabenbeschreibung zur

Verfügung zu stellen. Diese Beispiele dienen dazu, dem Modell mehr Kontext und

Variation zu bieten und ihm dabei zu helfen, vielfältigere und genauere Antworten zu

generieren.

Den Pfad eingrenzen 65

Few-Shot-Learning ist besonders nützlich, wenn:

1. Die Aufgabe komplex oder nuanciert ist und ein einzelnes Beispiel möglicherweise

nicht ausreicht, um alle relevanten Aspekte zu erfassen.

2. Sie dem Modell eine Reihe von Beispielen zur Verfügung stellen möchten, die

verschiedene Variationen oder Sonderfälle demonstrieren.

3. Die Aufgabe erfordert, dass das Modell Antworten generiert, die mit einer

bestimmten Domäne oder einem bestimmten Stil übereinstimmen.

Durch die Bereitstellung mehrerer Beispiele können Sie dem Modell helfen, ein

robusteres Verständnis der Aufgabe zu entwickeln und Antworten zu generieren, die

konsistenter und zuverlässiger sind.

Beispiel: Prompts können viel komplexer sein als Sie sich
vorstellen

Die heutigen LLMs sind viel leistungsfähiger und zu komplexerem Denken fähig, als

Sie sich möglicherweise vorstellen. Beschränken Sie sich also nicht darauf, Prompts

nur als eine Spezifikation von Eingabe- und Ausgabepaaren zu betrachten. Sie können

mit langen und komplexen Anweisungen experimentieren, ähnlich wie Sie mit einem

Menschen interagieren würden.

Zum Beispiel ist dies ein Prompt, den ich in Olympia verwendet habe, als ich unsere

Integration mit Google-Diensten prototypisch entwickelte, die in ihrer Gesamtheit

wahrscheinlich eine der größten APIs der Welt ist. Meine früheren Experimente hatten

gezeigt, dass GPT-4 über ein ordentliches Wissen über die Google-API verfügt, und ich

hatte weder Zeit nochMotivation, eine feingranulare Mapping-Schicht zu schreiben, die

jede Funktion, die ich meiner KI zur Verfügung stellen wollte, einzeln implementiert.

Was wäre, wenn ich der KI einfach Zugriff auf die gesamte Google-API geben könnte?

Den Pfad eingrenzen 66

Ich begann meinen Prompt damit, der KI mitzuteilen, dass sie direkten Zugriff auf

die Google-API-Endpunkte über HTTP hat und dass ihre Rolle darin besteht, Google-

Apps und -Dienste im Namen des Benutzers zu verwenden. Dann stellte ich Richtlinien

und Regeln in Bezug auf den fields-Parameter bereit, da es damit die meisten

Schwierigkeiten zu haben schien, sowie einige API-spezifische Hinweise (Few-Shot-

Prompting in Aktion).

Hier ist der vollständige Prompt, der der KI erklärt, wie sie die bereitgestellte invoke_-

google_api-Funktion verwenden soll.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

Den Pfad eingrenzen 67

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Sie fragen sich vielleicht, ob dieser Prompt funktioniert. Die einfache Antwort lautet

ja. Die KI wusste nicht immer beim ersten Versuch, wie sie die API perfekt aufrufen

sollte.Wenn sie jedoch einen Fehler machte, gab ich die resultierenden Fehlermeldungen

einfach als Ergebnis des Aufrufs zurück. Mit dem Wissen um ihren Fehler konnte die

Den Pfad eingrenzen 68

KI über ihren Fehler nachdenken und es erneut versuchen. Meistens gelang es ihr nach

wenigen Versuchen.

Wohlgemerkt sind die großen JSON-Strukturen, die die Google-API als Payloads bei

der Verwendung dieses Prompts zurückgibt, äußerst ineffizient. Ich empfehle daher

nicht, diesen Ansatz in der Produktion zu verwenden. Allerdings ist die Tatsache, dass

dieser Ansatz überhaupt funktioniert hat, ein Beweis dafür, wie leistungsfähig Prompt-

Engineering sein kann.

Experimentieren und Iterieren

Letztendlich hängt die Art und Weise, wie Sie Ihren Prompt entwickeln, von der

spezifischen Aufgabe, der Komplexität der gewünschten Ausgabe und den Fähigkeiten

des Sprachmodells ab, mit dem Sie arbeiten.

Als Prompt-Engineer ist es wichtig, verschiedene Ansätze zu erproben und auf Basis

der Ergebnisse zu iterieren. Beginnen Sie mit Zero-Shot-Learning und beobachten Sie,

wie das Modell sich verhält. Wenn die Ausgabe inkonsistent oder unbefriedigend ist,

versuchen Sie esmit einem odermehreren Beispielen und prüfen Sie, ob sich die Leistung

verbessert.

Bedenken Sie, dass selbst innerhalb jedes Ansatzes Raum für Variation und Optimierung

besteht. Sie können mit verschiedenen Beispielen experimentieren, die Formulierung

der Aufgabenbeschreibung anpassen oder zusätzlichen Kontext bereitstellen, um die

Antwort des Modells zu lenken.

Mit der Zeit entwickeln Sie ein Gespür dafür, welcher Ansatz für eine bestimmte

Aufgabe am besten geeignet ist, und Sie werden in der Lage sein, effektivere

und effizientere Prompts zu erstellen. Der Schlüssel liegt darin, neugierig,

experimentierfreudig und iterativ an das Prompt-Engineering heranzugehen.

Im Verlauf dieses Buches werden wir diese Techniken eingehender untersuchen

und erforschen, wie sie in realen Szenarien angewendet werden können. Durch die

Den Pfad eingrenzen 69

Beherrschung der Kunst undWissenschaft des Prompt-Engineerings werden Sie bestens

gerüstet sein, um das volle Potenzial der KI-gestützten Anwendungsentwicklung zu

erschließen.

Die Kunst der Vagheit

Wenn es um die Gestaltung effektiver Prompts für große Sprachmodelle (LLMs) geht, ist

eine häufige Annahme, dass mehr Spezifität und detaillierte Anweisungen zu besseren

Ergebnissen führen. Die praktische Erfahrung hat jedoch gezeigt, dass dies nicht immer

der Fall ist. Tatsächlich kann eine bewusst vage Formulierung in Ihren Prompts oft zu

überlegenen Ergebnissen führen, indem sie die bemerkenswerte Fähigkeit des LLM zur

Verallgemeinerung und zum Ziehen von Schlüssen nutzt.

Ken, ein Startup-Gründer, der über 500 Millionen GPT-Tokens verarbeitet hat, teilte

wertvolle Erkenntnisse aus seiner Erfahrung. Eine der wichtigsten Lektionen, die er

gelernt hat, war, dass bei Prompts “weniger mehr ist”. Anstatt exakter Listen oder

übermäßig detaillierter Anweisungen stellte Ken fest, dass es oft bessere Ergebnisse

lieferte, wenn man dem LLM erlaubte, sich auf sein Basiswissen zu verlassen.

Diese Erkenntnis stellt die traditionelle Denkweise des expliziten Programmierens auf

den Kopf, bei der alles bis ins kleinste Detail ausformuliert werden muss. Bei LLMs

ist es wichtig zu erkennen, dass sie über ein umfangreiches Wissen verfügen und

intelligente Verbindungen und Schlüsse ziehen können. Indem Sie in Ihren Prompts

vager bleiben, geben Sie dem LLMdie Freiheit, sein Verständnis zu nutzen und Lösungen

zu entwickeln, die Sie möglicherweise nicht explizit vorgegeben haben.

Als Kens Team beispielsweise an einer Pipeline arbeitete, um Text als zu einem der

50 US-Bundesstaaten oder der Bundesregierung gehörend zu klassifizieren, bestand ihr

anfänglicher Ansatz darin, eine vollständige detaillierte Liste der Staaten und ihrer

entsprechenden IDs als JSON-formatiertes Array bereitzustellen.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Den Pfad eingrenzen 70

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Der Ansatz scheiterte so häufig, dass sie tiefer in das Prompt-Engineering eintauchen

mussten, um Verbesserungsmöglichkeiten zu finden. Dabei bemerkten sie, dass das

LLM, obwohl es die ID oft falsch zuordnete, konsequent den vollständigen Namen des

korrekten Bundesstaates in einem name-Feld zurückgab, obwohl sie nicht explizit danach

gefragt hatten.

Indem sie die Lokalitäts-IDs entfernten und den Prompt zu etwas Einfacherem

umformulierten, wie “Du kennst offensichtlich die 50 Bundesstaaten, GPT, also nenne

mir einfach den vollständigen Namen des Bundesstaates, auf den sich dies bezieht, oder

Federal, wenn es sich auf die US-Regierung bezieht”, erzielten sie bessere Ergebnisse.

Diese Erfahrung unterstreicht die Kraft der Generalisierungsfähigkeiten des LLM und

zeigt, wie man es sein bestehendes Wissen für Schlussfolgerungen nutzen lassen kann.

Kens Begründung für diesen speziellen Klassifizierungsansatz im Gegensatz zu einer

traditionelleren Programmiertechnik beleuchtet die Denkweise derjenigen von uns,

die das Potenzial der LLM-Technologie erkannt haben: “Dies ist keine schwierige

Aufgabe – wir hätten wahrscheinlich String/Regex verwenden können, aber es gibt

genügend seltsame Sonderfälle, dass es länger gedauert hätte.”

Die Fähigkeit von LLMs, Qualität und Generalisierung bei vageren Prompts zu

verbessern, ist ein bemerkenswertes Merkmal höherer Denkprozesse und Delegation.

Es zeigt, dass LLMs mit Mehrdeutigkeit umgehen und intelligente Entscheidungen

basierend auf dem gegebenen Kontext treffen können.

Allerdings ist es wichtig zu beachten, dass Vagheit nicht bedeutet, unklar oder

mehrdeutig zu sein. Der Schlüssel liegt darin, genügend Kontext und Führung zu

Den Pfad eingrenzen 71

bieten, um das LLM in die richtige Richtung zu lenken, während man ihm die

Flexibilität lässt, sein Wissen und seine Generalisierungsfähigkeiten zu nutzen.

Berücksichtigen Sie daher beim Gestalten von Prompts die folgenden “Weniger ist

mehr”-Tipps:

1. Konzentrieren Sie sich auf das gewünschte Ergebnis statt auf die Spezifizierung

jedes Prozessdetails.

2. Bieten Sie relevanten Kontext und Einschränkungen, aber vermeiden Sie

Überspezifizierung.

3. Nutzen Sie bestehendes Wissen durch Bezugnahme auf allgemeine Konzepte oder

Entitäten.

4. Lassen Sie Raum für Schlussfolgerungen und Verbindungen basierend auf dem

gegebenen Kontext.

5. Iterieren und verfeinern Sie Ihre Prompts basierend auf den Antworten des LLM,

um die richtige Balance zwischen Spezifität und Vagheit zu finden.

Indem Sie die Kunst der Vagheit im Prompt-Engineering annehmen, können Sie das

volle Potenzial von LLMs erschließen und bessere Ergebnisse erzielen. Vertrauen Sie auf

die Fähigkeit des LLM zu generalisieren und intelligente Entscheidungen zu treffen, und

Sie werden möglicherweise von der Qualität und Kreativität der erhaltenen Ausgaben

überrascht sein. Achten Sie darauf, wie die verschiedenen Modelle auf unterschiedliche

Grade der Spezifität in Ihren Prompts reagieren und passen Sie sich entsprechend an.

Mit Übung und Erfahrung entwickeln Sie ein feines Gespür dafür, wann Sie vager sein

sollten und wann zusätzliche Führung nötig ist, wodurch Sie die Kraft der LLMs effektiv

in Ihren Anwendungen nutzen können.

Warum Anthropomorphismus das Prompt-Engineering
dominiert

Anthropomorphismus, die Zuschreibung menschlicher Eigenschaften zu nicht-

menschlichen Entitäten, ist aus bewussten Gründen der vorherrschende Ansatz im

Den Pfad eingrenzen 72

Prompt-Engineering für große Sprachmodelle. Es ist eine Designentscheidung, die

die Interaktion mit leistungsfähigen KI-Systemen intuitiver und zugänglicher für ein

breites Spektrum von Nutzern (einschließlich uns Anwendungsentwicklern) macht.

Die Anthropomorphisierung von LLMs bietet einen Rahmen, der für Menschen, die

mit den zugrunde liegenden technischen Komplexitäten des Systems völlig unvertraut

sind, sofort intuitiv verständlich ist. Wie Sie feststellen werden, wenn Sie versuchen,

ein nicht instruktionsoptimiertes Modell für etwas Nützliches zu verwenden, ist es

eine anspruchsvolle Aufgabe, einen Rahmen zu konstruieren, in dem die erwartete

Fortsetzung einen Mehrwert bietet. Dies erfordert ein ziemlich tiefes Verständnis der

inneren Funktionsweise des Systems, das nur eine relativ kleine Anzahl von Experten

besitzt.

Indem wir die Interaktion mit einem Sprachmodell als Gespräch zwischen zwei

Menschen behandeln, können wir uns auf unser angeborenes Verständnis menschlicher

Kommunikation verlassen, um unsere Bedürfnisse und Erwartungen zu vermitteln.

Genauso wie das früheMacintosh-UI-Design unmittelbare Intuitivität über Komplexität

stellte, ermöglicht der anthropomorphe Rahmen der KI uns eine Interaktion, die sich

natürlich und vertraut anfühlt.

Wenn wir mit einer anderen Person kommunizieren, ist es unser Instinkt, sie direkt mit

“du” anzusprechen und klare Anweisungen zu geben, wie wir erwarten, dass sie sich

verhält. Dies überträgt sich nahtlos auf den Prompt-Engineering-Prozess, bei dem wir

das Verhalten der KI durch die Festlegung von System-Prompts steuern und einenDialog

führen.

Durch diese Art der Rahmung können wir leicht das Konzept erfassen, der KI

Anweisungen zu geben und relevante Antworten zu erhalten. Der anthropomorphe

Ansatz reduziert die kognitive Belastung und erlaubt uns, uns auf die eigentliche

Aufgabe zu konzentrieren, anstatt uns mit den technischen Feinheiten des Systems

auseinanderzusetzen.

Es ist wichtig zu beachten, dass Anthropomorphismus, während er ein mächtiges

Den Pfad eingrenzen 73

Werkzeug ist, um KI-Systeme zugänglicher zu machen, auch mit bestimmten Risiken

und Einschränkungen einhergeht. Unsere Benutzer könnten unrealistische Erwartungen

entwickeln oder ungesunde emotionale Bindungen zu unseren Systemen aufbauen.

Als Prompt-Engineers und Entwickler ist es entscheidend, eine Balance zu finden

zwischen der Nutzung der Vorteile des Anthropomorphismus und der Sicherstellung,

dass Benutzer ein klares Verständnis der Fähigkeiten und Grenzen der KI behalten.

Während sich das Feld des Prompt-Engineering weiterentwickelt, können wir weitere

Verfeinerungen und Innovationen in der Art und Weise erwarten, wie wir mit großen

Sprachmodellen interagieren. Der Anthropomorphismus als Mittel zur Bereitstellung

einer intuitiven und zugänglichen Entwickler- und Benutzererfahrung wird jedoch

wahrscheinlich ein grundlegendes Prinzip bei der Gestaltung dieser Systeme bleiben.

Die Trennung von Anweisungen und Daten: Ein
entscheidendes Prinzip

Es ist wichtig, ein fundamentales Prinzip zu verstehen, das die Sicherheit und

Zuverlässigkeit dieser Systeme untermauert: die Trennung von Anweisungen und

Daten.

In der traditionellen Informatik ist die klare Unterscheidung zwischen passiven Daten

und aktiven Anweisungen ein zentrales Sicherheitsprinzip. Diese Trennung hilft, die

unbeabsichtigte oder böswillige Ausführung von Code zu verhindern, die die Integrität

und Stabilität des Systems gefährden könnte. Die heutigen LLMs, die hauptsächlich als

instruktionsbasierte Modelle wie Chatbots entwickelt wurden, weisen jedoch häufig

diese formelle und prinzipielle Trennung nicht auf.

Was LLMs betrifft, können Anweisungen überall in der Eingabe erscheinen, sei es

in einem System-Prompt oder einem benutzerdefinierten Prompt. Dieser Mangel an

Trennung kann zu potenziellen Schwachstellen und unerwünschtem Verhalten führen,

ähnlich wie bei Problemen, die Datenbanken mit SQL-Injektionen oder Betriebssysteme

ohne angemessenen Speicherschutz haben.

Den Pfad eingrenzen 74

Bei der Arbeit mit LLMs ist es wichtig, sich dieser Einschränkung bewusst zu sein und

Schritte zu unternehmen, um die Risiken zu minimieren. Ein Ansatz besteht darin,

Ihre Prompts und Eingaben sorgfältig zu gestalten, um klar zwischen Anweisungen

und Daten zu unterscheiden. Typische Methoden zur Bereitstellung expliziter Hinweise

darauf, was eine Anweisung ist und was als passive Daten behandelt werden sollte,

beinhalten Markup-Style-Tagging. Ihr Prompt kann dem LLM helfen, diese Trennung

besser zu verstehen und zu respektieren.

Abbildung 7. Verwendung von XML zur Unterscheidung zwischen Anweisungen, Quellmaterial und
dem Prompt des Benutzers

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Eine weitere Technik besteht darin, zusätzliche Validierungs- und Bereinigungsebenen

für die Eingaben zu implementieren, die dem LLM zur Verfügung gestellt werden. Durch

das Herausfiltern oder Escapen von potenziellen Anweisungen oder Code-Snippets,

die in den Daten eingebettet sein könnten, können Sie die Wahrscheinlichkeit einer

unbeabsichtigten Ausführung reduzieren. Muster wie Prompt Chaining sind für diesen

Zweck nützlich.

Berücksichtigen Sie außerdem bei der Gestaltung Ihrer Anwendungsarchitektur

die Einführung von Mechanismen zur Durchsetzung der Trennung von

Den Pfad eingrenzen 75

Anweisungen und Daten auf höherer Ebene. Dies könnte die Verwendung separater

Endpunkte oder APIs für die Verarbeitung von Anweisungen und Daten, die

Implementierung strenger Eingabevalidierung und -analyse sowie die Anwendung des

Prinzips der geringsten Privilegien umfassen, um den Umfang dessen zu begrenzen,

worauf das LLM zugreifen und was es ausführen kann.

Das Prinzip der geringsten Privilegien

Die Anwendung des Prinzips der geringsten Privilegien ist wie das Ausrichten einer

sehr exklusiven Party, bei der die Gäste nur Zugang zu den Räumen erhalten, die

sie unbedingt benötigen. Stellen Sie sich vor, Sie veranstalten diese Feier in einer

weitläufigen Villa. Nicht jeder muss in den Weinkeller oder das Hauptschlafzimmer

wandern, richtig? Indem Sie dieses Prinzip anwenden, verteilen Sie im Grunde

genommen Schlüssel, die nur bestimmte Türen öffnen, und stellen so sicher, dass

jeder Gast – oder in unserem Fall jede Komponente Ihrer LLM-Anwendung – nur

den Zugang hat, der zur Erfüllung seiner Rolle erforderlich ist.

Dabei geht es nicht nur darum, mit Schlüsseln zu geizen, sondern darum

anzuerkennen, dass in einer Welt, in der Bedrohungen von überall kommen können,

es klug ist, den Spielplatz zu begrenzen. Wenn jemand uneingeladen auf Ihrer Party

erscheint, wird er sich sozusagen nur im Foyer wiederfinden, was den Unfug, den

er anrichten kann, drastisch einschränkt. Denken Sie also bei der Absicherung Ihrer

LLM-Anwendungen daran: Geben Sie nur Schlüssel für die notwendigen Räume aus

und halten Sie den Rest der Villa sicher. Das ist nicht nur höflich, sondern auch gute

Sicherheit.

Während der aktuelle Stand der LLMs möglicherweise keine formale Trennung von

Anweisungen und Daten aufweist, ist es für Sie als Entwickler wichtig, sich dieser

Einschränkung bewusst zu sein und proaktive Maßnahmen zur Risikominderung

Den Pfad eingrenzen 76

zu ergreifen. Indem Sie bewährte Praktiken aus der Informatik anwenden und sie

an die einzigartigen Eigenschaften von LLMs anpassen, können Sie sicherere und

zuverlässigere Anwendungen entwickeln, die die Leistungsfähigkeit dieser Modelle

nutzen und gleichzeitig die Integrität Ihres Systems bewahren.

Prompt Distillation

Die Erstellung des perfekten Prompts ist oft eine herausfordernde und zeitaufwändige

Aufgabe, die ein tiefes Verständnis der Zieldomäne und der Nuancen von

Sprachmodellen erfordert. Hier kommt die “Prompt Distillation”-Technik ins Spiel, die

einen leistungsfähigen Ansatz für Prompt Engineering bietet, der die Fähigkeiten großer

Sprachmodelle (LLMs) nutzt, um den Prozess zu optimieren und zu rationalisieren.

Prompt Distillation ist eine mehrstufige Technik, bei der LLMs zur Unterstützung bei der

Erstellung, Verfeinerung und Optimierung von Prompts eingesetzt werden. Anstatt sich

ausschließlich auf menschliche Expertise und Intuition zu verlassen, nutzt dieser Ansatz

das Wissen und die generativen Fähigkeiten von LLMs, um gemeinsam hochwertige

Prompts zu erstellen.

Durch einen iterativen Prozess der Generierung, Verfeinerung und Integration

ermöglicht Prompt Distillation die Erstellung von Prompts, die kohärenter, umfassender

und besser auf die gewünschte Aufgabe oder Ausgabe abgestimmt sind. Beachten Sie,

dass der Destillationsprozess entweder manuell in einem der vielen “Playgrounds”

durchgeführt werden kann, die von großen KI-Anbietern wie OpenAI oder Anthropic

bereitgestellt werden, oder je nach Anwendungsfall als Teil Ihres Anwendungscodes

automatisiert werden kann.

Wie es funktioniert

Prompt Distillation umfasst typischerweise die folgenden Schritte:

Den Pfad eingrenzen 77

1. Kernabsicht identifizieren: Analysieren Sie den Prompt, um seinen primären

Zweck und das gewünschte Ergebnis zu bestimmen. Entfernen Sie alle

überflüssigen Informationen und konzentrieren Sie sich auf die Kernabsicht des

Prompts.

2. Mehrdeutigkeit beseitigen: Überprüfen Sie den Prompt auf mehrdeutige oder

vage Formulierungen. Klären Sie die Bedeutung und geben Sie spezifische

Details an, um die KI bei der Generierung genauer und relevanter Antworten zu

unterstützen.

3. Sprache vereinfachen: Vereinfachen Sie den Prompt durch klare und präzise

Sprache. Vermeiden Sie komplexe Satzstrukturen, Fachbegriffe oder unnötige

Details, die die KI verwirren oder Störungen verursachen könnten.

4. Relevanten Kontext bereitstellen: Fügen Sie nur die relevantesten

Kontextinformationen hinzu, die die KI benötigt, um den Prompt effektiv

zu verstehen und zu verarbeiten. Vermeiden Sie irrelevante oder redundante

Details, die von der Kernabsicht ablenken könnten.

5. Iterieren und verfeinern: Iterieren und verfeinern Sie den Prompt kontinuierlich

basierend auf den Antworten und dem Feedback der KI. Bewerten Sie die

generierten Ausgaben und nehmen Sie notwendige Anpassungen vor, um die

Klarheit und Effektivität des Prompts zu verbessern. Versionieren Sie optional

Ihre Prompts in der Datenbank mithilfe von Prompt Object, um den Überblick

über Iterationen zu behalten und sich die Möglichkeit zu geben, Änderungen zur

Laufzeit einfach rückgängig zu machen.

Initial-Prompt-Generierung

Der erste Schritt im Prompt Distillation besteht darin, dem LLM eine übergeordnete

Beschreibung oder die Intention der gewünschten Aufgabe oder des gewünschten

Outputs zu geben. Dies kann eine kurze Aussage oder eine Reihe von Schlüsselwörtern

sein, die das Wesentliche dessen erfassen, was der Prompt erreichen soll. Das LLM

Den Pfad eingrenzen 78

generiert dann auf Basis dieser Eingabe einen initialen Prompt und fügt dabei relevante

Anweisungen, Beispiele oder Kontext hinzu, die es als angemessen erachtet.

Lassen Sie uns Claude 3 Opus den folgenden Initial-Prompt geben:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude antwortet mit folgender Ausgabe:

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

Den Pfad eingrenzen 79

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Prompt-Verfeinerung

Sobald der erste Prompt erstellt wurde, überprüfen Sie ihn und bitten Sie dann das

LLM, zusätzlichen Kontext, Einschränkungen oder Rückmeldungen zu berücksichtigen.

Lassen Sie das LLM eine verfeinerte Version des Prompts generieren, die die

bereitgestellten Eingaben und das eigene Verständnis der Aufgabe berücksichtigt.

Dieser Verfeinerungsprozess kann iterativ wiederholt werden, wobei jede Iteration

den Prompt basierend auf der Zusammenarbeit zwischen Benutzer und LLM weiter

verfeinert.

Hier ist meine Verfeinerungsanfrage, die den vorherigen Destillationsprozess fortsetzt.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Und Claudes Antwort:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

Den Pfad eingrenzen 80

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Prompt-Komprimierung

Wie Sie vielleicht bemerkt haben, neigen LLMs dazu, weitschweifig zu sein, es sei

denn, man bittet sie darum, sich präzise auszudrücken. Der Prompt, an dem wir in den

vorherigen Abschnitten gearbeitet haben, ist ziemlich lang, also lassen Sie uns Claude

damit beauftragen, ihn zu kürzen:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude antwortet mit dem folgenden drastisch kürzeren Prompt:

Den Pfad eingrenzen 81

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Systemanweisung und Kontextintegration

Zusätzlich zur Verfeinerung des Prompts selbst kann das LLM auch passende

Systemanweisungen oder Kontextinformationen generieren, um die finale Ausgabe

zu steuern. Wenn Sie KI-Routinen für Prompt Engineering entwickeln, die in Ihren

Anwendungscode integriert werden sollen, werden Sie sich in dieser Phase der

Destillation fast sicher auf Ausgabebeschränkungen konzentrieren, können aber auch

an gewünschtem Ton, Stil, Format oder anderen relevanten Parametern arbeiten, die

die generierte Antwort beeinflussen.

Finale Prompt-Zusammenstellung

Der Höhepunkt des Prompt-Destillationsprozesses ist die Zusammenstellung des finalen

Prompts. Dies beinhaltet die Kombination des verfeinerten Prompts, der generierten

Systemanweisungen und des integrierten Kontexts zu einem zusammenhängenden und

umfassenden Code, der bereit für die Generierung der gewünschten Ausgabe ist.

Sie können in der Phase der finalen Prompt-Zusammenstellung erneut

mit Prompt-Komprimierung experimentieren, indem Sie das LLM bitten,

die Formulierung des Prompts auf die kürzestmögliche Token-Sequenz zu

reduzieren, während die wesentliche Funktionsweise erhalten bleibt. Es ist

definitiv ein Versuch wert, denn besonders bei Prompts, die im großen

Maßstab ausgeführt werden, können die Effizienzgewinne erhebliche

Einsparungen beim Token-Verbrauch bringen.

Den Pfad eingrenzen 82

Zentrale Vorteile

Durch die Nutzung der Wissens- und Generierungsfähigkeiten von LLMs

zur Verfeinerung Ihrer Prompts sind die resultierenden Prompts mit höherer

Wahrscheinlichkeit gut strukturiert, informativ und auf die spezifische Aufgabe

zugeschnitten. Der iterative Verfeinerungsprozess hilft sicherzustellen, dass die

Prompts qualitativ hochwertig sind und die gewünschte Absicht effektiv erfassen.

Weitere Vorteile sind:

Effizienz und Geschwindigkeit: Prompt-Destillation optimiert den Prompt-

Engineering-Prozess durch die Automatisierung bestimmter Aspekte der Prompt-

Erstellung und -Verfeinerung. Die kollaborative Natur der Technik ermöglicht eine

schnellere Konvergenz zu einem effektiven Prompt und reduziert den Zeit- und

Arbeitsaufwand für manuelles Prompt-Crafting.

Konsistenz und Skalierbarkeit: Die Verwendung von LLMs im Prompt-Engineering-

Prozess hilft dabei, die Konsistenz über verschiedene Prompts hinweg zu wahren, da

die LLMs Best Practices und Muster aus vorherigen erfolgreichen Prompts lernen und

anwenden können. Diese Konsistenz, kombiniert mit der Fähigkeit, Prompts im großen

Maßstab zu generieren, macht Prompt-Destillation zu einer wertvollen Technik für groß

angelegte KI-gestützte Anwendungen.

Projektidee: Werkzeuge auf Bibliotheksebene, die den Prozess der Prompt-

Versionierung und -Bewertung in Systemen vereinfachen, die automatisierte

Prompt-Destillationen als Teil ihres Anwendungscodes durchführen.

Um Prompt-Destillation zu implementieren, können Entwickler einen Workflow

oder eine Pipeline entwerfen, die LLMs in verschiedenen Phasen des Prompt-

Engineering-Prozesses integriert. Dies kann durch API-Aufrufe, spezielles Tooling oder

integrierte Entwicklungsumgebungen erreicht werden, die eine nahtlose Interaktion

zwischen Benutzern und LLMs während der Prompt-Erstellung ermöglichen. Die

Den Pfad eingrenzen 83

spezifischen Implementierungsdetails können je nach gewählter LLM-Plattform und

den Anforderungen der Anwendung variieren.

Was ist mit Fine-tuning?

In diesem Buch behandeln wir Prompt Engineering und RAG ausführlich, aber nicht

Fine-tuning. Der Hauptgrund für diese Entscheidung ist, dass meiner Meinung nach die

meisten Anwendungsentwickler kein Fine-tuning für ihre KI-Integrationsbedürfnisse

benötigen.

Prompt Engineering, das das sorgfältige Erstellen von Prompts mit Zero-Shot- bis

Few-Shot-Beispielen, Einschränkungen und Anweisungen umfasst, kann das Modell

effektiv dabei leiten, relevante und präzise Antworten für ein breites Spektrum von

Aufgaben zu generieren. Indem Sie klaren Kontext bereitstellen und den Weg durch

gut gestaltete Prompts eingrenzen, können Sie das umfangreiche Wissen großer

Sprachmodelle nutzen, ohne Fine-tuning zu benötigen.

Ähnlich bietet Retrieval-Augmented Generation (RAG) einen leistungsfähigen Ansatz

zur Integration von KI in Anwendungen. Durch das dynamische Abrufen relevanter

Informationen aus externen Wissensdatenbanken oder Dokumenten stellt RAG dem

Modell zum Zeitpunkt des Promptings fokussierten Kontext zur Verfügung. Dies

ermöglicht es dem Modell, Antworten zu generieren, die genauer, aktueller und

domänenspezifischer sind, ohne den zeit- und ressourcenintensiven Prozess des

Fine-tunings zu erfordern.

Während Fine-tuning für hochspezialisierte Domänen oder Aufgaben, die ein tiefes

Maß an Anpassung erfordern, vorteilhaft sein kann, geht es oft mit erheblichen

Rechenkosten, Datenanforderungen und Wartungsaufwand einher. Für die meisten

Anwendungsentwicklungsszenarien sollte die Kombination von effektivem Prompt

Engineering und RAG ausreichen, um die gewünschte KI-gesteuerte Funktionalität und

Benutzererfahrung zu erreichen.

Retrieval Augmented Generation
(RAG)
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Was ist Retrieval Augmented Generation?

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie funktioniert RAG?

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Warum RAG in Ihren Anwendungen einsetzen?

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Implementierung von RAG in Ihrer Anwendung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Retrieval Augmented Generation (RAG) 85

Vorbereitung von Wissensquellen (Chunking)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Propositions-Chunking

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Implementierungshinweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Qualitätsprüfung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile des propositionsbasierten Abrufs

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Praxisbeispiele für RAG

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Retrieval Augmented Generation (RAG) 86

Fallstudie: RAG in einer Steuererklärungsanwendung
ohne Embeddings

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Intelligente Abfrageoptimierung (IQO)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Neuordnung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

RAG-Bewertung (RAGAs)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Zuverlässigkeit

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Antwortrelevanz

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Retrieval Augmented Generation (RAG) 87

Kontextpräzision

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Kontextrelevanz

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Kontextabdeckung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Entitätsabdeckung im Kontext

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Answer Semantic Similarity (ANSS)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Answer Correctness

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Retrieval Augmented Generation (RAG) 88

Aspect Critique

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Herausforderungen und Zukunftsausblick

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Semantische Segmentierung: Verbesserung des Abrufs
durch kontextbewusste Segmentierung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Hierarchische Indexierung: Strukturierung von Daten für
verbesserten Abruf

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Self-RAG: Eine selbstreflexive Verbesserung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

HyDE: Hypothetical Document Embeddings

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Retrieval Augmented Generation (RAG) 89

Was ist kontrastives Lernen?

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Vielzahl von Arbeitern

Ich stelle mir meine KI-Komponenten gerne als kleine, fast menschliche virtuelle

“Arbeiter” vor, die sich nahtlos in meine Anwendungslogik integrieren lassen, um

bestimmte Aufgaben auszuführen oder komplexe Entscheidungen zu treffen. Die Idee

ist, die Fähigkeiten des LLM bewusst zu vermenschlichen, damit niemand zu euphorisch

wird und ihnen magische Eigenschaften zuschreibt, die sie nicht besitzen.

Anstatt sich ausschließlich auf komplizierte Algorithmen oder zeitaufwändige manuelle

Implementierungen zu verlassen, können Entwickler KI-Komponenten als intelligente,

engagierte, menschenähnliche Einheiten konzipieren, die bei Bedarf aufgerufen werden

können, um komplexe Probleme zu lösen und Lösungen auf Basis ihrer Schulung

und ihres Wissens anzubieten. Diese Einheiten lassen sich nicht ablenken und melden

sich auch nicht krank. Sie entscheiden sich nicht spontan dafür, Dinge anders zu

machen als ihnen aufgetragen wurde, und im Allgemeinen machen sie, wenn sie richtig

programmiert sind, auch keine Fehler.

Vielzahl von Arbeitern 91

Technisch gesehen besteht das Hauptprinzip dieses Ansatzes darin, komplexe Aufgaben

oder Entscheidungsprozesse in kleinere, besser handhabbare Einheiten zu zerlegen, die

von spezialisierten KI-Arbeitern bearbeitet werden können. Jeder Arbeiter ist darauf

ausgerichtet, sich auf einen bestimmten Aspekt des Problems zu konzentrieren und

bringt dabei seine einzigartigen Fähigkeiten und Kompetenzen ein. Durch die Verteilung

der Arbeitslast auf mehrere KI-Arbeiter kann die Anwendung eine höhere Effizienz,

Skalierbarkeit und Anpassungsfähigkeit erreichen.

Nehmen wir zum Beispiel eine Webanwendung, die eine Echtzeit-Moderation

von nutzergenerierten Inhalten erfordert. Die Implementierung eines umfassenden

Moderationssystems von Grund auf wäre eine gewaltige Aufgabe, die erheblichen

Entwicklungsaufwand und kontinuierliche Wartung erfordern würde. Durch den

Einsatz des Vielzahl-von-Arbeitern-Ansatzes können Entwickler jedoch KI-gestützte

Moderations-Arbeiter in die Anwendungslogik integrieren. Diese Arbeiter können

automatisch unangemessene Inhalte analysieren und markieren, wodurch Entwickler

sich auf andere kritische Aspekte der Anwendung konzentrieren können.

KI-Arbeiter als unabhängige

wiederverwendbare Komponenten

Ein wichtiger Aspekt des Vielzahl-von-Arbeitern-Ansatzes ist seine Modularität.

Befürworter der objektorientierten Programmierung sagen uns seit Jahrzehnten,

dass wir Objektinteraktionen als Nachrichten betrachten sollen. Nun, KI-Arbeiter

können als unabhängige, wiederverwendbare Komponenten konzipiert werden,

die über Nachrichten in einfacher Sprache “miteinander sprechen” können, fast

so, als wären sie tatsächlich kleine Menschen, die sich unterhalten. Dieser lose

gekoppelte Ansatz ermöglicht es der Anwendung, sich im Laufe der Zeit anzupassen

und weiterzuentwickeln, wenn neue KI-Technologien entstehen oder sich die

Anforderungen an die Geschäftslogik ändern.

Vielzahl von Arbeitern 92

In der Praxis hat sich die Notwendigkeit, klare Schnittstellen und

Kommunikationsprotokolle zwischen den Komponenten zu entwickeln, nicht geändert,

nur weil KI-Arbeiter beteiligt sind. Sie müssen weiterhin andere Faktoren wie Leistung,

Skalierbarkeit und Sicherheit berücksichtigen, aber jetzt gibt es auch völlig neue

“weiche Anforderungen” zu beachten. Zum Beispiel lehnen viele Nutzer es ab, dass

ihre privaten Daten zum Training neuer KI-Modelle verwendet werden. Haben Sie

überprüft, welches Maß an Privatsphäre der von Ihnen verwendete Modellanbieter

gewährleistet?

KI-Arbeiter als Microservices?

Wenn Sie über den Vielzahl-von-Arbeitern-Ansatz lesen, werden Sie möglicherweise

einige Ähnlichkeiten zur Microservices-Architektur bemerken. Beide betonen die

Zerlegung komplexer Systeme in kleinere, besser handhabbare und unabhängig

einsetzbare Einheiten. Genau wie Microservices darauf ausgelegt sind, lose gekoppelt

zu sein, sich auf spezifische Geschäftsfähigkeiten zu konzentrieren und über klar

definierte APIs zu kommunizieren, sind KI-Arbeiter darauf ausgelegt, modular zu

sein, sich auf ihre Aufgaben zu spezialisieren und über klare Schnittstellen und

Kommunikationsprotokolle miteinander zu interagieren.

Es gibt jedoch einige wichtige Unterschiede zu beachten. Während Microservices

typischerweise als separate Prozesse oder Dienste implementiert werden, die auf

verschiedenen Maschinen oder Containern laufen, können KI-Arbeiter je nach

Ihren spezifischen Anforderungen und Skalierungsbedürfnissen als eigenständige

Komponenten innerhalb einer einzelnen Anwendung oder als separate Dienste

implementiert werden. Darüber hinaus beinhaltet die Kommunikation zwischen KI-

Arbeitern oft den Austausch von reichhaltigen, auf natürlicher Sprache basierenden

Informationen, wie Prompts, Anweisungen und generierte Inhalte, anstelle der

strukturierteren Datenformate, die üblicherweise in Microservices verwendet

Vielzahl von Arbeitern 93

werden.

Trotz dieser Unterschiede bleiben die Prinzipien der Modularität, losen Kopplung

und klaren Kommunikationsschnittstellen für beide Muster zentral. Indem Sie

diese Prinzipien auf Ihre KI-Arbeiter-Architektur anwenden, können Sie flexible,

skalierbare und wartbare Systeme erstellen, die die Kraft der KI nutzen, um komplexe

Probleme zu lösen und Ihren Nutzern Mehrwert zu bieten.

Der Vielzahl-von-Arbeitern-Ansatz kann in verschiedenen Bereichen und

Anwendungen eingesetzt werden, wobei die Kraft der KI genutzt wird, um komplexe

Aufgaben zu bewältigen und intelligente Lösungen zu liefern. Lassen Sie uns einige

konkrete Beispiele betrachten, wie KI-Arbeiter in verschiedenen Kontexten eingesetzt

werden können.

Kontoverwaltung

Praktisch jede eigenständige Webanwendung kennt das Konzept eines Kontos (oder

Benutzers). In Olympia setzen wir einen AccountManager KI-Arbeiter ein, der darauf

programmiert ist, verschiedene Arten von Änderungsanfragen im Zusammenhang mit

Benutzerkonten zu bearbeiten.

Die Anweisung lautet wie folgt:

Vielzahl von Arbeitern 94

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Der ursprüngliche Zustand des Kontos, der von account.to_directive erzeugt wird,

ist einfach eine textliche Beschreibung des Kontos, einschließlich relevanter zugehöriger

Daten wie Benutzer, Abonnements usw.

Die Bandbreite der Funktionen, die dem AccountManager zur Verfügung stehen,

gibt ihm die Möglichkeit, das Abonnement des Benutzers zu bearbeiten, KI-Berater

und andere kostenpflichtige Erweiterungen hinzuzufügen und zu entfernen sowie

Benachrichtigungs-E-Mails an den Kontoinhaber zu senden. Zusätzlich zur finished-

Funktion kann er auch notify_human_administrator aufrufen, wenn während der

Verarbeitung ein Fehler auftritt oder bei einer Anfrage anderweitige Unterstützung

erforderlich ist.

Beachten Sie, dass der AccountManager bei Fragen die Möglichkeit hat, in Olympias

Wissensdatenbank zu suchen, wo er Anweisungen zum Umgang mit Grenzfällen und

anderen Situationen finden kann, bei denen er sich unsicher ist, wie er vorgehen soll.

E-Commerce-Anwendungen

Im Bereich des E-Commerce können KI-Mitarbeiter eine entscheidende Rolle bei der

Verbesserung der Benutzererfahrung und der Optimierung von Geschäftsprozessen

Vielzahl von Arbeitern 95

spielen. Hier sind einige Möglichkeiten, wie KI-Mitarbeiter eingesetzt werden können:

Produktempfehlungen

Eine der wirkungsvollsten Anwendungen von KI-Mitarbeitern im E-Commerce

ist die Generierung personalisierter Produktempfehlungen. Durch die Analyse des

Nutzerverhaltens, der Kaufhistorie und der Präferenzen können diese Mitarbeiter

Produkte vorschlagen, die auf die individuellen Interessen und Bedürfnisse jedes

einzelnen Nutzers zugeschnitten sind.

Der Schlüssel zu effektiven Produktempfehlungen liegt in der Kombination von

kollaborativem Filtern und inhaltsbasiertem Filtern. Kollaboratives Filtern betrachtet

das Verhalten ähnlicher Nutzer, um Muster zu erkennen und Empfehlungen basierend

darauf zu geben, was andere mit ähnlichen Vorlieben gekauft oder gemocht haben.

Inhaltsbasiertes Filtern hingegen konzentriert sich auf die Eigenschaften und Merkmale

der Produkte selbst und empfiehlt Artikel, die ähnliche Eigenschaften aufweisen wie

jene, für die ein Nutzer bereits Interesse gezeigt hat.

Hier ist ein vereinfachtes Beispiel, wie Sie einen Produktempfehlungs-Worker in Ruby

implementieren können, diesmal unter Verwendung eines “Railway Oriented (ROP)”

funktionalen Programmierstils:

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

https://fsharpforfunandprofit.com/rop/

Vielzahl von Arbeitern 96

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Der in dem Beispiel verwendete Stil der Ruby-funktionalen

Programmierung ist von F# und Rust beeinflusst. Mehr darüber können Sie

in der Erklärung der Technik meines Freundes Chad Wooley bei GitLab

nachlesen.

