Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

72

sk Udgave

Monstre i Applikationsudvikling med Al
(Dansk Udgave)

Obie Fernandez

Denne bog er til salg pa

http://leanpub.com/patterns-of-application-development-using-ai-da

Denne version blev offentliggjort den 2025-01-23

A

Leanpub

Dette er en Leanpub bog. Leanpub giver forfattere og udgivere magten med Lean
Publishing-processen. Lean Publishing er handlingen med at publicere en
igangveerende e-bog ved hjeelp af letveegtsveerktajer og mange iterationer for at fa
leeserfeedback, pivotere indtil du har den rigtige bog og opbygge treekkraft, nar du ger
det.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-da
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet Denne Bog!

Hjeelp venligst Obie Fernandez med at sprede ordet om denne bog pa Twitter!
Den foreslaede hashtag for denne bog er #poaduai.

Find ud af, hvad andre mennesker siger om bogen ved at klikke pa dette link for at

soge efter denne hashtag pa Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Til min seje dronning, min muse, mit lys og min keerlighed, Victoria

Ogsa Af Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Indhold

Forord af Gregor Hohpe i
Forord e ii
OmBogen iii
Om Kodeeksemplerne iii
Hvad JegIkke Deekker iii
Hvem DenneBog Er Til iii
Opbygning af et Feelles Ordforrad iii
BlivInvolveret iii
Tak . . iii
Hvad med illustrationerne? iv
Om Lean Publishing iv
Om forfatteren v
Introduktion L 1
Tanker om Softwarearkitektur 2
Hvad er en Store Sprogmodel? L. 3
Forstaelse afinferens 5
OmYdeevne e 26
Eksperimenter Med Forskellige LLM-Modeller 27

Sammensatte Al-Systemer Lo L Lo 28

INDHOLD

Del 1: Grundleggende Tilgange &
Teknikker

Indsnsevre Stien
Latent Rum: Ubegribeligt Stort
Hvordan Stien Bliver “Indsnaevret”.
Ré versus instruktionstunede modeller
Prompt Engineering L
Prompt-destillering

Hvad med finjustering? L

Propositionsopdeling L L
Virkelige Eksempler pARAG L o
Intelligent Foresporgselsoptimering IQO)
Omrangering
RAG-vurdering (RAGAS) o oo
Udfordringer og Fremtidsudsigter

Mangfoldighed af Arbejdere
Al-Arbejdere Som Uafheengige Genbrugelige Komponenter
Kontoadministration
E-handelsapplikationer
Sundhedsveesenets anvendelser L L L oL
Al Worker som Processtyring L.
Integration af AI-Workers I Din Applikationsarkitektur

76

INDHOLD

Sammensettelighed og Orkestrering af Al-Workers 106
Kombination af Traditionel NLP med LLM’er 115
Brugaf veerktejer 118
Hvad er veerktejsbrug? 118
Potentialet i Veerktejsanvendelse L. 120
Arbejdsgangen for Veerktgjsanvendelse L L 121
Bedste praksis for veerktejsbrug oo oo 135
Sammenseaetning og Keedekobling af Veerktejer 139
Fremtidige Retninger 141
Strembehandling Lo 144
Implementering af en ReplyStream 145
“Samtaleslejfen” 151
Automatisk Fortseettelse Lo 153
Konklusion 155
Selvhelendedata 157
Praktisk casestudie: Reparation af edelagt JSON 159
Overvejelser og Kontraindikationer 164
Kontekstuel Indholdsgenering 179
Personalisering 180
Produktivitet 182
Hurtig iteration og eksperimentering 184
Al-drevet Lokalisering L 186
Vigtigheden af Brugertest og Feedback 188
Generative UL 190
Generering af tekst til brugergreenseflader 191

Definition af Generativ Ul 200

INDHOLD

Eksempel 202
Skiftet til resultatsorienteret design oL L 204
Udfordringer og overvejelser 206
Fremtidsudsigter og Muligheder 207
Intelligent arbejdsgangsorkestrerering 211
Forretningsmeessigtbehov L L L oL 212
Centralefordele 213
Centralemenstre 213
Héndtering og Genopretning af Undtagelser 216
Implementering af Intelligent Arbejdsgangsorkestering i Praksis 219
Overvagning og Logfering 234
Skalerbarhed og Ydeevneovervejelser 238
Test og validering af workflows 243
Del 2: Mgnstrene 251
Prompt Engineering oo oo 252
Chainof Thought 253
Tilstandsskift L 254
Rolletildeling 255
Prompt-objekt 256
Promptskabelon 257
Structured IO 258
Prompt-keedekobling oL 259
Prompt-omskriver L L 260
Response Fencing 261
Foresporgselsanalysator 262
Foresporgselsomskriver L 263

Ventriloquist L 264

INDHOLD

Diskrete Komponenter L L o 265
Preedikat 266
APIfacade 267
Resultatfortolker L 269
Virtuel Maskine 270
Specifikationog Test L 270

Human In The Loop (HITL) 272
Overordnede Menstre 272
Eskalering 273
Feedbackslgjfe 274
Passiv Informationsudstraling L. 275
Kollaborativ Beslutningstagning (CDM) 277
Kontinuerlig Leering 278
Etiske Overvejelser 278
Teknologiske Fremskridt og Fremtidsudsigter 278

Intelligent Fejlhandtering 280
Traditionelle Fejlhandteringstilgange 280
Kontekstuel fejldiagnose L Lo oo 281
Intelligent fejlrapportering L L L oL 282
Forebyggende Fejlpreevention, ... 283
Intelligent Fejlgenopretning oL L. 283
Personaliseret Fejlkommunikation 284
Adaptiv Fejlhandteringsarbejdsgang 285

Kvalitetskontrol L L L 286
Eval e 287
Sikkerhedsmekanisme L oL o 289

Ordliste

Ordliste e

Forord af Gregor Hohpe

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord iii

Om Bogen

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Om Kodeeksemplerne

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad Jeg Ikke Daekker

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvem Denne Bog Er Til

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Opbygning af et Faelles Ordforrad

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Bliv Involveret

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord iv

Tak

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad med illustrationerne?

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Om Lean Publishing

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord v

Om forfatteren

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Introduktion

Hvis du er ivrig efter at begynde at integrere Al Store Sprogmodeller (LLMs) i dine

programmeringsprojekter, er du velkommen til at springe direkte til menstrene og
kodeeksemplerne i de senere kapitler. For at fa fuldt udbytte af disse menstre og deres
potentiale er det dog veerd at bruge et gjeblik pa at forsta den bredere kontekst og den

sammenhengende tilgang, de repreesenterer.

Mgnstrene er ikke blot en samling af isolerede teknikker, men snarere et samlet
rammeveerk for integration af Al i dine applikationer. Jeg bruger Ruby on Rails, men
disse menstre burde virke i stort set ethvert andet programmeringsmilje. De adresserer
en bred vifte af omrader, fra datahandtering og ydelsesforbedring til brugeroplevelse
og sikkerhed, og giver dermed et omfattende seet veerktejer til at forbedre traditionel

programmeringspraksis med AI's muligheder.

Hver kategori af menstre tackler en specifik udfordring eller mulighed, der opstar,

nar man indbygger Al-komponenter i sin applikation. Ved at forsta relationerne og

Introduktion 2

synergierne mellem disse menstre kan du treeffe informerede beslutninger om, hvor

og hvordan Al kan anvendes mest effektivt.

Mgnstre er aldrig preeskriptive lesninger og ber ikke behandles som siddan. De er
teenkt som tilpasningsdygtige byggeklodser, der skal skreeddersys til de unikke krav
og begreensninger i din egen applikation. Den vellykkede anvendelse af disse menstre
(ligesom alle andre inden for softwareomradet) aftheenger af en dyb forstaelse af

problemdomeenet, brugernes behov og den overordnede tekniske arkitektur i dit projekt.

Tanker om Softwarearkitektur

Jeg begyndte at programmere i 1980’erne og var involveret i hackermiljget, og jeg har
aldrig mistet min hackermentalitet, selv efter jeg blev professionel softwareudvikler. Lige
fra starten har jeg altid haft en sund skepsis over for, hvilken veerdi softwarearkitekter i

deres elfenbenstarne faktisk bragte til bordet.

En af grundene til, at jeg personligt er si begejstret for de forandringer, som denne
kraftfulde nye belge af Al-teknologi medferer, er dens indvirkning pa det, vi betragter
som softwarearkitektur-beslutninger. Den udfordrer traditionelle opfattelser af, hvad
der udger den “korrekte” made at designe og implementere vores softwareprojekter pa.
Den seetter ogsa spergsmalstegn ved, om arkitektur stadig primeert kan betragtes som
de dele af et system, der er svaere at sendre, eftersom Al-forbedringer ger det nemmere

end nogensinde at eéendre enhver del af dit projekt nar som helst.

Maske er vi pa vej ind i hgjdepunktet af den “postmoderne” tilgang til softwareudvikling.
I denne sammenheeng henviser postmoderne til et fundamentalt skift veek fra
traditionelle paradigmer, hvor udviklere var ansvarlige for at skrive og vedligeholde
hver eneste kodelinje. I stedet omfavner den idéen om at delegere opgaver som
datamanipulation, komplekse algoritmer og endda hele dele af applikationslogikken
til tredjepartsbiblioteker og eksterne APT’er. Dette postmoderne skift repreesenterer
en betydelig afvigelse fra den konventionelle visdom om at bygge applikationer fra

bunden, og det udfordrer udviklere til at genteenke deres rolle i udviklingsprocessen.

Introduktion 3

Jeg har altid ment, at gode programmerer kun skriver den kode, der er absolut
nedvendig at skrive, baseret pa leeren fra Larry Wall og andre hackerkoryfeeer
som ham. Ved at minimere meengden af skrevet kode kan vi beveege os hurtigere,
reducere overfladearealet for fejl, forenkle vedligeholdelsen og forbedre den generelle
pélidelighed af vores applikationer. Mindre kode giver os mulighed for at fokusere pa
kerneforretningslogikken og brugeroplevelsen, mens andet arbejde delegeres til andre

tjenester.

Nu hvor Al-drevne systemer kan handtere opgaver, der tidligere var forbeholdt
menneskeskrevet kode, burde vi kunne veere endnu mere produktive og agile, med

storre fokus end nogensinde pa at skabe forretningsveerdi og brugeroplevelse.

Naturligvis er der kompromiser ved at delegere store dele af dit projekt til Al-systemer,
sasom potentielt tab af kontrol og behovet for robust overvagning og feedback-
mekanismer. Det er derfor, det kreever et nyt seet feerdigheder og viden, herunder i det

mindste en grundleeggende forstaelse af, hvordan Al fungerer.

Hvad er en Store Sprogmodel?

Store Sprogmodeller (LLMs) er en type kunstig intelligens-model, der har faet betydelig
opmeerksomhed i de senere ar, siden lanceringen af GPT-3 af OpenAl i 2020. LLMs er
designet til at behandle, forsta og generere menneskeligt sprog med bemeerkelsesveerdig
preecision og flydende. I dette afsnit vil vi kort se pa, hvordan LLMs fungerer, og hvorfor

de er velegnede til at bygge intelligente systemkomponenter.

I deres kerne er LLMs baseret pa algoritmer inden for dyb lering, specifikt neurale
netveerk. Disse netveerk bestar af sammenkoblede knudepunkter eller neuroner,
der behandler og overferer information. Den foretrukne arkitektur for LLMs er
ofte Transformer-modellen, som har vist sig at veere meget effektiv til at handtere

sekventielle data som tekst.

Transformer-modeller er baseret p4 opmeerksomhedsmekanismen og bruges primeert

Introduktion 4

til opgaver med sekventielle data, sdsom naturlig sprogbehandling. Transformers
behandler inputdata pa én gang i stedet for sekventielt, hvilket gor dem i
stand til at opfange langdistanceatheengigheder mere effektivt. De har lag af
opmeerksomhedsmekanismer, der hjeelper modellen med at fokusere pa forskellige dele

af inputdataene for at forsta kontekst og relationer.

Treeningsprocessen for store sprogmodeller involverer at eksponere modellen for
enorme meengder tekstdata, sisom beger, artikler, hjemmesider og kodearkiver. Under
treeningen leerer modellen at genkende menstre, relationer og strukturer i teksten. Den
opfanger sprogets statistiske egenskaber, sdsom grammatiske regler, ordassociationer

og kontekstuelle betydninger.

En af de vigtigste teknikker, der bruges i treeningen af store sprogmodeller, er
ikke-superviseret leering. Dette betyder, at modellen leerer fra data uden eksplicit
meerkning eller vejledning. Den opdager menstre og repreesentationer pa egen hand
ved at analysere samforekomsten af ord og fraser i treeningsdataene. Dette giver store

sprogmodeller mulighed for at udvikle en dyb forstaelse af sprog og dets nuancer.

Et andet vigtigt aspekt ved store sprogmodeller er deres evne til at handtere kontekst.
Nér de behandler et stykke tekst, tager store sprogmodeller ikke kun de enkelte ord
i betragtning, men ogsa den omgivende kontekst. De tager hejde for de foregaende
ord, setninger og endda afsnit for at forsta tekstens betydning og hensigt. Denne
kontekstuelle forstaelse gar store sprogmodeller i stand til at generere sammenhaengende
og relevante svar. En af de primeere mader, hvorpa vi evaluerer en given sprogmodels
kapacitet, er ved at overveje sterrelsen af den kontekst, de kan tage i betragtning for at

generere svar.

Nér de er treenet, kan store sprogmodeller bruges til en lang reekke sprogrelaterede
opgaver. De kan generere menneskelig tekst, besvare spergsmal, opsummere
dokumenter, overseette sprog og endda skrive kode. Store sprogmodellers alsidighed
gor dem veerdifulde til at opbygge intelligente systemkomponenter, der kan interagere

med brugere, behandle og analysere tekstdata og generere meningsfuldt output.

Introduktion 5

Ved at inkorporere store sprogmodeller i applikationsarkitekturen kan du skabe
Al-komponenter, der forstir og behandler brugerinput, genererer dynamisk
indhold og leverer intelligente anbefalinger eller handlinger. Men at arbejde med
store sprogmodeller kreever omhyggelig overvejelse af ressourcekrav og ydelses-
kompromiser. Store sprogmodeller er beregningstunge og kan kreeve betydelig
processorkraft og hukommelse (med andre ord, penge) at drive. De fleste af os bliver
nedt til at vurdere omkostningsimplikationerne ved at integrere store sprogmodeller i

vores applikationer og handle derefter.

Forstaelse af inferens

Inferens refererer til den proces, hvorved en model genererer forudsigelser eller output
baseret pa nye, usete data. Det er den fase, hvor den treenede model bruges til at treeffe

beslutninger eller generere tekst, billeder eller andet indhold som svar pa brugerinput.

Under treeningsfasen leerer en Al-model fra et stort dataseet ved at justere sine parametre
for at minimere fejlen i sine forudsigelser. Nar modellen er treenet, kan den anvende det,
den har leert, pa nye data. Inferens er hvordan modellen bruger sine leerte menstre og

viden til at generere output.

For store sprogmodeller involverer inferens at tage et prompt eller inputtekst og
producere et sammenheengende og kontekstuelt relevant svar, som en strem af tokens
(som vi snart vil tale om). Dette kunne veere at besvare et spargsmal, fuldfere en seetning,

generere en historie eller oversette tekst, blandt mange andre opgaver.

P I modsetning til den made, du og jeg tenker pa, sker en Al-models

“teenkning” via inferens i én samlet tilstandsles operation. Det vil sige, at
dens teenkning er begreenset til dens genereringsproces. Den er bogstaveligt
talt nedt til at teenke hejt, som hvis jeg stillede dig et spergsmal og kun

accepterede et svar fra dig i “stream of consciousness”-stil.

Introduktion 6

Store sprogmodeller kommer i mange storrelser og
varianter

Mens praktisk talt alle populere store sprogmodeller er baseret pa den samme
grundleeggende transformer-arkitektur og treenet pa enorme tekstdataseet, kommer
de i forskellige storrelser og er finjusteret til forskellige formal. Sterrelsen pa en stor
sprogmodel, méalt i antallet af parametre i dens neurale netveerk, har stor indflydelse pa
dens kapaciteter. Sterre modeller med flere parametre, som GPT-4, der rygtes at have
1 til 2 billioner parametre, er generelt mere vidende og kapable end mindre modeller.
Dog kreever stgrre modeller ogsa meget mere computerkraft at kere, hvilket overseettes

til hojere udgifter, nar du bruger dem via API-kald.

For at gere store sprogmodeller mere praktiske og skreeddersyede til specifikke
anvendelser bliver basismodellerne ofte finjusteret p4 mere mélrettede dataseet. For
eksempel kan en stor sprogmodel traenes pa et stort korpus af dialog for at specialisere
den til konversations-Al. Andre er treenet pa kode for at give dem programmeringsviden.
Der er endda modeller, der er seerligt treenet til rollespilslignende interaktioner med

brugere!

Genfinding vs Generative Modeller

I verden af store sprogmodeller (LLMs) findes der to hovedtilgange til at generere svar:
genfindingsbaserede modeller og generative modeller. Hver tilgang har sine egne styrker
og svagheder, og forstaelsen af forskellene mellem dem kan hjeelpe dig med at veelge den

rigtige model til dit specifikke anvendelsesformal.

Genfindingsbaserede Modeller

Genfindingsbaserede modeller, ogsa kendt som informationsgenfindingsmodeller,
genererer svar ved at sgge gennem en stor database af eksisterende tekst og udveelge de

mest relevante passager baseret pa input-forespergslen. Disse modeller genererer ikke

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduktion 7

ny tekst fra bunden, men sammensetter i stedet uddrag fra databasen for at danne et

sammenheengende svar.

En af de sterste fordele ved genfindingsbaserede modeller er deres evne til at levere
faktuelt korrekt og opdateret information. Da de er afheengige af en database med
kurateret tekst, kan de hente relevant information fra pélidelige kilder og preesentere den
for brugeren. Dette gor dem velegnede til applikationer, der kreever preecise, faktuelle

svar, sasom spgrgsmal-svar-systemer eller videnbaser.

Genfindingsbaserede modeller har dog nogle begreensninger. De er kun sa gode som
den database, de sgger i, sa databasens kvalitet og deekning pavirker direkte modellens
ydeevne. Derudover kan disse modeller have sveert ved at generere sammenhzengende

og naturligt lydende svar, da de er begreenset til den tekst, der er tilgeengelig i databasen.

Vi deekker ikke brugen af rene genfindingsmodeller i denne bog.
Generative Modeller

Generative modeller skaber derimod ny tekst fra bunden baseret pad de menstre og
sammenhzenge, de har leert under treeningen. Disse modeller bruger deres forstaelse af

sprog til at generere nye svar, der er skreeddersyet til input-prompten.

Den sterste styrke ved generative modeller er deres evne til at producere kreativ,
sammenheengende og kontekstuelt relevant tekst. De kan deltage i abne samtaler,
generere historier og endda skrive kode. Dette gor dem ideelle til applikationer, der
kreever mere abne og dynamiske interaktioner, sisom chatbots, indholdsproduktion og

kreative skriveassistenter.

Generative modeller kan dog nogle gange producere inkonsistent eller faktuelt ukorrekt
information, da de er aftheengige af de menstre, der er leert under treeningen, frem
for en kurateret database med fakta. De kan ogsd veere mere tilbgjelige til bias og

hallucinationer, hvor de genererer tekst, der er plausibel, men ikke nedvendigvis sand.

Eksempler pa generative LLMs inkluderer OpenAl’s GPT-serie (GPT-3, GPT-4) og
Anthropics Claude.

Introduktion 8

Hybridmodeller

Flere kommercielt tilgeengelige LLMs kombinerer bade genfinding og generative
tilgange i en hybridmodel. Disse modeller bruger genfindingsteknikker til at finde
relevant information fra en database og bruger derefter generative teknikker til at

sammenfatte denne information til et sammenheengende svar.

Hybridmodeller sigter mod at kombinere den faktuelle ngjagtighed fra
genfindingsbaserede modeller med de naturlige sproggenereringsevner fra generative
modeller. De kan levere mere pélidelig og opdateret information, mens de stadig

bevarer evnen til at deltage i &bne samtaler.

Nér du veelger mellem genfindingsbaserede og generative modeller, ber du overveje de
specifikke krav til din applikation. Hvis det primeere mal er at levere preecis, faktuel
information, kan en genfindingsbaseret model veere det bedste valg. Hvis applikationen
kreever mere abne og kreative interaktioner, kan en generativ model veere mere passende.
Hybridmodeller tilbyder en balance mellem de to tilgange og kan veere et godt valg til

applikationer, der kreever bade faktuel ngjagtighed og naturlig sproggenerering.

I sidste ende atheenger valget mellem genfindingsbaserede og generative modeller af den
specifikke anvendelse og afvejningen mellem nejagtighed, kreativitet og fleksibilitet.
Ved at forsta styrkerne og begreensningerne ved hver tilgang kan du treeffe informerede

beslutninger.

Introduktion

Instruktionstilpasning

Instruktionstilpasning er en undergruppe af samtaletreening, der bruger
menneskeforfattede prompts og svar til at gere LLMs bedre til at forstd og
folge instruktioner. Her er nogle simple eksempler, der illustrerer, hvordan
instruktionstilpasning p4 menneskeforfattede prompts og svar ger LLMs bedre til at

forsta og felge instruktioner:

Eksempel 1: Kundeservice

Instruktion: “Giv et svar til en kunde, der beder om refundering”

Menneskeforfattet Prompt: “Jeg vil gerne anmode om en refundering for mit nylige

keb. Produktet levede ikke op til mine forventninger.”

Menneskeforfattet Svar: “Jeg beklager at heare, at produktet ikke levede op til dine
forventninger. For at behandle din refundering bedes du oplyse dit ordrenummer og
arsagen til returneringen. Vi vil gennemgé din anmodning og vende tilbage til dig

inden for 2-3 arbejdsdage”

Eksempel 2: Uddannelsesmaessig Assistance

Instruktion: “Forklar konceptet fotosyntese til en 10-arig.”
Human-Written Prompt: “Kan du forklare, hvordan planter laver deres mad?”

Human-Written Response: “Selvfalgelig! Planter laver deres mad gennem en proces,
der kaldes fotosyntese. De bruger sollys, vand og kuldioxid til at skabe mad og
ilt. Plantens blade har en seerlig del, der kaldes klorofyl, som hjeelper dem med at
indfange sollys.”

Example 3: Personlig Assistent

Introduktion 10

Instruction: “Planleeg et made til neeste tirsdag klokken 15”
Human-Written Prompt: “Kan du arrangere et made til tirsdag klokken 15?”

Human-Written Response: “Selvfglgelig, jeg har planlagt et made til dig neeste tirsdag
klokken 15. Er der andet, du har brug for?”

Resultatet er et mangfoldigt ekosystem af LLM’er i forskellige storrelser og med
forskellige specialer. Mindre modeller i omradet 1-7 milliarder parametre giver gode

generelle sproglige evner, samtidig med at de er mere effektive at kere.

« Mistral 7B
« Llama 3 8B

« Gemma 7B

Mellemstore modeller omkring 30-70 milliarder parametre tilbyder steerkere

reesonnements- og instruktionsfelgende evner.

« Llama 3 70B
« Qwen2 70B
« Mixtral 8x22B

Nér man veelger en LLM til at indbygge i en applikation, skal man afbalancere modellens
kapaciteter mod praktiske faktorer som omkostninger, latenstid, kontekstleengde og
indholdsfiltrering. Mindre, instruktionstilpassede modeller er ofte det bedste valg til
enklere sprogopgaver, mens de sterste modeller kan veere nedvendige til kompleks
reesonnement eller analyse. Modellens treeningsdata er ogsa en vigtig overvejelse, da

det bestemmer modellens vidensskeeringsdato.

P Visse modeller, som nogle fra Perplexity, er forbundet til realtids

informationskilder, sa de reelt set ikke har nogen skeeringsdato. Nar du stiller
dem spergsmal, kan de selvsteendigt beslutte at foretage websggninger og

hente vilkarlige websider for at generere et svar.

Introduktion 11

Obie

Bl \Who won the America vs GDL match last night?
. Liama 3 708 Instruct {nitre) &

I'm not aware of any information about a match between "America" and "GDL" last night. Could
you please provide more context or clarify which teams or leagues you are referring to? Illdo ©
my best to help you find the answer.

~281.1 tokens/s

@ o2 Sonar 708 Oniine 2
“

Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

Figur 1. Llama3 med og uden online adgang

I sidste ende findes der ikke én LLM, der passer til alle formal. At forsta variationerne
i modelstarrelse, arkitektur og treening er neglen til at veelge den rigtige model til en
given anvendelse. At eksperimentere med forskellige modeller er den eneste praktiske

made at afdeekke, hvilke der giver den bedste ydeevne til den pageeldende opgave.

Tokenisering: At opdele tekst i stykker

For en stor sprogmodel kan behandle tekst, skal teksten opdeles i mindre enheder kaldet
tokens. Tokens kan veere enkelte ord, dele af ord eller endda enkelte tegn. Processen med
at opdele tekst i tokens kaldes tokenisering, og det er et afggrende trin i forberedelsen

af data til en sprogmodel.

The process of splitting text inte tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

Figur 2. Denne setning indeholder 27 tokens

Forskellige LLM’er bruger forskellige tokeniseringsstrategier, hvilket kan have betydelig

indflydelse pa modellens ydeevne og kapaciteter. Nogle almindelige tokenizers, der

Introduktion 12

bruges af LLM er, omfatter:

« GPT (Byte Pair Encoding): GPT-tokenizers bruger en teknik kaldet byte pair
encoding (BPE) til at opdele tekst i delord-enheder. BPE sammenleegger iterativt
de hyppigst forekommende byte-par i et tekstkorpus og danner derved et ordforrad
af delord-tokens. Dette gor det muligt for tokenizeren at handtere sjeeldne og nye
ord ved at opdele dem i mere almindelige delord-stykker. GPT-tokenizers bruges
af modeller som GPT-3 og GPT-4.

« Llama (SentencePiece): Llama-tokenizere bruger SentencePiece-biblioteket, som
er en ikke-superviseret teksttokenizer og detokenizer. SentencePiece behandler
inputteksten som en sekvens af Unicode-tegn og leerer et delordsvokabular baseret
pé et treeningskorpus. Det kan handtere ethvert sprog, der kan kodes i Unicode,
hvilket gor det velegnet til flersprogede modeller. Llama-tokenizere bruges af

modeller som Metas Llama og Alpaca.

« SentencePiece (Unigram): SentencePiece-tokenizere kan ogsa bruge en anden
algoritme kaldet Unigram, som er baseret pa en delords-regulariseringsteknik.
Unigram-tokenisering bestemmer det optimale delordsvokabular baseret
pa& en unigram-sprogmodel, som tildeler sandsynligheder til individuelle
delordsenheder. Denne tilgang kan producere mere semantisk meningsfulde
delord sammenlignet med BPE. SentencePiece med Unigram bruges af modeller

som Googles T5 og BERT.

+ Google Gemini (Multimodal Tokenisering): Google Gemini bruger et
tokeniseringsskema designet til at handtere forskellige datatyper, herunder
tekst, billeder, lyd, videoer og kode. Denne multimodale kapacitet ger det
muligt for Gemini at behandle og integrere forskellige former for information.
Seerligt bemeerkelsesveerdigt har Google Gemini 1.5 Pro et kontekstvindue, der

kan héndtere millioner af tokens, meget storre end tidligere modeller. Dette

Introduktion 13

omfattende kontekstvindue gor det muligt for modellen at behandle en storre
kontekst, hvilket potentielt forer til mere preecise svar. Det er dog vigtigt at
bemeerke, at Geminis tokeniseringsskema er meget teettere pa ét token pr. tegn
end andre modeller. Dette betyder, at de faktiske omkostninger ved at bruge
Gemini-modeller kan veere betydeligt hajere end forventet, hvis du er vant til
at bruge modeller som GPT, da Googles prissetning er baseret pa tegn frem for

tokens.

Valget af tokenizer pavirker flere aspekter af en LLM, herunder:

« Vokabularsterrelse: Tokenizeren bestemmer storrelsen af modellens vokabular,
som er szettet af unikke tokens, den genkender. Et starre, mere detaljeret vokabular
kan hjeelpe modellen med at handtere en bredere vifte af ord og fraser og endda
blive multimodal (i stand til at forsta og generere mere end bare tekst), men det
gger ogsa modellens hukommelseskrav og beregningsmeessige kompleksitet.

« Handtering af sjeeldne og ukendte ord: Tokenizere, der bruger delordsenheder,
som BPE og SentencePiece, kan nedbryde sjeeldne og ukendte ord i mere
almindelige delordsstykker. Dette ger det muligt for modellen at lave
kvalificerede geet om betydningen af ord, den ikke har set for, baseret pa
de delord, de indeholder.

« Flersproget support: Tokenizere som SentencePiece, der kan handtere ethvert
Unicode-koderbart sprog, er velegnede til flersprogede modeller, der skal behandle
tekst pa flere sprog.

Nér man veelger en LLM til en bestemt anvendelse, er det vigtigt at overveje, hvilken
tokenizer den bruger, og hvor godt den passer til de specifikke sprogbehandlingsbehov
for den pageeldende opgave. Tokenizeren kan have en betydelig indvirkning pa
modellens evne til at hdndtere domaenespecifik terminologi, sjeeldne ord og flersproget

tekst.

Introduktion 14

Kontekststorrelse: Hvor Meget Information Kan en
Sprogmodel Bruge Under Inferens?

Nér man diskuterer sprogmodeller, refererer kontekststarrelse til meengden af tekst,
som en model kan overveje, nar den behandler eller genererer sine svar. Det er
grundleeggende et mél for, hvor meget information modellen kan “huske” og bruge til
at informere sine outputs (udtrykt i tokens). Kontekststarrelsen af en sprogmodel kan
have en betydelig indvirkning pa dens kapaciteter og de typer opgaver, den effektivt kan

udfere.

Hvad er Kontekststorrelse?

I tekniske termer bestemmes kontekststarrelsen af antallet af tokens (ord eller orddele),
som en sprogmodel kan behandle i en enkelt inputsekvens. Dette omtales ofte som
modellens “opmerksomhedsspeend” eller “kontekstvindue”. Jo storre kontekststerrelsen
er, jo mere tekst kan modellen overveje pa én gang, nar den genererer et svar eller udferer

€n opgave.

Forskellige sprogmodeller har varierende kontekststarrelser, der speender fra nogle fa
hundrede tokens til millioner af tokens. Til reference kan et typisk tekstafsnit indeholde
omkring 100-150 tokens, mens en hel bog kan indeholde titusinder eller hundredtusinder

af tokens.

Der er endda arbejde med effektive metoder til at skalere Transformer-baserede
Store Sprogmodeller (LLM) til uendeligt lange inputs med begreenset hukommelse

og beregning.

https://huggingface.co/papers/2404.07143

Introduktion 15

Hvorfor er kontekststorrelse vigtig?

Kontekststarrelsen i en sprogmodel har en betydelig indflydelse pa dens evne til at forsta

og generere sammenhaengende, kontekstuelt relevant tekst. Her er nogle vigtige grunde

til, at kontekststerrelse betyder noget:

1. Forstaelse af leengere indhold: Modeller med sterre kontekststarrelser kan bedre

forstd og analysere leengere tekster, sasom artikler, rapporter eller endda hele
beger. Dette er afgerende for opgaver som dokumentsammenfatning, besvarelse

af spergsmal og indholdsanalyse.

. Opretholdelse af sammenhaeng: Et storre kontekstvindue gor det muligt
for modellen at opretholde sammenheeng og konsistens pa tveers af lengere
output. Dette er vigtigt for opgaver som historiegenerering, dialogsystemer og
indholdsproduktion, hvor det er essentielt at opretholde en konsistent forteelling
eller emne. Det er ogséi absolut afgerende, nar man bruger LLM’er til at generere
eller transformere strukturerede data.

. Opfangelse af langdistanceafheengigheder: Nogle sprogopgaver kreever
forstaelse af relationer mellem ord eller seetninger, der er langt fra hinanden i
en tekst. Modeller med storre kontekststerrelser er bedre rustet til at opfange
disse langdistanceafheengigheder, hvilket kan veere vigtigt for opgaver som
sentimentanalyse, oversettelse og sprogforstaelse.

. Handtering af komplekse instruktioner: I anvendelser hvor sprogmodeller
bruges til at folge komplekse instruktioner i flere trin, tillader en sterre
kontekststorrelse modellen at tage hele seettet af instruktioner i betragtning, nar

den genererer et svar, i stedet for kun de seneste fa ord.

Eksempler pa sprogmodeller med forskellige kontekststorrelser

Her er nogle eksempler pa sprogmodeller med forskellige kontekststeorrelser:

Introduktion 16

« OpenAl GPT-3.5 Turbo: 4.095 tokens
« Mistral 7B Instruct: 32.768 tokens

« Anthropic Claude v1: 100.000 tokens
« OpenAl GPT-4 Turbo: 128.000 tokens
« Anthropic Claude v2: 200.000 tokens
« Google Gemini Pro 1.5: 2,8M tokens

Som du kan se, er der en bred vifte af kontekststerrelser blandt disse modeller, fra
omkring 4.000 tokens for OpenAl GPT-3.5 Turbo-modellen til 200.000 tokens for
Anthropic Claude v2-modellen. Nogle modeller, som Google’s PaLM 2 og OpenAl’s

«

GPT-4, tilbyder forskellige varianter med sterre kontekststorrelser (f.eks. “32k”-
versioner), som kan handtere endnu leengere inputsekvenser. Og i gjeblikket (april 2024)

praler Google Gemini Pro med neesten 3 millioner tokens!

Det er veerd at bemeerke, at kontekststorrelsen kan variere atheengigt af den specifikke
implementering og version af en bestemt model. For eksempel har den oprindelige
OpenAl GPT-4-model en kontekststorrelse pa 8.191 tokens, mens de senere GPT-4-

varianter som Turbo og 40 har en meget storre kontekststorrelse pa 128.000 tokens.

Sam Altman har sammenlignet nuveerende kontekstbegreensninger med de kilobyte
arbejdshukommelse, som personlige computerprogrammerer matte arbejde med i
80’erne, og sagde, at vi i den neermeste fremtid vil kunne passe “alle dine personlige

data” ind i konteksten af en stor sprogmodel.

Valg af den rigtige kontekststorrelse

Nér man veelger en sprogmodel til en bestemt anvendelse, er det vigtigt at overveje

opgavens kontekststarrelseskrav. For opgaver der involverer korte, isolerede

Introduktion 17

tekstdele, som sentimentanalyse eller simpel spergsmalsbesvarelse, kan en mindre
kontekststorrelse veere tilstreekkelig. For opgaver der kreever forstaelse og generering
af leengere, mere komplekse tekster, vil en sterre kontekststorrelse sandsynligvis veere

nedvendig.

Det er veerd at bemeerke, at storre kontekststorrelser ofte medferer ggede
beregningsomkostninger og langsommere behandlingstider, da modellen skal tage mere
information i betragtning, nar den genererer et svar. Derfor skal du finde en balance

mellem kontekststarrelse og ydeevne, nar du veelger en sprogmodel til din anvendelse.

Hvorfor ikke bare veelge modellen med den sterste kontekststerrelse og fylde den
med s& meget information som muligt? Tja, ud over ydelsesfaktorer er den anden
hovedovervejelse omkostningerne. I marts 2024 vil en enkelt prompt-respons-cyklus
med Google Gemini Pro 1.5 med fuld kontekst koste dig neesten 8 dollars (USD). Hvis
du har et anvendelsesformal, der retfeerdigger den udgift, sa held og lykke med det!

Men for de fleste anvendelser er det simpelthen for dyrt med flere sterrelsesordener.

At finde nale i hastakke

Konceptet med at finde en nal i en hgstak har leenge veeret en metafor for udfordringerne
ved udtreekning i store dataseet. Inden for store sprogmodeller justerer vi denne analogi
en smule. Forestil dig, at vi ikke bare leder efter én enkelt oplysning begravet i
en omfattende tekst (som en komplet antologi af Paul Graham essays), men flere
oplysninger spredt ud over det hele. Dette scenarie minder mere om at finde flere nale
i en keempemeessig mark, ikke bare en enkelt hostak. Her kommer det interessante: vi
skal ikke kun lokalisere disse nale, men ogsa veeve dem sammen til en sammenhgengende

trad.

Nér store sprogmodeller far til opgave at udtreekke og reesonnere over flere oplysninger

Introduktion 18

indlejret i lange kontekster, star de over for en dobbelt udfordring. For det forste er der
det simple problem med preecisionen af udtreekningen - den falder naturligt, efterhdnden
som antallet af oplysninger stiger. Dette er forventeligt; nar alt kommer til alt, belaster
det selv de mest sofistikerede modeller at holde styr pa flere detaljer pa tveers af en

omfattende tekst.

For det andet, og méske mere kritisk, er der udfordringen med at reesonnere over
disse oplysninger. Det er én ting at plukke oplysninger ud; det er noget helt andet at
sammenfatte dem til et ssmmenheengende narrativ eller svar. Det er her, den virkelige
test kommer ind. Sprogmodellernes ydeevne i reesonnementsopgaver har en tendens
til at forringes mere end i simple udtreekningsopgaver. Denne forringelse handler ikke
kun om mengden; det handler om det komplekse samspil mellem kontekst, relevans og

folgeslutning.

Hvorfor sker dette? Tja, teenk pa dynamikken i hukommelse og opmeerksomhed i
menneskelig kognition, som til en vis grad afspejles i store sprogmodeller. Nar de
behandler store meengder information, kan sprogmodeller, ligesom mennesker, miste
overblikket over tidligere detaljer, mens de absorberer nye. Dette er iseer tilfeldet i
modeller, der ikke er eksplicit designet til automatisk at prioritere eller genbesgge

tidligere tekstsegmenter.

Desuden er en sprogmodels evne til at veeve disse udtrukne oplysninger sammen til et
sammenheengende svar besleegtet med opbygning af narrativ. Dette kreever ikke kun
udtreekning af information, men en dyb forstaelse og kontekstuel placering, hvilket

fortsat er en stor udfordring for nuveerende kunstig intelligens.

Sa hvad betyder dette for os som udviklere og integratorer af disse teknologier? Vi
skal veere meget opmeerksomme pa disse begreensninger, nar vi designer systemer,
der er afheengige af store sprogmodeller til at hédndtere komplekse opgaver med lange
tekster. At forsta at ydeevnen kan forringes under visse forhold hjeelper os med at
seette realistiske forventninger og udvikle bedre fallback-mekanismer eller supplerende

strategier.

Introduktion 19

Modaliteter: Ud over tekst

Mens sterstedelen af sprogmodeller i dag fokuserer pa at behandle og generere tekst,
er der en voksende tendens mod multimodale modeller, der naturligt kan indlese og
outputte flere typer data, sasom billeder, lyd og video. Disse multimodale modeller &bner
nye muligheder for Al-drevne applikationer, der kan forsta og generere indhold pa tveers

af forskellige modaliteter.

Hvad er modaliteter?

I forbindelse med sprogmodeller refererer modaliteter til de forskellige typer data, som
en model kan behandle og generere. Den mest almindelige modalitet er tekst, som
omfatter skrevet sprog i forskellige former som beger, artikler, hjemmesider og sociale
medieindleeg. Der er dog flere andre modaliteter, som i stigende grad bliver inkorporeret

i sprogmodeller:

« Billeder: Visuelle data sasom fotografier, illustrationer og diagrammer.
+ Lyd: Lyddata sasom tale, musik og omgivelseslyde.

« Video: Bevaegelige visuelle data, ofte ledsaget af lyd, sasom videoklip og film.

Hver modalitet preesenterer unikke udfordringer og muligheder for sprogmodeller. For
eksempel kreever billeder, at modellen forstar visuelle koncepter og relationer, mens lyd

kreever, at modellen behandler og genererer tale og andre lyde.

Multimodale sprogmodeller

Multimodale sprogmodeller er designet til at handtere flere modaliteter inden for
en enkelt model. Disse modeller har typisk specialiserede komponenter eller lag,
der bade kan forsta input og generere output-data i forskellige modaliteter. Nogle

bemeerkelsesveerdige eksempler pa multimodale sprogmodeller omfatter:

Introduktion 20

« OpenAl's GPT-40: GPT-40 er en stor sprogmodel, der naturligt forstar og
behandler talelyd ud over tekst. Denne kapabilitet gor det muligt for GPT-40 at
udfere opgaver sasom transskription af talt sprog, generering af tekst fra lydinput
og levering af svar baseret pa talte forespargsler.

« OpenAl's GPT-4 med visuelt input: GPT-4 er en stor sprogmodel, der kan
behandle bade tekst og billeder. Nar den far et billede som input, kan GPT-4
analysere billedets indhold og generere tekst, der beskriver eller reagerer pa den
visuelle information.

« Google’s Gemini: Gemini er en multimodal model, der kan héandtere tekst,
billeder og video. Den bruger en samlet arkitektur, der muligger tveermodal
forstaelse og generering, hvilket muligger opgaver som billedtekstning,

videoopsummering og visuel spergsmal-besvarelse.

« DALL-E og Stable Diffusion: Selvom disse ikke er sprogmodeller i traditionel
forstand, demonstrerer de kraften i multimodal AI ved at generere billeder fra
tekstbeskrivelser. De viser potentialet for modeller, der kan oversette mellem

forskellige modaliteter.

Fordele og Anvendelser af Multimodale Modeller

Multimodale sprogmodeller tilbyder flere fordele og muligger en bred vifte af

anvendelser, herunder:

+ Forbedret forstaelse: Ved at behandle information fra flere modaliteter kan
disse modeller opna en mere omfattende forstaelse af verden, lignende den made
mennesker leerer fra forskellige sensoriske inputs.

» Krydsmodal generering: Multimodale modeller kan generere indhold i én
modalitet baseret pa input fra en anden, sdsom at skabe et billede fra en

tekstbeskrivelse eller generere et videosammendrag fra en skreven artikel.

Introduktion 21

« Tilgengelighed: Multimodale modeller kan gore information mere tilgeengelig
ved at oversezette mellem modaliteter, sdsom at generere tekstbeskrivelser af
billeder for synshandicappede brugere eller skabe lydversioner af skrevet indhold.

« Kreative anvendelser: Multimodale modeller kan bruges til kreative opgaver som
at generere kunst, musik eller videoer baseret pa tekstprompter, hvilket &bner nye

muligheder for kunstnere og indholdskreaterer.

Efterhdnden som multimodale sprogmodeller fortsetter med at udvikle sig, vil de
sandsynligvis spille en stadig vigtigere rolle i udviklingen af Al-drevne applikationer,
der kan forsta og generere indhold pa tveers af flere modaliteter. Dette vil muliggere
mere naturlige og intuitive interaktioner mellem mennesker og Al-systemer samt dbne

for nye muligheder inden for kreativ udfoldelse og vidensformidling.

Udbyder-okosystemer

Nar det kommer til at inkorporere store sprogmodeller (LLMs) i applikationer, har
du et voksende udvalg af muligheder at veelge imellem. Hver storre LLM-udbyder,
sasom OpenAl, Anthropic, Google og Cohere, tilbyder sit eget skosystem af modeller,
APTer og veerktejer. At veelge den rigtige udbyder involverer overvejelse af forskellige
faktorer, herunder prisseetning, ydeevne, indholdsfiltrering, databeskyttelse og

tilpasningsmuligheder.

OpenAl

OpenAl er en af de mest velkendte udbydere af LLMs, hvor deres GPT-serie (GPT-3, GPT-
4) bruges bredt i forskellige applikationer. OpenAl tilbyder et brugervenligt API, der
gor det nemt at integrere deres modeller i applikationer. De tilbyder en reekke modeller
med forskellige kapaciteter og prisniveauer, fra den grundleeggende Ada-model til den

kraftfulde Davinci-model.

OpenAls gkosystem inkluderer ogsa veerktejer som OpenAl Playground, der giver

dig mulighed for at eksperimentere med prompts og finjustere modeller til specifikke

Introduktion 22

anvendelser. De tilbyder indholdsfiltrering for at hjeelpe med at forhindre generering af
upassende eller skadeligt indhold.

Nar jeg bruger OpenAls modeller direkte, benytter jeg Alex Rudalls ruby-openai
bibliotek.

Anthropic

Anthropic er en anden stor akter inden for LLM-omradet, hvor deres Claude-modeller
vinder popularitet for steerk ydeevne og etiske overvejelser. Anthropic fokuserer pa
at udvikle sikre og ansvarlige Al-systemer med stor veegt pa indholdsfiltrering og

undgaelse af skadelige outputs.

Anthropics gkosystem omfatter Claude APT’et, som giver dig mulighed for at integrere
modellen i deres applikationer, samt veerktgjer til prompt-udvikling og finjustering.
De tilbyder ogsa Claude Instant-modellen, som inkorporerer websggning for mere

opdaterede og faktuelle svar.

Nar jeg bruger Anthropics modeller direkte, benytter jeg Alex Rudalls anthrophic
bibliotek.

Google

Google har udviklet flere kraftfulde LLMs, herunder Gemini, BERT, T5 og PaLM.
Disse modeller er kendt for deres steerke preestationer inden for en bred vifte af
opgaver inden for naturlig sprogbehandling. Googles gkosystem omfatter TensorFlow-
og Keras-bibliotekerne, som leverer veerktegjer og rammer til at bygge og treene

maskinleeringsmodeller.

Google tilbyder ogsa en Cloud Al Platform, som ger det nemt at implementere og skalere
deres modeller i skyen. De leverer en raekke preetreenede modeller og APTer til opgaver

som sentimentanalyse, entitetsgenkendelse og overseettelse.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introduktion 23

Meta

Meta, tidligere kendt som Facebook, er dybt involveret i udviklingen af store
sprogmodeller, hvilket understreges af deres frigivelse af modeller som LLaMA og OPT.
Disse modeller udmeerker sig ved deres steerke preestationer i forskellige sprogopgaver
og er primeert tilgeengelige gennem open source-kanaler, hvilket understatter Metas

engagement i forskning og samarbejde med feellesskabet.

Metas gkosystem er primeert bygget omkring PyTorch, et open source-
maskinleeringsbibliotek, der er foretrukket for dets dynamiske beregningsevner

og fleksibilitet, hvilket faciliterer innovativ Al-forskning og -udvikling.

Ud over deres tekniske tilbud leegger Meta stor veegt pa etisk Al-udvikling. De
implementerer robust indholdsfiltrering og fokuserer pa at reducere bias, hvilket
stemmer overens med deres bredere méal om sikkerhed og ansvarlighed i Al-

applikationer.

Cohere

Cohere er en nyere akter inden for LLM-omradet, der fokuserer pa at gere LLM’er
mere tilgeengelige og lettere at bruge end konkurrenterne. Deres gkosystem inkluderer
Cohere APT’en, som giver adgang til en reekke pree-treenede modeller til opgaver som

tekstgenerering, klassificering og opsummering.

Cohere tilbyder ogsa veerktejer til prompt engineering, fine-tuning og indholdsfiltrering.
De legger veegt pa databeskyttelse og sikkerhed med funktioner som krypteret
datalagring og adgangskontrol.

Ollama

Ollama er en selvhostet platform, der giver brugere mulighed for at administrere og

implementere forskellige store sprogmodeller (LLM’er) lokalt p& deres maskiner, hvilket

Introduktion 24

giver dem fuld kontrol over deres Al-modeller uden at veere afheengige af eksterne cloud-
tjenester. Denne opseetning er ideel for dem, der prioriterer databeskyttelse og ensker at

héndtere deres Al-operationer internt.

Platformen understotter en reekke modeller, herunder versioner af Llama, Phi, Gemma
og Mistral, som varierer i stgrrelse og beregningskrav. Ollama ger det nemt at
downloade og kere disse modeller direkte fra kommandolinjen ved hjeelp af simple
kommandoer som ollama run <model_name>, og den er designet til at fungere pa

tveers af forskellige operativsystemer, herunder macOS, Linux og Windows.

For udviklere, der ensker at integrere open source-modeller i deres applikationer uden at
bruge et eksternt API, tilbyder Ollama en CLI til handtering af modellers livscyklus, der
minder om veerktgjer til containerhéndtering. Den understetter ogsa brugerdefinerede
konfigurationer og prompts, hvilket giver mulighed for en hej grad af tilpasning til

specifikke behov eller anvendelser.

Ollama er seerligt velegnet til teknisk kyndige brugere og udviklere pa grund af dens
kommandolinjeinterface og den fleksibilitet, den tilbyder i forhold til at administrere og
implementere Al-modeller. Dette gor det til et kraftfuldt veerktej for virksomheder og
enkeltpersoner, der har behov for robuste Al-funktioner uden at ga pa kompromis med

sikkerhed og kontrol.

Multi-model-platforme

Derudover findes der udbydere, der hoster en bred vifte af open source-modeller, sésom
Together.ai og Groq. Disse platforme tilbyder fleksibilitet og tilpasningsmuligheder,
der giver dig mulighed for at kere og i nogle tilfzelde endda fine-tune open source-
modeller efter dine specifikke behov. For eksempel giver Together.ai adgang til en
reekke open source LLMer, hvilket giver brugerne mulighed for at eksperimentere med
forskellige modeller og konfigurationer. Groq fokuserer pa at levere ultrahej ydeevne i

feerdiggorelsen, som pa tidspunktet for denne bogs udgivelse virker neesten magisk

Introduktion 25

Valg af LLM-udbyder

Nar du veelger en LLM-udbyder, ber du overveje faktorer som:

« Prisseetning: Forskellige udbydere tilbyder forskellige prismodeller, lige fra
betaling pr. brug til abonnementsbaserede planer. Det er vigtigt at overveje det
forventede forbrug og budget, nar man veelger en udbyder.

« Ydeevne: LLM’ers ydeevne kan variere betydeligt mellem udbydere, si det er
vigtigt at benchmarke og teste modeller pa specifikke anvendelser, for man treeffer
en beslutning.

« Indholdsfiltrering: Afheengigt af anvendelsen kan indholdsfiltrering veere en
kritisk overvejelse. Nogle udbydere tilbyder mere robuste indholdsfiltrerings-
muligheder end andre.

« Databeskyttelse: Hvis applikationen handterer folsomme brugerdata, er det
vigtigt at veelge en udbyder med steerk databeskyttelse og sikkerhedspraksis.

« Tilpasning: Nogle udbydere tilbyder mere fleksibilitet med hensyn til fine-tuning

og tilpasning af modeller til specifikke anvendelser.

