

Mønstre i Applikationsudvikling med AI

(Dansk Udgave)

Obie Fernandez

Denne bog er til salg på

http://leanpub.com/patterns-of-application-development-using-ai-da

Denne version blev offentliggjort den 2025-01-23

Dette er en Leanpub bog. Leanpub giver forfattere og udgivere magten med Lean

Publishing-processen. Lean Publishing er handlingen med at publicere en

igangværende e-bog ved hjælp af letvægtsværktøjer og mange iterationer for at få

læserfeedback, pivotere indtil du har den rigtige bog og opbygge trækkraft, når du gør

det.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-da
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet Denne Bog!

Hjælp venligst Obie Fernandez med at sprede ordet om denne bog på Twitter!

Den foreslåede hashtag for denne bog er #poaduai.

Find ud af, hvad andre mennesker siger om bogen ved at klikke på dette link for at

søge efter denne hashtag på Twitter:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Til min seje dronning, min muse, mit lys og min kærlighed, Victoria

Også Af Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Indhold

Forord af Gregor Hohpe . i

Forord . ii

Om Bogen . iii

Om Kodeeksemplerne . iii

Hvad Jeg Ikke Dækker . iii

Hvem Denne Bog Er Til . iii

Opbygning af et Fælles Ordforråd . iii

Bliv Involveret . iii

Tak . iii

Hvad med illustrationerne? . iv

Om Lean Publishing . iv

Om forfatteren . v

Introduktion . 1

Tanker om Softwarearkitektur . 2

Hvad er en Store Sprogmodel? . 3

Forståelse af inferens . 5

Om Ydeevne . 26

Eksperimenter Med Forskellige LLM-Modeller 27

Sammensatte AI-Systemer . 28

INDHOLD

Del 1: Grundlæggende Tilgange &
Teknikker . 36

Indsnævre Stien . 37

Latent Rum: Ubegribeligt Stort . 39

Hvordan Stien Bliver “Indsnævret” . 43

Rå versus instruktionstunede modeller . 47

Prompt Engineering . 54

Prompt-destillering . 70

Hvad med finjustering? . 76

Retrieval Augmented Generation (RAG) . 78

Hvad er Retrieval Augmented Generation? . 78

Hvordan fungerer RAG? . 78

Hvorfor bruge RAG i dine applikationer? . 78

Implementering af RAG i Din Applikation . 78

Propositionsopdeling . 79

Virkelige Eksempler på RAG . 79

Intelligent Forespørgselsoptimering (IQO) . 80

Omrangering . 80

RAG-vurdering (RAGAs) . 80

Udfordringer og Fremtidsudsigter . 82

Mangfoldighed af Arbejdere . 84

AI-Arbejdere Som Uafhængige Genbrugelige Komponenter 85

Kontoadministration . 87

E-handelsapplikationer . 88

Sundhedsvæsenets anvendelser . 96

AI Worker som Processtyring . 99

Integration af AI-Workers I Din Applikationsarkitektur 103

INDHOLD

Sammensættelighed og Orkestrering af AI-Workers 106

Kombination af Traditionel NLP med LLM’er 115

Brug af værktøjer . 118

Hvad er værktøjsbrug? . 118

Potentialet i Værktøjsanvendelse . 120

Arbejdsgangen for Værktøjsanvendelse . 121

Bedste praksis for værktøjsbrug . 135

Sammensætning og Kædekobling af Værktøjer 139

Fremtidige Retninger . 141

Strømbehandling . 144

Implementering af en ReplyStream . 145

“Samtalesløjfen” . 151

Automatisk Fortsættelse . 153

Konklusion . 155

Selvhelende data . 157

Praktisk casestudie: Reparation af ødelagt JSON 159

Overvejelser og Kontraindikationer . 164

Kontekstuel Indholdsgenering . 179

Personalisering . 180

Produktivitet . 182

Hurtig iteration og eksperimentering . 184

AI-drevet Lokalisering . 186

Vigtigheden af Brugertest og Feedback . 188

Generative UI . 190

Generering af tekst til brugergrænseflader . 191

Definition af Generativ UI . 200

INDHOLD

Eksempel . 202

Skiftet til resultatsorienteret design . 204

Udfordringer og overvejelser . 206

Fremtidsudsigter og Muligheder . 207

Intelligent arbejdsgangsorkestrerering . 211

Forretningsmæssigt behov . 212

Centrale fordele . 213

Centrale mønstre . 213

Håndtering og Genopretning af Undtagelser 216

Implementering af Intelligent Arbejdsgangsorkestering i Praksis 219

Overvågning og Logføring . 234

Skalerbarhed og Ydeevneovervejelser . 238

Test og validering af workflows . 243

Del 2: Mønstrene . 251

Prompt Engineering . 252

Chain of Thought . 253

Tilstandsskift . 254

Rolletildeling . 255

Prompt-objekt . 256

Promptskabelon . 257

Structured IO . 258

Prompt-kædekobling . 259

Prompt-omskriver . 260

Response Fencing . 261

Forespørgselsanalysator . 262

Forespørgselsomskriver . 263

Ventriloquist . 264

INDHOLD

Diskrete Komponenter . 265

Prædikat . 266

API-facade . 267

Resultatfortolker . 269

Virtuel Maskine . 270

Specifikation og Test . 270

Human In The Loop (HITL) . 272

Overordnede Mønstre . 272

Eskalering . 273

Feedbacksløjfe . 274

Passiv Informationsudstråling . 275

Kollaborativ Beslutningstagning (CDM) . 277

Kontinuerlig Læring . 278

Etiske Overvejelser . 278

Teknologiske Fremskridt og Fremtidsudsigter 278

Intelligent Fejlhåndtering . 280

Traditionelle Fejlhåndteringstilgange . 280

Kontekstuel fejldiagnose . 281

Intelligent fejlrapportering . 282

Forebyggende Fejlprævention . 283

Intelligent Fejlgenopretning . 283

Personaliseret Fejlkommunikation . 284

Adaptiv Fejlhåndteringsarbejdsgang . 285

Kvalitetskontrol . 286

Eval . 287

Sikkerhedsmekanisme . 289

Sikkerhedsforanstaltninger og Evalueringer: To Sider af Samme Sag 289

Ordliste . 291
Ordliste . 291

Index . 296

Forord af Gregor Hohpe
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord iii