In diesem Beispiel nimmt der ProductRecommendationWorker einen Benutzer als

Eingabe und generiert personalisierte Produktempfehlungen, indem er ein Wertobjekt

durch eine Kette funktionaler Schritte weiterreicht. Lassen Sie uns jeden Schritt im

Detail betrachten:

1. ValidateUser.validate: Dieser Schritt stellt sicher, dass der Benutzer

gültig und für personalisierte Empfehlungen geeignet ist. Er prüft, ob der

Benutzer existiert, aktiv ist und die notwendigen Daten für die Generierung

von Empfehlungen verfügbar sind. Wenn die Validierung fehlschlägt, wird ein

Fehlerergebnis zurückgegeben und die Kette vorzeitig beendet.

2. AnalyzeCurrentSession.analyze: Wenn der Benutzer gültig ist, analysiert

dieser Schritt die aktuelle Browsing-Session des Benutzers, um kontextbezogene

Informationen zu sammeln. Er betrachtet die jüngsten Interaktionen des

Benutzers, wie angesehene Produkte, Suchanfragen und Warenkorb-Inhalte, um

dessen aktuelle Interessen und Absichten zu verstehen.

3. CollaborativeFilter.filter: Unter Verwendung des Verhaltens ähnlicher

Benutzer wendet dieser Schritt Techniken des kollaborativen Filterns an, um

Produkte zu identifizieren, die für den Benutzer von Interesse sein könnten. Er

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Vielzahl von Arbeitern 97

berücksichtigt Faktoren wie Kaufhistorie, Bewertungen und Benutzer-Artikel-

Interaktionen, um eine Reihe von Kandidaten-Empfehlungen zu generieren.

4. ContentBasedFilter.filter: Dieser Schritt verfeinert die Kandidaten-

Empfehlungen weiter durch Anwendung von inhaltsbasiertem Filtern. Er

vergleicht die Attribute und Eigenschaften der Kandidatenprodukte mit den

Präferenzen und historischen Daten des Benutzers, um die relevantesten Artikel

auszuwählen.

5. ProductSelector.select: Schließlich wählt dieser Schritt die Top-N-Produkte

aus den gefilterten Empfehlungen basierend auf vordefinierten Kriterien aus,

wie Relevanz-Score, Popularität oder anderen Geschäftsregeln. Die ausgewählten

Produkte werden dann als finale personalisierte Empfehlungen zurückgegeben.

Die Schönheit der Verwendung eines funktionalen Ruby-Programmierstils liegt hier

darin, dass wir diese Schritte auf klare und präziseWeise verketten können. Jeder Schritt

konzentriert sich auf eine spezifische Aufgabe und gibt ein Result-Objekt zurück, das

entweder ein Erfolg (ok) oder ein Fehler (err) sein kann. Wenn ein Schritt auf einen

Fehler stößt, wird die Kette vorzeitig beendet und der Fehler zum endgültigen Ergebnis

weitergeleitet.

In der case-Anweisung am Ende führen wir einen Musterabgleich auf dem endgültigen

Ergebnis durch. Ist das Ergebnis ein Fehler (ProductRecommendationError),

protokollieren wir den Fehler mit einem Tool wie Honeybadger für Überwachungs-

und Debugging-Zwecke. Ist das Ergebnis erfolgreich (ProductRecommendations),

senden wir ein :new_recommendations-Ereignis über die Wisper Pub/Sub-Bibliothek

und übergeben dabei den Benutzer und die generierten Empfehlungen.

Durch die Nutzung funktionaler Programmiertechniken können wir einen modularen

und wartbaren Produkt-Empfehlungs-Worker erstellen. Jeder Schritt ist in sich

geschlossen und kann einfach getestet, modifiziert oder ersetzt werden, ohne den

gesamten Ablauf zu beeinflussen. Die Verwendung von Musterabgleich und der

Result-Klasse hilft uns, Fehler elegant zu behandeln und stellt sicher, dass der Worker

Vielzahl von Arbeitern 98

schnell fehlschlägt, wenn ein Schritt auf ein Problem stößt.

Natürlich ist dies ein vereinfachtes Beispiel, und in einem realen Szenario müssten Sie

sich mit Ihrer E-Commerce-Plattform integrieren, Randfälle behandeln und sich sogar

mit der Implementierung der Empfehlungsalgorithmen befassen. Die Grundprinzipien

der Zerlegung des Problems in kleinere Schritte und die Nutzung funktionaler

Programmiertechniken bleiben jedoch dieselben.

Betrugserkennung

Hier ist ein vereinfachtes Beispiel, wie Sie einen Betrugserkennung-Worker im gleichen

Railway Oriented Programming (ROP)-Stil in Ruby implementieren können:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

Vielzahl von Arbeitern 99

Die FraudDetection-Klasse ist ein Wertobjekt, das den Betrugerkennungsstatus

für eine bestimmte Transaktion einkapselt. Sie bietet eine strukturierte Möglichkeit,

das Betrugsrisiko einer Transaktion basierend auf verschiedenen Risikofaktoren zu

analysieren und zu bewerten.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

Die FraudDetection-Klasse verfügt über folgende Attribute:

• transaction: Eine Referenz auf die Transaktion, die auf Betrug analysiert wird.

Vielzahl von Arbeitern 100

• risk_factors: Ein Array, das die mit der Transaktion verbundenen

Risikofaktoren speichert. Jeder Risikofaktor wird als Hash dargestellt, wobei der

Schlüssel die Beschreibung des Risikofaktors ist und der Wert die mit diesem

Risikofaktor verbundene Betrugswahrscheinlichkeit.

Die Methode add_risk_factor ermöglicht das Hinzufügen eines Risikofaktors zum

risk_factors-Array. Sie akzeptiert zwei Parameter: description, einen String,

der den Risikofaktor beschreibt, und probability, einen Float-Wert, der die mit

diesem Risikofaktor verbundene Betrugswahrscheinlichkeit darstellt. Wir verwenden

eine case..in-Bedingung für eine einfache Typüberprüfung.

Die Methode high_risk?, die am Ende der Kette überprüft wird, ist eine

Prädikatmethode, die die fraud_probability (berechnet durch die Summe aller

Risikofaktorwahrscheinlichkeiten) mit dem RISK_THRESHOLD vergleicht.

Die FraudDetection-Klasse bietet eine saubere und gekapselte Möglichkeit zur

Verwaltung der Betrugserkennung für eine Transaktion. Sie ermöglicht das Hinzufügen

mehrerer Risikofaktoren, jeweils mit eigener Beschreibung und Wahrscheinlichkeit,

und stellt eine Methode bereit, um festzustellen, ob die Transaktion basierend auf der

berechneten Betrugswahrscheinlichkeit als hochriskant eingestuft wird. Die Klasse

kann problemlos in ein größeres Betrugserkennungssystem integriert werden, bei

dem verschiedene Komponenten zusammenarbeiten, um das Risiko betrügerischer

Transaktionen zu bewerten und zu minimieren.

Da dies schließlich ein Buch über Programmierung mit KI ist, hier ein Beispiel für

die Implementierung der CheckCustomerHistory-Klasse, die KI-Verarbeitung unter

Verwendung des ChatCompletion-Moduls meiner Raix-Bibliothek nutzt:

https://github.com/OlympiaAI/raix-rails

Vielzahl von Arbeitern 101

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

Vielzahl von Arbeitern 102

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

In diesem Beispiel definiert CheckCustomerHistory eine INSTRUCTION-Konstante,

die der KI spezifische Anweisungen zur Analyse des Transaktionsverlaufs des Kunden

auf potenzielle Betrugshinweise mittels einer Systemanweisung bereitstellt.

Die self.check-Methode ist eine Klassenmethode, die eine neue Instanz von

CheckCustomerHistory mit dem fraud_detection-Objekt initialisiert und die

call-Methode aufruft, um die Kundenhistorieanalyse durchzuführen.

Innerhalb der call-Methode wird der Transaktionsverlauf des Kunden abgerufen und

in ein Transkript formatiert, das an das KI-Modell übergeben wird. Das KI-Modell

analysiert den Transaktionsverlauf basierend auf den bereitgestellten Anweisungen und

gibt eine Zusammenfassung seiner Erkenntnisse zurück.

Die Erkenntnisse werden dem fraud_detection-Objekt hinzugefügt, und das

aktualisierte fraud_detection-Objekt wird als erfolgreiches Result zurückgegeben.

Durch die Nutzung des ChatCompletion-Moduls kann die CheckCustomerHistory-

Klasse die Leistungsfähigkeit der KI nutzen, um den Transaktionsverlauf des Kunden

zu analysieren und potenzielle Betrugshinweise zu identifizieren. Dies ermöglicht

sophistiziertere und adaptive Betrugserkennung, da das KI-Modell neue Muster und

Anomalien im Laufe der Zeit lernen und sich anpassen kann.

Der aktualisierte FraudDetectionWorker und die CheckCustomerHistory-Klasse

zeigen, wie KI-Worker nahtlos integriert werden können und den Betrugserkennung-

Prozess durch intelligente Analyse- und Entscheidungsfähigkeiten verbessern.

Vielzahl von Arbeitern 103

Kundensentimentanalyse

Hier ist ein weiteres ähnliches Beispiel dafür, wie Sie einen Worker zur

Kundensentimentanalyse implementieren können. Diesmal mit weniger Erklärungen,

da Sie allmählich verstehen sollten, wie diese Art der Programmierung funktioniert:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

In diesem Beispiel umfassen die Schritte des CustomerSentimentAnalysisWorker

die Vorverarbeitung des Feedbacks (z.B. Entfernung von Störungen, Tokenisierung), die

Durchführung einer Stimmungsanalyse zur Bestimmung der allgemeinen Stimmung

(positiv, negativ oder neutral), die Extraktion von Schlüsselphrasen und Themen,

die Identifizierung von Trends und Mustern sowie die Generierung umsetzbarer

Erkenntnisse auf Basis der Analyse.

Vielzahl von Arbeitern 104

Anwendungen im Gesundheitswesen

ImGesundheitsbereich können KI-Worker medizinisches Fachpersonal und Forscher bei

verschiedenen Aufgaben unterstützen, was zu verbesserten Patientenergebnissen und

beschleunigten medizinischen Entdeckungen führt. Einige Beispiele sind:

Patientenaufnahme

KI-Worker können den Patientenaufnahmeprozess durch Automatisierung

verschiedener Aufgaben und intelligente Unterstützung optimieren.

Terminplanung: KI-Worker können die Terminplanung übernehmen, indem sie

Patientenpräferenzen, Verfügbarkeit und die Dringlichkeit ihrer medizinischen

Bedürfnisse berücksichtigen. Sie können über Konversationsschnittstellen mit Patienten

interagieren, sie durch den Planungsprozess führen und die am besten geeigneten

Terminslots basierend auf den Anforderungen des Patienten und der Verfügbarkeit des

Gesundheitsdienstleisters finden.

Erfassung der Krankengeschichte: Während der Patientenaufnahme können KI-

Worker bei der Erfassung und Dokumentation der Krankengeschichte des Patienten

unterstützen. Sie können interaktive Dialoge mit Patienten führen und relevante Fragen

zu früheren Erkrankungen, Medikamenten, Allergien und Familienvorgeschichte

stellen. Die KI-Worker können Techniken zur Verarbeitung natürlicher Sprache

nutzen, um die gesammelten Informationen zu interpretieren und zu strukturieren und

sicherzustellen, dass sie korrekt in der elektronischen Patientenakte erfasst werden.

Symptombeurteilung und Stratifizierung: KI-Worker können erste

Symptombeurteilungen durchführen, indem sie Patienten nach ihren aktuellen

Symptomen, deren Dauer, Schweregrad und damit verbundenen Faktoren befragen.

Durch die Nutzung medizinischer Wissensdatenbanken und maschineller Lernmodelle

können diese Worker die bereitgestellten Informationen analysieren und vorläufige

Vielzahl von Arbeitern 105

Differentialdiagnosen erstellen oder geeignete nächste Schritte empfehlen, wie etwa

die Vereinbarung einer Konsultation mit einem Gesundheitsdienstleister oder die

Empfehlung von Selbstpflegemaßnahmen.

Versicherungsüberprüfung: KI-Worker können bei der Versicherungsüberprüfung

während der Patientenaufnahme unterstützen. Sie können Versicherungsdaten

der Patienten sammeln, über APIs oder Webservices mit Versicherungsanbietern

kommunizieren und die Anspruchsberechtigung und Leistungen überprüfen. Diese

Automatisierung hilft dabei, den Versicherungsüberprüfungsprozess zu optimieren,

den Verwaltungsaufwand zu reduzieren und eine genaue Informationserfassung

sicherzustellen.

Patientenaufklärung und Anweisungen: KI-Worker können Patienten relevantes

Aufklärungsmaterial und Anweisungen basierend auf ihren spezifischen Erkrankungen

oder bevorstehenden Eingriffen zur Verfügung stellen. Sie können personalisierte

Inhalte bereitstellen, häufige Fragen beantworten und Anleitungen zu Vorbereitungen

vor dem Termin, Medikamentenanweisungen oder Nachsorge geben. Dies hilft,

Patienten während ihrer gesamten Gesundheitsreise informiert und engagiert zu

halten.

Durch den Einsatz von KI-Workern bei der Patientenaufnahme können

Gesundheitsorganisationen die Effizienz steigern, Wartezeiten reduzieren und

das gesamte Patientenerlebnis verbessern. Diese Worker können Routineaufgaben

übernehmen, genaue Informationen sammeln und personalisierte Unterstützung

bieten, sodass sich das Gesundheitspersonal auf die Bereitstellung hochwertiger

Patientenversorgung konzentrieren kann.

Patientenrisikobewertung

KI-Worker können eine entscheidende Rolle bei der Bewertung von Patientenrisiken

spielen, indem sie verschiedene Datenquellen analysieren und fortgeschrittene

Analysetechniken anwenden.

Vielzahl von Arbeitern 106

Datenintegration: KI-Worker können Patientendaten aus verschiedenen Quellen

sammeln und auswerten, wie etwa elektronische Patientenakten, medizinische

Bildgebung, Laborergebnisse, tragbare Geräte und soziale Gesundheitsdeterminanten.

Durch die Zusammenführung dieser Informationen zu einem umfassenden

Patientenprofil können KI-Worker einen ganzheitlichen Überblick über den

Gesundheitszustand und die Risikofaktoren des Patienten bieten.

Risikostratifizierung: KI-Worker können prädiktive Modelle verwenden, um

Patienten basierend auf ihren individuellen Merkmalen und Gesundheitsdaten in

verschiedene Risikokategorien einzuteilen. Diese Risikostratifizierung ermöglicht

es Gesundheitsdienstleistern, Patienten zu priorisieren, die eine unmittelbarere

Aufmerksamkeit oder Intervention benötigen. Beispielsweise können Patienten, die

als Hochrisikopatienten für eine bestimmte Erkrankung identifiziert wurden, für

eine engere Überwachung, präventive Maßnahmen oder frühzeitige Intervention

gekennzeichnet werden.

Personalisierte Risikoprofile: KI-Worker können für jeden Patienten personalisierte

Risikoprofile erstellen, die die spezifischen Faktoren hervorheben, die zu

ihren Risikobewertungen beitragen. Diese Profile können Einblicke in den

Lebensstil des Patienten, genetische Veranlagungen, Umweltfaktoren und soziale

Gesundheitsdeterminanten enthalten. Durch die Bereitstellung einer detaillierten

Aufschlüsselung der Risikofaktoren können KI-Worker Gesundheitsdienstleistern

helfen, Präventionsstrategien und Behandlungspläne auf die individuellen

Patientenbedürfnisse abzustimmen.

Kontinuierliche Risikoüberwachung: KI-Worker können Patientendaten

kontinuierlich überwachen und Risikobewertungen in Echtzeit aktualisieren. Wenn

neue Informationen verfügbar werden, wie etwa Änderungen der Vitalzeichen,

Laborergebnisse oder Medikamentenadhärenz, können KI-Worker Risikobewertungen

neu berechnen und Gesundheitsdienstleister über signifikante Änderungen informieren.

Diese proaktive Überwachung ermöglicht zeitnahe Interventionen und Anpassungen

Vielzahl von Arbeitern 107

der Patientenversorgungspläne.

Klinische Entscheidungsunterstützung:KI-Worker können Risikobewertungsergebnisse

in klinische Entscheidungsunterstützungssysteme integrieren undGesundheitsdienstleistern

evidenzbasierte Empfehlungen und Warnungen bereitstellen. Wenn beispielsweise

der Risikowert eines Patienten für eine bestimmte Erkrankung einen bestimmten

Schwellenwert überschreitet, kann der KI-Worker den Gesundheitsdienstleister

auffordern, bestimmte diagnostische Tests, präventive Maßnahmen oder

Behandlungsoptionen basierend auf klinischen Leitlinien und bewährten Praktiken in

Betracht zu ziehen.

Diese Worker können riesige Mengen an Patientendaten verarbeiten, anspruchsvolle

Analysen durchführen und verwertbare Erkenntnisse zur Unterstützung klinischer

Entscheidungsfindung generieren. Dies führt letztendlich zu verbesserten

Patientenergebnissen, reduzierten Gesundheitskosten und einem verbesserten

Management der Bevölkerungsgesundheit.

Vielzahl von Arbeitern 108

KI-Worker als Prozess-Manager

Im Kontext KI-gesteuerter Anwendungen kann ein Worker als Process Manager

konzipiert werden, wie im Buch “Enterprise Integration Patterns” von Gregor Hohpe

beschrieben. Ein Process Manager ist eine zentrale Komponente, die den Status

eines Prozesses verwaltet und basierend auf Zwischenergebnissen die nächsten

Verarbeitungsschritte bestimmt.

Wenn ein KI-Worker als Process Manager agiert, empfängt er eine eingehende

Nachricht, die den Prozess initialisiert, bekannt als Triggernachricht . Der KI-

Worker verwaltet dann den Status der Prozessausführung (als Gesprächsprotokoll)

und bearbeitet die Nachricht durch eine Reihe von Verarbeitungsschritten, die als

Werkzeugfunktionen implementiert sind. Diese können sequentiell oder parallel

ausgeführt werden und werden nach seinem Ermessen aufgerufen.

Vielzahl von Arbeitern 109

Wenn Sie eine KI-Modellklasse wie GPT-4 verwenden, die weiß, wie

man Funktionen parallel ausführt, dann kann Ihr Worker mehrere Schritte

gleichzeitig ausführen. Zugegeben, ich habe das selbst noch nicht versucht,

und mein Bauchgefühl sagt mir, dass die Ergebnisse variieren können.

Nach jedem einzelnen Verarbeitungsschritt wird die Kontrolle zurück an den KI-

Worker übergeben, wodurch er basierend auf dem aktuellen Status und den erhaltenen

Ergebnissen die nächsten Verarbeitungsschritte bestimmen kann.

Speichern Sie Ihre Triggernachrichten

Meiner Erfahrung nach ist es klug, Ihre Triggernachricht als datenbankgestütztes Objekt

zu implementieren. Auf diese Weise wird jede Prozessinstanz durch einen eindeutigen

Primärschlüssel identifiziert und Sie haben einen Platz, um den mit der Ausführung

verbundenen Status zu speichern, einschließlich des KI-Gesprächsprotokolls.

Hier ist beispielsweise eine vereinfachte Version von Olympias AccountChange-

Modelklasse, die eine Anfrage zur Änderung eines Benutzerkontos darstellt.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

Vielzahl von Arbeitern 110

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

Die AccountChange-Klasse dient als Trigger-Nachricht, die einen Prozess zur

Behandlung der Kontoänderungsanfrage initiiert. Beachten Sie, wie sie an

Olympias Wisper-basiertes Pub/Sub-Subsystem gesendet wird, nachdem die

Erstellungstransaktion abgeschlossen ist.

Die Speicherung der Trigger-Nachricht in der Datenbank auf diese Weise bietet

eine dauerhafte Aufzeichnung jeder Kontoänderungsanfrage. Jeder Instanz der

AccountChange-Klasse wird ein eindeutiger Primärschlüssel zugewiesen, was

eine einfache Identifizierung und Verfolgung einzelner Anfragen ermöglicht. Dies

ist besonders nützlich für Audit-Logging-Zwecke, da das System dadurch einen

historischen Überblick über alle Kontoänderungen behalten kann, einschließlich des

Zeitpunkts der Anfrage, der gewünschten Änderungen und des aktuellen Status jeder

Anfrage.

Im gegebenen Beispiel enthält die AccountChange-Klasse Felder wie description zur

https://github.com/krisleech/wisper

Vielzahl von Arbeitern 111

Erfassung der Details der angeforderten Änderung, state zur Darstellung des aktuellen

Status der Anfrage (z.B. angefordert, abgeschlossen, benötigt_manuelle_überprüfung)

und transcript zur Speicherung des KI-Gesprächsprotokolls im Zusammenhang mit

der Anfrage. Das description-Feld ist der eigentliche Prompt, der verwendet wird,

um die erste Chat-Completion mit der KI zu initiieren. Die Speicherung dieser Daten

bietet wertvollen Kontext und ermöglicht eine bessere Nachverfolgung und Analyse des

Kontoänderungsprozesses.

Die Speicherung von Trigger-Nachrichten in der Datenbank ermöglicht eine robuste

Fehlerbehandlung und Wiederherstellung. Wenn während der Verarbeitung einer

Kontoänderungsanfrage ein Fehler auftritt, markiert das System die Anfrage als

fehlgeschlagen und überführt sie in einen Status, der menschliches Eingreifen erfordert.

Dies stellt sicher, dass keine Anfrage verloren geht oder vergessen wird und alle

Probleme ordnungsgemäß behandelt und gelöst werden können.

Der KI-Worker als ProcessManager bietet einen zentralen Kontrollpunkt und ermöglicht

leistungsfähige Prozessberichts- und Debugging-Funktionen. Es ist jedoch wichtig

zu beachten, dass die Verwendung eines KI-Workers als Process Manager für jedes

Workflow-Szenario in Ihrer Anwendung möglicherweise übertrieben sein könnte.

Integration von KI-Workern in Ihre

Anwendungsarchitektur

Bei der Integration von KI-Workern in Ihre Anwendungsarchitektur müssen

verschiedene technische Aspekte berücksichtigt werden, um eine reibungslose

Integration und effektive Kommunikation zwischen den KI-Workern und anderen

Anwendungskomponenten zu gewährleisten. Dieser Abschnitt behandelt wichtige

Aspekte der Gestaltung dieser Schnittstellen, der Handhabung des Datenflusses und

der Verwaltung des Lebenszyklus von KI-Workern.

Vielzahl von Arbeitern 112

Gestaltung klarer Schnittstellen und
Kommunikationsprotokolle

Umeine nahtlose Integration zwischenKI-Workern und anderenAnwendungskomponenten

zu ermöglichen, ist es entscheidend, klare Schnittstellen und Kommunikationsprotokolle

zu definieren. Berücksichtigen Sie die folgenden Ansätze:

API-basierte Integration: Stellen Sie die Funktionalität von KI-Workern über klar

definierte APIs bereit, wie beispielsweise RESTful-Endpunkte oder GraphQL-Schemas.

Dies ermöglicht anderen Komponenten die Interaktion mit den KI-Workern über

Standard-HTTP-Anfragen und -Antworten. Die API-basierte Integration bietet einen

klaren Vertrag zwischen den KI-Workern und den verbrauchenden Komponenten, was

die Entwicklung, das Testen und die Wartung der Integrationspunkte erleichtert.

Nachrichtenbasierte Kommunikation: Implementieren Sie nachrichtenbasierte

Kommunikationsmuster, wie Nachrichtenwarteschlangen oder Publish-Subscribe-

Systeme, um eine asynchrone Interaktion zwischen KI-Workern und anderen

Komponenten zu ermöglichen. Dieser Ansatz entkoppelt die KI-Worker vom Rest

der Anwendung und ermöglicht eine bessere Skalierbarkeit, Fehlertoleranz und lose

Kopplung. Nachrichtenbasierte Kommunikation ist besonders nützlich, wenn die

Verarbeitung durch KI-Worker zeitaufwändig oder ressourcenintensiv ist, da sie

anderen Teilen der Anwendung ermöglicht, ohne Wartezeit auf den Abschluss der

KI-Worker-Aufgaben weiterzuarbeiten.

Ereignisgesteuerte Architektur: Gestalten Sie Ihr System um Ereignisse und Trigger

herum, die KI-Worker aktivieren, wenn bestimmte Bedingungen erfüllt sind. KI-

Worker können relevante Ereignisse abonnieren und entsprechend reagieren, indem

sie ihre zugewiesenen Aufgaben ausführen, wenn die Ereignisse eintreten. Eine

ereignisgesteuerte Architektur ermöglicht Echtzeit-Verarbeitung und erlaubt es,

KI-Worker bei Bedarf aufzurufen, wodurch unnötiger Ressourcenverbrauch reduziert

wird. Dieser Ansatz eignet sich gut für Szenarien, in denen KI-Worker auf bestimmte

Aktionen oder Änderungen im Anwendungszustand reagieren müssen.

Vielzahl von Arbeitern 113

Umgang mit Datenfluss und Synchronisation

Bei der Integration von KI-Workern in Ihre Anwendung ist es entscheidend, einen

reibungslosen Datenfluss sicherzustellen und die Datenkonsistenz zwischen den

KI-Workern und anderen Komponenten aufrechtzuerhalten. Berücksichtigen Sie die

folgenden Aspekte:

Datenvorbereitung: Bevor Daten in KI-Worker eingespeist werden, müssen

möglicherweise verschiedene Datenvorbereitungsaufgaben durchgeführt werden,

wie das Bereinigen, Formatieren und/oder Transformieren der Eingabedaten. Sie

möchten nicht nur sicherstellen, dass die KI-Worker effektiv arbeiten können, sondern

auch, dass Sie keine Token für Informationen verschwenden, die der Worker bestenfalls

als nutzlos, schlimmstenfalls als störend empfinden könnte. Die Datenvorbereitung

kann Aufgaben wie das Entfernen von Rauschen, den Umgang mit fehlenden Werten

oder die Konvertierung von Datentypen umfassen.

Datenpersistenz: Wie werden Sie die Daten speichern und persistent halten, die

in KI-Worker ein- und ausfließen? Berücksichtigen Sie Faktoren wie Datenvolumen,

Abfragemuster und Skalierbarkeit. Müssen Sie das Transkript der KI als Reflexion ihres

“Gedankenprozesses” für Audit- oder Debugging-Zwecke speichern, oder reicht es aus,

nur eine Aufzeichnung der Ergebnisse zu haben?

Datenabruf : Das Abrufen der vonWorkern benötigten Daten kannDatenbankabfragen,

Lesen aus Dateien oder Zugriff auf externe APIs umfassen. Berücksichtigen Sie die

Latenzzeit und wie KI-Worker Zugriff auf die aktuellsten Daten erhalten. Benötigen

sie vollen Zugriff auf Ihre Datenbank oder sollten Sie den Umfang ihres Zugriffs eng

nach ihren Aufgaben definieren? Was ist mit der Skalierung? Erwägen Sie Caching-

Mechanismen zur Verbesserung der Leistung und Reduzierung der Last auf die zugrunde

liegenden Datenquellen.

Datensynchronisation: Wenn mehrere Komponenten, einschließlich KI-Worker,

auf gemeinsame Daten zugreifen und diese ändern, ist es wichtig, geeignete

Vielzahl von Arbeitern 114

Synchronisationsmechanismen zu implementieren, um die Datenkonsistenz zu

gewährleisten. Datenbank-Sperrmechanismen, wie optimistisches oder pessimistisches

Sperren, können dabei helfen, Konflikte zu vermeiden und die Datenintegrität

sicherzustellen. Implementieren Sie Transaktionsmanagement-Techniken, um

zusammenhängende Datenoperationen zu gruppieren und die ACID-Eigenschaften

(Atomarität, Konsistenz, Isolation und Dauerhaftigkeit) zu gewährleisten.

Fehlerbehandlung und Wiederherstellung: Implementieren Sie robuste

Fehlerbehandlungs- und Wiederherstellungsmechanismen, um mit datenbezogenen

Problemen umzugehen, die während des Datenflussprozesses auftreten

können. Behandeln Sie Ausnahmen elegant und stellen Sie aussagekräftige

Fehlermeldungen zur Unterstützung der Fehlerbehebung bereit. Implementieren

Sie Wiederholungsmechanismen und Fallback-Strategien, um temporäre Ausfälle

oder Netzwerkunterbrechungen zu behandeln. Definieren Sie klare Verfahren für die

Datenwiederherstellung im Fall von Datenbeschädigung oder -verlust.

Durch sorgfältiges Design und Implementierung von Datenfluss- und

Synchronisationsmechanismen können Sie sicherstellen, dass Ihre KI-Worker Zugriff

auf genaue, konsistente und aktuelle Daten haben. Dies ermöglicht ihnen, ihre Aufgaben

effektiv auszuführen und zuverlässige Ergebnisse zu liefern.

Verwaltung des Lebenszyklus von KI-Workern

Entwickeln Sie einen standardisierten Prozess für die Initialisierung und Konfiguration

von KI-Workern. Ich bevorzuge Frameworks, die standardisieren, wie Sie Einstellungen

wie Modellnamen, Systemanweisungen und Funktionsdefinitionen festlegen. Stellen Sie

sicher, dass der Initialisierungsprozess automatisiert und reproduzierbar ist, um die

Bereitstellung und Skalierung zu erleichtern.

Implementieren Sie umfassende Überwachungs- und Protokollierungsmechanismen,

um den Zustand und die Leistung von KI-Workern zu verfolgen. Erfassen Sie Metriken

wie Ressourcennutzung, Verarbeitungszeit, Fehlerraten und Durchsatz. Verwenden

Vielzahl von Arbeitern 115

Sie zentralisierte Protokollierungssysteme wie den ELK-Stack (Elasticsearch, Logstash,

Kibana), um Protokolle von mehreren KI-Workern zu aggregieren und zu analysieren.

Bauen Sie Fehlertoleranz und Resilienz in die KI-Worker-Architektur ein.

Implementieren Sie Fehlerbehandlungs- und Wiederherstellungsmechanismen,

um Ausfälle oder Ausnahmen elegant zu behandeln. Large Language Models sind

noch Bleeding-Edge-Technologie; Anbieter fallen oft zu unerwarteten Zeiten aus.

Verwenden Sie Wiederholungsmechanismen und Schutzschalter, um Kaskadenausfälle

zu verhindern.

Komponierbarkeit und Orchestrierung von

KI-Workern

Einer der wichtigsten Vorteile der KI-Worker-Architektur ist ihre Komponierbarkeit, die

es ermöglicht, mehrere KI-Worker zu kombinieren und zu orchestrieren, um komplexe

Probleme zu lösen. Indem Sie eine größere Aufgabe in kleinere, besser handhabbare

Teilaufgaben aufteilen, die jeweils von einem spezialisierten KI-Worker bearbeitet

werden, können Sie leistungsfähige und flexible Systeme erstellen. In diesem Abschnitt

werden wir verschiedene Ansätze zur Komposition und Orchestrierung “einer Vielzahl”

von KI-Workern untersuchen.

Verkettung von KI-Workern für mehrstufige Workflows

In vielen Szenarien kann eine komplexe Aufgabe in eine Reihe sequentieller Schritte

zerlegt werden, wobei die Ausgabe eines KI-Workers zur Eingabe für den nächsten

wird. Diese Verkettung von KI-Workern erstellt einen mehrstufigenWorkflow oder eine

Pipeline. Jeder KI-Worker in der Kette konzentriert sich auf eine spezifische Teilaufgabe,

und die endgültige Ausgabe ist das Ergebnis der kombinierten Bemühungen aller

Worker.

Vielzahl von Arbeitern 116

Betrachten wir ein Beispiel im Kontext einer Ruby on Rails-Anwendung zur

Verarbeitung von nutzergenerierten Inhalten. Der Workflow umfasst die folgenden

Schritte, die zugegebenermaßen in realen Anwendungsfällen wahrscheinlich jeweils zu

einfach sind, um eine solche Zerlegung zu rechtfertigen, aber sie machen das Beispiel

leichter verständlich:

1. Textbereinigung: Ein KI-Worker, der für das Entfernen von HTML-Tags, die

Konvertierung in Kleinbuchstaben und die Handhabung der Unicode-Normalisierung

zuständig ist.

2. Spracherkennung: Ein KI-Worker, der die Sprache des bereinigten Textes

identifiziert.

3. Stimmungsanalyse: Ein KI-Worker, der die Stimmung (positiv, negativ oder neutral)

des Textes basierend auf der erkannten Sprache bestimmt.

4. Inhaltskategorisierung: Ein KI-Worker, der den Text mithilfe von Techniken der

natürlichen Sprachverarbeitung in vordefinierte Kategorien einordnet.

Hier ist ein sehr vereinfachtes Beispiel, wie Sie diese KI-Worker mit Ruby verketten

können:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

In diesem Beispiel initialisiert die ContentProcessor-Klasse mit dem Rohtext und

Vielzahl von Arbeitern 117

verkettet die AI-Worker in der process-Methode miteinander. Jeder AI-Worker führt

seine spezifische Aufgabe aus und übergibt das Ergebnis an den nächsten Worker in

der Kette. Die endgültige Ausgabe ist ein Hash, der den bereinigten Text, die erkannte

Sprache, die Stimmung und die Inhaltskategorie enthält.

Parallelverarbeitung für unabhängige AI-Worker

Im vorherigen Beispiel sind die AI-Worker sequentiell verkettet, wobei jederWorker den

Text verarbeitet und das Ergebnis an den nächsten Worker weitergibt. Wenn Sie jedoch

mehrere AI-Worker haben, die unabhängig voneinander mit derselben Eingabe arbeiten

können, können Sie den Arbeitsablauf optimieren, indem Sie sie parallel verarbeiten.

Im gegebenen Szenario können nach der Textbereinigung durch den

TextCleanupWorker dieWorker LanguageDetectionWorker, SentimentAnalysisWorker

und CategorizationWorker alle den bereinigten Text unabhängig voneinander

verarbeiten. Durch die parallele Ausführung dieser Worker können Sie potenziell die

gesamte Verarbeitungszeit reduzieren und die Effizienz Ihres Arbeitsablaufs verbessern.

Um Parallelverarbeitung in Ruby zu erreichen, können Sie Nebenläufigkeitstechniken

wie Threads oder asynchrone Programmierung nutzen. Hier ist ein Beispiel, wie Sie die

ContentProcessor-Klasse modifizieren können, um die letzten drei Worker parallel

mithilfe von Threads zu verarbeiten:

Vielzahl von Arbeitern 118

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

In dieser optimierten Version verwenden wir die concurrent-ruby-Bibliothek, um

Concurrent::Future-Objekte für jeden der unabhängigen KI-Worker zu erstellen.

Ein Future repräsentiert eine Berechnung, die asynchron in einem separaten Thread

ausgeführt wird.

Nach dem Text-Bereinigungsschritt erstellen wir drei Future-Objekte:

language_future, sentiment_future und category_future. Jedes

Future führt seinen entsprechenden KI-Worker (LanguageDetectionWorker,

SentimentAnalysisWorker und CategorizationWorker) in einem separaten

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Vielzahl von Arbeitern 119

Thread aus und übergibt dabei den cleaned_text als Eingabe.

Durch den Aufruf der value-Methode auf jedem Futurewarten wir auf den Abschluss

der Berechnung und erhalten das Ergebnis. Die value-Methode blockiert, bis das

Ergebnis verfügbar ist, und stellt damit sicher, dass alle parallelen Worker ihre

Verarbeitung abgeschlossen haben, bevor fortgefahren wird.

Schließlich erstellen wir den Ausgabe-Hash mit dem bereinigten Text und den

Ergebnissen der parallelen Worker, genau wie im ursprünglichen Beispiel.

Durch die parallele Verarbeitung der unabhängigen KI-Worker können Sie die

gesamte Verarbeitungszeit im Vergleich zur sequenziellen Ausführung möglicherweise

reduzieren. Diese Optimierung ist besonders vorteilhaft bei zeitaufwändigen Aufgaben

oder bei der Verarbeitung großer Datenmengen.

Es ist jedoch wichtig zu beachten, dass die tatsächlichen Leistungsgewinne von

verschiedenen Faktoren abhängen, wie der Komplexität jedes Workers, den verfügbaren

Systemressourcen und dem Overhead des Thread-Managements. Es ist immer eine

gute Praxis, Ihr Code zu benchmarken und zu profilieren, um den optimalen Grad der

Parallelisierung für Ihren spezifischen Anwendungsfall zu ermitteln.

Achten Sie außerdem bei der Implementierung der parallelen Verarbeitung auf

gemeinsam genutzte Ressourcen oder Abhängigkeiten zwischen den Workern. Stellen

Sie sicher, dass die Worker unabhängig voneinander arbeiten können, ohne Konflikte

oder Race Conditions zu verursachen. Bei Abhängigkeiten oder gemeinsam genutzten

Ressourcen müssen Sie möglicherweise geeignete Synchronisationsmechanismen

implementieren, um die Datenintegrität zu gewährleisten und Probleme wie Deadlocks

oder inkonsistente Ergebnisse zu vermeiden.

Rubys Global Interpreter Lock und asynchrone
Verarbeitung

Vielzahl von Arbeitern 120

Es ist wichtig, die Auswirkungen von Rubys Global Interpreter Lock (GIL) zu

verstehen, wenn man asynchrone Thread-basierte Verarbeitung in Ruby in Betracht

zieht.

Der GIL ist ein Mechanismus im Ruby-Interpreter, der sicherstellt, dass nur ein

Thread gleichzeitig Ruby-Code ausführen kann, selbst auf Mehrkern-Prozessoren.

Das bedeutet, dass zwar mehrere Threads innerhalb eines Ruby-Prozesses erstellt und

verwaltet werden können, aber nur ein Thread zu einem bestimmten Zeitpunkt aktiv

Ruby-Code ausführen kann.

Der GIL wurde entwickelt, um die Implementierung des Ruby-Interpreters

zu vereinfachen und Threadsicherheit für Rubys interne Datenstrukturen zu

gewährleisten. Allerdings begrenzt er auch das Potenzial für echte parallele

Ausführung von Ruby-Code.

Wenn Sie Threads in Ruby verwenden, wie zum Beispiel mit der concurrent-ruby-

Bibliothek oder der eingebauten Thread-Klasse, unterliegen die Threads den

Einschränkungen des GIL. Der GIL erlaubt jedem Thread, Ruby-Code für eine

kurze Zeitscheibe auszuführen, bevor er zu einem anderen Thread wechselt, was die

Illusion einer gleichzeitigen Ausführung erzeugt.

Aufgrund des GIL bleibt die tatsächliche Ausführung von Ruby-Code jedoch

sequenziell. Während ein Thread Ruby-Code ausführt, sind andere Threads im

Wesentlichen pausiert und warten darauf, dass sie an der Reihe sind, den GIL zu

erhalten und ausgeführt zu werden.

Dies bedeutet, dass Thread-basierte asynchrone Verarbeitung in Ruby am effektivsten

für I/O-gebundene Aufgaben ist, wie das Warten auf externe API-Antworten (wie

von extern gehosteten Large Language Models) oder das Ausführen von Datei-

I/O-Operationen. Wenn ein Thread auf eine I/O-Operation trifft, kann er den GIL

freigeben und anderen Threads die Ausführung ermöglichen, während er auf den

Abschluss der I/O wartet.

Vielzahl von Arbeitern 121

Andererseits kann der GIL bei CPU-gebundenen Aufgaben, wie intensiven

Berechnungen oder lang laufender KI-Worker-Verarbeitung, die potenziellen

Leistungsgewinne der Thread-basierten Parallelisierung einschränken. Da nur ein

Thread gleichzeitig Ruby-Code ausführen kann, wird die Gesamtausführungszeit

möglicherweise nicht signifikant im Vergleich zur sequenziellen Verarbeitung

reduziert.

Um eine echte parallele Ausführung für CPU-gebundene Aufgaben in Ruby zu

erreichen, müssen Sie möglicherweise alternative Ansätze in Betracht ziehen, wie

zum Beispiel:

• Verwendung von prozessbasierter Parallelität mit mehreren Ruby-Prozessen,

die jeweils auf einem separaten CPU-Kern laufen.

• Nutzung externer Bibliotheken oder Frameworks, die native Erweiterungen

oder Schnittstellen zu Sprachen ohne GIL bereitstellen, wie C oder Rust.,

• Einsatz von verteilten Computing-Frameworks oder Message Queues, um

Aufgaben über mehrere Maschinen oder Prozesse zu verteilen.

Es ist entscheidend, die Art Ihrer Aufgaben und die durch den GIL auferlegten

Einschränkungen zu berücksichtigen, wenn Sie asynchrone Verarbeitung in

Ruby entwerfen und implementieren. Während Thread-basierte asynchrone

Verarbeitung Vorteile für I/O-gebundene Aufgaben bieten kann, bietet sie

aufgrund der Einschränkungen des GIL möglicherweise keine signifikanten

Leistungsverbesserungen für CPU-gebundene Aufgaben.

Ensemble-Techniken für verbesserte Genauigkeit

Ensemble-Techniken beinhalten die Kombination der Ausgaben mehrerer KI-Worker,

um die Gesamtgenauigkeit oder Robustheit des Systems zu verbessern. Anstatt sich

auf einen einzelnen KI-Worker zu verlassen, nutzen Ensemble-Techniken die kollektive

Vielzahl von Arbeitern 122

Intelligenz mehrerer Worker, um fundiertere Entscheidungen zu treffen.

Ensembles sind besonders wichtig, wenn verschiedene Teile Ihres

Workflows am besten mit unterschiedlichen KI-Modellen funktionieren,

was häufiger vorkommt, als Sie vielleicht denken. Leistungsstarke Modelle

wie GPT-4 sind im Vergleich zu weniger leistungsfähigen Open-Source-

Optionen extrem teuer und werden wahrscheinlich nicht für jeden

einzelnen Workflow-Schritt Ihrer Anwendung benötigt.

Eine häufig verwendete Ensemble-Technik ist die Mehrheitsentscheidung, bei der

mehrere KI-Worker unabhängig voneinander dieselbe Eingabe verarbeiten und die

endgültige Ausgabe durch den Mehrheitskonsens bestimmt wird. Dieser Ansatz kann

dazu beitragen, die Auswirkungen von Fehlern einzelner Worker zu minimieren und

die Gesamtzuverlässigkeit des Systems zu verbessern.

Betrachten wir ein Beispiel, bei dem wir drei KI-Worker für die Stimmungsanalyse

haben, die jeweils ein unterschiedliches Modell verwenden oder mit verschiedenen

Kontexten ausgestattet sind. Wir können ihre Ausgaben mittels Mehrheitsentscheidung

kombinieren, um die endgültige Stimmungsvorhersage zu bestimmen.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

Vielzahl von Arbeitern 123

17

18 end

19 end

In diesem Beispiel initialisiert die Klasse SentimentAnalysisEnsemblemit dem Text

und ruft drei verschiedene KI-Worker für die Stimmungsanalyse auf. Die Methode

analyze sammelt die Vorhersagen von jedem Worker und bestimmt die mehrheitliche

Stimmung mithilfe der Methoden group_by und max_by. Das endgültige Ergebnis ist

die Stimmung, die die meisten Stimmen vom Ensemble der Worker erhält.