I sidste ende afheenger valget af LLM-udbyder af applikationens specifikke krav og
begreensninger. Ved omhyggeligt at evaluere mulighederne og overveje faktorer som
prisseetning, ydeevne og databeskyttelse kan du veelge den udbyder, der bedst opfylder

dine behov.

Det er ogsa veerd at bemeerke, at LLM-landskabet konstant udvikler sig, og nye udbydere
og modeller dukker regelmeessigt op. Du ber holde dig opdateret med den seneste
udvikling og veere &ben for at udforske nye muligheder, efterhdnden som de bliver

tilgeengelige.
OpenRouter

Gennem denne bog vil jeg udelukkende bruge OpenRouter som min foretrukne

API-udbyder. Arsagen er enkel: det er en one-stop-shop for alle de mest populere

https://openrouter.ai

Introduktion 26

kommercielle og open source-modeller. Hvis du er ivrig efter at komme i gang med
noget Al-kodning, er et af de bedste steder at starte med mit eget OpenRouter Ruby
Library.

Om Ydeevne

Nér man indbygger sprogmodeller i applikationer, er ydeevne en kritisk overvejelse. En
sprogmodels ydeevne kan maéles i form af dens latens (den tid det tager at generere et

svar) og gennemlgb (antallet af forespargsler den kan handtere pr. tidsenhed).

Tid til forste token (TTFT) er endnu et veesentligt ydeevnemal, seerligt relevant for
chatbots og applikationer der kreever interaktive svar i realtid. TTFT maler latenstiden
fra det gjeblik en brugers forespergsel modtages, til det forste ord (eller token) i svaret
genereres. Dette mél er afgerende for at opretholde en problemfri og engagerende
brugeroplevelse, da forsinkede svar kan fore til brugerfrustrationer og manglende

engagement.

Disse ydelsesmal kan have betydelig indflydelse pa brugeroplevelsen og applikationens
skalerbarhed.

Flere faktorer kan pavirke en sprogmodels ydeevne, herunder:

Parameterantal: Sterre modeller med flere parametre kreever generelt flere
computerressourcer og kan have hejere latens og lavere gennemlgb sammenlignet med

mindre modeller.

Hardware: En sprogmodels ydeevne kan variere betydeligt afheengigt af den
hardware, den karer pa. Cloud-udbydere tilbyder GPU- og TPU-instanser optimeret til

maskinleeringsworkloads, hvilket kan accelerere modelinferens betydeligt.

En af de fine ting ved OpenRouter er, at for mange af de modeller
den tilbyder, far du valget mellem cloud-udbydere med forskellige

ydeevneprofiler og omkostninger.

https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introduktion 27

Kvantisering: Kvantiseringsteknikker kan bruges til at reducere en models
hukommelsesforbrug og beregningskrav ved at repreesentere veegte og aktiveringer
med datatyper af lavere preecision. Dette kan forbedre ydeevnen uden at ofre kvaliteten
veesentligt. Som applikationsudvikler vil du sandsynligvis ikke blive involveret i
treening af dine egne modeller med forskellige kvantiseringsniveauer, men det er godt

at veere fortrolig med terminologien.

Batchprocessering: Behandling af flere forespergsler samtidigt i batches kan forbedre

gennemlebet ved at amortisere overhead fra modelindleesning og dataoverfersel.

Cachelagring: Cachelagring af resultater fra hyppigt anvendte prompts eller
inputsekvenser kan reducere antallet af inferensforespergsler og forbedre den

generelle ydeevne.

Nér man veelger en sprogmodel til en produktionsapplikation, er det vigtigt at
benchmarke dens ydeevne pa repreesentative workloads og hardwarekonfigurationer.
Dette kan hjeelpe med at identificere potentielle flaskehalse og sikre, at modellen kan

opfylde de kreevede ydelsesmal.

Det er ogsa veerd at overveje afvejningerne mellem modelydeevne og andre faktorer
som omkostninger, fleksibilitet og integrationsvenlighed. For eksempel kan brugen af
en mindre, billigere model med lavere latens veere at foretreekke for applikationer, der
kreever realtidssvar, mens en sterre, mere kraftfuld model kan veere bedre egnet til

batchprocessering eller komplekse reesonnementsopgaver.

Eksperimenter Med Forskellige LLM-Modeller

At veelge en LLM er sjeeldent en permanent beslutning. Da nye og forbedrede modeller
udgives regelmeessigt, er det godt at bygge applikationer p4 en moduleer made, der
tillader udskiftning af forskellige sprogmodeller over tid. Prompts og dataseet kan ofte

genbruges pa tveers af modeller med minimale sendringer. Dette giver dig mulighed for

Introduktion 28

at udnytte de seneste fremskridt inden for sprogmodellering uden at skulle redesigne

dine applikationer fuldsteendigt.

Muligheden for nemt at skifte mellem et bredt udvalg af modelvalg er endnu
en grund til, at jeg elsker OpenRouter.

Nar man opgraderer til en ny sprogmodel, er det vigtigt grundigt at teste og validere
dens ydeevne og outputkvalitet for at sikre, at den opfylder applikationens krav. Dette
kan involvere gentreening eller finjustering af modellen pa domeenespecifikke data, samt

opdatering af eventuelle downstream-komponenter, der atheenger af modellens output.

Ved at designe applikationer med fokus pa ydeevne og modularitet kan du skabe
skalerbare, effektive og fremtidssikrede systemer, der kan tilpasse sig det hurtigt

udviklende landskab inden for sprogmodelleringsteknologi.

Sammensatte Al-Systemer

For vi afslutter vores introduktion, er det veerd at neevne, at for 2023 og eksplosionen
i interessen for generativ Al udlgst af ChatGPT, var traditionelle Al-tilgange typisk
afheengige af integration af enkelte, lukkede modeller. I modseetning hertil udnytter
Sammensatte AI-Systemer komplekse pipelines af sammenkoblede komponenter, der

arbejder sammen om at opna intelligent adfeerd.

I kernen bestar sammensatte Al-systemer af flere moduler, der hver er designet til
at udfere specifikke opgaver eller funktioner. Disse moduler kan omfatte generatorer,
hentningskomponenter, rangeringskomponenter, klassifikatorer og forskellige andre
specialiserede komponenter. Ved at opdele det samlede system i mindre, fokuserede
enheder kan udviklere skabe mere fleksible, skalerbare og vedligeholdelsesvenlige Al-

arkitekturer.

En af de vigtigste fordele ved sammensatte Al-systemer er deres evne til at kombinere

styrkerne fra forskellige Al-teknikker og modeller. For eksempel kan et system bruge en

Introduktion 29

stort sprogmodel (LLM) til forstaelse og generering af naturligt sprog, mens det anvender
en separat model til informationssegning eller regelbaseret beslutningstagning. Denne
moduleere tilgang giver dig mulighed for at veelge de bedste veerktajer og teknikker til

hver specifik opgave, frem for at veere afheengig af en universallgsning.

Dog preesenterer opbygningen af sammensatte Al-systemer ogsa unikke udfordringer.
Seerligt kreever sikring af systemets overordnede sammenheeng og konsistens robuste

test-, overvagnings- og styringsmekanismer.

Fremkomsten af kraftfulde LLM’er som GPT-4 ger det lettere end nogensinde
P for at eksperimentere med sammensatte Al-systemer, fordi disse avancerede
modeller er i stand til at handtere flere roller inden for et sammensat system,
sasom klassificering, rangering og generering, ud over deres evner til at
forsta naturligt sprog. Denne alsidighed ger det muligt for udviklere hurtigt
at udvikle prototyper og iterere pd sammensatte Al-arkitekturer, hvilket

abner nye muligheder for udvikling af intelligente applikationer.

Implementeringsmenstre for Sammensatte Al-systemer

Sammensatte Al-systemer kan implementeres ved hjeelp af forskellige manstre, der hver
er designet til at imedekomme specifikke krav og anvendelsesomréader. Lad os udforske
fire almindelige implementeringsmenstre: Spargsmal og Svar, Multi-Agent/Agentiske

Problemlgsere, Konversations-Al og CoPilots.

Spergsmal og Svar

Spergsmal og Svar (Q&A) systemer fokuserer pa at levere informationssegning, der
er forbedret med Al-modellers forstaelsesevner for at fungere som mere end blot en
sggemaskine. Ved at kombinere kraftfulde sprogmodeller med eksterne videnskilder

ved hjeelp af Genfindelses-forsteerket Generering (RAG), undgar Spergsmal og

Introduktion 30

Svar-systemer hallucinationer og giver preecise og kontekstuelt relevante svar péa

brugerforesporgsler.

De vigtigste komponenter i et LLM-baseret Q&A-system omfatter:

« Foresporgselsforstaelse og -omformulering: Analyse af brugerforespargsler og
omformulering af disse for bedre at matche de underliggende videnskilder.

« Vidensgenfinding: Genfinding af relevant information fra strukturerede eller
ustrukturerede datakilder baseret p4 den omformulerede forespergsel.

« Svargenerering: Generering af sammenheengende og informative svar ved at

integrere den genfundne viden med sprogmodellens generative evner.

RAG-delsystemer er seerligt vigtige i Q&A-domeener, hvor det er afgerende at
levere preecis og opdateret information, sisom kundesupport, vidensstyring eller

uddannelsesapplikationer

Multi-Agent/Agentiske Problemlesere

Multi-agent, ogsé kendt som Agentiske, systemer bestar af flere autonome agenter, der
arbejder sammen om at lase komplekse problemer. Hver agent har en specifik rolle,
et seet feerdigheder og adgang til relevante veerktgjer eller informationskilder. Ved at
samarbejde og udveksle information kan disse agenter tackle opgaver, som ville veere

vanskelige eller umulige for en enkelt agent at handtere alene.

De vigtigste principper for multi-agent problemlgsere omfatter:

« Specialisering: Hver agent fokuserer pa et specifikt aspekt af problemet og
udnytter sine unikke evner og viden.

« Samarbejde: Agenter kommunikerer og koordinerer deres handlinger for at né et
feelles mal, ofte gennem beskeder eller delt hukommelse.

- Tilpasningsevne: Systemet kan tilpasse sig eendrede forhold eller krav ved at

justere de enkelte agenters roller og adfeerd.

Introduktion 31

Multi-agent systemer er velegnede til applikationer, der kreever distribueret
problemlgsning, sasom forsyningskeedeoptimering, trafikstyring eller planleegning

af beredskab
Konversations-Al

Konversations-Al-systemer muligger interaktioner pa naturligt sprog mellem brugere
og intelligente agenter. Disse systemer kombinerer forstdelse af naturligt sprog,
dialoghéndtering og sproggenereringsevner for at levere engagerende og personlige

samtalebaserede oplevelser.

Hovedkomponenterne i et konversations-Al-system omfatter:

« Intentionsgenkendelse: Identificering af brugerens intention baseret pa deres
input, sasom at stille et spergsmal, fremseette en anmodning eller udtrykke en
folelse.

« Entitetsudtreekning: Udtreekning af relevante entiteter eller parametre fra
brugerens input, sasom datoer, lokationer eller produktnavne.

« Dialoghandtering: Vedligeholdelse af samtalens tilstand, bestemmelse af
passende svar baseret pa brugerens intention og kontekst, samt handtering af
flerturs-interaktioner.

« Svargenerering: Generering af menneskelignende svar ved hjelp af

sprogmodeller, skabeloner eller genfindelsesbaserede metoder.

Konversations-Al-systemer bruges almindeligvis i kundeservice-chatbots, virtuelle
assistenter og stemmestyrede greenseflader. Som neevnt tidligere er de fleste af
tilgangene, menstrene og kodeeksemplerne i denne bog direkte uddraget fra mit arbejde

med et stort konversations-Al-system kaldet Olympia
CoPilots

CoPilots er Al-drevne assistenter, der arbejder sammen med menneskelige brugere

for at forbedre deres produktivitet og beslutningstagning. Disse systemer udnytter en

https://olympia.chat

Introduktion 32

kombination af naturlig sprogbehandling, maskinleering og domeenespecifik viden til at

give intelligente anbefalinger, automatisere opgaver og tilbyde kontekstuel stotte.

Centrale funktioner i CoPilots omfatter:

« Personalisering: Tilpasning til individuelle brugerpreeferencer, arbejdsgange og
kommunikationsstile.

« Proaktiv assistance: Foregribelse af brugerens behov og tilbud om relevante
forslag eller handlinger uden eksplicitte forespergsler.

« Kontinuerlig lering: Forbedring af ydeevne over tid gennem leering fra

brugerfeedback, interaktioner og data.

CoPilots bruges i stigende grad inden for forskellige domeener, sasom softwareudvikling
(f.eks. kodekomplettering og fejlfinding), kreativ skrivning (f.eks. indholdsforslag og

redigering), og dataanalyse (f.eks. indsigter og visualiseringsanbefalinger)

Disse implementeringsmenstre viser alsidigheden og potentialet i sammensatte
Al-systemer. Ved at forsta karakteristikaene og anvendelsesmulighederne for hvert
menster kan du treeffe informerede beslutninger ved design og implementering af
intelligente applikationer. Selvom denne bog ikke specifikt handler om implementering
af sammensatte Al-systemer, geelder mange, hvis ikke alle, af de samme tilgange
og menstre for integration af diskrete Al-komponenter inden for ellers traditionel

applikationsudvikling.

Roller i sammensatte Al-systemer

Sammensatte Al-systemer er bygget pa et fundament af sammenkoblede moduler, der
hver er designet til at udfere en specifik rolle. Disse moduler arbejder sammen om at
skabe intelligent adfzerd og lase komplekse problemer. Det er nyttigt at veere fortrolig
med disse roller, nar man overvejer, hvor man kunne implementere eller erstatte dele af

sin applikation med diskrete Al-komponenter.

Introduktion 33

Generator

Generatorer er ansvarlige for at producere nye data eller indhold baseret pa leerte
menstre eller input-prompts. Al-verdenen har mange forskellige slags generatorer,
men i forbindelse med de sprogmodeller, der preesenteres i denne bog, kan generatorer
skabe menneskelignende tekst, fuldfere delvise seetninger eller generere svar pa
brugerforespargsler. De spiller en afgarende rolle i opgaver som indholdsproduktion,

dialoggenerering og dataforegelse.

Informationshenter

Informationshentere bruges til at sege og udtreekke relevant information fra
store dataseet eller videnbaser. De anvender teknikker som semantisk segning,
nggleordsmatchning eller vektorsimilaritet til at finde de mest relevante datapunkter
baseret pa en given forespergsel eller kontekst. Informationshentere er essentielle
for opgaver, der kreever hurtig adgang til specifik information, sdsom besvarelse af

spergsmal, faktakontrol eller indholdsanbefaling.

Rangordner

Rangordnere er ansvarlige for at ordne eller prioritere et seet elementer baseret pa
bestemte kriterier eller relevansscorer. De tildeler veegte eller scorer til hvert element
og sorterer dem derefter i overensstemmelse hermed. Rangordnere bruges almindeligvis
i sggemaskiner, anbefalingssystemer eller enhver applikation, hvor preesentation af de

mest relevante resultater for brugerne er afgerende.

Klassifikator

Klassifikatorer bruges til at kategorisere eller meerke datapunkter baseret pa
foruddefinerede klasser eller kategorier. De leerer fra meerket treeningsdata og

forudsiger derefter klassen for nye, usete tilfezelde. Klassifikatorer er fundamentale for

Introduktion 34

opgaver som sentimentanalyse, spam-detektion eller billedgenkendelse, hvor malet er

at tildele en specifik kategori til hvert input.

Veerktojer & Agenter

Ud over disse kerneroller inkorporerer sammensatte Al-systemer ofte veerktgjer og

agenter for at forbedre deres funktionalitet og tilpasningsevne:

« Verktejer: Veerktojer er diskrete softwarekomponenter eller APT’er, der udferer
specifikke handlinger eller beregninger. De kan kaldes af andre moduler, sasom
generatorer eller informationshentere, for at udfere delopgaver eller indsamle
yderligere information. Eksempler pa veerktejer omfatter websggemaskiner,
lommeregnere eller datavisualiseringsbiblioteker.

« Agenter: Agenter er autonome enheder, der kan opfatte deres omgivelser, treeffe
beslutninger og handle for at opna specifikke mal. De er ofte atheengige af en
kombination af forskellige Al-teknikker, sdsom planleegning, reesonnement og
leering, for at fungere effektivt under dynamiske eller usikre forhold. Agenter kan
bruges til at modellere kompleks adfeerd eller til at koordinere handlinger mellem

flere moduler i et sammensat Al-system.

I et rent sammensat Al-system orchestreres interaktionen mellem disse komponenter
gennem veldefinerede greenseflader og kommunikationsprotokoller. Data flyder
mellem moduler, hvor output fra én komponent fungerer som input for en anden.
Denne moduleere arkitektur muligger fleksibilitet, skalerbarhed og vedligeholdelse, da
individuelle komponenter kan opdateres, erstattes eller udvides uden at pavirke hele

systemet.

Ved at udnytte styrken i disse komponenter og deres interaktioner kan sammensatte
Al-systemer tackle komplekse, virkelige problemer, der kreever en kombination af
forskellige Al-kapabiliteter. Mens vi udforsker tilgangene og menstrene for integration

af Al i applikationsudvikling, skal du huske p4, at de samme principper og teknikker,

Introduktion 35

der bruges i sammensatte Al-systemer, kan anvendes til at skabe intelligente, adaptive

og brugercentrerede applikationer.

I de folgende kapitler i Del 1 vil vi dykke dybere ned i de fundamentale tilgange
og teknikker til integration af Al-komponenter i din applikationsudviklingsproces. Fra
prompt-udvikling og retrieval-augmented generation til selvhelende data og intelligent
workflow-orkestrering vil vi deekke en bred vifte af menstre og best practices for at

hjeelpe dig med at bygge banebrydende Al-drevne applikationer.

Del 1: Grundlaeggende
Tilgange & Teknikker

Denne del af bogen preesenterer forskellige mader at integrere brugen af Al i dine
applikationer. Kapitlerne deekker en reekke beslegtede tilgange og teknikker, der
speender fra de mere overordnede koncepter som Indsnesevre Stien og Retrieval
Augmented Generation helt ned til idéer om at programmere dit eget abstraktionslag

oven pa LLM chat-feerdiggerelses-APler.

Malet med denne del af bogen er at hjeelpe dig med at forsta de forskellige former
for adfeerd, du kan implementere med Al, for vi gar for dybt ind i specifikke

implementeringsmenstre, som er fokus i Del 2.

Tilgangene i Del 1 er baseret pa idéer, som jeg har brugt i min kode, klassiske menstre
inden for virksomhedsapplikationsarkitektur og integration, plus metaforer, som jeg har
brugt, nar jeg har skullet forklare AI’s muligheder til andre mennesker, herunder ikke-

tekniske forretningsinteressenter.

Indsnaavre Stien

I,

o O

nesme rn MR

|
i
1
1

“Indsneevre stien” henviser til at fokusere Al’en pa den opgave, der skal loses. Jeg bruger
det som et mantra, nar jeg bliver frustreret over, at Al’'en opferer sig “dumt” eller pa
uventede mader. Mantraet minder mig om, at fejlen sandsynligvis er min egen, og at jeg

formentlig ber indsneevre stien noget mere.

Behovet for at indsneevre stien opstar fra den enorme meengde viden, der findes i
store sprogmodeller, iseer verdensklassemodeller som dem fra OpenAl og Anthropic,

der bogstaveligt talt har billioner af parametre.

Indsneevre Stien 38

At have adgang til sidan et bredt spektrum af viden er uden tvivl kraftfuldt og
producerer emergent adfeerd sasom theory of mind og evnen til at reesonnere
pa menneskelig vis. Denne skelseettende meengde information skaber dog ogsa
udfordringer, nar det kommer til at generere preecise og nejagtige svar pa specifikke
prompts, iseer hvis disse prompts skal udvise deterministisk adfzerd, der kan integreres

med “normal” softwareudvikling og algoritmer.
En reekke faktorer forer til disse udfordringer.

Informationsoverbelastning: Store sprogmodeller er treenet pa massive meengder data,
der spaender over forskellige domeener, kilder og tidsperioder. Denne omfattende viden
gor dem i stand til at engagere sig i forskellige emner og generere svar baseret pa en bred
forstéelse af verden. Nar modellen star over for et specifikt prompt, kan den dog keempe
med at filtrere irrelevant, modstridende eller forseldet/obsolet information fra, hvilket
forer til svar, der mangler fokus eller preecision. Afheengigt af hvad du forseger at gare,
kan den rene meengde af modstridende information, der er tilgeengelig for modellen, let

overveelde dens evne til at give det svar eller den adfzerd, du seger.

Kontekstuel Tvetydighed: I betragtning af det enorme latente rum af viden kan store
sprogmodeller stede pa tvetydighed, nar de forseger at forsta konteksten af dit prompt.
Uden ordentlig indsneevring eller vejledning kan modellen generere svar, der kun er
perifert relaterede, men ikke direkte relevante for dine intentioner. Denne type fejl forer
til svar, der er uden for emnet, inkonsistente eller ikke imgdekommer dine angivne
behov. I dette tilfeelde henviser indsneevring af stien til kontekst afklaring, der sikrer,
at den kontekst, du giver, far modellen til kun at fokusere pa den mest relevante

information i dens grundleeggende viden.

P Bemeerk: Nér du starter med “prompt engineering”, er du meget mere

tilbgjelig til at bede modellen om at gere ting uden at forklare det enskede

resultat ordentligt; det kreever gvelse ikke at veere tvetydig!

Tidsmaessige Uoverensstemmelser: Da sprogmodeller er treenet pa data, der blev skabt

Indsneevre Stien 39

pé forskellige tidspunkter, kan de besidde viden, der er foreeldet, erstattet eller ikke
leengere preecis. For eksempel kan information om aktuelle begivenheder, videnskabelige
opdagelser eller teknologiske fremskridt have udviklet sig siden modellens treeningsdata
blev indsamlet. Uden at indsneevre stien til at prioritere nyere og mere palidelige kilder
kan modellen generere svar baseret pa forzeldet eller ukorrekt information, hvilket forer

til ungjagtigheder og inkonsistens i dens output.

Domanespecifikke Nuancer: Forskellige domeener og felter har deres egen specifikke
terminologi, konventioner og vidensbase. Teenk pa stort set enhver TLA (Three Letter
Acronym), og du vil indse, at de fleste af dem har mere end én betydning. For eksempel
kan MSK henvise til Amazon’s Managed Streaming for Apache Kafka, Memorial Sloan

Kettering Cancer Center eller det menneskelige muskuloskeletale system.

Nér et prompt kreever ekspertise inden for et bestemt domeene, er en stor sprogmodels
generiske viden maske ikke tilstreekkelig til at give preecise og nuancerede svar. At
indsneevre stien ved at fokusere pa domeenespecifik information, enten gennem prompt
engineering eller retrieval-augmented generation, ger det muligt for modellen at

generere svar, der er mere pa linje med dit specifikke domeenes krav og forventninger.

Latent Rum: Ubegribeligt Stort

Nar jeg neevner “latent rum” i en sprogmodel, henviser jeg til det enorme,
multidimensionelle landskab af viden og information, som modellen har leert
under sin treeningsproces. Det er som et skjult rige inden i modellens neurale netveerk,

hvor alle menstre, associationer og repraesentationer af sprog er gemt.

Forestil dig, at du udforsker et stort, ukendt territorium fyldt med utallige
sammenkoblede knudepunkter. Hvert knudepunkt repreesenterer et stykke information,
et koncept eller en relation, som modellen har leert. Nar du navigerer gennem dette
rum, vil du opdage, at nogle knudepunkter er teettere pa hinanden, hvilket indikerer en
steerk forbindelse eller lighed, mens andre er leengere fra hinanden, hvilket antyder en

svagere eller mere fjern relation.

Indsneevre Stien 40

Udfordringen med det latente rum er, at det er utroligt komplekst og hejdimensionelt.
Teenk pa det som veerende lige s& enormt som vores fysiske univers, med dets

galaksehobe og enorme, ufattelige afstande af tomt rum imellem dem.

Fordi det indeholder tusindvis af dimensioner, er det latente rum ikke direkte
observerbart eller fortolkeligt for mennesker. Det er en abstrakt repreesentation, som
modellen bruger internt til at behandle og generere sprog. Nar du giver modellen et
input-prompt, kortleegger den i princippet dette prompt til en specifik placering i det
latente rum. Modellen bruger derefter den omkringliggende information og forbindelser

i dette rum til at generere et svar.

Sagen er, at modellen har leert en enorm meengde information fra sine treeningsdata, og
ikke alt er relevant eller preecist for en given opgave. Det er derfor, indsneevring af stien
bliver sa vigtig. Ved at give klare instruktioner, eksempler og kontekst i dine prompts,
guider du i realiteten modellen til at fokusere pé specifikke omrader inden for det latente

rum, som er mest relevante for dit enskede output.

En anden made at teenke pa det er som at bruge en spotlight i et helt merkt museum.
Hvis du nogensinde har besggt Louvre eller Metropolitan Museum of Art, sa er det den
slags skala, jeg taler om. Det latente rum er museet, fyldt med utallige genstande og
detaljer. Dit prompt er spotlightet, der oplyser specifikke omrader og leder modellens
opmeerksomhed hen pa den vigtigste information. Uden denne vejledning kan modellen
vandre formalslgst gennem det latente rum og samle irrelevant eller modstridende

information op undervejs.

Nér du arbejder med sprogmodeller og udformer dine prompts, sa husk konceptet om
det latente rum. Dit mal er at navigere effektivt gennem dette enorme videnslandskab
og styre modellen mod den mest relevante og preecise information til din opgave. Ved at
indsneevre stien og give klar vejledning kan du frigere det fulde potentiale i modellens

latente rum og generere sammenheengende svar af hgj kvalitet.

Mens de tidligere beskrivelser af sprogmodeller og det latente rum, de navigerer i,

kan virke lidt magiske eller abstrakte, er det vigtigt at forsta, at prompts ikke er

Indsneevre Stien 41

trylleformularer eller besveergelser. Maden sprogmodeller fungerer pa er forankret i

principperne om lineger algebra og sandsynlighedsteori.

I deres kerne er sprogmodeller probabilistiske modeller af tekst, meget ligesom hvordan
en normalfordelingskurve er en statistisk model af data. De treenes gennem en proces
kaldet autoregressiv modellering, hvor modellen leerer at forudsige sandsynligheden for
det neeste ord i en sekvens baseret pa de ord, der kommer for det. Under treeningen
starter modellen med tilfeeldige veegte og justerer dem gradvist for at tildele hgjere

sandsynligheder til tekst, der ligner de virkelige eksempler, den blev treenet pa.

Men at teenke pa sprogmodeller som simple statistiske modeller, som lineeer regression,
giver ikke den bedste intuition for at forstd deres adfeerd. En mere passende analogi
er at teenke pd dem som probabilistiske programmer, som er modeller der tillader
manipulation af tilfeeldige variabler og kan repreesentere komplekse statistiske

relationer.

Probabilistiske programmer kan repreesenteres af grafiske modeller, som giver en
visuel made at forstad afheengigheder og relationer mellem variabler i modellen. Dette
perspektiv kan give veerdifuld indsigt i funktionen af komplekse tekstgenererende

modeller som GPT-4 og Claude.

I artiklen “Language Model Cascades” af Dohan et al. dykker forfatterne ned i detaljerne
om, hvordan probabilistiske programmer kan anvendes pa sprogmodeller. De viser,
hvordan denne ramme kan bruges til at forstd disse modellers adfeerd og guide

udviklingen af mere effektive promptning-strategier.

En central indsigt fra dette probabilistiske perspektiv er, at sprogmodellen i det
veesentlige skaber en portal til et alternativt univers, hvor de gnskede dokumenter
eksisterer. Modellen tildeler veegte til alle mulige dokumenter baseret pa deres
sandsynlighed og indsneevrer effektivt rummet af muligheder for at fokusere pa de

mest relevante.

Dette bringer os tilbage til det centrale tema om “at indsneevre stien.” Det primaere mal

med promptning er at betinge den probabilistiske model pa en made, der fokuserer

Indsneevre Stien 42

massen af dens forudsigelser og indsneevrer det til den specifikke information eller
adfeerd, vi ensker at fremkalde. Ved at give omhyggeligt udformede prompts kan vi
guide modellen til at navigere det latente rum mere effektivt og generere output, der er

mere relevante og sammenhaengende.

Det er dog vigtigt at huske, at sprogmodellen i sidste ende er begreenset af den
information, den blev treenet pa. Mens den kan generere tekst, der ligner eksisterende
dokumenter eller kombinere idéer pa nye méader, kan den ikke fremtrylle helt ny
information ud af det bla. For eksempel kan vi ikke forvente, at modellen kan give
en kur mod kreeft, hvis en sddan kur ikke er blevet opdaget og dokumenteret i dens

treeningsdata.

I stedet ligger modellens styrke i dens evne til at finde og syntetisere information, der
ligner det, vi prompter den med. Ved at forsta disse modellers probabilistiske natur og
hvordan prompts kan bruges til at betinge deres output, kan vi mere effektivt udnytte

deres evner til at generere veerdifuld indsigt og indhold.

Overvej folgende prompts. I den forste kunne “Mercury” alene henvise til planeten,
grundstoffet eller den romerske gud, men det mest sandsynlige er planeten. GPT-4 giver
faktisk et langt svar, der begynder med Merkur er den mindste og inderste planet i
solsystemet.... Den anden prompt henviser specifikt til grundstoffet. Den tredje henviser
til den romerske mytologiske figur, kendt for sin hastighed og rolle som guddommelig

budbringer.

0 N O O b W N

Indsneevre Stien 43

Prompt 1

Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

Ved at tilfeje blot en handfuld ekstra ord har vi fuldsteendigt eendret, hvordan Al'en
reagerer. Som du vil leere senere i bogen, er avancerede prompt-engineering-teknikker
som n-shot prompting, struktureret input/output og tankeraekke (Chain of Thought) blot

smarte mader at betinge modellens output pa.

Sa i sidste ende handler kunsten at lave prompt-engineering om at forsta, hvordan man
navigerer i sprogmodellens omfattende probabilistiske videnslandskab for at indsnaevre

stien til den specifikke information eller adfeerd, vi seger.

For leesere med en solid forstielse af avanceret matematik kan det bestemt hjeelpe at
basere din forstaelse af disse modeller pa principperne inden for sandsynlighedsteori og
lineeer algebra! For resten af jer, der ensker at udvikle effektive strategier til at fremkalde

gnskede outputs, lad os holde os til mere intuitive tilgange.

Hvordan Stien Bliver “Indsnavret”

For at handtere disse udfordringer med for meget viden anvender vi teknikker,
der hjelper med at guide sprogmodellens genereringsproces og fokusere dens

opmeerksomhed pa den mest relevante og preecise information.

Her er de vigtigste teknikker i anbefalet reekkefolge, det vil sige, du ber ferst preve
Prompt Engineering, derefter RAG, og til sidst, hvis det er nedvendigt, fin-tuning.

Prompt Engineering Den mest grundleeggende tilgang er at udforme prompts, der

inkluderer specifikke instruktioner, begreensninger eller eksempler til at guide modellens

Indsneevre Stien 44

responsgenerering. Dette kapitel deekker grundprincipperne i Prompt Engineering i
neeste afsnit, og vi deekker mange specifikke prompt-engineering-menstre i Del 2 af
bogen. Disse menstre inkluderer Prompt-destillering, en teknik der fokuserer pa at
forfine og optimere prompts for at udtreekke det, som Al’en anser for at veere den mest

relevante og preecise information.

Kontekstudvidelse. Dynamisk hentning af relevant information fra eksterne
vidensbasere eller dokumenter for at forsyne modellen med fokuseret kontekst pa
det tidspunkt, hvor den promptes. Populeere kontekstudvidelsesteknikker inkluderer
Retrieval-Augmented Generation (RAG) Sakaldte “online-modeller” som dem,
der leveres af Perplexity, er i stand til at udvide deres kontekst med realtids

internetsegeresultater.

P4 trods af deres kraft er LLM’er ikke treenet pa dine unikke dataseet,

P som kan veere private eller specifikke for det problem, du forseger at lose.
Kontekstudvidelsesteknikker lader dig give LLM’er adgang til data bag
APTer, i SQL-databaser eller fanget i PDF’er og preesentationer.

Fin-tuning eller domenetilpasning Treening af modellen pd domeenespecifikke

dataseet for at specialisere dens viden og genereringsevner til en bestemt opgave eller

felt.

At Skrue Ned For Temperaturen

Temperatur er en hyperparameter, der bruges i transformer-baserede sprogmodeller til
at kontrollere tilfzeldigheden og kreativiteten i den genererede tekst. Det er en veerdi
mellem 0 og 1, hvor lavere veerdier gor outputtet mere fokuseret og deterministisk, mens

hejere veerdier gor det mere mangfoldigt og uforudsigeligt.

Nar temperaturen er sat til 1, genererer sprogmodellen tekst baseret pa den fulde

sandsynlighedsfordeling for det neeste token, hvilket tillader mere kreative og varierede

https://perplexity.ai

Indsneevre Stien 45

svar. Dette kan dog ogsé fore til, at modellen genererer tekst, der er mindre relevant eller

sammenhgengende.

Pa den anden side, nér temperaturen er sat til 0, veelger sprogmodellen altid det token
med den hejeste sandsynlighed, hvilket effektivt “indsneevrer dens sti.” Neesten alle mine
Al-komponenter bruger en temperatur sat pa eller teet pa 0, da det resulterer i mere
fokuserede og forudsigelige svar. Det er absolut nyttigt, nar du vil have modellen til
at folge instruktioner, veere opmeerksom pa funktioner, den har faet stillet til radighed,

eller simpelthen har brug for mere preecise og relevante svar end det, du far.

For eksempel, hvis du bygger en chatbot, der skal levere faktuel information, vil du
maske indstille temperaturen til en lavere veerdi for at sikre, at svarene er mere preecise
og relevante. Omvendt, hvis du bygger en kreativ skriveassistent, vil du maske indstille
temperaturen til en hejere veerdi for at fremme mere mangfoldige og fantasifulde

outputs.

Hyperparametre: Inferensens Knapper og Drejehjul

Nar du arbejder med sprogmodeller, vil du ofte stade pa begrebet “hyperparametre”.
I forbindelse med inferens (dvs. nar du bruger modellen til at generere svar) er
hyperparametre som knapper og drejehjul, du kan justere for at kontrollere modellens

adfeerd og output.

Teenk pa det som at justere indstillingerne p& en kompleks maskine. Ligesom du
maske drejer pa en knap for at kontrollere temperaturen eller skifter en kontakt for
at eendre driftsmaden, giver hyperparametre dig mulighed for at finjustere den méade,

sprogmodellen behandler og genererer tekst pa.

Nogle almindelige hyperparametre, du vil stede pa under inferens, omfatter:

« Temperatur: Som lige neevnt styrer denne parameter tilfeeldigheden og

kreativiteten i den genererede tekst. En hgjere temperatur farer til mere

Indsneevre Stien 46

forskelligartede og uforudsigelige outputs, mens en lavere temperatur resulterer i

mere fokuserede og deterministiske svar.

 Top-p (nucleus) sampling: Denne parameter styrer udveelgelsen af det mindste
seet tokens, hvis kumulative sandsynlighed overstiger en bestemt teerskel (p). Det

muligger mere forskelligartede outputs, samtidig med at sammenheengen bevares.

« Top-k sampling: Denne teknik veelger de k mest sandsynlige neeste tokens og
omfordeler sandsynlighedsmassen mellem dem. Det kan hjeelpe med at forhindre

modellen i at generere tokens med lav sandsynlighed eller irrelevante tokens.

« Frekvens- og Tilstedeveerelsesstraf: Disse parametre straffer modellen for at
gentage de samme ord eller seetninger for ofte (frekvensstraf) eller for at generere
ord, der ikke er til stede i input-prompten (tilstedeveerelsesstraf). Ved at justere
disse veerdier kan du f4 modellen til at producere mere varierede og relevante

outputs.

« Maksimal leengde: Denne hyperparameter seetter en gvre greense for antallet af
tokens (ord eller delord), som modellen kan generere i et enkelt svar. Det hjeelper

med at kontrollere ordrigeligheden og preecisionen af den genererede tekst.

Nér du eksperimenterer med forskellige hyperparameterindstillinger, vil du opdage, at
selv sma justeringer kan have en betydelig indvirkning pa modellens output. Det er som
at finjustere en opskrift — en smule mere salt eller en lidt leengere tilberedningstid kan

gore hele forskellen i den endelige ret.

Ngglen er at forsta, hvordan hver hyperparameter pavirker modellens adfeerd og at finde
den rette balance til din specifikke opgave. Veer ikke bange for at lege med forskellige
indstillinger og se, hvordan de pavirker den genererede tekst. Med tiden vil du udvikle
en intuition for, hvilke hyperparametre du skal justere, og hvordan du opnar de gnskede

resultater.

Indsneevre Stien 47

Ved at kombinere brugen af disse parametre med prompt engineering, retrieval-
augmented generation og finjustering kan du effektivt indsneevre stien og guide
sprogmodellen til at generere mere preecise, relevante og verdifulde svar til deres

specifikke anvendelse.

Ra versus instruktionstunede modeller

Ra& modeller er de urefinerede, utreenede versioner af LLM’er. Forestil dig dem som
et blankt leerred, der endnu ikke er pavirket af specifik treening i at forsta eller folge
instruktioner. De er bygget p& de enorme datameengder, de oprindeligt blev treenet
pé, og er i stand til at generere en bred vifte af outputs. Men uden yderligere lag
af instruktionsbaseret finjustering kan deres svar veere uforudsigelige og kreeve mere
nuancerede, omhyggeligt udformede prompts for at guide dem mod det enskede output.
At arbejde med ra modeller er som at lokke kommunikation ud af en leerd tosse, der
har en enorm mengde viden, men mangler enhver intuition om, hvad du beder om,
medmindre du er ekstremt preecis i dine instruktioner. De foles ofte som en papeggje, i
den forstand at nar de siger noget forstaeligt, er det oftere end ikke bare en gentagelse

af noget, de har hert dig sige.

Instruktionstunede modeller har derimod gennemgéet runder af treening, der er specifikt
designet til at forsta og felge instruktioner. GPT-4, Claude 3 og mange andre af de mest
populeere LLM-modeller er alle kraftigt instruktionstunede. Denne treening involverer
at fodre modellen med eksempler pa instruktioner sammen med de enskede resultater,
hvilket effektivt leerer modellen hvordan den skal fortolke og udfere en bred vifte af
kommandoer. Som folge heraf kan instruktionstunede modeller lettere forsta hensigten
bag en prompt og generere svar, der er teet pa brugerens forventninger. Dette ger dem
mere brugervenlige og lettere at arbejde med, iseer for dem, der maske ikke har tid eller

ekspertise til at engagere sig i omfattende prompt engineering.

Indsneevre Stien 48

Ra modeller: Det ufiltrerede laerred

R& modeller, sasom Llama 2-70B eller Yi-34B, tilbyder mere ufiltreret adgang til
modellens kapaciteter end hvad du méske er vant til, hvis du har eksperimenteret med
populeere LLM’er som GPT-4. Disse modeller er ikke fortreenet til at folge specifikke
instruktioner, hvilket giver dig et blankt leerred til direkte at manipulere modellens
output gennem omhyggelig prompt engineering. Denne tilgang kreever en dyb forstaelse
af, hvordan man udformer prompts, der guider Al'en i den gnskede retning uden
eksplicit at instruere den. Det svarer til at have direkte adgang til de “ra” lag af den
underliggende Al, uden nogen mellemliggende lag der fortolker eller guider modellens

svar (deraf navnet).

Indsneevre Stien 49

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

Mixtral 8x22B (base) 4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify ~
emotions, make decisions...

~96.3 tokens/s

Obie

Ml Do you recognize what | said?

Mixtral 8x22B (base) 4
No, this time | don't.

By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?

~50.1 tokens/s

Figur 3. Test af en ra model ved brug af en del af Abbott og Costellos klassiske "Who’s on First’ sketch

Udfordringen med r& modeller ligger i deres tendens til at falde ind i gentagende
menstre eller producere tilfeeldigt output. Dog kan ra modeller med omhyggelig prompt-
engineering og justering af parametre sdsom gentagelsesstraffe lokkes til at generere
unikt og kreativt indhold. Denne proces er ikke uden kompromiser; mens ra modeller

tilbyder uovertruffen fleksibilitet for innovation, kreever de et hgjere ekspertiseniveau.

Indsneevre Stien 50

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview [4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

Figur 4. Til sammenligning, her er den samme tvetydige prompt givet til GPT-4

Instruktionstunede Modeller: Den Guidede Oplevelse

Instruktionstunede modeller er designet til at forsta og felge specifikke instruktioner,
hvilket gor dem mere brugervenlige og tilgeengelige for en bredere vifte af anvendelser.
De forstar mekanikken i en samtale og at de skal stoppe med at generere, nar det er
slutningen af deres tur til at tale. For mange udviklere, iseer dem der arbejder med enkle

applikationer, tilbyder instruktionstunede modeller en bekvem og effektiv lasning.

Processen med instruktionstunning involverer treening af modellen pa et stort korpus af
menneskeskabte instruktionsprompts og svar. Et bemeerkelsesveerdigt eksempel er det
open source databricks-dolly-15k dataset, som indeholder over 15.000 prompt/svar-par
skabt af Databricks-medarbejdere, som du selv kan undersgge. Dataseettet deekker
otte forskellige instruktionskategorier, herunder kreativ skrivning, lukket og &ben
sporgsmalsbesvarelse, opsummering, informationsudtreekning, klassifikation og

brainstorming.

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Indsneevre Stien 51

Under datagenereringsprocessen fik bidragyderne retningslinjer for, hvordan de
skulle oprette prompts og svar for hver kategori. For eksempel blev de ved kreative
skriveopgaver instrueret i at give specifikke begreensninger, instruktioner eller krav for
at guide modellens output. For lukket spargsmalsbesvarelse blev de bedt om at skrive

sporgsmal, der kreever faktuelt korrekte svar baseret pa et givet Wikipedia-afsnit.

Det resulterende dataseet fungerer som en veerdifuld ressource til fin-tuning af store
sprogmodeller for at opné de interaktive og instruktionsfelgende egenskaber kendt fra
systemer som ChatGPT. Ved at treene pa en mangfoldig reekke af menneskeskabte
instruktioner og svar leerer modellen at forsta og folge specifikke direktiver, hvilket gor

den mere egnet til at handtere en bred vifte af opgaver.

Ud over direkte fin-tuning kan instruktionsprompts i dataseet som databricks-dolly-15k
ogsa bruges til syntetisk datagenerering. Ved at indsende bidragydergenererede prompts
som fa-skuds eksempler til en stor aben sprogmodel kan udviklere generere et meget
storre korpus af instruktioner i hver kategori. Denne tilgang, som er beskrevet i Self-

Instruct-artiklen, muligger skabelsen af mere robuste instruktionsfelgende modeller.

Desuden kan instruktionerne og svarene i disse dataseet udvides gennem teknikker
som omskrivning. Ved at omformulere hver prompt eller korte svar og forbinde den
resulterende tekst med den tilsvarende grundsandhedspreve, kan udviklere introducere

en form for regularisering, der forbedrer modellens evne til at folge instruktioner.

Den brugervenlighed, som instruktionstilpassede modeller tilbyder, kommer pa
bekostning af en vis fleksibilitet. Disse modeller er ofte kraftigt censurerede, hvilket
betyder, at de ikke altid kan levere den grad af kreativ frihed, som visse opgaver kreever.
Deres output er steerkt pavirket af de bias og begreensninger, der er indbygget i deres

finjusteringsdata.

P4 trods af disse begreensninger er instruktionstilpassede modeller blevet stadigt mere
populeere pa grund af deres brugervenlige natur og evne til at handtere en bred vifte af
opgaver med minimal promptkonstruktion. Efterhdnden som flere instruktionsdataseet

af hgj kvalitet bliver tilgeengelige, kan vi forvente at se yderligere forbedringer i disse

Indsneevre Stien 52

modellers ydeevne og alsidighed.

Valg af den Rette Model til Dit Projekt

Valget mellem grundmodeller (ra) og instruktionstilpassede modeller aftheenger i sidste
ende af de specifikke krav i dit projekt. Til opgaver der kreever en hej grad af
kreativitet og originalitet, tilbyder grundmodeller et kraftfuldt veerktgj til innovation.
Disse modeller giver udviklere mulighed for at udforske det fulde potentiale af LLM’er
og skubbe greenserne for, hvad der kan opnés gennem Al-drevne applikationer, men de
kreever en mere praktisk tilgang og villighed til at eksperimentere. Temperatur og andre
indstillinger har en meget storre effekt i grundmodeller end i deres instruktionstilpassede

modstykker.

Alt hvad du inkluderer i din prompt, er det som grundmodeller vil forsege
’ at gentage. Sa hvis for eksempel din prompt er et chat-transcript, vil den
ra model forsege at fortseette chatten. Afheengigt af greensen for maksimalt
antal tokens, vil den ikke bare generere den folgende besked i chatten, den

kan have en hel samtale med sig selv!

Indsneevre Stien 53

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

Figur 5. Mixtral 8x7B (grundmodel) Eksempel pa Seetningsomskrivning med Few-Shot Completion

Mens jeg forberedte ovenstaende eksempel pa Seetningsomskrivning af Reddit-brugeren
phree_radical, kunne jeg kun fa brugbare resultater efter meget eksperimentering med
parameterindstillinger, og endte med at veelge: Temperatur 0.08, Top P: 0.2, Top K: 1, og
Gentagelsesstraf: 1.26.

https://www.reddit.com/user/phree_radical/

Indsneevre Stien 54

At forsege at bruge denne tilgang med en grundmodel i produktion ville veere vanskeligt
pa grund af den kraftige effekt af max_tokens-parameteren. Indstil den for kort, og
outputtet bliver afkortet. Indstil den leengere end hvad modellen behgver til det enskede

output, og den vil fortseette med at hallucinere yderligere eksempler.

Konklusionen er, at medmindre du virkelig har brug for fuld kontrol og mangel pa
censur, kan instruktionstilpassede modeller betydeligt stremline din udviklingsprocess.
For at understrege dette punkt, her er Mixtral 8x7B’s svar pa den samme prompt, men

denne gang i dens instruktionstilpassede version:

Jeg beklager at matte informere dig om, at isen ikke lever op til mine
forventninger, da den mangler den fyldige, cremede tekstur og den dejlige
smag, jeg normalt forbinder med en dessert af hgj kvalitet. Jeg havde habet

pé en mere tilfredsstillende og behagelig oplevelse.

Bemeerkelsesveerdigt nok kunne jeg lade max tokens-indstillingen forblive pa 500, og
modellen stoppede palideligt ved slutningen af det enskede output uden at hallucinere

yderligere eksempler.

Prompt Engineering

Nér du begynder at anvende Al i dine projekter, vil du hurtigt opdage, at en af de mest
afgerende feerdigheder, du skal mestre, er kunsten at lave prompt engineering. Men hvad

er prompt engineering egentlig, og hvorfor er det sa vigtigt?

I sin kerne er prompt engineering processen med at designe og udforme de input-
prompts, som du giver til en sprogmodel for at styre dens output. Det handler om at
forsta, hvordan man kommunikerer effektivt med Al’en ved at bruge en kombination af
instruktioner, eksempler og kontekst for at lede modellen mod at generere det enskede

svar.

Indsneevre Stien 55

Teenk pé det som at have en samtale med en meget intelligent, men ogsa ret bogstavelig
ven. For at f& mest muligt ud af interaktionen skal du veere klar, specifik og give
tilstreekkelig kontekst til at sikre, at din ven forstar preecis, hvad du beder om. Det er her
prompt engineering kommer ind i billedet, og selvom det maske virker nemt i starten,

sa tro mig, det kreever meget ovelse at mestre.

De Grundlaeggende Byggesten i Effektive Prompts

For at begynde at udvikle effektive prompts méa du forst forsta de centrale komponenter,

der udger et velformuleret input. Her er nogle af de essentielle byggesten:

1. Instruktioner: Klare og preecise instruktioner, der forteeller modellen, hvad du
gnsker, den skal gore. Dette kan veere alt fra “Opsummér folgende artikel” til
“Generér et digt om en solnedgang” til “omdan denne projekteendringsanmodning
til et JSON-objekt”.

2. Kontekst: Relevant information, der hjeelper modellen med at forsta baggrunden
og omfanget af opgaven. Dette kan omfatte detaljer om den tilteenkte malgruppe,
den egnskede tone og stil, eller specifikke begreensninger eller krav til outputtet,
sasom et JSON-skema der skal overholdes.

3. Eksempler: Konkrete eksempler, der demonstrerer den type output, du leder
efter. Ved at give nogle velvalgte eksempler kan du hjeelpe modellen med at leere
menstrene og karakteristikaene for det gnskede svar.

4. Input-formatering: Linjeskift og markdown-formatering giver struktur til vores
prompt. At opdele prompten i afsnit lader os gruppere relaterede instruktioner, sa
det bliver lettere for badde mennesker og Al at forsta. Punkter og nummererede
lister lader os definere lister og reekkefolge af elementer. Fed skrift og kursiv lader
os markere fremheevelse.

5. Output-formatering: Specifikke instruktioner om, hvordan outputtet skal

struktureres og formateres. Dette kan omfatte direktiver om den enskede leengde,

Indsneevre Stien 56

brugen af overskrifter eller punktopstillinger, markdown-formatering eller andre

specifikke output-skabeloner eller konventioner, der skal falges.

Ved at kombinere disse byggesten pa forskellige mader kan du skabe prompts, der er
skreeddersyet til dine specifikke behov og guide modellen mod at generere hgjkvalitets,

relevante svar.

Kunsten og Videnskaben i Prompt-design

At udforme effektive prompts er bade en kunst og en videnskab. (Det er derfor, vi
kalder det et handveerk.) Det kreever en dyb forstaelse af sprogmodellers muligheder
og begreensninger, samt en kreativ tilgang til at designe prompts, der fremkalder den
gnskede adfeerd. Kreativiteten involveret er det, der gor det sa sjovt, i hvert fald for mig.

Det kan ogsé gere det meget frustrerende, iseer nar du seger deterministisk adfeerd

Et centralt aspekt af prompt engineering er at forsta, hvordan man balancerer specificitet
og fleksibilitet. Pa den ene side ensker du at give tilstreekkelig vejledning til at styre
modellen i den rigtige retning. Pa den anden side gnsker du ikke at veere sa foreskrivende,
at du begreenser modellens evne til at udnytte sin egen kreativitet og fleksibilitet til at

héndtere kanttilfeelde.

En anden vigtig overvejelse er brugen af eksempler. Velvalgte eksempler kan veere
utroligt effektive til at hjeelpe modellen med at forstd den type output, du leder efter.
Det er dog vigtigt at bruge eksempler med omtanke og sikre, at de er repraesentative for
det onskede svar. Et darligt eksempel er i bedste fald blot spild af tokens og i veerste fald
gdeleeggende for det enskede output.

Prompt Engineering-teknikker og Best Practices

Nar du dykker dybere ned i prompt engineering-verdenen, vil du opdage en raekke
teknikker og best practices, der kan hjeelpe dig med at skabe mere effektive prompts.

Her er nogle centrale omrader at udforske:

Indsneevre Stien 57

1. Zero-shot vs. few-shot learning: At forstd hvornar man skal bruge zero-shot-
leering (ingen eksempler) versus one-shot eller few-shot-leering (et lille antal
eksempler) kan hjelpe dig med at skabe prompts, der er mere effektive og
virkningsfulde.

2. Iterativ forfining: Processen med iterativt at forfine prompts baseret pa
modellens output kan hjeelpe dig med at indkredse det optimale prompt-design.
Feedback Loop er en kraftfuld tilgang, der udnytter sprogmodellens eget output
til lebende at forbedre kvaliteten og relevansen af det genererede indhold.

3. Prompt-keedekobling: At kombinere flere prompts i en sekvens kan hjeelpe dig
med at nedbryde komplekse opgaver i mindre, mere handterbare trin. Prompt
Chaining indebeerer at nedbryde en kompleks opgave eller samtale i en serie af
mindre, sammenkoblede prompts. Ved at keede prompts sammen kan du guide
ATl’en gennem en flertrinsprocedure, mens kontekst og sammenheeng bevares
gennem hele interaktionen.

4. Prompt-justering: Skreeddersyede prompts til specifikke domeener eller
opgaver kan hjeelpe dig med at skabe mere specialiserede og effektive prompts.
Prompt Template hjeelper dig med at skabe fleksible, genanvendelige og
vedligeholdelsesvenlige prompt-strukturer, der er lettere at tilpasse til den givne

opgave.

At leere hvornar man skal bruge zero-shot, one-shot eller few-shot leering er en seerligt
vigtig del af at mestre prompt engineering. Hver tilgang har sine egne styrker og
svagheder, og forstaelsen af hvornar man skal bruge hvilken kan hjelpe dig med at

skabe mere effektive og virkningsfulde prompts.

Zero-Shot-Laering: Nar Eksempler Ikke Er Nedvendige

Zero-shot-leering henviser til en sprogmodels evne til at udfere en opgave uden

eksempler eller eksplicit treening. Med andre ord giver du modellen et prompt,

Indsneevre Stien 58

der beskriver opgaven, og modellen genererer et svar udelukkende baseret pa sin

eksisterende viden og sprogforstaelse.

Zero-shot-leering er seerligt nyttigt nér:

1. Opgaven er relativt simpel og ligetil, og modellen sandsynligvis har medt lignende
opgaver under sin forudtreening.

2. Du gnsker at teste modellens iboende evner og se, hvordan den reagerer pa en ny
opgave uden yderligere vejledning.

3. Du arbejder med en stor og alsidig sprogmodel, der er blevet treenet pa et bredt

udvalg af opgaver og domeener.

Dog kan zero-shot-leering ogsa veere uforudsigelig og vil ikke altid producere de gnskede
resultater. Modellens svar kan veere pavirket af skeevheder eller uoverensstemmelser i
dens forudtreeningsdata, og den kan have sveert ved mere komplekse eller nuancerede

opgaver.

Jeg har set zero-shot prompts, der fungerer fint for 80% af mine testtilfeelde og
producerer vildt forkerte eller uforstaelige resultater for de resterende 20%. Det
er meget vigtigt at implementere en grundig testprotokol, iseer hvis du er meget

afheengig af zero-shot prompting.

One-Shot-Laering: Nar Et Enkelt Eksempel Kan Gere en
Forskel

One-shot-leering indebeerer at give modellen et enkelt eksempel pa det enskede output
sammen med opgavebeskrivelsen. Dette eksempel fungerer som en skabelon eller et

menster, som modellen kan bruge til at generere sit eget svar.

One-shot-leering kan veere effektivt nar:

W N -

© 0 N o O

10
11
12
13
14

16
17
18

Indsneevre Stien

59

1. Opgaven er relativt ny eller specifik, og modellen maske ikke har medt mange

lignende eksempler under sin forudtreening.

2. Du gnsker at give en klar og preecis demonstration af det enskede outputformat

eller stil.

3. Opgaven kreever en specifik struktur eller konvention, der méske ikke er

indlysende ud fra opgavebeskrivelsen alene.

P Beskrivelser, der er indlysende for dig, er ikke nedvendigvis indlysende for

AT’en. One-shot eksempler kan hjzelpe med at tydeliggere tingene.

One-shot-leering kan hjeelpe modellen med at forsta forventningerne mere tydeligt og

generere et svar, der er teettere aligned med det givne eksempel. Det er dog vigtigt at

veelge eksemplet omhyggeligt og sikre, at det er repreesentativt for det enskede output.

Nér du veelger eksemplet, bar du overveje potentielle kanttilfzelde og omfanget af input,

som promptet skal handtere.

Figur 6. Et one-shot eksempel pa ensket JSON

Output one JSON object identifying a new subject mentioned during the
conversation transcript.

The JSON object should have three keys, all required:
- name: The name of the subject
- description: brief, with details that might be relevant to the user

- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

"name":"Dan Millman",

"description":"Author of book on self-discovery and living on purpose",

"type":"Person”

Indsneevre Stien 60

Few-Shot Learning: Nar flere eksempler kan forbedre
ydeevnen

Few-shot learning involverer at forsyne modellen med et lille antal eksempler (typisk
mellem 2 og 10) sammen med opgavebeskrivelsen. Disse eksempler tjener til at give
modellen mere kontekst og variation, hvilket hjeelper den med at generere mere

forskelligartede og preecise svar.

Few-shot learning er seerligt nyttigt nar:

1. Opgaven er kompleks eller nuanceret, og et enkelt eksempel maske ikke er
tilstreekkeligt til at indfange alle relevante aspekter.

2. Du ensker at give modellen en reekke eksempler, der demonstrerer forskellige
variationer eller seertilfeelde.

3. Opgaven kreever, at modellen genererer svar, der er i overensstemmelse med et

specifikt domeene eller en bestemt stil.

Ved at give flere eksempler kan du hjelpe modellen med at udvikle en mere robust

forstaelse af opgaven og generere svar, der er mere konsistente og pélidelige.

Eksempel: Prompts kan vaere meget mere komplekse end
du forestiller dig

Nutidens LLM’er er meget mere kraftfulde og i stand til at reesonnere, end du maske
forestiller dig. Sa begraens ikke dig selv til at teenke pa prompts som blot en specifikation
af input- og output-par. Du kan eksperimentere med at give lange og komplekse

instruktioner pa mader, der minder om, hvordan du ville interagere med et menneske.

For eksempel er dette et prompt, som jeg brugte i Olympia, da jeg var ved at prototype
vores integration med Google-tjenester, som i sin helhed sandsynligvis er et af de

storste APT’er i verden. Mine tidligere eksperimenter beviste, at GPT-4 har et ordentligt

© 0 N O O b W N

NN NN NN R B sl s s
a s W N 0 O 0N 0 O b Ww N =~ O

N
[e))

Indsneevre Stien 61

kendskab til Google APT’et, og jeg havde hverken tid eller motivation til at skrive et
finkornet mappinglag, der implementerede hver funktion, jeg enskede at give til min

Al én efter én. Hvad nu hvis jeg kunne give Al’en adgang til hele Google API’et?

Jeg startede mit prompt ved at forteelle Al’en, at den havde direkte adgang til Google
API-endepunkterne via HTTP, og at dens rolle er at bruge Google-apps og -tjenester
pa vegne af brugeren. Derefter gav jeg retningslinjer, regler relateret til fields-
parameteren, da det syntes at veere den, den havde mest besveer med, og nogle API-

specifikke hints (few-shot prompting i aktion).

Her er hele promptet, som forteeller Al’en, hvordan den skal bruge den tilvejebragte

invoke_google_api-funktion.

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields®™ request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields
parameter.

All of these rules use examples related to the files.get method.
- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.
- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.
- Use a sub-selector to request a set of specific sub-fields of arrays or

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Indsneevre Stien 62

objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of
this wildcard can lead to negative performance impacts on the request.

API-specific hints:

- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names, emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments|[:method] || :get

body = arguments[:body]

GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

|, .rest of class
end

Du undrer dig maske over, om denne prompt virker. Det korte svar er ja. Al’en vidste

ikke altid, hvordan den skulle kalde APT’et perfekt i forste forseg. Men hvis den lavede en

Indsneevre Stien 63

fejl, ville jeg blot sende de resulterende fejlmeddelelser tilbage som resultatet af kaldet.
Med kendskab til sin fejl kunne Al’en reesonnere over sin fejltagelse og preve igen. Det

meste af tiden ville den fa det rigtigt inden for et par forseg.

Vel at meerke er de store JSON-strukturer, som Google API’et returnerer som payload
ved brug af denne prompt, groft ineffektive, sa jeg kan ikke anbefale, at du bruger denne
tilgang i produktion. Dog mener jeg, at det faktum, at denne tilgang overhovedet virkede,

er et vidnesbyrd om, hvor kraftfuld prompt-engineering kan veere.

Eksperimentering og Iteration

I sidste ende afheenger méden, du udvikler din prompt p4, af den specifikke opgave,
kompleksiteten af det enskede output og mulighederne i den sprogmodel, du arbejder

med.

Som prompt-ingenier er det vigtigt at eksperimentere med forskellige tilgange og iterere
baseret pa resultaterne. Start med zero-shot-leering og se, hvordan modellen preesterer.
Hvis outputtet er inkonsistent eller utilfredsstillende, sa prev at give et eller flere

eksempler og se, om preestationen forbedres.

Husk, at selv inden for hver tilgang er der plads til variation og optimering. Du kan
eksperimentere med forskellige eksempler, justere formuleringen af opgavebeskrivelsen

eller give yderligere kontekst for at hjeelpe med at guide modellens respons.

Med tiden vil du udvikle en intuition for, hvilken tilgang der sandsynligvis vil virke
bedst til en given opgave, og du vil veere i stand til at udarbejde prompts, der er mere
effektive. Noglen er at forblive nysgerrig, eksperimenterende og iterativ i din tilgang til

prompt-engineering.

Gennem denne bog vil vi dykke dybere ned i disse teknikker og undersege, hvordan
de kan anvendes i virkelige scenarier. Ved at mestre kunsten og videnskaben bag
prompt-engineering vil du veere godt rustet til at frigere det fulde potentiale i Al-drevet

applikationsudvikling.

BwWw N

Indsneevre Stien 64

Kunsten at veere vag

Nér det kommer til at udforme effektive prompts til store sprogmodeller (LLM’er), er
en almindelig antagelse, at mere specificitet og detaljerede instruktioner forer til bedre
resultater. Dog har praktisk erfaring vist, at dette ikke altid er tilfeeldet. Faktisk kan det
ofte give bedre resultater at veere bevidst vag i dine prompts, hvilket udnytter LLM’ens

bemeerkelsesveerdige evne til at generalisere og drage slutninger.

Ken, en startup-grundleegger som har behandlet over 500 millioner GPT-tokens, delte
veerdifuld indsigt fra sin erfaring. En af de vigtigste lektioner, han leerte, var at “mindre
er mere”, nar det kommer til prompts. I stedet for preecise lister eller overdrevent
detaljerede instruktioner opdagede Ken, at det ofte gav bedre resultater at lade LLM’en

stole pa sin basisviden.

Denne erkendelse vender op og ned pa den traditionelle tankegang omkring eksplicit
kodning, hvor alt skal specificeres i minutigse detaljer. Med LLM’er er det vigtigt at
erkende, at de besidder en enorm meengde viden og kan lave intelligente forbindelser og
slutninger. Ved at veere mere vag i dine prompts giver du LLM’en friheden til at udnytte

sin forstaelse og komme med lgsninger, som du maske ikke eksplicit havde specificeret.

For eksempel, da Kens team arbejdede pé en pipeline til at klassificere tekst som
relateret til en af de 50 amerikanske stater eller den foderale regering, involverede deres
oprindelige tilgang at levere en komplet detaljeret liste over stater og deres tilhgrende
ID’er som et JSON-formateret array.

Here's a block of text. One field should be "locality_id", and it should

be the ID of one of the 50 states, or federal, using this list:

[{"locality: "Alabama", "locality_id": 1},
{"locality: "Alaska", "locality_id": 2} ...]

Tilgangen fejlede sa meget, at de matte grave dybere ned i prompten for at finde ud af,
hvordan de kunne forbedre den. I processen bemserkede de, at selvom sprogmodellen
ofte fik id’et forkert, returnerede den konsekvent det fulde navn p& den korrekte stat i

et name-felt, selvom de ikke udtrykkeligt havde bedt om det.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Indsneevre Stien 65

Ved at fjerne lokalitets-id’erne og forenkle prompten til noget i retning af “Du kender
jo abenlyst de 50 stater, GPT, s& giv mig bare det fulde navn pa den stat, dette vedrerer,
eller Federal hvis det vedrgrer den amerikanske regering,” opnéede de bedre resultater.
Denne erfaring fremhaever styrken ved at udnytte sprogmodellens generaliseringsevner

og lade den drage slutninger baseret pa sin eksisterende viden.

Kens begrundelse for denne seerlige klassificeringstilgang frem for en mere traditionel
programmeringsteknik belyser tankegangen hos os, der har omfavnet potentialet i
LLM-teknologi: “Dette er ikke en sveer opgave — vi kunne sandsynligvis have brugt
string/regex, men der er nok meerkelige hjernetilfeelde til, at det ville have taget

leengere tid.”

Sprogmodellers evne til at forbedre kvalitet og generalisering, nar de far mere vage
prompter, er en bemeerkelsesveerdig egenskab ved hgjere ordens teenkning og delegation.
Det demonstrerer, at sprogmodeller kan handtere tvetydighed og treeffe intelligente

beslutninger baseret pa den givne kontekst.

Det er dog vigtigt at bemeerke, at det at veere vag ikke betyder at veere uklar eller
tvetydig. Neglen er at give tilstreekkelig kontekst og vejledning til at styre sprogmodellen
i den rigtige retning, samtidig med at den far fleksibilitet til at udnytte sin viden og

generaliseringsevner.

Derfor ber du overveje folgende “mindre er mere” tips, nar du designer prompter:

1. Fokusér pa det gnskede resultat frem for at specificere hver detalje i processen.
2. Giv relevant kontekst og begreensninger, men undga overspecificering.

. Udnyt eksisterende viden ved at henvise til almindelige koncepter eller enheder.

W

. Giv plads til slutninger og forbindelser baseret pa den givne kontekst.
5. Iterér og forfin dine prompter baseret pa sprogmodellens svar, og find den rette

balance mellem specificitet og vaghed.

Indsneevre Stien 66

Ved at omfavne kunsten at veere vag i promptkonstruktion kan du lase op for det fulde
potentiale i sprogmodeller og opna bedre resultater. Stol pa sprogmodellens evne til at
generalisere og treeffe intelligente beslutninger, og du vil maske blive overrasket over
kvaliteten og kreativiteten i de outputs, du modtager. Veer opmeerksom pa, hvordan de
forskellige modeller reagerer pa forskellige niveauer af specificitet i dine prompter, og
justér derefter. Med evelse og erfaring vil du udvikle en skarp fornemmelse for, hvornar
du skal veere mere vag, og hvornar du skal give yderligere vejledning, hvilket gor dig i

stand til effektivt at udnytte sprogmodellers kraft i dine applikationer.

Hvorfor Antropomorfisme Dominerer
Promptkonstruktion

Antropomorfisme, tilskrivningen af menneskelige egenskaber til ikke-menneskelige
enheder, er den dominerende tilgang i promptkonstruktion for store sprogmodeller
af velovervejet arsager. Det er et designvalg, der gor interaktion med kraftfulde
Al-systemer mere intuitiv og tilgeengelig for en bred vifte af brugere (inklusive os

applikationsudviklere).

At antropomorfisere sprogmodeller giver en ramme, der er umiddelbart intuitiv for
mennesker, som er helt ubekendte med systemets underliggende tekniske kompleksitet.
Som du vil opleve, hvis du prever at bruge en model, der ikke er instruct-tuned, til at
gore noget nyttigt, er det en udfordrende opgave at konstruere en indramning, hvor den
forventede fortseettelse giver veerdi. Det kreever en ret dyb forstaelse af systemets indre

funktioner, noget som et relativt lille antal eksperter besidder.

Ved at behandle interaktionen med en sprogmodel som en samtale mellem to mennesker
kan vi stole pa vores medfadte forstaelse af menneskelig kommunikation til at formidle
vores behov og forventninger. Ligesom tidligt Macintosh Ul-design prioriterede
umiddelbar intuitivitet over sofistikering, tillader den antropomorfiske indramning af

Al os at engagere os pa en made, der foles naturlig og velkendt.

Nar vi kommunikerer med et andet menneske, er vores instinkt at henvende os direkte til

Indsneevre Stien 67

dem ved at bruge “du” og give klare anvisninger om, hvordan vi forventer, de skal opfare
sig. Dette overseettes problemfrit til promptkonstruktionsprocessen, hvor vi styrer Al'ens

adfeerd ved at specificere systemprompter og engagere os i en frem-og-tilbage dialog.

Ved at indramme interaktionen pa denne méde kan vi let forsta konceptet med at give
instrukser til Al’en og modtage relevante svar tilbage. Den antropomorfiske tilgang
reducerer den kognitive belastning og tillader os at fokusere pa opgaven frem for at

keempe med systemets tekniske detaljer.

Det er vigtigt at bemeerke, at selvom antropomorfisme er et kraftfuldt veerktej til at gore
Al-systemer mere tilgeengelige, kommer det ogsi med visse risici og begreensninger.
Vores bruger kan udvikle urealistiske forventninger eller danne usunde folelsesmeessige
tilknytninger til vores systemer. Som promptkonstrukterer og udviklere er det afgerende
at finde en balance mellem at udnytte fordelene ved antropomorfisme og sikre, at

brugerne opretholder en klar forstaelse af Al'ens muligheder og begreensninger.

Efterhdnden som omradet prompt engineering fortsetter med at udvikle sig, kan vi
forvente at se yderligere forbedringer og innovationer i méaden, hvorpé vi interagerer
med store sprogmodeller. Dog vil antropomorfisme som middel til at skabe en intuitiv
og tilgeengelig udvikler- og brugeroplevelse sandsynligvis forblive et grundleggende

princip i designet af disse systemer.

Adskillelse af Instruktioner fra Data: Et Afgerende Princip

Det er essentielt at forstd et grundleeggende princip, der understetter disse systemers

sikkerhed og palidelighed: adskillelsen af instruktioner fra data.

I traditionel datalogi er den klare skelnen mellem passive data og aktive instruktioner
et centralt sikkerhedsprincip. Denne adskillelse hjeelper med at forhindre utilsigtet eller
ondsindet udferelse af kode, der kunne kompromittere systemets integritet og stabilitet.
Men nutidens LLM’er, som primeert er udviklet som instruktionsfelgende modeller som

chatbots, mangler ofte denne formelle og principielle adskillelse.

© 0 N O O b W N =

[= = .
O O s W N,

Indsneevre Stien 68

Hvad angar LLM’er kan instruktioner optreede hvor som helst i inputtet, hvad enten
det er en systemprompt eller en brugergenereret prompt. Denne mangel pa adskillelse
kan fere til potentielle sdrbarheder og uensket adfeerd, lignende de problemer som
databaser star over for med SQL-injektioner eller operativsystemer uden ordentlig

hukommelsesbeskyttelse.

Nar du arbejder med LLM’er, er det afgerende at veere opmeerksom pa denne
begreensning og tage skridt til at mindske risiciene. En tilgang er at omhyggeligt
udforme dine prompts og inputs for tydeligt at skelne mellem instruktioner og data.
Typiske metoder til at give eksplicit vejledning om, hvad der udger en instruktion,
og hvad der skal behandles som passive data, involverer markup-opmeerkning. Din

prompt kan hjeelpe LLM’en med bedre at forsta og respektere denne adskillelse.

Figur 7. Brug af XML til at skelne mellem instruktioner, kildemateriale og brugerens prompt

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

En anden teknik er at implementere yderligere lag af validering og sanitering af de
input, der gives til LLM’en. Ved at filtrere eller escape potentielle instruktioner eller
kodestumper, der kan veere indlejret i dataene, kan du reducere risikoen for utilsigtet

udferelse. Magnstre som Prompt-keedekobling er nyttige til dette formal.

Indsneevre Stien 69

Nar du designer din applikationsarkitektur, ber du desuden overveje at indbygge
mekanismer til at handheeve adskillelsen af instruktioner og data pa et hejere niveau.
Dette kan omfatte brug af separate endpoints eller APT’er til handtering af instruktioner
og data, implementering af streng inputvalidering og parsing samt anvendelse af
princippet om mindst muligt privilegium for at begreense omfanget af, hvad LLM’en kan

tilgd og udfare.

Princippet om mindst muligt privilegium

At folge princippet om mindst muligt privilegium er som at afholde en yderst
eksklusiv fest, hvor geesterne kun far adgang til de rum, de absolut har brug for at
veere i. Forestil dig, at du er veert for denne sammenkomst i en stor villa. Ikke alle
behover at vandre ind i vinkeelderen eller hovedsoveverelset, vel? Ved at anvende
dette princip uddeler du i praksis negler, der kun &bner specifikke dere, hvilket sikrer,
at hver geest - eller i vores tilfeelde hver komponent i din LLM-applikation - kun har

den adgang, der er nedvendig for at opfylde sin rolle.

Det handler ikke bare om at veere neerig med neglerne, det handler om at erkende, at i
en verden hvor trusler kan komme fra hvor som helst, er det klogeste treek at begraense
legepladsen. Hvis en uinviteret geest skulle snige sig ind til festen, vil de finde sig selv
begraenset til forhallen, sa at sige, hvilket drastisk begreenser det ballade, de kan lave.
Sa nar du sikrer dine LLM-applikationer, husk: Uddel kun negler til de rum, der er
nedvendige, og hold resten af villaen sikker. Det er ikke bare god etikette; det er god
sikkerhed.

Selvom den nuveerende tilstand af LLM’er maske ikke har en formel adskillelse af
instruktioner og data, er det afgerende for dig som udvikler at veere opmerksom pa
denne begreensning og tage proaktive skridt for at mindske risiciene. Ved at anvende

best practices fra traditionel datalogi og tilpasse dem til LLM’ers unikke karakteristika,

Indsneevre Stien 70

kan du bygge mere sikre og palidelige applikationer, der udnytter disse modellers kraft,

samtidig med at systemets integritet opretholdes.

Prompt-destillering

At udforme den perfekte prompt er ofte en udfordrende og tidskreevende opgave, der
kreever en dyb forstéelse af méldomeenet og sprogmodellernes nuancer. Her kommer
teknikken “Prompt-destillering” ind i billedet og tilbyder en kraftfuld tilgang til prompt
engineering, der udnytter store sprogmodellers (LLM’ers) kapacitet til at stremline og

optimere processen.

Prompt-destillering er en flertrinsteknik, der involverer brugen af LLM’er til at assistere
i skabelsen, forfining og optimering af prompts. I stedet for udelukkende at stole pa
menneskelig ekspertise og intuition, udnytter denne tilgang LLM’ers viden og generative

kapaciteter til i feellesskab at udforme prompts af hgj kvalitet.

Ved at engagere sig i en iterativ proces af generering, forfining og integration ger
Prompt-destillering dig i stand til at skabe prompts, der er mere sammenhengende,
omfattende og tilpasset den enskede opgave eller output. Bemeerk, at
destilleringsprocessen kan udferes manuelt i en af de mange “playgrounds”, som
de store Al-leveranderer som OpenAl eller Anthropic stiller til radighed, eller den kan

automatiseres som en del af din applikationskode, afheengigt af anvendelsesformalet.

Hvordan det virker

Prompt-destillering involverer typisk felgende trin:

1. Identificer kernehensigten: Analyser prompten for at bestemme dens primeere
formal og enskede resultat. Fjern al overfledig information og fokuser pa

promptens kernehensigt.

Indsneevre Stien 71

2. Eliminer tvetydighed: Gennemga prompten for tvetydig eller uklar sprogbrug.
Preeciser betydningen og giv specifikke detaljer for at guide A’en mod at generere
preecise og relevante svar.

3. Forenkl sproget: Forenkl prompten ved at bruge klart og preecist sprog. Undga
komplekse seetningsstrukturer, fagsprog eller unedvendige detaljer, der kan
forvirre Al’en eller introducere stgj.

4. Giv relevant kontekst: Medtag kun den mest relevante kontekstuelle
information, der er nedvendig for at Al'en kan forstd og behandle prompten
effektivt. Undga at inkludere irrelevante eller overfledige detaljer, der kan
distrahere fra kernehensigten.

5. Iterer og forfin: Fortseet med at iterere og forfine prompten baseret pa Al’ens
svar og feedback. Evaluer de genererede outputs og foretag ngdvendige justeringer
for at forbedre promptens klarhed og effektivitet. Du kan valgfrit versionere dine
prompts i databasen ved hjeelp af Prompt-objekt for at holde styr pa iterationer og

give dig mulighed for nemt at rulle eendringer tilbage under kerslen.

Initial Prompt-generering

Det forste trin i Prompt Distillation er at give LLM’en en overordnet beskrivelse eller
formal med den enskede opgave eller output. Dette kan veere en kort erkleering eller et
seet neggleord, der indfanger essensen af, hvad prompten skal opna. LLM’en genererer
derefter en initial prompt baseret pa dette input og inkorporerer relevante instruktioner,

eksempler eller kontekst, som den finder passende.

Lad os preve at give Claude 3 Opus felgende initiale prompt:

o O W N

© 0 N O O b W N =

N DN DN DN DN N NN NN A 2~ s s)) s
© 0 N O O b W N~ O © 0 1 O U b W N =~ o

Indsneevre Stien

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AIl-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude svarer med felgende output:

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AI-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value

and impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

72

Bw N -

© 0 N O O B W N =

N T N T e T T = = S = S
, O O 00 N O O bk W N~ o

Indsneevre Stien 73

Prompt-forfining

Nar den indledende prompt er genereret, gennemga den og bed derefter LLM’en om
at overveje eventuel yderligere kontekst, begreensninger eller feedback. Lad LLM’en
generere en forfinet version af prompten, der tager heojde for det givne input og dens egen
forstaelse af opgaven. Denne forfiningsproces kan gentages iterativt, hvor hver iteration

yderligere forfiner prompten baseret pa samarbejdet mellem brugeren og LLM’en.

Her er min anmodning om forfining, som fortseetter den tidligere destillationsproces.

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

Og Claudes svar:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all

22
23
24
25
26
27

29
30
31
32

a s W N -

Indsneevre Stien 74

interactions, prioritizing customer satisfaction and working diligently to

understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their AI-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

Prompt-komprimering

Som du maske har bemeerket, har LLM’er en tendens til at veere ordrige, medmindre
du beder dem om at veere kortfattede. Den prompt, vi har arbejdet med i de foregéende

afsnit, er ret lang, sa lad os fa Claude til at skeere den ned:

This prompt will be executed regularly. Please compress it down to the least
amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude svarer med folgende drastisk kortere prompt:

System Directive: You are an intelligent account manager for Olympia, an
Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided
system interaction functions. Be clear, concise, friendly, professional,
and client-focused to help them maximize their AI's value and impact.

Systemdirektiv og Kontekstintegration

Ud over at forfine selve prompten kan sprogmodellen ogsad generere passende
systemdirektiver eller kontekstinformation for at guide det endelige output. Nar du
udvikler Al-rutiner med prompt-udvikling, der skal integreres i din applikationskode, vil
du naesten helt sikkert fokusere pa output-begreensninger pa dette trin af destilleringen,
men du kan ogsé arbejde med gnsket tone, stil, format eller andre relevante parametre,

der pavirker det genererede svar.

Indsneevre Stien 75

Endelig Prompt-samling

Kulminationen pa Prompt-destilleringsprocessen er samlingen af den endelige prompt.
Dette involverer at kombinere den forfinede prompt, genererede systemdirektiver og
integreret kontekst til en sammenheengende og omfattende kode, der er klar til at blive

brugt til at generere det gnskede output.

P Du kan eksperimentere med prompt-komprimering igen i den endelige

prompt-samlingsfase ved at bede sprogmodellen om at reducere ordlyden
af prompten til den korteste raekke tokens muligt, mens den stadig bevarer
essensen af dens adfeerd. Det er bestemt en usikker gvelse, men iseer i tilfeelde
af prompts, der skal keres i stor skala, kan effektivitetsgevinsterne spare dig

for en del penge i token-forbrug.

Centrale Fordele

Ved at udnytte sprogmodellernes viden og generative kapaciteter til at forfine dine
prompts, er dine resulterende prompts mere tilbgjelige til at veere velstrukturerede,
informative og skreeddersyede til den specifikke opgave. Den iterative forfinelsesproces
hjeelper med at sikre, at promptsne er af hej kvalitet og effektivt indfanger den enskede

hensigt. Andre fordele omfatter:

Effektivitet og Hastighed: Prompt-destillering stremliner prompt-udviklingsprocessen
ved at automatisere visse aspekter af prompt-oprettelse og -forfining. Teknikkens
samarbejdende natur muligger hurtigere konvergens mod en effektiv prompt, hvilket

reducerer den tid og indsats, der kreeves til manuel prompt-udformning.

Konsistens og Skalerbarhed: Brugen af sprogmodeller i prompt-udviklingsprocessen
hjeelper med at opretholde konsistens pa tveers af prompts, da sprogmodellerne kan leere

og anvende best practices og menstre fra tidligere vellykkede prompts. Denne konsistens,

Indsneevre Stien 76

kombineret med evnen til at generere prompts i stor skala, ger Prompt-destillering til en

veerdifuld teknik for Al-drevne applikationer i stor skala.

’ Projektidé: Veerktgjer pa biblioteksniveau, der forenkler processen med
prompt-versionering og -graduering i systemer, der udferer automatiserede

prompt-destilleringer som en del af deres applikationskode.

For at implementere Prompt-destillering kan udviklere designe et workflow
eller en pipeline, der integrerer sprogmodeller pa forskellige stadier af prompt-
udviklingsprocessen. Dette kan opnas gennem API-kald, specialudviklede veerktajer
eller integrerede udviklingsmiljeer, der muligger problemfri interaktion mellem brugere
og sprogmodeller under prompt-oprettelse. De specifikke implementeringsdetaljer kan

variere afheengigt af den valgte sprogmodel-platform og applikationens krav.

Hvad med finjustering?

I denne bog deekker vi prompt-udvikling og RAG omfattende, men ikke finjustering.
Hovedarsagen til denne beslutning er, at efter min mening har de fleste

applikationsudviklere ikke brug for finjustering til deres Al-integrationsbehov.

Prompt-udvikling, som involverer omhyggelig udformning af prompts med nul til fa-
skuds eksempler, begreensninger og instruktioner, kan effektivt guide modellen til at
generere relevante og preecise svar pa en bred vifte af opgaver. Ved at give klar kontekst
og indsneevre stien gennem veldesignede prompts kan du udnytte den omfattende viden

i store sprogmodeller uden behov for finjustering.

Tilsvarende tilbyder Genfindelses-forsteerket Generering (RAG) en kraftfuld tilgang
til at integrere AI i applikationer. Ved dynamisk at hente relevant information
fra eksterne videnbaser eller dokumenter giver RAG modellen fokuseret kontekst

pa prompttidspunktet. Dette gor det muligt for modellen at generere svar, der

Indsneevre Stien 77

er mere preecise, opdaterede og domenespecifikke, uden at kreeve den tids- og

ressourcekraevende proces med finjustering.

Mens finjustering kan veere gavnlig for hejt specialiserede domeener eller opgaver,
der kreever et dybt niveau af tilpasning, kommer det ofte med betydelige
beregningsomkostninger, datakrav og vedligeholdelsesoverhead. For de fleste
applikationsudviklingsscenarier ber kombinationen af effektiv prompt-udvikling
og RAG vere tilstreekkelig til at opna den enskede Al-drevne funktionalitet og

brugeroplevelse.

Retrieval Augmented Generation
(RAG)

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad er Retrieval Augmented Generation?

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan fungerer RAG?

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvorfor bruge RAG i dine applikationer?

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementering af RAG i Din Applikation

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 79

Forberedelse af Videnskilder (Chunking)

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Propositionsopdeling

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementeringsnoter

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kvalitetskontrol

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele ved Propositionsbaseret Udtraekning

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Virkelige Eksempler pa RAG

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 80

Case Study: RAG i en Selvangivelsesapplikation Uden
Embeddings

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Intelligent Foresporgselsoptimering (1QO)

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Omrangering

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

RAG-vurdering (RAGAS)

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Trofasthed

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Svarrelevans

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 81

Kontekstpraecision

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstrelevans

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstgenkaldelse

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstentitetsgenkaldelse

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Semantisk Svarslighed (ANSS)

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Svarkorrekthed

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 82

Aspektkritik

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Udfordringer og Fremtidsudsigter

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Semantisk Opdeling: Forbedring af Hentning med
Kontekstbevidst Segmentering

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hierarkisk Indeksering: Strukturering af Data for
Forbedret Genfinding

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Self-RAG: En Selvreflekterende Forbedring

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

HyDE: Hypotetiske Dokument-Embeddings

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 83

Hvad er Kontrastiv Laering?

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Mangfoldighed af Arbejdere

" eXe T }?"u‘ﬁ 'l"{{f,'l})}‘) ;I; o,
2% kg = 150 ~
e ’ T T

@

Jeg kan godt lide at teenke pa mine Al-komponenter som sma, nesesten menneskelige
virtuelle “arbejdere”, der problemfrit kan integreres i min applikationslogik for at
udfere specifikke opgaver eller treeffe komplekse beslutninger. Idéen er bevidst at
menneskeliggare LLM’ets kapaciteter, s& ingen bliver for begejstrede og tilleegger dem

magiske egenskaber, som de ikke besidder.

I stedet for udelukkende at veere atheengig af komplicerede algoritmer eller tidskreevende
manuelle implementeringer, kan udviklere forestille sig Al-komponenter som
intelligente, dedikerede, menneskelignende enheder, der kan kaldes frem nér som helst
der er behov for at tackle komplekse problemer og levere lgsninger baseret pa deres
treening og viden. Disse enheder bliver ikke distraherede eller melder sig syge. De
beslutter ikke spontant at gere tingene pa andre mader end de er blevet instrueret i, og

generelt set, hvis de er programmeret korrekt, laver de heller ikke fejl.

Mangfoldighed af Arbejdere 85

Teknisk set er det grundleeggende princip bag denne tilgang at nedbryde komplekse
opgaver eller beslutningsprocesser i mindre, mere handterbare enheder, som kan
héndteres af specialiserede Al-arbejdere. Hver arbejder er designet til at fokusere pa
et specifikt aspekt af problemet og bidrage med sin unikke ekspertise og kapacitet.
Ved at fordele arbejdsbyrden mellem flere Al-arbejdere kan applikationen opna sterre

effektivitet, skalerbarhed og tilpasningsevne.

For eksempel kan man overveje en webapplikation, der kreever realtidsmoderering
af brugergenereret indhold. At implementere et omfattende modereringssystem fra
bunden ville veere en overveeldende opgave, der kreever betydelig udviklingsindsats
og lebende vedligeholdelse. Men ved at anvende tilgangen med Mangfoldighed
af Arbejdere kan udviklere integrere Al-drevne modereringsarbejdere i
applikationslogikken. Disse arbejdere kan automatisk analysere og markere
upassende indhold, hvilket friger udviklere til at fokusere p& andre kritiske aspekter af

applikationen.

Al-Arbejdere Som Uafhangige Genbrugelige

Komponenter

Et centralt aspekt ved tilgangen med Mangfoldighed af Arbejdere er dens modularitet.
Fortalere for objektorienteret programmering har i artier fortalt os at tenke pa
objektinteraktioner som beskeder. Tja, Al-arbejdere kan designes som uaftheengige,
genbrugelige komponenter, der kan “tale med hinanden” via almindelige sprogbeskeder,
neesten som hvis de virkelig var sm& mennesker, der talte sammen. Denne lgst koblede
tilgang ger det muligt for applikationen at tilpasse og udvikle sig over tid, efterhanden

som nye Al-teknologier opstar, eller krav til forretningslogikken eendrer sig.

I praksis har behovet for at designe klare greenseflader og kommunikationsprotokoller
mellem komponenterne ikke sendret sig, bare fordi Al-arbejdere er involveret. Du skal

stadig tage hensyn til andre faktorer sasom ydeevne, skalerbarhed og sikkerhed, men nu

Mangfoldighed af Arbejdere 86

er der ogsa helt nye “blade krav” at overveje. For eksempel er mange brugere imod at
fa deres private data brugt til at treene nye Al-modeller. Har du verificeret niveauet af

privatlivsbeskyttelse, som modeludbyderen du bruger, tilbyder?

Al-Arbejdere Som Mikroservices?

Nar du leeser om tilgangen med Mangfoldighed af Arbejdere, vil du maske bemeerke
nogle ligheder med Mikroservice-arkitektur. Begge leegger veegt pa nedbrydningen
af komplekse systemer i mindre, mere handterbare og uafheengigt implementerbare
enheder. Ligesom mikroservices er designet til at veere lgst koblede, fokuserede pa
specifikke forretningskapaciteter og kommunikerer gennem veldefinerede APTer,
er Al-arbejdere designet til at veere moduleere, specialiserede i deres opgaver og

interagere med hinanden gennem klare greenseflader og kommunikationsprotokoller.

Der er dog nogle vigtige forskelle at huske pa. Mens mikroservices typisk
implementeres som separate processer eller tjenester, der kerer pa forskellige
maskiner eller containere, kan Al-arbejdere implementeres som selvsteendige
komponenter inden for en enkelt applikation eller som separate tjenester, atheengigt
af dine specifikke krav og skaleringsbehov. Derudover involverer kommunikationen
mellem Al-arbejdere ofte udveksling af rig, naturlig sprogbaseret information, sésom
prompts, instruktioner og genereret indhold, snarere end de mere strukturerede

dataformater, der almindeligvis bruges i mikroservices.

P& trods af disse forskelle forbliver principperne om modularitet, lgs kobling og
klare kommunikationsgreenseflader centrale for begge menstre. Ved at anvende
disse principper pa din Al-arbejder-arkitektur kan du skabe fleksible, skalerbare
og vedligeholdelsesvenlige systemer, der udnytter AI's kraft til at lase komplekse

problemer og levere veerdi til dine brugere.

O© 0 N O O b W N =

N
w N =~

N
1S

Mangfoldighed af Arbejdere 87

Tilgangen med Mangfoldighed af Arbejdere kan anvendes pa tveers af forskellige
domeener og applikationer, hvor man udnytter AI’s kraft til at tackle komplekse opgaver
og levere intelligente lgsninger. Lad os udforske nogle konkrete eksempler pa, hvordan

Al-arbejdere kan anvendes i forskellige sammenhzenge.

Kontoadministration

Praktisk talt hver eneste selvsteendig webapplikation har konceptet om en konto (eller
bruger). I Olympia anvender vi en AccountManager Al-arbejder, der er programmeret

til at kunne handtere forskellige typer af eendringsanmodninger relateret til brugerkonti.

Dets direktiv lyder saledes:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the “finished™ function so that we save the state
of the account change request as completed.

Den indledende tilstand af kontoen produceret af account.to_directive er ganske
enkelt en tekstbeskrivelse af kontoen, herunder relevante tilknyttede data sisom brugere,

abonnementer osv.

Udvalget af funktioner tilgeengelige for AccountManager giver den mulighed for

at redigere brugerens abonnement, tilfaje og fjerne Al-konsulenter og andre typer

Mangfoldighed af Arbejdere 88

betalte tilfojelser samt sende notifikations-e-mails til kontoens ejer. Ud over finished-
funktionen kan den ogsa notify_human_administrator, hvis den steder pa en fejl

under behandlingen eller har brug for anden form for assistance med en anmodning.

Bemeerk, at i tilfeelde af spergsmal kan AccountManager velge at soge i Olympias
vidensbase, hvor den kan finde instruktioner om, hvordan man handterer seertilfeelde

og enhver anden situation, hvor den er usikker pa, hvordan den skal fortseette.

E-handelsapplikationer

Inden for e-handel kan Al-arbejdere spille en afgerende rolle i at forbedre
brugeroplevelsen og optimere forretningsdriften. Her er nogle mader, hvorpa Al-

arbejdere kan anvendes:

Produktanbefalinger

En af de mest effektive anvendelser af Al-arbejdere inden for e-handel er generering
af personlige produktanbefalinger. Ved at analysere brugeradfeerd, kebshistorik og
preeferencer kan disse arbejdere foresla produkter, der er skreeddersyet til hver enkelt

brugers interesser og behov.

Noglen til effektive produktanbefalinger er at udnytte en kombination af kollaborativ
filtrering og indholdsbaseret filtrering. Kollaborativ filtrering ser pa adfeerden hos
lignende brugere for at identificere menstre og lave anbefalinger baseret pa, hvad andre
med lignende smag har kebt eller syntes godt om. Indholdsbaseret filtrering fokuserer
derimod pé produkternes egenskaber og attributter og anbefaler varer, der deler lignende

funktioner med dem, en bruger tidligere har vist interesse for.

Her er et forenklet eksempel pa, hvordan du kan implementere en produktanbefalings-
worker i Ruby, denne gang ved hjelp af en “Railway Oriented (ROP)” funktionel

programmeringsstil:

https://fsharpforfunandprofit.com/rop/

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Mangfoldighed af Arbejdere 89

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end

end

’ Ruby-stilen med funktionel programmering, der bruges i eksemplet, er

inspireret af F# og Rust. Du kan leese mere om det i min ven Chad Wooleys

forklaring af teknikken hos GitLab

I dette eksempel tager ProductRecommendationWorker en bruger som input og
genererer personlige produktanbefalinger ved at sende et veerdiobjekt gennem en keede

af funktionelle trin. Lad os gennemga hvert trin:

1. ValidateUser .validate: Dette trin sikrer, at brugeren er gyldig og berettiget til
personlige anbefalinger. Det kontrollerer, om brugeren eksisterer, er aktiv og har
de nedvendige data tilgeengelige til at generere anbefalinger. Hvis valideringen
fejler, returneres et fejlresultat, og keeden afbrydes tidligt.

2. AnalyzeCurrentSession.analyze: Hvis brugeren er gyldig, analyserer

dette trin brugerens aktuelle browsing-session for at indsamle kontekstuel

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mangfoldighed af Arbejdere 90

information. Det ser pa brugerens seneste interaktioner, sdsom viste produkter,
segeforesporgsler og indhold i indkebskurven, for at forstd deres aktuelle
interesser og hensigt.

3. CollaborativeFilter. filter: Ved hjelp af adferden fra lignende brugere
anvender dette trin kollaborative filtreringsteknikker til at identificere produkter,
som sandsynligvis vil interessere brugeren. Det tager hejde for faktorer som
kebshistorik, bedemmelser og bruger-produkt-interaktioner for at generere et seet
af mulige anbefalinger.

4. ContentBasedFilter. filter: Dette trin forfiner yderligere
kandidatanbefalingerne ved at anvende indholdsbaseret filtrering. Det
sammenligner egenskaber og karakteristika for kandidatprodukterne med
brugerens preeferencer og historiske data for at veelge de mest relevante varer.

5. ProductSelector.select: Endelig veelger dette trin de bedste N produkter
fra de filtrerede anbefalinger baseret pa foruddefinerede kriterier, sasom
relevansscore, popularitet eller andre forretningsregler. De udvalgte produkter

returneres derefter som de endelige personlige anbefalinger.

Det smukke ved at bruge en funktionel Ruby-programmeringsstil her er, at det tillader os
at keede disse trin sammen pa en klar og preecis made. Hvert trin fokuserer pa en specifik
opgave og returnerer et Result-objekt, som enten kan veere en succes (ok) eller en fejl
(err). Hvis et trin stader pa en fejl, afbrydes keeden tidligt, og fejlen videregives til det

endelige resultat.

I case-setningen til sidst laver vi menstergenkendelse pa det endelige resultat. Hvis
resultatet er en fejl (ProductRecommendationError), logger vi fejlen ved hjelp
af et veerktej som Honeybadger til overvagning og fejlfinding. Hvis resultatet er
en succes (ProductRecommendations), udsender vi en :new_recommendations-
begivenhed ved hjeelp af Wisper pub/sub-biblioteket, hvor vi videresender brugeren og

de genererede anbefalinger.

Ved at udnytte funktionelle programmeringsteknikker kan vi skabe en moduleer og

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Mangfoldighed af Arbejdere 91

vedligeholdelsesvenlig product recommendation worker. Hvert trin er selvsteendigt og
kan nemt testes, sendres eller udskiftes uden at pavirke det overordnede flow. Brugen
af menstergenkendelse og Result-klassen hjeelper os med at handtere fejl elegant og

sikrer, at workeren fejler hurtigt, hvis et trin steder pa et problem.

Dette er naturligvis et forenklet eksempel, og i en virkelig situation ville du skulle
integrere med din e-handelsplatform, handtere seertilfzelde og endda dykke ned i
implementeringen af anbefalingsalgoritmerne. Dog forbliver kerneprincipper om at
opdele problemet i mindre trin og udnytte funktionelle programmeringsteknikker de

samme.

Svindelregistrering

Her er et forenklet eksempel pa, hvordan du kan implementere en svindelregistrerings-

worker ved hjeelp af samme Railway Oriented Programming (ROP)-stil i Ruby:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error.message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end

22
23
24

© 0 N O O b W N =

NN DN NN NN N R R R RS s sy
O ® 9 O O & WO N~ O © 0 9 0 U b W N =~

Mangfoldighed af Arbejdere 92

end
end

end

Klassen FraudDetection er et value object, der indkapsler svigdetektionsstatus for en
given transaktion. Den giver en struktureret méde at analysere og vurdere risikoen for

svindel forbundet med en transaktion baseret pa forskellige risikofaktorer.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self.transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end
end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private
def fraud_probability
risk_factors.values.sum

end
end

Klassen FraudDetection har falgende attributter:

Mangfoldighed af Arbejdere 93

« transaction: En reference til den transaktion, der analyseres for svindel.

« risk_factors: Et array, der gemmer risikofaktorerne forbundet med
transaktionen. Hver risikofaktor er repreesenteret som et hash, hvor neglen
er beskrivelsen af risikofaktoren, og veerdien er sandsynligheden for svindel

forbundet med den pageeldende risikofaktor.

Metoden add_risk_factor ger det muligt at tilfgje en risikofaktor til risk_factors-
arrayet. Den tager to parametre: description, som er en streng, der beskriver
risikofaktoren, og probability, som er et decimaltal, der repreesenterer
sandsynligheden for svindel forbundet med den pageeldende risikofaktor. Vi bruger en

case. . in-betingelse til at udfere simpel typevalidering.

Metoden high_risk?, som vil blive kontrolleret i slutningen af keeden, er en
preedikatsmetode, der sammenligner fraud_probability (beregnet ved at summere

sandsynlighederne for alle risikofaktorer) med RISK_THRESHOLD.

Klassen FraudDetection giver en ren og indkapslet made at handtere svigdetektion
for en transaktion. Den tillader tilfgjelse af flere risikofaktorer, hver med sin egen
beskrivelse og sandsynlighed, og leverer en metode til at afgere, om transaktionen
anses for at veere hgj-risiko baseret pd den beregnede svindelsandsynlighed. Klassen
kan nemt integreres i et storre svigdetektionssystem, hvor forskellige komponenter kan

samarbejde om at vurdere og reducere risikoen for svigagtige transaktioner.

Endelig, eftersom dette trods alt er en bog om programmering ved hjeelp af Al er her
et eksempel pa implementering af klassen CheckCustomerHistory, der udnytter Al-

behandling ved hjeelp af mit Raix-biblioteks ChatCompletion-modul:

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Mangfoldighed af Arbejdere 94

class CheckCustomerHistory

include Raix::ChatCompletion

attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability:

END

def self.check(fraud_detection)
new(fraud_detection).call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private
def initialize(fraud_detection)
self. fraud_detection = fraud_detection

end

def transcript

<Float> }

43
44
45
46
47
48
49
50
51

Mangfoldighed af Arbejdere 95

tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" },
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

I dette eksempel definerer CheckCustomerHistory en INSTRUCTION-konstant, der
giver specifikke instruktioner til AI-modellen om, hvordan kundens transaktionshistorik

skal analyseres for potentielle svigindikationer via et systemdirektiv

self.check-metoden er en klassemetode, der initialiserer en ny instans af
CheckCustomerHistory med fraud_detection-objektet og kalder call-metoden

for at udfare analysen af kundehistorikken.

I call-metoden hentes kundens transaktionshistorik og formateres til et transskript,
der sendes til Al-modellen. Al-modellen analyserer transaktionshistorikken baseret pa

de givne instruktioner og returnerer et sammendrag af sine fund.

Resultaterne tilfejes til fraud_detection-objektet, og det opdaterede

fraud_detection-objekt returneres som et vellykket Result.

Ved at udnytte ChatCompletion-modulet kan CheckCustomerHistory-klassen
anvende Al'ens kraft til at analysere kundens transaktionshistorik og identificere
potentielle svigindikationer. Dette muligger mere sofistikerede og tilpasningsdygtige
svigdetektionsteknikker, da Al-modellen kan leere og tilpasse sig nye menstre og

anomalier over tid.

Den opdaterede FraudDetectionWorker og CheckCustomerHistory-klassen
demonstrerer, hvordan Al-arbejdere kan integreres problemfrit og forbedre

svigdetektionsprocessen med intelligent analyse og beslutningstagningsevner.

© 0 N O O b W N

I S S T T G G S
© O W N O U b W N =~ O

Mangfoldighed af Arbejdere 96

Kundesentimentanalyse

Her er endnu et lignende eksempel pa, hvordan du kan implementere en
kundesentimentanalyse-worker. Meget mindre forklaring denne gang, da du burde

veere ved at forsta, hvordan denne programmeringsstil fungerer:

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error.message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end

end

I dette eksempel omfatter trinnene i CustomerSentimentAnalysisWorker
forbehandling af feedback (f.eks. fjernelse af stgj, tokenisering), udferelse af
sentimentanalyse for at bestemme den overordnede stemning (positiv, negativ
eller neutral), udtreekning af neglefraser og emner, identifikation af tendenser og

menstre samt generering af handlingsorienterede indsigter baseret pa analysen.