Ensembles sind eindeutig ein Fall, bei dem sich Experimente mit

Parallelisierung lohnen können.

Dynamische Auswahl und Aufruf von KI-Workern

In einigen, wenn nicht sogar den meisten Fällen, kann die Auswahl des spezifischen KI-

Workers von Laufzeitbedingungen oder Benutzereingaben abhängen. Die dynamische

Auswahl und Aufruf von KI-Workern ermöglicht Flexibilität und Anpassungsfähigkeit

im System.

Möglicherweise werden Sie versucht sein, viel Funktionalität in einen

einzigen KI-Worker zu packen, ihm viele Funktionen und einen großen,

komplizierten Prompt zu geben, der erklärt, wie man sie aufruft.

Widerstehen Sie dieser Versuchung, vertrauen Sie mir. Einer der Gründe,

warum der Ansatz, den wir in diesem Kapitel besprechen, “Vielzahl von

Workern” genannt wird, ist, uns daran zu erinnern, dass es wünschenswert

ist, viele spezialisierte Worker zu haben, die jeweils ihre kleine Aufgabe im

Dienste des größeren Zwecks erfüllen.

Betrachten Sie zum Beispiel eine Chatbot-Anwendung, bei der verschiedene KI-Worker

für die Bearbeitung unterschiedlicher Arten von Benutzeranfragen zuständig sind.

Vielzahl von Arbeitern 124

Basierend auf der Benutzereingabe wählt die Anwendung dynamisch den geeigneten

KI-Worker aus, um die Anfrage zu verarbeiten.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

In diesem Beispiel empfängt der ChatbotController eine Benutzeranfrage durch

die process_query-Aktion. Zunächst verwendet er einen QueryClassifierWorker,

um den Typ der Anfrage zu bestimmen. Basierend auf dem klassifizierten Anfragetyp

wählt der Controller dynamisch den passenden KI-Worker aus, um die Antwort zu

generieren. Diese dynamische Auswahl ermöglicht es dem Chatbot, verschiedene Arten

von Anfragen zu verarbeiten und sie an die relevanten KI-Worker weiterzuleiten.

Vielzahl von Arbeitern 125

Da die Arbeit des QueryClassifierWorker relativ einfach ist und

nicht viel Kontext oder Funktionsdefinitionen erfordert, können

Sie ihn wahrscheinlich mit einem ultraschnellen kleinen LLM wie

mistralai/mixtral-8x7b-instruct:nitro implementieren. Es

verfügt über Fähigkeiten, die bei vielen Aufgaben nahe an das GPT-4-

Niveau heranreichen, und zum Zeitpunkt, als ich dies schreibe, kann Groq

es mit einem beeindruckenden Durchsatz von 444 Token pro Sekunde

bereitstellen.

Kombination von traditionellem NLP mit LLMs

Während Large Language Models (LLMs) das Gebiet der Verarbeitung natürlicher

Sprache (NLP) revolutioniert haben und eine unvergleichliche Vielseitigkeit

und Leistung bei einer Vielzahl von Aufgaben bieten, sind sie nicht immer die

effizienteste oder kostengünstigste Lösung für jedes Problem. In vielen Fällen kann die

Kombination traditioneller NLP-Techniken mit LLMs zu optimierteren, gezielteren und

wirtschaftlicheren Ansätzen zur Lösung spezifischer NLP-Herausforderungen führen.

Stellen Sie sich LLMs als Schweizer Taschenmesser des NLP vor - unglaublich

vielseitig und leistungsstark, aber nicht unbedingt das beste Werkzeug für jede

Aufgabe. Manchmal kann ein spezielles Werkzeug wie ein Korkenzieher oder ein

Dosenöffner für eine bestimmte Aufgabe effektiver und effizienter sein. Ähnlich können

traditionelle NLP-Techniken wie Dokumenten-Clustering, Themenidentifizierung und

Klassifizierung oft gezieltere und kostengünstigere Lösungen für bestimmte Aspekte

Ihrer NLP-Pipeline bieten.

Einer der wichtigsten Vorteile traditioneller NLP-Techniken ist ihre rechnerische

Effizienz. Diese Methoden, die oft auf einfacheren statistischen Modellen oder

regelbasierten Ansätzen basieren, können große Mengen an Textdaten viel schneller

undmit geringerem Rechenaufwand verarbeiten als LLMs. Dies macht sie besonders gut

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Vielzahl von Arbeitern 126

geeignet für Aufgaben, die die Analyse und Organisation großer Dokumentenkorpora

umfassen, wie zum Beispiel das Clustering ähnlicher Artikel oder die Identifizierung

wichtiger Themen innerhalb einer Textsammlung.

Darüber hinaus können traditionelle NLP-Techniken oft eine hohe Genauigkeit

und Präzision für spezifische Aufgaben erreichen, besonders wenn sie mit

domänenspezifischen Datensätzen trainiert wurden. Zum Beispiel kann ein gut

abgestimmter Dokumentenklassifikator, der traditionelle maschinelle Lernalgorithmen

wie Support-Vector-Maschinen (SVM) oder Naive-Bayes verwendet, Dokumente mit

minimalem Rechenaufwand präzise in vordefinierte Kategorien einordnen.

LLMs glänzen jedoch besonders bei Aufgaben, die ein tieferes Verständnis von

Sprache, Kontext und Argumentation erfordern. Ihre Fähigkeit, kohärenten und

kontextuell relevanten Text zu generieren, Fragen zu beantworten und lange Passagen

zusammenzufassen, ist mit traditionellen NLP-Methoden unerreicht. LLMs können

komplexe sprachliche Phänomene wie Mehrdeutigkeit, Koreferenz und idiomatische

Ausdrücke effektiv handhaben, was sie für Aufgaben, die natürliche Sprachgenerierung

oder -verständnis erfordern, unschätzbar macht.

Die wahre Stärke liegt in der Kombination traditioneller NLP-Techniken mit LLMs, um

hybride Ansätze zu schaffen, die die Stärken beider nutzen. Durch die Verwendung

traditioneller NLP-Methoden für Aufgaben wie Dokumentenvorverarbeitung,

Clustering und Themenextraktion können Sie Ihre Textdaten effizient organisieren

und strukturieren. Diese strukturierten Informationen können dann in LLMs

für fortgeschrittenere Aufgaben eingespeist werden, wie das Generieren von

Zusammenfassungen, das Beantworten von Fragen oder das Erstellen umfassender

Berichte.

Betrachten wir zum Beispiel einen Anwendungsfall, bei dem Sie einen Trendbericht

für einen bestimmten Bereich basierend auf einem großen Korpus einzelner

Trenddokumente erstellen möchten. Anstatt sich ausschließlich auf LLMs zu verlassen,

was für die Verarbeitung großer Textmengen rechenintensiv und zeitaufwändig sein

Vielzahl von Arbeitern 127

kann, können Sie einen hybriden Ansatz verwenden:

1. Verwenden Sie traditionelle NLP-Techniken wie Topic Modeling (z.B. Latente

Dirichlet-Allokation) oder Clustering-Algorithmen (z.B. K-Means), um ähnliche

Trenddokumente zu gruppieren und Schlüsselthemen innerhalb des Korpus zu

identifizieren.

2. Speisen Sie die geclusterten Dokumente und identifizierten Themen in

ein LLM ein und nutzen Sie dessen überlegene Sprachverständnis- und

Generierungsfähigkeiten, um kohärente und informative Zusammenfassungen

für jeden Cluster oder jedes Thema zu erstellen.

3. Verwenden Sie schließlich das LLM, um einen umfassenden Trendbericht zu

generieren, indem Sie die einzelnen Zusammenfassungen kombinieren, die

wichtigsten Trends hervorheben und Einblicke sowie Empfehlungen basierend

auf den aggregierten Informationen bereitstellen.

Durch die Kombination traditioneller NLP-Techniken mit LLMs auf diese Weise können

Sie große Mengen an Textdaten effizient verarbeiten, aussagekräftige Erkenntnisse

gewinnen und qualitativ hochwertige Berichte generieren, während Sie gleichzeitig

Rechenressourcen und Kosten optimieren.

Wenn Sie sich auf Ihre NLP-Projekte einlassen, ist es wichtig, die spezifischen

Anforderungen und Einschränkungen jeder Aufgabe sorgfältig zu evaluieren und zu

überlegen, wie traditionelle NLP-Methoden und LLMs gemeinsam genutzt werden

können, um die besten Ergebnisse zu erzielen. Durch die Kombination der Effizienz

und Präzision traditioneller Techniken mit der Vielseitigkeit und Leistungsfähigkeit

von LLMs können Sie hocheffektive und wirtschaftliche NLP-Lösungen entwickeln, die

Ihren Nutzern und Stakeholdern einen echten Mehrwert bieten.

Werkzeugnutzung

Im Bereich der KI-gesteuerten Anwendungsentwicklung hat sich das Konzept der

“Werkzeugnutzung” oder des “Funktionsaufrufs” als leistungsstarke Technik etabliert,

die es Ihrem LLM ermöglicht, sich mit externen Werkzeugen, APIs, Funktionen,

Datenbanken und anderen Ressourcen zu verbinden. Dieser Ansatz ermöglicht

ein reichhaltigeres Spektrum an Verhaltensweisen als die bloße Textausgabe und

dynamischere Interaktionen zwischen Ihren KI-Komponenten und dem restlichen

Ökosystem Ihrer Anwendung. Wie wir in diesem Kapitel untersuchen werden, bietet

die Werkzeugnutzung auch die Möglichkeit, Ihr KI-Modell Daten auf strukturierte

Weise generieren zu lassen.

Werkzeugnutzung 129

Was ist Werkzeugnutzung?

Werkzeugnutzung, auch bekannt als Funktionsaufruf, ist eine Technik, die es

Entwicklern ermöglicht, eine Liste von Funktionen zu definieren, mit denen ein LLM

während des Generierungsprozesses interagieren kann. Diese Werkzeuge können von

einfachen Hilfsfunktionen bis hin zu komplexen APIs oder Datenbankabfragen reichen.

Indem sie dem LLM Zugriff auf diese Werkzeuge gewähren, können Entwickler die

Fähigkeiten des Modells erweitern und es in die Lage versetzen, Aufgaben auszuführen,

die externes Wissen oder Aktionen erfordern.

Abbildung 8. Beispiel einer Funktionsdefinition für einen KI-Arbeiter, der Dokumente analysiert

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

Werkzeugnutzung 130

27 }.freeze

Der Kerngedanke hinter demWerkzeugeinsatz besteht darin, dem LLM die Fähigkeit zu

geben, basierend auf der Benutzereingabe oder der jeweiligen Aufgabe dynamisch die

geeigneten Werkzeuge auszuwählen und auszuführen. Anstatt sich ausschließlich auf

das vortrainierte Wissen des Modells zu verlassen, ermöglicht der Werkzeugeinsatz dem

LLM, externe Ressourcen zu nutzen, um genauere, relevantere und handlungsorientierte

Antworten zu generieren. Der Werkzeugeinsatz macht Techniken wie RAG (Retrieval

Augmented Generation) deutlich einfacher zu implementieren, als sie es sonst wären.

Beachten Sie, dass dieses Buch, sofern nicht anders angegeben, davon ausgeht,

dass Ihr KI-Modell keinen Zugriff auf integrierte serverseitige Werkzeuge hat. Alle

Werkzeuge, die Sie Ihrer KI zur Verfügung stellen möchten, müssen von Ihnen

explizit in jeder API-Anfrage deklariert werden, einschließlich Vorkehrungen für

deren Ausführung, falls und wenn Ihre KI Ihnen mitteilt, dass sie dieses Werkzeug in

ihrer Antwort verwenden möchte.

Das Potenzial des Werkzeugeinsatzes

Der Werkzeugeinsatz eröffnet ein breites Spektrum an Möglichkeiten für KI-gesteuerte

Anwendungen. Hier sind einige Beispiele für das, was mit Werkzeugeinsatz erreicht

werden kann:

1. Chatbots und Virtuelle Assistenten: Durch die Verbindung eines LLM mit

externen Werkzeugen können Chatbots und virtuelle Assistenten komplexere

Aufgaben ausführen, wie zum Beispiel Informationen aus Datenbanken abrufen,

API-Aufrufe ausführen oder mit anderen Systemen interagieren. Ein Chatbot

Werkzeugnutzung 131

könnte beispielsweise ein CRM-Werkzeug verwenden, um den Status eines

Geschäfts basierend auf der Benutzeranfrage zu ändern.

2. Datenanalyse und Erkenntnisse: LLMs können mit Datenanalyse-

Werkzeugen oder -Bibliotheken verbunden werden, um fortgeschrittene

Datenverarbeitungsaufgaben durchzuführen. Dies ermöglicht Anwendungen,

Erkenntnisse zu generieren, vergleichende Analysen durchzuführen oder

datengesteuerte Empfehlungen basierend auf Benutzeranfragen bereitzustellen.

3. Suche und Informationsabruf : Der Werkzeugeinsatz ermöglicht LLMs

die Interaktion mit Suchmaschinen, Vektordatenbanken oder anderen

Informationsabrufsystemen. Durch die Umwandlung von Benutzeranfragen

in Suchanfragen kann das LLM relevante Informationen aus mehreren Quellen

abrufen und umfassende Antworten auf Benutzerfragen liefern.

4. Integration mit externen Diensten: Der Werkzeugeinsatz ermöglicht eine

nahtlose Integration zwischen KI-gesteuerten Anwendungen und externen

Diensten oder APIs. Ein LLM könnte beispielsweise mit einer Wetter-

API interagieren, um Echtzeit-Wetterupdates bereitzustellen, oder mit einer

Übersetzungs-API, um mehrsprachige Antworten zu generieren.

Der Werkzeugeinsatz-Workflow

Der Werkzeugeinsatz-Workflow umfasst typischerweise vier Hauptschritte:

1. Einbindung von Funktionsdefinitionen in Ihren Anfrage-Kontext

2. Dynamische (oder explizite) Werkzeugauswahl

3. Ausführung der Funktion(en)

4. Optionale Fortsetzung des ursprünglichen Prompts

Lassen Sie uns jeden dieser Schritte im Detail betrachten.

Werkzeugnutzung 132

Einbindung von Funktionsdefinitionen in Ihren
Anfrage-Kontext

Die KI weiß, welche Werkzeuge ihr zur Verfügung stehen, weil Sie ihr eine Liste als

Teil Ihrer Completion-Anfrage übergeben (typischerweise definiert als Funktionen unter

Verwendung einer Variante des JSON-Schemas).

Die genaue Syntax der Werkzeugdefinition ist modellspezifisch.

So definieren Sie eine get_weather-Funktion in Claude 3:

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Und so würdest du dieselbe Funktion für GPT-4 definieren, indem du sie als Wert des

tools-Parameters übergibst:

Werkzeugnutzung 133

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

18 },

19 }

Fast gleich, aber ohne ersichtlichen Grund trotzdem anders! Wie ärgerlich.

Funktionsdefinitionen legen Name, Beschreibung und Eingabeparameter fest.

Eingabeparameter können durch Attribute weiter definiert werden, zum Beispiel durch

Enums zur Einschränkung der zulässigen Werte, sowie durch die Angabe, ob ein

Parameter erforderlich ist oder nicht.

Zusätzlich zu den eigentlichen Funktionsdefinitionen können Sie auch Anweisungen

oder Kontext dafür einbinden, warum und wie die Funktion in der Systemdirektive

verwendet werden soll.

Zum Beispiel enthält mein Web-Suchwerkzeug in Olympia diese Systemdirektive, die

die KI daran erinnert, dass sie über die erwähnten Werkzeuge verfügt:

Werkzeugnutzung 134

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Die Bereitstellung detaillierter Beschreibungen gilt als wichtigster Faktor für die

Leistung eines Tools. Ihre Beschreibungen sollten jedes Detail über das Tool erläutern,

einschließlich:

• Was das Tool leistet

• Wann es eingesetzt werden sollte (und wann nicht)

• Was jeder Parameter bedeutet und wie er das Verhalten des Tools beeinflusst

• Alle wichtigen Vorbehalte oder Einschränkungen, die für die Implementierung

des Tools gelten

Je mehr Kontext Sie der KI über Ihre Tools geben können, desto besser wird sie bei

der Entscheidung sein, wann und wie sie diese einsetzen soll. Beispielsweise empfiehlt

Anthropic für seine Claude 3-Serie mindestens 3-4 Sätze pro Tool-Beschreibung, bei

komplexeren Tools auch mehr.

Es mag nicht unbedingt intuitiv sein, aber Beschreibungen werden auch als wichtiger

erachtet als Beispiele.Während Sie in der Beschreibung eines Tools oder im begleitenden

Prompt Beispiele für dessen Verwendung aufnehmen können, ist dies weniger wichtig

als eine klare und umfassende Erklärung des Zwecks und der Parameter des Tools. Fügen

Sie Beispiele erst hinzu, nachdem Sie die Beschreibung vollständig ausgearbeitet haben.

Hier ist ein Beispiel für eine Stripe-ähnliche API-Funktionsspezifikation:

Werkzeugnutzung 135

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

Werkzeugnutzung 136

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

In der Praxis haben einige Modelle Schwierigkeiten im Umgang

mit verschachtelten Funktionsspezifikationen und komplexen

Ausgabedatentypen wie Arrays, Dictionaries usw. Theoretisch sollten

Sie jedoch JSON-Schema-Spezifikationen beliebiger Tiefe bereitstellen

können!

Dynamische Werkzeugauswahl

Wenn Sie eine Chat-Completion mit Werkzeugdefinitionen ausführen, wählt das LLM

dynamisch die am besten geeigneten Werkzeuge aus und generiert die erforderlichen

Eingangsparameter für jedes Werkzeug.

In der Praxis ist die Fähigkeit der KI, genau die richtige Funktion aufzurufen und

genau Ihrer Spezifikation für die Eingaben zu folgen, nicht immer zuverlässig.

Das Heruntersetzen des Temperatur-Hyperparameters auf 0,0 hilft erheblich, aber

nach meiner Erfahrung werden Sie trotzdem gelegentlich Fehler sehen. Zu diesen

Fehlern gehören halluzinierte Funktionsnamen, falsch benannte oder schlicht fehlende

Eingangsparameter. Parameter werden als JSON übergeben, was bedeutet, dass Sie

manchmal Fehler sehen werden, die durch abgeschnittenes, falsch zitiertes oder

anderweitig fehlerhaftes JSON verursacht werden.

Selbstheilende Daten-Muster können helfen, fehlerhafte JSON automatisch

zu korrigieren bei Funktionsaufrufen, die aufgrund von Syntaxfehlern

fehlschlagen.

Werkzeugnutzung 137

Erzwungene (bzw. Explizite) Werkzeugauswahl

Einige Modelle bieten die Möglichkeit, den Aufruf einer bestimmten Funktion als

Parameter in der Anfrage zu erzwingen. Andernfalls liegt es vollständig im Ermessen

der KI, ob die Funktion aufgerufen wird oder nicht.

Die Fähigkeit, einen Funktionsaufruf zu erzwingen, ist in bestimmten Szenarien

entscheidend, in denen Sie sicherstellen möchten, dass ein spezifisches Werkzeug

oder eine spezifische Funktion ausgeführt wird, unabhängig vom dynamischen

Auswahlprozess der KI. Dafür gibt es mehrere wichtige Gründe:

1. Explizite Kontrolle: Möglicherweise verwenden Sie die KI als Diskrete

Komponente oder in einem vordefinierten Workflow, der die Ausführung einer

bestimmten Funktion zu einem bestimmten Zeitpunkt erfordert. Durch das

Erzwingen des Aufrufs können Sie garantieren, dass die gewünschte Funktion

aufgerufen wird, anstatt die KI höflich darum bitten zu müssen.

2. Debugging und Testen: Bei der Entwicklung und dem Testen von

KI-gesteuerten Anwendungen ist die Möglichkeit, Funktionsaufrufe zu

erzwingen, für Debugging-Zwecke unschätzbar wertvoll. Durch das explizite

Auslösen bestimmter Funktionen können Sie einzelne Komponenten Ihrer

Anwendung isolieren und testen. Dies ermöglicht es Ihnen, die Korrektheit

der Funktionsimplementierungen zu überprüfen, die Eingangsparameter zu

validieren und sicherzustellen, dass die erwarteten Ergebnisse zurückgegeben

werden.

3. Umgang mit Grenzfällen: Es kann Grenzfälle oder Ausnahmesituationen geben,

in denen der dynamische Auswahlprozess der KI eine Funktion möglicherweise

nicht auswählt, obwohl Sie aufgrund externer Prozesse wissen, dass sie ausgeführt

werden sollte. In solchen Fällen ermöglicht die Fähigkeit, einen Funktionsaufruf

zu erzwingen, diese Situationen explizit zu behandeln. Definieren Sie Regeln oder

Bedingungen in Ihrer Anwendungslogik, um zu bestimmen, wann das Ermessen

der KI überschrieben werden soll.

Werkzeugnutzung 138

4. Konsistenz und Reproduzierbarkeit: Wenn Sie eine bestimmte Abfolge von

Funktionen haben, die in einer bestimmten Reihenfolge ausgeführt werden

müssen, garantiert das Erzwingen der Aufrufe, dass dieselbe Sequenz jedes

Mal eingehalten wird. Dies ist besonders wichtig in Anwendungen, bei denen

Konsistenz und vorhersehbares Verhalten kritisch sind, wie beispielsweise in

Finanzsystemen oder wissenschaftlichen Simulationen.

5. Leistungsoptimierung: In manchen Fällen kann das Erzwingen eines

Funktionsaufrufs zu Leistungsoptimierungen führen. Wenn Sie wissen, dass

eine bestimmte Funktion für eine bestimmte Aufgabe erforderlich ist und

der dynamische Auswahlprozess der KI möglicherweise unnötigen Overhead

verursacht, können Sie den Auswahlprozess umgehen und die erforderliche

Funktion direkt aufrufen. Dies kann dazu beitragen, die Latenzzeit zu reduzieren

und die Gesamteffizienz Ihrer Anwendung zu verbessern.

Zusammenfassend lässt sich sagen, dass die Möglichkeit, Funktionsaufrufe in KI-

gesteuerten Anwendungen zu erzwingen, explizite Kontrolle bietet, beim Debugging

und Testen hilft, Grenzfälle handhabt und Konsistenz und Reproduzierbarkeit

gewährleistet. Es ist ein leistungsstarkes Werkzeug in Ihrem Arsenal, aber wir müssen

noch einen weiteren Aspekt dieser wichtigen Funktion besprechen.

In vielen Entscheidungsfindungsfällen möchten wir, dass das Modell immer

einen Funktionsaufruf durchführt und möglicherweise nie nur mit seinem

internen Wissen antwortet. Wenn Sie zum Beispiel zwischen mehreren

Modellen routing betreiben, die auf verschiedene Aufgaben spezialisiert sind

(mehrsprachige Eingabe, Mathematik usw.), verwenden Sie möglicherweise

das funktionsaufrufende Modell, um Anfragen an eines der Hilfsmodelle zu

delegieren und nie unabhängig zu antworten.

Werkzeugnutzung 139

Werkzeugauswahlparameter

GPT-4 und andere Sprachmodelle, die Funktionsaufrufe unterstützen, bieten einen

tool_choice-Parameter zur Steuerung, ob die Werkzeugverwendung als Teil einer

Completion erforderlich ist. Dieser Parameter hat drei mögliche Werte:

• auto gibt der KI volle Entscheidungsfreiheit über die Verwendung eines

Werkzeugs oder eine einfache Antwort

• required teilt der KI mit, dass sie zwingend ein Werkzeug aufrufenmuss anstatt

zu antworten, überlässt aber die Auswahl des Werkzeugs der KI

• Die dritte Option besteht darin, den Parameter des name_of_function

festzulegen, den Sie erzwingen möchten. Mehr dazu im nächsten Abschnitt.

Beachten Sie, dass wenn Sie tool choice auf required setzen, das

Modell gezwungen wird, die relevanteste Funktion aus den bereitgestellten

auszuwählen, auch wenn keine wirklich zum Prompt passt. Zum Zeitpunkt

der Veröffentlichung ist mir kein Modell bekannt, das eine leere tool_-

calls-Antwort zurückgibt oder auf andere Weise mitteilt, dass es keine

geeignete Funktion zum Aufrufen gefunden hat.

Erzwingen einer Funktion für strukturierte Ausgabe

Die Möglichkeit, einen Funktionsaufruf zu erzwingen, bietet Ihnen einen Weg,

strukturierte Daten aus einer Chat-Completion zu erhalten, anstatt diese selbst aus der

Klartext-Antwort extrahieren zu müssen.

Werkzeugnutzung 140

Warum ist das Erzwingen von Funktionen für strukturierte Ausgabe sowichtig? Ganz

einfach, weil die Extraktion strukturierter Daten aus LLM-Ausgaben eine mühsame

Angelegenheit ist. Sie können sich das Leben etwas erleichtern, indem Sie nach Daten

in XML fragen, aber dannmüssen Sie XML parsen. Und was machen Sie, wenn dieses

XML fehlt, weil Ihre KI antwortet: “Es tut mir leid, aber ich kann die angeforderten

Daten nicht generieren, weil bla, bla, bla…”

Bei der Verwendung von Werkzeugen auf diese Weise:

• Sollten Sie wahrscheinlich nur ein einzelnesWerkzeug in Ihrer Anfrage definieren

• Denken Sie daran, die Verwendung seiner Funktion über den tool_choice-

Parameter zu erzwingen

• Bedenken Sie, dass das Modell die Eingabe an das Werkzeug weiterleitet, daher

sollten der Name des Werkzeugs und die Beschreibung aus der Perspektive des

Modells erfolgen, nicht aus Ihrer

Dieser letzte Punkt verdient ein Beispiel zur Verdeutlichung. Angenommen, Sie bitten

die KI um eine Stimmungsanalyse eines Benutzertextes. Der Name der Funktion wäre

nicht analyze_sentiment, sondern eher etwas wie save_sentiment_analysis.

Die KI ist diejenige, die die Stimmungsanalyse durchführt, nicht das Werkzeug.

Alles, was das Werkzeug tut (aus der Perspektive der KI), ist das Speichern der

Analyseergebnisse.

Hier ist ein Beispiel für die Verwendung von Claude 3, um eine Zusammenfassung eines

Bildes in gut strukturiertem JSON zu erfassen, diesmal von der Kommandozeile aus mit

curl:

Werkzeugnutzung 141

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

Werkzeugnutzung 142

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

In dem bereitgestellten Beispiel verwenden wir das Claude 3-Modell von Anthropic,

um eine strukturierte JSON-Zusammenfassung eines Bildes zu generieren. Hier ist die

Funktionsweise:

Werkzeugnutzung 143

1. Wir definieren ein einzelnes Tool namens record_summary im tools-Array der

Anfrage-Payload. Dieses Tool ist dafür verantwortlich, eine Zusammenfassung

des Bildes in wohlstrukturiertem JSON zu erfassen.

2. Das record_summary-Tool verfügt über ein input_schema, das die erwartete

Struktur der JSON-Ausgabe festlegt. Es definiert drei Eigenschaften:

• key_colors: Ein Array von Objekten, die die wichtigsten Farben im Bild

darstellen. Jedes Farbobjekt hat Eigenschaften für die Rot-, Grün- und Blau-

Werte (von 0,0 bis 1,0) und einen menschenlesbaren Farbnamen im snake_-

case-Format.

• description: Eine String-Eigenschaft für eine kurze Beschreibung des

Bildes, begrenzt auf 1-2 Sätze.

• estimated_year: Eine optionale Integer-Eigenschaft für das geschätzte

Jahr, in dem das Bild aufgenommen wurde, falls es sich um ein nicht-

fiktionales Foto zu handeln scheint.

3. Im messages-Array stellen wir die Bilddaten als base64-codierten String

zusammen mit dem Medientyp bereit. Dies ermöglicht es dem Modell, das Bild

als Teil der Eingabe zu verarbeiten.

4. Wir weisen Claude außerdem an, das record_summary-Tool zu verwenden, um

das Bild zu beschreiben.

5. Wenn die Anfrage an das Claude 3-Modell gesendet wird, analysiert es das

Bild und generiert eine JSON-Zusammenfassung basierend auf dem spezifizierten

input_schema. Das Modell extrahiert die wichtigsten Farben, liefert eine kurze

Beschreibung und schätzt das Jahr der Aufnahme (falls zutreffend).

6. Die generierte JSON-Zusammenfassung wird als Parameter an das

record_summary-Tool übergeben und bietet eine strukturierte Darstellung

der wichtigsten Eigenschaften des Bildes.

Durch die Verwendung des record_summary-Tools mit einem klar definierten

input_schema können wir eine strukturierte JSON-Zusammenfassung eines Bildes

Werkzeugnutzung 144

erhalten, ohne auf reine Textextraktion angewiesen zu sein. Dieser Ansatz stellt

sicher, dass die Ausgabe einem einheitlichen Format folgt und von nachgelagerten

Komponenten der Anwendung einfach geparst und verarbeitet werden kann.

Die Fähigkeit, einen Funktionsaufruf zu erzwingen und die erwartete Ausgabestruktur

zu spezifizieren, ist eine leistungsstarke Funktion der Tool-Nutzung in KI-gesteuerten

Anwendungen. Sie ermöglicht es Entwicklern, mehr Kontrolle über die generierte

Ausgabe zu haben und vereinfacht die Integration von KI-generierten Daten in den

Arbeitsablauf ihrer Anwendung.

Ausführung von Funktion(en)

Sie haben Funktionen definiert und Ihre KI aufgefordert, die daraufhin beschlossen hat,

eine Ihrer Funktionen aufzurufen. Jetzt ist es Zeit für Ihren Anwendungscode oder Ihre

Bibliothek, wenn Sie ein Ruby-Gem wie raix-rails verwenden, den Funktionsaufruf

und seine Parameter an die entsprechende Implementierung in Ihrem Anwendungscode

weiterzuleiten.

Ihr Anwendungscode entscheidet, was mit den Ergebnissen der Funktionsausführung

geschehen soll. Vielleicht besteht die Aktion aus einer einzigen Codezeile in einem

Lambda, oder vielleicht beinhaltet sie den Aufruf einer externen API. Möglicherweise

umfasst sie den Aufruf einer anderen KI-Komponente oder sogar Hunderte oder

Tausende von Codezeilen im Rest Ihres Systems. Das liegt ganz bei Ihnen.

Manchmal ist der Funktionsaufruf das Ende der Operation, aber wenn die Ergebnisse

Informationen in einer Chain of Thought darstellen, die von der KI fortgesetzt werden

soll, muss Ihr Anwendungscode die Ausführungsergebnisse in das Chat-Transkript

einfügen und die KI mit der Verarbeitung fortfahren lassen.

Hier ist zum Beispiel eine Raix-Funktionsdeklaration, die von Olympias

AccountManager zur Kommunikation mit unseren Kunden als Teil einer Intelligenten

Workflow-Orchestrierung für den Kundenservice verwendet wird.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Werkzeugnutzung 145

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Möglicherweise ist nicht sofort klar, was hier passiert, daher werde ich es aufschlüsseln.

1. Die AccountManager-Klasse definiert viele Funktionen im Zusammenhang mit

der Kontoverwaltung. Sie kann Ihren Plan ändern, Teammitglieder hinzufügen

und entfernen, und vieles mehr.

2. Die übergeordneten Anweisungen teilen AccountManager mit, dass er den

Kontoinhaber über die Ergebnisse der Kontoänderungsanfrage mittels der

Funktion notify_account_owner benachrichtigen soll.

3. Die präzise Definition der Funktion enthält:

• Name

• Beschreibung

• Parameter message: { type: "string" }

• einen Block, der bei Funktionsaufruf ausgeführt wird

Nach der Aktualisierung des Transkripts mit den Ergebnissen des Funktionsblocks

wird die chat_completion-Methode erneut aufgerufen. Diese Methode ist

dafür verantwortlich, das aktualisierte Konversationstranskript zur weiteren

Werkzeugnutzung 146

Verarbeitung an das KI-Modell zurückzusenden. Wir bezeichnen diesen Prozess

als Konversationsschleife.

Wenn das KI-Modell eine neue Chat-Vervollständigungsanfrage mit einem

aktualisierten Transkript erhält, hat es Zugriff auf die Ergebnisse der zuvor ausgeführten

Funktion. Es kann diese Ergebnisse analysieren, sie in seinen Entscheidungsprozess

einbeziehen und die nächste Antwort oder Aktion basierend auf dem kumulativen

Kontext der Konversation generieren. Es kann basierend auf dem aktualisierten Kontext

weitere Funktionen ausführen oder eine abschließende Antwort auf die ursprüngliche

Anfrage generieren, wenn es feststellt, dass keineweiteren Funktionsaufrufe erforderlich

sind.

Optionale Fortsetzung der ursprünglichen Anfrage

Wenn Sie die Werkzeugergebnisse zurück an das LLM senden und die Verarbeitung der

ursprünglichen Anfrage fortsetzen, verwendet die KI diese Ergebnisse, um entweder

zusätzliche Funktionen aufzurufen oder eine endgültige Textantwort zu generieren.

Einige Modelle wie Coheres Command-R können in ihren Antworten die

spezifischen Werkzeuge zitieren, die sie verwendet haben, was zusätzliche

Transparenz und Nachverfolgbarkeit bietet.

Je nach verwendetem Modell befinden sich die Ergebnisse des Funktionsaufrufs in

Transkriptnachrichten mit einer eigenen speziellen Rolle oder werden in einer anderen

Syntax dargestellt. Der wichtige Teil ist jedoch, dass diese Daten im Transkript enthalten

sind, damit die KI sie bei der Entscheidung über das weitere Vorgehen berücksichtigen

kann.

https://openrouter.ai/models/cohere/command-r

Werkzeugnutzung 147

Ein häufiger (und potenziell teurer) Fehler besteht darin, zu vergessen, die

Funktionsergebnisse dem Transkript hinzuzufügen, bevor man fortfährt.

Infolgedessen wird die KI im Wesentlichen auf die gleiche Weise

aufgefordert wie vor dem ersten Funktionsaufruf. Mit anderen Worten: Aus

Sicht der KI hat sie die Funktion noch nicht aufgerufen. Also ruft sie sie

wieder auf. Und wieder. Und wieder, bis Sie sie unterbrechen. Hoffentlich

war Ihr Kontext nicht zu groß und Ihr Modell nicht zu teuer!

Best Practices für die Werkzeugnutzung

Um das Beste aus derWerkzeugnutzung herauszuholen, beachten Sie die folgenden Best

Practices.

Beschreibende Definitionen

Stellen Sie klare und beschreibende Namen und Beschreibungen für jedes Werkzeug

und seine Eingangsparameter bereit. Dies hilft dem LLM besser zu verstehen, welchen

Zweck und welche Fähigkeiten jedes Werkzeug hat.

Aus Erfahrung kann ich Ihnen sagen, dass die allgemeine Weisheit, die besagt, dass

“Benennung schwierig ist”, auch hier zutrifft; ich habe dramatisch unterschiedliche

Ergebnisse von LLMs gesehen, nur durch die Änderung von Funktionsnamen oder

der Formulierung von Beschreibungen. Manchmal verbessert das Entfernen von

Beschreibungen sogar die Leistung.

Werkzeugnutzung 148

Verarbeitung von Werkzeugergebnissen

Achten Sie beim Zurücksenden von Werkzeugergebnissen an das LLM darauf, dass

diese gut strukturiert und umfassend sind. Verwenden Sie aussagekräftige Schlüssel

und Werte, um die Ausgabe jedes Werkzeugs darzustellen. Experimentieren Sie mit

verschiedenen Formaten und finden Sie heraus, welches am besten funktioniert, von

JSON bis hin zu Klartext.

Der Ergebnisinterpreter geht diese Herausforderung an, indem er KI einsetzt, um die

Ergebnisse zu analysieren und benutzerfreundliche Erklärungen, Zusammenfassungen

oder wichtige Erkenntnisse bereitzustellen.

Fehlerbehandlung

Implementieren Sie robuste Fehlerbehandlungsmechanismen, um Fälle zu behandeln, in

denen das LLM möglicherweise ungültige oder nicht unterstützte Eingangsparameter

für Werkzeugaufrufe generiert. Behandeln und beheben Sie alle Fehler, die während der

Werkzeugausführung auftreten können, auf elegante Weise.

Eine äußerst angenehme Eigenschaft der KI ist, dass sie Fehlermeldungen versteht!

Das bedeutet, wenn Sie in einer schnellen und einfachen Denkweise arbeiten, können

Sie einfach alle Ausnahmen abfangen, die bei der Implementierung eines Werkzeugs

generiert werden, und sie an die KI zurückgeben, damit sie weiß, was passiert ist!

Hier ist zum Beispiel eine verschlankte Version der Implementierung der Google-Suche

in Olympia:

Werkzeugnutzung 149

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Google-Suchen in Olympia sind ein zweistufiger Prozess. Zuerst führen Sie die Suche

durch, dann fassen Sie die Ergebnisse zusammen. Bei einem Fehler, egal welcher Art,

wird die Fehlermeldung verpackt und an die KI zurückgesendet. Diese Technik ist die

Grundlage für praktisch alle Intelligente Fehlerbehandlung-Muster.

Nehmen wir zum Beispiel an, dass der GoogleSearch-API-Aufruf aufgrund

einer 503 Service-Unavailable-Ausnahme fehlschlägt. Diese wird bis zur obersten

Fehlerbehandlung weitergereicht, und die Beschreibung des Fehlers wird als

Funktionsergebnis an die KI zurückgesendet. Anstatt dem Benutzer einfach einen

leeren Bildschirm oder einen technischen Fehler anzuzeigen, sagt die KI etwa: “Es tut

mir leid, aber ich kann derzeit nicht auf meine Google-Such-Funktionen zugreifen. Ich

kann es später noch einmal versuchen, wenn Sie möchten.”

Dies mag wie ein cleverer Trick erscheinen, aber betrachten Sie eine andere Art von

Fehler, bei dem die KI eine externe API aufruft und direkte Kontrolle über die zu

übergebenden Parameter hat. Vielleicht hat sie einen Fehler bei der Generierung dieser

Parameter gemacht? Vorausgesetzt, die Fehlermeldung der externen API ist detailliert

genug, bedeutet die Rückgabe der Fehlermeldung an die aufrufende KI, dass sie diese

Parameter überdenken und es erneut versuchen kann. Automatisch. Egal, was der Fehler

war.

Denken Sie nun darüber nach, was es bedeuten würde, diese Art von robuster

Fehlerbehandlung in normalem Code zu replizieren. Es ist praktisch unmöglich.

Werkzeugnutzung 150

Iterative Verfeinerung

Wenn das LLM nicht die geeigneten Werkzeuge empfiehlt oder suboptimale

Antworten generiert, iterieren Sie die Werkzeugdefinitionen, Beschreibungen

und Eingabeparameter. Verfeinern und verbessern Sie die Werkzeugeinrichtung

kontinuierlich basierend auf dem beobachteten Verhalten und den gewünschten

Ergebnissen.

1. Beginnen Sie mit einfachen Werkzeugdefinitionen: Fangen Sie an,

indem Sie Werkzeuge mit klaren und präzisen Namen, Beschreibungen

und Eingabeparametern definieren. Vermeiden Sie es zunächst, die

Werkzeugeinrichtung zu verkomplizieren, und konzentrieren Sie sich

auf die Kernfunktionalität. Wenn Sie zum Beispiel die Ergebnisse einer

Stimmungsanalyse speichern möchten, beginnen Sie mit einer grundlegenden

Definition wie:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Testen und beobachten: Sobald Sie die erstenWerkzeugdefinitionen erstellt haben,

testen Sie diese mit verschiedenen Prompts und beobachten Sie, wie das LLM

mit dem Werkzeug interagiert. Achten Sie auf die Qualität und Relevanz der

Werkzeugnutzung 151

generierten Antworten. Wenn das LLM suboptimale Antworten generiert, ist es

Zeit, die Werkzeugdefinitionen zu verfeinern.

3. Beschreibungen verfeinern: Wenn das LLM den Zweck eines Werkzeugs

missversteht, versuchen Sie, die Beschreibung des Werkzeugs zu verfeinern.

Stellen Sie mehr Kontext, Beispiele oder Erläuterungen bereit, um das LLM

bei der effektiven Nutzung des Werkzeugs zu unterstützen. Sie können zum

Beispiel die Beschreibung des Stimmungsanalyse-Werkzeugs aktualisieren, um

spezifischer auf den emotionalen Ton des zu analysierenden Textes einzugehen:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Eingabeparameter anpassen: Wenn das LLM ungültige oder irrelevante

Eingabeparameter für ein Werkzeug generiert, sollten Sie die

Parameterdefinitionen anpassen. Fügen Sie spezifischere Einschränkungen,

Validierungsregeln oder Beispiele hinzu, um das erwartete Eingabeformat zu

verdeutlichen.

5. Auf Basis von Feedback iterieren: Überwachen Sie kontinuierlich die Leistung

Ihrer Werkzeuge und sammeln Sie Feedback von Benutzern oder Stakeholdern.

Nutzen Sie dieses Feedback, um Verbesserungsbereiche zu identifizieren und

nehmen Sie iterative Verfeinerungen an den Werkzeugdefinitionen vor. Wenn

Benutzer zum Beispiel berichten, dass die Analyse Sarkasmus nicht gut erkennt,

können Sie einen entsprechenden Hinweis in die Beschreibung aufnehmen:

Werkzeugnutzung 152

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Durch die iterative Verfeinerung Ihrer Werkzeugdefinitionen basierend auf

beobachtetem Verhalten und Feedback können Sie die Leistung und Effektivität

Ihrer KI-gesteuerten Anwendung schrittweise verbessern. Denken Sie daran, die

Werkzeugdefinitionen klar, präzise und auf die spezifische Aufgabe fokussiert

zu halten. Testen und validieren Sie die Werkzeuginteraktionen regelmäßig, um

sicherzustellen, dass sie mit Ihren gewünschten Ergebnissen übereinstimmen.

Zusammenstellung und Verkettung von

Werkzeugen

Einer der leistungsfähigsten Aspekte der Werkzeugnutzung, der bisher nur angedeutet

wurde, ist die Möglichkeit, mehrere Werkzeuge zusammenzustellen und zu

verketten, um komplexe Aufgaben zu bewältigen. Durch sorgfältige Gestaltung Ihrer

Werkzeugdefinitionen und deren Ein-/Ausgabeformate können Sie wiederverwendbare

Bausteine erstellen, die sich auf verschiedene Weise kombinieren lassen.

Betrachtenwir ein Beispiel, bei dem Sie eine Datenanalysepipeline für Ihre KI-gesteuerte

Anwendung erstellen. Sie könnten die folgenden Werkzeuge haben:

1. DataRetrieval: Ein Werkzeug, das Daten aus einer Datenbank oder API

basierend auf festgelegten Kriterien abruft.

2. DataProcessing: Ein Werkzeug, das Berechnungen, Transformationen oder

Aggregationen der abgerufenen Daten durchführt.