Mangfoldighed af Arbejdere 97

Sundhedsvasenets anvendelser

Inden for sundhedssektoren kan Al-arbejdere assistere sundhedspersonale og forskere
med forskellige opgaver, hvilket forer til forbedrede patientresultater og accelererede

medicinske opdagelser. Nogle eksempler omfatter:

Patientmodtagelse

Al-arbejdere kan effektivisere patientmodtagelsesprocessen ved at automatisere

forskellige opgaver og yde intelligent assistance.

Tidsbestilling: Al-arbejdere kan handtere tidsbestilling ved at forstd patienternes
preeferencer, tilgeengelighed og deres medicinske behovs hastende karakter. De kan
interagere med patienter gennem samtalebaserede greenseflader, guide dem gennem
bookingprocessen og finde de mest passende tidspunkter baseret pa patientens behov

og sundhedspersonalets tilgeengelighed.

Indsamling af sygehistorie: Under patientmodtagelsen kan Al-arbejdere hjeelpe med at
indsamle og dokumentere patientens sygehistorie. De kan fore interaktive dialoger med
patienter og stille relevante spergsmél om deres tidligere sygdomme, medicin, allergier
og familiehistorie. Al-arbejderne kan bruge naturlig sprogbehandling til at fortolke og
strukturere de indsamlede oplysninger og sikre, at de registreres nejagtigt i patientens

elektroniske patientjournal.

Symptomvurdering og stratificering: Al-arbejdere kan udfere indledende
symptomvurderinger ved at sperge patienter om deres aktuelle symptomer,
varighed, sveerhedsgrad og eventuelle tilknyttede faktorer. Ved at udnytte medicinske
videnbaser og maskinleeringsmodeller kan disse arbejdere analysere de givne
oplysninger og generere forelgbige differentialdiagnoser eller anbefale passende
neeste trin, sdsom at planleegge en konsultation hos en sundhedsudbyder eller foresla

selvhjeelpsforanstaltninger.

Mangfoldighed af Arbejdere 98

Forsikringsverifikation: Al-arbejdere kan assistere med forsikringsverifikation
under patientmodtagelsen. De kan indsamle patientens forsikringsoplysninger,
kommunikere med forsikringsselskaber gennem APl’er eller webtjenester og verificere
deekningsberettigelse og ydelser. Denne automatisering hjeelper med at stremline
forsikringsverifikationsprocessen, reducere den administrative byrde og sikre nejagtig

informationsregistrering.

Patientuddannelse og instruktioner: Al-arbejdere kan forsyne patienter med
relevant uddannelsesmateriale og instruktioner baseret pa deres specifikke medicinske
tilstande eller kommende procedurer. De kan levere personligt tilpasset indhold,
besvare almindelige spergsmal og give vejledning om forberedelser for konsultation,
medicininstruktioner eller efterbehandlingspleje. Dette hjeelper med at holde patienter

informerede og engagerede gennem hele deres sundhedsrejse.

Ved at udnytte Al-arbejdere i patientmodtagelsen kan sundhedsorganisationer oge
effektiviteten, reducere ventetider og forbedre den samlede patientoplevelse. Disse
arbejdere kan handtere rutineopgaver, indsamle nejagtige oplysninger og yde personlig
assistance, hvilket giver sundhedspersonalet mulighed for at fokusere pa at levere pleje

af hej kvalitet til patienterne.

Patientrisiko-vurdering

Al-arbejdere kan spille en afggrende rolle i vurdering af patientrisiko ved at analysere

forskellige datakilder og anvende avancerede analyseteknikker.

Dataintegration: Al-arbejdere kan indsamle og skabe mening i patientdata
fra flere kilder, sasom elektroniske patientjournaler (EPJ), medicinske billeder,
laboratorieresultater, wearables og sociale sundhedsdeterminanter. Ved at konsolidere
disse oplysninger til en omfattende patientprofil kan Al-arbejdere give et holistisk

billede af patientens helbredstilstand og risikofaktorer.

Risikostratificering: Al-arbejdere kan bruge preediktive modeller til at stratificere

patienter i forskellige risikokategorier baseret pa deres individuelle karakteristika og

Mangfoldighed af Arbejdere 99

sundhedsdata. Denne risikostratificering gor det muligt for sundhedspersonalet at
prioritere patienter, der kreever mere umiddelbar opmeerksomhed eller intervention. For
eksempel kan patienter, der identificeres som hejrisiko for en bestemt tilstand, markeres

til teettere overvagning, forebyggende foranstaltninger eller tidlig intervention.

Personlige risikoprofiler: Al-arbejdere kan generere personlige risikoprofiler for hver
patient, der fremhaever de specifikke faktorer, der bidrager til deres risikoscorer. Disse
profiler kan omfatte indsigt i patientens livsstil, genetiske dispositioner, miljgmeessige
faktorer og sociale sundhedsdeterminanter. Ved at give en detaljeret nedbrydning
af risikofaktorer kan Al-arbejdere hjeelpe sundhedspersonalet med at skreeddersy

forebyggelsesstrategier og behandlingsplaner til individuelle patientbehov.

Kontinuerlig risikoovervagning: Al-arbejdere kan kontinuerligt overvage
patientdata og opdatere risikovurderinger i realtid. Efterhdnden som nye
oplysninger bliver tilgeengelige, sdsom eendringer i vitale tegn, laboratorieresultater
eller medicinefterlevelse, kan Al-arbejdere genberegne risikoscorer og advare
sundhedspersonalet om eventuelle veesentlige eendringer. Denne proaktive overvagning

muligger rettidige interventioner og justeringer af patientens behandlingsplaner.

Klinisk beslutningsstette: Al-arbejdere kan integrere resultater af risikovurderinger
i kliniske beslutningsstettesystemer og give sundhedspersonalet evidensbaserede
anbefalinger og advarsler. For eksempel, hvis en patients risikoscore for en bestemt
tilstand overstiger en vis terskel, kan Al-arbejderen opfordre sundhedspersonalet
til at overveje specifikke diagnostiske tests, forebyggende foranstaltninger eller

behandlingsmuligheder baseret pa kliniske retningslinjer og best practices.

Disse workers kan behandle store meengder patientdata, anvende avanceret analyse og
generere handlingsorienterede indsigter til stotte for klinisk beslutningstagning. Dette
forer i sidste ende til forbedrede patientresultater, reducerede sundhedsomkostninger og

forbedret befolkningssundhedsstyring.

Mangfoldighed af Arbejdere 100

Al Worker som Processtyring

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

I forbindelse med Al-drevne applikationer kan en worker designes til at fungere som
en Processtyring, som beskrevet i bogen “Enterprise Integration Patterns” af Gregor
Hohpe. En Processtyring er en central komponent, der opretholder processens tilstand

og bestemmer de neeste behandlingstrin baseret pa mellemliggende resultater.

Nér en Al-worker fungerer som Processtyring, modtager den en indgiende besked,
der initialiserer processen, kendt som udlgserbeskeden. Al-workeren opretholder
derefter processens udferelsestilstand (som en samtaleudskrift) og handterer beskeden
gennem en reekke behandlingstrin implementeret som veerktgjsfunktioner, der kan

veere sekventielle eller parallelle, og kaldes efter dens sken.

Hvis du bruger en klasse af Al-model som GPT-4, der ved, hvordan man
udferer funktioner parallelt, kan din worker udfere flere trin samtidigt. Jeg
ma indremme, at jeg ikke selv har provet det, og min mavefornemmelse

siger, at resultaterne kan variere.

© 0 N O O b W N

NN N NN B Rl sl s s
W N 20 O 0N 0 0k WwN =~

Mangfoldighed af Arbejdere 101

Efter hvert enkelt behandlingstrin returneres kontrollen tilbage til Al-workeren, hvilket
giver den mulighed for at bestemme de(t) neeste behandlingstrin baseret pa den aktuelle

tilstand og de opnaede resultater.

Gem dine udleserbeskeder

Efter min erfaring er det klogt at implementere din udleserbesked som et
databaseunderstottet objekt. P4 den made identificeres hver procesinstans af en
unik primernegle og giver dig et sted at gemme den tilstand, der er forbundet med

udferelsen, herunder Al’ens samtaleudskrift.

Her er for eksempel en forenklet version af Olympias AccountChange-modelklasse,

som repreesenterer en anmodning om at foretage en gendring i en brugers konto.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
gccount_id :uuid not null
#

Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord

belongs_to :account

validates :description, presence: true

25
26
27
28
29
30
31
32
33
34
35
36
37
38

Mangfoldighed af Arbejdere 102

after_commit -> {
broadcast(:account_change_requested, self)

}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end

end

Klassen AccountChange fungerer som en udleserbesked, der igangseetter en proces
til handtering af kontosendringsanmodningen. Bemeerk, hvordan den broadcastes til
Olympias Wisper-baserede pub/sub-undersystem efter oprettelsestransaktionen er

feerdig med at blive gennemfort.

At gemme udleserbeskeden i databasen pa denne made giver en vedvarende registrering
af hver kontoeendringsanmodning. Hver instans af klassen AccountChange tildeles
en unik primeernegle, hvilket muligger nem identifikation og sporing af individuelle
anmodninger. Dette er seerligt nyttigt i forbindelse med revisionslogning, da det ger
det muligt for systemet at opretholde en historisk oversigt over alle kontosendringer,
herunder hvornéar de blev anmodet, hvilke sendringer der blev anmodet om, og den

aktuelle status for hver anmodning.

I det givne eksempel indeholder klassen AccountChange felter som description til at
registrere detaljerne for den enskede sendring, state til at repreesentere anmodningens
aktuelle tilstand (f.eks. anmodet, fuldfert, kreever_manuel gennemgang), og
transcript til at gemme Al'ens samtaleudskrift relateret til anmodningen. Feltet
description er den faktiske prompt, der bruges til at igangseette den forste chat-
feerdiggorelse med Al'en. At gemme disse data giver veerdifuld kontekst og muligger

bedre sporing og analyse af kontoeendringsprocessen.

https://github.com/krisleech/wisper

Mangfoldighed af Arbejdere 103

At gemme udleserbeskeder i databasen muligger robust fejlhandtering og genopretning.
Hvis der opstar en fejl under behandlingen af en kontosendringsanmodning, markerer
systemet anmodningen som fejlet og overferer den til en tilstand, der kreever
menneskelig indgriben. Dette sikrer, at ingen anmodninger gér tabt eller bliver glemt,

og at eventuelle problemer kan handteres og loses korrekt.

Al-workeren fungerer som en Process Manager og giver et centralt kontrolpunkt samt
kraftfulde muligheder for procesrapportering og fejlfinding. Det er dog vigtigt at
bemeerke, at brugen af en Al-worker som Process Manager for hvert workflow-scenarie

i din applikation kan veere overdrevet.

Integration af Al-Workers | Din

Applikationsarkitektur

Nér man integrerer Al-workers i sin applikationsarkitektur, er der flere tekniske
overvejelser, der skal adresseres for at sikre en gnidningsfri integration og effektiv
kommunikation mellem Al-workers og andre applikationskomponenter. Dette afsnit
behandler vigtige aspekter af design af disse greenseflader, handtering af dataflow og
styring af Al-workers’ livscyklus.

Design af Klare Graenseflader og
Kommunikationsprotokoller

For at facilitere en problemfri integration mellem Al-workers og andre
applikationskomponenter er det afgerende at definere klare greenseflader og

kommunikationsprotokoller. Overvej folgende tilgange:

API-baseret Integration: Eksponér Al-workers’ funktionalitet gennem veldefinerede

APTer, saisom RESTful endpoints eller GraphQL-skemaer. Dette ger det muligt for andre

Mangfoldighed af Arbejdere 104

komponenter at interagere med Al-workers ved hjelp af standard HTTP-anmodninger
og -svar. API-baseret integration giver en klar kontrakt mellem Al-workers og de
forbrugende komponenter, hvilket gor det lettere at udvikle, teste og vedligeholde

integrationspunkterne.

Beskedbaseret Kommunikation: Implementér beskedbaserede kommunikationsmenstre,
sasom beskedkeer eller publish-subscribe-systemer, for at muliggere asynkron
interaktion mellem Al-workers og andre komponenter. Denne tilgang afkobler Al-
workers fra resten af applikationen, hvilket muligger bedre skalerbarhed, fejltolerance
og los kobling. Beskedbaseret kommunikation er seerligt nyttig, nar behandlingen
udfert af Al-workers er tidskreevende eller ressourceintensiv, da det tillader andre dele

af applikationen at fortseette uden at vente pa, at Al-workers feerdigger deres opgaver.

Hendelsesdrevet Arkitektur: Design dit system omkring heendelser og udlesere,
der aktiverer Al-workers, nar specifikke betingelser er opfyldt. Al-workers kan
abonnere pa relevante heendelser og reagere i overensstemmelse hermed, udfere deres
designerede opgaver nar heendelserne opstar. Heendelsesdrevet arkitektur muligger
realtidsbehandling og tillader Al-workers at blive aktiveret efter behov, hvilket
reducerer ungdvendigt ressourceforbrug. Denne tilgang er velegnet til scenarier, hvor
Al-workers skal reagere pa specifikke handlinger eller eendringer i applikationens

tilstand.

Handtering af Dataflow og Synkronisering

Nar du integrerer Al-workers i din applikation, er det afggrende at sikre et gnidningsfrit
dataflow og opretholde datakonsistens mellem Al-workers og andre komponenter.

Overvej folgende aspekter:

Dataforberedelse: For data fedes ind i Al-workers, kan det veere nedvendigt at
udfere forskellige dataforberedelsesopgaver, sasom rensning, formatering og/eller
transformation af inputdata. Du vil ikke kun sikre, at Al-workers kan behandle

effektivt, men ogsa sikre, at du ikke spilder tokens ved at give opmeerksomhed til

Mangfoldighed af Arbejdere 105

information, som workeren méske anser for ubrugelig i bedste fald og distraherende i
veerste fald. Dataforberedelse kan omfatte opgaver som fjernelse af stej, handtering af

manglende veerdier eller konvertering af datatyper.

Datapersistens: Hvordan vil du gemme og bevare de data, der flyder ind og ud af
Al-workers? Overvej faktorer som datavolumen, forespargselsmenstre og skalerbarhed.
Har du behov for at gemme Al'ens udskrift som en afspejling af dens “tankeproces” til
revisions- eller fejlfindingsformal, eller er det tilstreekkeligt at have en registrering af

resultaterne alene?

Datahentning: At hente de data, som workers har brug for, kan involvere
databaseforesporgsler, leesning fra filer eller adgang til eksterne APTer. Serg for
at overveje latenstid og hvordan Al-workers vil have adgang til de mest opdaterede
data. Har de brug for fuld adgang til din database, eller bar du definere omfanget af
deres adgang sneevert i forhold til deres opgaver? Hvad med skalering? Overvej caching-

mekanismer for at forbedre ydeevnen og reducere belastningen pa de underliggende

datakilder.

Datasynkronisering: Nar flere komponenter, herunder Al-workers, tilgar og endrer
delte data, er det vigtigt at implementere passende synkroniseringsmekanismer for
at opretholde datakonsistens. Databaselasningsstrategier, sdsom optimistisk eller
pessimistisk lasning, kan hjeelpe dig med at forhindre konflikter og sikre dataintegritet.
Implementer transaktionsstyringsteknikker for at gruppere relaterede dataoperationer

og opretholde ACID-egenskaberne (atomaritet, konsistens, isolation og holdbarhed)

Fejlhdndtering og Genopretning: Implementer robuste fejlhandterings- og
genopretningsmekanismer til at handtere datarelaterede problemer, der kan opsta under
dataflowprocessen. Handter undtagelser elegant og giv meningsfulde fejlmeddelelser
til hjeelp ved fejlfinding. Implementer gentagelsesmekanismer og fallback-strategier til
at handtere midlertidige fejl eller netveerksforstyrrelser. Definer klare procedurer for

datagenopretning og -gendannelse i tilfzelde af datakorruption eller -tab.

Ved omhyggelig design og implementering af dataflow- og synkroniseringsmekanismer

Mangfoldighed af Arbejdere 106

kan du sikre, at dine Al-workers har adgang til preecise, konsistente og opdaterede
data. Dette gor dem i stand til at udfere deres opgaver effektivt og producere palidelige

resultater.

Handtering af Al-Workers’ Livscyklus

Udvikl en standardiseret proces til initialisering og konfiguration af Al-workers. Jeg
foretreekker frameworks, der standardiserer, hvordan du definerer indstillinger
sasom modelnavne, systemdirektiver og funktionsdefinitioner. Serg for, at
initialiseringsprocessen er automatiseret og reproducerbar for at lette implementering

og skalering.

Implementer omfattende overvagnings- og logningsmekanismer til at spore Al-workers’
sundhed og ydeevne. Indsaml malinger sasom ressourceforbrug, behandlingstid,
fejlrater og gennemlgb. Brug centraliserede logningssystemer som ELK-stack
(Elasticsearch, Logstash, Kibana) til at aggregere og analysere logs fra flere Al-

workers.

Byg fejltolerance og robusthed ind i Al-worker-arkitekturen. Implementer
fejlhandterings- og genopretningsmekanismer til elegant at héndtere fejl eller
undtagelser. Store Sprogmodeller er stadig cutting-edge teknologi; udbydere har
tendens til ofte at g ned pa uventede tidspunkter. Brug gentagelsesmekanismer og

kredslgbsafbrydere for at forhindre kaskaderende fejl.

Sammensaettelighed og Orkestrering af
Al-Workers

En af de vigtigste fordele ved Al-worker-arkitekturen er dens sammensettelighed,
som gor det muligt at kombinere og orkestrere flere Al-workers til at lgse komplekse

problemer. Ved at nedbryde en sterre opgave i mindre, mere handterbare delopgaver,

Mangfoldighed af Arbejdere 107

der hver handteres af en specialiseret Al-worker, kan du skabe kraftfulde og fleksible
systemer. I dette afsnit vil vi udforske forskellige tilgange til at sammenseette og

orkestrere “en mangfoldighed” af Al-workers.

Sammenkaedning af Al-Workers til Flertrinsprocedurer

I mange scenarier kan en kompleks opgave nedbrydes i en serie af sekventielle trin, hvor
outputtet fra én Al-worker bliver inputtet for den naeste. Denne sammenkaedning af Al-
workers skaber en flertrinsprocedure eller pipeline. Hver Al-worker i keeden fokuserer
pa en specifik delopgave, og det endelige output er resultatet af den kombinerede indsats

fra alle workers.

Lad os betragte et eksempel i konteksten af en Ruby on Rails-applikation til behandling
af brugergenereret indhold. Arbejdsgangen involverer folgende trin, som indremmet
sandsynligvis hver iseer er for simple til at veere veerd at nedbryde pa denne made i

virkelige anvendelser, men de ger eksemplet lettere at forsta:

1. Tekstrensning: En Al-worker ansvarlig for at fjerne HTML-tags, konvertere tekst til

sma bogstaver og handtere Unicode-normalisering.
2. Sprogdetektering: En Al-worker der identificerer sproget i den rensede tekst.

3. Sentimentanalyse: En Al-worker der bestemmer sentimentet (positiv, negativ eller

neutral) i teksten baseret pa det detekterede sprog.

4. Indholdskateogorisering: En Al-worker der klassificerer teksten i foruddefinerede

kategorier ved hjeelp af naturlig sprogbehandlingsteknikker.

Her er et meget forenklet eksempel pa, hvordan du kan sammenkede disse Al-workers

ved hjeelp af Ruby:

© 0 N O O b W N e

11
12
13
14

Mangfoldighed af Arbejdere 108

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

I dette eksempel initialiserer ContentProcessor-klassen med rateksten og keeder Al-
arbejderne sammen i process-metoden. Hver Al-arbejder udferer sin specifikke opgave
og sender resultatet videre til den neeste arbejder i keeden. Det endelige output er et hash,

der indeholder den rensede tekst, det detekterede sprog, sentiment og indholdskategori.

Parallel behandling for uafhaengige Al-arbejdere

I det foregdende eksempel er Al-arbejderne keedet sekventielt sammen, hvor hver
arbejder behandler teksten og sender resultatet videre til den neeste arbejder. Men hvis
du har flere Al-arbejdere, der kan operere uatheengigt pa samme input, kan du optimere

arbejdsgangen ved at behandle dem parallelt.

I det givne scenarie kan LanguageDetectionWorker, SentimentAnalysisWorker
og CategorizationWorker alle behandle den rensede tekst uafheengigt, nar
tekstrensningen er udfert af TextCleanupWorker. Ved at kere disse arbejdere parallelt
kan du potentielt reducere den samlede behandlingstid og forbedre effektiviteten af din
arbejdsgang.

For at opna parallel behandling i Ruby kan du udnytte samtidighedsteknikker sdsom

trade eller asynkron programmering. Her er et eksempel pa, hvordan du kan modificere

© 0 N O O b W N =

N DN N DN DN N NN NN A 2~ s) s
© 0 N O O b W N~ O © 0 N O U b Ww N =~ O

Mangfoldighed af Arbejdere 109

ContentProcessor-klassen til at behandle de sidste tre arbejdere parallelt ved hjeelp

af trade:

require 'concurrent'

class ContentProcessor
def initialize(text)
Otext = text
end

def process

cleaned_text = TextCleanupWorker .new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker.new(cleaned_text).call
end

category_future = Concurrent: :Future.execute do
CategorizationWorker .new(cleaned_text).call

end

language = language_future.value
sentiment = sentiment_future.value
category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end
end

I denne optimerede version bruger vi concurrent-ruby-biblioteket til at oprette
Concurrent: :Future-objekter for hver af de uafheengige Al-arbejdere. En Future

repreesenterer en beregning, der vil blive udfert asynkront i en separat trad.

Efter tekstrensnings-trinnet opretter vi tre Future-objekter: language_future,

sentiment_future og category_future. Hver Future udferer sin tilsvarende

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mangfoldighed af Arbejdere 110

Al-arbejder (LanguageDetectionWorker, SentimentAnalysisWorker og

CategorizationWorker) i en separat trad og sender cleaned_text som input.

Ved at kalde value-metoden p& hver Future, venter vi pa at beregningen feerdiggeres
og henter resultatet. value-metoden blokerer indtil resultatet er tilgeengeligt, hvilket

sikrer at alle parallelle arbejdere har afsluttet deres behandling for vi fortseetter.

Til sidst konstruerer vi output-hashen med den rensede tekst og resultaterne fra de

parallelle arbejdere, preecis som i det oprindelige eksempel.

Ved at behandle de uaftheengige Al-arbejdere parallelt kan du potentielt reducere den
samlede behandlingstid sammenlignet med at kere dem sekventielt. Denne optimering
er seerligt fordelagtig nar der arbejdes med tidskreevende opgaver eller ved behandling

af store datameengder.

Det er dog vigtigt at bemaerke, at de faktiske ydelsesforbedringer afheenger af forskellige
faktorer, sisom kompleksiteten af hver arbejder, de tilgeengelige systemressourcer og
overhead fra tradhandtering. Det er altid god praksis at lave benchmark og profilering
af din kode for at bestemme det optimale niveau af parallelisme for dit specifikke

anvendelsestilfaelde.

Derudover skal du, nar du implementerer parallel behandling, veere opmerksom
pa eventuelle delte ressourcer eller afheengigheder mellem arbejderne. Serg for at
arbejderne kan operere uafheengigt uden konflikter eller kaplgbstilstande. Hvis der er
afheengigheder eller delte ressourcer, kan du blive nedt til at implementere passende
synkroniseringsmekanismer for at opretholde dataintegritet og undgé problemer som

deadlocks eller inkonsistente resultater.

Rubys Global Interpreter Lock og Asynkron
Behandling

Mangfoldighed af Arbejdere

Det er vigtigt at forsta implikationerne af Rubys Global Interpreter Lock (GIL) nar

man overvejer asynkron tradbaseret behandling i Ruby:.

GIL’en er en mekanisme i Rubys fortolker, der sikrer at kun én trad kan udfere Ruby-
kode ad gangen, selv pa multicore-processorer. Dette betyder, at selvom flere trade
kan oprettes og héndteres inden for en Ruby-proces, kan kun én trad aktivt udfere

Ruby-kode pa et givet tidspunkt.

GIL’en er designet til at forenkle implementeringen af Ruby-fortolkeren og give
tradsikkerhed for Rubys interne datastrukturer. Den begreenser dog ogsa muligheden

for segte parallel udferelse af Ruby-kode.

Nér du bruger trade i Ruby, sasom med concurrent-ruby-biblioteket eller den
indbyggede Thread-klasse, er trddene underlagt GIL’ens begreensninger. GIL’en
tillader hver trad at udfere Ruby-kode i en kort tidsperiode, for den skifter til en

anden trad, hvilket skaber illusionen af samtidig udferelse.

Pa grund af GIL’en forbliver den faktiske udferelse af Ruby-kode dog sekventiel. Mens
én trad udferer Ruby-kode, er andre trade i praksis sat pa pause, ventende pa deres

tur til at erhverve GIL’en og udfere kode.

Dette betyder, at tradbaseret asynkron behandling i Ruby er mest effektiv for I/O-
bundne opgaver, sdsom at vente pa svar fra eksterne APler (som f.eks. eksternt
hostede store sprogmodeller) eller udfere fil-I/O-operationer. Nér en trad meder en
I/O-operation, kan den frigive GIL’en, hvilket tillader andre trade at udfere kode mens

der ventes pa at I/O’en feerdiggares.

P4 den anden side kan GIL’en for CPU-bundne opgaver, sdsom intensive beregninger
eller langvarig Al-arbejder-behandling, begreense de potentielle ydelsesgevinster ved
tradbaseret parallelisme. Siden kun én trad kan udfere Ruby-kode ad gangen, vil
den samlede udforelsestid méske ikke blive veesentligt reduceret sammenlignet med

sekventiel behandling.

For at opna segte parallel udferelse af CPU-bundne opgaver i Ruby kan du blive ngdt

til at udforske alternative tilgange, sdsom:

111

Mangfoldighed af Arbejdere 112

+ Brug af procesbaseret parallelisme med flere Ruby-processer, der hver kerer

pa en separat CPU-kerne.

+ Udnyttelse af eksterne biblioteker eller frameworks, der tilbyder native
udvidelser eller greenseflader til sprog uden en GIL, sasom C eller Rust.,

+ Anvendelse af distribuerede beregningsframeworks eller meddelelseskeer til

at fordele opgaver pa tveers af flere maskiner eller processer.

Det er afggrende at overveje karakteren af dine opgaver og de begreensninger, som
GIL’en pélegger, nar du designer og implementerer asynkron behandling i Ruby:.
Mens tradbaseret asynkron behandling kan give fordele for I/O-bundne opgaver,
tilbyder den maske ikke veesentlige ydelsesforbedringer for CPU-bundne opgaver pa

grund af GIL’ens begreensninger.

Ensemble-teknikker for Forbedret Nojagtighed

Ensemble-teknikker involverer kombinationen af output fra flere Al-arbejdere for at
forbedre systemets overordnede ngjagtighed eller robusthed. I stedet for at stole pa
en enkelt Al-arbejder, udnytter ensemble-teknikker den kollektive intelligens fra flere

arbejdere til at treeffe mere informerede beslutninger.

Ensembler er seerligt vigtige, hvis forskellige dele af din arbejdsgang fungerer
’ bedst med forskellige Al-modeller, hvilket er mere almindeligt, end du
maske tror. Kraftfulde modeller som GPT-4 er ekstremt dyre sammenlignet
med mindre avancerede open source-alternativer og er sandsynligvis ikke

nedvendige for hvert eneste arbejdstrin i din applikation.

En almindelig ensemble-teknik er flertalsafstemning, hvor flere Al-arbejdere

uafheengigt behandler det samme input, og det endelige output bestemmes af

© 0 N O O b W N

I T T
© 0 N O O b W N =~ O

Mangfoldighed af Arbejdere 113

flertallets konsensus. Denne tilgang kan hjeelpe med at reducere pavirkningen af

individuelle arbejderfejl og forbedre systemets generelle palidelighed.

Lad os se pa et eksempel, hvor vi har tre Al-arbejdere til sentimentanalyse, der hver
iseer bruger en forskellig model eller er udstyret med forskellige kontekster. Vi kan
kombinere deres output ved hjeelp af flertalsafstemning for at bestemme den endelige

sentimentforudsigelse.

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,
SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

I dette eksempel initialiserer klassen SentimentAnalysisEnsemble. med teksten og
aktiverer tre forskellige Al-arbejdere til sentimentanalyse. Metoden analyze indsamler
forudsigelserne fra hver arbejder og bestemmer det dominerende sentiment ved hjeelp
af metoderne group_by og max_by. Det endelige output er det sentiment, der modtager

flest stemmer fra ensemblet af arbejdere

med parallelisme.

P Ensembler er helt klart et tilfzelde, hvor det kan veere veerd at eksperimentere

© W N O U b W N =

I =
O O s W N,

Mangfoldighed af Arbejdere 114

Dynamisk udvaelgelse og aktivering af Al-arbejdere

I nogle, hvis ikke de fleste tilfeelde, kan den specifikke Al-arbejder, der skal aktiveres,
afheenge af karselstidsbetingelser eller brugerinput. Dynamisk udveelgelse og aktivering

af Al-arbejdere giver fleksibilitet og tilpasningsevne i systemet.

Du kan méske blive fristet til at forsege at passe meget funktionalitet ind i en
’ enkelt Al-arbejder ved at give den mange funktioner og en stor kompliceret
prompt, der forklarer, hvordan man bruger dem. Modst4 fristelsen, stol pa
mig. En af grundene til, at den tilgang, vi diskuterer i dette kapitel, kaldes
“Mangfoldighed af Arbejdere”, er for at minde os om, at det er enskveerdigt
at have mange specialiserede arbejdere, der hver iseer udferer deres egen lille

opgave i den sterre sags tjeneste.

For eksempel kan man overveje en chatbot-applikation, hvor forskellige Al-arbejdere er
ansvarlige for at handtere forskellige typer af brugerforespargsler. Baseret pa brugerens
input veelger applikationen dynamisk den passende Al-arbejder til at behandle

forespergslen.

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker.new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status'

response = OrderStatusWorker.new(query).generate_response
else

response = DefaultResponseWorker.new(query).generate_response
end

17
18
19

Mangfoldighed af Arbejdere 115

render json: { response: response }
end

end

I dette eksempel modtager ChatbotController en brugerforespargsel gennem
process_query-handlingen. Den bruger forst en QueryClassifierWorker til at
bestemme forespergslens type. Baseret pa den klassificerede foresporgselstype veelger
controlleren dynamisk den passende Al-worker til at generere svaret. Denne dynamiske
udveelgelse gor det muligt for chatbotten at handtere forskellige typer forespergsler og

dirigere dem til de relevante Al-workers.

P Da arbejdet med QueryClassifierWorker er relativt enkelt og

ikke kreever meget kontekst eller funktionsdefinitioner, kan du
sandsynligvis implementere det ved hjelp af en ultrahurtig lille LLM
som mistralai/mixtral-8xTb-instruct:nitro. Den har kapaciteter,
der kommer tet pa GPT-4-niveau pa mange opgaver, og pa tidspunktet
hvor jeg skriver dette, kan Groq levere den med en imponerende hastighed

pa 444 tokens i sekundet.

Kombination af Traditionel NLP med LLM’er

Mens Store Sprogmodeller (LLM’er) har revolutioneret omradet inden for naturlig
sprogbehandling (NLP), og tilbyder uovertruffen alsidighed og ydeevne pa tveers af
en bred vifte af opgaver, er de ikke altid den mest effektive eller omkostningseffektive
lgsning pa ethvert problem. I mange tilfeelde kan kombinationen af traditionelle NLP-
teknikker med LLM’er fore til mere optimerede, malrettede og skonomiske tilgange til

at lose specifikke NLP-udfordringer.

Teenk pa LLM’er som schweizerknive inden for NLP - utroligt alsidige og kraftfulde,

men ikke nedvendigvis det bedste veerktej til enhver opgave. Nogle gange kan

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mangfoldighed af Arbejdere 116

et dedikeret veerktej som en proptreekker eller en daseabner veere mere effektivt
til en specifik opgave. P4 samme méade kan traditionelle NLP-teknikker, sdsom
dokumentklyngedannelse, emneidentifikation og klassificering, ofte give mere

maélrettede og omkostningseffektive lgsninger til visse aspekter af din NLP-pipeline.

En af de vigtigste fordele ved traditionelle NLP-teknikker er deres beregningsmeessige
effektivitet. Disse metoder, som ofte er baseret pa enklere statistiske modeller eller
regelbaserede tilgange, kan behandle store meengder tekstdata meget hurtigere
og med mindre beregningsoverhead sammenlignet med LLM’er. Dette gor dem
seerligt velegnede til opgaver, der involverer analyse og organisering af store
dokumentsamlinger, sasom klyngedannelse af lignende artikler eller identifikation af

negleemner inden for en samling af tekster.

Desuden kan traditionelle NLP-teknikker ofte opna hej nejagtighed og preecision for
specifikke opgaver, iseer nar de treenes pa domenespecifikke dataseet. For eksempel kan
en velindstillet dokumentklassifikator, der bruger traditionelle maskinleeringsalgoritmer
som Support Vector Machines (SVM) eller Naive Bayes, preecist kategorisere dokumenter

i foruddefinerede kategorier med minimal beregningsomkostning.

LLM’er skinner dog virkelig igennem, nar det kommer til opgaver, der kreever en
dybere forstielse af sprog, kontekst og reesonnement. Deres evne til at generere
sammenheengende og kontekstuelt relevant tekst, besvare spergsmal og opsummere
lange passager er uovertruffen af traditionelle NLP-metoder. LLM’er kan effektivt
handtere komplekse sproglige feenomener, sasom tvetydighed, koreference og
idiomatiske udtryk, hvilket gor dem uvurderlige til opgaver, der kreever naturlig

sproggenerering eller forstaelse.

Den virkelige styrke ligger i at kombinere traditionelle NLP-teknikker med LLM’er
for at skabe hybride tilgange, der udnytter styrkerne ved begge. Ved at bruge
traditionelle NLP-metoder til opgaver som dokumentforbehandling, klyngedannelse
og emneekstraktion kan du effektivt organisere og strukturere dine tekstdata. Denne

strukturerede information kan derefter fades ind i LLM’er til mere avancerede opgaver,

Mangfoldighed af Arbejdere 117

sasom generering af sammendrag, besvarelse af spergsmal eller oprettelse af omfattende

rapporter.

Lad os for eksempel overveje et anvendelsestilfeelde, hvor du ensker at generere en
tendensrapport for et specifikt domeene baseret pa et stort korpus af individuelle
tendensdokumenter. I stedet for udelukkende at stole pa LLM’er, som kan veere
beregningsmeessigt dyre og tidskreevende til behandling af store meengder tekst, kan

du anvende en hybrid tilgang:

1. Brug traditionelle NLP-teknikker, sdisom emnemodellering (f.eks. Latent Dirichlet
Allocation) eller klyngedannelsesalgoritmer (f.eks. K-means), til at gruppere
lignende tendensdokumenter sammen og identificere negletemaer og emner
inden for korpusset.

2. For de grupperede dokumenter og identificerede emner ind i en LLM, og
udnyt dens overlegne sprogforstaelse og genererende egenskaber til at skabe
sammenheengende og informative sammendrag for hver klynge eller emne.

3. Brug endelig LLM’en til at generere en omfattende tendensrapport ved at
kombinere de individuelle sammendrag, fremheseve de mest betydningsfulde

tendenser og give indsigt og anbefalinger baseret pa den samlede information.

Ved at kombinere traditionelle NLP-teknikker med LLM’er pa denne made kan du
effektivt behandle store meengder tekstdata, udtreekke meningsfuld indsigt og generere
rapporter af hej kvalitet, samtidig med at du optimerer beregningsressourcer og

omkostninger.

Nar du gar i gang med dine NLP-projekter, er det afgerende at evaluere de specifikke
krav og begreensninger for hver opgave grundigt og overveje, hvordan traditionelle
NLP-metoder og LLM’er kan udnyttes sammen for at opna de bedste resultater. Ved
at kombinere effektiviteten og preecisionen fra traditionelle teknikker med alsidigheden
og styrken fra LLM’er kan du skabe yderst effektive og ekonomiske NLP-lgsninger, der

skaber veerdi for dine brugere og interessenter.

Brug af veerktojer

Inden for Al-drevet applikationsudvikling er konceptet “veerktejsbrug” eller

“funktionskald” blevet en kraftfuld teknik, der geor det muligt for din LLM at
forbinde sig til eksterne veerktgjer, APT’er, funktioner, databaser og andre ressourcer.
Denne tilgang muligger et rigere seet af adfeerdsmenstre end blot at outputte tekst
og mere dynamiske interaktioner mellem dine Al-komponenter og resten af din
applikations gkosystem. Som vi vil undersgge i dette kapitel, giver veerktgjsbrug dig

ogsa muligheden for at fa din Al-model til at generere data pa strukturerede mader.

Hvad er vaerktojsbrug?

Veerktajsbrug, ogsa kendt som funktionskald, er en teknik, der gor det muligt for
udviklere at specificere en liste af funktioner, som en LLM kan interagere med under

genereringsprocessen. Disse veerktejer kan variere fra simple hjeelpefunktioner til

© 0 N O O b W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Brug af veerktgjer 119

komplekse APTer eller databaseforespergsler. Ved at give LLM’en adgang til disse
veerktgjer kan udviklere udvide modellens muligheder og gere den i stand til at udfere

opgaver, der kreever ekstern viden eller handlinger.

Figur 8. Eksempel pa en funktionsdefinition for en Al-medarbejder, der analyserer dokumenter

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
3
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3,
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes
of the document™

}
}I

"required": %w[title summary tags]

}

}. freeze

Hovedidéen bag veerktejsanvendelse er at give LLM’en mulighed for dynamisk at veelge
og udfere de relevante veerktejer baseret pa brugerens input eller den aktuelle opgave.
I stedet for udelukkende at veere atheengig af modellens forudtreenede viden, giver
veerktejsanvendelse LLM’en mulighed for at udnytte eksterne ressourcer til at generere

mere preecise, relevante og handlingsorienterede svar. Veerktgjsanvendelse gar teknikker

Brug af veerktgjer 120

som RAG (Retrieval Augmented Generation) meget lettere at implementere, end de ellers

ville veere.

Bemeerk, at medmindre andet er angivet, antager denne bog, at din Al-model ikke
har adgang til indbyggede serverside-veerktgjer. Alle veerktgjer, du ensker at stille
til radighed for din Al, skal eksplicit erkleeres af dig i hver API-anmodning, med
bestemmelser for deres udferelse, hvis og nar din Al forteeller dig, at den ensker at

bruge det pageeldende veerktej i sit svar.

Potentialet i Veerktojsanvendelse

Veerkteojsanvendelse &bner op for en bred vifte af muligheder for Al-drevne

applikationer. Her er nogle eksempler pa, hvad der kan opnés med veerktejsanvendelse:

1. Chatbots og Virtuelle Assistenter: Ved at forbinde en LLM til eksterne veerktejer
kan chatbots og virtuelle assistenter udfere mere komplekse opgaver, sasom at
hente information fra databaser, udfere API-kald eller interagere med andre
systemer. For eksempel kunne en chatbot bruge et CRM-veerktgj til at sendre status
pé en handel baseret pa brugerens anmodning.

2. Dataanalyse og Indsigter: LLM’er kan forbindes til dataanalyseveerktejer eller
biblioteker for at udfere avancerede databehandlingsopgaver. Dette gar det muligt
for applikationer at generere indsigter, udfere komparative analyser eller give
datadrevne anbefalinger baseret pa brugerforespergsler.

3. Segning og Informationshentning: Veerktejsanvendelse giver LLM’er
mulighed for at interagere med sogemaskiner, vektordatabaser eller andre
informationshentningssystemer. Ved at omdanne brugerforesporgsler til
segeforesporgsler kan LLM’en hente relevant information fra flere kilder og give

omfattende svar pa brugerspergsmal.

Brug af veerktgjer 121

4. Integration med Eksterne Tjenester: Veerktojsanvendelse muligger problemfri
integration mellem Al-drevne applikationer og eksterne tjenester eller APT’er.
For eksempel kunne en LLM interagere med et vejr-API for at give realtids

vejropdateringer eller et overseettelses-API for at generere flersprogede svar.

Arbejdsgangen for Vaerktejsanvendelse

Arbejdsgangen for veerktgjsanvendelse involverer typisk fire hovedtrin:

1. Inkluder funktionsdefinitioner i din anmodningskontekst
2. Dynamisk (eller eksplicit) veerktejsvalg
3. Udferelse af funktion(er)

4. Valgfri fortseettelse af den oprindelige prompt

Lad os gennemga hvert af disse trin i detaljer.

Inkluder funktionsdefinitioner i din anmodningskontekst

ATen ved, hvilke veerktejer den har til radighed, fordi du giver den en liste som en del
af din completion-anmodning (typisk defineret som funktioner ved hjeelp af en variant

af JSON-skema).
Den preecise syntaks for veerktejsdefinition er modelspecifik.

Sadan definerer du en get_weather-funktion i Claude 3:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Brug af veerktajer 122

"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"

} ’

"required": ["location"]

}

Og sédan definerer du den samme funktion for GPT-4, hvor du sender den som veerdi

til tools-parameteren:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

g W N e

Brug af veerktgjer 123

Neesten det samme, bortset fra at det er anderledes uden nogen &benlys grund! Hvor

irriterende.

Funktionsdefinitioner angiver navn, beskrivelse og inputparametre. Inputparametre kan
defineres yderligere ved hjeelp af attributter sisom enums til at begreense de acceptable

veerdier og ved at specificere, om en parameter er pakreevet eller ej.

Ud over de egentlige funktionsdefinitioner kan du ogsé inkludere instruktioner eller

kontekst for, hvorfor og hvordan funktionen skal bruges i systemdirektivet.

For eksempel indeholder mit Websegningsveerktej i Olympia dette systemdirektiv, som

minder Al’en om, at den har de neevnte veerktgjer til radighed:

The “google_search™ and “realtime_search™ functions let you do research
on behalf of the user. In contrast to Google, realtime search is powered
by Perplexity and provides real-time information to curated current events
databases and news sources. Make sure to include URLs in your response so
user can do followup research.

At give detaljerede beskrivelser anses for at veere den vigtigste faktor for veerktejets

ydeevne. Dine beskrivelser ber forklare alle detaljer om veerktejet, herunder:

« Hvad veerktgjet gor

« Hvornar det ber bruges (og hvornar det ikke ber)

« Hvad hver parameter betyder, og hvordan den pavirker veerktejets adfeerd

« Alle vigtige forbehold eller begreensninger, der geelder for veerktejets

implementering

© 0 N O O b W N

DONON NN NN B R sl s
D O WN 0 O N0 0 WwWN S~

Brug af veerktgjer 124

Jo mere kontekst du kan give Al'en om dine veerktgjer, jo bedre vil den veere til at
beslutte hvornér og hvordan de skal bruges. For eksempel anbefaler Anthropic mindst
3-4 seetninger per veerktejsbeskrivelse for deres Claude 3-serie, og flere hvis veerktojet

er komplekst.

Det er ikke ngdvendigvis intuitivt, men beskrivelser anses ogsa for at veere vigtigere
end eksempler. Selvom du kan inkludere eksempler pa, hvordan et veerktej bruges i dets
beskrivelse eller i den medfelgende prompt, er dette mindre vigtigt end at have en klar
og omfattende forklaring af veerktajets formal og parametre. Tilfej kun eksempler, efter

du har udarbejdet beskrivelsen fuldt ud.

Her er et eksempel pa en Stripe-lignende API-funktionsspecifikation:

"name": "createPayment",
"description": "Create a new payment request",
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
}
"description": {
"type": "string",
"description": "A brief description of the payment"
3
"payment_method_id": ({
"type": "string",
"description": "The payment method to be used"
},
"payer": {
"type": "object",
"description": "Information about the payer, including their name,
email, and identification number",
"properties": {
"name": {
"type": "string",

"description": "The payer's name"

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Brug af veerktgjer 125

}
"email": {

"type": "string",

"description": "The payer's email address"”
3

"identification": {
"type": "object",
"description": "The payer's identification number",
"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
}
"number": {

"type": "string",

"description": "The identification number"
}
}I
"required": ["type", "number"]
}
}/
"required": ["name", "email", "identification"]

I praksis har nogle modeller problemer med at handtere indlejrede
funktionsspecifikationer og komplekse output-datatyper som arrays,
dictionaries osv. Men i teorien burde du kunne levere JSON Schema-

specifikationer i vilkérlig dybde!

Dynamisk Vaerktejsvalg

Nar du udferer en chat-feerdiggerelse, der inkluderer veerktgjsdefinitioner, veelger
LLM’en dynamisk det mest passende veerktgj(er) at bruge og genererer de nedvendige

inputparametre for hvert veerktgj.

Brug af veerktgjer 126

I praksis er Al'ens evne til at kalde preecis den rigtige funktion og praecis felge din
specifikation for inputs ikke altid palidelig. At seette temperature-hyperparameteren helt
ned til 0.0 hjeelper meget, men efter min erfaring vil du stadig opleve lejlighedsvise fejl.
Disse fejl omfatter hallucinerede funktionsnavne, fejlnavngivne eller helt manglende
inputparametre. Parametre overferes som JSON, hvilket betyder, at du nogle gange vil

se fejl forarsaget af afkortet, fejlciteret eller p4 anden made edelagt JSON.

Selvhelende Data-menstre kan hjelpe med at automatisk rette
funktionskald, der gar i stykker pa grund af syntaksfe;jl.

Tvunget (ogsa kendt som Eksplicit) Vaerktejsvalg

Nogle modeller giver dig mulighed for at tvinge kald af en bestemt funktion som en
parameter i forespergslen. Ellers er det helt op til Al’ens sken, om funktionen skal kaldes

eller €.

Evnen til at tvinge et funktionskald er afggrende i visse scenarier, hvor du ensker
at sikre, at et specifikt veerktej eller funktion udferes, uanset Al'ens dynamiske

udveelgelsesproces. Der er flere grunde til, at denne funktion er vigtig:

1. Eksplicit Kontrol: Du bruger méaske Al’en som en Diskret Komponent eller i et
foruddefineret workflow, der nedvendigger udferelsen af en bestemt funktion
pé et bestemt tidspunkt. Ved at tvinge kaldet kan du garantere, at den enskede
funktion bliver aktiveret i stedet for at skulle bede Al’en peent om at gere det.

2. Fejlfinding og Test: Nar man udvikler og tester Al-drevne applikationer, er
muligheden for at tvinge funktionskald uvurderlig til fejlfindingsformal. Ved
eksplicit at udlese specifikke funktioner kan du isolere og teste individuelle
komponenter i din applikation. Dette giver dig mulighed for at verificere
korrektheden af funktionsimplementeringerne, validere inputparametrene og

sikre, at de forventede resultater returneres.

Brug af veerktgjer 127

3. Handtering af Seertilfeelde: Der kan veere seertilfeelde eller exceptionelle
scenarier, hvor Al'ens dynamiske udvaelgelsesproces maske ikke veelger at udfere
en funktion, som den burde, og du ved det baseret pa eksterne processer. I
sadanne tilfezelde giver muligheden for at tvinge et funktionskald dig mulighed
for at handtere disse situationer eksplicit. Definer regler eller betingelser i din
applikationslogik for at bestemme, hvornar Al’ens sken skal tilsideseettes.

4. Konsistens og Reproducerbarhed: Hvis du har en specifik sekvens af funktioner,
der skal udferes i en bestemt reekkefelge, garanterer tvungne kald, at den samme
sekvens falges hver gang. Dette er seerligt vigtigt i applikationer, hvor konsistens
og forudsigelig adfeerd er kritisk, sésom i finansielle systemer eller videnskabelige
simuleringer.

5. Ydelseoptimering: I nogle tilfeelde kan tvungne funktionskald fere til
ydelseoptimeringer. Hvis du ved, at en specifik funktion er pakreevet til en
bestemt opgave, og at Al'ens dynamiske udveelgelsesproces maske introducerer
ungdvendig overhead, kan du omga udveelgelsesprocessen og direkte aktivere
den pékreevede funktion. Dette kan hjeelpe med at reducere latenstid og forbedre

den overordnede effektivitet af din applikation.

Kort sagt giver muligheden for at tvinge funktionskald i Al-drevne applikationer
eksplicit kontrol, hjeelper med fejlfinding og test, handterer seertilfzelde og sikrer
konsistens og reproducerbarhed. Det er et kraftfuldt veerktej i dit arsenal, men vi bliver

nedt til at diskutere endnu et aspekt af denne vigtige funktion.

I mange beslutningstagningsscenarier gnsker vi altid, at modellen foretager
P et funktionskald og maske aldrig ensker, at modellen svarer kun med sin
interne viden. For eksempel, hvis du router mellem flere modeller, der er
specialiseret i forskellige opgaver (flersproget input, matematik osv.), kan
du bruge den funktionskaldende model til at delegere forespergsler til en af

hjeelpemodellerne og aldrig svare selvsteendigt.

Brug af veerktgjer 128

Veerktojsvalgparameter

GPT-4 og andre sprogmodeller, der understetter funktionskald, giver dig en tool_-
choice-parameter til at kontrollere, om veerktejsbrug er pakreevet som en del af en

feerdiggorelse. Denne parameter har tre mulige veerdier:

« auto giver Al’en fuld frihed til at bruge et veerktej eller blot svare

« required forteeller Al’en, at den skal kalde et veerktej i stedet for at svare, men
overlader valget af veerktojet til Al'en

« Den tredje mulighed er at indstille parameteren til name_of_function, som du

onsker at tvinge. Mere om det i neeste afsnit.

Bemeerk, at hvis du seetter tool choice til required, vil modellen blive
’ tvunget til at veelge den mest relevante funktion at kalde blandt de
tilgeengelige funktioner, selv hvis ingen af dem rigtig passer til prompten.
P4 udgivelsestidspunktet kender jeg ikke til nogen model, der vil returnere
et tomt tool_calls svar eller pa anden méde lade dig vide, at den ikke

fandt en passende funktion at kalde.

Tvungen Funktionskald for Struktureret Output

Muligheden for at tvinge et funktionskald giver dig en méde at fremtvinge strukturerede
data fra en chat-feerdiggerelse i stedet for selv at skulle udtreekke det fra dens klartekst-

svar.

Hvorfor er det en stor sag at tvinge funktioner til at fa struktureret output? Kort sagt,
fordi udtreekning af strukturerede data fra LLM-output er en pine i nakken. Du kan
gore dit liv lidt lettere ved at bede om data i XML, men sa skal du parse XML. Og
hvad ger du, nar den XML mangler, fordi din Al svarede: “Jeg beklager, men jeg kan

O© 0 N O O b W N =

[= =
O O b W N o

Brug af veerktgjer 129

ikke generere de data, du har anmodet om, fordi bla, bla, bla..”

Nér du bruger veerktejer pa denne made:

« Du ber sandsynligvis definere et enkelt veerktej i din anmodning
« Husk at tvinge brugen af dens funktion ved hjeelp af tool_choice-parameteren
« Husk, at modellen vil videregive inputtet til veerktajet, s& navnet pa veerktejet og

beskrivelsen skal veere fra modellens perspektiv, ikke dit.

Dette sidste punkt fortjener et eksempel for klarhedens skyld. Lad os sige, at du beder
ATl’en om at lave sentimentanalyse pa brugertekst. Funktionens navn ville ikke veere
analyze_sentiment, men snarere noget som save_sentiment_analysis. Det er
ATen, der laver sentimentanalysen, ikke veerktajet. Alt hvad veerktajet gor (set fra Alens

perspektiv) er at gemme resultaterne af analysen.

Her er et eksempel p& brug af Claude 3 til at optage et resumé af et billede i

velstruktureret JSON, denne gang fra kommandolinjen ved hjeelp af curl:

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \

H
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {

"key_colors": {

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Brug af veerktajer

"type": "array",
"items": {
"type": "object",
"properties": {

"re {
"type": "number",
"description": "red value [0.0, 1.0]"
}
"g": |
"type": "number",
"description": "green value [0.0, 1.0]"
1
"b": {
"type": "number",
"description": "blue value [0.0, 1.0]"
3,
"name": {
"type": "string",
"description": "Human-readable color name
in snake_case, e.g.
\"olive_green\"or
\"turquoise\""
}
3,
"required": ["r", "g", "b", "name"]
3,
"description": "Key colors in the image. Four or less.’'

}/
"description": {
"type": "string",
"description": "Image description. 1-2 sentences max."
3,
"estimated_year": {

"type": "integer",

130

"description": "Estimated year that the image was taken,

if is it a photo. Only set this if the
image appears to be non-fictional.
Rough estimates are okay!"

} ’

"required": ["key_colors", "description"]

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

Brug af veerktgjer 131

P
"messages": [
{
"role": "user",
"content": [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
3,
{
"type": "text",
"text": "Use “record_summary” to describe this image."
}
]
}

I det givne eksempel bruger vi Claude 3-modellen fra Anthropic til at generere en

struktureret JSON-oversigt af et billede. Sddan fungerer det:

1. Vi definerer et enkelt veerktej ved navn record_summary i request-payloadens
tools-array. Dette veerktej er ansvarligt for at registrere en oversigt over billedet
i velstruktureret JSON.

2. record_summary-veerktgjet har et input_schema, der specificerer den

forventede struktur for JSON-outputtet. Det definerer tre egenskaber:

» key_colors:Et array af objekter, der repreesenterer noglefarverne i billedet.
Hvert farveobjekt har egenskaber for red-, gren- og bla-veerdier (fra 0.0 til
1.0) og et menneskeleesbart farvenavn i snake_case-format.

« description: En string-egenskab til en kort beskrivelse af billedet,

begraenset til 1-2 szetninger.

Brug af veerktgjer 132

- estimated_year: En valgfri integer-egenskab for det estimerede &r, billedet

blev taget, hvis det ser ud til at veere et ikke-fiktivt foto.

3. Imessages-arrayet leverer vi billeddata som en base64-kodet streng sammen med
mediatypen. Dette gar det muligt for modellen at behandle billedet som en del af
inputtet.

4. Vi beder ogsa Claude om at bruge record_summary-veerktejet til at beskrive
billedet.

5. Nar anmodningen sendes til Claude 3-modellen, analyserer den billedet og
genererer en JSON-oversigt baseret pa det specificerede input_schema.
Modellen udtreekker neglefarverne, giver en kort beskrivelse og estimerer aret,
billedet blev taget (hvis relevant).

6. Den genererede JSON-oversigt sendes som parametre til record_summary-
veerktojet og giver en struktureret repreesentation af billedets veesentlige

karakteristika.

Ved at bruge record_summary-verktgjet med et veldefineret input_schema kan vi
opna en struktureret JSON-oversigt af et billede uden at veere atheengige af almindelig
tekstudtreekning. Denne tilgang sikrer, at outputtet folger et konsistent format og nemt

kan analyseres og behandles af efterfolgende komponenter i applikationen.

Evnen til at fremtvinge et funktionskald og specificere den forventede output-struktur
er en kraftfuld funktion ved veerktgjsbrug i Al-drevne applikationer. Det giver udviklere
mere kontrol over det genererede output og forenkler integrationen af Al-genereret data

i applikationens arbejdsgang.

Udfarelse af funktion(er)

Du har defineret funktioner og promptet din Al, som besluttede, at den skulle kalde en af
dine funktioner. Nu er det tid for din applikationskode eller dit bibliotek, hvis du bruger

© 0 N O O b W N =

[T =Y
a s W N~

Brug af veerktgjer 133

en Ruby gem som raix-rails, til at sende funktionskaldet og dets parametre til den

tilsvarende implementering i din applikationskode.

Din applikationskode bestemmer, hvad der skal geres med resultaterne af
funktionsudferelsen. Maske involverer det, der skal geres, en enkelt linje kode i
en lambda, eller méske involverer det at kalde et eksternt API. Méaske involverer det
at kalde en anden Al-komponent, eller maske involverer det hundredvis eller endda

tusindvis af kodelinjer i resten af dit system. Det er helt op til dig.

Nogle gange er funktionskaldet slutningen pa operationen, men hvis resultaterne
repreesenterer information i en tankersekke, der skal fortsettes af Al’en, sa skal din
applikationskode indseette udferelsesresultaterne i chat-transkriptet og lade Al'en

fortseette behandlingen.

For eksempel, her er en Raix-funktionserkleering brugt af Olympias AccountManager
til at kommunikere med vores klienter som en del af en Intelligent

Arbejdsgangsorkestration for kundeservice.

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
Jots of other functions...

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed”,
message: { type: "string" } do |arguments]|
account.owner . freeform_noti fy(
subject: "Account Change Notification",
message: arguments|:message]
)
"Notified account owner"

end

Det er méaske ikke umiddelbart klart, hvad der sker her, sa lad mig bryde det ned.

1. AccountManager-klassen definerer —mange funktioner relateret til

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Brug af veerktgjer 134

kontohandtering. Den kan eendre din plan, tilfeje og fjerne teammedlemmer
blandt andre ting.

2. Dens instruktioner p& gverste niveau forteeller AccountManager, at den skal
underrette kontoejeren om resultaterne af kontoanmodningen ved hjelp af
funktionen notify_account_owner.

3. Den koncise definition af funktionen inkluderer dens:

« navn
« beskrivelse
« parametre message: { type: "string" }

« en blok der skal udferes, nar funktionen kaldes

Efter at have opdateret transskriptionen med resultaterne af funktionsblokken, kaldes
chat_completion-metoden igen. Denne metode er ansvarlig for at sende den
opdaterede samtaletranskription tilbage til Al-modellen til videre behandling. Vi

henviser til denne proces som en samtaleslgjfe.

Nar Al-modellen modtager en ny chatfuldferelsesanmodning med en opdateret
transskription, har den adgang til resultaterne af den tidligere udferte funktion. Den
kan analysere disse resultater, inkorporere dem i sin beslutningsproces og generere det
neeste svar eller handling baseret pa samtalens samlede kontekst. Den kan veelge at
udfere yderligere funktioner baseret pa den opdaterede kontekst, eller den kan generere
et endeligt svar pa den oprindelige prompt, hvis den vurderer, at ingen yderligere

funktionskald er nedvendige.

Valgfri fortsaettelse af den oprindelige prompt

Nar du sender veerktejsresultaterne tilbage til LLM’en og fortseetter behandlingen af den
oprindelige prompt, bruger Al’en disse resultater til enten at kalde yderligere funktioner

eller generere et endeligt tekstsvar.

Brug af veerktgjer 135

Nogle modeller som Coheres Command-R kan citere de specifikke
veerktajer, de brugte i deres svar, hvilket giver yderligere gennemsigtighed

og sporbarhed.

Afhengigt af den anvendte model vil resultaterne af funktionskaldet leve i
transskriptionsmeddelelser, der har deres egen seerlige rolle, eller blive afspejlet i
en anden syntaks. Men den vigtige del er, at disse data er i transskriptionen, sa Al’en

kan tage dem i betragtning, nar den beslutter, hvad der skal gares neest.

’ En almindelig (og potentielt dyr) fejltilstand er at glemme at tilfoje

funktionsresultaterne til transskriptionen, for man fortseetter chatten. Som
resultat vil Al’en blive promptet pa stort set samme made, som den blev, for
den kaldte funktionen forste gang. Med andre ord, sa vidt Al'en ved, har
den ikke kaldt funktionen endnu. S& den kalder den igen. Og igen. Og igen,
for evigt indtil du afbryder den. Haber din kontekst ikke var for stor, og din

model ikke var for dyr!

Bedste praksis for vaerktejsbrug

For at fa mest muligt ud af veerktejsbrug, overvej folgende bedste praksis.

Beskrivende definitioner

Giv klare og beskrivende navne og beskrivelser for hvert veerktej og dets inputparametre.

Dette hjeelper LLM’en med bedre at forsta formalet og mulighederne for hvert veerkte;.

https://openrouter.ai/models/cohere/command-r

Brug af veerktgjer 136

Jeg kan forteelle dig fra erfaring, at den almindelige visdom der siger, at “navngivning
er sveert” geelder her; jeg har set dramatisk forskellige resultater fra LLM’er bare ved
at eendre navnene pa funktioner eller ordlyden af beskrivelser. Nogle gange forbedrer

fjernelse af beskrivelser faktisk ydeevnen.

Behandling af vaerktejsresultater

Nér du sender veerktejsresultater tilbage til LLM’en, skal du sikre, at de er
velstrukturerede og omfattende. Brug meningsfulde negler og verdier til at
repreesentere outputtet fra hvert veerktej. Eksperimenter med forskellige formater

og se hvilke der virker bedst, fra JSON til almindelig tekst.

Resultatfortolkeren adresserer denne udfordring ved at anvende AI til at analysere

resultaterne og give menneskevenlige forklaringer, sammenfatninger eller hovedpointer.

Fejlhandtering

Implementer robuste fejlhdndteringsmekanismer til at handtere tilfeelde, hvor LLM’en
kan generere ugyldige eller ikke-understottede inputparametre for veerktejskald.

Héndter og genopret elegant fra eventuelle fejl, der kan opstd under veerktejsudferelse.

En seerdeles god egenskab ved Al’en er, at den forstar fejlmeddelelser! Hvilket betyder,
at hvis du arbejder i en hurtig og beskidt tankegang, kan du simpelthen fange eventuelle
undtagelser genereret i implementeringen af et veerktaj og sende det tilbage til Alen, sa

den ved, hvad der skete!

For eksempel, her er en forenklet version af implementeringen af Google-segning i

Olympia:

© 0 N O O b W N e

RN
= o

Brug af veerktgjer 137

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Google-sggninger i Olympia er en totrinsproces. Farst udferer du segningen, derefter
opsummerer du resultaterne. Hvis der opstar en fejl, uanset hvad det er, bliver
fejlmeddelelsen pakket sammen og sendt tilbage til A'en. Denne teknik er fundamentet

for praktisk talt alle Intelligent Fejlhandterings-menstre

Lad os for eksempel sige, at GoogleSearch API-kaldet fejler pd grund af en 503
Servicen er ikke tilgeengelig-undtagelse. Det bobler op til redningen pa everste niveau,
og beskrivelsen af fejlen sendes tilbage til Al’en som resultatet af funktionskaldet. I stedet
for bare at give brugeren en blank skeerm eller teknisk fejl, siger Al’en noget i retning af
“Jeg beklager, men jeg kan ikke fa adgang til mine Google-seogefunktioner i gjeblikket.

Jeg kan preve igen senere, hvis du ensker det”

Dette kan méaske virke som et smart trick, men overvej en anden type fejl, hvor Al’'en
kaldte et eksternt API og havde direkte kontrol over de parametre, der skulle sendes
til AP’et. Maske lavede den en fejl i maden, den genererede disse parametre pa?
Forudsat at fejlmeddelelsen fra det eksterne API er detaljeret nok, betyder det at sende
fejlmeddelelsen tilbage til den kaldende Al at den kan genoverveje disse parametre og

prove igen. Automatisk. Uanset hvad fejlen var.

Teenk nu pa, hvad det ville kreeve at genskabe den slags robust fejlhandtering i normal

kode. Det er praktisk talt umuligt.

© 0 N O O b W N -

I = =N
B W N o

Brug af veerktgjer 138

Iterativ Forbedring

Hvis LLM’en ikke anbefaler de passende veerktgjer eller genererer suboptimale svar,
skal du iterere pa veerktejsdefinitionerne, beskrivelserne og inputparametrene. Fortseet
med at forfine og forbedre veerktejsopsetningen baseret pa den observerede adfzerd og

gnskede resultater.

1. Start med simple veerktejsdefinitioner: Begynd med at definere veerktejer med
klare og koncise navne, beskrivelser og inputparametre. Undga at overkomplicere
veerktejsopseetningen i starten og fokuser pa kernefunktionaliteten. Hvis du
for eksempel gnsker at gemme resultaterne af sentimentanalyse, start med en

grundleeggende definition som:

{
"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {
"type": "object",
"properties": {
"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
3
"required": ["score"]
}
}

2. Test og observer: Nar du har de forste veerktgjsdefinitioner pa plads, test dem
med forskellige prompts og observer, hvordan LLM’et interagerer med veerktgjet.
Veer opmeerksom pa kvaliteten og relevansen af de genererede svar. Hvis LLM’et
genererer suboptimale svar, er det tid til at forfine veerktejsdefinitionerne.

3. Forfin beskrivelser: Hvis LLM’et misforstar formélet med et veerktej, si prov at

forfine veerktajets beskrivelse. Tilfaj mere kontekst, eksempler eller preeciseringer

O O W N e

~N O O b W N =

Brug af veerktgjer 139

for at guide LLM’et i at bruge veerktejet effektivt. For eksempel kan du opdatere
beskrivelsen af sentimentanalyseverktejet til mere specifikt at adressere den

emotionelle tone i den tekst, der analyseres:

{

"name": "save_sentiment_score",

"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

}

4. Juster inputparametre: Hvis LLM’en genererer ugyldige eller irrelevante
inputparametre til et veerktej, ber du overveje at justere parameterdefinitionerne.
Tilfej mere specifikke begreensninger, valideringsregler eller eksempler for at
tydeliggere det forventede inputformat.

5. Tterer baseret pa feedback: Overvag lebende dine veerktejers ydeevne og
indsaml feedback fra brugere eller interessenter. Brug denne feedback til at
identificere omrader, der kan forbedres, og foretag lebende forbedringer af
veerktgjsdefinitionerne. Hvis brugerne for eksempel rapporterer, at analysen ikke
héandterer sarkasme seerlig godt, kan du tilfeje en bemeerkning i beskrivelsen:

{

"name": "save_sentiment_score",

"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",

}

Ved iterativt at forfine dine veerktejsdefinitioner baseret pa observeret adfeerd og
feedback kan du gradvist forbedre ydeevnen og effektiviteten af din Al-drevne
applikation. Husk at holde veerktejsdefinitionerne klare, preecise og fokuserede pa den
specifikke opgave. Test og valider regelmeessigt veerktejsinteraktionerne for at sikre, at

de stemmer overens med dine gnskede resultater.

Brug af veerktgjer 140

Sammensatning og Kaedekobling af Vaerktejer

Et af de mest kraftfulde aspekter ved veerktgjsbrug, som kun er blevet antydet indtil
nu, er muligheden for at sammensaette og keede flere veerktojer sammen for at udfere
komplekse opgaver. Ved omhyggeligt at designe dine veerktejsdefinitioner og deres
input-/outputformater kan du skabe genbrugelige byggeklodser, der kan kombineres pa

forskellige mader.

Lad os se pa et eksempel, hvor du bygger en dataanalysepipeline til din Al-drevne

applikation. Du kan have folgende veerktajer:

1. DataRetrieval: Et veerktgj, der henter data fra en database eller API baseret pa
specificerede kriterier.

2. DataProcessing: Et veerktoj, der udferer beregninger, transformationer eller
aggregeringer pa de hentede data.

3. DataVisualization: Et verktej, der preesenterer de behandlede data i et

brugervenligt format, sisom diagrammer eller grafer.

Ved at keede disse veerktgjer sammen kan du skabe en kraftfuld arbejdsgang, der henter
relevante data, behandler dem og preesenterer resultaterne pa en meningsfuld made. Her

er hvordan veerktejsbrugens arbejdsgang kunne se ud:

1. LLM’en modtager en brugerforespergsel, der beder om indsigt i salgsdata for en
specifik produktkategori.

2. LLM’en veelger DataRetrieval-veerktgjet og genererer de passende
inputparametre for at hente de relevante salgsdata fra databasen.

3. De hentede data “videregives” til DataProcessing-verktgjet, som beregner
malinger sdsom samlet omseetning, gennemsnitlig salgspris og veekstrate.

4. De behandlede data bliver derefter bearbejdet af DataVisualization-
veerktgjet, som skaber et visuelt tiltalende diagram eller graf til at repreesentere

indsigterne, og sender URL’en til diagrammet tilbage til LLM’en.

Brug af veerktgjer 141

5. Endelig genererer LLM’en et formateret svar pa brugerforespergslen ved hjeelp af
markdown, der inkorporerer de visualiserede data og giver et sammendrag af de

vigtigste resultater.

Ved at sammenseette disse veerktejer kan du skabe en problemfri
dataanalysearbejdsgang, der nemt kan integreres i din applikation. Det smukke
ved denne tilgang er, at hvert veerktgj kan udvikles og testes uatheengigt og derefter

kombineres pa forskellige méader for at lose forskellige problemer.

For at muliggere en gnidningsles sammensaetning og keedekobling af veerktejer er det

vigtigt at definere klare input- og outputformater for hvert veerktej.

For eksempel kunne DataRetrieval-veerktejet acceptere parametre sasom
databaseforbindelsesdetaljer, tabelnavn og forespergselsbetingelser og returnere
resultatseettet som et struktureret JSON-objekt. DataProcessing-verktejet kan sa
forvente dette JSON-objekt som input og producere et transformeret JSON-objekt som
output. Ved at standardisere dataflowet mellem veerktgjer kan du sikre kompatibilitet

og genbrugelighed.

Nar du designer dit veerktejsekosystem, sa teenk over hvordan forskellige veerktajer
kan kombineres for at adressere almindelige anvendelsestilfezelde i din applikation.
Overvej at skabe hgjniveauveerktgjer, der indkapsler almindelige arbejdsgange eller

forretningslogik, hvilket gor det lettere for LLM’en at veelge og bruge dem effektivt.

Husk, at styrken ved veerktejsbrug ligger i den fleksibilitet og modularitet, det giver. Ved
at nedbryde komplekse opgaver i mindre, genbrugelige veerktejer kan du skabe en robust

og tilpasningsdygtig Al-dreven applikation, der kan tackle en bred vifte af udfordringer.

Fremtidige Retninger

Efterhdnden som omradet for Al-dreven applikationsudvikling udvikler sig, kan
vi forvente yderligere fremskridt i veerktejsbrugsfunktionaliteter. Nogle potentielle

fremtidige retninger omfatter:

Brug af veerktgjer 142

1. Multi-hop Veerktejsbrug: LLM’er kan muligvis beslutte, hvor mange gange de
skal bruge veerktgjer for at generere et tilfredsstillende svar. Dette kunne involvere
flere runder af veerktgjsvalg og -udferelse baseret pa mellemliggende resultater.

2. Foruddefinerede Veerktojer: Al-platforme kan muligvis tilbyde et seet
foruddefinerede veerktgjer, som udviklere kan wudnytte uden videre
tilpasning, sasom Python-fortolkere, websggningsveerktgjer eller almindelige
hjeelpefunktioner.

3. Problemfri Integration: Efterhdnden som veerktejsbrug bliver mere udbredt,
kan vi forvente bedre integration mellem Al-platforme og populere
udviklingsrammer, hvilket gor det lettere for udviklere at inkorporere

veerktejsbrug i deres applikationer.

Veerktejsbrug er en kraftfuld teknik, der ger det muligt for udviklere at udnytte det
fulde potentiale af LLM’er i Al-drevne applikationer. Ved at forbinde LLM er til eksterne
veerktajer og ressourcer kan du skabe mere dynamiske, intelligente og kontekstbevidste
systemer, der kan tilpasse sig brugerens behov og levere verdifulde indsigter og

handlinger.

Mens veerktgjsbrug tilbyder enorme muligheder, er det vigtigt at veere opmeerksom pa
potentielle udfordringer og overvejelser. Et centralt aspekt er at handtere kompleksiteten
af veerktejsinteraktioner og sikre stabilitet og palidelighed i det samlede system. Du
skal héandtere scenarier, hvor verktgjskald kan fejle, returnere uventede resultater
eller have konsekvenser for ydeevnen. Derudover ber du overveje sikkerheds- og
adgangskontrolforanstaltninger for at forhindre uautoriseret eller ondsindet brug af
veerktajer. Korrekt fejlhédndtering, logning og overvagningsmekanismer er afgerende

for at opretholde integriteten og ydeevnen i din Al-drevne applikation.

Nér du udforsker mulighederne for verktejsbrug i dine egne projekter, s& husk at

begynde med klare malseetninger, design velstrukturerede veerktejsdefinitioner og

Brug af veerktgjer 143

iterer pa baggrund af feedback og resultater. Med den rigtige tilgang og tankegang
kan veerktejsbrug lase op for nye niveauer af innovation og veerdi i dine Al-drevne

applikationer

Strembehandling

Streaming af data over HTTP, ogsa kendt som server-sendte begivenheder (SSE), er

en mekanisme, hvor serveren kontinuerligt sender data til klienten, efterhdnden som
de bliver tilgeengelige, uden at klienten eksplicit skal anmode om det. Da Al’ens svar
genereres trinvist, giver det mening at skabe en responsiv brugeroplevelse ved at vise
ATens output, mens det bliver genereret. Og faktisk tilbyder alle Al-udbyder-APTer,

som jeg kender til, streaming-svar som en mulighed i deres feerdiggarelsesendpoints.

Grunden til, at dette kapitel optreeder her i bogen, lige efter Brug af veerktgjer, er pa
grund af, hvor kraftfuldt det kan veere at kombinere brugen af veerktejer med live Al-
svar til brugerne. Dette muligger dynamiske og interaktive oplevelser, hvor Al’en kan
behandle brugerinput, udnytte forskellige veerktejer og funktioner efter eget sken og

derefter give realtidssvar.

For at opna denne problemfrie interaktion skal du skrive stremhéandterere, der kan

ekspedere Al-aktiverede veerktgjsfunktionskald séavel som almindelig tekstoutput til

O© 0 N O O b W N =

N
w N =~

-
IS

Strembehandling 145

slutbrugeren. Behovet for at lokke efter behandling af en veerktejsfunktion tilfgjer en

interessant udfordring til opgaven.

Implementering af en ReplyStream

For at demonstrere hvordan strembehandling kan implementeres, vil dette kapitel dykke
dybt ned ien forenklet version af ReplyStream-klassen, der bruges i Olympia. Instanser
af denne klasse kan sendes som stream-parameteren i Al-klientbiblioteker sdsom ruby-

openai og openrouter

Her er hvordan jeg bruger ReplyStream i Olympias PromptSubscriber, som lytter

via Wisper efter oprettelsen af nye brugermeddelelser.

class PromptSubscriber
include Raix::ChatCompletion

include Raix::PromptDeclarations
many other declarations omitted. ..

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper
return unless message.role.user? && message.content?

rest of the implementation omitted. ..

Ud over en context-reference til den prompt-abonnent, der instantierede den, har
ReplyStream-klassen ogsa instansvariabler til at gemme en buffer med modtaget data
samt arrays til at holde styr pa funktionsnavne og argumenter, der bliver anvendt under

strembehandlingen.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Strembehandling 146

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

initialize-metoden opsetter den initielle tilstand af ReplyStream-instansen ved at

initialisere bufferen, konteksten og andre variabler.

call-metoden er hovedindgangspunktet for behandling af streaming-dataene.
Den tager en chunk af data (repreesenteret som et hash) og en valgfri bytesize-
parameter, som i vores eksempel ikke bliver brugt. Inde i denne metode bruger klassen
menstergenkendelse til at handtere forskellige scenarier baseret pa strukturen af den

modtagne chunk.

’ At kalde deep_symbolize_keys pa chunken hjelper med at gore

menstergenkendelsen mere elegant ved at lade os arbejde med symboler i

stedet for strenge.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Strembehandling 147

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name
choices: |

{
delta: {
tool_calls: |

{ index: index, function: {name: name} }

f_name[index]| = name

Det forste monster, vi matcher efter, er et veerktejskald sammen med dets tilhgrende
funktionsnavn. Hvis vi opdager et, leegger vi det i f_name-arrayet. Vi gemmer
funktionsnavne i et indekseret array, fordi modellen er i stand til at udfere parallelle

funktionskald, hvor den sender mere end én funktion til udferelse ad gangen.

Parallel funktionskald er en Al-models evne til at udfere flere funktionskald sammen,
hvilket tillader effekterne og resultaterne af disse funktionskald at blive lgst parallelt.
Dette er seerligt nyttigt, hvis funktioner tager lang tid, og det reducerer antallet af

forespergsler til APIet, hvilket igen kan spare et betydeligt token-forbrug.

Derneest skal vi matche argumenterne, der svarer til funktionskaldene.

© 0 N O O b W N e

[T T ==Y
a s W N =~

© 0 N O O b W N =

[T T
w N =~

Strembehandling 148

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Ligesom vi handterede funktionsnavnene, gemmer vi argumenterne i et indekseret

array.

Derneest holder vi gje med normale brugervendte beskeder, som vil ankomme fra
serveren én token ad gangen og blive tildelt new_content-variablen. Vi skal ogsa holde
gje med finish_reason. Den vil veerenil indtil det sidste stykke af output-sekvensen.
in {
choices: |

{ delta: {content: new_content}, finish_reason: finish_reason }

1}

you could transmit every chunk to the user here. ..
buffer << new_content.to_s

if finish_reason.present?

finalize
elsif new_content.to_s.match?(/\n\n/)

send_to_client # ...or buffer and transmit once per paragraph
end

Vigtigt er det, at vi tilfojer et menstergenkendelsesudtryk til at handtere fejlmeddelelser
sendt af Al-modeludbyderen. I lokale udviklingsmiljger kaster vi en undtagelse, men i

produktion logger vi fejlen og afslutter.

Bw N e =N O O W N

© 0 N O O b W N =

[T =Y
a s W N =~

Strembehandling 149

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("AI Error: #{message}")
finalize
end

Den afsluttende else-seetning i case vil blive udfert, hvis ingen af de foregaende menstre
matchede. Det er blot en sikkerhedsforanstaltning, s& vi opdager det, hvis Al-modellen

begynder at sende os ukendte bidder.

else
Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

Metoden send_to_client er ansvarlig for at sende det bufferede indhold til klienten.
Den kontrollerer, at bufferen ikke er tom, opdaterer bot-beskedens indhold, renderer

bot-beskeden og gemmer indholdet i databasen for at sikre datapersistens.

def send_to_client
no need to process pure whitespace
return if buffer.join.squish.blank?

set the buffer content on the bot message
content = buffer. join
bot_message.content = content

save to database so that we never lose data
even 1f the stream doesn't terminate correctly
bot_message.update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

© 0 N O U b W N =

[= = N
O O s W N r o

Strembehandling 150

finalize-metoden kaldes, nar strembehandlingen er feerdig. Den udferer
funktionskaldene, hvis der er modtaget nogen under stremmen, opdaterer bot-
beskeden med det endelige indhold og andre relevante oplysninger og nulstiller

funktionskaldshistorikken

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))

end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Hvis modellen beslutter sig for at kalde en funktion, skal du “afsende” dette
funktionskald (navn og argumenter) pa en sddan made, at det bliver udfert, og

function_call og function_result beskeder bliver tilfgjet til samtalehistorikken

Ud fra min erfaring er det bedre at handtere oprettelsen af funktionsbeskeder ét sted i
din kodebase, i stedet for at veere atheengig af veerktgjsimplementeringerne. Det er ikke
kun mere overskueligt, men har ogsa en meget vigtig praktisk grund: hvis Al-modellen
kalder en funktion, og ikke ser de resulterende kald og resultatbeskeder i historikken,
nar du looper, vil den kalde den samme funktion igen. Potentielt i det uendelige. Husk,
at Al’en er fuldsteendig tilstandsles, s& medmindre du sender disse funktionskald tilbage

til den, er de aldrig sket.

© 0 N O O b W N e

[
()

Strembehandling 151

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end

end

At rydde funktionskaldsoversigten efter afsendelse er lige sa vigtigt som at
sikre, at kaldet og resultaterne ender i dit transskript, sa du ikke bare bliver
ved med at kalde de samme funktioner igen og igen hver gang du leber

gennem lgjfen.

“Samtaleslojfen”

I PromptSubscriber-klassen bruger vi prompt-metoden fra PromptDeclarations-
modulet til at definere samtaleslgjfens opfersel. until-parameteren er sat til -> {
bot_message.complete? }, hvilket betyder, at lgjfen vil fortsette indtil bot_-

message er markeret som feerdig.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },
until: -> { bot_message.complete? }

P Men hvornar markeres bot_message som fuldfert? Hvis du har glemt det,

sa kig tilbage pa linje 13 i finalize-metoden.

Lad os gennemga hele strembehandlingslogikken.

Strembehandling 152

10.

. PromptSubscriber modtager en ny brugerbesked via message_created-

metoden, som aktiveres af Wisper pub/sub-systemet, hver gang slutbrugeren

opretter et nyt prompt.

. Klassemetoden prompt definerer deklarativt chatfeerdiggerelseslogikken

for PromptSubscriber. Al-modellen vil udfere en chatfeerdiggerelse med
brugerens beskedindhold, en ny instans af ReplyStream som stregmparameter

og den specificerede lokkebetingelse.

. Al-modellen behandler promptet og begynder at generere et svar. Efterhdnden

som svaret stremmes, kaldes call-metoden pa ReplyStream-instansen for hver

datadel.

. Hvis Al-modellen beslutter at kalde en veerktejsfunktion, udtrekkes

funktionsnavnet og argumenterne fra datadelen og gemmes henholdsvis i

f_name- og f_arguments-arrayerne.

. Hvis Al-modellen genererer brugervendt indhold, bliver det buffereret og sendt

til klienten via send_to_client-metoden.

. Néar strembehandlingen er feerdig, kaldes finalize-metoden. Hvis der blev

kaldt veerktgjsfunktioner under stremmen, bliver de ekspederet ved hjeelp af

dispatch-metoden i PromptSubscriber.

. dispatch-metoden tilfgjer en function_call-besked til samtaleudskriften,

udferer den tilsvarende veerktejsfunktion og tilfejer en function_result-

besked til udskriften med resultatet af funktionskaldet.

. Efter ekspedition af veerktajsfunktionerne ryddes funktionskaldshistorikken for at

forhindre dublerede funktionskald i efterfolgende lekker.

. Hvis der ikke blev kaldt nogen veerktgjsfunktioner, opdaterer finalize-metoden

bot_message med det endelige indhold, markerer det som fuldfert og sender den
opdaterede besked til klienten.

Lokkebetingelsen -> { bot_message.complete? } evalueres. Hvis
bot_message ikke er markeret som fuldfert, fortseetter lakken, og det oprindelige

prompt indsendes igen med den opdaterede samtaleudskrift.

Strembehandling 153

11. Trin 3-10 gentages, indtil bot_message er markeret som fuldfert, hvilket
indikerer, at Al-modellen har afsluttet genereringen af sit svar, og ingen

yderligere veerktojsfunktioner skal udferes.

Ved at implementere denne samtalelgkke gor du det muligt for AI-modellen at indga i en
frem-og-tilbage-interaktion med applikationen, udfere veerktejsfunktioner efter behov

og generere brugervendte svar, indtil samtalen nér en naturlig afslutning.

Kombinationen af strembehandling og samtalelokken muligger dynamiske og
interaktive Al-drevne oplevelser, hvor Al-modellen kan behandle brugerinput, udnytte
forskellige veerktojer og funktioner og give realtidssvar baseret pa den udviklende

samtalekontekst.

Automatisk Fortsaettelse

Det er vigtigt at veere opmeerksom pé Al-outputbegreensninger. De fleste modeller har
et maksimalt antal tokens, de kan generere i et enkelt svar, hvilket bestemmes af max_-
tokens-parameteren. Hvis Al-modellen nar denne greense under generering af et svar,

vil den brat stoppe og indikere, at outputtet blev afkortet.

I streamingsvaret fra Al-platformens API kan du opdage denne situation ved at
undersgge finish_reason-variablen i datadelen. Hvis finish_reason er sat til
"length" (eller en anden negleveerdi specifik for modellen), betyder det, at modellen

naede sin maksimale token-greense under genereringen, og outputtet er blevet afkortet.

En méde at handtere dette scenarie elegant pa og give en problemfri brugeroplevelse
er at implementere en automatisk fortseettelsesmekanisme i din strembehandlingslogik.
Ved at tilfgje et mgnstermatch for leengderelaterede afslutningsarsager kan du veelge at

lokke og automatisk fortseette outputtet fra hvor det slap.

Her er et bevidst forenklet eksempel pa, hvordan du kan modificere call-metoden i

ReplyStream-klassen for at understatte automatisk fortseettelse:

© 0 N O O b W N e

W oW oW N NN DNDNNDDNNDNN S S R S s s
[SIS S T (e o RN Bie NN S B NORRSS B S SRS < B (o TN ¢ N B S I S S S S

Strembehandling

LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize

end

end
end

private

def continue_cutoff
conversation.bot_message! (buffer. join, visible: false)

conversation.user_message!("please continue", visible: false)

bot_message.update_column(:created_at, Time.current)
end

154

I denne modificerede version, nar finish_reason indikerer afkortet output, i stedet

for at afslutte stremmen, tilfgjer vi et par beskeder til transskriptet uden at afslutte

det, flytter den oprindelige brugervendte svarbesked til “bunden” af transskriptet ved

at opdatere dens created_at-attribut, og lader derefter lokken fortseette, s& Al'en

fortseetter med at generere hvor den slap.

Husk at Al-fuldferelsesendepunktet er tilstandslast. Det “kender” kun det, du forteeller

Strembehandling 155

det via transskriptet. I dette tilfeelde er maden, hvorpa vi kommunikerer til Alen, at
den blev afbrudt, ved at tilfaje “usynlige” (for slutbrugeren) beskeder til transskriptet.
Husk dog, at dette er et bevidst forenklet eksempel. En rigtig implementering ville have
behov for yderligere transskripthandtering for at sikre, at vi ikke spildte tokens og/eller

forvirrede Al’en med duplikerede assistentbeskeder i transskriptet.

En rigtig implementering af auto-fortseettelse ber ogsd have sakaldt
“kredslebsbryder-logik” péa plads for at forhindre lebsk lekkekersel. Arsagen er,
at Al’en med bestemte typer af brugerprompts og lave max_tokens-indstillinger kunne

fortseette med at loop brugervendt output endelgst.

Husk, at hver lgkke kreever en separat forespergsel, og at hver forespargsel
forbruger hele dit transskript igen. Du ber helt sikkert overveje afvejningerne
mellem brugeroplevelse og API-forbrug, nar du beslutter, om du vil implementere
auto-fortseettelse i din applikation. Auto-fortseettelse kan iseer veere farligt dyrt,

seerligt nar der bruges premium kommercielle modeller.

Konklusion

Strembehandling er et kritisk aspekt af at bygge Al-drevne applikationer, der
kombinerer veerktejsanvendelse med live Al-svar. Ved effektivt at héandtere
streamingdata fra Al-platform-APT’'er kan du levere en problemfri og interaktiv

brugeroplevelse, handtere store svar, optimere ressourceforbruget og elegant handtere

fejl.

Den leverede Conversation::ReplyStream-klasse demonstrerer, hvordan
strembehandling kan implementeres i en Ruby-applikation ved hjeelp af

menstergenkendelse og heendelsesdrevet arkitektur. Ved at forstd og udnytte

Strembehandling 156

strembehandlingsteknikker kan du frigere det fulde potentiale af Al-integration i

dine applikationer og levere kraftfulde og engagerende brugeroplevelser.

Selvhelende data

Selvhelende data er en kraftfuld tilgang til at sikre dataintegritet, konsistens og kvalitet i

applikationer ved at udnytte mulighederne i store sprogmodeller (LLMs). Denne kategori
af menstre fokuserer pa idéen om at bruge Al til automatisk at opdage, diagnosticere og
korrigere dataanomalier, inkonsistens eller fejl, og dermed reducere byrden for udviklere

og opretholde et hejt niveau af datapalidelighed.

I kernen anerkender de selvhelende datamenstre, at data er livsblodet i enhver
applikation, og at sikring af deres ngjagtighed og integritet er afgerende for
applikationens korrekte funktion og brugeroplevelse. Dog kan styring og vedligeholdelse
af datakvalitet veere en kompleks og tidskreevende opgave, iseer nar applikationer vokser

i storrelse og kompleksitet. Det er her, Al’s kraft kommer i spil.

I de selvhelende datamenstre anvendes Al-workers til kontinuerligt at overvige og

analysere din applikations data. Disse modeller har evnen til at forstd og fortolke

Selvhelende data 158

menstre, relationer og anomalier i dataene. Ved at udnytte deres evner inden for
naturlig sprogbehandling og forstaelse kan de identificere potentielle problemer eller

inkonsistenser i dataene og treeffe passende foranstaltninger for at rette dem.

Processen med selvhelende data involverer typisk flere centrale trin:

1. Dataovervagning: Al-workers overvager konstant applikationens datastremme,
databaser eller lagringssystemer for at lede efter tegn pa anomalier, inkonsistens
eller fejl. Alternativt kan du aktivere en Al-komponent som reaktion p& en
undtagelse.

2. Anomalidetektion: Nar et problem opdages, analyserer Al-workeren dataene i
detaljer for at identificere problemets specifikke karakter og omfang. Dette kan
omfatte opdagelse af manglende veerdier, inkonsistente formater eller data, der
overtreeder foruddefinerede regler eller begreensninger.

3. Diagnose og korrektion: Nar problemet er identificeret, bruger Al-workeren sin
viden og forstaelse af datadomeenet til at bestemme den passende handlingsplan.
Dette kan involvere automatisk korrektion af data, udfyldning af manglende
veerdier eller markering af problemet til menneskelig intervention, hvis
nedvendigt.

4. Kontinuerlig leering (valgfrit, afheengigt af anvendelsestilfzelde): Nar din Al-
worker meder og laser forskellige dataproblemer, kan den output beskrivelser
af, hvad der skete, og hvordan den reagerede. Disse metadata kan fedes ind
i leeringsprocesser, der gor det muligt for dig (og maske den underliggende
model via finjustering) at blive mere effektiv over tid i at identificere og lase

dataanomalier.

Ved automatisk at opdage og korrigere dataproblemer kan du sikre, at din applikation
opererer med data af hej kvalitet og palidelighed. Dette reducerer risikoen for fejl,
inkonsistens eller datarelaterede fejl, der pavirker applikationens funktionalitet eller

brugeroplevelse.

Selvhelende data 159

Nér du har Al-workers til at handtere opgaven med dataovervagning og -korrektion,
kan du fokusere dine kreefter pa andre kritiske aspekter af applikationen. Dette sparer
tid og ressourcer, der ellers ville blive brugt pa manuel datarensning og vedligeholdelse.
Faktisk bliver manuel handtering af datakvalitet stadig mere udfordrende, efterhanden
som dine applikationer vokser i starrelse og kompleksitet. “Selvhelende data”-menstrene
skalerer effektivt ved at udnytte AD’s kraft til at handtere store meengder data og opdage

problemer i realtid.

Pa grund af deres natur kan Al-modeller tilpasse sig eendrede datamenstre,
P skemaer eller krav over tid med lille eller ingen overvagning. Sa
leenge deres direktiver giver tilstreekkelig vejledning, iseer vedrerende
tilsigtede resultater, kan din applikation muligvis udvikle sig og handtere
nye datascenarier uden at kreeve omfattende manuel intervention eller

kodezendringer.

De selvhelende datamenstre harmonerer godt med de andre kategorier af menstre, vi har
diskuteret, sdsom “Multitude of Workers”. Selvhelende datafunktionalitet kan ses som en
specialiseret type worker, der specifikt fokuserer pa at sikre datakvalitet og -integritet.
Denne type worker fungerer sammen med andre Al-workers, hvor hver bidrager til

forskellige aspekter af applikationens funktionalitet.

Implementering af selvhelende datamenstre i praksis kreever omhyggelig design og
integration af Al-modeller i applikationsarkitekturen. P4 grund af risikoen for datatab og
-korruption ber du definere klare retningslinjer for, hvordan du vil bruge denne teknik.

Du ber ogsa overveje faktorer som ydeevne, skalerbarhed og datasikkerhed.

Praktisk casestudie: Reparation af edelagt JSON

En af de mest praktiske og bekvemme mader at udnytte selvhelende data pé er ogsa

meget simpel at forklare: reparation af gdelagt JSON.

© 0 N O U b W N =

NN NN B R R sl s L sy
W N A0 O N0 O Bk W N~ o

Selvhelende data 160

Denne teknik kan anvendes pa den almindelige udfordring med at héndtere
ufuldsteendige eller inkonsistente data genereret af LLMs, sasom edelagt JSON,

og giver en tilgang til automatisk at opdage og korrigere disse problemer.

Hos Olympia steder jeg jeevnligt pa scenarier, hvor LLM’er genererer JSON-data, som
ikke er fuldsteendig valide. Dette kan ske af forskellige arsager, sdsom at LLM’en
tilfgjer kommentarer for eller efter selve JSON-koden, eller introducerer syntaksfejl som
manglende kommaer eller ikke-escapede dobbelte citationstegn. Disse problemer kan

fore til parsing-fejl og forarsage forstyrrelser i applikationens funktionalitet.

For at lgse dette problem har jeg implementeret en praktisk lgsning i form af en
JsonFixer-klasse. Denne klasse implementerer “Selvhelbredende Data”-mensteret ved
at tage den gdelagte JSON som input og udnytte en LLM til at reparere den, mens den

bevarer sa meget information og intention som muligt.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)

raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse

exception. Do your best to fix it while preserving the
original content and intent as much as possible." }

transcript << { user: bad_json }

transcript << { assistant: "What is the error message?"}

transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n' " json\n" }

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7Tb-instruct:nitro"
end

24

a s W N -

Selvhelende data 161

end

’ Bemeerk hvordan JsonFixer bruger Ventriloquist til at styre Al'ens svar.

Processen med selvhelbredende JSON-data fungerer som folger:

1. JSON-generering: En LLM bruges til at generere JSON-data baseret pa bestemte
prompts eller krav. Pa grund af LLM’ers natur vil den genererede JSON dog ikke
altid veere perfekt gyldig. JSON-parseren vil naturligvis udlese en ParserError,

hvis du giver den ugyldig JSON.

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Bemeerk, at fejlmeddelelsen ogsa sendes til JSONFixer-kaldet, sa den ikke behaver at
antage fuldt ud, hvad der er galt med dataene, iseer da parseren ofte vil forteelle dig

preecis, hvad der er galt.

2. LLM-baseret Korrektion: JSONF i xer -klassen sender den adelagte JSON tilbage
til en LLM sammen med en specifik prompt eller instruktion om at rette JSON’en,
mens den originale information og hensigt bevares s& meget som muligt. LLM’en,
som er treenet pa store meengder data og har en forstaelse af JSON-syntaks,
forsgger at rette fejlene og generere en gyldig JSON-streng. Response Fencing
bruges til at begreense LLM’ens output, og vi veelger Mixtral 8x7B som Al-

modellen, da den er seerligt god til denne type opgave.

Selvhelende data 162

3. Validering og Integration: Den rettede JSON-streng, der returneres
af LLM’en, bliver parset af selve JSONFixer-klassen, fordi den kaldte
chat_completion(json: true). Hvis den rettede JSON bestar valideringen,
integreres den tilbage i applikationens arbejdsgang, hvilket ger det muligt for
applikationen at fortseette databehandlingen uden problemer. Den darlige JSON
er blevet “helbredt”.

Selvom jeg har skrevet og omskrevet min egen JSONF ixer-implementering adskillige
gange, tvivler jeg pa, at den samlede tid investeret i alle disse versioner er mere end en

time eller to.

Bemeerk, at bevarelse af hensigt er et nogleelement i ethvert selvhelende data-menster.
Den LLM-baserede korrektionsproces sigter mod at bevare den originale information
og hensigt i den genererede JSON s& meget som muligt. Dette sikrer, at den rettede
JSON bevarer sin semantiske betydning og kan bruges effektivt inden for applikationens

kontekst.

Denne praktiske implementering af “Selvhelende Data”-tilgangen i Olympia
demonstrerer tydeligt, hvordan Al specifikt LLM’er, kan udnyttes til at lase
virkelige dataudfordringer. Det viser styrken ved at kombinere traditionelle
programmeringsteknikker med Al-kapaciteter for at bygge robuste og effektive

applikationer.

Postels Lov og “Selvhelende Data”-Mensteret

“Selvhelende Data”, som eksemplificeret ved JSONFixer-klassen, stemmer godt
overens med princippet kendt som Postels Lov, ogsa kendt som Robusthedsprincippet.

Postels Lov siger:

“Veer konservativ i det, du gor, veer liberal i det, du accepterer fra andre”

Selvhelende data 163

Dette princip, oprindeligt formuleret af Jon Postel, en pioner inden for det tidlige
internet, understreger vigtigheden af at bygge systemer, der er tolerante over for
forskellige eller endda let ukorrekte input, mens de opretholder streng overholdelse

af specificerede protokoller ved afsendelse af output.

I konteksten af “Selvhelende Data” legemligger JSONFixer-klassen Postels Lov ved at
veere liberal i accepten af gdelagt eller ufuldkommen JSON-data genereret af LLM er.
Den afviser eller fejler ikke gjeblikkeligt, nar den meder JSON, der ikke strengt
overholder det forventede format. I stedet tager den en tolerant tilgang og forseger

at rette JSON’en ved hjeelp af LLM ernes kraft.

Ved at veere liberal i accepten af ufuldkommen JSON demonstrerer JSONFixer-
klassen robusthed og fleksibilitet. Den anerkender, at data i den virkelige verden
ofte kommer i forskellige former og ikke altid overholder strenge specifikationer. Ved
elegant at handtere og korrigere disse afvigelser sikrer klassen, at applikationen kan

fortseette med at fungere problemfrit, selv nar der er ufuldkomne data.

P4 den anden side overholder JSONFixer-klassen ogsa det konservative aspekt af
Postels Lov, nar det kommer til output. Efter at have rettet JSON’en ved hjeelp af
LLM’er, validerer klassen den korrigerede JSON for at sikre, at den strengt overholder
det forventede format. Den opretholder dataenes integritet og korrekthed, for de
sendes videre til andre dele af applikationen. Denne konservative tilgang garanterer,
at outputtet fra JSONFixer-klassen er palideligt og konsistent, hvilket fremmer

interoperabilitet og forhindrer spredning af fejl.

Interessante fakta om Jon Postel:

« Jon Postel (1943-1998) var en amerikansk datalog, som spillede en afgerende
rolle i udviklingen af internettet. Han var kendt som “Internettets Gud” for
hans betydelige bidrag til de underliggende protokoller og standarder.

» Postel var redakter for Request for Comments (RFC) dokumentserien, som er
en serie af tekniske og organisatoriske noter om internettet. Han forfattede

eller medforfattede over 200 RFC’er, inklusive de grundleeggende protokoller

Selvhelende data 164

sasom TCP, IP og SMTP.

+ Ud over hans tekniske bidrag var Postel kendt for sin ydmyge og
samarbejdende tilgang. Han troede pa vigtigheden af at n& konsensus
og arbejde sammen om at bygge et robust og interoperabelt netveerk.

+ Postel fungerede som direkter for Computer Networks Division ved
Information Sciences Institute (ISI) ved University of Southern California
(USC) fra 1977 indtil hans alt for tidlige ded i 1998.

+ Som anerkendelse for hans enorme bidrag blev Postel posthumt tildelt den

prestigefyldte Turing Award i 1998, ofte omtalt som “Datalogiens Nobelpris.”

JSONF ixer-klassen fremmer robusthed, fleksibilitet og interoperabilitet, hvilket var
kerneveerdier, som Postel opretholdt gennem hele sin karriere. Ved at bygge systemer,
der er tolerante over for ufuldkommenheder, mens de samtidig opretholder streng
overholdelse af protokoller, kan vi skabe applikationer, der er mere modstandsdygtige

og tilpasningsdygtige over for virkelighedens udfordringer.

Overvejelser og Kontraindikationer

Anvendeligheden af selvhelbredende datatilgange afheenger fuldsteendigt af, hvilken
type data din applikation handterer. Der er en grund til, at du maske ikke gnsker at
monkeypatch JSON . parse til automatisk at selvkorrigere alle JSON-parsing fejl i din

applikation: ikke alle fejl kan eller ber korrigeres automatisk.

Selvhelbredende er seerligt problematisk, nar det er koblet sammen med lovmeessige eller
compliance-krav relateret til datahandtering og -behandling. Nogle brancher, sasom
sundhedsveesenet og finanssektoren, har sa strenge regler vedrerende dataintegritet og
sporbarhed, at enhver form for “black box” datakorrektion uden ordentligt tilsyn eller
logfering kan overtreede disse regler. Det er afgerende at sikre, at alle selvhelbredende

datateknikker, du udvikler, er i overensstemmelse med de geeldende juridiske og

Selvhelende data 165

regulatoriske rammer.

Anvendelsen af selvhelbredende datateknikker, seerligt dem der involverer Al-modeller,
kan ogsd have stor indvirkning pa applikationens ydeevne og ressourceudnyttelse.
Behandling af store meengder data gennem Al-modeller til fejldetektion og -korrektion
kan veere beregningsmeessigt kreevende. Det er vigtigt at vurdere afvejningerne mellem
fordelene ved selvhelbredende data og de tilherende omkostninger i forhold til ydeevne

0g ressourcer.