Werkzeugnutzung 153

3. DataVisualization: Ein Werkzeug, das die verarbeiteten Daten in einem

benutzerfreundlichen Format wie Diagrammen oder Grafiken darstellt.

Durch die Verkettung dieser Werkzeuge können Sie einen leistungsfähigen Workflow

erstellen, der relevante Daten abruft, verarbeitet und die Ergebnisse aussagekräftig

präsentiert. So könnte der Werkzeugnutzungs-Workflow aussehen:

1. Das LLM erhält eine Benutzeranfrage nach Erkenntnissen über Verkaufsdaten für

eine bestimmte Produktkategorie.

2. Das LLM wählt das DataRetrieval-Werkzeug aus und generiert die

entsprechenden Eingangsparameter, um die relevanten Verkaufsdaten aus

der Datenbank abzurufen.

3. Die abgerufenen Daten werden an das DataProcessing-Werkzeug

“weitergegeben”, das Metriken wie Gesamtumsatz, durchschnittlichen

Verkaufspreis und Wachstumsrate berechnet.

4. Die verarbeiteten Daten werden dann vom DataVisualization-Werkzeug

verarbeitet, das ein ansprechendes Diagramm oder eine Grafik erstellt, um

die Erkenntnisse darzustellen, wobei die URL des Diagramms an das LLM

zurückgegeben wird.

5. Schließlich generiert das LLM eine formatierte Antwort auf die Benutzeranfrage

unter Verwendung vonMarkdown, die die visualisierten Daten einbindet und eine

Zusammenfassung der wichtigsten Erkenntnisse liefert.

Durch die Zusammenstellung dieser Werkzeuge können Sie einen nahtlosen

Datenanalyse-Workflow erstellen, der sich leicht in Ihre Anwendung integrieren

lässt. Die Schönheit dieses Ansatzes liegt darin, dass jedes Werkzeug unabhängig

entwickelt und getestet und dann auf verschiedene Weise kombiniert werden kann, um

verschiedene Probleme zu lösen.

Um eine reibungslose Zusammenstellung und Verkettung von Werkzeugen zu

ermöglichen, ist es wichtig, klare Ein- und Ausgabeformate für jedes Werkzeug zu

definieren.

Werkzeugnutzung 154

Zum Beispiel könnte das DataRetrieval-Werkzeug Parameter wie

Datenbankverbindungsdetails, Tabellenname und Abfragebedingungen akzeptieren

und das Ergebnis als strukturiertes JSON-Objekt zurückgeben. Das DataProcessing-

Werkzeug kann dann dieses JSON-Objekt als Eingabe erwarten und ein transformiertes

JSON-Objekt als Ausgabe produzieren. Durch die Standardisierung des Datenflusses

zwischen Werkzeugen können Sie Kompatibilität und Wiederverwendbarkeit

gewährleisten.

Wenn Sie Ihr Werkzeug-Ökosystem entwerfen, denken Sie darüber nach, wie

verschiedene Werkzeuge kombiniert werden können, um häufige Anwendungsfälle

in Ihrer Anwendung zu adressieren. Erwägen Sie die Erstellung von High-Level-

Werkzeugen, die häufige Workflows oder Geschäftslogik kapseln und es dem LLM

erleichtern, diese effektiv auszuwählen und zu nutzen.

Denken Sie daran, dass die Stärke der Werkzeugnutzung in der Flexibilität

und Modularität liegt, die sie bietet. Indem Sie komplexe Aufgaben in

kleinere, wiederverwendbare Werkzeuge aufteilen, können Sie eine robuste und

anpassungsfähige KI-gesteuerte Anwendung erstellen, die eine breite Palette von

Herausforderungen bewältigen kann.

Zukünftige Entwicklungen

Mit der Weiterentwicklung des Bereichs der KI-gesteuerten Anwendungsentwicklung

können wir weitere Fortschritte bei denWerkzeugnutzungsfähigkeiten erwarten. Einige

mögliche zukünftige Richtungen sind:

1. Mehrstufige Werkzeugnutzung: LLMs könnten in der Lage sein zu entscheiden,

wie oft sie Werkzeuge nutzen müssen, um eine zufriedenstellende Antwort zu

generieren. Dies könnte mehrere Runden der Werkzeugauswahl und -ausführung

basierend auf Zwischenergebnissen umfassen.

Werkzeugnutzung 155

2. Vordefinierte Werkzeuge: KI-Plattformen könnten einen Satz vordefinierter

Werkzeuge bereitstellen, die Entwickler sofort nutzen können, wie Python-

Interpreter, Websuchtools oder gängige Hilfsfunktionen.

3. Nahtlose Integration: Mit zunehmender Verbreitung der Werkzeugnutzung

können wir eine bessere Integration zwischen KI-Plattformen und beliebten

Entwicklungsframeworks erwarten, wodurch es für Entwickler einfacher wird,

die Werkzeugnutzung in ihre Anwendungen zu integrieren.

Die Werkzeugnutzung ist eine leistungsfähige Technik, die es Entwicklern ermöglicht,

das volle Potenzial von LLMs in KI-gesteuerten Anwendungen zu nutzen. Durch

die Verbindung von LLMs mit externen Werkzeugen und Ressourcen können Sie

dynamischere, intelligentere und kontextbewusstere Systeme erstellen, die sich an

Benutzerbedürfnisse anpassen und wertvolle Erkenntnisse und Aktionen bereitstellen

können.

Während die Werkzeugnutzung immense Möglichkeiten bietet, ist es wichtig,

sich potenzieller Herausforderungen und Überlegungen bewusst zu sein. Ein

wichtiger Aspekt ist die Verwaltung der Komplexität von Werkzeuginteraktionen

und die Gewährleistung der Stabilität und Zuverlässigkeit des Gesamtsystems. Sie

müssen Szenarien behandeln, in denen Werkzeugaufrufe fehlschlagen, unerwartete

Ergebnisse liefern oder Auswirkungen auf die Leistung haben können. Darüber hinaus

sollten Sie Sicherheits- und Zugriffskontrollen berücksichtigen, um unbefugte oder

böswillige Nutzung von Werkzeugen zu verhindern. Angemessene Fehlerbehandlung,

Protokollierung und Überwachungsmechanismen sind entscheidend, um die Integrität

und Leistung Ihrer KI-gesteuerten Anwendung zu erhalten.

Während Sie die Möglichkeiten des Werkzeugeinsatzes in Ihren eigenen Projekten

erkunden, denken Sie daran, mit klaren Zielsetzungen zu beginnen, gut strukturierte

Werkzeugdefinitionen zu erstellen und auf Basis von Feedback und Ergebnissen

Werkzeugnutzung 156

zu iterieren. Mit dem richtigen Ansatz und der richtigen Denkweise kann der

Werkzeugeinsatz neue Ebenen der Innovation und des Mehrwerts in Ihren KI-

gesteuerten Anwendungen erschließen

Stream Processing

Die Übertragung von Streaming-Daten über HTTP, auch bekannt als serverseitige

Ereignisse (SSE), ist ein Mechanismus, bei dem der Server kontinuierlich Daten an

den Client sendet, sobald diese verfügbar sind, ohne dass der Client diese explizit

anfordern muss. Da die Antwort der KI schrittweise generiert wird, ist es sinnvoll,

eine reaktionsschnelle Benutzererfahrung zu bieten, indem die Ausgabe der KI bereits

während der Generierung angezeigt wird. Tatsächlich bieten alle mir bekannten KI-

Provider-APIs Streaming-Antworten als Option in ihren Completion-Endpunkten an.

Der Grund, warum dieses Kapitel hier im Buch, direkt nach Using Tools erscheint,

liegt in der großen Wirkung, die durch die Kombination von Werkzeugen mit

Live-KI-Antworten für Benutzer erzielt werden kann. Dies ermöglicht dynamische

und interaktive Erfahrungen, bei denen die KI Benutzereingaben verarbeiten,

verschiedene Werkzeuge und Funktionen nach eigenem Ermessen nutzen und dann

Echtzeitantworten liefern kann.

Stream Processing 158

Um diese nahtlose Interaktion zu erreichen, müssen Sie Stream-Handler schreiben,

die sowohl von der KI aufgerufene Werkzeugfunktionen als auch reine Textausgaben

an den Endbenutzer weiterleiten können. Die Notwendigkeit, nach der Verarbeitung

einerWerkzeugfunktion eine Schleife durchzuführen, fügt der Aufgabe eine interessante

Herausforderung hinzu.

Implementierung eines ReplyStream

Um zu demonstrieren, wie Datenstromverarbeitung implementiert werden kann, wird

dieses Kapitel eine vereinfachte Version der ReplyStream-Klasse, die in Olympia

verwendet wird, eingehend behandeln. Instanzen dieser Klasse können als stream-

Parameter in KI-Client-Bibliotheken wie ruby-openai und openrouter übergeben

werden.

Hier ist ein Beispiel, wie ich ReplyStream in Olympias PromptSubscriber verwende,

der über Wisper auf die Erstellung neuer Benutzernachrichten lauscht.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Neben einer context-Referenz auf den Prompt-Subscriber, der sie instanziiert hat,

verfügt die ReplyStream-Klasse auch über Instanzvariablen zur Speicherung eines

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Stream Processing 159

Puffers für empfangene Daten sowie über Arrays zur Verfolgung von Funktionsnamen

und Argumenten, die während der Stream-Verarbeitung aufgerufen werden.

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

Die initialize-Methode richtet den Anfangszustand der ReplyStream-Instanz ein,

wobei der Puffer, der Kontext und andere Variablen initialisiert werden.

Die call-Methode ist der Haupteinstiegspunkt für die Verarbeitung der Streaming-

Daten. Sie nimmt einen chunk von Daten (dargestellt als Hash) und einen optionalen

bytesize-Parameter entgegen, der in unserem Beispiel nicht verwendet wird.

Innerhalb dieser Methode verwendet die Klasse Mustererkennung, um verschiedene

Szenarien basierend auf der Struktur des empfangenen Chunks zu behandeln.

Der Aufruf von deep_symbolize_keys auf dem Chunk macht die

Mustererkennung eleganter, da wir dadurch mit Symbolen statt mit

Zeichenketten arbeiten können.

Stream Processing 160

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Das erste Muster, nach dem wir suchen, ist ein Werkzeugaufruf zusammen mit seinem

zugehörigen Funktionsnamen. Wenn wir einen erkennen, fügen wir ihn in das f_name-

Array ein. Wir speichern Funktionsnamen in einem indizierten Array, da das Modell

zum parallelen Funktionsaufruf fähig ist und mehrere Funktionen gleichzeitig zur

Ausführung senden kann.

Paralleler Funktionsaufruf ist die Fähigkeit eines KI-Modells, mehrere

Funktionsaufrufe gemeinsam durchzuführen, wodurch die Effekte und Ergebnisse

dieser Funktionsaufrufe parallel verarbeitet werden können. Dies ist besonders

nützlich, wenn Funktionen lange dauern, und reduziert die Kommunikation mit der

API, was wiederum zu erheblichen Einsparungen beim Token-Verbrauch führen

kann.

Als Nächstes müssen wir nach den Argumenten suchen, die zu den Funktionsaufrufen

gehören.

Stream Processing 161

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Ähnlich wie bei den Funktionsnamen speichern wir die Argumente in einem indizierten

Array.

Als Nächstes achten wir auf normale Benutzernachrichten, die vom Server einzeln als

Token ankommen und der Variable new_content zugewiesen werden. Wir müssen

auch finish_reason im Auge behalten. Dieser Wert bleibt nil, bis der letzte Teil der

Ausgabesequenz erreicht ist.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Wichtig ist, dass wir einen Musterabgleichsausdruck hinzufügen, um Fehlermeldungen

zu behandeln, die vom KI-Modellanbieter gesendet werden. In lokalen

Stream Processing 162

Entwicklungsumgebungen werfen wir eine Exception, aber in der Produktion

protokollieren wir den Fehler und schließen ab.

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Der letzte else-Zweig der case-Anweisung wird ausgeführt, wenn keines der vorherigen

Muster übereinstimmt. Es ist lediglich eine Absicherung, damit wir erfahren, falls das

KI-Modell beginnt, uns unerkannte Chunks zu senden.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Die send_to_client-Methode ist für das Senden der gepufferten Inhalte an den Client

verantwortlich. Sie überprüft, dass der Puffer nicht leer ist, aktualisiert den Inhalt der

Bot-Nachricht, rendert die Bot-Nachricht und speichert den Inhalt in der Datenbank,

um die Datenpersistenz sicherzustellen.

Stream Processing 163

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Die finalize-Methode wird aufgerufen, wenn die Streamverarbeitung abgeschlossen

ist. Sie führt die Funktionsaufrufe aus, falls während des Streams welche empfangen

wurden, aktualisiert die Bot-Nachricht mit dem endgültigen Inhalt und anderen

relevanten Informationen und setzt den Funktionsaufrufsverlauf zurück.

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Wenn das Modell beschließt, eine Funktion aufzurufen, müssen Sie diesen

Funktionsaufruf (Name und Argumente) so “weiterleiten”, dass er ausgeführt wird und

Stream Processing 164

die function_call- und function_result-Nachrichten zum Gesprächsprotokoll

hinzugefügt werden.

Meiner Erfahrung nach ist es besser, die Erstellung von Funktionsnachrichten

an einer zentralen Stelle in Ihrer Codebasis zu behandeln, anstatt sich auf die

Werkzeugimplementierungen zu verlassen. Das ist nicht nur übersichtlicher, sondern

hat auch einen sehr wichtigen praktischen Grund: Wenn das KI-Modell eine

Funktion aufruft und beim erneuten Durchlauf keine entsprechenden Aufrufs- und

Ergebnisnachrichten im Protokoll sieht, wird es dieselbe Funktion erneut aufrufen.

Möglicherweise endlos. Denken Sie daran, dass die KI vollständig zustandslos ist -

wenn Sie diese Funktionsaufrufe also nicht an sie zurückgeben, sind sie für sie nie

passiert.

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Das Löschen des Funktionsaufrufverlaufs nach dem Ausführen ist genauso

wichtig wie sicherzustellen, dass der Aufruf und die Ergebnisse in

Ihrem Protokoll landen, damit Sie nicht einfach immer wieder dieselben

Funktionen bei jeder Schleifenausführung aufrufen.

Die “Konversationsschleife”

Ich erwähne immer wieder Schleifen, aber wenn Sie neu im Bereich Funktionsaufrufe

sind, ist möglicherweise nicht offensichtlich, warum wir eine Schleife benötigen. Der

Stream Processing 165

Grund ist, dass sobald die KI Sie auffordert, Werkzeugfunktionen in ihrem Namen

auszuführen, sie aufhört zu antworten. Es liegt dann an Ihnen, diese Funktionen

auszuführen, die Ergebnisse zu sammeln, sie dem Protokoll hinzuzufügen und

dann den ursprünglichen Prompt erneut einzureichen, um einen neuen Satz von

Funktionsaufrufen oder benutzerorientierten Ergebnissen zu erhalten.

In der PromptSubscriber-Klasse verwenden wir die prompt-Methode aus dem

PromptDeclarations-Modul, um das Verhalten der Konversationsschleife zu

definieren. Der until-Parameter ist auf -> { bot_message.complete? } gesetzt,

was bedeutet, dass die Schleife so lange fortgesetzt wird, bis die bot_message als

vollständig markiert ist.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Aber wann wird bot_message als abgeschlossen markiert? Falls Sie es

vergessen haben, schauen Sie noch einmal in Zeile 13 der finalize-

Methode nach.

Lassen Sie uns die gesamte Streamverarbeitungslogik überprüfen.

1. Der PromptSubscriber empfängt eine neue Benutzernachricht über die

message_created-Methode, die durch das Wisper Pub/Sub-System jedes Mal

aufgerufen wird, wenn der Endbenutzer einen neuen Prompt erstellt.

2. Die prompt-Klassenmethode definiert deklarativ das Verhalten der Chat-

Vervollständigungslogik für den PromptSubscriber. Das KI-Modell führt eine

Chat-Vervollständigung mit dem Nachrichteninhalt des Benutzers aus, einer

neuen Instanz von ReplyStream als Stream-Parameter und der angegebenen

Schleifenbedingung.

Stream Processing 166

3. Das KI-Modell verarbeitet den Prompt und beginnt mit der Generierung einer

Antwort. Während die Antwort gestreamt wird, wird die call-Methode der

ReplyStream-Instanz für jeden Datenblock aufgerufen.

4. Wenn das KI-Modell beschließt, eine Werkzeugfunktion aufzurufen, werden der

Funktionsname und die Argumente aus dem Block extrahiert und jeweils in den

Arrays f_name und f_arguments gespeichert.

5. Wenn das KI-Modell benutzersichtbare Inhalte generiert, werden diese gepuffert

und über die send_to_client-Methode an den Client gesendet.

6. Sobald die Streamverarbeitung abgeschlossen ist, wird die finalize-Methode

aufgerufen.Wennwährend des StreamsWerkzeugfunktionen aufgerufen wurden,

werden diese über die dispatch-Methode des PromptSubscriber ausgeführt.

7. Die dispatch-Methode fügt dem Gesprächsprotokoll eine function_call-

Nachricht hinzu, führt die entsprechende Werkzeugfunktion aus und fügt

dem Protokoll eine function_result-Nachricht mit dem Ergebnis des

Funktionsaufrufs hinzu.

8. Nach dem Ausführen der Werkzeugfunktionen wird der Funktionsaufrufverlauf

gelöscht, um doppelte Funktionsaufrufe in nachfolgenden Durchläufen zu

verhindern.

9. Wenn keine Werkzeugfunktionen aufgerufen wurden, aktualisiert die finalize-

Methode die bot_message mit dem endgültigen Inhalt, markiert sie als

abgeschlossen und sendet die aktualisierte Nachricht an den Client.

10. Die Schleifenbedingung -> { bot_message.complete? } wird ausgewertet.

Wenn die bot_message nicht als abgeschlossen markiert ist, wird die

Schleife fortgesetzt und der ursprüngliche Prompt wird mit dem aktualisierten

Gesprächsprotokoll erneut eingereicht.

11. Die Schritte 3-10 werden wiederholt, bis die bot_message als abgeschlossen

markiert ist, was anzeigt, dass das KI-Modell seine Antwort fertig generiert hat

und keine weiteren Werkzeugfunktionen ausgeführt werden müssen.

Stream Processing 167

Durch die Implementierung dieser Konversationsschleife ermöglichen Sie dem KI-

Modell, in eine Hin-und-her-Interaktion mit der Anwendung zu treten, bei der es nach

Bedarf Werkzeugfunktionen ausführt und benutzersichtbare Antworten generiert, bis

das Gespräch zu einem natürlichen Abschluss kommt.

Die Kombination aus Streamverarbeitung und Konversationsschleife ermöglicht

dynamische und interaktive KI-gestützte Erlebnisse, bei denen das KI-Modell

Benutzereingaben verarbeiten, verschiedene Werkzeuge und Funktionen nutzen

und Echtzeitantworten basierend auf dem sich entwickelnden Gesprächskontext

bereitstellen kann.

Automatische Fortsetzung

Es ist wichtig, sich der Ausgabebeschränkungen der KI bewusst zu sein. Die meisten

Modelle haben eine maximale Anzahl von Tokens, die sie in einer einzelnen Antwort

generieren können, die durch den Parameter max_tokens festgelegt wird.Wenn das KI-

Modell diese Grenze während der Generierung einer Antwort erreicht, wird es abrupt

stoppen und anzeigen, dass die Ausgabe abgeschnitten wurde.

In der Streaming-Antwort der KI-Plattform-API können Sie diese Situation

erkennen, indem Sie die Variable finish_reason im Block überprüfen. Wenn

die finish_reason auf "length" gesetzt ist (oder einen anderen modellspezifischen

Schlüsselwert), bedeutet dies, dass das Modell während der Generierung sein maximales

Token-Limit erreicht hat und die Ausgabe vorzeitig beendet wurde.

Eine Möglichkeit, dieses Szenario elegant zu handhaben und eine nahtlose

Benutzererfahrung zu bieten, ist die Implementierung eines automatischen

Fortsetzungsmechanismus in Ihrer Streamverarbeitungslogik. Durch das Hinzufügen

einer Mustererkennung für längenbezogene Beendigungsgründe können Sie wählen,

die Schleife fortzusetzen und die Ausgabe automatisch dort fortzusetzen, wo sie

unterbrochen wurde.

Stream Processing 168

Hier ist ein absichtlich vereinfachtes Beispiel, wie Sie die call-Methode in der

ReplyStream-Klasse modifizieren können, um die automatische Fortsetzung zu

unterstützen:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

In dieser modifizierten Version fügenwir, wenn der finish_reason auf abgeschnittene

Ausgabe hinweist, anstatt den Stream zu beenden, ein Nachrichtenpaar zum Transkript

hinzu, ohne es zu finalisieren, verschieben die ursprüngliche benutzgergerichtete

Stream Processing 169

Antwortnachricht durch Aktualisierung ihres created_at-Attributs an das “Ende”

des Transkripts und lassen dann die Schleife weiterlaufen, sodass die KI dort

weitergeneriert, wo sie aufgehört hat.

Denken Sie daran, dass der KI-Completion-Endpunkt zustandslos ist. Er “kennt” nur

das, was Sie ihm über das Transkript mitteilen. In diesem Fall kommunizieren wir

der KI, dass sie unterbrochen wurde, indem wir (für den Endbenutzer) “unsichtbare”

Nachrichten zum Transkript hinzufügen. Beachten Sie jedoch, dass dies ein bewusst

vereinfachtes Beispiel ist. Eine echte Implementierung müsste ein weitergehendes

Transkript-Management durchführen, um sicherzustellen, dass wir keine Token

verschwenden und/oder die KI nicht durch duplizierte Assistenten-Nachrichten im

Transkript verwirren.

Eine echte Implementierung der automatischen Fortsetzung sollte auch eine sogenannte

“Circuit-Breaker-Logik” enthalten, um unkontrollierte Schleifen zu verhindern. Der

Grund dafür ist, dass die KI bei bestimmten Arten von Benutzeranfragen und niedrigen

max_tokens-Einstellungen endlos benutzgergerichtete Ausgaben in Schleifen erzeugen

könnte.

Bedenken Sie, dass jede Schleife eine separate Anfrage erfordert und jede Anfrage Ihr

gesamtes Transkript erneut verbraucht. Sie sollten definitiv die Vor- und Nachteile

zwischen Benutzererfahrung und API-Nutzung abwägen, wenn Sie entscheiden, ob

Sie die automatische Fortsetzung in Ihrer Anwendung implementieren möchten.

Automatische Fortsetzung kann besonders bei der Verwendung von Premium-

Geschäftsmodellen gefährlich teuer werden.

Stream Processing 170

Fazit

Stream-Verarbeitung ist ein entscheidender Aspekt beim Aufbau von KI-gesteuerten

Anwendungen, die Werkzeugnutzung mit Live-KI-Antworten kombinieren. Durch

effiziente Handhabung der Streaming-Daten von KI-Plattform-APIs können Sie eine

nahtlose und interaktive Benutzererfahrung bieten, große Antworten verarbeiten, die

Ressourcennutzung optimieren und Fehler elegant behandeln.

Die bereitgestellte Conversation::ReplyStream-Klasse demonstriert, wie Stream-

Verarbeitung in einer Ruby-Anwendung mithilfe von Pattern Matching und

ereignisgesteuerter Architektur implementiert werden kann. Durch das Verständnis

und die Nutzung von Stream-Verarbeitungstechniken können Sie das volle Potenzial

der KI-Integration in Ihren Anwendungen erschließen und leistungsstarke sowie

fesselnde Benutzererlebnisse bereitstellen.

Selbstheilende Daten

Selbstheilende Daten ist ein leistungsfähiger Ansatz zur Sicherstellung von

Datenintegrität, -konsistenz und -qualität in Anwendungen durch die Nutzung

der Fähigkeiten von Large Language Models (LLMs). Diese Kategorie von Mustern

konzentriert sich auf die Idee, KI zu nutzen, um automatisch Datenanomalien,

Inkonsistenzen oder Fehler zu erkennen, zu diagnostizieren und zu korrigieren, wodurch

die Belastung für Entwickler reduziert und ein hohes Maß an Datenzuverlässigkeit

aufrechterhalten wird.

Im Kern erkennen die Muster für selbstheilende Daten an, dass Daten die Lebensader

jeder Anwendung sind und die Sicherstellung ihrer Genauigkeit und Integrität

entscheidend für das ordnungsgemäße Funktionieren und die Benutzererfahrung der

Anwendung ist. Die Verwaltung und Aufrechterhaltung der Datenqualität kann jedoch

eine komplexe und zeitaufwändige Aufgabe sein, besonders wenn Anwendungen in

Größe und Komplexität wachsen. Hier kommt die Kraft der KI ins Spiel.

Selbstheilende Daten 172

Bei den Mustern für selbstheilende Daten werden KI-Worker eingesetzt, um die

Daten Ihrer Anwendung kontinuierlich zu überwachen und zu analysieren. Diese

Modelle haben die Fähigkeit, Muster, Beziehungen und Anomalien innerhalb der

Daten zu verstehen und zu interpretieren. Durch die Nutzung ihrer Fähigkeiten zur

Verarbeitung und zum Verständnis natürlicher Sprache können sie potenzielle Probleme

oder Inkonsistenzen in den Daten identifizieren und geeignete Maßnahmen zu deren

Behebung ergreifen.

Der Prozess der selbstheilenden Daten umfasst typischerweise mehrere

Schlüsselschritte:

1. Datenüberwachung: KI-Worker überwachen ständig die Datenströme,

Datenbanken oder Speichersysteme der Anwendung und suchen nach Anzeichen

von Anomalien, Inkonsistenzen oder Fehlern. Alternativ können Sie eine

KI-Komponente als Reaktion auf eine Ausnahme aktivieren.

2. Anomalieerkennung:Wenn ein Problem erkannt wird, analysiert der KI-Worker

die Daten im Detail, um die spezifische Art und den Umfang des Problems

zu identifizieren. Dies könnte die Erkennung fehlender Werte, inkonsistenter

Formate oder Daten umfassen, die vordefinierte Regeln oder Einschränkungen

verletzen.

3. Diagnose und Korrektur: Sobald das Problem identifiziert ist, nutzt der KI-

Worker sein Wissen und Verständnis der Datendomäne, um den geeigneten

Handlungsablauf zu bestimmen. Dies könnte die automatische Korrektur der

Daten, das Ausfüllen fehlender Werte oder das Markieren des Problems für

menschliches Eingreifen umfassen, falls erforderlich.

4. Kontinuierliches Lernen (optional, je nach Anwendungsfall): Während Ihr

KI-Worker verschiedene Datenprobleme erkennt und löst, kann er Ausgaben

erstellen, die beschreiben, was passiert ist und wie er darauf reagiert hat.

Diese Metadaten können in Lernprozesse eingespeist werden, die es Ihnen (und

möglicherweise dem zugrundeliegenden Modell durch Fine-tuning) ermöglichen,

Selbstheilende Daten 173

im Laufe der Zeit effektiver und effizienter bei der Identifizierung und Lösung

von Datenanomalien zu werden.

Durch die automatische Erkennung und Korrektur von Datenproblemen können Sie

sicherstellen, dass Ihre Anwendung mit hochwertigen, zuverlässigen Daten arbeitet.

Dies reduziert das Risiko, dass Fehler, Inkonsistenzen oder datenbezogene Bugs die

Funktionalität oder Benutzererfahrung der Anwendung beeinträchtigen.

Sobald Sie KI-Worker haben, die sich um die Aufgabe der Datenüberwachung und

-korrektur kümmern, können Sie Ihre Bemühungen auf andere kritische Aspekte der

Anwendung konzentrieren. Dies spart Zeit und Ressourcen, die sonst für manuelle

Datenbereinigung und -wartung aufgewendet würden. Tatsächlich wird die manuelle

Verwaltung der Datenqualität mit zunehmender Größe und Komplexität Ihrer

Anwendungen immer schwieriger. Die Muster für “Selbstheilende Daten” skalieren

effektiv, indem sie die Kraft der KI nutzen, um große Datenmengen zu verarbeiten und

Probleme in Echtzeit zu erkennen.

Aufgrund ihrer Natur können sich KI-Modelle mit wenig oder gar

keiner Überwachung an sich ändernde Datenmuster, Schemata oder

Anforderungen anpassen. Solange ihre Anweisungen ausreichende

Orientierung bieten, insbesondere hinsichtlich der beabsichtigten

Ergebnisse, kann sich Ihre Anwendung möglicherweise weiterentwickeln

und neue Datenszenarien bewältigen, ohne dass umfangreiche manuelle

Eingriffe oder Codeänderungen erforderlich sind.

DieMuster für selbstheilende Daten passen gut zu den anderen Kategorien vonMustern,

die wir besprochen haben, wie zum Beispiel “Multitude of Workers”. Die Fähigkeit

zur Selbstheilung von Daten kann als eine spezialisierte Art von Worker betrachtet

werden, der sich speziell auf die Sicherstellung von Datenqualität und -integrität

konzentriert. Diese Art von Worker arbeitet neben anderen KI-Workern, wobei jeder

zu verschiedenen Aspekten der Anwendungsfunktionalität beiträgt.

Selbstheilende Daten 174

Die praktische Implementierung von Mustern für selbstheilende Daten erfordert ein

sorgfältiges Design und die Integration von KI-Modellen in die Anwendungsarchitektur.

Aufgrund der Risiken von Datenverlust und -korruption sollten Sie klare Richtlinien

für die Verwendung dieser Technik definieren. Sie sollten auch Faktoren wie Leistung,

Skalierbarkeit und Datensicherheit berücksichtigen.

Praktische Fallstudie: Reparatur von

fehlerhaftem JSON

Eine der praktischsten und bequemsten Möglichkeiten, selbstheilende Daten zu nutzen,

ist auch sehr einfach zu erklären: die Reparatur von fehlerhaftem JSON.

Diese Technik kann auf die häufige Herausforderung angewendet werden, mit

unvollkommenen oder inkonsistenten Daten umzugehen, die von LLMs generiert

werden, wie zum Beispiel fehlerhaftes JSON, und bietet einen Ansatz zur automatischen

Erkennung und Korrektur dieser Probleme.

Bei Olympia begegne ich regelmäßig Szenarien, in denen LLMs JSON-Daten generieren,

die nicht vollständig valide sind. Dies kann aus verschiedenen Gründen geschehen,

etwa wenn das LLM Kommentare vor oder nach dem eigentlichen JSON-Code

hinzufügt oder Syntaxfehler wie fehlende Kommata oder nicht maskierte doppelte

Anführungszeichen einführt. Diese Probleme können zu Parse-Fehlern führen und

Störungen in der Funktionalität der Anwendung verursachen.

Um dieses Problem zu lösen, habe ich eine praktische Lösung in Form einer JsonFixer-

Klasse implementiert. Diese Klasse verkörpert das “Self-Healing Data” Pattern, indem

sie das fehlerhafte JSON als Eingabe nimmt und ein LLM nutzt, um es zu reparieren,

während dabei so viel Information und Absicht wie möglich erhalten bleibt.

Selbstheilende Daten 175

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Beachten Sie, wie JsonFixer Ventriloquist verwendet, um die Antworten

der KI zu steuern.

Der Prozess der selbstheilenden JSON-Daten funktioniert wie folgt:

1. JSON-Generierung: Ein LLM wird verwendet, um JSON-Daten basierend

auf bestimmten Prompts oder Anforderungen zu generieren. Aufgrund der

Beschaffenheit von LLMs ist das generierte JSON jedoch nicht immer vollständig

gültig. Der JSON-Parser wird natürlich einen ParserError ausgeben, wenn

man ihm ungültiges JSON übergibt.

Selbstheilende Daten 176

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Beachten Sie, dass die Fehlermeldung auch an den JSONFixer-Aufruf übergeben wird,

sodass dieser nicht vollständig vermuten muss, was mit den Daten nicht stimmt,

insbesondere da der Parser oft genau angibt, wo der Fehler liegt.

2. LLM-basierte Korrektur: Die JSONFixer-Klasse sendet das fehlerhafte

JSON zurück an ein LLM, zusammen mit einer spezifischen Aufforderung oder

Anweisung, das JSON zu korrigieren und dabei die ursprünglichen Informationen

und Absichten so weit wie möglich zu bewahren. Das LLM, das auf großen

Datenmengen trainiert wurde und JSON-Syntax versteht, versucht, die Fehler zu

korrigieren und einen gültigen JSON-String zu generieren. Response Fencing wird

verwendet, um die Ausgabe des LLM einzuschränken, und wir wählen Mixtral

8x7B als KI-Modell, da es für diese Art von Aufgabe besonders gut geeignet ist.

3. Validierung und Integration: Der vom LLM zurückgegebene korrigierte

JSON-String wird von der JSONFixer-Klasse selbst geparst, da sie

chat_completion(json: true) aufruft. Wenn das korrigierte JSON die

Validierung besteht, wird es wieder in den Arbeitsablauf der Anwendung

integriert, wodurch die Anwendung die Datenverarbeitung nahtlos fortsetzen

kann. Das fehlerhafte JSON wurde “geheilt”.

Obwohl ich meine eigene JSONFixer-Implementierung mehrmals geschrieben und

überarbeitet habe, bezweifle ich, dass die Gesamtzeit, die in alle diese Versionen

investiert wurde, mehr als ein oder zwei Stunden beträgt.

Beachten Sie, dass die Bewahrung der Absicht ein Schlüsselelement jedes

selbstheilenden Datenmusters ist. Der LLM-basierte Korrekturprozess zielt darauf

ab, die ursprünglichen Informationen und Absichten des generierten JSONs so weit wie

Selbstheilende Daten 177

möglich zu bewahren. Dies stellt sicher, dass das korrigierte JSON seine semantische

Bedeutung beibehält und effektiv im Kontext der Anwendung verwendet werden kann.

Diese praktische Implementierung des “Selbstheilende Daten”-Ansatzes in Olympia

zeigt deutlich, wie KI, insbesondere LLMs, zur Lösung realer Datenherausforderungen

eingesetzt werden können. Sie demonstriert die Leistungsfähigkeit der Kombination

traditioneller Programmiertechniken mit KI-Fähigkeiten zum Aufbau robuster und

effizienter Anwendungen.

Postels Gesetz und das “Selbstheilende Daten”-
Muster

“Selbstheilende Daten”, wie sie durch die JSONFixer-Klasse veranschaulicht werden,

stimmen gut mit dem als Postels Gesetz bekannten Prinzip überein, das auch als

Robustheitsprinzip bezeichnet wird. Postels Gesetz besagt:

“Sei konservativ in dem, was du tust, sei liberal in dem, was du von anderen

akzeptierst.”

Dieses Prinzip, ursprünglich von Jon Postel, einem Pionier des frühen Internets,

formuliert, betont die Wichtigkeit, Systeme zu entwickeln, die tolerant gegenüber

verschiedenen oder sogar leicht fehlerhaften Eingaben sind, während sie beim Senden

von Ausgaben strikt die spezifizierten Protokolle einhalten.

Im Kontext von “Selbstheilenden Daten” verkörpert die JSONFixer-Klasse Postels

Gesetz, indem sie liberal in der Akzeptanz von fehlerhaften oder unvollkommenen

JSON-Daten ist, die von LLMs generiert wurden. Sie lehnt nicht sofort ab oder schlägt

fehl, wenn sie auf JSON stößt, das nicht strikt dem erwarteten Format entspricht.

Stattdessen verfolgt sie einen toleranten Ansatz und versucht, das JSON mithilfe der

Leistungsfähigkeit von LLMs zu korrigieren.

Durch die liberale Akzeptanz von unvollkommenem JSON demonstriert die

Selbstheilende Daten 178

JSONFixer-Klasse Robustheit und Flexibilität. Sie erkennt an, dass Daten in der

realen Welt oft in verschiedenen Formen vorliegen und nicht immer strengen

Spezifikationen entsprechen. Durch die geschickte Handhabung und Korrektur

dieser Abweichungen stellt die Klasse sicher, dass die Anwendung auch bei

unvollkommenen Daten reibungslos funktionieren kann.

Andererseits hält sich die JSONFixer-Klasse auch an den konservativen Aspekt von

Postels Gesetz, wenn es um die Ausgabe geht. Nach der Korrektur des JSONs mithilfe

von LLMs validiert die Klasse das korrigierte JSON, um sicherzustellen, dass es

strikt dem erwarteten Format entspricht. Sie wahrt die Integrität und Korrektheit der

Daten, bevor sie sie an andere Teile der Anwendung weitergibt. Dieser konservative

Ansatz garantiert, dass die Ausgabe der JSONFixer-Klasse zuverlässig und konsistent

ist und fördert die Interoperabilität und verhindert die Ausbreitung von Fehlern.

Interessante Fakten über Jon Postel:

• Jon Postel (1943-1998) war ein amerikanischer Informatiker, der eine

entscheidende Rolle bei der Entwicklung des Internets spielte. Er war als

“Gott des Internets” für seine bedeutenden Beiträge zu den grundlegenden

Protokollen und Standards bekannt.

• Postel war der Herausgeber der Request for Comments (RFC)-Dokumentreihe,

einer Serie technischer und organisatorischer Notizen über das Internet.

Er verfasste oder war Mitverfasser von über 200 RFCs, einschließlich der

grundlegenden Protokolle wie TCP, IP und SMTP.

• Neben seinen technischen Beiträgen war Postel für seinen bescheidenen

und kollaborativen Ansatz bekannt. Er glaubte an die Bedeutung der

Konsensfindung und der Zusammenarbeit beim Aufbau eines robusten und

interoperablen Netzwerks.

• Postel war von 1977 bis zu seinem vorzeitigen Tod 1998 Direktor der Computer

Networks Division am Information Sciences Institute (ISI) der University of

Southern California (USC).

• In Anerkennung seiner immensen Beiträge wurde Postel 1998 posthum der

Selbstheilende Daten 179

prestigeträchtige Turing Award verliehen, der oft als der “Nobelpreis der

Informatik” bezeichnet wird.

Die JSONFixer-Klasse fördert Robustheit, Flexibilität und Interoperabilität

- Kernwerte, die Postel während seiner gesamten Karriere hochhielt. Indem

wir Systeme aufbauen, die tolerant gegenüber Unvollkommenheiten sind und

gleichzeitig strikt Protokolle einhalten, können wir Anwendungen erstellen, die

angesichts realer Herausforderungen widerstandsfähiger und anpassungsfähiger

sind.

Überlegungen und Gegenanzeigen

Die Anwendbarkeit von selbstheilenden Datenansätzen hängt vollständig von der Art

der Daten ab, die Ihre Anwendung verarbeitet. Es gibt einen Grund, warum Sie

möglicherweise nicht einfach JSON.parse per Monkeypatch so modifizieren sollten,

dass automatisch alle JSON-Parsing-Fehler in Ihrer Anwendung korrigiert werden:

Nicht alle Fehler können oder sollten automatisch korrigiert werden.

Selbstheilung ist besonders heikel, wenn sie mit regulatorischen oder Compliance-

Anforderungen in Bezug auf Datenhandhabung und -verarbeitung gekoppelt ist.

Einige Branchen, wie das Gesundheitswesen und das Finanzwesen, haben so strenge

Vorschriften bezüglich Datenintegrität und Nachvollziehbarkeit, dass jegliche Art von

“Black Box”-Datenkorrektur ohne angemessene Überwachung oder Protokollierung

gegen diese Vorschriften verstoßen könnte. Es ist entscheidend sicherzustellen, dass

alle selbstheilenden Datentechniken, die Sie entwickeln, mit den geltenden rechtlichen

und regulatorischen Rahmenbedingungen übereinstimmen.

Die Anwendung von selbstheilenden Datentechniken, insbesondere solcher mit

KI-Modellen, kann auch erhebliche Auswirkungen auf die Anwendungsleistung und

Selbstheilende Daten 180

Ressourcennutzung haben. Die Verarbeitung großer Datenmengen durch KI-Modelle

zur Fehlererkennung und -korrektur kann rechnerisch intensiv sein. Es ist wichtig,

die Abwägungen zwischen den Vorteilen selbstheilender Daten und den damit

verbundenen Leistungs- und Ressourcenkosten zu bewerten.

Lassen Sie uns nun die Faktoren untersuchen, die bei der Entscheidung eine Rolle

spielen, wann und wo dieser leistungsstarke Ansatz anzuwenden ist.

Datenkritikalität

Bei der Erwägung der Anwendung von selbstheilenden Datentechniken ist es

entscheidend, die Kritikalität der zu verarbeitenden Daten zu bewerten. Die

Kritikalitätsstufe bezieht sich auf die Wichtigkeit und Sensibilität der Daten im

Kontext Ihrer Anwendung und ihrer Geschäftsdomäne.

In manchen Fällen ist die automatische Korrektur von Datenfehlern möglicherweise

nicht angemessen, besonders wenn die Daten hochsensibel sind oder rechtliche

Auswirkungen haben. Betrachten Sie beispielsweise die folgenden Szenarien:

1. Finanztransaktionen: In Finanzanwendungen wie Banksystemen oder

Handelsplattformen ist die Datengenauigkeit von höchster Bedeutung. Selbst

kleine Fehler in Finanzdaten können erhebliche Konsequenzen haben, wie falsche

Kontoständen, fehlgeleitete Gelder oder fehlerhafte Handelsentscheidungen. In

diesen Fällen können automatisierte Korrekturen ohne gründliche Überprüfung

und Prüfung inakzeptable Risiken bergen.

2. Medizinische Aufzeichnungen: Gesundheitsanwendungen arbeiten mit

hochsensiblen und vertraulichen Patientendaten. Ungenauigkeiten in

medizinischen Aufzeichnungen können schwerwiegende Auswirkungen

auf die Patientensicherheit und Behandlungsentscheidungen haben. Die

automatische Änderung medizinischer Daten ohne angemessene Überwachung

und Validierung durch qualifiziertes medizinisches Fachpersonal könnte gegen

Selbstheilende Daten 181

regulatorische Anforderungen verstoßen und das Wohlergehen der Patienten

gefährden.

3. Rechtsdokumente: Anwendungen, die rechtliche Dokumente wie Verträge,

Vereinbarungen oder Gerichtsakten verarbeiten, erfordern strenge Genauigkeit

und Integrität. Selbst kleine Fehler in rechtlichen Daten können erhebliche

rechtliche Konsequenzen haben. Automatisierte Korrekturen sind in diesem

Bereich möglicherweise nicht angemessen, da die Daten oft eine manuelle

Überprüfung und Verifizierung durch Rechtsexperten erfordern, um ihre

Gültigkeit und Durchsetzbarkeit sicherzustellen.

In diesen kritischenDatenszenarien überwiegen die Risiken automatisierter Korrekturen

oft die potenziellen Vorteile. Die Folgen der Einführung von Fehlern oder falscher

Datenmodifikation können schwerwiegend sein und zu finanziellen Verlusten,

rechtlichen Haftungen oder sogar Schäden für Einzelpersonen führen.

Bei hochkritischen Daten ist es wichtig, manuelle Überprüfungs- und

Validierungsprozesse zu priorisieren. Menschliche Überwachung und Expertise

sind entscheidend für die Sicherstellung der Genauigkeit und Integrität der Daten.

Automatisierte selbstheilende Techniken können zwar weiterhin eingesetzt werden,

um potenzielle Fehler oder Inkonsistenzen zu kennzeichnen, aber die endgültige

Entscheidung über Korrekturen sollte menschliches Urteilsvermögen und Genehmigung

einbeziehen.

Es ist jedoch wichtig zu beachten, dass nicht alle Daten in einer Anwendung die

gleiche Kritikalitätsstufe haben müssen. Innerhalb derselben Anwendung kann es

Teilmengen von Daten geben, die weniger sensibel sind oder bei denen Fehler geringere

Auswirkungen haben. In solchen Fällen können selbstheilende Datentechniken selektiv

auf diese spezifischen Datenteilmengen angewendet werden, während kritische Daten

weiterhin manueller Überprüfung unterliegen.

Der Schlüssel liegt darin, die Kritikalität jeder Datenkategorie in Ihrer Anwendung

sorgfältig zu bewerten und klare Richtlinien und Prozesse für die Handhabung

Selbstheilende Daten 182

von Korrekturen basierend auf den damit verbundenen Risiken und Auswirkungen

zu definieren. Indem Sie zwischen kritischen (z.B. Hauptbücher, medizinische

Aufzeichnungen) und nicht-kritischen Daten (z.B. Postadressen, Ressourcenwarnungen)

unterscheiden, können Sie eine Balance zwischen der Nutzung der Vorteile

selbstheilender Datentechniken, wo angemessen, und der Aufrechterhaltung strenger

Kontrolle und Überwachung, wo notwendig, finden.

Letztendlich sollte die Entscheidung, selbstheilende Datentechniken auf kritische

Daten anzuwenden, in Absprache mit Domänenexperten, Rechtsberatern und anderen

relevanten Interessengruppen getroffen werden. Es ist wichtig, die spezifischen

Anforderungen, Vorschriften und Risiken im Zusammenhang mit den Daten Ihrer

Anwendung zu berücksichtigen und die Datenkorrekturstrategien entsprechend

anzupassen.

Fehlerschweregrad

Bei der Anwendung selbstheilender Datentechniken ist es wichtig, den Schweregrad

und die Auswirkungen der Datenfehler zu bewerten. Nicht alle Fehler sind gleich, und

die angemessene Vorgehensweise kann je nach Schweregrad des Problems variieren.

Kleinere Inkonsistenzen oder Formatierungsprobleme können für eine automatische

Korrektur geeignet sein. Beispielsweise kann ein selbstheilender Datenworker,

der defektes JSON reparieren soll, fehlende Kommas oder nicht maskierte doppelte

Anführungszeichen behandeln, ohne die Bedeutung oder Struktur der Daten wesentlich

zu verändern. Diese Art von Fehlern lässt sich oft unkompliziert korrigieren und hat

minimale Auswirkungen auf die allgemeine Datenintegrität.

Schwerwiegendere Fehler jedoch, die die Bedeutung oder Integrität der Daten

grundlegend verändern, erfordern möglicherweise einen anderen Ansatz. In solchen

Fällen reichen automatisierte Korrekturen eventuell nicht aus, und menschliches

Eingreifen kann erforderlich sein, um die Genauigkeit und Gültigkeit der Daten

sicherzustellen.

Selbstheilende Daten 183

Hier kommt das Konzept zum Tragen, KI selbst zur Bestimmung der Fehlerschwere

einzusetzen. Durch die Nutzung der Fähigkeiten von KI-Modellen können wir

selbstheilende Datenarbeiter entwickeln, die nicht nur Fehler korrigieren, sondern auch

deren Schweregrad bewerten und fundierte Entscheidungen über den Umgang mit

ihnen treffen.

Betrachten wir beispielsweise einen selbstheilenden Datenarbeiter, der für die Korrektur

von Inkonsistenzen in Daten zuständig ist, die in eine Kundendatenbank einfließen.

Der Arbeiter kann so konzipiert werden, dass er die Daten analysiert und potenzielle

Fehler identifiziert, wie etwa fehlende oder widersprüchliche Informationen. Anstatt

jedoch alle Fehler automatisch zu korrigieren, kann der Arbeiter mit zusätzlichen

Werkzeugaufrufen ausgestattet werden, die es ihm ermöglichen, schwerwiegende Fehler

zur manuellen Überprüfung zu markieren.

Hier ist ein Beispiel, wie dies implementiert werden kann:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

Selbstheilende Daten 184

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

In diesem Beispiel ist der CustomerDataHealer-Worker darauf ausgelegt,

Inkonsistenzen in Kundendaten zu erkennen und zu korrigieren. Auch hier verwenden

wir Response Fencing und Ventriloquist, um strukturierte Ausgaben zu erhalten.

Wichtig ist, dass die Systemanweisung des Workers Instruktionen enthält, die Funktion

flag_for_review zu verwenden, wenn schwerwiegende Fehler auftreten.

Wenn der Worker die Kundendaten verarbeitet, analysiert er die Daten und versucht,

etwaige Inkonsistenzen zu korrigieren. Wenn der Worker feststellt, dass die Fehler

schwerwiegend sind und menschliches Eingreifen erfordern, kann er das flag_for_-

review-Tool verwenden, um die Daten zu kennzeichnen und einen Grund für die

Kennzeichnung anzugeben.

Die chat_completion-Methode wird mit json: true aufgerufen, um die

korrigierten Kundendaten als JSON zu parsen. Es gibt keine Möglichkeit für eine

Schleife nach einem Funktionsaufruf, daher wird das Ergebnis leer sein, wenn

flag_for_review aufgerufen wurde. Andernfalls wird der Kundemit den überprüften

und möglicherweise korrigierten Daten aktualisiert.

Durch die Integration der Fehlerschwerebewertung und die Option, Daten für die

manuelle Überprüfung zu kennzeichnen, wird der selbstheilende Daten-Worker

intelligenter und anpassungsfähiger. Er kann kleinere Fehler automatisch behandeln

Selbstheilende Daten 185

und gleichzeitig schwerwiegende Fehler an menschliche Experten zur manuellen

Intervention eskalieren.

Die spezifischen Kriterien zur Bestimmung der Fehlerschwere können in der Anweisung

desWorkers basierend auf demDomänenwissen und den geschäftlichen Anforderungen

definiert werden. Faktoren wie die Auswirkungen auf die Datenintegrität, das Potenzial

für Datenverlust oder -beschädigung und die Folgen falscher Daten können bei der

Bewertung der Schwere berücksichtigt werden.

Durch den Einsatz von KI zur Bewertung der Fehlerschwere und die Bereitstellung

von Optionen für menschliches Eingreifen können selbstheilende Datentechniken

eine Balance zwischen Automatisierung und Aufrechterhaltung der Datengenauigkeit

schaffen. Dieser Ansatz stellt sicher, dass kleinere Fehler effizient korrigiert werden,

während schwerwiegende Fehler die notwendige Aufmerksamkeit und Expertise von

menschlichen Prüfern erhalten.

Domänenkomplexität

Bei der Betrachtung der Anwendung von selbstheilenden Datentechniken ist es wichtig,

die Komplexität der Datendomäne und die Regeln, die ihre Struktur und Beziehungen

bestimmen, zu bewerten. Die Komplexität der Domäne kann die Effektivität und

Durchführbarkeit automatisierter Datenkorrekturansätze erheblich beeinflussen.

Selbstheilende Datentechniken funktionieren gut, wenn die Daten klar definierten

Mustern und Einschränkungen folgen. In Domänen, in denen die Datenstruktur

relativ einfach ist und die Beziehungen zwischen Datenelementen unkompliziert sind,

können automatisierte Korrekturen mit hoher Zuverlässigkeit angewendet werden.

Zum Beispiel können Formatierungsprobleme oder die Durchsetzung grundlegender

Datentypbeschränkungen oft effektiv von selbstheilenden Daten-Workern behandelt

werden.

Mit zunehmender Komplexität der Datendomäne wachsen jedoch auch die

Herausforderungen bei der automatisierten Datenkorrektur. In Domänen mit

Selbstheilende Daten 186

komplexer Geschäftslogik, komplexen Beziehungen zwischen Datenentitäten oder

domänenspezifischen Regeln und Ausnahmen können selbstheilende Datentechniken

möglicherweise nicht alle Nuancen erfassen und unbeabsichtigte Konsequenzen

verursachen.

Betrachten wir ein Beispiel einer komplexen Domäne: ein Finanzhandelssystem. In

dieser Domäne umfassen die Daten verschiedene Finanzinstrumente, Marktdaten,

Handelsregeln und regulatorische Anforderungen. Die Beziehungen zwischen

verschiedenen Datenelementen können komplex sein, und die Regeln für Datenvalidität

und Konsistenz können hochspezifisch für die Domäne sein.

In einer solch komplexen Domäne müsste ein selbstheilender Daten-Worker, der mit

der Korrektur von Inkonsistenzen in Handelsdaten beauftragt ist, ein tiefes Verständnis

der domänenspezifischen Regeln und Einschränkungen haben. Er müsste Faktoren

wie Marktvorschriften, Handelslimits, Risikoberechnungen und Abwicklungsverfahren

berücksichtigen. Automatisierte Korrekturen können in diesem Kontext möglicherweise

nicht die volle Komplexität der Domäne erfassen und könnten versehentlich Fehler

einführen oder domänenspezifische Regeln verletzen.

Um die Herausforderungen der Domänenkomplexität zu bewältigen, können

selbstheilende Datentechniken durch die Integration von domänenspezifischem

Wissen und Regeln in die KI-Modelle und Worker verbessert werden. Dies kann durch

folgende Techniken erreicht werden:

1. Domänenspezifisches Training: Die für selbstheilende Daten verwendeten

KI-Modelle können auf domänenspezifischen Datensätzen trainiert oder sogar

feinabgestimmt werden, die die Feinheiten und Regeln der jeweiligen Domäne

erfassen. Indem die Modelle repräsentativen Daten und Szenarien ausgesetzt

werden, können sie die domänenspezifischen Muster, Einschränkungen und

Ausnahmen lernen.

2. Regelbasierte Einschränkungen: Selbstheilende Daten-Worker können

mit expliziten regelbasierten Einschränkungen erweitert werden, die

Selbstheilende Daten 187

domänenspezifisches Wissen kodieren. Diese Regeln können von

Domänenexperten definiert und in den Datenkorrekturprozess integriert werden.

Die KI-Modelle können diese Regeln dann nutzen, um ihre Entscheidungen zu

steuern und die Einhaltung domänenspezifischer Anforderungen sicherzustellen.

3. Zusammenarbeit mit Domänenexperten: In komplexen Domänen ist es

entscheidend, Domänenexperten in die Gestaltung und Entwicklung von

selbstheilenden Datentechniken einzubeziehen. Domänenexperten können

wertvolle Einblicke in die Feinheiten der Daten, die Geschäftsregeln und die

möglichen Randfälle liefern. Ihr Wissen kann in die KI-Modelle und Worker

integriert werden, um die Genauigkeit und Zuverlässigkeit automatisierter

Datenkorrekturen unter Verwendung von Human In The Loop-Mustern zu

verbessern.

4. Inkrementeller und iterativer Ansatz: Bei komplexen Domänen ist es oft

vorteilhaft, einen inkrementellen und iterativen Ansatz für selbstheilende Daten

zu wählen. Anstatt zu versuchen, Korrekturen für die gesamte Domäne auf

einmal zu automatisieren, konzentriert man sich auf spezifische Teildomänen

oder Datenkategorien, bei denen die Regeln und Einschränkungen gut verstanden

sind. Der Umfang der selbstheilenden Techniken wird schrittweise erweitert,

während das Verständnis der Domäne wächst und sich die Techniken als effektiv

erweisen.

Durch die Berücksichtigung der Komplexität der Datendomäne und die Integration

von domänenspezifischem Wissen in selbstheilende Datentechniken können Sie ein

Gleichgewicht zwischen Automatisierung und Genauigkeit erreichen. Es ist wichtig

zu erkennen, dass selbstheilende Daten keine Universallösung darstellen und dass der

Ansatz auf die spezifischen Anforderungen und Herausforderungen jeder Domäne

zugeschnitten werden sollte.

In komplexen Domänen kann ein hybrider Ansatz, der selbstheilende Datentechniken

mit menschlicher Expertise und Aufsicht kombiniert, am effektivsten sein.

Selbstheilende Daten 188

Automatisierte Korrekturen können Routine- und klar definierte Fälle behandeln,

während komplexe Szenarien oder Ausnahmen für menschliche Überprüfung und

Intervention markiert werden können. Dieser kollaborative Ansatz stellt sicher, dass

die Vorteile der Automatisierung realisiert werden, während die notwendige Kontrolle

und Genauigkeit in komplexen Datendomänen gewährleistet bleibt.

Erklärbarkeit und Transparenz

Erklärbarkeit bezieht sich auf die Fähigkeit, die Argumentation hinter den

Entscheidungen von KI-Modellen zu verstehen und zu interpretieren, während

Transparenz die klare Sichtbarkeit des Datenkorrekturprozesses beinhaltet.

In vielen Kontexten müssen Datenänderungen nachvollziehbar und begründbar

sein. Interessenvertreter, einschließlich Geschäftsanwender, Prüfer und

Regulierungsbehörden, können Erklärungen dafür verlangen, warum bestimmte

Datenkorrekturen vorgenommen wurden und wie die KI-Modelle zu diesen

Entscheidungen gekommen sind. Dies ist besonders wichtig in Bereichen, in denen

Datengenauigkeit und -integrität bedeutende Auswirkungen haben, wie Finanzen,

Gesundheitswesen und rechtliche Angelegenheiten.

Um dem Bedarf an Erklärbarkeit und Transparenz gerecht zu werden, sollten

selbstheilende Datentechniken Mechanismen enthalten, die Einblicke in den

Entscheidungsprozess von KI-Modellen gewähren. Dies kann durch verschiedene

Ansätze erreicht werden:

1. Gedankenkette: Indem das Modell aufgefordert wird, sein Denken “laut” zu

erklären, bevor es Änderungen an Daten vornimmt, kann das Verständnis des

Entscheidungsprozesses erleichtert werden und es können menschenlesbare

Erklärungen für die vorgenommenen Korrekturen generiert werden. Der

Kompromiss ist eine etwas höhere Komplexität bei der Trennung der Erklärung

von der strukturierten Datenausgabe, was durch… angegangen werden kann.

Selbstheilende Daten 189

2. Erklärungsgenerierung: Selbstheilende Datenarbeiter können mit der Fähigkeit

ausgestattet werden, menschenlesbare Erklärungen für ihre Korrekturen

zu generieren. Dies kann erreicht werden, indem das Modell seinen

Entscheidungsprozess als leicht verständliche Erklärungen direkt in die

Daten integriert ausgibt. Zum Beispiel könnte ein selbstheilender Datenarbeiter

einen Bericht erstellen, der die spezifischen Dateninkonsistenzen aufzeigt, die

er identifiziert hat, die angewandten Korrekturen und die Begründung für diese

Korrekturen.

3. Merkmalsbedeutung:KI-Modelle können mit Informationen über die Bedeutung

verschiedener Merkmale oder Attribute im Datenkorrekturprozess als Teil ihrer

Direktiven ausgestattet werden. Diese Direktiven können wiederum den

menschlichen Interessenvertretern zugänglich gemacht werden. Durch die

Identifizierung der Schlüsselfaktoren, die die Entscheidungen des Modells

beeinflussen, können Interessenvertreter Einblicke in die Begründung der

Korrekturen gewinnen und deren Gültigkeit bewerten.

4. Protokollierung und Prüfung: Die Implementierung umfassender

Protokollierungs- und Prüfmechanismen ist entscheidend für die

Aufrechterhaltung der Transparenz im selbstheilenden Datenprozess. Jede

von KI-Modellen vorgenommene Datenkorrektur sollte protokolliert werden,

einschließlich der ursprünglichen Daten, der korrigierten Daten und der

spezifischen durchgeführten Aktionen. Dieser Prüfpfad ermöglicht eine

retrospektive Analyse und bietet eine klare Aufzeichnung der an den Daten

vorgenommenen Änderungen.

5. Mensch-in-der-Schleife-Ansatz: Die Einbindung eines Mensch-in-der-

Schleife-Ansatzes kann die Erklärbarkeit und Transparenz von selbstheilenden

Datentechniken verbessern. Durch die Einbeziehung menschlicher Experten

in die Überprüfung und Validierung von KI-generierten Korrekturen können

Organisationen sicherstellen, dass die Korrekturen mit dem Domänenwissen und

den geschäftlichen Anforderungen übereinstimmen. Die menschliche Aufsicht

Selbstheilende Daten 190

fügt eine zusätzliche Ebene der Verantwortlichkeit hinzu und ermöglicht die

Identifizierung potenzieller Verzerrungen oder Fehler in den KI-Modellen.

6. Kontinuierliche Überwachung und Bewertung:Die regelmäßige Überwachung

und Bewertung der Leistung von selbstheilenden Datentechniken ist wesentlich

für die Aufrechterhaltung von Transparenz und Vertrauen. Durch die

Beurteilung der Genauigkeit und Effektivität der KI-Modelle im Laufe der

Zeit können Organisationen Abweichungen oder Anomalien identifizieren

und Korrekturmaßnahmen ergreifen. Kontinuierliche Überwachung hilft

sicherzustellen, dass der selbstheilende Datenprozess zuverlässig bleibt und mit

den gewünschten Ergebnissen übereinstimmt.

Erklärbarkeit und Transparenz sind kritische Überlegungen bei der Implementierung

von selbstheilenden Datentechniken. Durch die Bereitstellung klarer Erklärungen für

Datenkorrekturen, die Aufrechterhaltung umfassender Prüfpfade und die Einbeziehung

menschlicher Aufsicht können Organisationen Vertrauen in den selbstheilenden

Datenprozess aufbauen und sicherstellen, dass die an den Daten vorgenommenen

Änderungen gerechtfertigt und mit den Geschäftszielen abgestimmt sind.

Es ist wichtig, ein Gleichgewicht zwischen den Vorteilen der Automatisierung und

dem Bedarf an Transparenz zu finden. Während selbstheilende Datentechniken die

Datenqualität und Effizienz erheblich verbessern können, sollte dies nicht auf Kosten der

Sichtbarkeit und Kontrolle über denDatenkorrekturprozess gehen. Durch die Gestaltung

selbstheilender Datenarbeiter mit Fokus auf Erklärbarkeit und Transparenz können

Organisationen die Kraft der KI nutzen und gleichzeitig das notwendige Maß an

Verantwortlichkeit und Vertrauen in die Daten aufrechterhalten.

Unbeabsichtigte Folgen

Während selbstheilende Datentechniken darauf abzielen, die Datenqualität und

-konsistenz zu verbessern, ist es wichtig, sich der möglichen unbeabsichtigten Folgen

bewusst zu sein. Automatisierte Korrekturen können, wenn sie nicht sorgfältig

Selbstheilende Daten 191

konzipiert und überwacht werden, unbeabsichtigt die Bedeutung oder den Kontext der

Daten verändern und zu nachgelagerten Problemen führen.

Eines der Hauptrisiken selbstheilender Daten ist die Einführung von Verzerrungen

oder Fehlern im Datenkorrekturprozess. KI-Modelle können, wie jedes andere

Softwaresystem auch, Verzerrungen unterliegen, die in den Trainingsdaten vorhanden

sind oder durch die Gestaltung der Algorithmen eingeführt werden. Wenn diese

Verzerrungen nicht identifiziert und gemildert werden, können sie sich durch

den selbstheilenden Datenprozess fortpflanzen und zu verzerrten oder falschen

Datenänderungen führen.

Betrachten wir zum Beispiel einen selbstheilenden Datenarbeiter, der mit der

Korrektur von Inkonsistenzen in demografischen Kundendaten beauftragt ist.

Wenn das KI-Modell Voreingenommenheiten aus historischen Daten gelernt

hat, wie etwa die Verknüpfung bestimmter Berufe oder Einkommensniveaus mit

spezifischen Geschlechtern oder ethnischen Gruppen, könnte es falsche Annahmen

treffen und die Daten so modifizieren, dass diese Vorurteile verstärkt werden. Dies

kann zu ungenauen Kundenprofilen, fehlgeleiteten Geschäftsentscheidungen und

möglicherweise diskriminierenden Ergebnissen führen.

Eine weitere potenzielle unbeabsichtigte Folge ist der Verlust wertvoller Informationen

oder Kontexte während des Datenkorrekturprozesses. Selbstheilende Datentechniken

konzentrieren sich oft darauf, Daten zu standardisieren und zu normalisieren, um

Konsistenz zu gewährleisten. In manchen Fällen können die ursprünglichen Daten

jedoch Nuancen, Ausnahmen oder kontextuelle Informationen enthalten, die für das

Verständnis des Gesamtbildes wichtig sind. Automatisierte Korrekturen, die blind eine

Standardisierung erzwingen, können diese wertvollen Informationen unbeabsichtigt

entfernen oder verschleiern.

Stellen Sie sich zum Beispiel einen selbstheilenden Datenarbeiter vor, der für die

Korrektur von Inkonsistenzen in medizinischen Aufzeichnungen zuständig ist. Wenn

der Arbeiter auf die Krankengeschichte eines Patienten mit einer seltenen Erkrankung

Selbstheilende Daten 192

oder einem ungewöhnlichen Behandlungsplan stößt, könnte er versuchen, die Daten an

ein häufigeres Muster anzupassen. Dabei könnten jedoch die spezifischen Details und

der Kontext verloren gehen, die für die genaue Darstellung der einzigartigen Situation

des Patienten entscheidend sind. Dieser Informationsverlust kann schwerwiegende

Auswirkungen auf die Patientenversorgung und medizinische Entscheidungsfindung

haben.

Um die Risiken unbeabsichtigter Folgen zu minimieren, ist es wichtig, bei der

Konzeption und Implementierung selbstheilender Datentechniken einen proaktiven

Ansatz zu verfolgen:

1. Gründliche Tests und Validierung: Vor dem Einsatz selbstheilender

Datenarbeiter in der Produktion ist es entscheidend, ihr Verhalten gründlich

anhand verschiedener Szenarien zu testen und zu validieren. Dies umfasst

Tests mit repräsentativen Datensätzen, die verschiedene Grenzfälle, Ausnahmen

und potenzielle Voreingenommenheiten abdecken. Rigorose Tests helfen dabei,

unbeabsichtigte Folgen zu erkennen und zu beheben, bevor sie sich auf reale

Daten auswirken.

2. Kontinuierliche Überwachung und Auswertung: Die Implementierung

kontinuierlicher Überwachungs- und Auswertungsmechanismen ist wichtig,

um unbeabsichtigte Folgen im Laufe der Zeit zu erkennen und zu

minimieren. Die regelmäßige Überprüfung der Ergebnisse selbstheilender

Datenprozesse, die Analyse der Auswirkungen auf nachgelagerte Systeme

und Entscheidungsfindungen sowie das Einholen von Feedback von

Stakeholdern können helfen, negative Auswirkungen zu identifizieren und

zeitnahe Korrekturmaßnahmen einzuleiten. Wenn Ihre Organisation über

Betriebsdashboards verfügt, ist es wahrscheinlich eine gute Idee, gut sichtbare

Metriken zu automatisierten Datenänderungen hinzuzufügen. Noch besser ist

es vermutlich, Alarme einzurichten, die bei großen Abweichungen von der

normalen Datenänderungsaktivität ausgelöst werden!

Selbstheilende Daten 193

3. Menschliche Aufsicht und Intervention: Die Aufrechterhaltung menschlicher

Aufsicht und die Möglichkeit zur Intervention im selbstheilenden Datenprozess

ist entscheidend. Während Automatisierung die Effizienz stark verbessern kann,

ist es wichtig, dass menschliche Experten die von KI-Modellen vorgenommenen

Korrekturen überprüfen und validieren, besonders in kritischen oder sensiblen

Bereichen. Menschliches Urteilsvermögen und Fachwissen können helfen,

auftretende unbeabsichtigte Folgen zu erkennen und zu beheben.

4. Erklärbare KI (XAI) und Transparenz:Wie im vorherigen Abschnitt diskutiert,

kann die Einbindung erklärbarer KI-Techniken und die Gewährleistung von

Transparenz im selbstheilenden Datenprozess dazu beitragen, unbeabsichtigte

Folgen zu minimieren. Durch die Bereitstellung klarer Erklärungen

für Datenkorrekturen und die Führung umfassender Prüfpfade können

Organisationen die Argumentation hinter den von KI-Modellen vorgenommenen

Änderungen besser verstehen und nachverfolgen.

5. Inkrementeller und iterativer Ansatz: Die Anwendung eines inkrementellen

und iterativen Ansatzes für selbstheilende Daten kann dazu beitragen, das Risiko

unbeabsichtigter Folgen zuminimieren. Anstatt automatisierte Korrekturen sofort

auf den gesamten Datensatz anzuwenden, beginnen Sie mit einer Teilmenge der

Daten und erweitern Sie den Umfang schrittweise, wenn sich die Techniken als

effektiv und zuverlässig erweisen. Dies ermöglicht eine sorgfältige Überwachung

und Anpassung während des Prozesses und reduziert die Auswirkungen

unbeabsichtigter Folgen.

6. Zusammenarbeit und Feedback: Die Einbindung von Stakeholdern aus

verschiedenen Bereichen und die Förderung von Zusammenarbeit und Feedback

während des selbstheilenden Datenprozesses kann helfen, unbeabsichtigte

Folgen zu erkennen und zu beheben. Das regelmäßige Einholen von Input

von Domänenexperten, Datenkonsumenten und Endnutzern kann wertvolle

Einblicke in die realen Auswirkungen der Datenkorrekturen liefern und mögliche

übersehene Probleme aufzeigen.

Selbstheilende Daten 194

Durch die proaktive Bewältigung des Risikos unbeabsichtigter Folgen und die

Implementierung geeigneter Schutzmaßnahmen können Organisationen die

Vorteile selbstheilender Datentechniken nutzen und gleichzeitig potenzielle negative

Auswirkungen minimieren. Es ist wichtig, selbstheilende Daten als einen iterativen

und kollaborativen Prozess zu betrachten, der kontinuierlich überwacht, ausgewertet

und verfeinert wird, um sicherzustellen, dass sie mit den gewünschten Ergebnissen

übereinstimmen und die Integrität und Zuverlässigkeit der Daten gewährleisten.

Bei der Erwägung des Einsatzes selbstheilender Datenmuster ist es wichtig, diese

Faktoren sorgfältig zu evaluieren und die Vorteile gegen die potenziellen Risiken und

Einschränkungen abzuwägen. In manchen Fällen könnte ein hybrider Ansatz, der

automatisierte Korrekturen mit menschlicher Aufsicht und Intervention kombiniert, die

am besten geeignete Lösung sein.

Es ist auch erwähnenswert, dass selbstheilende Datentechniken nicht als Ersatz für

robuste Datenvalidierung, Eingabebereinigung und Fehlerbehandlungsmechanismen

gesehen werden sollten. Diese grundlegenden Praktiken bleiben für die Gewährleistung

der Datenintegrität und -sicherheit von entscheidender Bedeutung. Selbstheilende

Daten sollten als ergänzender Ansatz betrachtet werden, der diese bestehenden

Maßnahmen erweitern und verbessern kann.

Letztendlich hängt die Entscheidung für den Einsatz selbstheilender Datenmuster von

den spezifischen Anforderungen, Einschränkungen und Prioritäten Ihrer Anwendung

ab. Durch sorgfältige Berücksichtigung der oben genannten Überlegungen und deren

Abstimmungmit den Zielen und der Architektur Ihrer Anwendung können Sie fundierte

Entscheidungen darüber treffen, wann und wie selbstheilende Datentechniken effektiv

eingesetzt werden können.

Kontextbezogene
Inhaltsgenerierung

Muster der kontextbezogenen Inhaltsgenerierung nutzen die Leistungsfähigkeit von

Large Language Models (LLMs), um dynamische und kontextspezifische Inhalte

innerhalb von Anwendungen zu generieren. Diese Kategorie von Mustern erkennt

die Bedeutung der Bereitstellung personalisierter und relevanter Inhalte für Benutzer,

basierend auf deren spezifischen Bedürfnissen, Präferenzen und sogar früheren sowie

aktuellen Interaktionen mit der Anwendung.

In diesem Ansatz bezieht sich “Inhalt” sowohl auf primäre Inhalte (z.B. Blogbeiträge,

Artikel usw.) als auch auf Meta-Inhalte, wie etwa Empfehlungen zu primären

Kontextbezogene Inhaltsgenerierung 196

Inhalten.

Muster der kontextbezogenen Inhaltsgenerierung können eine entscheidende Rolle

bei der Verbesserung Ihrer Benutzerinteraktionsniveaus spielen, maßgeschneiderte

Erfahrungen bieten und Aufgaben der Inhaltserstellung sowohl für Sie als auch für

Ihre Benutzer automatisieren. Durch die Nutzung der in diesem Kapitel beschriebenen

Muster können Sie Anwendungen erstellen, die Inhalte dynamisch generieren und sich

in Echtzeit an den Kontext und die Eingaben anpassen.

Die Muster funktionieren durch die Integration von LLMs in die Ausgaben der

Anwendung, von der Benutzeroberfläche (manchmal als “Chrome” bezeichnet)

über E-Mails und andere Benachrichtigungsformen bis hin zu allen Arten von

Inhaltsgenerierungspipelines.

Wenn ein Benutzer mit der Anwendung interagiert oder eine bestimmte Inhaltsanfrage

auslöst, erfasst die Anwendung den relevanten Kontext, wie etwa Benutzerpräferenzen,

vorherige Interaktionen oder spezifische Eingabeaufforderungen. Diese kontextuellen

Informationen werden dann zusammen mit allen erforderlichen Vorlagen oder

Richtlinien in das LLM eingespeist und zur Erzeugung von Textausgaben verwendet,

die sonst entweder fest codiert, in einer Datenbank gespeichert oder algorithmisch

generiert werden müssten.

Die von LLMs generierten Inhalte können verschiedene Formen annehmen, wie

personalisierte Empfehlungen, dynamische Produktbeschreibungen, maßgeschneiderte

E-Mail-Antworten oder sogar vollständige Artikel oder Blogbeiträge. Eine der

radikalsten Anwendungen dieser Inhalte, die ich vor über einem Jahr entwickelt

habe, ist die dynamische Generierung von UI-Elementen wie Formularbezeichnungen,

Tooltips und anderen Arten von erläuterndem Text.

Kontextbezogene Inhaltsgenerierung 197

Personalisierung

Einer der wichtigsten Vorteile von Mustern der kontextbezogenen Inhaltsgenerierung

ist die Fähigkeit, hochgradig personalisierte Erfahrungen für Benutzer bereitzustellen.

Durch die Generierung von Inhalten basierend auf benutzerspezifischem Kontext

ermöglichen diese Muster Anwendungen, Inhalte auf die individuellen Interessen,

Präferenzen und Interaktionen der Benutzer zuzuschneiden.

Personalisierung geht über das einfache Einfügen eines Benutzernamens in generische

Inhalte hinaus. Es beinhaltet die Nutzung des reichhaltigen Kontexts, der über jeden

Benutzer verfügbar ist, um Inhalte zu generieren, diemit ihren spezifischen Bedürfnissen

und Wünschen resonieren. Dieser Kontext kann eine Vielzahl von Faktoren umfassen,

wie:

1. Benutzerprofilinformationen: Auf der allgemeinsten Ebene der Anwendung

dieser Technik können demografische Daten, Interessen, Präferenzen und andere

Profilattribute genutzt werden, um Inhalte zu generieren, diemit demHintergrund

und den Eigenschaften des Benutzers übereinstimmen.

2. Verhaltensdaten: Die vergangenen Interaktionen eines Benutzers mit der

Anwendung, wie angesehene Seiten, angeklickte Links oder gekaufte Produkte,

können wertvolle Einblicke in ihr Verhalten und ihre Interessen liefern. Diese

Daten können verwendet werden, um Inhaltsvorschläge zu generieren, die ihre

Interaktionsmuster widerspiegeln und ihre zukünftigen Bedürfnisse vorhersagen.

3. Kontextuelle Faktoren: Der aktuelle Kontext des Benutzers, wie Standort,

Gerät, Tageszeit oder sogar das Wetter, kann den Inhaltsgenerierungsprozess

beeinflussen. Beispielsweise könnte eine Reise-Anwendung über einen KI-

Worker verfügen, der personalisierte Empfehlungen basierend auf dem aktuellen

Standort des Benutzers und den vorherrschenden Wetterbedingungen generieren

kann.

Kontextbezogene Inhaltsgenerierung 198

Durch die Nutzung dieser kontextuellen Faktoren ermöglichen Muster der

kontextbezogenen Inhaltsgenerierung Anwendungen, Inhalte bereitzustellen, die

sich für jeden einzelnen Benutzer maßgeschneidert anfühlen. Diese Ebene der

Personalisierung hat mehrere bedeutende Vorteile:

1. Erhöhte Interaktion: Personalisierte Inhalte fesseln die Aufmerksamkeit der

Benutzer und halten sie bei der Anwendung engagiert. Wenn Benutzer das Gefühl

haben, dass die Inhalte relevant sind und direkt ihre Bedürfnisse ansprechen,

verbringen sie mit höherer Wahrscheinlichkeit mehr Zeit mit der Interaktion mit

der Anwendung und der Erkundung ihrer Funktionen.

2. Verbesserte Benutzerzufriedenheit: Personalisierte Inhalte zeigen, dass

die Anwendung die einzigartigen Anforderungen des Benutzers versteht

und berücksichtigt. Durch die Bereitstellung von Inhalten, die hilfreich,

informativ und auf ihre Interessen abgestimmt sind, kann die Anwendung die

Benutzerzufriedenheit steigern und eine stärkere Verbindung zu ihren Benutzern

aufbauen.

3. Höhere Konversionsraten: Im Kontext von E-Commerce- oder Marketing-

Anwendungen können personalisierte Inhalte die Konversionsraten erheblich

beeinflussen. Indem Benutzern Produkte, Angebote oder Empfehlungen

präsentiert werden, die auf ihre Präferenzen und ihr Verhalten zugeschnitten

sind, kann die Anwendung die Wahrscheinlichkeit erhöhen, dass Benutzer

gewünschte Aktionen ausführen, wie einen Kauf zu tätigen oder sich für einen

Dienst anzumelden.

Produktivität

Muster der kontextbezogenen Inhaltsgenerierung können bestimmte Arten der

Produktivität erheblich steigern, indem sie den Bedarf an manueller Inhaltsgenerierung

und -bearbeitung in kreativen Prozessen reduzieren. Durch die Nutzung der

Kontextbezogene Inhaltsgenerierung 199

Leistungsfähigkeit von LLMs können Sie qualitativ hochwertige Inhalte im großen

Maßstab generieren und dabei Zeit und Aufwand sparen, die Ihre Content-Ersteller

und Entwickler sonst für mühsame manuelle Arbeit aufwenden müssten.

Traditionell müssen Content-Ersteller Inhalte recherchieren, schreiben, bearbeiten und

formatieren, um sicherzustellen, dass diese den Anforderungen der Anwendung und

den Erwartungen der Nutzer entsprechen. Dieser Prozess kann zeitaufwendig und

ressourcenintensiv sein, besonders wenn die Menge der Inhalte wächst.

Mit Mustern der kontextuellen Inhaltsgenerierung kann der Content-Erstellungsprozess

jedoch weitgehend automatisiert werden. LLMs können auf Basis der bereitgestellten

Prompts und Richtlinien kohärente, grammatikalisch korrekte und kontextuell relevante

Inhalte generieren. Diese Automatisierung bietet mehrere Produktivitätsvorteile:

1. Reduzierter manueller Aufwand: Durch die Delegation von

Inhaltsgenerierungsaufgaben an LLMs können sich Content-Ersteller

auf übergeordnete Aufgaben wie Content-Strategie, Ideenfindung und

Qualitätssicherung konzentrieren. Sie können dem LLM den notwendigen

Kontext, Vorlagen und Richtlinien zur Verfügung stellen und ihm die eigentliche

Inhaltsgenerierung überlassen. Dies reduziert den manuellen Aufwand für das

Schreiben und Bearbeiten und ermöglicht es Content-Erstellern, produktiver und

effizienter zu arbeiten.

2. Schnellere Inhaltserstellung: LLMs können Inhalte viel schneller generieren als

menschliche Autoren. Mit den richtigen Prompts und Richtlinien kann ein LLM

mehrere Inhaltsstücke in wenigen Sekunden oder Minuten produzieren. Diese

Geschwindigkeit ermöglicht es Anwendungen, Inhalte in einem viel schnelleren

Tempo zu generieren und mit den Anforderungen der Nutzer und der sich ständig

verändernden digitalen Landschaft Schritt zu halten.

Kontextbezogene Inhaltsgenerierung 200

Führt schnellere Inhaltserstellung zu einer “Tragik der Allmende” Situation, in der

das Internet in Inhalten ertrinkt, die niemand liest? Leider vermute ich, dass die

Antwort ja lautet.

3. Konsistenz und Qualität: LLMs können Inhalte problemlos so überarbeiten, dass

sie in Stil, Ton und Qualität konsistent sind. Mit klaren Richtlinien und Beispielen

können bestimmte Arten von Anwendungen (z.B. Nachrichtenredaktionen,

PR etc.) sicherstellen, dass ihre von Menschen erstellten Inhalte mit ihrer

Markenstimme übereinstimmen und den gewünschten Qualitätsstandards

entsprechen. Diese Konsistenz reduziert den Bedarf an umfangreichen

Überarbeitungen und Korrekturen und spart Zeit und Aufwand im Content-

Erstellungsprozess.

4. Iteration und Optimierung: Muster der kontextuellen Inhaltsgenerierung

ermöglichen schnelle Iteration und Optimierung von Inhalten. Durch Anpassung

der Prompts, Vorlagen oder Richtlinien für das LLM können Ihre Anwendungen

schnell Inhaltsvariationen generieren und verschiedene Ansätze auf eine

automatisierte Weise testen, die in der Vergangenheit nie möglich war. Dieser

iterative Prozess ermöglicht schnelleres Experimentieren und Verfeinern von

Content-Strategien, was im Laufe der Zeit zu effektiveren und ansprechenderen

Inhalten führt. Diese spezielle Technik kann ein echter Game-Changer für

Anwendungen wie E-Commerce sein, die von Absprungraten und Engagement

leben oder sterben.

Kontextbezogene Inhaltsgenerierung 201

Es ist wichtig zu beachten, dassMuster der kontextuellen Inhaltsgenerierung

zwar die Produktivität erheblich steigern können, aber den Bedarf an

menschlicher Beteiligung nicht vollständig eliminieren. Content-Ersteller

und Redakteure spielen weiterhin eine entscheidende Rolle bei der

Definition der übergeordneten Content-Strategie, der Anleitung des LLM

und der Sicherstellung der Qualität und Angemessenheit der generierten

Inhalte.

Durch die Automatisierung der eher repetitiven und zeitaufwendigen Aspekte der

Inhaltserstellung setzen Muster der kontextuellen Inhaltsgenerierung wertvolle

menschliche Zeit und Ressourcen frei, die für höherwertige Aufgaben eingesetzt

werden können. Diese gesteigerte Produktivität ermöglicht es Ihnen, personalisierte

und ansprechendere Inhalte für Nutzer bereitzustellen und gleichzeitig die Workflows

der Inhaltserstellung zu optimieren.

Schnelle Iteration und Experimentierung

Muster der kontextuellen Inhaltsgenerierung ermöglichen es Ihnen, schnell zu iterieren

und mit verschiedenen Inhaltsvariationen zu experimentieren, was eine schnellere

Optimierung und Verfeinerung Ihrer Content-Strategie ermöglicht. Sie können in

Sekundenschnelle mehrere Versionen von Inhalten generieren, indem Sie einfach den

Kontext, die Vorlagen oder die Richtlinien für das Modell anpassen.

Diese Fähigkeit zur schnellen Iteration bietet mehrere wichtige Vorteile:

1. Testen und Optimierung: Mit der Möglichkeit, schnell Inhaltsvariationen

zu generieren, können Sie einfach verschiedene Ansätze testen und deren

Wirksamkeit messen. Sie können zum Beispiel mehrere Versionen einer

Produktbeschreibung oder einer Marketing-Botschaft generieren, die jeweils auf

ein bestimmtes Nutzersegment oder einen bestimmten Kontext zugeschnitten

sind. Durch die Analyse von Nutzerinteraktionsmetriken wie Klickraten oder

Kontextbezogene Inhaltsgenerierung 202

Konversionsraten können Sie die effektivsten Inhaltsvariationen identifizieren

und Ihre Content-Strategie entsprechend optimieren.

2. A/B-Tests: Muster der kontextuellen Inhaltsgenerierung ermöglichen nahtloses

A/B-Testing von Inhalten. Sie können zwei oder mehr Variationen von Inhalten

generieren und diese zufällig verschiedenen Nutzergruppen präsentieren. Durch

den Vergleich der Leistung jeder Variation können Sie feststellen, welche Inhalte

bei Ihrer Zielgruppe am besten ankommen. Dieser datengesteuerte Ansatz

ermöglicht es Ihnen, fundierte Entscheidungen zu treffen und Ihre Inhalte

kontinuierlich zu verfeinern, um die Nutzerinteraktion zu maximieren und Ihre

gewünschten Ergebnisse zu erzielen.

3. Personalisierungsexperimente: Schnelle Iteration und Experimentierung

sind besonders wertvoll, wenn es um Personalisierung geht. Mit Mustern

der kontextuellen Inhaltsgenerierung können Sie schnell personalisierte

Inhaltsvariationen basierend auf verschiedenen Nutzersegmenten, Präferenzen

oder Verhaltensweisen generieren. Durch das Experimentieren mit verschiedenen

Personalisierungsstrategien können Sie die effektivsten Ansätze identifizieren,

um einzelne Nutzer anzusprechen und maßgeschneiderte Erlebnisse zu bieten.

4. Anpassung an sich ändernde Trends: Die Fähigkeit zur schnellen Iteration

und zum Experimentieren ermöglicht es Ihnen, agil zu bleiben und sich an

verändernde Trends und Benutzerpräferenzen anzupassen. Wenn neue Themen,

Schlüsselwörter oder Benutzerverhalten auftauchen, können Sie schnell Inhalte

erstellen, die mit diesen Trends übereinstimmen. Durch kontinuierliches

Experimentieren und Verfeinern Ihrer Inhalte können Sie relevant bleiben und

sich einen Wettbewerbsvorteil in der sich ständig weiterentwickelnden digitalen

Landschaft sichern.

5. Kosteneffektives Experimentieren: Traditionelles Content-Experimentieren

erfordert oft erheblichen Zeit- und Ressourcenaufwand, da Content-

Ersteller verschiedene Variationen manuell entwickeln und testen müssen.

Mit Kontextbezogenen Inhaltsgenerierungsmustern werden die Kosten

Kontextbezogene Inhaltsgenerierung 203

für Experimente jedoch deutlich reduziert. Große Sprachmodelle können

Inhaltsvariationen schnell und in großem Umfang generieren, sodass Sie eine

breite Palette von Ideen und Ansätzen erkunden können, ohne erhebliche Kosten

zu verursachen.