Lad os dykke ned i de faktorer, der er involveret i at beslutte hvornar og hvor denne

kraftfulde tilgang skal anvendes.

Data Kritikalitet

Nér man overvejer anvendelsen af selvhelbredende datateknikker, er det afgerende
at vurdere kritikaliteten af de data, der behandles. Kritikalitetsniveauet henviser
til vigtigheden og felsomheden af dataene i konteksten af din applikation og dens

forretningsomrade.

I nogle tilfzelde er det méske ikke hensigtsmeessigt at korrigere datafejl automatisk, iseer
hvis dataene er meget folsomme eller har juridiske implikationer. Overvej for eksempel

folgende scenarier:

1. Finansielle Transaktioner: I finansielle applikationer, sasom banksystemer eller
handelsplatforme, er datangjagtighed af sterste betydning. Selv mindre fejl i
finansielle data kan have betydelige konsekvenser, sisom forkerte kontosaldi,
fejldirigerede midler eller fejlagtige handelsbeslutninger. I disse tilfeelde kan
automatiserede korrektioner uden grundig verifikation og revision medfere
uacceptable risici.

2. Medicinske Journaler: Sundhedsapplikationer handterer meget felsomme og
fortrolige patientdata. Unejagtigheder i medicinske journaler kan have alvorlige

konsekvenser for patientsikkerheden og behandlingsbeslutninger. Automatisk

Selvhelende data 166

eendring af medicinske data uden ordentligt tilsyn og validering af kvalificeret
sundhedspersonale kan overtreede lovkrav og bringe patientens velbefindende i
fare.

3. Juridiske Dokumenter: Applikationer, der handterer juridiske dokumenter,
sasom kontrakter, aftaler eller retsdokumenter, kreever streng nejagtighed
og integritet. Selv mindre fejl i juridiske data kan have betydelige juridiske
konsekvenser. Automatiserede korrektioner p& dette omrade er méaske ikke
hensigtsmeessige, da dataene ofte kreever manuel gennemgang og verifikation af

juridiske eksperter for at sikre deres gyldighed og retskraft.

I disse kritiske datascenarier opvejer risiciene forbundet med automatiserede
korrektioner ofte de potentielle fordele. Konsekvenserne af at introducere fejl
eller eendre data forkert kan veere alvorlige og fere til gkonomiske tab, juridiske

forpligtelser eller endda skade pa personer.

Nar man handterer meget kritiske data, er det essentielt at prioritere manuelle
verifikations- og valideringsprocesser. Menneskeligt tilsyn og ekspertise er afgerende
for at sikre dataenes nejagtighed og integritet. Automatiserede selvhelbredende
teknikker kan stadig anvendes til at markere potentielle fejl eller uoverensstemmelser,
men den endelige beslutning om korrektioner bar involvere menneskelig bedemmelse

og godkendelse.

Det er dog vigtigt at bemeerke, at ikke alle data i en applikation nedvendigvis har
samme kritikalitetsniveau. Inden for samme applikation kan der veere delmeengder
af data, som er mindre folsomme eller har lavere konsekvenser, hvis der opstar
fejl. I sadanne tilfeelde kan selvhelbredende datateknikker anvendes selektivt pa disse

specifikke datadelmeengder, mens kritiske data forbliver underlagt manuel verifikation.

Det afgerende er at vurdere kritikaliteten af hver datakategori i din applikation
omhyggeligt og definere klare retningslinjer og processer for handtering af korrektioner
baseret pa de tilknyttede risici og implikationer. Ved at skelne mellem kritiske

(f.eks. hovedbgger, medicinske journaler) og ikke-kritiske data (f.eks. postadresser,

Selvhelende data 167

ressourceadvarsler), kan du finde en balance mellem at udnytte fordelene ved
selvhelbredende datateknikker, hvor det er passende, og opretholde streng kontrol og

tilsyn, hvor det er ngdvendigt.

I sidste ende ber beslutningen om at anvende selvhelbredende datateknikker pa
kritiske data treeffes i samrad med domeeneeksperter, juridiske radgivere og andre
relevante interessenter. Det er essentielt at overveje de specifikke krav, regler og risici,
der er forbundet med din applikations data og tilpasse datakorrekturstrategierne i

overensstemmelse hermed.

Fejlens Alvorlighed

Nér man anvender selvhelbredende datateknikker, er det vigtigt at vurdere alvoren og
pavirkningen af datafejlene. Ikke alle fejl er skabt lige, og den passende fremgangsmade

kan variere atheengigt af problemets alvorlighed.

Mindre uoverensstemmelser eller formateringsproblemer kan veere egnede til
automatisk korrektion. For eksempel kan en selvhelbredende dataarbejder, der er sat til
at rette gdelagt JSON, handtere manglende kommaer eller ikke-escapede anfarselstegn
uden at sendre veesentligt ved dataenes betydning eller struktur. Disse typer fejl er ofte

lige til at rette og har minimal indvirkning pa den overordnede dataintegritet.

Dog kan mere alvorlige fejl, der fundamentalt sendrer betydningen eller integriteten
af dataene, kreeve en anden tilgang. I sidanne tilfeelde er automatiserede korrektioner
maske ikke tilstreekkelige, og menneskelig indgriben kan veere nedvendig for at sikre

dataenes ngjagtighed og gyldighed.

Det er her, at konceptet med at bruge selve Al’en til at hjeelpe med at bestemme fejlenes
alvorlighed kommer i spil. Ved at udnytte Al-modellernes kapaciteter kan vi designe
selvhelbredende databehandlere, der ikke kun korrigerer fejl, men ogsa vurderer fejlenes

alvorlighed og treeffer velinformerede beslutninger om, hvordan de skal handteres.

Lad os for eksempel se pa en selvhelbredende databehandler med ansvar for at korrigere

uoverensstemmelser i datastremmen til en kundedatabase. Behandleren kan designes til

© 0 N O O b W N =

W W W W W N NN DN DN DN DN NN DN - » 2 s
B WN O O 00 N0 0 WN RO O N 0w N

Selvhelende data 168

at analysere dataene og identificere potentielle fejl, sésom manglende eller modstridende
information. I stedet for automatisk at korrigere alle fejl kan behandleren udstyres med
yderligere veerktgjskald, der gor det muligt at markere alvorlige fejl til menneskelig

gennemgang.

Her er et eksempel pa, hvordan dette kan implementeres:

class CustomerDataReviewer
include Raix::ChatCompletion
include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|:reason])
end

def initialize(customer)
self.customer = customer

end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

||\\\||1

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end

36

Selvhelende data 169

end

end

I dette eksempel er CustomerDataHealer-workeren designet til at identificere
og korrigere uoverensstemmelser i kundedata. Igen bruger vi Response Fencing og
Ventriloquist til at fa struktureret output. Vigtigt er det, at workerens systemdirektiv
indeholder instruktioner om at bruge flag_for_review-funktionen, hvis der opdages

alvorlige fejl.

Nér workeren behandler kundedataene, analyserer den dataene og forseger at rette
eventuelle uoverensstemmelser. Hvis workeren vurderer, at fejlene er alvorlige og
kreever menneskelig indgriben, kan den bruge flag_for_review-veerktejet til at

markere dataene og angive en éarsag til markeringen.

chat_completion-metoden kaldes med json: true for at parse de korrigerede
kundedata som JSON. Der er ingen mulighed for at loope efter et funktionskald, sa
resultatet vil veere tomt, hvis flag_for_review blev aktiveret. Ellers opdateres kunden

med de gennemgaede og potentielt korrigerede data.

Ved at inkorporere vurdering af fejlens alvorlighed og muligheden for at markere data
til menneskelig gennemgang bliver den selvhelende dataworker mere intelligent og
tilpasningsdygtig. Den kan handtere mindre fejl automatisk, mens alvorlige fejl eskaleres

til menneskeelige eksperter for manuel intervention.

De specifikke kriterier for at bestemme fejlens alvorlighed kan defineres i workerens
direktiv baseret pa domeneviden og forretningsmeessige krav. Faktorer som
pavirkningen pé dataintegritet, risikoen for datatab eller -korruption og konsekvenserne

af ukorrekte data kan tages i betragtning ved vurdering af alvorsgraden.

Ved at udnytte Al til at vurdere fejlens alvorlighed og give muligheder for menneskelig
intervention kan selvhelende datateknikker skabe balance mellem automatisering og
opretholdelse af datangjagtighed. Denne tilgang sikrer, at mindre fejl rettes effektivt,
mens alvorlige fejl modtager den nedvendige opmerksomhed og ekspertise fra

menneskelige bedemmere.

Selvhelende data 170

Domanekompleksitet

Nar man overvejer anvendelsen af selvhelende datateknikker, er det vigtigt at
evaluere kompleksiteten af datademeenet og de regler, der styrer dets struktur og
relationer. Domeenets kompleksitet kan have betydelig indflydelse pa effektiviteten og

gennemfprligheden af automatiserede datakorrektionsmetoder.

Selvhelende datateknikker fungerer godt, nar dataene folger veldefinerede menstre
og begreensninger. I domeener hvor datastrukturen er relativt simpel, og relationerne
mellem dataelementer er ligetil, kan automatiske korrektioner anvendes med hej grad
af sikkerhed. For eksempel kan korrigering af formateringsproblemer eller handheevelse
af grundleeggende datatypebegreensninger ofte handteres effektivt af selvhelende

dataworkere.

Dog vokser udfordringerne forbundet med automatisk datakorrigering i takt med, at
kompleksiteten af datadomeenet gges. I domeener med indviklet forretningslogik,
komplekse relationer mellem dataentiteter eller domeenespecifikke regler og
undtagelser, kan selvhelende datateknikker ikke altid fange nuancerne og kan

introducere utilsigtede konsekvenser.

Lad os betragte et eksempel pa et komplekst domeene: et finansielt handelssystem.
I dette domeene involverer dataene forskellige finansielle instrumenter, markedsdata,
handelsregler og lovmeessige krav. Relationerne mellem forskellige dataelementer kan
veere indviklede, og reglerne for datavaliditet og konsistens kan veere meget specifikke

for domeenet.

I et s4 komplekst domene ville en selvhelende dataworker, der har til opgave at
korrigere uoverensstemmelser i handelsdata, have behov for en dyb forstaelse af
de domeenespecifikke regler og begreensninger. Den skulle tage hensyn til faktorer
som markedsreguleringer, handelsgreenser, risikoberegninger og afviklingsprocedurer.
Automatiske korrektioner i denne sammenheeng kan ikke altid fange domeenets fulde

kompleksitet og kan utilsigtet introducere fejl eller overtreede domeenespecifikke regler.

Selvhelende data 171

For at handtere udfordringerne ved domeenekompleksitet kan selvhelende datateknikker
forbedres ved at inkorporere domeenespecifik viden og regler i Al-modellerne og

workerne. Dette kan opnas gennem teknikker som:

1. Domaenespecifik Traening: Al-modellerne, der bruges til selvhelende data, kan
dirigeres eller endda finjusteres pa domeenespecifikke dataseet, der indfanger
seeregenhederne og reglerne for det specifikke domeene. Ved at eksponere
modellerne for repreesentative data og scenarier kan de leere menstrene,
begreensningerne og undtagelserne, der er specifikke for domeenet.

2. Regelbaserede Begreensninger: Selvhelende dataworkere kan udvides med
eksplicitte regelbaserede begreensninger, der koder domenespecifik viden. Disse
regler kan defineres af domeeneeksperter og integreres i datakorrektionsprocessen.
Al-modellerne kan derefter bruge disse regler til at guide deres beslutninger og
sikre overholdelse af domenespecifikke krav.

3. Samarbejde med Domeneeksperter: I komplekse domeener er det afgerende at
involvere domeeneeksperter i design og udvikling af selvhelende datateknikker.
Domeeneeksperter kan bidrage med veerdifuld indsigt i dataenes kompleksitet,
forretningsreglerne og potentielle seertilfeelde. Deres viden kan inkorporeres i
Al-modellerne og workerne for at forbedre ngjagtigheden og palideligheden af
automatiske datakorrektioner ved hjeelp af Human In The Loop menstre.

4. Inkrementel og Iterativ Tilgang: Nar man arbejder med komplekse domsener, er
det ofte fordelagtigt at adoptere en inkrementel og iterativ tilgang til selvhelende
data. I stedet for at forsege at automatisere korrektioner for hele domeenet pa
én gang, fokuserer man pa specifikke subdomeener eller datakategorier, hvor
reglerne og begreensningerne er velforstaede. Gradvist udvider man omfanget
af selvhelende teknikker, efterhanden som forstaelsen af domeenet vokser, og

teknikkerne viser sig effektive.

Ved at tage hejde for kompleksiteten i datadomeenet og inkorporere domeenespecifik

viden i selvhelende datateknikker kan man skabe balance mellem automatisering og

Selvhelende data 172

nejagtighed. Det er vigtigt at erkende, at selvhelende data ikke er en universel losning,

og at tilgangen ber tilpasses de specifikke krav og udfordringer i hvert domaene.

I komplekse domeener kan en hybrid tilgang, der kombinerer selvhelende datateknikker
med menneskelig ekspertise og overvagning, veere mest effektiv. Automatiske
korrektioner kan héndtere rutinepreegede og veldefinerede tilfzelde, mens komplekse
scenarier eller undtagelser kan markeres til menneskelig gennemgang og indgriben.
Denne samarbejdende tilgang sikrer, at fordelene ved automatisering realiseres,
samtidig med at den nedvendige kontrol og ngjagtighed i komplekse datadomeener

opretholdes.

Forklarbarhed og Gennemsigtighed

Forklarbarhed henviser til evnen til at forstd og fortolke reesonnementet bag de
beslutninger, der treeffes af Al-modeller, mens gennemsigtighed involverer at give klar

indsigt i datakorrektionsprocessen.

I mange sammenhenge skal datasendringer veere reviderbare og kunne retfeerdiggeres.
Interessenter, herunder forretningsbrugere, revisorer og tilsynsmyndigheder, kan
kreeve forklaringer pa, hvorfor bestemte datakorrektioner blev foretaget, og hvordan
Al-modellerne naede frem til disse beslutninger. Dette er iseer afgerende i domeener,
hvor datanejagtighed og -integritet har veesentlige konsekvenser, sasom finans,

sundhedsveesen og juridiske anliggender.

For at imgdekomme behovet for forklarbarhed og gennemsigtighed ber selvhelende
datateknikker inkorporere mekanismer, der giver indsigt i Al-modellernes

beslutningsproces. Dette kan opnas gennem forskellige tilgange:

1. Tankeraekke: Ved at bede modellen om at forklare sin teenkning “hejt” for
anvendelse af sendringer i data, kan man lettere forsta beslutningsprocessen
og kan generere menneskelsesbare forklaringer pa de foretagne korrektioner.
Kompromisset er en smule mere kompleksitet i adskillelsen af forklaringen fra

det strukturerede dataoutput, hvilket kan handteres ved...

Selvhelende data 173

2. Forklaringsgenerering: Selvhelende dataarbejdere kan udstyres med evnen
til at generere menneskeleesbare forklaringer p& de korrektioner, de foretager.
Dette kan opnas ved at bede modellen om at outputte sin beslutningsproces
som letforstaelige forklaringer integreret i selve dataene. For eksempel kunne
en selvhelende dataarbejder generere en rapport, der fremhever de specifikke
datainkonsistenser den identificerede, de korrektioner den anvendte, og
begrundelsen bag disse korrektioner.

3. Funktionsveegtning: Al-modeller kan instrueres med information om
vigtigheden af forskellige funktioner eller attributter i datakorrektionsprocessen
som en del af deres direktiver. Disse direktiver kan derefter eksponeres for
menneskelige interessenter. Ved at identificere de neglefaktorer, der pavirker
modellens beslutninger, kan interessenter fi indsigt i reesonnementet bag
korrektionerne og vurdere deres gyldighed.

4. Logning og Revision: Implementering af omfattende lognings- og
revisionsmekanismer er afgerende for at opretholde gennemsigtighed i den
selvhelende dataproces. Hver datakorrektion foretaget af Al-modeller ber logges,
inklusive de originale data, de korrigerede data og de specifikke handlinger, der
er foretaget. Dette revisionsspor muligger retrospektiv analyse og giver en klar
registrering af de sendringer, der er foretaget i dataene.

5. Menneske-i-kredslobet-tilgang: Inkorporering af en menneske-i-kredslebet-
tilgang kan forbedre forklarbarheden og gennemsigtigheden af selvhelende
datateknikker. Ved at involvere menneskeeksperter i gennemgang og validering
af Al-genererede korrektioner kan organisationer sikre, at korrektionerne er i
overensstemmelse med domaeneviden og forretningsmeessige krav. Menneskelig
overvagning tilfojer et ekstra lag af ansvarlighed og tillader identifikation af
potentielle bias eller fejl i Al-modellerne.

6. Kontinuerlig Overvagning og Evaluering: Regelmeessig overvagning og
evaluering af selvhelende datateknikkers ydeevne er essentielt for at opretholde

gennemsigtighed og tillid. Ved at vurdere Al-modellernes ngjagtighed og

Selvhelende data 174

effektivitet over tid kan organisationer identificere eventuelle afvigelser eller
anomalier og treeffe korrigerende foranstaltninger. Kontinuerlig overvagning
hjeelper med at sikre, at den selvhelende dataproces forbliver palidelig og tilpasset

de egnskede resultater.

Forklarbarhed og gennemsigtighed er kritiske overvejelser ved implementering
af selvhelende datateknikker. Ved at give klare forklaringer pa datakorrektioner,
vedligeholde omfattende revisionsspor og involvere menneskelig overvagning kan
organisationer opbygge tillid til den selvhelende dataproces og sikre, at eendringerne i

dataene er berettigede og i overensstemmelse med forretningsmalene.

Det er vigtigt at finde en balance mellem fordelene ved automatisering og behovet
for gennemsigtighed. Mens selvhelende datateknikker kan forbedre datakvalitet og
effektivitet betydeligt, bor det ikke ske pa bekostning af at miste overblik og kontrol over
datakorrektionsprocessen. Ved at designe selvhelende dataarbejdere med forklarbarhed
og gennemsigtighed for gje kan organisationer udnytte Al's kraft samtidig med at

opretholde det nedvendige niveau af ansvarlighed og tillid til dataene.

Utilsigtede Konsekvenser

Mens selvhelende datateknikker sigter mod at forbedre datakvalitet og konsistens, er det
afgerende at veere opmeerksom pa potentialet for utilsigtede konsekvenser. Automatiske
korrektioner kan, hvis de ikke er omhyggeligt designet og overvaget, utilsigtet eendre

betydningen eller konteksten af dataene, hvilket forer til afledte problemer.

En af de primeere risici ved selvhelende data er introduktionen af bias eller fejl i
datakorrektionsprocessen. Al-modeller kan, ligesom ethvert andet softwaresystem, veere
underlagt bias, der er til stede i treeningsdata eller introduceret gennem algoritmernes
design. Hvis disse bias ikke identificeres og afbgdes, kan de forplante sig gennem den

selvhelende dataproces og resultere i skeevvredne eller ukorrekte datamodifikationer.

Tag for eksempel en selvhelbredende dataarbejder, der har til opgave at korrigere

uoverensstemmelser i kunders demografiske data. Hvis Al-modellen har leert fordomme

Selvhelende data 175

fra historiske data, sidsom at forbinde bestemte erhverv eller indkomstniveauer med
specifikke ken eller etniciteter, kan den foretage ukorrekte antagelser og sendre dataene
pa en made, der forsteerker disse fordomme. Dette kan fore til ungjagtige kundeprofiler,

fejlagtige forretningsbeslutninger og potentielt diskriminerende resultater.

En anden potentiel utilsigtet konsekvens er tabet af veerdifuld information eller
kontekst under datakorrigeringsprocessen. Selvhelbredende datateknikker fokuserer
ofte pa at standardisere og normalisere data for at sikre konsistens. I nogle tilfzelde kan
de oprindelige data dog indeholde nuancer, undtagelser eller kontekstuel information,
som er vigtig for at forsta det fulde billede. Automatiske korrektioner, der blindt
gennemtvinger standardisering, kan utilsigtet fjerne eller slere denne veerdifulde

information.

Forestil dig for eksempel en selvhelbredende dataarbejder med ansvar for at korrigere
uoverensstemmelser i medicinske journaler. Hvis arbejderen stoder pa en patients
sygehistorie med en sjeelden tilstand eller en useedvanlig behandlingsplan, kan den
forsege at normalisere dataene til at passe ind i et mere almindeligt menster. Ved at
gore dette kan den dog miste de specifikke detaljer og den kontekst, der er afgerende for
at repreesentere patientens unikke situation preecist. Dette tab af information kan have

alvorlige konsekvenser for patientpleje og medicinske beslutninger.

For at mindske risikoen for utilsigtede konsekvenser er det essentielt at tage en proaktiv

tilgang ved design og implementering af selvhelbredende datateknikker:

1. Grundig Test og Validering: For selvhelbredende dataarbejdere implementeres
i produktion, er det afgerende at teste og validere deres adfzerd grundigt mod en
reekke forskellige scenarier. Dette omfatter test med repreesentative dataseet, der
deekker forskellige kanttilfzelde, undtagelser og potentielle fordomme. Rigoros test
hjeelper med at identificere og handtere eventuelle utilsigtede konsekvenser, for
de pavirker data i den virkelige verden.

2. Kontinuerlig Overvagning og Evaluering: Implementering af kontinuerlige

overvagnings- og evalueringsmekanismer er essentielt for at opdage og afbade

Selvhelende data 176

utilsigtede konsekvenser over tid. Regelmeessig gennemgang af resultaterne fra
selvhelbredende dataprocesser, analyse af pavirkningen pa downstream-systemer
og beslutningstagning, samt indsamling af feedback fra interessenter kan
hjeelpe med at identificere eventuelle negative effekter og igangseette rettidige
korrigerende handlinger. Hvis din organisation har operationelle dashboards,
er det sandsynligvis en god idé at tilfgje tydeligt synlige metrikker relateret til
automatiserede datasendringer. At tilfeje alarmer forbundet med store afvigelser
fra normal datasendringsaktivitet er sandsynligvis en endnu bedre idé!

3. Menneskelig Overvagning og Intervention: Det er afggrende at opretholde
menneskelig overvigning og muligheden for at gribe ind i den selvhelbredende
dataproces. Mens automatisering kan forbedre effektiviteten markant, er det
vigtigt at have menneskelige eksperter til at gennemgé og validere de korrektioner,
der foretages af Al-modeller, iseer inden for kritiske eller folsomme domeener.
Menneskelig demmekraft og domeeneekspertise kan hjeelpe med at identificere

og héndtere eventuelle utilsigtede konsekvenser, der méatte opsta.

4. Forklarbar AI (XAI) og Gennemsigtighed: Som diskuteret i det foregdende afsnit
kan inkorporering af forklarbar Al-teknikker og sikring af gennemsigtighed i
den selvhelbredende dataproces hjeelpe med at afbede utilsigtede konsekvenser.
Ved at give klare forklaringer pa datakorrektioner og vedligeholde omfattende
revisionsspor kan organisationer bedre forstd og spore reesonnementet bag de
eendringer, der foretages af Al-modeller.

5. Inkrementel og Iterativ Tilgang: Adoption af en inkrementel og iterativ tilgang
til selvhelbredende data kan hjeelpe med at minimere risikoen for utilsigtede
konsekvenser. I stedet for at anvende automatiske korrektioner pa hele dataseettet
pé én gang, start med en delmeengde af data og udvid gradvist omfanget
efterhdnden som teknikkerne viser sig effektive og palidelige. Dette muligger
omhyggelig overvagning og justering undervejs, hvilket reducerer pavirkningen

af eventuelle utilsigtede konsekvenser.

Selvhelende data 177

6. Samarbejde og Feedback: Engagement af interessenter fra forskellige domeener
og opmuntring til samarbejde og feedback gennem hele den selvhelbredende
dataproces kan hjeelpe med at identificere og handtere utilsigtede konsekvenser.
Regelmaessig indhentning af input fra domeeneeksperter, dataforbrugere
og slutbrugere kan give verdifuld indsigt i den praktiske pavirkning af

datakorrektionerne og fremheeve eventuelle oversete problemer.

Ved proaktivt at adressere risikoen for utilsigtede konsekvenser og implementere
passende sikkerhedsforanstaltninger kan organisationer udnytte fordelene ved
selvhelbredende datateknikker samtidig med at potentielle negative effekter minimeres.
Det er vigtigt at tilga selvhelbredende data som en iterativ og kollaborativ proces,
kontinuerligt overvage, evaluere og forfine teknikkerne for at sikre, at de er i
overensstemmelse med de gnskede resultater og opretholder dataenes integritet og

palidelighed.

Nér man overvejer brugen af selvhelbredende datamenstre, er det essentielt at
evaluere disse faktorer omhyggeligt og afveje fordelene mod de potentielle
risici og begreensninger. I nogle tilfeelde kan en hybrid tilgang, der kombinerer
automatiske korrektioner med menneskelig overvagning og intervention, veere den

mest hensigtsmeessige lasning.

Det er ogsa veerd at bemeerke, at selvhelbredende datateknikker ikke ber ses som en
erstatning for robust datavalidering, inputvalidering og fejlhdndteringsmekanismer.
Disse grundleeggende praksisser forbliver kritiske for at sikre dataintegritet og sikkerhed.
Selvhelbredende data ber ses som en komplementeer tilgang, der kan udvide og forbedre

disse eksisterende foranstaltninger.

I sidste ende atheenger beslutningen om at anvende selvhelbredende datamenstre af
de specifikke krav, begreensninger og prioriteter i din applikation. Ved omhyggeligt

at overveje de ovenneevnte betragtninger og tilpasse dem til din applikations mal

Selvhelende data 178

og arkitektur kan du treeffe velinformerede beslutninger om hvornar og hvordan

selvhelbredende datateknikker kan udnyttes effektivt.

Kontekstuel Indholdsgenering

Mgnstre for Kontekstuel Indholdsgenering udnytter kraften i store sprogmodeller

(LLMs) til at generere dynamisk og kontekstspecifikt indhold i applikationer. Denne
kategori af menstre anerkender vigtigheden af at levere personaliseret og relevant
indhold til brugere baseret pa deres specifikke behov, preeferencer og endda tidligere og

nuveerende interaktioner med applikationen.

I denne tilgangs kontekst refererer “indhold” bade til primert indhold (dvs.

blogindleeg, artikler osv.) og meta-indhold, sdsom anbefalinger til primeert indhold.

Mgnstre for Kontekstuel Indholdsgenering kan spille en afgerende rolle i at forbedre
dine brugeres engagementsniveauer, levere skreeddersyede oplevelser og automatisere

indholdsopgaver bade for dig og dine brugere. Ved at anvende de menstre, vi beskriver

Kontekstuel Indholdsgenering 180

i dette kapitel, kan du skabe applikationer, der genererer indhold dynamisk og tilpasser
sig kontekst og input i realtid.

Menstrene fungerer ved at integrere LLMs i applikationens output, lige fra
brugergreensefladen (nogle gange omtalt som “chrome”), til e-mails og andre former

for notifikationer, savel som eventuelle indholdspipelines.

Nér en bruger interagerer med applikationen eller udlgser en specifik
indholdsanmodning, opfanger applikationen den relevante kontekst, sasom
brugerpreeferencer, tidligere interaktioner eller specifikke prompts. Denne kontekstuelle
information fedes derefter ind i LLM’en, sammen med eventuelle nedvendige skabeloner
eller retningslinjer, og bruges til at producere tekstoutput, som ellers skulle have veeret

enten hardkodet, gemt i en database eller algoritmisk genereret.

Det LLM-genererede indhold kan antage forskellige former, sasom personlige
anbefalinger, dynamiske produktbeskrivelser, tilpassede e-mailsvar eller endda hele
artikler eller blogindleeg. En af de mest radikale anvendelser af dette indhold, som
jeg var pionér for for over et ar siden, er dynamisk generering af Ul-elementer som

formularetiketter, veerktajstips og andre former for forklarende tekst.

Personalisering

En af de vigtigste fordele ved menstre for Kontekstuel Indholdsgenering er muligheden
for at levere meget personlige oplevelser til brugerne. Ved at generere indhold baseret
pa brugerspecifik kontekst gor disse menstre det muligt for applikationer at skreeddersy

indhold til individuelle brugeres interesser, preeferencer og interaktioner.

Personalisering handler om mere end blot at indseette en brugers navn i generisk indhold.
Det involverer udnyttelse af den righoldige kontekst, der er tilgeengelig om hver bruger,
til at generere indhold, der resonerer med deres specifikke behov og ensker. Denne

kontekst kan omfatte en bred vifte af faktorer, sdsom:

Kontekstuel Indholdsgenering 181

1. Brugerprofiloplysninger: P4 det mest generelle niveau for anvendelse af denne
teknik kan demografiske data, interesser, preeferencer og andre profilattributter
bruges til at generere indhold, der er i overensstemmelse med brugerens baggrund
og karakteristika.

2. Adferdsdata: En brugers tidligere interaktioner med applikationen, sdsom viste
sider, klikkede links eller kebte produkter, kan give verdifuld indsigt i deres
adfeerd og interesser. Disse data kan bruges til at generere indholdsforslag, der
afspejler deres engagementsmenstre og forudsiger deres fremtidige behov.

3. Kontekstuelle Faktorer: Brugerens aktuelle kontekst, sasom deres
placering, enhed, tidspunkt pa dagen eller endda vejret, kan péavirke
indholdsgenereringsprocessen. For eksempel kunne en rejseapplikation have en
Al-medarbejder, der er i stand til at generere personlige anbefalinger baseret pa

brugerens aktuelle placering og de aktuelle vejrforhold.

Ved at udnytte disse kontekstuelle faktorer ger menstre for Kontekstuel
Indholdsgenering det muligt for applikationer at levere indhold, der foles skreeddersyet

til hver enkelt bruger. Dette niveau af personalisering har flere veesentlige fordele:

1. @get Engagement: Personaliseret indhold fanger brugernes opmeerksomhed og
holder dem engagerede i applikationen. Nar brugerne foler, at indholdet er
relevant og taler direkte til deres behov, er de mere tilbgjelige til at bruge mere tid
pé at interagere med applikationen og udforske dens funktioner.

2. Forbedret Brugertilfredshed: Personaliseret indhold viser, at applikationen
forstar og tager hensyn til brugerens unikke krav. Ved at levere indhold, der
er hjeelpsomt, informativt og i overensstemmelse med deres interesser, kan
applikationen ege brugertilfredsheden og opbygge en steerkere forbindelse med
sine brugere.

3. Hojere Konverteringsrater: 1 forbindelse = med e-handel eller
marketingapplikationer kan personaliseret indhold have betydelig indvirkning

p& konverteringsrater. Ved at preesentere brugerne for produkter, tilbud

Kontekstuel Indholdsgenering 182

eller anbefalinger, der er skreeddersyet til deres preeferencer og adfeerd,
kan applikationen oge sandsynligheden for, at brugerne foretager enskede

handlinger, sasom at foretage et keb eller tilmelde sig en tjeneste.

Produktivitet

Menstre for Kontekstuel Indholdsgenering kan markant ege visse former for
produktivitet ved at reducere behovet for manuel indholdsgenering og redigering
i kreative processer. Ved at udnytte kraften i LLMs kan du generere kvalitetsindhold i
stor skala og spare tid og kreefter, som dine indholdsskabere og udviklere ellers skulle

have brugt pa kedeligt manuelt arbejde.

Traditionelt set skal indholdsproducenter researche, skrive, redigere og formatere
indhold for at sikre, at det opfylder applikationens krav og brugerens forventninger.
Denne proces kan vere tidskreevende og ressourceintensiv, iseer nar meengden af

indhold vokser.

Med menstre for kontekstuel indholdsproduktion kan indholdsproduktionen dog i
vid udstreekning automatiseres. LLM’er kan generere sammenhaengende, grammatisk
korrekt og kontekstuelt relevant indhold baseret pa de givne prompter og retningslinjer.

Denne automatisering giver flere produktivitetsfordele:

1. Reduceret manuelt arbejde: Ved at uddelegere opgaver med indholdsproduktion
til LLM’er kan indholdsproducenter fokusere pa opgaver pa hgjere niveau sasom
indholdsstrategi, idéudvikling og kvalitetssikring. De kan give LLM’en den
nedvendige kontekst, skabeloner og retningslinjer og lade den handtere selve
indholdsproduktionen. Dette reducerer den manuelle indsats, der kreeves til at
skrive og redigere, hvilket gar indholdsproducenter mere produktive og effektive.

2. Hurtigere indholdsproduktion: LLM’er kan generere indhold meget hurtigere

end menneskelige forfattere. Med de rigtige prompter og retningslinjer kan en

Kontekstuel Indholdsgenering 183

LLM producere flere stykker indhold pa fa sekunder eller minutter. Denne
hastighed gor det muligt for applikationer at generere indhold i et meget hurtigere
tempo og dermed folge med brugernes behov og det konstant foranderlige digitale

landskab.

Forer hurtigere indholdsproduktion til en “tragedy of the commons” situation, hvor

internettet drukner i indhold, som ingen lseser? Desveerre tror jeg, at svaret er ja.

3. Konsistens og kvalitet: LLM’er kan uden problemer revidere indhold, sa det
er konsistent i stil, tone og kvalitet. Med klare retningslinjer og eksempler
kan visse typer applikationer (f.eks. nyhedsredaktioner, PR osv.) sikre, at deres
menneskeskabte indhold stemmer overens med deres brand voice og opfylder de
onskede kvalitetsstandarder. Denne konsistens reducerer behovet for omfattende
redigering og revision og sparer tid og kreefter i indholdsproduktionsprocessen.

4. Tteration og optimering: Menstre for kontekstuel indholdsproduktion muligger
hurtig iteration og optimering af indhold. Ved at justere prompterne, skabelonerne
eller retningslinjerne, der gives til LLM’en, kan dine applikationer hurtigt generere
variationer af indhold og teste forskellige tilgange pa en automatiseret made,
som aldrig har veeret mulig tidligere. Denne iterative proces tillader hurtigere
eksperimentering og forfining af indholdsstrategier, hvilket over tid forer til mere
effektivt og engagerende indhold. Denne seerlige teknik kan veere en total game-
changer for applikationer som e-handel, der lever og der baseret pa afvisningsrater

og engagement

Kontekstuel Indholdsgenering 184

’ Det er vigtigt at bemserke, at selvom menstre for kontekstuel

indholdsproduktion kan forbedre produktiviteten markant, eliminerer
de ikke fuldsteendigt behovet for menneskelig involvering.
Indholdsproducenter og redakterer spiller stadig en afggrende rolle i
at definere den overordnede indholdsstrategi, give vejledning til LLM’en og

sikre kvaliteten og hensigtsmeessigheden af det genererede indhold.

Ved at automatisere de mere repetitive og tidskreevende aspekter af indholdsproduktion
friger menstre for kontekstuel indholdsproduktion veerdifuld menneskelig tid
og ressourcer, der kan omdirigeres til opgaver med hgjere veerdi. Denne ggede
produktivitet ger det muligt for dig at levere mere personaliseret og engagerende

indhold til brugerne, samtidig med at arbejdsgangen for indholdsproduktion optimeres.

Hurtig iteration og eksperimentering

Menstre for kontekstuel indholdsproduktion ger det muligt hurtigt at iterere og
eksperimentere med forskellige indholdsvariationer, hvilket muligger hurtigere
optimering og forfining af din indholdsstrategi. Du kan generere flere versioner
af indhold pa fa sekunder ved blot at justere konteksten, skabelonerne eller

retningslinjerne, der gives til modellen.

Denne mulighed for hurtig iteration giver flere centrale fordele:

1. Test og optimering: Med muligheden for hurtigt at generere indholdsvariationer
kan du nemt teste forskellige tilgange og male deres effektivitet. For eksempel kan
du generere flere versioner af en produktbeskrivelse eller et marketingbudskab,
hver tilpasset til et specifikt brugersegment eller en specifik kontekst. Ved at
analysere brugerengagementsmetrikker sasom klikrater eller konverteringsrater
kan du identificere de mest effektive indholdsvariationer og optimere din

indholdsstrategi i overensstemmelse hermed.

Kontekstuel Indholdsgenering 185

2. A/B-test: Mgnstre for kontekstuel indholdsproduktion muligger problemfri
A/B-test af indhold. Du kan generere to eller flere variationer af indhold og
tilfeeldigt vise dem til forskellige brugergrupper. Ved at sammenligne hver
variations ydeevne kan du afggre, hvilket indhold der resonerer bedst med din
malgruppe. Denne datadrevne tilgang ger det muligt for dig at treeffe informerede
beslutninger og lebende forfine dit indhold for at maksimere brugerengagement
og opna dine enskede resultater.

3. Personaliseringseksperimenter: Hurtig iteration og eksperimentering er seerligt
veerdifuldt, nar det kommer til personalisering. Med menstre for kontekstuel
indholdsproduktion kan du hurtigt generere personaliserede indholdsvariationer
baseret pa forskellige brugersegmenter, preeferencer eller adfeerd. Ved at
eksperimentere med forskellige personaliseringsstrategier kan du identificere
de mest effektive tilgange til at engagere individuelle brugere og levere
skreeddersyede oplevelser.

4. Tilpasning til Skiftende Tendenser: Evnen til at iterere og eksperimentere
hurtigt gor det muligt at forblive smidig og tilpasse sig skiftende tendenser og
brugerpreeferencer. Nar nye emner, sggeord eller brugeradfeerd opstar, kan du
hurtigt generere indhold, der er i trdd med disse tendenser. Ved kontinuerligt
at eksperimentere og forfine dit indhold kan du forblive relevant og bevare en
konkurrencemseessig fordel i det konstant udviklende digitale landskab.

5. Omkostningseffektiv Eksperimentering: Traditionel indholdseksperimentering
involverer ofte betydelig tid og ressourcer, da indholdsskabere manuelt
skal udvikle og teste forskellige variationer. Med menstre for Kontekstuel
Indholdsgenering er omkostningerne ved eksperimentering dog kraftigt
reduceret. Store sprogmodeller kan generere indholdsvariationer hurtigt og i stor
skala, hvilket giver dig mulighed for at udforske en bred vifte af idéer og tilgange

uden at padrage sig veesentlige omkostninger.

For at fa mest muligt ud af hurtig iteration og eksperimentering er det vigtigt at have

en veldefineret eksperimenteringsramme péa plads. Denne ramme ber omfatte:

Kontekstuel Indholdsgenering 186

« Klare mal og hypoteser for hvert eksperiment

« Passende metrikker og sporingsmekanismer til at male indholdets ydeevne

« Segmenterings- og malretningsstrategier for at sikre, at relevante
indholdsvariationer leveres til de rigtige brugere

« Analyse- og rapporteringsveerktgjer til at udlede indsigter fra de eksperimentelle
data

« En proces for at inkorporere leering og optimeringer i din indholdsstrategi

Ved at omfavne hurtig iteration og eksperimentering kan du kontinuerligt forfine og
optimere dit indhold, sa det forbliver engagerende, relevant og effektivt i forhold til at n&
din applikations mal. Denne smidige tilgang til indholdsproduktion giver dig mulighed

for at veere pa forkant og levere exceptionelle brugeroplevelser.

Skalerbarhed og Effektivitet

I takt med at applikationer vokser, og eftersporgslen efter personaliseret indhold
stiger, muligger kontekstuelle indholdsgenereringsmenstre effektiv skalering af
indholdsproduktion. Store sprogmodeller kan generere indhold til et stort antal
brugere og kontekster samtidigt, uden behov for en proportionel stigning i
menneskelige ressourcer. Denne skalerbarhed giver applikationer mulighed for at
levere personlige oplevelser til en voksende brugerbase uden at overbelaste deres

indholdsproduktionskapacitet.

Bemeerk, at kontekstuel indholdsgenering kan bruges effektivt til at
internationalisere din applikation “pd farten”. Faktisk er det preecis det, jeg
gjorde ved hjeelp af min Instant18n Gem til at levere Olympia pa mere end

et halvt dusin sprog, selvom vi er mindre end et ar gamle.

Kontekstuel Indholdsgenering 187

Al-drevet Lokalisering

Huvis I tillader mig at prale et gjeblik, mener jeg, at mit Instant18n-bibliotek til Rails-
apps er et banebrydende eksempel pa “Kontekstuel Indholdsgenering”-menstret i aktion,
der viser det transformative potentiale for Al i applikationsudvikling. Denne gem
udnytter kraften fra OpenAls GPT store sprogmodel til at revolutionere méden, hvorpa

internationalisering og lokalisering handteres i Rails-applikationer.

Traditionelt involverer internationalisering af en Rails-applikation manuel definition
af oversettelsesnggler og tilvejebringelse af tilsvarende overseettelser for hvert
understottet sprog. Denne proces kan veere tidskreevende, ressourceintensiv og
tilbgjelig til inkonsistenser. Med Instant18n-gemmen er lokaliseringsparadigmet dog

fuldsteendigt redefineret.

Ved at integrere en stor sprogmodel gor Instant18n-gemmen det muligt at generere
overseettelser on-the-fly, baseret pa tekstens kontekst og betydning. I stedet for at veere
afheengig af foruddefinerede overseettelsesnggler og statiske overseettelser, overseetter
gemmen dynamisk tekst ved hjeelp af Al’s kraft. Denne tilgang tilbyder flere centrale
fordele:

1. Problemfri Lokalisering: Med Instant18n-gemmen behever udviklere ikke
leengere manuelt at definere og vedligeholde overseettelsesfiler for hvert
understottet sprog. Gemmen genererer automatisk overszettelser baseret pa den
givne tekst og det enskede malsprog, hvilket gor lokaliseringsprocessen ubesveeret
og problemfri.

2. Kontekstuel Ngjagtighed: AI kan gives tilstreekkelig kontekst til at forsta
nuancerne i den tekst, der overseettes. Den kan tage hejde for den omgivende
kontekst, talemader og kulturelle referencer for at generere overseettelser, der er
preecise, naturligt lydende og kontekstuelt passende.

3. Omfattende Sprogunderstattelse: Instantl8n-gemmen udnytter GPT’s

omfattende viden og sproglige kapaciteter, hvilket muligger overseettelser

Kontekstuel Indholdsgenering 188

til et omfattende udvalg af sprog. Fra almindelige sprog som spansk og fransk til
mere obskure eller fiktive sprog som klingon og elvisk kan gemmen héandtere en
bred vifte af overseettelseskrav.

4. Fleksibilitet og Kreativitet: Gemmen gér ud over traditionelle sprogoverseettelser
og tillader kreative og utraditionelle lokaliseringsmuligheder. Udviklere kan
overseette tekst til forskellige stilarter, dialekter eller endda fiktive sprog, hvilket
abner nye muligheder for unikke brugeroplevelser og engagerende indhold.

5. Ydelsesoptimering: Instant18n-gemmen inkorporerer cache-mekanismer for at
forbedre ydelsen og reducere overhead ved gentagne overseettelser. Oversat tekst
caches, hvilket gor det muligt at betjene efterfelgende anmodninger om samme

oversettelse hurtigt uden behov for redundante API-kald.

Instant18n-gemmen eksemplificerer kraften i “Kontekstuel Indholdsgenering”-menstret
ved at udnytte Al til at generere lokaliseret indhold dynamisk. Den viser, hvordan Al
kan integreres i kernefunktionaliteten af en Rails-applikation og transformere den méade,

udviklere tilgar internationalisering og lokalisering pa.

Ved at eliminere behovet for manuel overseettelseshandtering og muliggere
overseettelser i realtid baseret pa kontekst, sparer Instant18n gem udviklere betydelig tid
og kraefter. Det giver dem mulighed for at fokusere pa at udvikle kernefunktionaliteten

i deres applikation, mens lokaliseringsaspektet handteres problemfrit og preecist.

Vigtigheden af Brugertest og Feedback

Til sidst er det vigtigt altid at huske betydningen af brugertest og feedback. Det
er afgorende at validere, at kontekstuel indholdsgenering lever op til brugernes
forventninger og er i overensstemmelse med applikationens mal. Fortseet med at
iterere og forfine det genererede indhold baseret pa brugerindsigter og analyser.
Hvis du genererer dynamisk indhold i stor skala, som ville veere umuligt at validere

manuelt af dig og dit team, ber du overveje at tilfoje feedback-mekanismer, der giver

Kontekstuel Indholdsgenering 189

brugerne mulighed for at rapportere indhold, der er meerkeligt eller forkert, sammen
med en forklaring af hvorfor. Denne verdifulde feedback kan endda fedes til en

Al-medarbejder med opgaven at foretage justeringer i den komponent, der genererede
indholdet!

Generative Ul

Opmeerksomhed er sa eftertragtet i disse dage, at effektivt brugerengagement nu

kreever softwareoplevelser, der ikke kun er problemfrie og intuitive, men ogsa i hgj
grad personligt tilpasset den enkeltes behov, preeferencer og kontekst. Som folge
heraf star designere og udviklere i stigende grad over for udfordringen med at skabe
brugergreenseflader, der kan tilpasse sig og imedekomme hver enkelt brugers unikke

behov i stor skala.

Generative UI (GenUI) er en virkelig revolutionerende tilgang til design af
brugergreenseflader, der udnytter kraften i store sprogmodeller (LLMs) til at skabe
heijt personaliserede og dynamiske brugeroplevelser i realtid. Jeg enskede at sikre mig,
at jeg i det mindste gav dig en introduktion til GenUI i denne bog, fordi jeg mener,
at det er en af de mest lovende nye muligheder, der i gjeblikket eksisterer inden for
applikationsdesign og frameworks. Jeg er overbevist om, at dusinvis eller flere nye

succesfulde kommercielle og open source-projekter vil dukke op i denne seerlige niche.

Generative UI 191

I sin kerne kombinerer GenUI principperne for Kontekstbaseret Indholdsgenering med
avancerede Al-teknikker til dynamisk at generere brugergreensefladeelementer, sisom
tekst, billeder og layouts, baseret pa en dyb forstaelse af brugerens kontekst, preeferencer
og mal. GenUI gor det muligt for designere og udviklere at skabe greenseflader, der
tilpasser og udvikler sig som reaktion pa brugerinteraktioner, hvilket giver et niveau af

personalisering, der tidligere var uopnéeligt.

GenUI repreesenterer en fundamental endring i méaden, vi tilgar design af
brugergreenseflader. I stedet for at designe til masserne tillader GenUI os at designe
til individet. Personaliseret indhold og greenseflader har potentialet til at skabe
brugeroplevelser, der resonerer med hver bruger pa et dybere niveau, hvilket eger

engagement, tilfredshed og loyalitet.

Som en banebrydende teknik er overgangen til GenUI fuld af konceptuelle og
praktiske udfordringer. Integration af Al i designprocessen, sikring af at de genererede
greenseflader ikke kun er personaliserede, men ogsa brugbare, tilgeengelige og aligned
med det overordnede brand og brugeroplevelse - alt dette er udfordringer, der gor GenUI
til en beskeeftigelse for de fa, ikke de mange. Derudover rejser involveringen af Al

spergsmal om databeskyttelse, gennemsigtighed og maske endda etiske implikationer.

P4 trods af udfordringerne har personaliserede oplevelser i stor skala potentialet til at
transformere méden, vi interagerer med digitale produkter og tjenester pa fuldsteendigt.
Det abner muligheder for at skabe inkluderende og tilgengelige greenseflader,
der imedekommer brugernes forskellige behov, uanset deres evner, baggrund eller

preeferencer.

I dette kapitel vil vi udforske konceptet GenUI og undersege nogle definerende
karakteristika, centrale fordele og potentielle udfordringer. Vi begynder med at
overveje den mest grundleeggende og tilgengelige form for GenUL: generering af

tekstindhold til ellers traditionelt designede og implementerede brugergraenseflader.

Generative UI 192

Generering af tekst til brugergraenseflader

Tekstelementer, der findes i din applikations brugergreenseflade-elementer, sasom
formularetiketter, veerktejstips og forklarende tekst, er typisk hardcodet ind i
skabelonerne eller Ul-komponenterne, hvilket giver en konsistent men generisk
oplevelse for alle brugere. Ved at bruge menstre for kontekstbaseret indholdsgenering
kan du transformere disse statiske elementer til dynamiske, kontekstbevidste og

personaliserede komponenter.

Personaliserede formularer

Formularer er en allestedsneerveerende del af web- og mobilapplikationer og fungerer
som det primeere middel til at indsamle brugerinput. Traditionelle formularer
preesenterer dog ofte en generisk og upersonlig oplevelse med standardetiketter og
-felter, der ikke altid stemmer overens med brugerens specifikke kontekst eller behov.
Brugere er mere tilbgjelige til at udfylde formularer, der foles skreeddersyet til deres

behov og preeferencer, hvilket forer til hajere konverteringsrater og brugertilfredshed.

Det er dog vigtigt at finde en balance mellem personalisering og konsistens. Mens
tilpasning af formularer til individuelle brugere kan veere gavnlig, er det afgerende at
opretholde et niveau af genkendelighed og forudsigelighed. Brugere skal stadig kunne

genkende og navigere i formularer let, selv med personaliserede elementer.

Her er nogle personaliserede formular-idéer til inspiration:

Kontekstuelle feltforslag

GenUI kan analysere brugerens tidligere interaktioner, preeferencer og data for at
give intelligente feltforslag som forudsigelser. Hvis brugeren for eksempel tidligere har
indtastet deres leveringsadresse, kan formularen automatisk udfylde de relevante felter
med deres gemte oplysninger. Dette sparer ikke kun tid, men viser ogsa, at applikationen

forstar og husker brugerens preeferencer.

© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2))
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Generative UI 193

Vent lige et gjeblik, er denne teknik ikke noget, der kunne gores uden at involvere AI?
Selvfolgelig, men det smukke ved at drive denne type funktionalitet med Al er todelt:
1) hvor nemt det kan veere at implementere og 2) hvor modstandsdygtigt det kan veere,

efterhanden som din brugergreenseflade sendrer og udvikler sig over tid.

Lad os hurtigt lave en service til vores teoretiske ordrehandteringssystem, som forseger

at udfylde den rigtige leveringsadresse for brugeren pa forhand.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order
delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address
for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

33
34
35
36
37
38
39
40
41
42
43

© 0 N O U B W N =

NN N N N Bl s sl s
B W N PO O 0N 0 O b W N =

Generative Ul

def order_history
customer .orders.successful .1imit(100) .map do |order|
{
date: order.date,
description: order.description,
shipping_address: order.shipping_address

end

end

end

Dette eksempel er meget forenklet, men burde virke i de fleste tilfeelde. Idéen er at lade

ATl’en geette pd samme made, som et menneske ville gore. For at gare det klart, hvad jeg

taler om, lad os se pa nogle eksempeldata:

Order History:

(

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":
"789 Suburb St, Quietville"},

{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",
"shipping_address": "456 City Apt, Metroville"},

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

O© 0 N O O b W N =

[= = N
O OB W N

Generative UI 195

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

Lagde du meerke til menstret i dataene? Jeg garanterer dig, at dette er let at forsta for
en LLM. For at demonstrere dette, lad os sperge GPT-4 hvad den mest sandsynlige

leveringsadresse er for et “termometer”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction

essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

17
18
19
20
21
22
23
24
25

O© 0 N O O b W N

[T =Y
a s W N » e

Generative UI 196

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Hvis du teenker, at det er at skyde graspurve med kanoner at bruge en dyr model som
GPT-4 til denne opgave, har du ret! Jeg provede den samme prompt pa Mistral 7B
Instruct, og den producerede folgende svar med 75 tokens i sekundet og til den beskedne

pris af $0,000218 USD.

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Er overhead og omkostninger ved denne teknik det veerd for at gere checkout-oplevelsen
mere magisk? For mange online forhandlere, helt bestemt. Og ud fra hvordan det ser
ud, vil omkostningerne ved Al-beregning kun falde, iseer for udbydere af open source

model-hosting i et kapleb mod bunden.

Brug en Prompt Template og StructuredIO sammen med Response Fencing

for at optimere denne type chat-feerdiggerelse.

Generative UI 197

Adaptiv feltraekkefolge

Reekkefolgen, hvori formularfelter preesenteres, kan have betydelig indflydelse pa
brugerens oplevelse og feerdiggerelsesrater. Med GenUI kan du dynamisk justere
felternes reekkefolge baseret pa brugerens kontekst og vigtigheden af hvert felt. For
eksempel, hvis brugeren udfylder en tilmeldingsformular til en fitness-app, kunne
formularen prioritere felter relateret til deres treeningsmal og preeferencer, hvilket ger

processen mere relevant og engagerende.

Personaliseret mikrotekst

Den instruerende tekst, fejlmeddelelser og anden mikrotekst forbundet med formularer
kan ogsa personaliseres ved hjeelp af GenUI. I stedet for at vise generiske fejlmeddelelser
som “Ugyldig e-mailadresse,” kan du generere mere hjelpsomme og kontekstuelle
beskeder sésom “Indtast venligst en gyldig e-mailadresse for at modtage din
ordrebekreeftelse” Disse personlige detaljer kan gere formularoplevelsen mere

brugervenlig og mindre frustrerende.

Personaliseret validering

I forleengelse af Personaliseret mikrotekst, kunne du bruge Al til at validere formularen
pa mader, der virker magiske. Forestil dig at lade en Al validere en brugerprofilformular,

hvor den leder efter potentielle fejl pa et semantisk niveau.

Generative UI 198

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

) Nice work. This is an excellent password.

Figur 9. Kan du fa gje pa den semantiske validering?

Progressiv afsloring

GenUI kan intelligent afgere, hvilke formularfelter der er essentielle baseret
pa brugerens kontekst og gradvist afslere yderligere felter efter behov. Denne
progressive afsloring hjeelper med at reducere den kognitive belastning og ger

formularudfyldningsprocessen mere handterbar. For eksempel, hvis en bruger tilmelder

Generative UI 199

sig et basis-abonnement, kan formularen indledningsvist kun preesentere de essentielle
felter, og efterhanden som brugeren skrider frem eller veelger specifikke muligheder,

kan yderligere relevante felter introduceres dynamisk.

Kontekstbevidst forklarende tekst

Veerktejstips bruges ofte til at give yderligere information eller vejledning til brugere, nar
de holder musen over eller interagerer med specifikke elementer. Med en “Kontekstuel
indholdsgenereringstilgang” kan du generere veerktejstips, der tilpasser sig brugerens
kontekst og giver relevant information. For eksempel, hvis en bruger udforsker en
kompleks funktion, kan veerktejstippet tilbyde personaliserede tips eller eksempler

baseret pa deres tidligere interaktioner eller feerdighedsniveau.

Forklarende tekst, sdsom instruktioner, beskrivelser eller hjelpemeddelelser, kan
genereres dynamisk baseret p& brugerens kontekst. I stedet for at preesentere generiske
forklaringer kan du bruge LLMs til at generere tekst, der er skreeddersyet til brugerens
specifikke behov eller spergsmal. For eksempel, hvis en bruger har problemer med et
bestemt trin i en proces, kan den forklarende tekst give personaliseret vejledning eller

fejlfindingstips.

Mikrotekst refererer til de sma tekstbidder, der guider brugere gennem din applikation,
sasom knapetiketter, fejlmeddelelser eller bekreeftelsesprompter. Ved at anvende
Kontekstuel indholdsgeneration tilgangen pa mikrotekst kan du skabe et adaptivt
UJ, der reagerer pa brugerens handlinger og leverer relevant og hjelpsom tekst. For
eksempel, hvis en bruger er ved at udfere en kritisk handling, kan bekreeftelsespromten

genereres dynamisk for at give en klar og personaliseret besked.

Personaliseret forklarende tekst og veerktejstips kan i hej grad forbedre onboarding-
processen for nye brugere. Ved at give kontekstspecifik vejledning og eksempler
kan du hjelpe brugere med hurtigt at forstd og navigere i applikationen, reducere

indleeringskurven og @ge adoptionen.

Generative UI 200

Dynamiske og kontekstbevidste chrome-elementer kan ogsa fa applikationen til at foles
mere intuitiv og engagerende. Brugere er mere tilbgjelige til at interagere med og
udforske funktioner, nar den medfelgende tekst er skreeddersyet til deres specifikke

behov og interesser.

Indtil nu har vi deekket idéer til at forbedre eksisterende Ul-paradigmer med Al, men
hvad med at genteenke hvordan brugergreenseflader designes og implementeres pa en

mere radikal made?

Definition af Generativ Ul

I modsetning til traditionelt Ul-design, hvor designere skaber faste, statiske
greenseflader, peger GenUl mod en fremtid, hvor vores software har fleksible,
personaliserede oplevelser, der kan udvikle sig og tilpasse sig i realtid. Hver gang
vi bruger en Al-drevet samtalegreenseflade, lader vi Alen tilpasse sig brugerens
seerlige behov. GenUI tager tingene et skridt videre ved at anvende dette niveau af

tilpasningsevne pa softwarens visuelle greenseflade.

Grunden til at det er muligt at eksperimentere med GenUl-idéer i dag er, at store
sprogmodeller allerede forstar programmering, og deres grundleeggende viden omfatter
Ul-teknologier og frameworks. Spergsmalet er saledes, om store sprogmodeller kan
bruges til at generere Ul-elementer, sasom tekst, billeder, layouts og endda hele
greenseflader, der er skreeddersyet til hver enkelt bruger. Modellen kunne instrueres i
at tage hejde for forskellige faktorer, sisom brugerens tidligere interaktioner, udtrykte
preeferencer, demografiske information og den aktuelle brugskontekst, for at skabe

meget personaliserede og relevante greenseflader.

GenUI adskiller sig fra traditionelt brugergreenseflade-design pa flere centrale mader:

Generative UI 201

1. Dynamisk og Adaptiv: Traditionelt Ul-design involverer skabelsen af faste,
statiske greenseflader, der forbliver de samme for alle brugere. I modseetning hertil
muligger GenUI greenseflader, der dynamisk kan tilpasse og eendre sig baseret pa
brugerbehov og kontekst. Dette betyder, at den samme applikation kan preesentere
forskellige greenseflader til forskellige brugere eller endda til den samme bruger i
forskellige situationer.

2. Personalisering i Stor Skala: Med traditionelt design er det ofte upraktisk at skabe
personaliserede oplevelser for hver bruger pa grund af den tid og de ressourcer,
det kreever. GenUI derimod tillader personalisering i stor skala. Ved at udnytte
AT kan designere skabe greenseflader, der automatisk tilpasser sig hver brugers
unikke behov og preeferencer, uden at skulle manuelt designe og udvikle separate
greenseflader for hvert brugersegment.

3. Fokus pa Resultater: Traditionelt Ul-design fokuserer ofte pa at skabe visuelt
tiltalende og funktionelle greenseflader. Mens disse aspekter stadig er vigtige i
GenUI, skifter det primeere fokus mod at opné gnskede brugerresultater. GenUI
sigter mod at skabe greenseflader, der er optimeret til hver brugers specifikke mal
og opgaver, hvor brugervenlighed og effektivitet prioriteres over rent sestetiske
overvejelser.

4. Kontinuerlig Leering og Forbedring: GenUI-systemer kan kontinuerligt leere og
forbedre sig over tid baseret pa brugerinteraktioner og feedback. Nar brugere
interagerer med de genererede greenseflader, kan Al-modellerne indsamle data om
brugeradfeerd, preeferencer og resultater og bruge denne information til at forfine
og optimere fremtidige greenseflade-generationer. Denne iterative leeringsproces
gor det muligt for GenUl-systemer at blive stadig mere effektive til at opfylde

brugernes behov over tid.

Det er vigtigt at bemeerke, at GenUI ikke er det samme som Al-assisterede
designveerktgjer, sasom dem der giver forslag eller automatiserer visse designopgaver.
Mens disse veerktejer kan veere nyttige til at stremline designprocessen, er de stadig

afheengige af designere til at treeffe endelige beslutninger og skabe statiske greenseflader.

Generative UI 202

GenUI involverer derimod, at Al-systemet tager en mere aktiv rolle i den faktiske

generering og tilpasning af greenseflader baseret pa brugerdata og kontekst.

GenUI repreesenterer et betydeligt skift i hvordan vi tilgar brugergreenseflade-design,
hvor vi beveeger os veek fra one-size-fits-all-lasninger og hen imod hejt personaliserede,
adaptive oplevelser. Ved at udnytte AI’s kraft har GenUI potentialet til at revolutionere
den made, vi interagerer med digitale produkter og tjenester pa, ved at skabe

greenseflader der er mere intuitive, engagerende og effektive for hver enkelt bruger.

Eksempel

For at illustrere konceptet GenU]I, lad os overveje en hypotetisk fitness-applikation kaldet
“FitAT”. Denne app sigter mod at give personaliserede treeningsplaner og erneeringsrad

til brugere baseret pé deres individuelle mal, fitnessniveauer og preeferencer.

I en traditionel UI-design-tilgang ville FitAl maske have et fast seet skeerme og elementer,
der er ens for alle brugere. Med GenUI kunne appens greenseflade dog dynamisk tilpasse

sig hver brugers unikke behov og kontekst.

Denne tilgang er lidt af en udfordring at forestille sig implementeret i 2024 og har maske

ikke engang tilstreekkelig ROL, men det er muligt.

Sadan kunne det fungere:

1. Onboarding:

« I stedet for et standard spergeskema bruger FitAl en konversations-Al til
at indsamle information om brugerens mal, nuveerende fitnessniveau og
preeferencer.

» Baseret pa denne indledende interaktion genererer Al’en et personaliseret
dashboard-layout, der fremheever de funktioner og informationer, der er

mest relevante for brugerens mal.

Generative UI 203

« Nuveerende Al-teknologi kunne have et udvalg af skeermkomponenter til

radighed til brug i sammenseetningen af det personaliserede dashboard.

» Fremtidig Al-teknologi kunne patage sig rollen som en erfaren Ul-designer

og faktisk skabe dashboardet fra bunden.

2. Treeningsprogram:

+ Treeningsprogrammets brugergreenseflade tilpasses af Al'en specifikt til
brugerens erfaringsniveau og tilgeengeligt udstyr.

« For en nybegynder uden udstyr kan den vise simple kropsveegtsevelser med
detaljerede instruktioner og videoer.

« For en avanceret bruger med adgang til et fitnesscenter kan den vise mere

komplekse rutiner med mindre forklarende indhold.

» Indholdet af treeningsprogrammet er ikke blot filtreret fra en stor samling.
Det kan genereres pa stedet baseret pa en vidensbase, der foresperges med

kontekst, der omfatter alt kendt om brugeren.

3. Fremskridtssporing:

» Fremskridtssporingens brugergreenseflade udvikler sig baseret pa brugerens

mal og engagementsmenstre.

« Hvis en bruger primeert fokuserer pa veegttab, vil greensefladen fremheevet
vise en veegtudviklingsgraf og statistik over kalorieforbreending.

« For en bruger, der opbygger muskler, kan den fremhseeve styrkeforggelser og
sendringer i kropskompositionen.

« Alen kan tilpasse denne del af applikationen til brugerens faktiske
fremskridt. Hvis fremskridtet stopper i en periode, kan appen skifte til
en tilstand, hvor den forseger at fa brugeren til at afslore arsagerne til

tilbageslaget for at athjeelpe dem.

4. Kostvejledning:

« Kostdelen tilpasser sig brugerens kostpreeferencer og -begreensninger.

Generative UI 204

« For en vegansk bruger kan den vise plantebaserede maltidsforslag og

proteinkilder.

« For en bruger med glutenintolerance vil den automatisk filtrere
glutenholdige fodevarer fra anbefalingerne.

+ Igen er indholdet ikke hentet fra en massiv samling af maltidsdata, der geelder
for alle brugere, men syntetiseres derimod fra en vidensbase, der indeholder
information, der kan tilpasses baseret pa brugerens specifikke situation og
begreensninger.

» For eksempel genereres opskrifter med ingrediensspecifikationer, der
matcher brugerens konstant skiftende kaloriebeho, efterhanden som deres

fitnessniveau og kropsstatistikker udvikler sig.

5. Motivationselementer:

+ Appens motiverende indhold og notifikationer er personliggjort baseret pa
brugerens personlighedstype og respons pa forskellige motivationsstrategier.
+ Nogle brugere modtager opmuntrende beskeder, mens andre far mere

datadrevet feedback.

I dette eksempel gor GenUI det muligt for FitAl at skabe en heijt tilpasset oplevelse for
hver bruger, hvilket potentielt ager engagement, tilfredshed og sandsynligheden for at na
treeningsmal. Greensefladeelementer, indhold og endda appens “personlighed” tilpasser

sig for bedst at tjene hver enkelt brugers behov og preeferencer.

Skiftet til resultatsorienteret design

GenUI repreesenterer et fundamentalt skift i tilgangen til brugergreensefladedesign,
der beveeger sig fra et fokus pa at skabe specifikke greensefladeelementer til en mere

holistisk, resultatorienteret tilgang. Dette skift har flere vigtige implikationer:

1. Fokus pa brugermal:

Generative UI 205

+ Designere vil skulle teenke dybere over brugermal og enskede resultater frem
for specifikke greensefladekomponenter.

+ Veegten vil veere pa at skabe systemer, der kan generere greenseflader, som
hjeelper brugere med at na deres mal effektivt.

+ Nye Ul-frameworks vil opsta, der giver Al-baserede designere de veerktajer,
de har brug for til at kunne generere brugeroplevelser pad stedet og fra bunden

i stedet for baseret pa foruddefinerede skeermspecifikationer.

2. Designeres &ndrede rolle:

+ Designere vil overgd fra at skabe faste layouts til at definere regler,
begreensninger og retningslinjer, som Al-systemer skal folge, nar de
genererer greenseflader.

+ De vil skulle udvikle feerdigheder inden for omrader som dataanalyse, Al

prompt-udvikling og systemteenkning for effektivt at guide GenUI-systemer.

3. Vigtigheden af brugerundersggelser:

+» Brugerundersggelser bliver endnu mere kritiske i en GenUI-kontekst, da
designere skal forsta ikke kun brugerpreeferencer, men ogsa hvordan disse
preeferencer og behov sendrer sig i forskellige sammenheenge.

» Kontinuerlig brugertest og feedback-loops vil veere essentielle for at forfine

og forbedre Al’ens evne til at generere effektive greenseflader.

4. Design for variabilitet:

o I stedet for at skabe en enkelt “perfekt” greenseflade vil designere skulle
overveje flere mulige variationer og sikre, at systemet kan generere passende
greenseflader til forskellige brugerbehov.

+ Dette omfatter design til greensetilfeelde og sikring af, at de genererede
greenseflader opretholder brugervenlighed og tilgeengelighed pé tveers af

forskellige konfigurationer.

Generative UI 206

« Produktdifferentiering far nye dimensioner, der involverer divergerende
perspektiver pa brugerpsykologi og udnyttelse af unikke dataset og

videnbaser, der ikke er tilgeengelige for konkurrenter.

Udfordringer og overvejelser

Mens GenUI tilbyder speendende muligheder, preesenterer det ogsa flere udfordringer

og overvejelser:
1. Tekniske begreensninger:

» Nuveerende Al-teknologi har, selvom den er avanceret, stadig begreensninger
i forhold til at forstd komplekse brugerintentioner og generere segte

kontekstbevidste greenseflader.

+ Ydelsesproblemer relateret til realtidsgenerering af greensefladeelementer,

iseer pa mindre kraftfulde enheder.

2. Datakrav:

« Afheengigt af anvendelsesformilet kan effektive GenUl-systemer
kreeve betydelige meengder brugerdata for at generere personaliserede

brugergreenseflader.

« Udfordringerne ved etisk indsamling af autentiske brugerdata rejser
bekymringer om databeskyttelse og sikkerhed, samt potentielle skeevheder i
de data, der bruges til at treene GenUI-modeller.

3. Brugervenlighed og Konsistens:

« I hvert fald indtil praksissen bliver udbredt, kan en applikation med
konstant skiftende brugergreenseflader fere til brugervenligheds-problemer,
da brugere kan have sveert ved at finde velkendte elementer eller navigere

effektivt.

Generative UI 207

+ Det vil veere afgerende at finde en balance mellem personalisering og

opretholdelse af en konsistent, leerbar brugergreenseflade.

4. Overafhaengighed af Al:

» Der er en risiko for overdelegering af designbeslutninger til Al-systemer,
hvilket potentielt kan fare til uinspirerede, problematiske eller simpelthen
defekte greenseflade-valg.

« Menneskelig overvagning og muligheden for at tilsideseette Al-genererede

designs vil fortsat veere vigtig i den overskuelige fremtid.

5. Tilgeengelighedsbekymringer:

+ At sikre at dynamisk genererede brugergreenseflader forbliver tilgeengelige
for brugere med handicap preesenterer helt nye udfordringer,
hvilket er bekymrende i betragtning af det darlige niveau af
tilgeengelighedsoverholdelse, som typiske systemer udviser.

+ Pa den anden side kan Al-designere implementeres med indbygget fokus
pa tilgeengelighed og muligheder for at bygge tilgeengelige greenseflader pa
farten, ligesom de bygger brugergreenseflader til ikke-handicappede brugere.

+ Under alle omsteendigheder ber GenUl-systemer designes med robuste

tilgeengelighedsretningslinjer og testprocesser.

6. Brugertillid og Gennemsigtighed:

« Brugere kan fole sig utilpasse med brugergreenseflader, der synes at “vide for
meget” om dem eller sendrer sig p4 mader, de ikke forstar.
+ At skabe gennemsigtighed omkring hvordan og hvorfor brugergreenseflader

personaliseres vil veere vigtigt for at opbygge brugertillid.

Generative UI 208

Fremtidsudsigter og Muligheder

Fremtiden for Generativ UI (GenUI) rummer et enormt potentiale for at revolutionere
maden, hvorpa vi interagerer med digitale produkter og tjenester. I takt med at denne
teknologi fortseetter med at udvikle sig, kan vi forvente et skelseettende skift i hvordan
brugergreenseflader designes, implementeres og opleves. Jeg tror, at GenUI er det
feenomen, der endelig vil skubbe vores software ind i det omrade, der nu betragtes som

science fiction.

Et af de mest speendende aspekter ved GenUI er dets potentiale til at forbedre
tilgeengelighed i en skala, der gar ud over blot at sikre, at personer med alvorlige
handicap ikke er fuldsteendig udelukket fra at bruge din software. Ved automatisk at
tilpasse brugergreenseflader til individuelle brugerbehov kunne GenUI gere digitale
oplevelser mere inkluderende end nogensinde for. Forestil dig brugergreenseflader, der
problemfrit justerer sig for at give sterre tekst til yngre eller synsheemmede brugere
eller forenklede layouts til personer med kognitive udfordringer, alt sammen uden at

kreeve manuel konfiguration eller separate “tilgeengelige” versioner af applikationer.

Personaliseringsmulighederne i GenUI vil sandsynligvis drive gget brugerengagement,
tilfredshed og loyalitet pa tveers af en bred vifte af digitale produkter. Efterhdnden som
brugergreenseflader bliver mere afstemte med individuelle preeferencer og adfeerd, vil
brugere finde digitale oplevelser mere intuitive og behagelige, hvilket potentielt kan fore

til dybere og mere meningsfulde interaktioner med teknologi.

GenUTI har ogsa potentialet til at transformere onboarding-processen for nye brugere.
Ved at skabe intuitive, personaliserede forstegangsoplevelser, der hurtigt tilpasser
sig hver brugers ekspertiseniveau, kunne GenUI markant reducere indleeringskurven
forbundet med nye applikationer. Dette kunne fare til hurtigere adoptionsrater og gget

brugerselvsikkerhed i udforskningen af nye funktioner og funktionaliteter.

En anden speendende mulighed er GenUI's evne til at opretholde en konsistent

brugeroplevelse pa tveers af forskellige enheder og platforme, mens der optimeres for

Generative UI 209

hver specifik brugskontekst. Dette kunne lase den langvarige udfordring med at levere
sammenhgengende oplevelser pa tveers af et stadig mere fragmenteret enhedslandskab,
fra smartphones og tablets til stationsere computere og fremspirende teknologier som

AR-briller.

Den datadrevne natur af GenUI abner muligheder for hurtig iteration og forbedring i UI-
design. Ved at indsamle realtidsdata om, hvordan brugere interagerer med genererede
brugergreenseflader, kan designere og udviklere fa hidtil usete indsigter i brugeradfeerd
og preeferencer. Denne feedback-loop kunne fore til kontinuerlige forbedringer i Ul-

design, drevet af faktiske brugsmenstre frem for antagelser eller begreenset brugertest.

For at forberede sig pa dette skift vil designere skulle udvikle deres feerdigheder
og tankeszet. Fokus vil skifte fra at skabe faste layouts til at udvikle omfattende
designsystemer og retningslinjer, der kan informere Al-drevet greensefladegenerering.
Designere vil skulle opbygge en dyb forstielse af dataanalyse, Al-teknologier og

systemteenkning for effektivt at kunne guide GenUI-systemer.

Desuden, efterhanden som GenUI udvisker greenserne mellem design og teknologi, vil
designere skulle samarbejde teettere med udviklere og data scientists. Denne tveerfaglige
tilgang vil veere afgerende i skabelsen af GenUl-systemer, der ikke kun er visuelt

tiltalende og brugervenlige, men ogsa teknisk robuste og etisk forsvarlige.

De etiske konsekvenser af GenUI vil ogsa komme i forgrunden, efterhanden som
teknologien modnes. Designere vil spille en afggrende rolle i udviklingen af rammer
for ansvarlig brug af kunstig intelligens i greenseflade-design, hvor de sikrer, at
personalisering forbedrer brugeroplevelser uden at kompromittere privatlivets fred

eller manipulere brugeradfeerd pa uetiske mader.

Nér vi ser mod fremtiden, preesenterer GenUI bade speendende muligheder og betydelige
udfordringer. Det har potentialet til at skabe mere intuitive, effektive og tilfredsstillende
digitale oplevelser for brugere over hele verden. Selvom det vil kreeve, at designere
tilpasser sig og tilegner sig nye feerdigheder, giver det ogsa en hidtil uset mulighed for at

forme fremtiden for menneske-computer-interaktion pa dybdegéende og meningsfulde

Generative UI 210

mader. Rejsen mod fuldt realiserede GenUI-systemer vil uden tvivl veere kompleks, men
de potentielle gevinster i form af forbedrede brugeroplevelser og digital tilgeengelighed

gor det til en fremtid, der er veerd at streebe efter.

Intelligent
arbejdsgangsorkestrerering

Inden for applikationsudvikling spiller arbejdsgange en afgerende rolle i at definere,

hvordan opgaver, processer og brugerinteraktioner struktureres og udferes. I takt med
at applikationer bliver mere komplekse, og brugerforventningerne fortseetter med at
stige, bliver behovet for intelligent og adaptiv arbejdsgangsorkestrerering stadig mere

abenlyst.

Tilgangen med “Intelligent arbejdsgangsorkestrerering” fokuserer pd at udnytte
Al-komponenter til dynamisk at orkestrere og optimere komplekse arbejdsgange i
applikationer. Malet er at skabe applikationer, der er mere effektive, responsive og

tilpasningsdygtige i forhold til realtidsdata og kontekst.

I dette kapitel vil vi udforske de centrale principper og menstre, der understetter den

intelligente arbejdsgangsorkestreringstilgang. Vi vil undersage, hvordan Al kan bruges

Intelligent arbejdsgangsorkestrerering 212

til intelligent at dirigere opgaver, automatisere beslutningstagning og dynamisk tilpasse
arbejdsgange baseret pa forskellige faktorer sésom brugeradfeerd, systemydeevne og
forretningsregler. Gennem praktiske eksempler og virkelige scenarier vil vi demonstrere

AT’s transformative potentiale i at stremline og optimere applikationers arbejdsgange.

Uanset om du bygger virksomhedsapplikationer med komplekse forretningsprocesser
eller forbrugerrettede applikationer med dynamiske brugerrejser, vil menstrene og
teknikkerne, der diskuteres i dette kapitel, udruste dig med den viden og de veerktgjer,
der skal til for at skabe intelligente og effektive arbejdsgange, som forbedrer den

overordnede brugeroplevelse og skaber forretningsveerdi.

Forretningsmaessigt behov

Traditionelle tilgange til arbejdsgangsstyring er ofte afheengige af foruddefinerede regler
og statiske beslutningstreeer, som kan veere rigide, ufleksible og ude af stand til at

héndtere moderne applikationers dynamiske natur.

Overvej et scenarie, hvor en e-handelsapplikation skal héndtere en kompleks
ordreekspeditionsproces. Arbejdsgangen kan involvere flere trin sdsom ordrevalidering,
lagerkontrol, betalingsbehandling, forsendelse og kundenotifikationer. Hvert
trin kan have sine egne regler, afheengigheder, eksterne integrationer og
undtagelseshandteringsmekanismer. At administrere sidan en arbejdsgang manuelt
eller gennem hardkodet logik kan hurtigt blive besveerligt, fejlbeheeftet og sveert at
vedligeholde.

Desuden kan arbejdsgangen, efterhanden som applikationen skalerer og antallet af
samtidige brugere vokser, have behov for at tilpasse og optimere sig selv baseret pa
realtidsdata og systemydeevne. For eksempel kan applikationen under perioder med
spidsbelastning have behov for dynamisk at justere arbejdsgangen for at prioritere

bestemte opgaver, allokere ressourcer effektivt og sikre en gnidningsfri brugeroplevelse.

Det er her tilgangen med “Intelligent arbejdsgangsorkestrerering” kommer ind i billedet.

Intelligent arbejdsgangsorkestrerering 213

Ved at udnytte Al-komponenter kan udviklere skabe arbejdsgange, der er intelligente,
adaptive og selvoptimerende. Al kan analysere store meengder data, leere af tidligere
erfaringer og treeffe informerede beslutninger i realtid for at orkestrere arbejdsgangen

effektivt.

Centrale fordele

1. Qget effektivitet: Al kan optimere opgaveallokering, ressourceudnyttelse og
arbejdsgangseksekvering, hvilket forer til hurtigere behandlingstider og forbedret
samlet effektivitet.

2. Tilpasningsevne: Al-drevne arbejdsgange kan dynamisk tilpasse sig
skiftende forhold, sdsom udsving i brugerefterspargsel, systemydeevne eller
forretningskrav, hvilket sikrer, at applikationen forbliver responsiv og robust.

3. Automatiseret beslutningstagning: Al kan automatisere komplekse
beslutningsprocesser inden for arbejdsgangen, reducere manuel indgriben
og minimere risikoen for menneskelige fejl.

4. Personalisering: Al kan analysere brugeradfeerd, preeferencer og kontekst for at
personalisere arbejdsgangen og levere skreeddersyede oplevelser til individuelle
brugere.

5. Skalerbarhed: Al-drevne arbejdsgange kan skalere problemfrit for at handtere
stigende meengder af data og brugerinteraktioner uden at ga pa kompromis med

ydeevne eller pélidelighed.

I de folgende afsnit vil vi udforske de centrale menstre og teknikker, der muligger
implementeringen af intelligente arbejdsgange og vise virkelige eksempler pa, hvordan

Al transformerer arbejdsgangsstyring i moderne applikationer.

© 0 N O O b W N =

[T ==Y
a s W N r e

Intelligent arbejdsgangsorkestrerering 214

Centrale moenstre

For at implementere intelligent arbejdsgangsorkestrerering i applikationer kan
udviklere udnytte flere centrale menstre, der udnytter AI's kraft. Disse menstre
giver en struktureret tilgang til at designe og administrere arbejdsgange, hvilket ger
det muligt for applikationer at tilpasse, optimere og automatisere processer baseret
pa realtidsdata og kontekst. Lad os udforske nogle af de grundleggende menstre i

intelligent arbejdsgangsorkestrerering.

Dynamisk opgavefordeling

Dette menster involverer brugen af AI til intelligent at dirigere opgaver inden
for en arbejdsgang baseret pé forskellige faktorer sasom opgaveprioritet,
ressourcetilgeengelighed og systemydeevne. Al-algoritmer kan analysere
karakteristikaene for hver opgave, overveje systemets aktuelle tilstand og treeffe
informerede beslutninger om at tildele opgaver til de mest passende ressourcer eller
behandlingsveje. Dynamisk opgavefordeling sikrer, at opgaver distribueres og udferes

effektivt, hvilket optimerer den samlede arbejdsgangsydeevne.

class TaskRouter
include Raix::ChatCompletion

include Raix::FunctionDispatch
attr_accessor :task

list of functions that can be called by the AI entirely at its

discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ..

function :assess_system_performance, # ..

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Intelligent arbejdsgangsorkestrerering 215

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

todo: add max loop counter and break
end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end
end

Bemeerk lokken, der er skabt af while-udtrykket pa linje 29, som fortseetter med at
sporge Al'en, indtil opgaven er tildelt. P4 linje 35 gemmer vi transkriptionen af opgaven

til senere analyse og fejlfinding, hvis det bliver nedvendigt.

Kontekstbaseret Beslutningstagning

Du kan bruge meget lignende kode til at treeffe kontekstbevidste beslutninger i en
arbejdsgang. Ved at analysere relevante datapunkter sasom brugerindstillinger,
historiske menstre og realtidsinput kan Al-komponenter bestemme den mest
hensigtsmeessige handlingsvej ved hvert beslutningspunkt i arbejdsgangen. Tilpas
din arbejdsgangs adfeerd baseret pa den specifikke kontekst for hver bruger eller

scenario, og levér personlige og optimerede oplevelser.

Intelligent arbejdsgangsorkestrerering 216

Adaptiv Arbejdsgangssammensatning

Dette menster fokuserer pa dynamisk at sammenseette og justere arbejdsgange baseret
pé skiftende krav eller forhold. Al kan analysere arbejdsgangens nuveerende tilstand,
identificere flaskehalse eller ineffektivitet og automatisk modificere arbejdsgangens
struktur for at optimere ydeevnen. Adaptiv arbejdsgangssammenseetning tillader
applikationer at udvikle sig kontinuerligt og forbedre deres processer uden at kreve

manuel indgriben.

Handtering og Genopretning af Undtagelser

Handtering og genopretning af undtagelser er kritiske aspekter af intelligent
arbejdsgangsorkesterering. Nar man arbejder med Al-komponenter og komplekse
arbejdsgange, er det essentielt at forudse og handtere undtagelser elegant for at sikre

systemets stabilitet og palidelighed.

Her er nogle vigtige overvejelser og teknikker til handtering og genopretning af

undtagelser i intelligente arbejdsgange:

1. Undtagelsespropagering: Implementér en konsistent tilgang til at propagere
undtagelser pa tveers af arbejdsgangskomponenter. Nar en undtagelse opstar inden
for en komponent, ber den fanges, logges og propageres til orkestratoren eller en
diskret komponent ansvarlig for at handtere undtagelser. Idéen er at centralisere
undtagelseshandtering og forhindre, at undtagelser bliver stiltiende opslugt, samt
abne muligheder for Intelligent Fejlhandtering.

2. Gentagelsesmekanismer: Gentagelsesmekanismer hjeelper med at forbedre
arbejdsgangens robusthed og handtere midlertidige fejl elegant. Det er
absolut en god idé at implementere gentagelsesmekanismer for forbigéende
eller genoprettelige undtagelser, sasom problemer med netveerksforbindelse

eller utilgeengelighed af ressourcer, som automatisk kan forsgges igen

Intelligent arbejdsgangsorkestrerering 217

efter en specificeret forsinkelse. At have en Al-drevet orkestrator eller
undtagelseshandtering betyder, at dine gentagelsesstrategier ikke behaver
at veere mekaniske i deres natur eller afheengige af faste algoritmer som
eksponentiel tilbagefald. Du kan overlade handteringen af gentagelsen til Al-
komponentens “sken”, som er ansvarlig for at beslutte, hvordan undtagelsen skal
héndteres.

3. Tilbagefaldsstrategier: Hvis en Al-komponent ikke kan levere et gyldigt svar
eller stader pa en fejl—hvilket er en almindelig heendelse givet dens banebrydende
natur—skal der veere en tilbagefaldsmekanisme pa plads for at sikre, at
arbejdsgangen kan fortsette. Dette kan involvere brug af standardveerdier,
alternative algoritmer eller en Menneske I Loopet til at treeffe beslutninger og
holde arbejdsgangen i gang.

4. Kompenserende Handlinger: Orkestratorens direktiver ber inkludere
instruktioner om kompenserende handlinger til at hé&ndtere undtagelser,
der ikke kan lgses automatisk. Kompenserende handlinger er trin, der tages for at
fortryde eller afbede virkningerne af en mislykket operation. For eksempel, hvis
et betalingsprocesseringstrin mislykkes, kunne en kompenserende handling veere
at tilbagerulle transaktionen og underrette brugeren. Kompenserende handlinger
hjeelper med at opretholde datakonsistens og integritet i tilfzelde af undtagelser.

5. Undtagelsesovervagning og -alarmering: Opseet overvagnings- og
alarmeringsmekanismer til at opdage og underrette relevante interessenter
om kritiske undtagelser. Orkestratoren kan geres opmeerksom pa teerskler og
regler for at udlese alarmer, nar undtagelser overskrider visse greenser, eller nar
specifikke typer af undtagelser opstar. Dette muligger proaktiv identifikation og

lgsning af problemer, for de pavirker det samlede system.

Her er et eksempel pa handtering og genopretning af undtagelser i en Ruby-

arbejdsgangskomponent:

© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Intelligent arbejdsgangsorkestrerering 218

class InventoryManager
def check_availability(order)
begin
Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
Log the exception

logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

I dette eksempel kontrollerer InventoryManager-komponenten tilgeengeligheden af et
produkt for en given ordre. Hvis den tilgeengelige meengde er utilstreekkelig, udlgser
den en InsufficientInventoryError. Undtagelsen bliver fanget, logget, og en
gentagelsesmekanisme implementeres. Hvis greensen for gentagelsesforseg overskrides,

falder komponenten tilbage til manuel indgriben ved at underrette en administrator.

Ved at implementere robust undtagelseshandtering og genopretningsmekanismer, kan

du sikre, at dine intelligente arbejdsgange er robuste, vedligeholdelsesvenlige og i stand

Intelligent arbejdsgangsorkestrerering 219

til at handtere uventede situationer pa en elegant made.

Disse menstre danner grundlaget for intelligent arbejdsgangsorkestering og kan
kombineres og tilpasses til at opfylde de specifikke krav i forskellige applikationer. Ved
at udnytte disse menstre kan udviklere skabe arbejdsgange, der er fleksible, robuste og

optimerede med hensyn til ydeevne og brugeroplevelse.

I det neeste afsnit vil vi undersege, hvordan disse menstre kan implementeres i praksis
ved hjeelp af eksempler fra den virkelige verden og kodestykker for at illustrere

integrationen af Al-komponenter i workflowstyring.

Implementering af Intelligent

Arbejdsgangsorkestering i Praksis

Nu hvor vi har udforsket de vigtigste menstre i intelligent arbejdsgangsorkestering,
lad os dykke ned i, hvordan disse menstre kan implementeres i applikationer fra
den virkelige verden. Vi vil give praktiske eksempler og kodestykker for at illustrere

integrationen af Al-komponenter i workflowstyring.

Intelligent Ordrebehandler

Lad os dykke ned i et praktisk eksempel pa implementering af intelligent
arbejdsgangsorkestering ved hjeelp af en Al-drevet OrderProcessor-komponent
i en Ruby on Rails e-handelsapplikation. OrderProcessoren realiserer Process
Manager Enterprise Integration-konceptet, som vi forst medte i Kapitel 3, da
vi diskuterede Multitude of Workers. Komponenten vil veere ansvarlig for at
administrere ordreekspeditionsarbejdsgangen, treeffe rutningsbeslutninger baseret pa

mellemliggende resultater og orkesterere udferelsen af forskellige behandlingstrin.

Intelligent arbejdsgangsorkestrerering 220

Ordreekspeditionsprocessen involverer flere trin sdsom ordrevalidering, lagerkontrol,
betalingsbehandling og forsendelse. Hvert trin er implementeret som en separat
arbejderproces, der udferer en specifik opgave og returnerer resultatet til
OrderProcessoren. Trinnene er ikke obligatoriske og behgver ikke engang

nedvendigvis at blive udfert i en preecis reekkefolge.

Her er et eksempel pa implementering af OrderProcessoren. Den har to mixins fra
Raix. Den forste (ChatCompletion) giver den mulighed for at udfere chat completion,
hvilket er det, der gor dette til en Al-komponent. Den anden (FunctionDispatch)
muligger function calling fra Al’en, hvilket tillader den at reagere pa en prompt med en

funktionsinvokering i stedet for en tekstbesked.

Arbejderfunktionerne (validate_order, check_inventory, et al) delegerer til deres
respektive arbejderklasser, som kan veere Al- eller ikke-Al-komponenter, med det eneste
krav veerende, at de returnerer resultaterne af deres arbejde i et format, der kan
repreesenteres som en streng.

talt pseudo-kode og er kun meant til at formidle mensterets betydning

P Som med alle andre eksempler i denne del af bogen er denne kode praktisk

og inspirere dine egne kreationer. Komplette beskrivelser af menstre og

fuldsteendige kodeeksempler er inkluderet i Del 2.

https://github.com/OlympiaAI/raix-rails

© 0 N O O & W N =~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligent arbejdsgangsorkestrerering

class OrderProcessor

include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform

will continue looping until “stop_looping!" is called

chat_completion(loop: true)
end

list of functions available to be called by the AI

truncated for brevity

def functions

[

name: "validate_order",

description: "Invoke to check validity of order",

parameters: {

}I

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

221

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Intelligent arbejdsgangsorkestrerering 222

def process_payment
PaymentProcessingWorker . per form(@order)

end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)
stop_looping!
end
end

I eksemplet initialiseres OrderProcessor med et ordreobjekt og vedligeholder en
transskription af arbejdsgangens udferelse i det typiske samtaleformat, som er
karakteristisk for store sprogmodeller. Al'en far fuld kontrol over orchestreringen af de
forskellige behandlingstrin, sdsom ordrevalidering, lagerkontrol, betalingsbehandling

og forsendelse.

Hver gang chat_completion-metoden kaldes, sendes transskriptionen til Al’en, s den
kan levere en feerdiggerelse som et funktionskald. Det er helt op til Al’en at analysere
resultatet af det foregdende trin og bestemme den passende handling. For eksempel,
hvis lagerkontrollen afslerer lave lagerniveauer, kan OrderProcessor planlegge en
genopfyldningsopgave. Hvis betalingsbehandlingen mislykkes, kan den igangseette et

nyt forseg eller underrette kundesupport.

Intelligent arbejdsgangsorkestrerering 223

Eksemplet ovenfor har ikke definerede funktioner til genopfyldning eller

underretning af kundesupport, men det kunne det sagtens have.

Transskriptionen vokser hver gang en funktion kaldes og fungerer som en registrering
af arbejdsgangens udferelse, herunder resultaterne af hvert trin og Al-genererede
instruktioner til de neeste trin. Denne transskription kan bruges til fejlfinding, revision

og til at give indblik i ordreafviklingsprocessen.

Ved at udnytte Al i OrderProcessor kan e-handelsapplikationen dynamisk tilpasse
arbejdsgangen baseret pa realtidsdata og handtere undtagelser intelligent. Al-
komponenten kan treeffe velinformerede beslutninger, optimere arbejdsgangen og sikre

en problemfri ordrebehandling selv i komplekse scenarier.

Det faktum, at det eneste krav til arbejdsprocesserne er at returnere et forstaeligt output,
som Al'en kan overveje, nar den beslutter, hvad der skal gares neeste gang, kan fa dig
til at indse, hvordan denne tilgang kan reducere det input/output-kortleegningsarbejde,

der typisk er involveret, nar forskellige systemer skal integreres med hinanden.

Intelligent Indholdsmoderator

Sociale medieapplikationer kreever generelt mindst minimal indholdsmoderation for
at sikre et sikkert og sundt feellesskab. Dette eksempel pa en ContentModerator-
komponent udnytter Al til intelligent at orchestrere moderationsarbejdsgangen ved at
treeffe beslutninger baseret pa indholdets karakteristika og resultaterne af forskellige

moderationstrin.

Moderationsprocessen involverer flere trin sdsom tekstanalyse, billedgenkendelse,
vurdering af brugerens omdemme og manuel gennemgang. Hvert trin er implementeret
som en separat arbejdsproces, der udferer en specifik opgave og returnerer resultatet til

ContentModerator.

© 0 N O U B W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Intelligent arbejdsgangsorkestrerering

Her er et eksempel pa implementeringen af ContentModerator:

class ContentModerator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,

224

tasked with the workflow involved in moderating user-generated content..."

def initialize(content)

@content = content

@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform

complete(@transcript)

end

def model
"openai/gpt-4"

end

]list of functions available to be called by the AI

truncated for brevity

def functions

[

}I
{

}I
{

name:
P

name:

"analyze_text",

"recognize_image",

description: "Invoke to describe

name:

"assess_user_reputation”,

images...",

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82

Intelligent arbejdsgangsorkestrerering

1
{
name: "escalate_to_manual_review",
#
1,
{
name: "approve_content",
#
}
{
name: "reject_content"”,
#
}
]
end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_text

result = TextAnalysisWorker .perform(@content)

continue_with(result)
end

def recognize_image

result = ImageRecognitionWorker .perform(@content)

continue_with(result)
end

def assess_user_reputation

result = UserReputationWorker .per form(@content.user)

continue_with(result)
end

def escalate_to_manual_review

ManualReviewWorker . per form(@content)

@content.update! (status:
end

def approve_content
@content.update! (status:
end

'pending', transcript: @transcript)

'approved', transcript: @transcript)

225

83
84
85
86
87
88
89
90

92
93
94

Intelligent arbejdsgangsorkestrerering 226

def reject_content
@content .update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

I dette eksempel initialiseres ContentModerator med et indholdsobjekt og
vedligeholder en moderationslog i samtaleformat. Al-komponenten har fuld kontrol
over moderationsarbejdsgangen og beslutter, hvilke trin der skal udferes baseret pa

indholdets karakteristika og resultaterne af hvert trin.

De tilgeengelige arbejderfunktioner, som Al'en kan kalde, omfatter analyze_text,
recognize_image, assess_user_reputation og escalate_to_manual_-
review. Hver funktion delegerer opgaven til en tilsvarende arbejderproces
(TextAnalysisWorker, ImageRecognitionWorker osv.) og tilfgjer resultatet
til moderationsloggen, med undtagelse af eskaleringsfunktionen, som fungerer som en
sluttilstand. Endelig fungerer funktionerne approve_content og reject_content

ogsa som sluttilstande.

Al-komponenten analyserer indholdet og fastleegger den passende handling. Hvis
indholdet indeholder billedhenvisninger, kan den kalde recognize_image-arbejderen
for at fa hjeelp til en visuel gennemgang. Hvis nogen arbejder advarer om potentielt
skadeligt indhold, kan Al’en beslutte at eskalere indholdet til manuel gennemgang eller
blot afvise det med det samme. Men afheengigt af advarslens alvorlighed kan Al’en
veelge at bruge resultaterne af brugerens omdemmevurdering til at beslutte, hvordan den
skal handtere indhold, som den ellers er usikker pa. Afheengigt af anvendelsesscenariet
har betroede brugere maske mere spillerum i forhold til, hvad de kan dele. Og sa videre,

og sa videre...

Intelligent arbejdsgangsorkestrerering 227

Som med det tidligere eksempel med processtyring fungerer moderationsloggen som
en registrering af arbejdsgangens udferelse, herunder resultaterne af hvert trin og de
Al-genererede beslutninger. Denne log kan bruges til revision, gennemsigtighed og

forbedring af moderationsprocessen over tid.

Ved at udnytte Al i ContentModerator kan sociale medie-applikationen dynamisk
tilpasse moderationsarbejdsgangen baseret pa indholdets karakteristika og intelligent
héndtere komplekse moderationsscenarier. Al-komponenten kan treeffe velinformerede

beslutninger, optimere arbejdsgangen og sikre en sikker og sund fzellesskabsoplevelse.

Lad os udforske to eksempler mere, der demonstrerer preediktiv opgaveplanleegning
og fejlhandtering og -genopretning inden for rammerne af intelligent

arbejdsgangsorkestrating.

Praediktiv opgaveplanlaegning i et kundesupportsystem

I en kundesupportapplikation bygget med Ruby on Rails er effektiv handtering og
prioritering af supporthenvendelser afggrende for at yde rettidig assistance til kunder.
SupportTicketScheduler-komponenten udnytter Al til preediktivt at planleegge og
tildele supporthenvendelser til tilgeengelige supportmedarbejdere baseret pa forskellige
faktorer sadsom henvendelsens hastende karakter, medarbejderens ekspertise og

arbejdsbyrde.

Intelligent arbejdsgangsorkestrerering

class SupportTicketScheduler
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

name: "analyze_ticket_urgency",
#...

}I
{
name: "list_available_agents",

description: "Includes expertise of available agents",
#...

}I
{
name: "predict_agent_workload",

description: "Uses historical data to predict upcoming workloads"

}/
{

name: "assign_ticket_to_agent",

7

228

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
82
83
84

Intelligent arbejdsgangsorkestrerering

}/

name: "reschedule_ticket",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer .perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor .perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

229

Intelligent arbejdsgangsorkestrerering 230

I dette eksempel initialiseres SupportTicketScheduler med et supportanmodningsobjekt
og vedligeholder en planleegningslog. Al-komponenten analyserer anmodningens
detaljer og planlegger forudsigende opgavetildelingen baseret pa faktorer
som anmodningens hastende karakter, medarbejderkompetence og forventet

medarbejderarbejdsbelastning.

De tilgeengelige funktioner, som Al'en kan anvende, omfatter analyze_-
ticket_urgency, list_available_agents, predict_agent_workload og
assign_ticket_to_agent. Hver funktion delegerer opgaven til en tilsvarende
analyse- eller preediktionskomponent og tilfejer resultatet til planleegningsloggen.
AT’en har ogsa mulighed for at udseette tildelingen ved hjeelp af delay_assignment-

funktionen.

Al-komponenten undersgger planlegningsloggen og treeffer velinformerede
beslutninger om opgavetildeling. Den tager hgjde for anmodningens hastende karakter,
de tilgeengelige medarbejderes kompetencer og den forventede arbejdsbelastning
for hver medarbejder for at bestemme den mest egnede medarbejder til at handtere

opgaven.

Ved at udnytte forudsigende opgaveplanleegning kan kundesupportapplikationen
optimere opgavetildeling, reducere svartider og forbedre den generelle kundetilfredshed.
Proaktiv og effektiv handtering af supportanmodninger sikrer, at de rigtige opgaver

tildeles de rigtige medarbejdere pa det rigtige tidspunkt.

Fejlhandtering og Genopretning i en
Databehandlingspipeline

Héndtering af fejl og genopretning efter nedbrud er afgarende for at sikre dataintegritet
og forhindre tab af data. DataProcessingOrchestrator-komponenten bruger
Al til intelligent at handtere fejl og orchestrere genopretningsprocessen i en

databehandlingspipeline

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Intelligent arbejdsgangsorkestrerering

class DataProcessingOrchestrator

include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }

]

end

def perform

complete(@transcript)

end

def model

"openai/gpt-4"

end

def functions

name:

"validate_data",

"process_data",

"request_fix",

"retry_processing",

"mark_data_as_failed",

231

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Intelligent arbejdsgangsorkestrerering 232

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Intelligent arbejdsgangsorkestrerering 233

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

I dette eksempel initialiseres DataProcessingOrchestrator med et databatch-
objekt og vedligeholder en behandlingsprotokol. Al-komponenten orchestrerer

databehandlingspipelinen, handterer undtagelser og genopretter fra fejl efter behov.

De tilgeengelige funktioner, som Al'en kan kalde, omfatter validate_data,
process_data, request_fix, retry_processing og mark_data_as_failed.
Hver funktion delegerer opgaven til en tilsvarende databehandlingskomponent og

tilfajer resultatet eller undtagelsesdetaljerne til behandlingsprotokollen.

Hvis der opstar en valideringsundtagelse under validate_data-trinnet, tilfgjer
handle_validation_exception-funktionen undtagelsesdataene til protokollen og
returnerer kontrollen til Al’en. Tilsvarende, hvis der opstar en behandlingsundtagelse

under process_data-trinnet, kan Al’en beslutte genopretningsstrategien.

Afheengigt af den opstdede undtagelses art kan Al'en efter eget sken beslutte at
kalde request_fix, som delegerer til en Al-drevet SmartDataF ixer-komponent (se

kapitlet om Selvhelende Data). Datafixeren far en almindelig dansk beskrivelse af,

Intelligent arbejdsgangsorkestrerering 234

hvordan den skal modificere @data_batch, s& behandlingen kan genoptages. Maske
ville en vellykket genoptagelse indebzere at fjerne poster fra databatchen, som ikke har
bestaet valideringen og/eller kopiere dem til en anden behandlingspipeline til manuel

gennemgang? Mulighederne er neesten uendelige.