Um das Beste aus schneller Iteration und Experimentieren herauszuholen, ist es

wichtig, ein gut definiertes Experimentier-Framework zu haben. Dieses Framework

sollte Folgendes umfassen:

• Klare Ziele und Hypothesen für jedes Experiment

• Geeignete Metriken und Tracking-Mechanismen zur Messung der Content-

Performance

• Segmentierungs- und Targeting-Strategien, um sicherzustellen, dass relevante

Inhaltsvariationen den richtigen Benutzern bereitgestellt werden

• Analyse- und Berichtswerkzeuge zur Ableitung von Erkenntnissen aus den

experimentellen Daten

• Ein Prozess zur Integration von Erkenntnissen und Optimierungen in Ihre

Content-Strategie

Durch die Einbindung von schneller Iteration und Experimentieren können Sie

Ihre Inhalte kontinuierlich verfeinern und optimieren und sicherstellen, dass sie

ansprechend, relevant und effektiv bei der Erreichung der Ziele Ihrer Anwendung

bleiben. Dieser agile Ansatz zur Inhaltserstellung ermöglicht es Ihnen, der Entwicklung

voraus zu sein und außergewöhnliche Benutzererfahrungen zu liefern.

Skalierbarkeit und Effizienz

Mit dem Wachstum von Anwendungen und der steigenden Nachfrage nach

personalisierten Inhalten ermöglichen kontextbezogene Inhaltsgenerierungsmuster

eine effiziente Skalierung der Inhaltserstellung. Große Sprachmodelle können

Kontextbezogene Inhaltsgenerierung 204

Inhalte für eine große Anzahl von Benutzern und Kontexten gleichzeitig generieren,

ohne dass die personellen Ressourcen proportional erhöht werden müssen. Diese

Skalierbarkeit ermöglicht es Anwendungen, personalisierte Erlebnisse für eine

wachsende Benutzerbasis bereitzustellen, ohne ihre Inhaltserstellungskapazitäten zu

überlasten.

Beachten Sie, dass kontextbezogene Inhaltsgenerierung effektiv zur

Internationalisierung Ihrer Anwendung “im laufenden Betrieb” verwendet

werden kann. Tatsächlich ist genau das, was ichmit meinem Instant18n Gem

gemacht habe, um Olympia in mehr als einem halben Dutzend Sprachen

bereitzustellen, obwohl wir noch nicht einmal ein Jahr alt sind.

KI-gestützte Lokalisierung

Wenn Sie mir einen Moment der Prahlerei erlauben: Ich denke, dass meine Instant18n-

Bibliothek für Rails-Anwendungen ein bahnbrechendes Beispiel für das Muster der

“Kontextbezogenen Inhaltsgenerierung” in Aktion ist und das transformative Potenzial

von KI in der Anwendungsentwicklung zeigt. Dieses Gem nutzt die Leistungsfähigkeit

von OpenAIs GPT-Sprachmodell, um die Art und Weise zu revolutionieren, wie

Internationalisierung und Lokalisierung in Rails-Anwendungen gehandhabt werden.

Traditionell erfordert die Internationalisierung einer Rails-Anwendung die manuelle

Definition von Übersetzungsschlüsseln und die Bereitstellung entsprechender

Übersetzungen für jede unterstützte Sprache. Dieser Prozess kann zeitaufwändig,

ressourcenintensiv und anfällig für Inkonsistenzen sein. Mit dem Instant18n Gem wird

das Paradigma der Lokalisierung jedoch vollständig neu definiert.

Durch die Integration eines großen Sprachmodells ermöglicht das Instant18n Gem die

Generierung von Übersetzungen im laufenden Betrieb, basierend auf dem Kontext und

der Bedeutung des Textes. Anstatt sich auf vordefinierte Übersetzungsschlüssel und

Kontextbezogene Inhaltsgenerierung 205

statische Übersetzungen zu verlassen, übersetzt das Gem Texte dynamisch mithilfe der

KI. Dieser Ansatz bietet mehrere wichtige Vorteile:

1. Nahtlose Lokalisierung: Mit dem Instant18n Gem müssen Entwickler keine

Übersetzungsdateien für jede unterstützte Sprache mehr manuell definieren

und pflegen. Das Gem generiert automatisch Übersetzungen basierend

auf dem bereitgestellten Text und der gewünschten Zielsprache, was den

Lokalisierungsprozess mühelos und nahtlos macht.

2. Kontextuelle Genauigkeit: KI kann genügend Kontext erhalten, um die Nuancen

des zu übersetzenden Textes zu erfassen. Sie kann den umgebenden Kontext,

Redewendungen und kulturelle Referenzen berücksichtigen, um Übersetzungen

zu generieren, die präzise, natürlich klingend und kontextuell angemessen sind.

3. Umfangreiche Sprachunterstützung: Das Instant18n Gem nutzt die

umfassenden Kenntnisse und linguistischen Fähigkeiten von GPT und

ermöglicht Übersetzungen in eine große Auswahl an Sprachen. Von gängigen

Sprachen wie Spanisch und Französisch bis hin zu selteneren oder fiktiven

Sprachen wie Klingonisch und Elbisch kann das Gem eine Vielzahl von

Übersetzungsanforderungen bewältigen.

4. Flexibilität und Kreativität: Das Gem geht über traditionelle

Sprachübersetzungen hinaus und ermöglicht kreative und unkonventionelle

Lokalisierungsoptionen. Entwickler können Text in verschiedene Stile, Dialekte

oder sogar fiktive Sprachen übersetzen und eröffnen damit neue Möglichkeiten

für einzigartige Benutzererlebnisse und ansprechende Inhalte.

5. Leistungsoptimierung: Das Instant18n Gem integriert Caching-Mechanismen

zur Verbesserung der Leistung und Reduzierung des Overheads bei wiederholten

Übersetzungen. Übersetzte Texte werden zwischengespeichert, sodass

nachfolgende Anfragen für dieselbe Übersetzung schnell und ohne redundante

API-Aufrufe bereitgestellt werden können.

Das Instant18n Gem veranschaulicht die Leistungsfähigkeit des Musters

Kontextbezogene Inhaltsgenerierung 206

“Kontextbezogene Inhaltsgenerierung”, indem es KI nutzt, um lokalisierte Inhalte

dynamisch zu generieren. Es zeigt, wie KI in die Kernfunktionalität einer Rails-

Anwendung integriert werden kann und dabei die Art und Weise verändert, wie

Entwickler an Internationalisierung und Lokalisierung herangehen.

Durch die Eliminierung der Notwendigkeit manueller Übersetzungsverwaltung und

die Ermöglichung von Echtzeit-Übersetzungen basierend auf dem Kontext spart das

Instant18n Gem Entwicklern erheblich Zeit und Aufwand. Es ermöglicht ihnen, sich

auf die Entwicklung der Kernfunktionen ihrer Anwendung zu konzentrieren, während

sichergestellt wird, dass der Lokalisierungsaspekt nahtlos und präzise gehandhabt wird.

Die Bedeutung von Benutzertests und Feedback

Behalten Sie schließlich immer die Bedeutung von Benutzertests und Feedback imAuge.

Es ist entscheidend zu validieren, dass die kontextbezogene Inhaltsgenerierung die

Erwartungen der Benutzer erfüllt und mit den Zielen der Anwendung übereinstimmt.

Entwickeln und verfeinern Sie generierte Inhalte kontinuierlich basierend auf

Benutzereinblicken und Analysen. Wenn Sie dynamische Inhalte in einem Umfang

generieren, der eine manuelle Validierung durch Sie und Ihr Team unmöglich macht,

sollten Sie Feedback-Mechanismen einbauen, die es Benutzern ermöglichen, seltsame

oder falsche Inhalte zu melden, zusammenmit einer Erklärung warum. Dieses wertvolle

Feedback kann sogar an einen KI-Worker weitergeleitet werden, der damit beauftragt

ist, Anpassungen an der Komponente vorzunehmen, die den Inhalt generiert hat!

Generative UI

Aufmerksamkeit ist heutzutage ein so knappes Gut, dass effektives Nutzerengagement

inzwischen Softwareerlebnisse erfordert, die nicht nur nahtlos und intuitiv,

sondern auch hochgradig auf individuelle Bedürfnisse, Präferenzen und Kontexte

zugeschnitten sind. Infolgedessen stehen Designer und Entwickler zunehmend vor der

Herausforderung, Benutzeroberflächen zu erstellen, die sich im großen Maßstab an die

einzigartigen Anforderungen jedes Nutzers anpassen können.

Generative UI (GenUI) ist ein wahrhaft revolutionärer Ansatz für das Design von

Benutzeroberflächen, der die Leistungsfähigkeit von Large Language Models (LLMs)

nutzt, um hochgradig personalisierte und dynamische Nutzererlebnisse in Echtzeit zu

erstellen. Ich wollte Ihnen in diesem Buch unbedingt zumindest eine Einführung in

GenUI geben, da ich glaube, dass es eine der vielversprechendsten neuen Möglichkeiten

ist, die derzeit im Bereich des Anwendungsdesigns und der Frameworks existieren. Ich

bin überzeugt, dass in dieser speziellen Nische Dutzende oder mehr neue erfolgreiche

Generative UI 208

kommerzielle und Open-Source-Projekte entstehen werden.

Im Kern kombiniert GenUI die Prinzipien der Kontextbasierten Inhaltsgenerierung

mit fortschrittlichen KI-Techniken, um Benutzeroberflächen-Elemente wie Text, Bilder

und Layouts dynamisch zu generieren, basierend auf einem tiefgehenden Verständnis

des Nutzerkontexts, der Präferenzen und Ziele. GenUI ermöglicht es Designern und

Entwicklern, Schnittstellen zu erstellen, die sich als Reaktion auf Nutzerinteraktionen

anpassen und weiterentwickeln und damit ein Maß an Personalisierung bieten, das

bisher unerreichbar war.

GenUI stellt eine grundlegende Veränderung in unserem Ansatz zum Design von

Benutzeroberflächen dar. Statt für die Masse zu designen, ermöglicht GenUI das Design

für den Einzelnen. Personalisierte Inhalte und Schnittstellen haben das Potenzial,

Nutzererlebnisse zu schaffen, die bei jedem Nutzer auf einer tieferen Ebene resonieren

und dadurch Engagement, Zufriedenheit und Loyalität steigern.

Als Technologie an vorderster Front ist der Übergang zu GenUI voller konzeptioneller

und praktischer Herausforderungen. Die Integration von KI in den Designprozess und

die Sicherstellung, dass die generierten Schnittstellen nicht nur personalisiert, sondern

auch nutzbar, zugänglich und mit dem Gesamtmarkenauftritt und der Nutzererfahrung

übereinstimmen - all diese Herausforderungen machen GenUI zu einer Aufgabe für

die wenigen, nicht die vielen. Darüber hinaus wirft der Einsatz von KI Fragen zum

Datenschutz, zur Transparenz und möglicherweise sogar zu ethischen Implikationen

auf.

Trotz der Herausforderungen haben personalisierte Erlebnisse im großen Maßstab

die Kraft, die Art und Weise, wie wir mit digitalen Produkten und Dienstleistungen

interagieren, vollständig zu transformieren. Es eröffnet Möglichkeiten zur Schaffung

inklusiver und zugänglicher Schnittstellen, die den vielfältigen Bedürfnissen der Nutzer

gerecht werden, unabhängig von ihren Fähigkeiten, Hintergründen oder Präferenzen.

In diesem Kapitel werden wir das Konzept von GenUI erkunden und einige

charakteristische Merkmale, zentrale Vorteile und potenzielle Herausforderungen

Generative UI 209

untersuchen. Wir beginnen mit der grundlegendsten und zugänglichsten Form von

GenUI: der Generierung von Textkopien für ansonsten traditionell gestaltete und

implementierte Benutzeroberflächen.

Generierung von Texten für

Benutzeroberflächen

Textelemente, die in der Benutzeroberfläche Ihrer Anwendung existieren, wie

Formularfelder, Tooltips und erklärende Texte, sind typischerweise fest in den

Templates oder UI-Komponenten codiert und bieten allen Nutzern ein konsistentes, aber

generisches Erlebnis. Mithilfe von kontextbasierten Inhaltsgenerierungsmustern können

Sie diese statischen Elemente in dynamische, kontextbewusste und personalisierte

Komponenten umwandeln.

Personalisierte Formulare

Formulare sind ein allgegenwärtiger Bestandteil von Web- und Mobile-Anwendungen

und dienen als primäres Mittel zur Erfassung von Nutzereingaben. Traditionelle

Formulare bieten jedoch oft ein generisches und unpersönliches Erlebnis mit

Standardbeschriftungen und -feldern, die nicht immer mit dem spezifischen

Kontext oder den Bedürfnissen des Nutzers übereinstimmen. Nutzer füllen mit

höherer Wahrscheinlichkeit Formulare aus, die auf ihre Bedürfnisse und Präferenzen

zugeschnitten sind, was zu höheren Konversionsraten und größerer Nutzerzufriedenheit

führt.

Es ist jedoch wichtig, ein Gleichgewicht zwischen Personalisierung und Konsistenz zu

finden. Während die Anpassung von Formularen an einzelne Nutzer vorteilhaft sein

kann, ist es entscheidend, ein gewisses Maß an Vertrautheit und Vorhersehbarkeit zu

bewahren. Nutzer sollten Formulare auch mit personalisierten Elementen noch leicht

erkennen und navigieren können.

Generative UI 210

Hier sind einige Ideen für personalisierte Formulare zur Inspiration:

Kontextbezogene Feldvorschläge

GenUI kann die vorherigen Interaktionen, Präferenzen und Daten des Nutzers

analysieren, um intelligente Feldvorschläge als Vorhersagen anzubieten. Wenn der

Nutzer beispielsweise zuvor seine Lieferadresse eingegeben hat, kann das Formular

die relevanten Felder automatisch mit seinen gespeicherten Informationen ausfüllen.

Dies spart nicht nur Zeit, sondern zeigt auch, dass die Anwendung die Präferenzen des

Nutzers versteht und sich daran erinnert.

Moment mal, ist diese Technik nicht auch ohne KI-Einsatz möglich? Natürlich, aber der

Reiz, solche Funktionalität mit KI zu steuern, liegt in zweierlei Hinsicht: 1) wie einfach

sie sich implementieren lässt und 2) wie widerstandsfähig sie ist, während sich Ihre

Benutzeroberfläche im Laufe der Zeit verändert und weiterentwickelt.

Lassen Sie uns einen Service für unser theoretisches Auftragsabwicklungssystem

erstellen, der versucht, proaktiv die richtige Lieferadresse für den Benutzer auszufüllen.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

Generative UI 211

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Dieses Beispiel ist sehr vereinfacht, sollte aber für die meisten Fälle funktionieren. Die

Idee ist es, die KI auf die gleiche Weise eine Vermutung anstellen zu lassen wie ein

Mensch es tun würde. Um zu verdeutlichen, wovon ich spreche, betrachten wir einige

Beispieldaten:

Generative UI 212

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

Generative UI 213

43]

Ist dir das Muster in den Daten aufgefallen? Ich garantiere dir, das ist ein Kinderspiel für

ein LLM. Zur Demonstration fragen wir GPT-4, was die wahrscheinlichste Lieferadresse

für ein “Thermometer” ist.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Wenn Sie denken, dass es übertrieben ist, ein teures Modell wie GPT-4 für diese Aufgabe

zu verwenden, haben Sie Recht! Ich habe denselben Prompt mit Mistral 7B Instruct

getestet, und es lieferte die folgende Antwort mit 75 Token pro Sekunde, zu minimalen

Kosten von 0,000218 USD.

Generative UI 214

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Ist der Aufwand und die Kosten dieser Technik es wert, um ein Checkout-Erlebnis

magischer zu gestalten? Für viele Online-Händler auf jeden Fall. Und wie es aussieht,

werden die Kosten für KI-Berechnungen nur noch weiter sinken, besonders bei den

Anbietern von Open-Source-Modell-Hosting, die sich in einem Preiskampf befinden.

Verwenden Sie ein Prompt Template und StructuredIO zusammen mit

Response Fencing, um diese Art von Chat-Completion zu optimieren.

Adaptive Feldanordnung

Die Reihenfolge, in der Formularfelder präsentiert werden, kann einen erheblichen

Einfluss auf das Benutzererlebnis und die Abschlussquoten haben. Mit GenUI können

Sie die Feldanordnung dynamisch an den Kontext des Benutzers und die Wichtigkeit

jedes Feldes anpassen. Wenn ein Benutzer beispielsweise ein Registrierungsformular

für eine Fitness-App ausfüllt, könnte das Formular Felder priorisieren, die mit seinen

Fitnesszielen und Präferenzen zusammenhängen, wodurch der Prozess relevanter und

ansprechender wird.

Generative UI 215

Personalisierte Microcopy

Der Anleitungstext, Fehlermeldungen und andere Microcopy in Verbindung mit

Formularen können ebenfalls mit GenUI personalisiert werden. Anstatt generische

Fehlermeldungen wie “Ungültige E-Mail-Adresse” anzuzeigen, können Sie hilfreichere

und kontextbezogene Nachrichten generieren, wie zum Beispiel “Bitte geben Sie

eine gültige E-Mail-Adresse ein, um Ihre Bestellbestätigung zu erhalten.” Diese

personalisierten Anpassungen können das Formularerlebnis benutzerfreundlicher und

weniger frustrierend gestalten.

Personalisierte Validierung

Ähnlichwie bei der PersonalisiertenMicrocopy könnten Sie KI nutzen, um das Formular

auf eine scheinbar magische Weise zu validieren. Stellen Sie sich vor, eine KI validiert

ein Benutzerprofil-Formular und sucht nach möglichen Fehlern auf einer semantischen

Ebene.

Generative UI 216

Abbildung 9. Können Sie die semantische Validierung erkennen?

Progressive Disclosure

GenUI kann intelligent bestimmen, welche Formularfelder basierend auf dem

Benutzerkontext essentiell sind und zusätzliche Felder nach Bedarf schrittweise

einblenden. Diese Progressive-Disclosure-Technik hilft dabei, die kognitive Belastung

zu reduzieren und macht den Prozess des Formularausfüllens überschaubarer. Wenn

Generative UI 217

sich ein Benutzer beispielsweise für ein Basis-Abonnement anmeldet, kann das

Formular zunächst nur die wesentlichen Felder anzeigen, und während der Benutzer

fortschreitet oder bestimmte Optionen auswählt, können zusätzliche relevante Felder

dynamisch eingeführt werden.

Kontextbezogener Erklärungstext

Tooltips werden häufig verwendet, um Benutzern zusätzliche Informationen oder

Anleitungen zu geben, wenn sie über bestimmte Elemente hovern oder mit ihnen

interagieren. Mit einem “Kontextbezogenen Content-Generierungs”-Ansatz können

Sie Tooltips erstellen, die sich an den Kontext des Benutzers anpassen und relevante

Informationen liefern. Wenn ein Benutzer beispielsweise eine komplexe Funktion

erkundet, kann der Tooltip personalisierte Tipps oder Beispiele basierend auf seinen

vorherigen Interaktionen oder seinem Kenntnisstand anbieten.

Erklärungstexte, wie Anweisungen, Beschreibungen oder Hilfemeldungen, können

dynamisch basierend auf dem Benutzerkontext generiert werden. Anstatt generische

Erklärungen zu präsentieren, können Sie LLMs verwenden, um Text zu generieren, der

auf die spezifischen Bedürfnisse oder Fragen des Benutzers zugeschnitten ist. Wenn ein

Benutzer beispielsweise bei einem bestimmten Schritt in einem Prozess Schwierigkeiten

hat, kann der Erklärungstext personalisierte Anleitungen oder Fehlerbehebungstipps

bereitstellen.

Microcopy bezieht sich auf die kleinen Textelemente, die Benutzer durch Ihre

Anwendung führen, wie Schaltflächenbeschriftungen, Fehlermeldungen oder

Bestätigungsaufforderungen. Durch die Anwendung des Kontextbezogenen Content-

Generierungs-Ansatzes auf Microcopy können Sie eine adaptive Benutzeroberfläche

erstellen, die auf die Aktionen des Benutzers reagiert und relevanten und hilfreichen

Text bereitstellt. Wenn ein Benutzer beispielsweise im Begriff ist, eine kritische Aktion

durchzuführen, kann die Bestätigungsaufforderung dynamisch generiert werden, um

eine klare und personalisierte Nachricht bereitzustellen.

Generative UI 218

Personalisierte Erklärungstexte und Tooltips können den Onboarding-Prozess für

neue Benutzer erheblich verbessern. Durch die Bereitstellung kontextspezifischer

Anleitungen und Beispiele können Sie Benutzern helfen, die Anwendung schnell zu

verstehen und zu navigieren, wodurch die Lernkurve reduziert und die Akzeptanz

erhöht wird.

Dynamische und kontextbezogene Chrome-Elemente können die Anwendung auch

intuitiver und ansprechender gestalten. Benutzer sind eher geneigt, mit Funktionen zu

interagieren und diese zu erkunden, wenn der begleitende Text auf ihre spezifischen

Bedürfnisse und Interessen zugeschnitten ist.

Bisher haben wir Ideen zur Verbesserung bestehender UI-Paradigmen mit KI behandelt,

aber wie steht es damit, die Art und Weise, wie Benutzeroberflächen gestaltet und

implementiert werden, auf radikalere Weise zu überdenken?

Definition der Generativen UI

Im Gegensatz zum traditionellen UI-Design, bei dem Designer feste, statische

Schnittstellen erstellen, deutet GenUI auf eine Zukunft hin, in der unsere Software

flexible, personalisierte Erlebnisse bietet, die sich in Echtzeit entwickeln und anpassen

können. Jedes Mal, wenn wir eine KI-gesteuerte Konversationsschnittstelle nutzen,

lassen wir die KI sich an die speziellen Bedürfnisse des Benutzers anpassen. GenUI

geht noch einen Schritt weiter, indem es diesen Grad der Anpassungsfähigkeit auf die

visuelle Schnittstelle der Software anwendet.

Der Grund, warum es heute möglich ist, mit GenUI-Ideen zu experimentieren, liegt

darin, dass große Sprachmodelle bereits Programmierung verstehen und ihr Basiswissen

UI-Technologien und Frameworks umfasst. Die Frage ist also, ob große Sprachmodelle

zur Generierung von UI-Elementen wie Text, Bildern, Layouts und sogar ganzen

Generative UI 219

Schnittstellen genutzt werden können, die auf jeden einzelnen Benutzer zugeschnitten

sind. DasModell könnte angewiesen werden, verschiedene Faktoren zu berücksichtigen,

wie etwa frühere Interaktionen des Benutzers, angegebene Präferenzen, demografische

Informationen und den aktuellen Nutzungskontext, um hochgradig personalisierte und

relevante Schnittstellen zu erstellen.

GenUI unterscheidet sich in mehreren wesentlichen Punkten vom traditionellen Design

von Benutzeroberflächen:

1. Dynamisch und Adaptiv: Traditionelles UI-Design beinhaltet die Erstellung

fester, statischer Schnittstellen, die für alle Benutzer gleich bleiben. Im Gegensatz

dazu ermöglicht GenUI Schnittstellen, die sich dynamisch an Benutzerbedürfnisse

und Kontext anpassen können. Das bedeutet, dass dieselbe Anwendung

verschiedenen Benutzern unterschiedliche Schnittstellen präsentieren kann oder

sogar demselben Benutzer in unterschiedlichen Situationen.

2. Personalisierung im großen Maßstab: Beim traditionellen Design ist die

Erstellung personalisierter Erlebnisse für jeden Benutzer oft aufgrund des

Zeit- und Ressourcenaufwands unpraktisch. GenUI hingegen ermöglicht

Personalisierung im großen Maßstab. Durch den Einsatz von KI können Designer

Schnittstellen erstellen, die sich automatisch an die einzigartigen Bedürfnisse und

Präferenzen jedes Benutzers anpassen, ohne manuell separate Schnittstellen für

jedes Benutzersegment entwickeln zu müssen.

3. Fokus auf Ergebnisse: Traditionelles UI-Design konzentriert sich oft auf die

Erstellung visuell ansprechender und funktionaler Schnittstellen. Während diese

Aspekte auch bei GenUI wichtig bleiben, verlagert sich der Hauptfokus auf das

Erreichen gewünschter Benutzerergebnisse. GenUI zielt darauf ab, Schnittstellen

zu erstellen, die für die spezifischen Ziele und Aufgaben jedes Benutzers optimiert

sind, wobei Benutzerfreundlichkeit und Effektivität Vorrang vor rein ästhetischen

Überlegungen haben.

4. Kontinuierliches Lernen und Verbessern:GenUI-Systeme können basierend auf

Benutzerinteraktionen und Feedback kontinuierlich lernen und sich verbessern.

Generative UI 220

Während Benutzer mit den generierten Schnittstellen interagieren, können die

KI-Modelle Daten über Benutzerverhalten, Präferenzen und Ergebnisse sammeln

und diese Informationen nutzen, um zukünftige Schnittstellengenerationen

zu verfeinern und zu optimieren. Dieser iterative Lernprozess ermöglicht es

GenUI-Systemen, im Laufe der Zeit immer effektiver bei der Erfüllung von

Benutzerbedürfnissen zu werden.

Es ist wichtig zu beachten, dass GenUI nicht dasselbe ist wie KI-unterstützte

Designwerkzeuge, wie solche, die Vorschläge machen oder bestimmte Designaufgaben

automatisieren. Während diese Werkzeuge bei der Optimierung des Designprozesses

hilfreich sein können, sind sie immer noch auf Designer angewiesen, die endgültige

Entscheidungen treffen und statische Schnittstellen erstellen. Bei GenUI hingegen

übernimmt das KI-System eine aktivere Rolle bei der tatsächlichen Generierung und

Anpassung von Schnittstellen basierend auf Benutzerdaten und Kontext.

GenUI stellt eine bedeutende Veränderung in unserem Ansatz zum Design von

Benutzeroberflächen dar, weg von Einheitslösungen und hin zu hochgradig

personalisierten, adaptiven Erlebnissen. Durch die Nutzung der Kraft der KI hat

GenUI das Potenzial, die Art und Weise zu revolutionieren, wie wir mit digitalen

Produkten und Dienstleistungen interagieren, indem es Schnittstellen schafft, die für

jeden einzelnen Benutzer intuitiver, ansprechender und effektiver sind.

Beispiel

Um das Konzept von GenUI zu veranschaulichen, betrachten wir eine hypothetische

Fitness-Anwendung namens “FitAI”. Diese App zielt darauf ab, personalisierte

Trainingspläne und Ernährungsberatung für Benutzer basierend auf ihren individuellen

Zielen, Fitnessleveln und Präferenzen bereitzustellen.

In einem traditionellen UI-Design-Ansatz hätte FitAI möglicherweise einen festen Satz

von Bildschirmen und Elementen, die für alle Benutzer gleich sind. Mit GenUI könnte

Generative UI 221

sich die Schnittstelle der App jedoch dynamisch an die einzigartigen Bedürfnisse und

den Kontext jedes Benutzers anpassen.

Dieser Ansatz ist für 2024 schwer vorstellbar und könnte möglicherweise nicht einmal

einen angemessenen ROI haben, aber er ist möglich.

So könnte es funktionieren:

1. Onboarding:

• Anstelle eines standardisierten Fragebogens verwendet FitAI eine

Konversations-KI, um Informationen über die Ziele, das aktuelle Fitnesslevel

und die Präferenzen des Benutzers zu sammeln.

• Basierend auf dieser ersten Interaktion generiert die KI ein personalisiertes

Dashboard-Layout, das die für die Ziele des Benutzers relevantesten

Funktionen und Informationen hervorhebt.

• Die aktuelle KI-Technologie könnte über eine Auswahl von

Bildschirmkomponenten verfügen, die sie zur Zusammenstellung des

personalisierten Dashboards verwenden kann.

• Zukünftige KI-Technologie könnte die Rolle eines erfahrenen UI-Designers

übernehmen und das Dashboard tatsächlich von Grund auf neu erstellen.

2. Trainingsplaner:

• Die Trainingsplaner-Schnittstelle wird von der KI speziell an das

Erfahrungsniveau und die verfügbare Ausrüstung des Nutzers angepasst.

• Für einen Anfänger ohne Ausrüstung könnte sie einfache

Körpergewichtsübungen mit detaillierten Anleitungen und Videos anzeigen.

• Für einen fortgeschrittenen Nutzer mit Zugang zu einem Fitnessstudio

könnte sie komplexere Routinen mit weniger Erklärungen darstellen.

• Der Inhalt des Trainingsplaners wird nicht einfach aus einer großen

Übergruppe gefiltert. Er kann spontan aus einer Wissensbasis generiert

werden, die mit Kontext abgefragt wird, der alles über den Nutzer Bekannte

einschließt.

Generative UI 222

3. Fortschrittsverfolgung:

• Die Fortschrittsverfolgungsschnittstelle entwickelt sich basierend auf den

Zielen und Nutzungsmustern des Anwenders.

• Wenn ein Nutzer hauptsächlich auf Gewichtsverlust fokussiert ist,

könnte die Oberfläche prominent eine Gewichtsentwicklungsgrafik und

Kalorienverbrauchsstatistiken anzeigen.

• Für einen Nutzer, der Muskeln aufbaut, könnte sie Kraftzuwächse und

Körperzusammensetzungsänderungen hervorheben.

• Die KI kann diesen Teil der Anwendung an den tatsächlichen Fortschritt

des Nutzers anpassen. Wenn der Fortschritt für eine Zeit lang stoppt, kann

die App in einen Modus wechseln, in dem sie versucht, den Nutzer dazu zu

bringen, die Gründe für den Rückschlag zu offenbaren, um sie zu beheben.

4. Ernährungsberatung:

• Der Ernährungsbereich passt sich an die Ernährungspräferenzen und -

einschränkungen des Nutzers an.

• Für einen veganen Nutzer könnte er pflanzliche Mahlzeitenvorschläge und

Proteinquellen anzeigen.

• Für einen Nutzer mit Glutenunverträglichkeit würde er automatisch

glutenhaltige Lebensmittel aus den Empfehlungen herausfiltern.

• Auch hier wird der Inhalt nicht aus einer riesigen Übergruppe von

Mahlzeitendaten gezogen, die für alle Nutzer gilt, sondern aus einer

Wissensbasis synthetisiert, die Informationen enthält, die basierend auf der

spezifischen Situation und den Einschränkungen des Nutzers anpassbar

sind.

• Zum Beispiel werden Rezepte mit Zutatenspezifikationen generiert, die dem

sich ständig ändernden Kalorienbedarf des Nutzers entsprechen, während

sich sein Fitnesslevel und seine Körperwerte entwickeln.

5. Motivationselemente:

Generative UI 223

• Die motivierenden Inhalte und Benachrichtigungen der App werden

basierend auf dem Persönlichkeitstyp des Nutzers und seiner Reaktion auf

verschiedene Motivationsstrategien personalisiert.

• Einige Nutzer erhalten möglicherweise ermutigende Nachrichten, während

andere eher datengesteuerte Rückmeldungen bekommen.

In diesem Beispiel ermöglicht GenUI FitAI, eine hochgradig personalisierte Erfahrung

für jeden Nutzer zu schaffen, was potenziell das Engagement, die Zufriedenheit und die

Wahrscheinlichkeit der Erreichung von Fitnesszielen erhöht. Die Schnittstellenelemente,

Inhalte und sogar die “Persönlichkeit” der App passen sich an, um den individuellen

Bedürfnissen und Präferenzen jedes Nutzers optimal zu dienen.

Der Wandel zum ergebnisorientierten Design

GenUI stellt einen fundamentalen Wandel im Ansatz des Benutzeroberflächen-Designs

dar, der sich von einem Fokus auf die Erstellung spezifischer Schnittstellenelemente

zu einem ganzheitlicheren, ergebnisorientierten Ansatz bewegt. Dieser Wandel hat

mehrere wichtige Auswirkungen:

1. Fokus auf Nutzerziele:

• Designer müssen intensiver über Nutzerziele und gewünschte Ergebnisse

nachdenken, anstatt über spezifische Schnittstellenkomponenten.

• Der Schwerpunkt wird darauf liegen, Systeme zu schaffen, die Schnittstellen

generieren können, die Nutzern effizient und effektiv bei der Erreichung

ihrer Ziele helfen.

• Neue UI-Frameworks werden entstehen, die KI-basierten Designern

die Werkzeuge geben, die sie benötigen, um Nutzererfahrungen

spontan und von Grund auf zu generieren, anstatt auf vordefinierte

Bildschirmspezifikationen zu setzen.

Generative UI 224

2. Veränderte Rolle der Designer:

• Designer werden sich von der Erstellung fester Layouts hin zur Definition

von Regeln, Einschränkungen und Richtlinien entwickeln, denen KI-Systeme

bei der Generierung von Schnittstellen folgen.

• Sie müssen Fähigkeiten in Bereichen wie Datenanalyse, KI-Prompt-

Engineering und Systemdenken entwickeln, um GenUI-Systeme effektiv zu

steuern.

3. Bedeutung der Nutzerforschung:

• Nutzerforschung wird in einem GenUI-Kontext noch wichtiger, da Designer

nicht nur Nutzerpräferenzen verstehen müssen, sondern auch, wie sich diese

Präferenzen und Bedürfnisse in verschiedenen Kontexten ändern.

• Kontinuierliche Nutzertests und Feedback-Schleifen werden essentiell

sein, um die Fähigkeit der KI zur Generierung effektiver Schnittstellen zu

verfeinern und zu verbessern.

4. Design für Variabilität:

• Anstatt eine einzige “perfekte” Schnittstelle zu erstellen, müssen Designer

mehrere mögliche Variationen berücksichtigen und sicherstellen, dass das

System angemessene Schnittstellen für verschiedene Nutzerbedürfnisse

generieren kann.

• Dies beinhaltet das Design für Randfälle und die Sicherstellung, dass

die generierten Schnittstellen über verschiedene Konfigurationen hinweg

Benutzerfreundlichkeit und Zugänglichkeit bewahren.

• Produktdifferenzierung erhält neue Dimensionen, die unterschiedliche

Perspektiven auf Nutzerpsychologie und die Nutzung einzigartiger

Datensätze und Wissensbasen einbeziehen, die Wettbewerbern nicht zur

Verfügung stehen.

Generative UI 225

Herausforderungen und Überlegungen

Während GenUI spannende Möglichkeiten bietet, bringt es auch mehrere

Herausforderungen und Überlegungen mit sich:

1. Technische Einschränkungen:

• Die aktuelle KI-Technologie hat trotz ihrer Fortschrittlichkeit noch

Einschränkungen beim Verständnis komplexer Nutzerabsichten und der

Generierung wirklich kontextbewusster Schnittstellen.

• Leistungsprobleme im Zusammenhang mit der Echtzeit-Generierung von

Schnittstellenelementen, besonders auf weniger leistungsfähigen Geräten.

2. Datenanforderungen:

• Je nach Anwendungsfall könnten effektive GenUI-Systeme erhebliche

Mengen an Nutzerdaten benötigen, um personalisierte Benutzeroberflächen

zu generieren.

• Die Herausforderungen bei der ethischen Beschaffung authentischer

Nutzerdaten werfen Bedenken hinsichtlich Datenschutz und Sicherheit

sowie möglicher Verzerrungen in den Daten auf, die zum Training von

GenUI-Modellen verwendet werden.

3. Benutzbarkeit und Konsistenz:

• Zumindest bis sich die Praxis weitgehend durchgesetzt hat, könnte

eine Anwendung mit sich ständig ändernden Benutzeroberflächen zu

Benutzbarkeitsproblemen führen, da Nutzer Schwierigkeiten haben

könnten, vertraute Elemente zu finden oder effizient zu navigieren.

• Es wird entscheidend sein, eine Balance zwischen Personalisierung und der

Aufrechterhaltung einer konsistenten, erlernbaren Benutzeroberfläche zu

finden.

Generative UI 226

4. Übermäßige Abhängigkeit von KI:

• Es besteht das Risiko, Design-Entscheidungen zu sehr an KI-Systeme zu

delegieren, was zu uninspirierten, problematischen oder einfach fehlerhaften

Schnittstellenlösungen führen könnte.

• Menschliche Aufsicht und die Möglichkeit, KI-generierte Designs zu

übersteuern, werden in absehbarer Zukunft wichtig bleiben.

5. Bedenken zur Barrierefreiheit:

• Die Sicherstellung, dass dynamisch generierte Benutzeroberflächen

für Nutzer mit Behinderungen zugänglich bleiben, stellt völlig neue

Herausforderungen dar, was angesichts des mangelhaften Niveaus der

Barrierefreiheit in typischen Systemen besorgniserregend ist.

• Andererseits könnten KI-Designer mit eingebauter Berücksichtigung der

Barrierefreiheit implementiert werden und Fähigkeiten zur spontanen

Erstellung barrierefreier Benutzeroberflächen entwickeln, ähnlich wie sie

UI für nicht-beeinträchtigte Nutzer erstellen.

• In jedem Fall sollten GenUI-Systeme mit robusten Richtlinien und

Testprozessen für Barrierefreiheit entwickelt werden.

6. Nutzervertrauen und Transparenz:

• Nutzer könnten sich unwohl fühlen mit Benutzeroberflächen, die “zu viel”

über sie zu wissen scheinen oder sich auf unverständliche Weise ändern.

• Es wird wichtig sein, Transparenz darüber zu schaffen, wie und

warum Benutzeroberflächen personalisiert werden, um Nutzervertrauen

aufzubauen.

Generative UI 227

Zukunftsausblick und Chancen

Die Zukunft von Generative UI (GenUI) verspricht eine revolutionäre Veränderung

in der Art und Weise, wie wir mit digitalen Produkten und Dienstleistungen

interagieren. Während sich diese Technologie weiterentwickelt, können wir einen

grundlegenden Wandel in der Art und Weise erwarten, wie Benutzeroberflächen

gestaltet, implementiert und erlebt werden. Ich denke, GenUI ist das Phänomen,

das unsere Software endlich in den Bereich dessen bringen wird, was heute als

Science-Fiction gilt.

Eine der spannendsten Aussichten von GenUI ist sein Potenzial, Barrierefreiheit in

einem Ausmaß zu verbessern, das über die bloße Sicherstellung hinausgeht, dass

Menschen mit schweren Behinderungen nicht völlig von der Nutzung Ihrer Software

ausgeschlossen werden. Durch die automatische Anpassung von Benutzeroberflächen

an individuelle Nutzerbedürfnisse könnte GenUI digitale Erlebnisse inklusiver machen

als je zuvor. Stellen Sie sich Benutzeroberflächen vor, die sich nahtlos anpassen,

um größeren Text für jüngere oder sehbehinderte Nutzer oder vereinfachte Layouts

für Menschen mit kognitiven Einschränkungen bereitzustellen, ohne dass manuelle

Konfigurationen oder separate “barrierefreie” Versionen vonAnwendungen erforderlich

sind.

Die Personalisierungsmöglichkeiten von GenUI werden voraussichtlich zu einer

erhöhten Nutzereinbindung, -zufriedenheit und -loyalität bei einer breiten Palette

digitaler Produkte führen. Wenn Benutzeroberflächen besser auf individuelle

Präferenzen und Verhaltensweisen abgestimmt sind, werden Nutzer digitale Erlebnisse

intuitiver und angenehmer finden, was potenziell zu tieferen und bedeutungsvolleren

Interaktionen mit Technologie führt.

GenUI hat auch das Potenzial, den Einarbeitungsprozess für neue Nutzer zu

transformieren. Durch die Schaffung intuitiver, personalisierter Erstnutzererfahrungen,

die sich schnell an das Expertenniveau jedes Nutzers anpassen, könnte GenUI die

Generative UI 228

Lernkurve für neue Anwendungen deutlich reduzieren. Dies könnte zu schnelleren

Adoptionsraten und erhöhtem Nutzervertrauen bei der Erkundung neuer Funktionen

führen.

Eine weitere spannende Möglichkeit ist die Fähigkeit von GenUI, eine konsistente

Nutzererfahrung über verschiedene Geräte und Plattformen hinweg zu gewährleisten

und dabei für jeden spezifischen Nutzungskontext zu optimieren. Dies könnte

die langjährige Herausforderung lösen, kohärente Erlebnisse in einer zunehmend

fragmentierten Gerätelandschaft zu bieten, von Smartphones und Tablets bis hin

zu Desktop-Computern und aufkommenden Technologien wie Augmented-Reality-

Brillen.

Die datengetriebene Natur von GenUI eröffnet Möglichkeiten für schnelle Iteration

und Verbesserung im UI-Design. Durch die Sammlung von Echtzeitdaten darüber,

wie Nutzer mit generierten Benutzeroberflächen interagieren, können Designer und

Entwickler beispiellose Einblicke in Nutzerverhalten und -präferenzen gewinnen. Diese

Feedback-Schleife könnte zu kontinuierlichen Verbesserungen im UI-Design führen, die

von tatsächlichen Nutzungsmustern statt von Annahmen oder begrenzten Nutzertests

getrieben werden.

Um sich auf diesen Wandel vorzubereiten, müssen Designer ihre Fähigkeiten und

Denkweisen weiterentwickeln. Der Fokus wird sich von der Erstellung fester Layouts

hin zur Entwicklung umfassender Design-Systeme und Richtlinien verschieben, die die

KI-gesteuerte Schnittstellengenerierung informieren können. Designer werden ein tiefes

Verständnis von Datenanalyse, KI-Technologien und Systemdenken entwickeln müssen,

um GenUI-Systeme effektiv zu steuern.

Darüber hinaus werden Designer, da GenUI die Grenzen zwischen Design und

Technologie verwischt, enger mit Entwicklern und Data Scientists zusammenarbeiten

müssen. Dieser interdisziplinäre Ansatz wird entscheidend sein, um GenUI-Systeme

zu schaffen, die nicht nur visuell ansprechend und benutzerfreundlich, sondern auch

technisch robust und ethisch einwandfrei sind.

Generative UI 229

Die ethischen Implikationen von GenUI werden mit der Weiterentwicklung der

Technologie ebenfalls in den Vordergrund rücken. Designer werden eine entscheidende

Rolle bei der Entwicklung von Rahmenwerken für den verantwortungsvollen Einsatz

von KI im Schnittstellendesign spielen und dabei sicherstellen, dass Personalisierung

die Benutzererfahrung verbessert, ohne dabei die Privatsphäre zu gefährden oder das

Nutzerverhalten auf unethische Weise zu manipulieren.

Mit Blick auf die Zukunft bietet GenUI sowohl spannende Möglichkeiten als auch

erhebliche Herausforderungen. Die Technologie hat das Potenzial, intuitivere,

effizientere und zufriedenstellendere digitale Erfahrungen für Nutzer weltweit zu

schaffen. Während Designer sich anpassen und neue Fähigkeiten erwerben müssen,

bietet sich auch eine beispiellose Gelegenheit, die Zukunft der Mensch-Computer-

Interaktion auf tiefgreifende und bedeutungsvolle Weise zu gestalten. Der Weg zu

vollständig entwickelten GenUI-Systemen wird zweifellos komplex sein, aber die

potenziellen Vorteile im Hinblick auf verbesserte Benutzererfahrungen und digitale

Barrierefreiheit machen es zu einer Zukunft, für die es sich zu streben lohnt.

Intelligente
Workflow-Orchestrierung

Im Bereich der Anwendungsentwicklung spielen Workflows eine entscheidende Rolle

bei der Definition, wie Aufgaben, Prozesse und Benutzerinteraktionen strukturiert

und ausgeführt werden. Mit zunehmender Komplexität von Anwendungen und

steigenden Benutzererwartungen wird der Bedarf an intelligenter und adaptiver

Workflow-Orchestrierung immer deutlicher.

Der Ansatz der “Intelligenten Workflow-Orchestrierung” konzentriert sich darauf,

KI-Komponenten zu nutzen, um komplexe Workflows innerhalb von Anwendungen

dynamisch zu orchestrieren und zu optimieren. Das Ziel ist es, Anwendungen zu

erstellen, die effizienter, reaktionsschneller und anpassungsfähiger an Echtzeitdaten

und Kontext sind.

Intelligente Workflow-Orchestrierung 231

In diesem Kapitel werden wir die wichtigsten Prinzipien und Muster erkunden,

die dem Ansatz der intelligenten Workflow-Orchestrierung zugrunde liegen. Wir

werden betrachten, wie KI eingesetzt werden kann, um Aufgaben intelligent zu leiten,

Entscheidungsfindung zu automatisieren und Workflows dynamisch an verschiedene

Faktoren wie Benutzerverhalten, Systemleistung und Geschäftsregeln anzupassen.

Anhand praktischer Beispiele und realer Szenarien werden wir das transformative

Potenzial von KI bei der Optimierung von Anwendungs-Workflows demonstrieren.

Ob Sie Unternehmensanwendungen mit komplexen Geschäftsprozessen oder

kundenorientierte Anwendungen mit dynamischen Benutzerreisen entwickeln,

die in diesem Kapitel diskutierten Muster und Techniken werden Sie mit dem Wissen

und den Werkzeugen ausstatten, um intelligente und effiziente Workflows zu erstellen,

die die gesamte Benutzererfahrung verbessern und geschäftlichen Mehrwert schaffen.

Geschäftlicher Bedarf

Traditionelle Ansätze zum Workflow-Management basieren oft auf vordefinierten

Regeln und statischen Entscheidungsbäumen, die starr und unflexibel sein können und

nicht mit der dynamischen Natur moderner Anwendungen Schritt halten können.

Betrachten Sie ein Szenario, in dem eine E-Commerce-Anwendung einen komplexen

Auftragsabwicklungsprozess handhaben muss. Der Workflow kann mehrere Schritte

umfassen, wie Auftragsvalidierung, Bestandsprüfung, Zahlungsabwicklung, Versand

und Kundenbenachrichtigungen. Jeder Schritt kann eigene Regeln, Abhängigkeiten,

externe Integrationen und Mechanismen zur Ausnahmebehandlung haben.

Die manuelle Verwaltung eines solchen Workflows oder die Verwendung fest

programmierter Logik kann schnell umständlich, fehleranfällig und schwer zu warten

werden.

Darüber hinaus muss sich der Workflow möglicherweise mit zunehmender Skalierung

der Anwendung und wachsender Anzahl gleichzeitiger Benutzer auf Basis von

Intelligente Workflow-Orchestrierung 232

Echtzeitdaten und Systemleistung anpassen und optimieren. Beispielsweise muss die

Anwendung während Spitzenverkehrszeiten den Workflow möglicherweise dynamisch

anpassen, um bestimmte Aufgaben zu priorisieren, Ressourcen effizient zuzuweisen

und eine reibungslose Benutzererfahrung sicherzustellen.

Hier kommt der Ansatz der “Intelligenten Workflow-Orchestrierung” ins Spiel.

Durch den Einsatz von KI-Komponenten können Entwickler Workflows erstellen,

die intelligent, adaptiv und selbstoptimierend sind. KI kann große Mengen an

Daten analysieren, aus vergangenen Erfahrungen lernen und in Echtzeit fundierte

Entscheidungen treffen, um den Workflow effektiv zu orchestrieren.

Wichtige Vorteile

1. Gesteigerte Effizienz: KI kann die Aufgabenzuweisung, Ressourcennutzung und

Workflow-Ausführung optimieren, was zu schnelleren Verarbeitungszeiten und

verbesserter Gesamteffizienz führt.

2. Anpassungsfähigkeit: KI-gesteuerte Workflows können sich dynamisch an

veränderte Bedingungen anpassen, wie Schwankungen in der Benutzernachfrage,

Systemleistung oder geschäftlichen Anforderungen, und stellen sicher, dass die

Anwendung reaktionsfähig und widerstandsfähig bleibt.

3. Automatisierte Entscheidungsfindung:KI kann komplexe Entscheidungsprozesse

innerhalb des Workflows automatisieren, wodurch manuelle Eingriffe reduziert

und das Risiko menschlicher Fehler minimiert werden.

4. Personalisierung: KI kann Benutzerverhalten, Präferenzen und Kontext

analysieren, um den Workflow zu personalisieren und maßgeschneiderte

Erlebnisse für einzelne Benutzer zu liefern.

5. Skalierbarkeit: KI-gesteuerte Workflows können nahtlos skalieren, um steigende

Datenmengen und Benutzerinteraktionen zu bewältigen, ohne die Leistung oder

Zuverlässigkeit zu beeinträchtigen.

Intelligente Workflow-Orchestrierung 233

In den folgenden Abschnitten werden wir die wichtigsten Muster und Techniken

erkunden, die die Implementierung intelligenter Workflows ermöglichen, und reale

Beispiele aufzeigen, wie KI das Workflow-Management in modernen Anwendungen

transformiert.

Wichtige Muster

Um intelligente Workflow-Orchestrierung in Anwendungen zu implementieren,

können Entwickler verschiedene wichtige Muster nutzen, die die Kraft der KI nutzen.

Diese Muster bieten einen strukturierten Ansatz für das Design und Management

von Workflows und ermöglichen es Anwendungen, sich anzupassen, zu optimieren

und Prozesse basierend auf Echtzeitdaten und Kontext zu automatisieren. Lassen Sie

uns einige der grundlegenden Muster in der intelligenten Workflow-Orchestrierung

erkunden.

Dynamische Aufgabenweiterleitung

Dieses Muster beinhaltet die Verwendung von KI zur intelligenten Weiterleitung

von Aufgaben innerhalb eines Workflows basierend auf verschiedenen Faktoren wie

Aufgabenpriorität, Ressourcenverfügbarkeit und Systemleistung. KI-Algorithmen

können die Eigenschaften jeder Aufgabe analysieren, den aktuellen Systemzustand

berücksichtigen und fundierte Entscheidungen treffen, um Aufgaben den am besten

geeigneten Ressourcen oder Verarbeitungspfaden zuzuweisen. Die dynamische

Aufgabenweiterleitung stellt sicher, dass Aufgaben effizient verteilt und ausgeführt

werden, wodurch die Gesamtleistung des Workflows optimiert wird.

Intelligente Workflow-Orchestrierung 234

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Beachten Sie die Schleife, die durch den while-Ausdruck in Zeile 29 erstellt wird, die

die KI so lange auffordert, bis die Aufgabe zugewiesen ist. In Zeile 35 speichern wir das

Intelligente Workflow-Orchestrierung 235

Protokoll der Aufgabe für spätere Analysen und Debugging, falls dies erforderlich wird.

Kontextbezogene Entscheidungsfindung

Sie können sehr ähnlichen Code verwenden, um kontextbezogene Entscheidungen

innerhalb eines Workflows zu treffen. Durch die Analyse relevanter Datenpunkte wie

Benutzerpräferenzen, historische Muster und Echtzeitdaten können KI-Komponenten

den am besten geeigneten Handlungsablauf an jedem Entscheidungspunkt imWorkflow

bestimmen. Passen Sie das Verhalten Ihres Workflows basierend auf dem spezifischen

Kontext jedes Benutzers oder Szenarios an und bieten Sie personalisierte und optimierte

Erfahrungen.

Adaptive Workflow-Zusammenstellung

Dieses Muster konzentriert sich auf die dynamische Zusammenstellung und Anpassung

von Workflows basierend auf sich ändernden Anforderungen oder Bedingungen. KI

kann den aktuellen Zustand des Workflows analysieren, Engpässe oder Ineffizienzen

identifizieren und die Workflow-Struktur automatisch modifizieren, um die Leistung zu

optimieren. Die adaptive Workflow-Zusammenstellung ermöglicht es Anwendungen,

sich kontinuierlich weiterzuentwickeln und ihre Prozesse zu verbessern, ohne manuelle

Eingriffe zu erfordern.

Ausnahmebehandlung und Wiederherstellung

Ausnahmebehandlung und Wiederherstellung sind kritische Aspekte der intelligenten

Workflow-Orchestrierung. Bei der Arbeit mit KI-Komponenten und komplexen

Workflows ist es wichtig, Ausnahmen vorauszusehen und elegant zu behandeln, um

die Stabilität und Zuverlässigkeit des Systems sicherzustellen.

Hier sind einige wichtige Überlegungen und Techniken für die Ausnahmebehandlung

und Wiederherstellung in intelligenten Workflows:

Intelligente Workflow-Orchestrierung 236

1. Ausnahmeweiterleitung: Implementieren Sie einen einheitlichen Ansatz für die

Weiterleitung von Ausnahmen über Workflow-Komponenten hinweg. Wenn eine

Ausnahme innerhalb einer Komponente auftritt, sollte sie erfasst, protokolliert

und an den Orchestrator oder eine separate Komponente weitergeleitet

werden, die für die Behandlung von Ausnahmen zuständig ist. Die Idee ist, die

Ausnahmebehandlung zu zentralisieren und zu verhindern, dass Ausnahmen

stillschweigend verschluckt werden, sowie Möglichkeiten für Intelligente

Fehlerbehandlung zu eröffnen.

2. Wiederholungsmechanismen: Wiederholungsmechanismen helfen

dabei, die Widerstandsfähigkeit des Workflows zu verbessern und

vorübergehende Ausfälle elegant zu behandeln. Implementieren Sie

unbedingt Wiederholungsmechanismen für vorübergehende oder behebbare

Ausnahmen, wie beispielsweise Probleme mit der Netzwerkkonnektivität oder

Ressourcenverfügbarkeit, die nach einer bestimmten Verzögerung automatisch

wiederholt werden können. Mit einem KI-gesteuerten Orchestrator oder

Ausnahmebehandler müssen Ihre Wiederholungsstrategien nicht mechanischer

Natur sein und sich auf feste Algorithmen wie exponentiellen Rückzug verlassen.

Sie können die Handhabung der Wiederholung dem “Ermessen” der KI-

Komponente überlassen, die für die Entscheidung über den Umgang mit der

Ausnahme verantwortlich ist.

3. Fallback-Strategien: Wenn eine KI-Komponente keine gültige Antwort liefern

kann oder einen Fehler verursacht - ein häufiges Vorkommnis angesichts ihrer

hochmodernen Natur - sollten Sie einen Fallback-Mechanismus einrichten,

um sicherzustellen, dass der Workflow fortgesetzt werden kann. Dies könnte

die Verwendung von Standardwerten, alternativen Algorithmen oder einem

Menschen im Regelkreis umfassen, um Entscheidungen zu treffen und den

Workflow voranzutreiben.

4. Kompensationsmaßnahmen: Die Anweisungen des Orchestrators

sollten Instruktionen über Kompensationsmaßnahmen enthalten, um

Intelligente Workflow-Orchestrierung 237

Ausnahmen zu behandeln, die nicht automatisch gelöst werden können.

Kompensationsmaßnahmen sind Schritte, die unternommen werden, um

die Auswirkungen einer fehlgeschlagenen Operation rückgängig zu machen

oder abzumildern. Wenn beispielsweise ein Zahlungsverarbeitungsschritt

fehlschlägt, könnte eine Kompensationsmaßnahme darin bestehen, die

Transaktion rückgängig zu machen und den Benutzer zu benachrichtigen.

Kompensationsmaßnahmen helfen, die Datenkonsistenz und -integrität bei

Ausnahmen aufrechtzuerhalten.

5. Ausnahmeüberwachung und -alarmierung: Richten Sie Überwachungs- und

Alarmierungsmechanismen ein, um kritische Ausnahmen zu erkennen und

relevante Interessengruppen zu benachrichtigen. Der Orchestrator kann über

Schwellenwerte und Regeln informiert werden, um Alarme auszulösen, wenn

Ausnahmen bestimmte Grenzen überschreiten oder wenn bestimmte Arten von

Ausnahmen auftreten. Dies ermöglicht eine proaktive Identifizierung und Lösung

von Problemen, bevor sie das Gesamtsystem beeinträchtigen.

Hier ist ein Beispiel für Ausnahmebehandlung und Wiederherstellung in einer Ruby-

Workflow-Komponente:

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

Intelligente Workflow-Orchestrierung 238

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

In diesem Beispiel überprüft die InventoryManager-Komponente die Verfügbarkeit

eines Produkts für eine bestimmte Bestellung. Wenn die verfügbare Menge nicht

ausreicht, wird eine InsufficientInventoryError ausgelöst. Die Ausnahme wird

abgefangen, protokolliert und ein Wiederholungsmechanismus wird implementiert.

Wenn das Wiederholungslimit überschritten wird, greift die Komponente auf manuelle

Intervention zurück, indem sie einen Administrator benachrichtigt.

Durch die Implementierung robuster Ausnahmebehandlungs- undWiederherstellungsmechanismen

können Sie sicherstellen, dass Ihre intelligenten Workflows widerstandsfähig und

wartbar sind sowie unerwartete Situationen elegant bewältigen können.

Diese Muster bilden die Grundlage der intelligenten Workflow-Orchestrierung

und können kombiniert und an die spezifischen Anforderungen verschiedener

Anwendungen angepasst werden. Durch die Nutzung dieser Muster können Entwickler

Workflows erstellen, die flexibel und widerstandsfähig sind sowie für Leistung und

Benutzererfahrung optimiert sind.

Im nächsten Abschnitt werden wir untersuchen, wie diese Muster in der Praxis

implementiert werden können, wobei wir reale Beispiele und Code-Snippets

Intelligente Workflow-Orchestrierung 239

verwenden, um die Integration von KI-Komponenten in das Workflow-Management

zu veranschaulichen.

Implementierung der intelligenten

Workflow-Orchestrierung in der Praxis

Nachdem wir die wichtigsten Muster in der intelligenten Workflow-Orchestrierung

erkundet haben, lassen Sie uns nun betrachten, wie diese Muster in realen

Anwendungen implementiert werden können. Wir werden praktische Beispiele

und Code-Snippets bereitstellen, um die Integration von KI-Komponenten in das

Workflow-Management zu veranschaulichen.

Intelligenter Auftragsverarbeiter

Lassen Sie uns ein praktisches Beispiel für die Implementierung einer intelligenten

Workflow-Orchestrierung anhand einer KI-gestützten OrderProcessor-Komponente

in einer Ruby on Rails-E-Commerce-Anwendung betrachten. Der OrderProcessor

verwirklicht das Konzept des Process Manager Enterprise Integration, das wir

erstmals in Kapitel 3 bei der Diskussion über Multitude of Workers kennengelernt

haben. Die Komponente ist für die Verwaltung des Auftragsabwicklungs-Workflows

verantwortlich, trifft Routing-Entscheidungen basierend auf Zwischenergebnissen und

orchestriert die Ausführung verschiedener Verarbeitungsschritte.

Der Auftragsabwicklungsprozess umfasst mehrere Schritte wie Auftragsvalidierung,

Bestandsprüfung, Zahlungsabwicklung und Versand. Jeder Schritt wird als separater

Worker-Prozess implementiert, der eine bestimmte Aufgabe ausführt und das Ergebnis

an den OrderProcessor zurückgibt. Die Schritte sind nicht obligatorisch und müssen

nicht einmal unbedingt in einer bestimmten Reihenfolge ausgeführt werden.

Hier ist ein Beispiel für die Implementierung des OrderProcessor. Er enthält

zwei Mixins von Raix. Das erste (ChatCompletion) verleiht ihm die Fähigkeit

https://github.com/OlympiaAI/raix-rails

Intelligente Workflow-Orchestrierung 240

zur Chat-Vervollständigung, was ihn zu einer KI-Komponente macht. Das zweite

(FunctionDispatch) ermöglicht den Funktionsaufruf durch die KI, sodass sie auf

eine Aufforderung mit einem Funktionsaufruf statt einer Textnachricht reagieren kann.

Die Worker-Funktionen (validate_order, check_inventory, et al) delegieren an

ihre jeweiligen Worker-Klassen, die KI- oder Nicht-KI-Komponenten sein können,

wobei die einzige Anforderung darin besteht, dass sie die Ergebnisse ihrer Arbeit in

einem Format zurückgeben, das als String dargestellt werden kann.

Wie bei allen anderen Beispielen in diesem Teil des Buches handelt es

sich hierbei praktisch um Pseudo-Code, der nur dazu dient, die Bedeutung

des Musters zu vermitteln und Ihre eigenen Kreationen zu inspirieren.

Vollständige Beschreibungen der Muster und vollständige Code-Beispiele

sind in Teil 2 enthalten.

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

Intelligente Workflow-Orchestrierung 241

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

In diesem Beispiel wird der OrderProcessor mit einem Bestellobjekt initialisiert und

führt ein Protokoll der Workflow-Ausführung im typischen Konversationsformat,

Intelligente Workflow-Orchestrierung 242

das für große Sprachmodelle charakteristisch ist. Die KI erhält die vollständige

Kontrolle über die Orchestrierung der verschiedenen Verarbeitungsschritte, wie

Bestellungsvalidierung, Bestandsprüfung, Zahlungsabwicklung und Versand.

Jedes Mal, wenn die Methode chat_completion aufgerufen wird, wird das

Protokoll an die KI gesendet, damit diese eine Vervollständigung in Form eines

Funktionsaufrufs bereitstellt. Es liegt vollständig in der Verantwortung der KI, das

Ergebnis des vorherigen Schritts zu analysieren und die entsprechende Aktion zu

bestimmen. Wenn beispielsweise die Bestandsprüfung einen niedrigen Lagerbestand

aufzeigt, kann der OrderProcessor eine Nachbestellungsaufgabe einplanen. Falls

die Zahlungsabwicklung fehlschlägt, kann er einen erneuten Versuch starten oder den

Kundenservice benachrichtigen.

Das obige Beispiel enthält zwar keine definierten Funktionen für Nachbestellung oder

Kundenservice-Benachrichtigung, könnte diese aber durchaus haben.

Das Protokoll wächst mit jedem Funktionsaufruf und dient als Aufzeichnung

der Workflow-Ausführung, einschließlich der Ergebnisse jedes Schritts und der

KI-generierten Anweisungen für die nächsten Schritte. Dieses Protokoll kann für

Fehlerbehebung, Prüfung und Einblick in den Bestellabwicklungsprozess verwendet

werden.

Durch den Einsatz von KI im OrderProcessor kann die E-Commerce-Anwendung den

Workflow dynamisch an Echtzeitdaten anpassen undAusnahmen intelligent behandeln.

Die KI-Komponente kann fundierte Entscheidungen treffen, den Workflow optimieren

und eine reibungslose Bestellverarbeitung auch in komplexen Szenarien gewährleisten.

Da die einzige Anforderung an die Arbeitsprozesse darin besteht, eine verständliche

Ausgabe zu liefern, die die KI bei der Entscheidung über das weitere Vorgehen

berücksichtigen kann, wird möglicherweise deutlich, wie dieser Ansatz den Aufwand

Intelligente Workflow-Orchestrierung 243

für die Eingabe-/Ausgabe-Zuordnung reduzieren kann, der typischerweise bei der

Integration verschiedener Systeme anfällt.

Intelligenter Inhaltsmoderator

Social-Media-Anwendungen erfordern im Allgemeinen mindestens eine grundlegende

Inhaltsmoderation, um eine sichere und gesunde Community zu gewährleisten.

Dieses Beispiel einer ContentModerator-Komponente nutzt KI, um den

Moderationsworkflow intelligent zu orchestrieren und trifft Entscheidungen

basierend auf den Eigenschaften der Inhalte und den Ergebnissen verschiedener

Moderationsschritte.

Der Moderationsprozess umfasst mehrere Schritte wie Textanalyse, Bilderkennung,

Bewertung der Benutzerreputation und manuelle Überprüfung. Jeder Schritt wird als

separater Arbeitsprozess implementiert, der eine spezifische Aufgabe ausführt und das

Ergebnis an den ContentModerator zurückgibt.

Hier ist eine Beispielimplementierung des ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

Intelligente Workflow-Orchestrierung 244

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

Intelligente Workflow-Orchestrierung 245

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

In diesem Beispiel wird der ContentModerator mit einem Inhaltsobjekt initialisiert

und führt ein Moderationsprotokoll im Gesprächsformat. Die KI-Komponente hat die

vollständige Kontrolle über den Moderationsarbeitsablauf und entscheidet basierend

auf den Eigenschaften des Inhalts und den Ergebnissen jedes Schritts, welche Schritte

ausgeführt werden sollen.

Intelligente Workflow-Orchestrierung 246

Die verfügbaren Arbeitsfunktionen, die die KI aufrufen kann, umfassen analyze_-

text, recognize_image, assess_user_reputation und escalate_to_manual_-

review. Jede Funktion delegiert die Aufgabe an einen entsprechenden Arbeitsprozess

(TextAnalysisWorker, ImageRecognitionWorker, usw.) und fügt das Ergebnis dem

Moderationsprotokoll hinzu, mit Ausnahme der Eskalationsfunktion, die als Endzustand

fungiert. Auch die Funktionen approve_content und reject_content fungieren als

Endzustände.

Die KI-Komponente analysiert den Inhalt und bestimmt die angemessene

Vorgehensweise. Wenn der Inhalt Bildreferenzen enthält, kann sie den

recognize_image-Worker zur Unterstützung bei einer visuellen Überprüfung

aufrufen. Wenn ein Worker vor potenziell schädlichen Inhalten warnt, kann die KI

entscheiden, den Inhalt zur manuellen Überprüfung weiterzuleiten oder ihn direkt

abzulehnen. Je nach Schwere der Warnung kann die KI aber auch die Ergebnisse

der Benutzerreputationsbewertung bei der Entscheidung berücksichtigen, wie sie mit

Inhalten umgeht, bei denen sie sich nicht sicher ist. Je nach Anwendungsfall haben

vertrauenswürdige Benutzer möglicherweise mehr Spielraum bei dem, was sie posten

können. Und so weiter und so fort…

Wie beim vorherigen Beispiel des Prozessmanagers dient das Moderationsprotokoll als

Aufzeichnung der Workflow-Ausführung, einschließlich der Ergebnisse jedes Schritts

und der KI-generierten Entscheidungen. Dieses Protokoll kann für Audits, Transparenz

und die Verbesserung des Moderationsprozesses im Laufe der Zeit verwendet werden.

Durch den Einsatz von KI im ContentModerator kann die Social-Media-Anwendung

den Moderationsarbeitsablauf dynamisch an die Eigenschaften der Inhalte anpassen

und komplexe Moderationsszenarien intelligent handhaben. Die KI-Komponente kann

fundierte Entscheidungen treffen, den Arbeitsablauf optimieren und eine sichere und

gesunde Community-Erfahrung gewährleisten.

Lassen Sie uns zwei weitere Beispiele betrachten, die die prädiktive Aufgabenplanung

sowie die Ausnahmebehandlung und -wiederherstellung im Kontext der intelligenten

Intelligente Workflow-Orchestrierung 247

Workflow-Orchestrierung demonstrieren.

Prädiktive Aufgabenplanung in einem
Kundenbetreuungssystem

In einer mit Ruby on Rails entwickelten Kundenbetreuungsanwendung ist die effiziente

Verwaltung und Priorisierung von Support-Tickets entscheidend für eine zeitnahe

Unterstützung der Kunden. Die SupportTicketScheduler-Komponente nutzt KI, um

Support-Tickets vorausschauend zu planen und verfügbaren Mitarbeitern zuzuweisen,

basierend auf verschiedenen Faktoren wie Dringlichkeit des Tickets, Expertise der

Mitarbeiter und Arbeitsauslastung.

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

Intelligente Workflow-Orchestrierung 248

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

Intelligente Workflow-Orchestrierung 249

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

In diesem Beispiel wird der SupportTicketScheduler mit einem Support-Ticket-

Objekt initialisiert und führt ein Planungsprotokoll. Die KI-Komponente analysiert die

Ticket-Details und plant die Ticket-Zuweisung prädiktiv auf Basis von Faktoren wie

Ticket-Dringlichkeit, Mitarbeiter-Expertise und prognostizierter Mitarbeiterauslastung.

Die für die KI verfügbaren Funktionen umfassen analyze_ticket_urgency,

list_available_agents, predict_agent_workload und assign_ticket_-

to_agent. Jede Funktion delegiert die Aufgabe an eine entsprechende Analyse- oder

Prognosekomponente und fügt das Ergebnis dem Planungsprotokoll hinzu. Die KI hat

auch die Möglichkeit, die Zuweisung mittels der Funktion delay_assignment zu

verzögern.

Die KI-Komponente untersucht das Planungsprotokoll und trifft fundierte

Entscheidungen zur Ticket-Zuweisung. Sie berücksichtigt die Dringlichkeit des Tickets,

die Expertise der verfügbaren Mitarbeiter und die prognostizierte Arbeitsbelastung

jedes Mitarbeiters, um den am besten geeigneten Mitarbeiter für die Bearbeitung des

Tickets zu bestimmen.

Durch den Einsatz der prädiktiven Aufgabenplanung kann die Kundenservice-

Intelligente Workflow-Orchestrierung 250

Anwendung die Ticket-Zuweisung optimieren, Reaktionszeiten verkürzen und die

allgemeine Kundenzufriedenheit verbessern. Die proaktive und effiziente Verwaltung

von Support-Tickets stellt sicher, dass die richtigen Tickets zur richtigen Zeit an die

richtigen Mitarbeiter zugewiesen werden.

Ausnahmebehandlung und Wiederherstellung in einer
Datenverarbeitungs-Pipeline

Die Behandlung von Ausnahmen und die Wiederherstellung nach Fehlern

sind essentiell, um die Datenintegrität zu gewährleisten und Datenverlust zu

verhindern. Die DataProcessingOrchestrator-Komponente nutzt KI, um

intelligent mit Ausnahmen umzugehen und den Wiederherstellungsprozess in

einer Datenverarbeitungs-Pipeline zu orchestrieren

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

Intelligente Workflow-Orchestrierung 251

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

Intelligente Workflow-Orchestrierung 252

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

In diesem Beispiel wird der DataProcessingOrchestrator mit einem Daten-

Batch-Objekt initialisiert und führt ein Verarbeitungsprotokoll. Die KI-Komponente

Intelligente Workflow-Orchestrierung 253

orchestriert die Datenverarbeitungspipeline, behandelt Ausnahmen und erholt sich

nach Bedarf von Fehlern.

Die der KI zur Verfügung stehenden Funktionen umfassen validate_data,

process_data, request_fix, retry_processing und mark_data_-

as_failed. Jede Funktion delegiert die Aufgabe an eine entsprechende

Datenverarbeitungskomponente und fügt das Ergebnis oder die Ausnahmedetails

dem Verarbeitungsprotokoll hinzu.

Wenn während des validate_data-Schritts eine Validierungsausnahme auftritt, fügt

die handle_validation_exception-Funktion die Ausnahmedaten dem Protokoll

hinzu und gibt die Kontrolle an die KI zurück. Ähnlich verhält es sich, wenn während

des process_data-Schritts eine Verarbeitungsausnahme auftritt - hier kann die KI über

die Wiederherstellungsstrategie entscheiden.

Je nach Art der aufgetretenen Ausnahme kann die KI nach eigenem Ermessen

entscheiden, request_fix aufzurufen, was an eine KI-gesteuerte SmartDataFixer-

Komponente delegiert wird (siehe Kapitel über Selbstheilende Daten). Der

Datenkorrektor erhält eine einfache Beschreibung in natürlicher Sprache, wie er

den @data_batch modifizieren soll, damit die Verarbeitung wiederholt werden kann.

Vielleicht würde eine erfolgreiche Wiederholung bedeuten, dass Datensätze aus dem

Daten-Batch entfernt werden, die die Validierung nicht bestanden haben, und/oder dass

sie zur manuellen Überprüfung in eine andere Verarbeitungspipeline kopiert werden?

Die Möglichkeiten sind nahezu endlos.

Durch die Integration von KI-gesteuerter Ausnahmebehandlung undWiederherstellung

wird die Datenverarbeitungsanwendung robuster und fehlertoleranter.

Der DataProcessingOrchestrator verwaltet Ausnahmen intelligent,

minimiert Datenverluste und gewährleistet die reibungslose Ausführung des

Datenverarbeitungsworkflows.

Intelligente Workflow-Orchestrierung 254

Überwachung und Protokollierung

Überwachung und Protokollierung bieten Einblick in den Fortschritt, die Leistung

und den Zustand von KI-gesteuerten Workflow-Komponenten und ermöglichen

es Entwicklern, das Verhalten des Systems zu verfolgen und zu analysieren. Die

Implementierung effektiver Überwachungs- und Protokollierungsmechanismen ist

essentiell für das Debugging, die Prüfung und die kontinuierliche Verbesserung

intelligenter Workflows.

Überwachung des Workflow-Fortschritts und der Leistung

Um die reibungslose Ausführung intelligenter Workflows sicherzustellen, ist es wichtig,

den Fortschritt und die Leistung jeder Workflow-Komponente zu überwachen. Dies

beinhaltet die Verfolgung wichtiger Metriken und Ereignisse während des gesamten

Workflow-Lebenszyklus.

Wichtige zu überwachende Aspekte sind:

1. Workflow-Ausführungszeit: Messen der Zeit, die jede Workflow-Komponente

für die Ausführung ihrer Aufgabe benötigt. Dies hilft dabei, Leistungsengpässe zu

identifizieren und die Gesamteffizienz des Workflows zu optimieren.

2. Ressourcennutzung: Überwachung der Nutzung von Systemressourcen wie CPU,

Arbeitsspeicher und Speicherplatz durch jede Workflow-Komponente. Dies hilft

sicherzustellen, dass das System innerhalb seiner Kapazität arbeitet und die Arbeitslast

effektiv bewältigen kann.

3. Fehlerraten und Ausnahmen: Verfolgung des Auftretens von Fehlern und

Ausnahmen innerhalb der Workflow-Komponenten. Dies hilft dabei, potenzielle

Probleme zu identifizieren und ermöglicht proaktive Fehlerbehandlung und

Wiederherstellung.

Intelligente Workflow-Orchestrierung 255

4. Entscheidungspunkte und Ergebnisse: Überwachung der Entscheidungspunkte

innerhalb desWorkflows und der Ergebnisse KI-gesteuerter Entscheidungen. Dies liefert

Einblicke in das Verhalten und die Effektivität der KI-Komponenten.

Die durch Überwachungsprozesse erfasstenDaten können inDashboards angezeigt oder

als Eingaben für geplante Berichte verwendet werden, die Systemadministratoren über

den Systemzustand informieren.

Überwachungsdaten können an einen KI-gesteuerten

Systemadministrationsprozess zur Überprüfung und möglichen

Maßnahmen weitergeleitet werden!

Protokollierung wichtiger Ereignisse und Entscheidungen

Die Protokollierung ist eine wesentliche Praxis, bei der relevante Informationen

über wichtige Ereignisse, Entscheidungen und Ausnahmen während der Workflow-

Ausführung erfasst und gespeichert werden.

Wichtige zu protokollierende Aspekte sind:

1. Workflow-Initiierung und -Abschluss: Protokollierung der Start- und Endzeiten

jeder Workflow-Instanz zusammen mit relevanten Metadaten wie den Eingabedaten

und dem Benutzerkontext.

2. Komponentenausführung: Protokollierung der Ausführungsdetails jederWorkflow-

Komponente, einschließlich der Eingabeparameter, Ausgabeergebnisse und aller

erzeugten Zwischendaten.

3. KI-Entscheidungen und -Begründungen: Protokollierung der von KI-Komponenten

getroffenen Entscheidungen zusammenmit den zugrundeliegenden Begründungen oder

Konfidenzwerten. Dies sorgt für Transparenz und ermöglicht die Überprüfung KI-

gesteuerter Entscheidungen.

Intelligente Workflow-Orchestrierung 256

4. Ausnahmen und Fehlermeldungen: Protokollierung aller während der Workflow-

Ausführung aufgetretenen Ausnahmen oder Fehlermeldungen, einschließlich des Stack-

Trace und relevanter Kontextinformationen.

Die Protokollierung kann mit verschiedenen Techniken implementiert werden, wie dem

Schreiben in Protokolldateien, dem Speichern von Protokollen in einer Datenbank oder

dem Senden von Protokollen an einen zentralisierten Protokollierungsdienst. Es ist

wichtig, ein Protokollierungsframework zu wählen, das Flexibilität, Skalierbarkeit und

einfache Integration in die Anwendungsarchitektur bietet.

Hier ist ein Beispiel dafür, wie die Protokollierung in einer Ruby on Rails-Anwendung

mit der Klasse ActiveSupport::Logger implementiert werden kann:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Durch die strategische Platzierung von Protokollierungsanweisungen in den

Workflow-Komponenten und KI-Entscheidungspunkten können Entwickler wertvolle

Informationen für Fehlersuche, Prüfung und Analyse erfassen.

Vorteile von Überwachung und Protokollierung

Die Implementierung von Überwachung und Protokollierung in der intelligenten

Workflow-Orchestrierung bietet mehrere Vorteile:

Intelligente Workflow-Orchestrierung 257

1. Fehlersuche und Fehlerbehebung: Detaillierte Protokolle und Überwachungsdaten

helfen Entwicklern dabei, Probleme schnell zu identifizieren und zu diagnostizieren. Sie

bieten Einblicke in den Workflow-Ausführungsablauf, Komponenteninteraktionen und

aufgetretene Fehler oder Ausnahmen.

2. Leistungsoptimierung: Die Überwachung von Leistungsmetriken ermöglicht es

Entwicklern, Engpässe zu identifizieren und die Workflow-Komponenten für bessere

Effizienz zu optimieren. Durch die Analyse von Ausführungszeiten, Ressourcennutzung

und anderen Metriken können Entwickler fundierte Entscheidungen zur Verbesserung

der Gesamtleistung des Systems treffen.

3. Prüfung und Compliance: Die Protokollierung wichtiger Ereignisse und

Entscheidungen bietet einen Prüfpfad für regulatorische Compliance und

Verantwortlichkeit. Dies ermöglicht es Organisationen, die von KI-Komponenten

getroffenen Maßnahmen zu verfolgen und zu überprüfen sowie die Einhaltung von

Geschäftsregeln und rechtlichen Anforderungen sicherzustellen.

4. Kontinuierliche Verbesserung: Überwachungs- und Protokollierungsdaten dienen

als wertvolle Eingaben für die kontinuierliche Verbesserung intelligenter Workflows.

Durch die Analyse historischer Daten, die Identifizierung von Mustern und die

Messung der Effektivität von KI-Entscheidungen können Entwickler die Workflow-

Orchestrierungslogik iterativ verfeinern und verbessern.

Überlegungen und Best Practices

Bei der Implementierung von Überwachung und Protokollierung in der intelligenten

Workflow-Orchestrierung sind folgende Best Practices zu beachten:

1. Klare Überwachungsmetriken definieren: Identifizieren Sie die wichtigsten

Metriken und Ereignisse, die basierend auf den spezifischen Anforderungen des

Workflows überwacht werden müssen. Konzentrieren Sie sich auf Metriken, die

aussagekräftige Einblicke in die Leistung, den Zustand und das Verhalten des Systems

liefern.

Intelligente Workflow-Orchestrierung 258

2. Granulare Protokollierung implementieren: Stellen Sie sicher, dass

Protokollierungsanweisungen an geeigneten Stellen innerhalb der Workflow-

Komponenten und KI-Entscheidungspunkte platziert sind. Erfassen Sie relevante

Kontextinformationen wie Eingabeparameter, Ausgabeergebnisse und generierte

Zwischendaten.

3. Strukturierte Protokollierung verwenden: Verwenden Sie ein strukturiertes

Protokollierungsformat, um das Parsen und die Analyse von Protokolldaten zu

erleichtern. Strukturierte Protokollierung ermöglicht eine bessere Durchsuchbarkeit,

Filterung und Aggregation von Protokolleinträgen.

4. Protokollaufbewahrung und -rotation verwalten: Implementieren Sie Richtlinien

für die Protokollaufbewahrung und -rotation, um die Speicherung und den Lebenszyklus

von Protokolldateien zu verwalten. Legen Sie die angemessene Aufbewahrungsfrist

basierend auf gesetzlichenAnforderungen, Speicherbeschränkungen undAnalysebedarf

fest. Wenn möglich, lagern Sie die Protokollierung an einen Drittanbieterdienst wie

Papertrail aus.

5. Sensible Informationen schützen: Seien Sie vorsichtig bei der Protokollierung

sensibler Informationen wie personenbezogener Daten (PII) oder vertraulicher

Geschäftsdaten. Implementieren Sie geeignete Sicherheitsmaßnahmen wie

Datenmasking oder Verschlüsselung zum Schutz sensibler Informationen in

Protokolldateien.

6. Integration mit Überwachungs- und Alarmierungswerkzeugen: Nutzen Sie

Überwachungs- und Alarmierungswerkzeuge zur Zentralisierung der Sammlung,

Analyse und Visualisierung von Überwachungs- und Protokollierungsdaten. Diese

Tools können Echtzeit-Einblicke liefern, Warnungen basierend auf vordefinierten

Schwellenwerten generieren und die proaktive Erkennung und Behebung von

Problemen erleichtern. Mein Lieblingswerkzeug dafür ist Datadog.

Durch die Implementierung umfassender Überwachungs- und Protokollierungsmechanismen

können Entwickler wertvolle Einblicke in das Verhalten und die Leistung intelligenter

https://papertrailapp.com
https://www.datadoghq.com

Intelligente Workflow-Orchestrierung 259

Workflows gewinnen. Diese Einblicke ermöglichen eine effektive Fehlersuche,

Optimierung und kontinuierliche Verbesserung von KI-gestützten Workflow-

Orchestrierungssystemen.

Skalierbarkeits- und Leistungsüberlegungen

Skalierbarkeit und Leistung sind kritische Aspekte, die bei der Konzeption und

Implementierung intelligenter Workflow-Orchestrierungssysteme zu berücksichtigen

sind. Mit zunehmendem Volumen gleichzeitiger Workflows und steigender Komplexität

KI-gestützter Komponenten wird es essentiell, sicherzustellen, dass das System die

Arbeitslast effizient bewältigen und sich nahtlos an wachsende Anforderungen

anpassen kann.

Umgang mit hohen Volumen gleichzeitiger Workflows

Intelligente Workflow-Orchestrierungssysteme müssen oft eine große Anzahl

gleichzeitiger Workflows bewältigen. Um Skalierbarkeit zu gewährleisten, sollten

folgende Strategien berücksichtigt werden:

1. AsynchroneVerarbeitung: Implementieren Sie asynchrone Verarbeitungsmechanismen,

um die Ausführung von Workflow-Komponenten zu entkoppeln. Dies ermöglicht es

dem System, mehrere Workflows gleichzeitig zu bearbeiten, ohne dass einzelne

Komponenten blockieren oder auf deren Abschluss gewartet werden muss. Asynchrone

Verarbeitung kann durch Nachrichtenwarteschlangen, ereignisgesteuerte Architekturen

oder Hintergrundverarbeitungs-Frameworks wie Sidekiq erreicht werden.

2. Verteilte Architektur: Gestalten Sie die Systemarchitektur so, dass sie serverlose

Komponenten (wie AWS Lambda) verwendet oder die Arbeitslast einfach auf mehrere

Knoten oder Server neben Ihrem Hauptanwendungsserver verteilt. Dies ermöglicht

horizontale Skalierbarkeit, bei der zusätzliche Knoten hinzugefügt werden können, um

erhöhte Workflow-Volumen zu bewältigen.

Intelligente Workflow-Orchestrierung 260

3. Parallele Ausführung: Identifizieren Sie Möglichkeiten zur parallelen Ausführung

innerhalb von Workflows. Einige Workflow-Komponenten können unabhängig

voneinander sein und gleichzeitig ausgeführt werden. Durch die Nutzung paralleler

Verarbeitungstechniken wie Multi-Threading oder verteilte Task-Warteschlangen

kann das System die Ressourcennutzung optimieren und die gesamte Workflow-

Ausführungszeit reduzieren.

Optimierung der Leistung von KI-gestützten
Komponenten

KI-gestützte Komponentenwiemaschinelle Lernmodelle oder Systeme zur Verarbeitung

natürlicher Sprache können rechenintensiv sein und die Gesamtleistung des Workflow-

Orchestrierungssystems beeinträchtigen. Um die Leistung von KI-Komponenten zu

optimieren, sollten folgende Techniken in Betracht gezogen werden:

1. Caching: Wenn Ihre KI-Verarbeitung rein generativ ist und keine Echtzeit-

Informationsabfragen oder externe Integrationen für die Erstellung von Chat-

Antworten erfordert, können Sie Caching-Mechanismen zur Speicherung und

Wiederverwendung der Ergebnisse häufig genutzter oder rechenintensiver Operationen

in Betracht ziehen.

2. Modelloptimierung: Optimieren Sie kontinuierlich die Verwendung der KI-Modelle

in Workflow-Komponenten. Dies kann Techniken wie Prompt-Destillation umfassen

oder einfach das Testen neuer Modelle, sobald diese verfügbar werden.

3. Batch-Verarbeitung: Wenn Sie mit GPT-4-Klasse-Modellen arbeiten, können Sie

möglicherweise Batch-Verarbeitungstechniken nutzen, um mehrere Datenpunkte oder

Anfragen in einem einzigen Durchgang zu verarbeiten, anstatt sie einzeln zu bearbeiten.

Durch die Verarbeitung von Daten in Batches kann das System die Ressourcennutzung

optimieren und den Overhead wiederholter Modellanfragen reduzieren.

Intelligente Workflow-Orchestrierung 261

Überwachung und Profiling der Leistung

Um Leistungsengpässe zu identifizieren und die Skalierbarkeit des intelligenten

Workflow-Orchestrierungssystems zu optimieren, ist es entscheidend, Überwachungs-

und Profiling-Mechanismen zu implementieren. Berücksichtigen Sie folgende Ansätze:

1. Leistungskennzahlen: Definieren und verfolgen Sie wichtige Leistungskennzahlen

wie Antwortzeit, Durchsatz, Ressourcennutzung und Latenz. Diese Metriken

liefern Einblicke in die Systemleistung und helfen bei der Identifizierung von

Optimierungsbereichen. Der beliebte KI-Modell-Aggregator OpenRouter enthält Host1-

und Speed2-Metriken in jeder API-Antwort, wodurch die Verfolgung dieser wichtigen

Kennzahlen trivial wird.