Ved at inkorporere Al-drevet undtagelseshandtering og genopretning
bliver databehandlingsapplikationen mere modstandsdygtiz og fejltolerant.
DataProcessingOrchestrator handterer intelligent undtagelser, minimerer

datatab og sikrer en problemfri udferelse af databehandlingsarbejdsgangen.

Overvagning og Logfering

Overvagning og logfering giver indblik i fremskridt, ydeevne og sundhed af Al-drevne
arbejdsgangskomponenter, hvilket gor det muligt for udviklere at spore og analysere
systemets adfeerd. Implementering af effektive overvagnings- og logferingsmekanismer
er afggrende for fejlfinding, revision og kontinuerlig forbedring af intelligente

arbejdsgange.

Overvagning af Arbejdsgangens Fremskridt og Ydeevne

For at sikre en problemfri udferelse af intelligente arbejdsgange er det vigtigt at overvage
fremskridt og ydeevne for hver arbejdsgangskomponent. Dette indebeerer at spore

negletal og begivenheder gennem arbejdsgangens livscyklus.
Vigtige aspekter at overvage omfatter:

1. Arbejdsgangens Udferelsestid: Mal den tid, hver arbejdsgangskomponent bruger
pa at fuldfere sin opgave. Dette hjeelper med at identificere flaskehalse i ydeevnen og

optimere den samlede arbejdsgangseffektivitet.

2. Ressourceforbrug: Overvag forbruget af systemressourcer, sisom CPU, hukommelse
og lagerplads, for hver arbejdsgangskomponent. Dette hjeelper med at sikre, at systemet

opererer inden for sin kapacitet og effektivt kan handtere arbejdsbyrden.

Intelligent arbejdsgangsorkestrerering 235

3. Fejlrater og Undtagelser: Spor forekomsten af fejl og undtagelser inden for
arbejdsgangskomponenter. Dette hjeelper med at identificere potentielle problemer og

muligger proaktiv fejlhdndtering og genopretning.

4. Beslutningspunkter og Resultater: Overvag beslutningspunkterne i arbejdsgangen
og resultaterne af Al-drevne beslutninger. Dette giver indsigt i Al-komponenternes

adfeerd og effektivitet.

De data, der opfanges af overvagningsprocesser, kan vises i dashboards eller bruges

som input til planlagte rapporter, der informerer systemadministratorer om systemets

sundhed.

P Overvagningsdata kan fedes til en Al-drevet systemadministratorproces til

gennemgang og potentiel handling!

Logfaring af Vigtige Begivenheder og Beslutninger

Logfering er en essentiel praksis, der involverer opfangning og lagring af relevant
information om vigtige begivenheder, beslutninger og undtagelser, der opstar under

arbejdsgangens udfarelse.
Vigtige aspekter at logfore omfatter:

1. Arbejdsgangens Initiering og Fuldferelse: Log start- og sluttidspunkter for
hver arbejdsgangsinstans, sammen med relevant metadata sasom inputdata og

brugerkontekst.

2. Komponentudferelse: Log udferelsesdetaljerne for hver arbejdsgangskomponent,
herunder inputparametre, outputresultater og eventuelle mellemliggende data, der

genereres.

3. Al-beslutninger og Rasonnement: Log de beslutninger, der treeffes af Al-
komponenter, sammen med den underliggende begrundelse eller konfidensscorer. Dette

giver gennemsigtighed og muligger revision af Al-drevne beslutninger.

© 0 N O O b W N o~

I = =N
B W N~

Intelligent arbejdsgangsorkestrerering 236

4. Undtagelser og Fejlmeddelelser: Log eventuelle undtagelser eller fejlmeddelelser,
der opstar under arbejdsgangens udferelse, herunder staksporing og relevant

kontekstinformation.

Logfering kan implementeres ved hjeelp af forskellige teknikker, sdsom at skrive til
logfiler, gemme logs i en database eller sende logs til en centraliseret logferingstjeneste.
Det er vigtigt at veelge et logferingsframework, der giver fleksibilitet, skalerbarhed og

nem integration med applikationens arkitektur.

Her er et eksempel p&, hvordan logfering kan implementeres i en Ruby on Rails-

applikation ved hjeelp af ActiveSupport: :Logger-klassen:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log')
@logger . formatter ||= proc do |severity, datetime, progname, msg]|
"#{datetime} [#{severity}] #{msg}\n"
end

@logger .send(severity, message)
end
end

Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Ved strategisk at placere logningserkleeringer gennem arbejdsgangskomponenterne og
Al-beslutningspunkterne kan udviklere indfange veerdifuld information til fejlfinding,

revision og analyse.

Fordele ved Overvagning og Logning

Implementering af overvégning og logning i intelligent arbejdsgangsorkestrering giver

flere fordele:

Intelligent arbejdsgangsorkestrerering 237

1. Fejlfinding og Fejlsagning: Detaljerede logs og overvagningsdata hjeelper udviklere
med hurtigt at identificere og diagnosticere problemer. De giver indsigt i arbejdsgangens

udferelsesflow, komponentinteraktioner og eventuelle fejl eller undtagelser, der opstar.

2. Ydeevneoptimering: Overvagning af ydeevnemetrikker giver udviklere mulighed
for at identificere flaskehalse og optimere arbejdsgangskomponenterne for bedre
effektivitet. Ved at analysere udferelsestider, ressourceforbrug og andre metrikker
kan udviklere treeffe informerede beslutninger for at forbedre systemets overordnede

ydeevne.

3. Revision og Overholdelse: Logning af vigtige heendelser og beslutninger giver et
revisionsspor for regulatorisk overholdelse og ansvarlighed. Det ger det muligt for
organisationer at spore og verificere de handlinger, der udferes af Al-komponenter og

sikre overholdelse af forretningsregler og lovkrav.

4. Kontinuerlig Forbedring: Overvagnings- og logningsdata fungerer som veerdifulde
input til kontinuerlig forbedring af intelligente arbejdsgange. Ved at analysere historiske
data, identificere menstre og male effektiviteten af Al-beslutninger kan udviklere

iterativt forfine og forbedre arbejdsgangsorkestreringslogikken.

Overvejelser og Bedste Praksis

Ved implementering af overvagning og logning i intelligent arbejdsgangsorkestrering

ber felgende bedste praksis overvejes:

1. Definer Klare Overvagningsmetrikker: Identificer de vigtigste metrikker og
heendelser, der skal overvages baseret pa arbejdsgangens specifikke krav. Fokuser pa

metrikker, der giver meningsfuld indsigt i systemets ydeevne, sundhed og adfeerd.

2. Implementer Detaljeret Logning: Serg for at logningserkleeringer er placeret pa
passende steder inden for arbejdsgangskomponenterne og Al-beslutningspunkterne.
Indfang relevant kontekstinformation, sdsom inputparametre, outputresultater og

eventuelle mellemliggende data, der genereres.

Intelligent arbejdsgangsorkestrerering 238

3. Brug Struktureret Logning: Anvend et struktureret logningsformat for at lette nem
parsing og analyse af logdata. Struktureret logning muligger bedre sggbarhed, filtrering
og aggregering af logposter.

4. Administrer Logopbevaring og -rotation: Implementer politikker for logopbevaring
og -rotation for at administrere lagring og livscyklus af logfiler. Fastleeg den passende
opbevaringsperiode baseret pa lovkrav, lagringsbegreensninger og analysebehov. Hvis

muligt, udliciter logning til en tredjepartstjeneste som Papertrail.

5. Sikr Felsom Information: Veer forsigtig ved logning af felsom information, sasom
personhenferbare oplysninger (PII) eller fortrolige forretningsdata. Implementer
passende sikkerhedsforanstaltninger, siasom datamaskning eller kryptering, for at

beskytte folsom information i logfiler.

6. Integrer med Overvagnings- og Alarmeringsvaerktejer: Udnyt overvagnings-
og alarmeringsveerktejer til at centralisere indsamling, analyse og visualisering af
overvagnings- og logningsdata. Disse veerktgjer kan give realtidsindsigt, generere
alarmer baseret pa foruddefinerede teerskler og lette proaktiv problemdetektion og

-losning. Mit foretrukne af disse veerktgjer er Datadog.

Ved at implementere omfattende overvagnings- og logningsmekanismer kan udviklere
opna veerdifuld indsigt i adfeerden og ydeevnen af intelligente arbejdsgange. Disse
indsigter muligger effektiv fejlfinding, optimering og kontinuerlig forbedring af Al-

drevne arbejdsgangsorkestreringsystemer.

Skalerbarhed og Ydeevneovervejelser

Skalerbarhed og ydeevne er kritiske aspekter at overveje ved design og implementering
af intelligente arbejdsgangsorkestreringsystemer. Efterhanden som meengden af
samtidige arbejdsgange og kompleksiteten af Al-drevne komponenter ages, bliver
det essentielt at sikre, at systemet kan héndtere arbejdsbyrden effektivt og skalere

problemfrit for at imgdekomme voksende krav.

https://papertrailapp.com
https://www.datadoghq.com

Intelligent arbejdsgangsorkestrerering 239

Handtering af Store Maengder Samtidige Arbejdsgange

Intelligente arbejdsgangsorkestreringsystemer skal ofte handtere et stort antal samtidige

arbejdsgange. For at sikre skalerbarhed ber felgende strategier overvejes:

1. Asynkron Behandling: Implementer asynkrone behandlingsmekanismer for at
afkoble udferelsen af arbejdsgangskomponenter. Dette gor det muligt for systemet
at handtere flere arbejdsgange samtidigt uden at blokere eller vente pa, at hver
komponent feerdiggeres. Asynkron behandling kan opnas ved hjeelp af meddelelseskeer,

heendelsesdrevne arkitekturer eller baggrundsjobbehandlingsframeworks som Sidekig.

2. Distribueret Arkitektur: Design systemarkitekturen til at bruge serverlgse
komponenter (sdésom AWS Lambda) eller simpelthen distribuere arbejdsbyrden pa
tveers af flere noder eller servere sammen med din hovedapplikationsserver. Dette
muligger horisontal skalerbarhed, hvor yderligere noder kan tilfgjes for at handtere

ggede arbejdsgangsmeengder.

3. Parallel Udferelse: Identificer muligheder for parallel udferelse inden for
arbejdsgange. Nogle arbejdsgangskomponenter kan veere uatheengige af hinanden og
kan udferes samtidigt. Ved at udnytte parallelle behandlingsteknikker, sésom multi-
threading eller distribuerede opgavekaer, kan systemet optimere ressourceudnyttelsen

og reducere den samlede arbejdsgangsudfarelsestid.

Optimering af Ydeevne for Al-drevhe Komponenter

Al-drevne komponenter, sasom maskinleeringsmodeller eller sprogbehandlingsmotorer,
kan veere beregningstunge og pavirke den overordnede ydeevne af
arbejdsprocesstyringssystemet. For at optimere ydeevnen af Al-komponenter ber

folgende teknikker overvejes:

1. Caching: Hvis din Al-behandling er rent generativ og ikke involverer realtidsopslag

eller eksterne integrationer for at generere chat-fuldferelser, kan du undersege

Intelligent arbejdsgangsorkestrerering 240

cachingmekanismer til at gemme og genbruge resultater fra hyppigt anvendte eller

beregningstunge operationer.

2. Modeloptimering: Optimer lgbende den méade, du bruger Al-modeller i
arbejdsprocesskomponenter. Dette kan involvere teknikker som Prompt-destillation
eller det kan simpelthen veere et spergsmal om at teste nye modeller, efterhanden som

de bliver tilgeengelige.

3. Batchbehandling: Hvis du arbejder med GPT-4-klasse modeller, kan du muligvis
udnytte batchbehandlingsteknikker til at behandle flere datapunkter eller forespergsler
i en enkelt batch i stedet for at behandle dem individuelt. Ved at behandle data i batches
kan systemet optimere ressourceudnyttelsen og reducere overheaden fra gentagne

modelforesporgsler.

Overvagning og Profilering af Ydeevne

For at identificere flaskehalse i ydeevnen og optimere skalerbarheden af det intelligente
arbejdsprocesstyringssystem, er det afggrende at implementere overvagnings- og

profileringsmekanismer. Overvej folgende tilgange:

1. Ydelsesmalinger: Definer og spor centrale ydelsesmalinger, sdsom svartid,
gennemleb, ressourceudnyttelse og latenstid. Disse malinger giver indsigt i systemets
ydeevne og hjeelper med at identificere omrader til optimering. Den populeere Al-
model-aggregator OpenRouter inkluderer Host!- og Speed?-mélinger i hvert API-svar,

hvilket gor det enkelt at spore disse centrale malinger.

2. Profileringsvaerktejer: Brug profileringsveerktejer til at analysere ydeevnen af
individuelle arbejdsprocesskomponenter og Al-operationer. Profileringsveerktejer
kan hjelpe med at identificere ydeevnehotspots, ineffektive kodestier eller

ressourcekreevende operationer. Populeere profileringsveerktgjer omfatter New

"Host er den tid, det tog at modtage den forste byte af den streamede generering fra modelveerten, ogsa
kendt som “time to first byte.”

2Speed beregnes som antallet af fuldferelsestokens divideret med den samlede genereringstid. For ikke-
streamede foresporgsler betragtes latenstid som en del af genereringstiden.

https://openrouter.ai

Intelligent arbejdsgangsorkestrerering 241

Relic, Scout eller indbyggede profileringsveerktgjer fra programmeringssproget eller

framework’et.

3. Belastningstest: Udfer belastningstest for at evaluere systemets ydeevne under
forskellige niveauer af samtidige arbejdsbelastninger. Belastningstest hjeelper med at
identificere systemets skalerbarhedsgreenser, opdage forringelse af ydeevnen og sikre,

at systemet kan handtere den forventede trafik uden at kompromittere ydeevnen.

4. Kontinuerlig Overvagning: Implementer kontinuerlig overvagning og
alarmeringsmekanismer for proaktivt at opdage ydelsesproblemer og flaskehalse.
Opseet overvagningsdashboards og alarmer til at spore centrale preestationsindikatorer
(KPTer) og modtag notifikationer, nar foruddefinerede greenseveerdier overskrides.

Dette muligger hurtig identifikation og lesning af ydelsesproblemer.

Skaleringsstrategier

For at handtere stigende arbejdsbelastninger og sikre skalerbarheden af det intelligente

arbejdsprocesstyringssystem, ber folgende skaleringsstrategier overvejes:

1. Vertikal Skalering: Vertikal skalering involverer foregelse af ressourcerne (f.eks.
CPU, hukommelse) pa individuelle noder eller servere for at handtere hgjere
arbejdsbelastninger. Denne tilgang er velegnet, nér systemet kreever mere processorkraft

eller hukommelse til at handtere komplekse arbejdsprocesser eller Al-operationer.

2. Horisontal Skalering: Horisontal skalering involverer tilfgjelse af flere noder eller
servere til systemet for at fordele arbejdsbelastningen. Denne tilgang er effektiv,
nar systemet skal handtere et stort antal samtidige arbejdsprocesser, eller nar
arbejdsbelastningen nemt kan fordeles pa tvers af flere noder. Horisontal skalering
kreever en distribueret arkitektur og load balancing-mekanismer for at sikre jeevn

fordeling af trafikken.

3. Auto-skalering: Implementer auto-skaleringsmekanismer til automatisk at justere

antallet af noder eller ressourcer baseret pa arbejdsbelastningsbehovet. Auto-skalering

Intelligent arbejdsgangsorkestrerering 242

tillader systemet dynamisk at skalere op eller ned aftheengigt af den indkommende trafik,
hvilket sikrer optimal ressourceudnyttelse og omkostningseffektivitet. Cloudplatforme
som Amazon Web Services (AWS) eller Google Cloud Platform (GCP) tilbyder auto-

skaleringsmuligheder, der kan udnyttes til intelligente arbejdsprocesstyringssystemer.

Ydeevneoptimeringteknikker

Ud over skaleringsstrategierne ber falgende ydeevneoptimeringteknikker overvejes for

at forbedre effektiviteten af det intelligente arbejdsprocesstyringssystem:

1. Effektiv Datalagring og -hentning: Optimer de datalagring- og
hentningsmekanismer, der bruges af arbejdsprocesskomponenterne. Brug effektiv
databaseindeksering, forespargselsoptimeringteknikker og datacaching for at minimere

latenstiden og forbedre ydeevnen af dataintensive operationer.

2. Asynkron I/O: Brug asynkrone I/O-operationer for at forhindre blokering og forbedre
systemets reaktionsevne. Asynkron I/O ger det muligt for systemet at handtere flere
anmodninger samtidigt uden at vente pa, at I/O-operationer bliver feerdige, hvorved

ressourceudnyttelsen maksimeres.

3. Effektiv serialisering og deserialisering: Optimér de serialiserings- og
deserialiseringsprocesser, der bruges til dataudveksling mellem workflow-komponenter.
Brug effektive serialiseringsformater som Protocol Buffers eller MessagePack for at
reducere overhead ved dataserialisering og forbedre ydeevnen af kommunikationen

mellem komponenter.

For Ruby-baserede applikationer kan du overveje at bruge Universal ID.
’ Universal ID udnytter bade MessagePack og Brotli (en kombination bygget
til hastighed og fersteklasses datakomprimering). Nar disse biblioteker
kombineres, er de op til 30% hurtigere og inden for 2-5% komprimeringsrater

sammenlignet med Protocol Buffers.

https://github.com/hopsoft/universalid

Intelligent arbejdsgangsorkestrerering 243

4. Komprimering og kodning: Anvend kompressions- og kodningsteknikker for
at reducere storrelsen af data, der overfores mellem workflow-komponenter.
Komprimeringsalgoritmer som gzip eller Brotli kan markant reducere

netveerksbandbreddeforbruget og forbedre systemets samlede ydeevne.

Ved at tage hensyn til skalerbarhed og ydeevneaspekter under design og implementering
af intelligente workflow-orchestreringssystemer, kan du sikre, at dit system kan
héndtere store mengder samtidige workflows, optimere ydeevnen af Al-drevne
komponenter og skalere problemfrit for at imgdekomme voksende krav. Kontinuerlig
overvagning, profilering og optimering er afgerende for at opretholde systemets
ydeevne og reaktionsevne, efterhdnden som arbejdsbelastningen og kompleksiteten

gges over tid.

Test og validering af workflows

Test og validering er kritiske aspekter af udvikling og vedligeholdelse af intelligente
workflow-orchestreringssystemer. I betragtning af den komplekse natur af Al-drevne
workflows er det afgerende at sikre, at hver komponent fungerer som forventet, at
det overordnede workflow opfarer sig korrekt, og at Al-beslutningerne er nejagtige og
palidelige. I dette afsnit vil vi udforske forskellige teknikker og overvejelser for test og

validering af intelligente workflows.

Enhedstest af workflow-komponenter

Enhedstest involverer test af individuelle workflow-komponenter isoleret for at
verificere deres korrekthed og robusthed. Nar du udferer enhedstest af Al-drevne

workflow-komponenter, ber du overveje felgende:

1. Input-validering: Test komponentens evne til at handtere forskellige typer input,
herunder gyldige og ugyldige data. Verificér at komponenten handterer greensetilfeelde

elegant og giver passende fejlmeddelelser eller undtagelser.

© 0 N O O b W N =

I O = N T TG ¢
O 00 N O O & W N ~ O

Intelligent arbejdsgangsorkestrerering 244

2. Output-verifikation: Bekreeft at komponenten producerer det forventede output for
et givent seet inputs. Sammenlign det faktiske output med de forventede resultater for

at sikre korrekthed.

3. Fejlhandtering: Test komponentens fejlhdndteringsmekanismer ved at simulere
forskellige fejlscenarier, sasom ugyldigt input, utilgeengelige ressourcer eller uventede

undtagelser. Verificér at komponenten fanger og handterer fejl korrekt.

4. Greenseverdier: Test komponentens opfersel under greenseveerdibetingelser, sasom
tomt input, maksimal inputsterrelse eller ekstreme veerdier. Sikr at komponenten

héndterer disse betingelser elegant uden at ga ned eller producere ukorrekte resultater.

Her er et eksempel pa en enhedstest for en workflow-komponent i Ruby ved hjeelp af

RSpec test-frameworket:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end
end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end
end
end

end

I dette eksempel testes OrderValidator-komponenten ved hjeelp af to testtilfeelde:
ét for en gyldig ordre og et andet for en ugyldig ordre. Testtilfeeldene verificerer,

Intelligent arbejdsgangsorkestrerering 245

at validate-metoden returnerer den forventede booleske veerdi baseret pa ordrens

gyldighed.

Integration Testing af Arbejdsgangsinteraktioner

Integrationstest fokuserer pa at verificere interaktioner og dataflow mellem forskellige
arbejdsgangskomponenter. Det sikrer, at komponenterne arbejder problemfrit sammen
og producerer de forventede resultater. Nar der udferes integrationstest af intelligente

arbejdsgange, ber felgende overvejes:

1. Komponentinteraktion: Test kommunikationen og dataudvekslingen mellem
arbejdsgangskomponenter. Verificér at outputtet fra én komponent korrekt videregives

som input til den neeste komponent i arbejdsgangen.

2. Datakonsistens: Sikr at data forbliver konsistent og preecis, mens det flyder gennem
arbejdsgangen. Verificér at datatransformationer, beregninger og aggregeringer udferes

korrekt.

3. Undtagelseshandtering: Test hvordan undtagelser og fejl forplanter sig og handteres
pa tveers af arbejdsgangskomponenter. Verificér at undtagelser opfanges, logges og

handteres hensigtsmeessigt for at forhindre forstyrrelser i arbejdsgangen.

4. Asynkron Adferd: Hvis arbejdsgangen involverer asynkrone komponenter eller
parallel eksekvering, test da koordinerings- og synkroniseringsmekanismerne. Sikr at

arbejdsgangen opfarer sig korrekt under samtidige og asynkrone scenarier.

Her er et eksempel pa en integrationstest for en arbejdsgang i Ruby ved hjeelp af RSpec

test-frameworket:

© 0 N O O b W N e

11
12
13
14
15
16
17
18

Intelligent arbejdsgangsorkestrerering 246

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

I dette eksempel testes OrderProcessingWorkflow ved at verificere samspillet
mellem forskellige arbejdsgangskomponenter. Testscenariet opstiller forventninger til
hver komponents adfzerd og sikrer, at arbejdsgangen behandler ordren succesfuldt og

opdaterer ordrens status i overensstemmelse hermed.

Test af Al-beslutningspunkter

Test af Al-beslutningspunkter er afggrende for at sikre nejagtigheden og palideligheden
af Al-drevne arbejdsgange. Ved test af Al-beslutningspunkter ber man overveje

folgende:

1. Beslutningsnejagtighed: Verificér at Al-komponenten treeffer ngjagtige beslutninger
baseret pa inputdata og den treenede model. Sammenlign Al-beslutningerne med

forventede resultater eller referencedata.

2. Greensetilfeelde: Test Al-komponentens adfeerd under greensetilfeelde og useedvanlige
scenarier. Verificér at Al-komponenten handterer disse tilfeelde elegant og treeffer

fornuftige beslutninger.

© 0 N O O b W N =

NN N N R R R s L s s
W N 0 O 0 N0 U W N~

Intelligent arbejdsgangsorkestrerering 247

3. Bias og retfeerdighed: Vurdér Al-komponenten for potentielle bias og sikr, at den
treeffer fair og upartiske beslutninger. Test komponenten med forskelligartede inputdata

og analysér resultaterne for eventuelle diskriminerende menstre.

4. Forklarlighed: Hvis Al-komponenten giver forklaringer eller begrundelser for
sine beslutninger, skal du verificere, at forklaringerne er korrekte og klare. Sikr at

forklaringerne stemmer overens med den underliggende beslutningsproces.

Her er et eksempel pa test af et Al-beslutningspunkt i Ruby ved brug af RSpec-

testrammeveerket:

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

I dette eksempel testes FraudDetector Al-komponenten med to testtilfeelde: et for en
svigagtig transaktion og et andet for en legitim transaktion. Testtilfeeldene verificerer,
at detect_fraud-metoden returnerer den forventede booleske veerdi baseret pa

transaktionens karakteristika.

Intelligent arbejdsgangsorkestrerering 248

End-to-End Test

End-to-end test involverer test af hele arbejdsgangen fra start til slut, hvor man
simulerer virkelige scenarier og brugerinteraktioner. Det sikrer, at arbejdsgangen
opferer sig korrekt og producerer de enskede resultater. Nar der udferes end-to-end

test af intelligente arbejdsgange, ber man overveje folgende:

1. Brugerscenarier: Identificér almindelige brugerscenarier og test arbejdsgangens
adfeerd under disse scenarier. Verificér at arbejdsgangen handterer brugerinput korrekt,

treeffer passende beslutninger og producerer de forventede output.

2. Datavalidering: Sikr at arbejdsgangen validerer og behandler brugerinput for at
forhindre datauoverensstemmelser eller sikkerhedssarbarheder. Test arbejdsgangen med

forskellige typer inputdata, herunder béde gyldige og ugyldige data.

3. Fejlhandtering: Test arbejdsgangens evne til at komme sig efter fejl og undtagelser.
Simulér fejlscenarier og verificér, at arbejdsgangen handterer dem elegant, logger fejlene

og udferer passende genopretningshandlinger.

4. Ydeevne og Skalerbarhed: Vurdér arbejdsgangens ydeevne og skalerbarhed under
forskellige belastningsforhold. Test arbejdsgangen med en stor meengde samtidige

anmodninger og mal responstider, ressourceforbrug og systemets generelle stabilitet.

Her er et eksempel pa en end-to-end test af en arbejdsgang i Ruby ved hjeelp af RSpec

testframework og Capybara-biblioteket til simulering af brugerinteraktioner:

© 0 N O O b W N e

11
12
13

Intelligent arbejdsgangsorkestrerering 249

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: '2°'
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed")
end
end

I dette eksempel simulerer end-to-end testen en bruger, der afgiver en ordre gennem
webgreensefladen. Den udfylder de pakreevede formularfelter, indsender ordren og
verificerer, at ordren behandles korrekt, viser den passende bekreeftelsesbesked og

opdaterer ordrestatus i databasen.

Kontinuerlig Integration og Deployment

For at sikre palideligheden og vedligeholdelsen af intelligente arbejdsgange anbefales det
at integrere test og validering i den kontinuerlige integrations- og deployment (CI/CD)
pipeline. Dette muligger automatiseret test og validering af eendringer i arbejdsgangen,

for de implementeres i produktion. Overvej folgende praksisser:

1. Automatiseret Testkorsel: Konfigurer CI/CD-pipelinen til automatisk at kere test-
suiten, nér der foretages eendringer i arbejdsgangens kodebase. Dette sikrer, at eventuelle

regressioner eller fejl opdages tidligt i udviklingsprocessen.

2. Overvagning af Testdeekning: Mal og overvag testdeekningen af arbejdsgangens
komponenter og Al-beslutningspunkter. Streeb efter hej testdeekning for at sikre, at

kritiske stier og scenarier testes grundigt.

3. Lebende Feedback: Integrer testresultater og kodekvalitetsmetrikker i

udviklingsarbejdsgangen. Giv lebende feedback til udviklere om testenes status,

Intelligent arbejdsgangsorkestrerering 250

kodekvalitet og eventuelle problemer, der opdages under CI/CD-processen.

4. Staging-miljeer: Implementer arbejdsgangen i staging-miljger, der ngje afspejler
produktionsmiljget. Udfer yderligere test og validering i staging-miljeet for at fange

eventuelle problemer relateret til infrastruktur, konfiguration eller dataintegration.

5. Rollback-mekanismer: Implementer rollback-mekanismer i tilfeelde af
implementeringsfejl eller kritiske problemer opdaget i produktion. Serg for, at
arbejdsgangen hurtigt kan rulles tilbage til en tidligere stabil version for at minimere

nedetid og pavirkning af brugerne.

Ved at inkorporere test og validering gennem hele udviklingslivscyklussen for
intelligente arbejdsgange kan organisationer sikre pélideligheden, ngjagtigheden og
vedligeholdelsen af deres Al-drevne systemer. Regelmeessig test og validering hjeelper
med at fange fejl, forebygge regressioner og opbygge tillid til arbejdsgangens adfeerd

og resultater.

Del 2: Monstrene

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 253

Chain of Thought

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempler

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Indholdsproduktion

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Struktureret Entitetsoprettelse

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Vejledning af LLM-agenter

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og Overvejelser

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 254

Tilstandsskift

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan Fungerer Det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 255

Rolletildeling

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempler

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 256

Prompt-objekt

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 257

Promptskabelon

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og overvejelser

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges:

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 258

Structured 10

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Skalering af Struktureret 10

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og overvejelser

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 259

Prompt-kaedekobling

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar det skal bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel: Olympias Onboarding

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 260

Prompt-omskriver

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 261

Response Fencing

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og Overvejelser

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fejlhandtering

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 262

Forespargselsanalysator

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Implementering

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Ordklassemaerkning (POS) og Navngiven Entitetsgenkendelse (NER)

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Intentionsklassificering

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Nogleordsudtraekning

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Fordele

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 263

Forespargselsomskriver

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan virker det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 264

Ventriloquist

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 266

Praedikat

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 267

APIl-facade

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Centrale fordele

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar det skal bruges

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Autentificering og Autorisering

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 268

Handtering af Forespergsler

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Formatering af Svar

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fejlhandtering og Seertilfaelde

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser om Skalerbarhed og Ydeevne

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sammenligning med Andre Designmenstre

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 269

Resultatfortolker

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar skal det bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 270

Virtuel Maskine

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornar Det Skal Bruges

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Bag Magien

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Specifikation og Test

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 271

Specificering af Adfaerd

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Skrivning af Testtilfaelde

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel: Test af Oversaetterkomponenten

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Genafspilning af HTTP-interaktioner

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL)

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overordnede Monstre

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hybrid Intelligens

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Adaptiv Respons

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Menneske-Al-rolleskift

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 273

Eskalering

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Vigtige fordele

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelse i Praksis: Sundhedsvaesenet

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 274

Feedbackslejfe

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Avancerede Teknikker i Integration af Menneskelig
Feedback

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 275

Passiv Informationsudstraling

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Fungerer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstuel Informationsvisning

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Proaktive Notifikationer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Forklarende Indsigt

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Interaktiv Udforskning

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 276

Centrale Fordele

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 277

Kollaborativ Beslutningstagning (CDM)

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Fungerer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 278

Kontinuerlig Laering

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan Fungerer Det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Etiske Overvejelser

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

HITL's Rolle i Reduktion af Al-Risici

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 279

Teknologiske Fremskridt og Fremtidsudsigter

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Udfordringer og Begraensninger ved HITL-Systemer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Traditionelle Fejlhandteringstilgange

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering 281

Kontekstuel fejldiagnose

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Prompt-engineering til kontekstuel fejldiagnose

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Retrieval-Augmented Generation til kontekstuel fejldiagnose

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering 282

Intelligent fejlrapportering

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering 283

Forebyggende Fejlpraevention

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan Fungerer Det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Intelligent Fejlgenopretning

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan Fungerer Det

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering 284

Personaliseret Fejlkommunikation

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan Fungerer Det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhandtering 285

Adaptiv Fejlhandteringsarbejdsgang

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 287

Eval

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Problem

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Lasning

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 288

Forstaelse af Gyldne Referencer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Referencefri Evalueringer Fungerer

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 289

Sikkerhedsmekanisme

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Problem

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Lasning

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sadan fungerer det

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 290

Sikkerhedsforanstaltninger og Evalueringer: To

Sider af Samme Sag

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.
Udskifteligheden mellem Sikkerhedsforanstaltninger og
Referencefri Evalueringer

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementering af Tosidede Sikkerhedsforanstaltninger
og Evalueringer

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Ordliste

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Ordliste

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

A

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kebes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

C

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

292

D

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

G

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

H

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

293

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

K

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

M

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

N

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

(o)

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

294

P

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Q

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

R

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

S

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

T

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

U

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

295

\'

Dette indhold er ikke tilgeengeligt i prevebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

w

Dette indhold er ikke tilgeengeligt i pravebogen. Bogen kan kebes pa Leanpub pé http:

//leanpub.com/patterns-of-application-development-using-ai-da.

yA

Dette indhold er ikke tilgeengeligt i provebogen. Bogen kan kabes pa Leanpub pa http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Index

ACID-egenskaber, 105

adaptiv arbejdsgang
Adaptiv

Arbejdsgangssammenseetning,
216

adaptivt UL, 199

Agentiske, 30

Al 62, 71, 95, 123, 128, 137, 144, 194, 201
applikationer, 120, 132, 143, 155
beslutningspunkter, 246
konversations, 6, 29, 202
model, 86, 95, 149, 150, 152, 201
sammensatte systemer, 28, 29, 32

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 242

Anthropic, 21, 37, 70, 124, 131

anthropomorphism, 66

APTer, 69, 118, 147

applikationsdesign og frameworks, 190

applikationsudvikling, 211

AR-briller, 209

arrays, 125

asynkron behandling, 239

auto-skalering, 241

Automatisk Fortsaettelse, 153

autoregressiv modellering, 41

batchbehandling, 240
behandlingstid, 106
beredskabsplanleegning, 31
BERT, 12, 22
beslutning

punkter, 235

treeer, 212
beslutningstagning

scenarier, 127
bias

og retfeerdighed i Al 247
boundary conditions, 244
Brotli, 242, 243
brugergenereret indhold, 107
Brugergreenseflade

frameworks, 205

interfaces, 204
Brugergreenseflade (UI)

design, 209

greenseflader, 190

teknologier, 200
brugeroplevelse, 186
brugerpsykologi, 206
brugertest og feedback, 188
brugertillid, 207

Index

brugervenligheds-problemer, 206
Bugtaler, 169
Byte Pair Encoding (BPE), 12, 13

C (Programmeringssprog), 112
caching, 240
Capybara-biblioteket, 248
centrale menstre, 214
Chain of Thought (CoT), 133
chatbot-applikation, 114
ChatGPT, 28, 51
Claude, 7, 41, 74
Claude 3, 47, 121, 124, 129, 131
Claude 3 Opus, 71
Claude v1, 16
Claude v2, 16
Cohere (LLM Provider), 21
Cohere (LLM-udbyder), 23
concurrent workflows, 243
context
Contextual Content Generation,
183-185
Continuous Integration and Deployment
(CI/CD), 249
pipeline, 249
conversation
samtalehistorik, 150

Customer Sentiment Analysis, 96

data
analyse, 32, 141
behandlingsopgaver, 120
behandlingspipeline, 230

297

beskyttelse, 25

Datahentning, 105

Datasynkronisering, 105

Datavalidering, 248

flow, 105

forberedelse, 104

integritet, 230

persistens, 105

privatlivsbeskyttelse, 206
databaser, 118

-understgttet objekt, 101
databases

locking strategies, 105
Databricks-medarbejdere, 50
Datadog, 238
datalogi, 67, 69
decision

-making capabilities, 95
destillationsproces, 73
detaljeret logning, 237
deterministisk adfeerd, 56
digitalt landskab, 185
distribueret arkitektur, 239
Dohan, et al., 41
dokumentklyngedannelse, 116
Dynamisk opgavefordeling, 214
dynamisk Ul-generering, 180
Dynamisk Veerktgjsvalg, 125

e-commerce, 183
e-handel, 212

E-handelsapplikationer, 88

Index

effektivitet, 213
eksperimentering
ramme, 185
eksterne tjenester eller APTer, 121
ELK stack, 106
emneidentifikation, 116
emotionel tone, 139
end-to-end test, 248
end-to-end testing, 249
ensembler, 112, 113
ensemble af arbejdere, 113
Enterprise Integration Patterns, 100
errors
handling, 244
héndtering, 105
Intelligent Fejlhandtering, 137
rater, 106
etik

implikationer, 191

F#, 89
Facebook, 23
fallback-strategier, 105
feedback
Feedback-loop, 57
fejl
héndtering, 103, 136, 248
fejlfinding, 215
og fejlsegning, 237
og test, 126
few-shot

learning, 60

298

prompting, 61
finaliseringsmetode, 150
finalize-metode, 151, 152
finjustering, 77
FitAl 202
flaskehalse, 216
fleksibilitet og kreativitet, 188
flertalsafstemning, 112
flertrinsprocedure, 107
forklarlighed, 247
forretningsregler, 212
Forsikringsverifikation, 98
forsyningskeede

optimering, 31
forudsigelser, 5
function

names, 148
funktion

kald, 118

kaldshistorik, 150
funktionel programmering, 88
funktionskald

fejl, 128

Gemma 7B, 10

Generativ brugergreenseflade (GenUI), 204

Generativ UI (GenUI), 200, 208

Generative Pre-trained Transformer (GPT),
7, 65

Generative UI (GenUI), 190, 197

Genfindelses-forsteerket Generering (RAG),
29,76

Index 299

genfindingsbaserede modeller, 6 hyperparameter, 44
gennemlgb, 26 héandtering af undtagelser, 216
gentagelsesmekanismer, 105 heendelsesdrevet arkitektur, 104
gentagelsesstraffe, 49 hejtydende feerdiggarelse, 24
GitLab, 89
Global Interpreter Lock (GIL), 111 ikke-superviseret leering, 4
Google, 21 indhold
APL 61, 63 filtrering, 25
Cloud AI Platform, 22 Indholdskateogorisering, 107
Cloud Platform, 242 indholdsbaseret filtrering, 88
Gemini, 20 Indsamling af sygehistorie, 97
Gemini 1.5 Pro, 12, 16, 17 indsnzevre stien, 36, 37
PaLM (Pathways Language Model), Inferens, 5
16, 22 information
Ts, 12 genfinding, 6
GPT-3, 12, 16 hentning, 120
GPT-4, 6, 12, 16, 20, 29, 41, 47, 60, 100, 112, udtraekning, 50
115, 122, 128, 195, 196, 240 inkluderende greenseflader, 191
grafiske modeller, 41 input
Graham, Paul, 17 prompts, 54
grammatiske regler, 4 validation, 243
GraphQL, 103 inputparametre, 123
Grog, 24, 115 instruktionstilpasning, 9
grundmodeller, 52 instruktionstreening
gzip, 243 instruktionstunede modeller, 47
instruktionstunning
hardware, 26 instruktionstunede modeller, 50
hash, 146 integrationstest, 245
historiske menstre, 215 integrering af LLMs, 180
Hohpe, Gregor, 100 intelligent arbejdsgangsorkestering, 219
Honeybadger, 90 intelligent arbejdsgangsorkestrerering, 211

HTTP, 144 intelligent arbejdsprocesstyring, 240

Index 300

Intelligent Indholdsmoderator, 223 kreativ skrivning, 32, 50
intelligent workflow orchestration, 243 kredslebsbryder-logik, 155
internationalisering, 186 krydsmodal generering, 20
iterativ forbedring, 138 kundeservice-chatbots, 31
iterativ forfining, 73 kundesupport, 30

Kvantisering, 27

JSON (JavaScript Object Notation), 121,
kvikselv (grundstof), 42
125, 126, 129, 141, 159

K-means, 117 language

kanttilfzelde, 56 models, 63

Klassificering, 116 Large Language Model (LLM), 16, 64, 66,

klassifikation, 50 84, 138, 140
Klinisk beslutningsstette, 99 latens, 26
kollaborativ filtrering, 88 Latent Dirichlet Allocation, 117
kommandolinje latent rum, 38, 40
Kommandolinjeinterface (CLI), 24 linezer algebra, 41
komplekse opgaver, 140 lineeer regression, 41
konceptuelle og praktiske udfordringer, 191 Llama, 12
konsistens Llama 2-70B, 48
og reproducerbarhed, 127 Llama 3 70B, 10
kontekst Llama 3 8B, 10
kontekstbaseret beslutningstagning, logopbevaring og -rotation, 238
215 lokale udviklingsmiljeer, 148
Kontekstbaseret Indholdsgenering, Louvre, 40
191, 192 lukket og aben spergsmalsbesvarelse, 50
Kontekstuel Indholdsgenering, 179
Kontekstuelle Feltforslag, 192 Managed Streaming for Apache Kafka, 39
Udvidelse, 44 Mangfoldighed af Arbejdere, 114
uendeligt lange inputs, 14 manuel indgriben, 218
vindue, 14, 215 Markdown, 141
Kontinuerlig risikoovervagning, 99 markup-opmeerkning, 68

konto, 87 medicinske opdagelser, 97

Index 301

Memorial Sloan Kettering Cancer Center, netveerksforbindelse, 216
39 neurale netveerk, 3, 6
Menneske-i-loopet (HITL), 171 New Relic, 241

Merkur (planet), 42
Ollama, 23
Merkur (romersk gud), 42
Olympia, 31, 60, 123, 137, 145, 160
MessagePack, 242
Olympias vidensbase, 88
Meta, 23
omskrivning, 51
Metropolitan Museum of Art, 40
One-Shot-Leering, 58
Mikroservice-arkitektur, 86
online forhandlere, 196
Mistral, 24
opbygning af narrativ, 18
7B, 10
open source model hosting udbydere, 196
7B Instruct, 16, 196
OpenAl 3, 21, 37, 70

Mixtral
OpenRouter, 26, 145, 240
8x22B, 10
opgavetildeling, 230
8x7B, 54

opsummering, 50

moderne applikationer, 213
OPT model, 23

modularitet, 85 e
optimistisk lasning, 105

motivationsstrategier, 204
& ordbgger, 125

Multi-Agent e
output verification, 244

Problemlasere, 29
oversaettelse, 15, 187

Multimodale ..
overvagning

deller, 19 i
modeller, metrikker, 237

sprogmodeller, 19 og alarmering, 217

Multitude of Workers, 159 og logning, 106, 236

menstergenkendelse, 146

parallel udferelse, 239

Naive Bayes, 116 parameter
naturlig sprog effekter, 123
Naturlig Sprogbehandling (NLP), 115 Parameterantal, 26
naturlig sprogbehandling parametre
Natural Language Processing (NLP), omrade, 10

97 Perplexity (Udbyder), 10

Index

personalisering, 180, 208, 213
Personaliserede Formularer, 192
Personaliseret mikrotekst, 197

personlige produktanbefalinger, 88

pessimistisk lasning, 105

princippet om mindst muligt privilegium,

69

probabilistiske modeller, 41

Process Manager, 103
virksomhedsintegration, 219

Processtyring, 100

Produktanbefalinger, 88

Produktivitet, 182

progressiv afslgring, 198

prompts
design, 56, 65
engineering, 38, 43, 54, 57, 63, 64, 205
keedekobling, 57, 68
Prompt Template, 196
Prompt-destillation, 240
Prompt-destillering, 44, 70, 75
Prompt-objekt, 71
Prompt-skabelon, 57
refinement, 65

Protocol Buffers, 242

publish-subscribe-systemer, 104

PyTorch, 23

Qwen2 70B, 10

Rails, 187
Railway Oriented Programming (ROP), 91
Raix, 220

302

bibliotek, 93

rangordnere, 33

Responsafgreensning, 169

Response Fencing, 196

Resultatfortolker, 136

Retrieval Augmented Generation (RAG),
36, 44, 120

revision og overholdelse, 237

revisionslogning, 102

risikofaktorer, 92, 93

Risikostratificering, 99

rollback mechanisms, 250

rollespilslignende interaktioner, 6

RSpec, 244, 245, 248

Ruby, 89, 90, 108, 155, 248

Ruby on Rails, 1, 107, 219, 227

Rudall, Alex, 22

Rust (Programmeringssprog), 112

Rust (Programming Language), 89

sammenkeedning af Al-workers, 107
samtale
lokke, 153
udskrift, 152
Scout, 241
segmenterings- og malretningsstrategier,
186
Selvhelende Data, 233
Selvhelende data, 157
sentimentanalyse, 15, 96, 107, 108, 110, 113,
129, 139

server-sendte begivenheder (SSE), 144

Index

skalerbarhed, 213, 238

smartphones, 209

softwarearkitektur, 2

sporing af negletal, 234

sprog
-relaterede opgaver, 4
modeller, 40, 70
Sprogdetektering, 107

sporgsmal-svar-systemer, 7

SQL-injektioner, 68

staging environments, 250

stationzere computere, 209

stemmestyrede greenseflader, 31

Stor sprogmodel (LLM), 27

Store Sprogmodel (LLM), 1, 3, 134

Store Sprogmodeller (LLM), 14, 68, 69, 73,

106, 115, 118, 119, 128, 138, 179,
190, 195, 200, 222

landskab, 25

Store sprogmodeller (LLM), 157, 160

Stort Sprogmodel (LLM), 74

streaming-data, 146

Stripe, 124

Structured IO, 196

strukturerede data, 128

struktureret logning, 238

strembehandling, 144, 150, 155
logik, 151

stremhéndterere, 144

Support Vector Machines (SVM), 116

svigdetektion

system, 93

303

Symptomvurdering og stratificering, 97
syntaksfejl, 126

syntetisk datagenerering, 51

system directive, 95

systemdirektiv, 123

T5, 22

tablets, 209

Tankereekke (Chain of Thought), 43
Tekstrensning, 107
Temperatur, 52

theory of mind, 38

Tid til ferste token (TTFT), 26
tilgeengelighed, 207, 208
tilpasning, 25

tilstandsles, 150
Tilstedeveerelsesstraf, 46
Together.ai, 24

tokenisering, 11

tokens, 5, 11

Top-k sampling, 46

Top-p (nucleus) sampling, 46
trafikstyring, 31

tragedy of the commons, 183
transformer-arkitektur, 6
treeningsdata, 40

Tvunget Veerktejsvalg, 126

uddannelsesapplikationer, 30
udlgserbesked, 100
udviklingsrammer, 142
undtagelseshandtering, 218
Unicode-koderbart sprog, 13

Index

Universal ID, 242

videnbaser, 7

vidensstyring, 30
virksomhedsapplikationsarkitektur, 36
virtuelle assistenter, 31

visuel greenseflade, 200

veerktejsbrug, 118, 142

veerktgjskald, 147

Wall, Larry, 3
Wisper, 90, 102, 145, 152
Wooley, Chad, 89

XML, 128

304

ydeevne

optimering, 188, 237

problemer, 241
ydelse

optimering, 127
ydelses

-kompromiser, 5

Yi-34B, 48

zero-shot learning, 57

zero-shot-leering, 57

gkosystem, 141

	Indholdsfortegnelse
	Forord af Gregor Hohpe
	Forord
	Om Bogen
	Om Kodeeksemplerne
	Hvad Jeg Ikke Dækker
	Hvem Denne Bog Er Til
	Opbygning af et Fælles Ordforråd
	Bliv Involveret
	Tak
	Hvad med illustrationerne?
	Om Lean Publishing
	Om forfatteren

	Introduktion
	Tanker om Softwarearkitektur
	Hvad er en Store Sprogmodel?
	Forståelse af inferens
	Om Ydeevne
	Eksperimenter Med Forskellige LLM-Modeller
	Sammensatte AI-Systemer

	Del 1: Grundlæggende Tilgange & Teknikker
	Indsnævre Stien
	Latent Rum: Ubegribeligt Stort
	Hvordan Stien Bliver ``Indsnævret''
	Rå versus instruktionstunede modeller
	Prompt Engineering
	Prompt-destillering
	Hvad med finjustering?

	Retrieval Augmented Generation (RAG)
	Hvad er Retrieval Augmented Generation?
	Hvordan fungerer RAG?
	Hvorfor bruge RAG i dine applikationer?
	Implementering af RAG i Din Applikation
	Propositionsopdeling
	Virkelige Eksempler på RAG
	Intelligent Forespørgselsoptimering (IQO)
	Omrangering
	RAG-vurdering (RAGAs)
	Udfordringer og Fremtidsudsigter

	Mangfoldighed af Arbejdere
	AI-Arbejdere Som Uafhængige Genbrugelige Komponenter
	Kontoadministration
	E-handelsapplikationer
	Sundhedsvæsenets anvendelser
	AI Worker som Processtyring
	Integration af AI-Workers I Din Applikationsarkitektur
	Sammensættelighed og Orkestrering af AI-Workers
	Kombination af Traditionel NLP med LLM'er

	Brug af værktøjer
	Hvad er værktøjsbrug?
	Potentialet i Værktøjsanvendelse
	Arbejdsgangen for Værktøjsanvendelse
	Bedste praksis for værktøjsbrug
	Sammensætning og Kædekobling af Værktøjer
	Fremtidige Retninger

	Strømbehandling
	Implementering af en ReplyStream
	``Samtalesløjfen''
	Automatisk Fortsættelse
	Konklusion

	Selvhelende data
	Praktisk casestudie: Reparation af ødelagt JSON
	Overvejelser og Kontraindikationer

	Kontekstuel Indholdsgenering
	Personalisering
	Produktivitet
	Hurtig iteration og eksperimentering
	AI-drevet Lokalisering
	Vigtigheden af Brugertest og Feedback

	Generative UI
	Generering af tekst til brugergrænseflader
	Definition af Generativ UI
	Eksempel
	Skiftet til resultatsorienteret design
	Udfordringer og overvejelser
	Fremtidsudsigter og Muligheder

	Intelligent arbejdsgangsorkestrerering
	Forretningsmæssigt behov
	Centrale fordele
	Centrale mønstre
	Håndtering og Genopretning af Undtagelser
	Implementering af Intelligent Arbejdsgangsorkestering i Praksis
	Overvågning og Logføring
	Skalerbarhed og Ydeevneovervejelser
	Test og validering af workflows

	Del 2: Mønstrene
	Prompt Engineering
	Chain of Thought
	Tilstandsskift
	Rolletildeling
	Prompt-objekt
	Promptskabelon
	Structured IO
	Prompt-kædekobling
	Prompt-omskriver
	Response Fencing
	Forespørgselsanalysator
	Forespørgselsomskriver
	Ventriloquist

	Diskrete Komponenter
	Prædikat
	API-facade
	Resultatfortolker
	Virtuel Maskine
	Specifikation og Test

	Human In The Loop (HITL)
	Overordnede Mønstre
	Eskalering
	Feedbacksløjfe
	Passiv Informationsudstråling
	Kollaborativ Beslutningstagning (CDM)
	Kontinuerlig Læring
	Etiske Overvejelser
	Teknologiske Fremskridt og Fremtidsudsigter

	Intelligent Fejlhåndtering
	Traditionelle Fejlhåndteringstilgange
	Kontekstuel fejldiagnose
	Intelligent fejlrapportering
	Forebyggende Fejlprævention
	Intelligent Fejlgenopretning
	Personaliseret Fejlkommunikation
	Adaptiv Fejlhåndteringsarbejdsgang

	Kvalitetskontrol
	Eval
	Sikkerhedsmekanisme
	Sikkerhedsforanstaltninger og Evalueringer: To Sider af Samme Sag

	Ordliste
	Ordliste
	Index