2. Profiling-Tools: Nutzen Sie Profiling-Tools zur Analyse der Leistung einzelner

Workflow-Komponenten und KI-Operationen. Profiling-Tools können helfen,

Leistungs-Hotspots, ineffiziente Code-Pfade oder ressourcenintensive Operationen

zu identifizieren. Beliebte Profiling-Tools sind New Relic, Scout oder die in der

Programmiersprache oder dem Framework integrierten Profiler.

3. Lasttests: Führen Sie Lasttests durch, um die Systemleistung unter verschiedenen

gleichzeitigen Arbeitslasten zu bewerten. Lasttests helfen dabei, die Skalierungsgrenzen

des Systems zu identifizieren, Leistungseinbußen zu erkennen und sicherzustellen, dass

das System den erwarteten Datenverkehr ohne Leistungseinbußen bewältigen kann.

4. Kontinuierliche Überwachung: Implementieren Sie kontinuierliche Überwachungs-

und Alarmmechanismen, um Leistungsprobleme und Engpässe proaktiv zu

erkennen. Richten Sie Überwachungs-Dashboards und Alarme ein, um wichtige

Leistungsindikatoren (KPIs) zu verfolgen und Benachrichtigungen zu erhalten, wenn

vordefinierte Schwellenwerte überschritten werden. Dies ermöglicht eine schnelle

Identifizierung und Behebung von Leistungsproblemen.
1Host ist die Zeit, die benötigt wurde, um das erste Byte der gestreamten Generierung vom Modell-Host

zu empfangen, auch bekannt als “Time to First Byte”.
2Speed wird berechnet als die Anzahl der Completion-Tokens geteilt durch die gesamte Generierungszeit.

Bei nicht-gestreamten Anfragen wird die Latenz als Teil der Generierungszeit betrachtet.

https://openrouter.ai

Intelligente Workflow-Orchestrierung 262

Skalierungsstrategien

Um steigende Arbeitslasten zu bewältigen und die Skalierbarkeit des

intelligenten Workflow-Orchestrierungssystems sicherzustellen, sollten folgende

Skalierungsstrategien in Betracht gezogen werden:

1. Vertikale Skalierung: Vertikale Skalierung beinhaltet die Erhöhung der Ressourcen

(z.B. CPU, Speicher) einzelner Knoten oder Server, um höhere Arbeitslasten zu

bewältigen. Dieser Ansatz ist geeignet, wenn das System mehr Rechenleistung oder

Speicher benötigt, um komplexe Workflows oder KI-Operationen zu verarbeiten.

2. Horizontale Skalierung: Horizontale Skalierung beinhaltet das Hinzufügen weiterer

Knoten oder Server zum System, um die Arbeitslast zu verteilen. Dieser Ansatz ist

effektiv, wenn das System eine große Anzahl gleichzeitigerWorkflows verarbeiten muss

oder wenn die Arbeitslast leicht auf mehrere Knoten verteilt werden kann. Horizontale

Skalierung erfordert eine verteilte Architektur und Lastausgleichsmechanismen, um

eine gleichmäßige Verkehrsverteilung sicherzustellen.

3. Automatische Skalierung: Implementieren Sie automatische Skalierungsmechanismen,

um die Anzahl der Knoten oder Ressourcen basierend auf der Arbeitsauslastung

automatisch anzupassen. Automatische Skalierung ermöglicht es dem System, sich

je nach eingehendem Datenverkehr dynamisch nach oben oder unten zu skalieren

und dabei eine optimale Ressourcennutzung und Kosteneffizienz sicherzustellen.

Cloud-Plattformen wie Amazon Web Services (AWS) oder Google Cloud Platform

(GCP) bieten automatische Skalierungsfunktionen, die für intelligente Workflow-

Orchestrierungssysteme genutzt werden können.

Leistungsoptimierungstechniken

Zusätzlich zu den Skalierungsstrategien sollten folgende Leistungsoptimierungstechniken

in Betracht gezogen werden, um die Effizienz des intelligenten Workflow-

Orchestrierungssystems zu verbessern:

Intelligente Workflow-Orchestrierung 263

1. Effiziente Datenspeicherung und -abruf: Optimieren Sie die von den Workflow-

Komponenten verwendeten Mechanismen zur Datenspeicherung und zum Datenabruf.

Verwenden Sie effiziente Datenbankindizierung, Abfrageoptimierungstechniken und

Daten-Caching, um die Latenz zu minimieren und die Leistung datenintensiver

Operationen zu verbessern.

2. Asynchrone E/A: Nutzen Sie asynchrone Ein-/Ausgabe-Operationen, um

Blockierungen zu vermeiden und die Reaktionsfähigkeit des Systems zu verbessern.

Asynchrone E/A ermöglicht es dem System, mehrere Anfragen gleichzeitig zu

verarbeiten, ohne auf den Abschluss von E/A-Operationen warten zu müssen, wodurch

die Ressourcennutzung maximiert wird.

3. Effiziente Serialisierung und Deserialisierung: Optimieren Sie die Serialisierungs-

und Deserialisierungsprozesse, die für den Datenaustausch zwischen Workflow-

Komponenten verwendet werden. Verwenden Sie effiziente Serialisierungsformate

wie Protocol Buffers oder MessagePack, um den Overhead der Datenserialisierung

zu reduzieren und die Leistung der Kommunikation zwischen den Komponenten zu

verbessern.

Für Ruby-basierte Anwendungen sollten Sie die Verwendung von Universal

ID in Betracht ziehen. Universal ID nutzt sowohl MessagePack als auch

Brotli (eine Kombination, die für Geschwindigkeit und erstklassige

Datenkompression entwickelt wurde). In Kombination sind diese

Bibliotheken bis zu 30% schneller und erreichen Kompressionsraten,

die nur 2-5% von Protocol Buffers abweichen.

4. Komprimierung und Kodierung: Wenden Sie Kompressions- und

Kodierungstechniken an, um die Größe der zwischen Workflow-Komponenten

übertragenen Daten zu reduzieren. Kompressionsalgorithmen wie gzip oder

Brotli können den Netzwerkbandbreitenverbrauch erheblich reduzieren und die

Gesamtleistung des Systems verbessern.

https://github.com/hopsoft/universalid
https://github.com/hopsoft/universalid

Intelligente Workflow-Orchestrierung 264

Durch die Berücksichtigung von Skalierbarkeits- und Leistungsaspekten während der

Konzeption und Implementierung intelligenter Workflow-Orchestrierungssysteme

können Sie sicherstellen, dass Ihr System hohe Volumina gleichzeitiger Workflows

bewältigen, die Leistung KI-gestützter Komponenten optimieren und nahtlos

skalieren kann, um wachsenden Anforderungen gerecht zu werden. Kontinuierliche

Überwachung, Profiling und Optimierungsbemühungen sind unerlässlich, um die

Leistung und Reaktionsfähigkeit des Systems aufrechtzuerhalten, während die

Arbeitslast und Komplexität im Laufe der Zeit zunehmen.

Testen und Validierung von Workflows

Testen und Validierung sind kritische Aspekte bei der Entwicklung und Wartung

intelligenter Workflow-Orchestrierungssysteme. Angesichts der komplexen Natur KI-

gestützter Workflows ist es wichtig sicherzustellen, dass jede Komponente wie erwartet

funktioniert, der Gesamtworkflow korrekt arbeitet und die KI-Entscheidungen präzise

und zuverlässig sind. In diesem Abschnitt werden wir verschiedene Techniken und

Überlegungen für das Testen und Validieren intelligenter Workflows untersuchen.

Unit-Testing von Workflow-Komponenten

Unit-Testing beinhaltet das isolierte Testen einzelner Workflow-Komponenten, um

ihre Korrektheit und Robustheit zu überprüfen. Beim Unit-Testing von KI-gestützten

Workflow-Komponenten sind folgende Aspekte zu berücksichtigen:

1. Eingabevalidierung: Testen Sie die Fähigkeit der Komponente, verschiedene Arten

von Eingaben zu verarbeiten, einschließlich gültiger und ungültiger Daten. Überprüfen

Sie, ob die Komponente Grenzfälle angemessen behandelt und entsprechende

Fehlermeldungen oder Ausnahmen bereitstellt.

2. Ausgabeüberprüfung: Stellen Sie sicher, dass die Komponente für einen bestimmten

Satz von Eingaben die erwarteten Ausgaben erzeugt. Vergleichen Sie die tatsächlichen

Intelligente Workflow-Orchestrierung 265

Ausgaben mit den erwarteten Ergebnissen, um die Korrektheit zu gewährleisten.

3. Fehlerbehandlung: Testen Sie die Fehlerbehandlungsmechanismen der Komponente,

indem Sie verschiedene Fehlerszenarien simulieren, wie ungültige Eingaben, nicht

verfügbare Ressourcen oder unerwartete Ausnahmen. Überprüfen Sie, ob die

Komponente Fehler angemessen abfängt und behandelt.

4. Randbedingungen: Testen Sie das Verhalten der Komponente unter

Randbedingungen, wie leere Eingaben, maximale Eingabegröße oder extreme

Werte. Stellen Sie sicher, dass die Komponente diese Bedingungen elegant handhabt,

ohne abzustürzen oder falsche Ergebnisse zu produzieren.

Hier ist ein Beispiel eines Unit-Tests für eine Workflow-Komponente in Ruby unter

Verwendung des RSpec-Testing-Frameworks:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

In diesem Beispiel wird die OrderValidator-Komponente mit zwei Testfällen getestet:

einem für eine gültige Bestellung und einem für eine ungültige Bestellung. Die Testfälle

Intelligente Workflow-Orchestrierung 266

überprüfen, ob die validate-Methode den erwarteten booleschen Wert basierend auf

der Gültigkeit der Bestellung zurückgibt.

Integration Testing von Workflow-Interaktionen

Integrationstests konzentrieren sich darauf, die Interaktionen und den Datenfluss

zwischen verschiedenen Workflow-Komponenten zu überprüfen. Sie stellen sicher,

dass die Komponenten nahtlos zusammenarbeiten und die erwarteten Ergebnisse

liefern. Bei der Integration von intelligenten Workflows sollten folgende Aspekte

berücksichtigt werden:

1. Komponenteninteraktion: Testen Sie die Kommunikation und den Datenaustausch

zwischen Workflow-Komponenten. Überprüfen Sie, ob die Ausgabe einer Komponente

korrekt als Eingabe an die nächste Komponente im Workflow weitergegeben wird.

2. Datenkonsistenz: Stellen Sie sicher, dass die Daten während des Durchlaufs

durch den Workflow konsistent und genau bleiben. Überprüfen Sie, ob

Datentransformationen, Berechnungen und Aggregationen korrekt durchgeführt

werden.

3. Ausnahmeweiterleitung: Testen Sie, wie Ausnahmen und Fehler über

Workflow-Komponenten weitergeleitet und behandelt werden. Überprüfen Sie,

ob Ausnahmen entsprechend erfasst, protokolliert und behandelt werden, um

Workflow-Unterbrechungen zu vermeiden.

4. Asynchrones Verhalten: Wenn der Workflow asynchrone Komponenten

oder parallele Ausführung beinhaltet, testen Sie die Koordinations- und

Synchronisationsmechanismen. Stellen Sie sicher, dass der Workflow sich in

gleichzeitigen und asynchronen Szenarien korrekt verhält.

Hier ist ein Beispiel eines Integrationstests für einen Workflow in Ruby unter

Verwendung des RSpec-Testframeworks:

Intelligente Workflow-Orchestrierung 267

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

In diesem Beispiel wird der OrderProcessingWorkflow getestet, indem die

Interaktionen zwischen verschiedenen Workflow-Komponenten überprüft werden.

Der Testfall legt die Erwartungen für das Verhalten jeder Komponente fest und stellt

sicher, dass der Workflow die Bestellung erfolgreich verarbeitet und den Bestellstatus

entsprechend aktualisiert.

Testen von KI-Entscheidungspunkten

Das Testen von KI-Entscheidungspunkten ist entscheidend, um die Genauigkeit und

Zuverlässigkeit von KI-gesteuerten Workflows sicherzustellen. Beim Testen von KI-

Entscheidungspunkten sollten folgende Aspekte berücksichtigt werden:

1. Entscheidungsgenauigkeit: Überprüfen Sie, ob die KI-Komponente auf Grundlage

der Eingabedaten und des trainierten Modells akkurate Entscheidungen trifft.

Vergleichen Sie die KI-Entscheidungen mit erwarteten Ergebnissen oder Referenzdaten.

2. Randfälle: Testen Sie das Verhalten der KI-Komponente in Randfällen und

Intelligente Workflow-Orchestrierung 268

ungewöhnlichen Szenarien. Überprüfen Sie, ob die KI-Komponente diese Fälle

angemessen behandelt und vernünftige Entscheidungen trifft.

3. Verzerrung und Fairness: Bewerten Sie die KI-Komponente auf mögliche

Verzerrungen und stellen Sie sicher, dass sie faire und unvoreingenommene

Entscheidungen trifft. Testen Sie die Komponente mit verschiedenartigen Eingabedaten

und analysieren Sie die Ergebnisse auf diskriminierende Muster.

4. Erklärbarkeit: Falls die KI-Komponente Erklärungen oder Begründungen für

ihre Entscheidungen liefert, überprüfen Sie die Richtigkeit und Klarheit dieser

Erklärungen. Stellen Sie sicher, dass die Erklärungen mit dem zugrundeliegenden

Entscheidungsprozess übereinstimmen.

Hier ist ein Beispiel für das Testen eines KI-Entscheidungspunkts in Rubymit demRSpec

Test-Framework:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

Intelligente Workflow-Orchestrierung 269

In diesem Beispiel wird die KI-Komponente FraudDetector mit zwei Testfällen

geprüft: einem für eine betrügerische Transaktion und einem für eine legitime

Transaktion. Die Testfälle überprüfen, ob die Methode detect_fraud basierend auf

den Eigenschaften der Transaktion den erwarteten booleschen Wert zurückgibt.

End-to-End-Testing

End-to-End-Testing umfasst das Testen des gesamten Workflows von Anfang bis Ende,

wobei reale Szenarien und Benutzerinteraktionen simuliert werden. Es stellt sicher,

dass der Workflow sich korrekt verhält und die gewünschten Ergebnisse liefert. Bei

der Durchführung von End-to-End-Tests für intelligente Workflows sollten folgende

Aspekte berücksichtigt werden:

1. Benutzerszenarien: Identifizieren Sie häufige Benutzerszenarien und testen Sie das

Verhalten des Workflows unter diesen Szenarien. Überprüfen Sie, ob der Workflow

Benutzereingaben korrekt verarbeitet, angemessene Entscheidungen trifft und die

erwarteten Ausgaben erzeugt.

2. Datenvalidierung: Stellen Sie sicher, dass der Workflow Benutzereingaben validiert

und bereinigt, um Dateninkonsistenzen oder Sicherheitslücken zu verhindern. Testen

Sie den Workflow mit verschiedenen Arten von Eingabedaten, einschließlich gültiger

und ungültiger Daten.

3. Fehlerbehebung: Testen Sie die Fähigkeit des Workflows, sich von Fehlern und

Ausnahmen zu erholen. Simulieren Sie Fehlerszenarien und überprüfen Sie, ob

der Workflow diese angemessen behandelt, die Fehler protokolliert und geeignete

Wiederherstellungsmaßnahmen ergreift.

4. Leistung und Skalierbarkeit: Bewerten Sie die Leistung und Skalierbarkeit

des Workflows unter verschiedenen Lastbedingungen. Testen Sie den Workflow

mit einer großen Anzahl gleichzeitiger Anfragen und messen Sie Antwortzeiten,

Ressourcenauslastung und allgemeine Systemstabilität.

Intelligente Workflow-Orchestrierung 270

Hier ist ein Beispiel eines End-to-End-Tests für einen Workflow in Ruby unter

Verwendung des RSpec Test-Frameworks und der Capybara-Bibliothek zur Simulation

von Benutzerinteraktionen:

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

In diesem Beispiel simuliert der End-to-End-Test einen Benutzer, der eine Bestellung

über die Weboberfläche aufgibt. Er füllt die erforderlichen Formularfelder aus, sendet

die Bestellung ab und überprüft, ob die Bestellung erfolgreich verarbeitet wird, indem

er die entsprechende Bestätigungsnachricht anzeigt und den Bestellstatus in der

Datenbank aktualisiert.

Kontinuierliche Integration und Bereitstellung

Um die Zuverlässigkeit und Wartbarkeit intelligenter Workflows sicherzustellen, wird

empfohlen, Tests und Validierung in die Pipeline der kontinuierlichen Integration

und Bereitstellung (CI/CD) zu integrieren. Dies ermöglicht automatisierte Tests und

Validierung von Workflow-Änderungen, bevor diese in Produktion bereitgestellt

werden. Berücksichtigen Sie die folgenden Praktiken:

1. Automatisierte Testausführung: Konfigurieren Sie die CI/CD-Pipeline so, dass

die Testsuite automatisch ausgeführt wird, wenn Änderungen am Workflow-Code

Intelligente Workflow-Orchestrierung 271

vorgenommen werden. Dies stellt sicher, dass Regressionen oder Fehler früh im

Entwicklungsprozess erkannt werden.

2. Überwachung der Testabdeckung:Messen und überwachen Sie die Testabdeckung

der Workflow-Komponenten und KI-Entscheidungspunkte. Streben Sie eine hohe

Testabdeckung an, um sicherzustellen, dass kritische Pfade und Szenarien gründlich

getestet werden.

3. Kontinuierliches Feedback: Integrieren Sie Testergebnisse und Code-

Qualitätsmetriken in den Entwicklungsworkflow. Bieten Sie Entwicklern

kontinuierliches Feedback über den Status der Tests, die Code-Qualität und eventuelle

Probleme, die während des CI/CD-Prozesses erkannt wurden.

4. Staging-Umgebungen: Stellen Sie den Workflow in Staging-Umgebungen bereit,

die der Produktionsumgebung sehr ähnlich sind. Führen Sie zusätzliche Tests und

Validierungen in der Staging-Umgebung durch, um Probleme im Zusammenhang mit

Infrastruktur, Konfiguration oder Datenintegration zu erkennen.

5. Rollback-Mechanismen: Implementieren Sie Rollback-Mechanismen für den Fall

von Bereitstellungsfehlern oder kritischen Problemen in der Produktion. Stellen Sie

sicher, dass der Workflow schnell auf eine frühere stabile Version zurückgesetzt werden

kann, um Ausfallzeiten und Auswirkungen auf die Benutzer zu minimieren.

Durch die Integration von Tests und Validierung während des gesamten

Entwicklungslebenszyklus intelligenter Workflows können Organisationen die

Zuverlässigkeit, Genauigkeit undWartbarkeit ihrer KI-gestützten Systeme sicherstellen.

Regelmäßige Tests und Validierung helfen dabei, Fehler zu erkennen, Regressionen

zu verhindern und das Vertrauen in das Verhalten und die Ergebnisse des Workflows

aufzubauen.

Teil 2: Die Muster

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 274

Chain of Thought

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Inhaltserstellung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Strukturierte Entitätserstellung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

LLM-Agenten-Anleitung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile und Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 275

Moduswechsel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es verwendet

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 276

Rollenzuweisung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie es funktioniert

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es verwendet

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 277

Prompt-Objekt

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 278

Prompt-Vorlage

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile und Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es verwendet:

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 279

Structured IO

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Skalierung von Structured IO

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile und Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 280

Prompt Chaining

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie es funktioniert

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann es einzusetzen ist

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel: Olympias Onboarding

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 281

Prompt Rewriter

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 282

Response Fencing

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile und Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Fehlerbehandlung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 283

Query-Analyzer

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Implementierung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wortartmarkierung (POS-Tagging) und Eigennamenerkennung (NER)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Intentionsklassifizierung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Schlüsselwortextraktion

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 284

Query Rewriter

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vorteile

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Prompt-Engineering 285

Ventriloquist

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann es einzusetzen ist

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 287

Prädikat

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie es funktioniert

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es verwendet

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 288

API-Fassade

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Hauptvorteile

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann sie einzusetzen ist

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Authentifizierung und Autorisierung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 289

Anfragenverarbeitung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Antwortformatierung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Fehlerbehandlung und Randfälle

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Skalierbarkeits- und Performanceüberlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Vergleich mit anderen Entwurfsmustern

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 290

Result Interpreter

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es einsetzen sollte

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 291

Virtuelle Maschine

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie es funktioniert

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wann man es verwendet

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Hinter der Magie

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Spezifikation und Testing

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Diskrete Komponenten 292

Verhalten spezifizieren

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Testfälle schreiben

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel: Testen der Übersetzer-Komponente

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wiederholung von HTTP-Interaktionen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL)
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Übergeordnete Muster

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Hybride Intelligenz

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Adaptive Reaktion

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Mensch-KI-Rollenwechsel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 294

Eskalation

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wichtige Vorteile

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Praxisanwendung: Gesundheitswesen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 295

Feedback-Schleife

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie es funktioniert

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Anwendungen und Beispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Fortgeschrittene Techniken der Integration menschlichen
Feedbacks

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 296

Passive Informationsabstrahlung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Kontextuelle Informationsanzeige

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Proaktive Benachrichtigungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Erklärende Einblicke

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Interaktive Erkundung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 297

Wichtige Vorteile

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Anwendungen und Beispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 298

Kollaborative Entscheidungsfindung (CDM)

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 299

Kontinuierliches Lernen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Anwendungen und Beispiele

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Ethische Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Rolle von HITL bei der Minderung von KI-Risiken

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Human In The Loop (HITL) 300

Technologische Fortschritte und

Zukunftsausblick

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Herausforderungen und Grenzen von HITL-Systemen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Traditionelle Fehlerbehandlungsansätze

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung 302

Kontextuelle Fehlerdiagnose

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Prompt Engineering für kontextuelle Fehlerdiagnose

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Retrieval-Augmented Generation für kontextbezogene
Fehlerdiagnose

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung 303

Intelligente Fehlerberichterstattung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung 304

Prädiktive Fehlervermeidung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Intelligente Fehlerbehebung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung 305

Personalisierte Fehlerkommunikation

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Intelligente Fehlerbehandlung 306

Adaptiver Fehlerbehandlungs-Workflow

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Qualitätskontrolle
Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de

Qualitätskontrolle 308

Eval

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Problem

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Lösung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Qualitätskontrolle 309

Verständnis von Goldstandards

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Wie referenzfreie Evaluierungen funktionieren

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Qualitätskontrolle 310

Schutzmechanismus

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Problem

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Lösung

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Funktionsweise

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Beispiel

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Überlegungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Qualitätskontrolle 311

Guardrails und Evaluierungen: Zwei Seiten

derselben Medaille

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Die Austauschbarkeit von Guardrails und referenzfreien
Evaluierungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Implementierung von dualen Guardrails und
Evaluierungen

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Glossar

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Glossar

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

A

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

B

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

C

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

313

D

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

E

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

F

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

G

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

H

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

I

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

314

J

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

K

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

L

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

M

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

N

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

O

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

315

P

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Q

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

R

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

S

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

T

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

U

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

316

V

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

W

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

Z

Dieser Inhalt ist in der Leseprobe nicht verfügbar. Das Buch kann bei Leanpub unter

http://leanpub.com/patterns-of-application-development-using-ai-de gekauft werden.

http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de
http://leanpub.com/patterns-of-application-development-using-ai-de

Register

abrufbasierte Modelle, 7

ACID-Eigenschaften, 114

adaptive Benutzeroberfläche, 217

adaptiver Workflow

Adaptive

Workflow-Zusammenstellung,

235

Agentisch, 33

AI, 77, 102, 140, 149, 211

model, 102

Alpaca, 13

Altman, Sam, 18

Amazon Web Services, 262

Anbieter von

Open-Source-Modell-Hosting,

214

Anpassung, 27

Anthropic, 23, 40, 76, 134, 142

anthropomorphismus, 71

Anwendungsentwicklung, 230

APIs, 75, 128, 160

application design and frameworks, 207

Arrays, 136

asynchrone Verarbeitung, 259

Audit-Logging, 110

Augmented-Reality-Brillen, 228

Ausnahmebehandlung, 236, 238

Automatische Fortsetzung, 167

automatische Skalierung, 262

autoregressives Modellieren, 44

Barrierefreiheit, 226, 227

Basismodelle, 56

Batch-Verarbeitung, 260

Befehlszeile

Befehlszeilenschnittstelle (CLI), 26

Benutzbarkeitsprobleme, 225

Benutzererfahrung, 203

Benutzeroberfläche (UI)

Frameworks, 223

Schnittstellen, 223

Technologien, 218

Benutzertests und Feedback, 206

BERT, 14, 24

Betrugserkennung

System, 100

Bildungsanwendungen, 33

boundary conditions, 265

Brotli, 263

Byte Pair Encoding (BPE), 13, 15

C (Programmiersprache), 121

Caching, 260

Register 318

Capybara-Bibliothek, 270

Chain of Thought (CoT), 46, 144

Chatbot-Anwendung, 123

ChatGPT, 31, 55

Circuit-Breaker-Logik, 169

classification, 125

Claude, 8, 45, 80

Claude 3, 51, 132, 134, 140, 142

Claude 3 Opus, 78

Claude v1, 17

Claude v2, 17

Cohere (LLM-Anbieter), 23, 25

computer science, 76

concurrent workflows, 264

context

Augmentation, 47

infinitely long inputs, 16

Kontextbasierte Inhaltsgenerierung,

208, 209

Kontextbezogene Feldvorschläge, 210

window, 16

Customer Sentiment Analysis, 103

databases

-backed object, 109

Databricks-Mitarbeiter, 54

Datadog, 258

Daten

Analyse, 35

analyse, 153

Datenabruf, 113

Datenschutz, 27, 225

Datensynchronisation, 113

Datenvalidierung, 269

Fluss, 114

Integrität, 250

Verarbeitungs-Pipeline, 250

Verarbeitungsaufgaben, 131

Datenbanken, 128

Sperrmechanismen, 114

Datenpersistenz, 113

Datenstromverarbeitung, 157

Datenvorbereitung, 113

Debugging, 235

und Testen, 137

decision

-making capabilities, 102

Den Pfad eingrenzen, 39

den Pfad eingrenzen, 40

Desktop-Computer, 228

Destillationsprozess, 79

deterministisches Verhalten, 60

Dictionaries, 136

digitale Landschaft, 202

document clustering, 125

Dohan, et al., 45

Durchsatz, 28

Dynamische Aufgabenweiterleitung, 233

dynamische UI-Generierung, 196

Dynamische Werkzeugauswahl, 136

E-Commerce, 200, 231

E-Commerce-Anwendungen, 94

Effizienz, 232

Register 319

Eingabe

Prompts, 58

Eingabeparameter, 133

ELK-Stack, 115

emotionaler Ton, 151

End-to-End-Testing, 269

End-to-End-Tests, 270

Engpässe, 235

Ensembles, 122, 123

Ensemble von Workern, 123

Enterprise Integration Patterns, 108

Entscheidung

bäume, 231

punkte, 255

Entscheidungsfindung

sfälle, 138

Entwicklungsframeworks, 155

ereignisgesteuerte Architektur, 112

Erfassung der Krankengeschichte, 104

Ergebnisinterpreter, 148

Erklärbarkeit, 268

errors

handling, 265

Intelligent Error Handling, 149

Erzwungene Werkzeugauswahl, 137

Ethik

Implikationen, 208

Experimentieren

Framework, 203

externe Dienste oder APIs, 131

F#, 96

Facebook, 25

Fallback-Strategien, 114

Feedback

Feedback-Schleife, 61

Fehler

Behandlung, 114, 148

Fehlerbehebung, 269

Raten, 114

Fehlerbehandlung, 111

Fehlersuche

und Fehlerbehebung, 257

few-shot

learning, 64

prompting, 66

Finalisierungsmethode, 163

finalize-Methode, 165, 166

fine-tuning, 83

FitAI, 220

Flexibilität und Kreativität, 205

Frage-Antwort-Systeme, 7

Funktion

Aufruf, 128, 129, 164

Aufrufsverlauf, 163

funktionale Programmierung, 95

Funktionen

Namen, 161

Funktionsaufruf

Fehlschlag, 139

Gemma 7B, 11

Generative Pre-trained Transformer (GPT),

8, 70

Register 320

Generative UI (GenUI), 207, 214, 215, 219,

223, 227

geschlossene und offene

Fragebeantwortung, 55

Geschäftsregeln, 231

Gespräch

Protokoll, 166

Schleife, 167

Gesprächsprotokoll, 164

GitLab, 96

Global Interpreter Lock (GIL), 120

Google, 23

API, 65, 68

Cloud AI Platform, 25

Cloud Platform, 262

Gemini, 22

Gemini 1.5 Pro, 14, 17, 19

PaLM (Pathways Language Model),

18, 24

T5, 14

GPT-3, 13, 17

GPT-4, 6, 13, 17, 18, 22, 32, 45, 51, 65, 109,

122, 125, 132, 139, 213, 260

grafische Modelle, 45

Graham, Paul, 19

Grammatikregeln, 4

granulare Protokollierung, 258

GraphQL, 112

Groq, 27, 125

Großes Sprachmodell (GSM), 242

Großes Sprachmodell (LLM), 18, 30, 79, 146,

213, 218

Landschaft, 28

gzip, 263

Hardware, 29

Hash, 159

historische Muster, 235

Hochleistungs-Textgenerierung, 27

Hohpe, Gregor, 108

Honeybadger, 97

HTTP, 157

Human-In-The-Loop (HITL), 187

hyperparameter, 48

Inferenz, 5

Informatik, 73

Information

Abruf, 7, 131

Extraktion, 55

Inhalt

Filterung, 27

Inhaltskategorisierung, 116

inhaltsbasiertes Filtern, 95

inklusive Schnittstellen, 208

input

validation, 264

instruction tuning

instruktionsoptimierte Modelle, 54

Instruktions-Feinabstimmung, 10

Instruktionsoptimierung

instruktionsoptimierte Modelle, 51

Integration von LLMs, 196

Integrationstests, 266

intelligent workflow orchestration, 264

Register 321

intelligente Workflow-Orchestrierung, 230,

238, 261

Intelligenter Inhaltsmoderator, 243

Internationalisierung, 204

iterative refinement, 150

iterative Verfeinerung, 79

JSON (JavaScript Object Notation), 132,

136, 140, 154, 174

K-means, 127

KI, 67, 133, 157, 219

Anwendungen, 130, 144, 156, 170

Entscheidungspunkte, 267

konversationelle, 7

Konversations, 32

konversationsbasiert, 221

Modell, 92, 162, 163, 166, 220

zusammengesetzte Systeme, 31, 32, 35

Klassifizierung, 55

Klinische Entscheidungsunterstützung, 107

kollaboratives Filtern, 95

komplexe Aufgaben, 152

Konsistenz

und Reproduzierbarkeit, 138

Kontext

Fenster, 235

kontextbezogene

Entscheidungsfindung, 235

Kontextbezogene Inhaltsgenerierung,

195

Kontextuelle Inhaltsgenerierung,

200–202

Kontinuierliche Integration und

Bereitstellung (CI/CD), 270

Pipeline, 270

Kontinuierliche Risikoüberwachung, 106

Konto, 94

Konversation

Schleife, 164

konzeptionelle und praktische

Herausforderungen, 208

kreatives Schreiben, 35, 55

Kundenservice, 33

Kundenservice-Chatbots, 34

language

models, 68, 76

Large Language Model (LLM), 1, 3, 16, 70,

71, 74, 75, 81, 90, 115, 125, 128,

130, 140, 150, 153, 171, 174, 195,

207

Latente Dirichlet Allocation, 127

latenter Raum, 41, 43

Latenz, 28

Leistung

Kompromisse, 5

Optimierung, 138, 205, 257

Probleme, 261

Lieferkette

Optimierung, 34

lineare Algebra, 44

lineare Regression, 45

Llama, 13

Llama 2-70B, 52

Register 322

Llama 3 70B, 11

Llama 3 8B, 11

lokale Entwicklungsumgebungen, 162

Louvre, 44

Managed Streaming for Apache Kafka, 42

manuelle Intervention, 238

Markdown, 153

Markup-Style-Tagging, 74

medizinische Entdeckungen, 104

Mehrheitsentscheidung, 122

mehrstufiger Workflow, 115

Memorial Sloan Kettering Cancer Center,

42

Merkur (Planet), 46

Merkur (römischer Gott), 46

MessagePack, 263

Meta, 25

Metropolitan Museum of Art, 44

Microservices-Architektur, 92

Mistral, 26

7B, 11

7B Instruct, 17, 213

Mixtral

8x22B, 11

8x7B, 58

modalitätsübergreifende Generierung, 22

moderne Anwendungen, 233

Modularität, 91

Motivationsstrategien, 223

Multi-Agent

Problemlöser, 32

Multimodal

language models, 21

models, 20

Multitude of Workers, 173

Mustererkennung, 159

Naive Bayes, 126

narrative building, 20

natural language

Verarbeitung natürlicher Sprache

(NLP), 125

natürliche Sprache

Verarbeitung natürlicher Sprache

(NLP), 104

Netzwerkkonnektivität, 236

neuronale Netze, 4

neuronale Netzwerke, 6

New Relic, 261

Notfalleinsatzplanung, 34

nutzergenerierte Inhalte, 116

Nutzerpsychologie, 224

Nutzervertrauen, 226

Ollama, 26

Olympia, 34, 65, 133, 149, 158, 174

Olympias Wissensdatenbank, 94

One-Shot-Learning, 63

Online-Händler, 214

OpenAI, 3, 23, 40, 76

OpenRouter, 28, 29, 158, 261

OPT model, 25

optimistisches Sperren, 114

output verification, 265

Register 323

parallele Ausführung, 260

Parameter

Auswirkungen, 134

Bereich, 11

Parameteranzahl, 29

Paraphrasierung, 55

Perplexity (Anbieter), 12

personalisierte Produktempfehlungen, 95

Personalisierung, 197, 227, 232

Personalisierte Formulare, 209

Personalisierte Microcopy, 215

pessimistisches Sperren, 114

principle of least privilege, 75

probabilistische Modelle, 44

Process Manager, 108, 111

Enterprise Integration, 239

Produktempfehlungen, 95

Produktivität, 198

Progressive Disclosure, 216

Prompts

Design, 60

Engineering, 42, 58, 62, 224

Prompt Template, 214

Prompt-Destillation, 260

Prompt-Vorlage, 62

Verkettung, 61

prompts

chaining, 74

design, 71

Engineering, 68

engineering, 46, 47, 70

Prompt Distillation, 47, 76

Prompt Object, 77

Prompt-Destillation, 81

refinement, 71

Protocol Buffers, 263

Protokollaufbewahrung und -rotation, 258

Präsenzstrafe, 50

Prüfung und Compliance, 257

Publish-Subscribe-Systeme, 112

PyTorch, 25

Quantisierung, 29

Quecksilber (Element), 46

Qwen2 70B, 11

Rails, 204

Railway Oriented Programming (ROP), 98

Raix, 239

Bibliothek, 100

Randfälle, 60

Rangiersysteme, 37

Response Fencing, 184, 214

Retrieval Augmented Generation (RAG),

32, 39, 47, 83, 130

Risikofaktoren, 99, 100

Risikostratifizierung, 106

Rollback-Mechanismen, 271

Rollenspiel-artige Interaktionen, 7

RSpec, 265, 266, 270

Ruby, 96, 97, 117, 170, 270

Ruby on Rails, 1, 116, 239, 247

Rudall, Alex, 24

Rust (Programmiersprache), 121

Rust (Programming Language), 96

Register 324

Scout, 261

Segmentierungs- und Targeting-Strategien,

203

Selbstheilende Daten, 171, 253

Sentimentanalyse, 118

serverseitige Ereignisse (SSE), 157

Skalierbarkeit, 232, 259

Smartphones, 228

Softwarearchitektur, 2

Sprache

bezogene Aufgaben, 5

modelle, 44

Spracherkennung, 116

sprachgesteuerte Schnittstellen, 34

SQL-Injektionen, 73

Staging-Umgebungen, 271

Stimmungsanalyse, 17, 103, 116, 117, 122,

123, 140, 151

Stream-Handler, 158

Stream-Verarbeitung, 170

Streaming-Daten, 159

Streamverarbeitung, 163

Logik, 165

Stripe, 134

Structured IO, 214

strukturierte Daten, 139

strukturierte Protokollierung, 258

Support Vector Machines (SVM), 126

Symptombeurteilung und Stratifizierung,

104

Syntaxfehler, 136

synthetische Datengenerierung, 55

system directive, 102

Systemdirektive, 133

T5, 24

Tablets, 228

Temperatur, 56

Textbereinigung, 116

Theory of Mind, 41

Ticket-Zuweisung, 249

Together.ai, 27

Token, 6

Tokenisierung, 13

Tokens, 13

Top-k Sampling, 50

Top-p (Nucleus) Sampling, 49

topic identification, 125

Tragik der Allmende, 200

Trainingsdaten, 43

Transformer-Architektur, 6

trigger message, 108

Unicode-kodierbare Sprache, 15

Universal ID, 263

Unternehmensanwendungsarchitektur, 39

unüberwachtes Lernen, 4

User Interface (UI)

Benutzeroberflächen, 207

Design, 228

Ventriloquist, 184

Verarbeitungszeit, 114

Verfolgung wichtiger Metriken, 254

Verkehrsmanagement, 34

Register 325

Verkettung von KI-Workern, 115

Versicherungsüberprüfung, 105

verteilte Architektur, 259

Verzerrung

und Fairness in KI, 268

Vielzahl von Workern, 123

virtuelle Assistenten, 34

visuelle Schnittstelle, 218

Vorhersagen, 6

Wall, Larry, 3

Werkzeugaufruf, 160

Werkzeugeinsatz, 155

Werkzeugnutzung, 128, 129

wichtige Muster, 233

Wiederholungsmechanismen, 114

Wiederholungsstrafen, 53

Wisper, 97, 110, 158, 165

Wissensdatenbanken, 7

Wissensmanagement, 33

Wooley, Chad, 96

XML, 140

Yi-34B, 52

Zeit bis zum ersten Token (TTFT), 28

Zero-Shot-Learning, 62

Zero-Shot-Lernen, 61

Zusammenfassung, 55

zustandslos, 164

Ökosystem, 154

Übersetzung, 17, 205

Überwachung

Metriken, 257

und Alarmierung, 237

und Protokollierung, 114, 256

	Inhaltsverzeichnis
	Vorwort von Gregor Hohpe
	Vorwort
	Über das Buch
	Über die Codebeispiele
	Was ich nicht behandle
	Für wen ist dieses Buch gedacht
	Aufbau eines gemeinsamen Vokabulars
	Mitmachen
	Danksagungen
	Was hat es mit den Illustrationen auf sich?
	Über Lean Publishing
	Über den Autor

	Einführung
	Gedanken zur Softwarearchitektur
	Was ist ein Large Language Model?
	Inferenz verstehen
	Überlegungen zur Leistung
	Experimentieren mit verschiedenen LLM-Modellen
	Zusammengesetzte KI-Systeme

	Teil 1: Grundlegende Ansätze & Techniken
	Den Pfad eingrenzen
	Latenter Raum: Unfassbar weit
	Wie der Pfad ``eingegrenzt'' wird
	Rohmodelle versus instruktionsoptimierte Modelle
	Prompt-Engineering
	Prompt Distillation
	Was ist mit Fine-tuning?

	Retrieval Augmented Generation (RAG)
	Was ist Retrieval Augmented Generation?
	Wie funktioniert RAG?
	Warum RAG in Ihren Anwendungen einsetzen?
	Implementierung von RAG in Ihrer Anwendung
	Propositions-Chunking
	Praxisbeispiele für RAG
	Intelligente Abfrageoptimierung (IQO)
	Neuordnung
	RAG-Bewertung (RAGAs)
	Herausforderungen und Zukunftsausblick

	Vielzahl von Arbeitern
	KI-Arbeiter als unabhängige wiederverwendbare Komponenten
	Kontoverwaltung
	E-Commerce-Anwendungen
	Anwendungen im Gesundheitswesen
	KI-Worker als Prozess-Manager
	Integration von KI-Workern in Ihre Anwendungsarchitektur
	Komponierbarkeit und Orchestrierung von KI-Workern
	Kombination von traditionellem NLP mit LLMs

	Werkzeugnutzung
	Was ist Werkzeugnutzung?
	Das Potenzial des Werkzeugeinsatzes
	Der Werkzeugeinsatz-Workflow
	Best Practices für die Werkzeugnutzung
	Zusammenstellung und Verkettung von Werkzeugen
	Zukünftige Entwicklungen

	Stream Processing
	Implementierung eines ReplyStream
	Die ``Konversationsschleife''
	Automatische Fortsetzung
	Fazit

	Selbstheilende Daten
	Praktische Fallstudie: Reparatur von fehlerhaftem JSON
	Überlegungen und Gegenanzeigen

	Kontextbezogene Inhaltsgenerierung
	Personalisierung
	Produktivität
	Schnelle Iteration und Experimentierung
	KI-gestützte Lokalisierung
	Die Bedeutung von Benutzertests und Feedback

	Generative UI
	Generierung von Texten für Benutzeroberflächen
	Definition der Generativen UI
	Beispiel
	Der Wandel zum ergebnisorientierten Design
	Herausforderungen und Überlegungen
	Zukunftsausblick und Chancen

	Intelligente Workflow-Orchestrierung
	Geschäftlicher Bedarf
	Wichtige Vorteile
	Wichtige Muster
	Ausnahmebehandlung und Wiederherstellung
	Implementierung der intelligenten Workflow-Orchestrierung in der Praxis
	Überwachung und Protokollierung
	Skalierbarkeits- und Leistungsüberlegungen
	Testen und Validierung von Workflows

	Teil 2: Die Muster
	Prompt-Engineering
	Chain of Thought
	Moduswechsel
	Rollenzuweisung
	Prompt-Objekt
	Prompt-Vorlage
	Structured IO
	Prompt Chaining
	Prompt Rewriter
	Response Fencing
	Query-Analyzer
	Query Rewriter
	Ventriloquist

	Diskrete Komponenten
	Prädikat
	API-Fassade
	Result Interpreter
	Virtuelle Maschine
	Spezifikation und Testing

	Human In The Loop (HITL)
	Übergeordnete Muster
	Eskalation
	Feedback-Schleife
	Passive Informationsabstrahlung
	Kollaborative Entscheidungsfindung (CDM)
	Kontinuierliches Lernen
	Ethische Überlegungen
	Technologische Fortschritte und Zukunftsausblick

	Intelligente Fehlerbehandlung
	Traditionelle Fehlerbehandlungsansätze
	Kontextuelle Fehlerdiagnose
	Intelligente Fehlerberichterstattung
	Prädiktive Fehlervermeidung
	Intelligente Fehlerbehebung
	Personalisierte Fehlerkommunikation
	Adaptiver Fehlerbehandlungs-Workflow

	Qualitätskontrolle
	Eval
	Schutzmechanismus
	Guardrails und Evaluierungen: Zwei Seiten derselben Medaille

	Glossar
	Glossar
	Register