Om Bogen

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Om Kodeeksemplerne

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad Jeg Ikke Dækker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvem Denne Bog Er Til

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Opbygning af et Fælles Ordforråd

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Bliv Involveret

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord iv

Tak

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad med illustrationerne?

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Om Lean Publishing

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Forord v

Om forfatteren

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Introduktion

Hvis du er ivrig efter at begynde at integrere AI Store Sprogmodeller (LLMs) i dine

programmeringsprojekter, er du velkommen til at springe direkte til mønstrene og

kodeeksemplerne i de senere kapitler. For at få fuldt udbytte af disse mønstre og deres

potentiale er det dog værd at bruge et øjeblik på at forstå den bredere kontekst og den

sammenhængende tilgang, de repræsenterer.

Mønstrene er ikke blot en samling af isolerede teknikker, men snarere et samlet

rammeværk for integration af AI i dine applikationer. Jeg bruger Ruby on Rails, men

disse mønstre burde virke i stort set ethvert andet programmeringsmiljø. De adresserer

en bred vifte af områder, fra datahåndtering og ydelsesforbedring til brugeroplevelse

og sikkerhed, og giver dermed et omfattende sæt værktøjer til at forbedre traditionel

programmeringspraksis med AI’s muligheder.

Hver kategori af mønstre tackler en specifik udfordring eller mulighed, der opstår,

når man indbygger AI-komponenter i sin applikation. Ved at forstå relationerne og

Introduktion 2

synergierne mellem disse mønstre kan du træffe informerede beslutninger om, hvor

og hvordan AI kan anvendes mest effektivt.

Mønstre er aldrig præskriptive løsninger og bør ikke behandles som sådan. De er

tænkt som tilpasningsdygtige byggeklodser, der skal skræddersys til de unikke krav

og begrænsninger i din egen applikation. Den vellykkede anvendelse af disse mønstre

(ligesom alle andre inden for softwareområdet) afhænger af en dyb forståelse af

problemdomænet, brugernes behov og den overordnede tekniske arkitektur i dit projekt.

Tanker om Softwarearkitektur

Jeg begyndte at programmere i 1980’erne og var involveret i hackermiljøet, og jeg har

aldrigmistetmin hackermentalitet, selv efter jeg blev professionel softwareudvikler. Lige

fra starten har jeg altid haft en sund skepsis over for, hvilken værdi softwarearkitekter i

deres elfenbenstårne faktisk bragte til bordet.

En af grundene til, at jeg personligt er så begejstret for de forandringer, som denne

kraftfulde nye bølge af AI-teknologi medfører, er dens indvirkning på det, vi betragter

som softwarearkitektur-beslutninger. Den udfordrer traditionelle opfattelser af, hvad

der udgør den “korrekte” måde at designe og implementere vores softwareprojekter på.

Den sætter også spørgsmålstegn ved, om arkitektur stadig primært kan betragtes som

de dele af et system, der er svære at ændre, eftersom AI-forbedringer gør det nemmere

end nogensinde at ændre enhver del af dit projekt når som helst.

Måske er vi på vej ind i højdepunktet af den “postmoderne” tilgang til softwareudvikling.

I denne sammenhæng henviser postmoderne til et fundamentalt skift væk fra

traditionelle paradigmer, hvor udviklere var ansvarlige for at skrive og vedligeholde

hver eneste kodelinje. I stedet omfavner den idéen om at delegere opgaver som

datamanipulation, komplekse algoritmer og endda hele dele af applikationslogikken

til tredjepartsbiblioteker og eksterne API’er. Dette postmoderne skift repræsenterer

en betydelig afvigelse fra den konventionelle visdom om at bygge applikationer fra

bunden, og det udfordrer udviklere til at gentænke deres rolle i udviklingsprocessen.

Introduktion 3

Jeg har altid ment, at gode programmører kun skriver den kode, der er absolut

nødvendig at skrive, baseret på læren fra Larry Wall og andre hackerkoryfæer

som ham. Ved at minimere mængden af skrevet kode kan vi bevæge os hurtigere,

reducere overfladearealet for fejl, forenkle vedligeholdelsen og forbedre den generelle

pålidelighed af vores applikationer. Mindre kode giver os mulighed for at fokusere på

kerneforretningslogikken og brugeroplevelsen, mens andet arbejde delegeres til andre

tjenester.

Nu hvor AI-drevne systemer kan håndtere opgaver, der tidligere var forbeholdt

menneskeskrevet kode, burde vi kunne være endnu mere produktive og agile, med

større fokus end nogensinde på at skabe forretningsværdi og brugeroplevelse.

Naturligvis er der kompromiser ved at delegere store dele af dit projekt til AI-systemer,

såsom potentielt tab af kontrol og behovet for robust overvågning og feedback-

mekanismer. Det er derfor, det kræver et nyt sæt færdigheder og viden, herunder i det

mindste en grundlæggende forståelse af, hvordan AI fungerer.

Hvad er en Store Sprogmodel?

Store Sprogmodeller (LLMs) er en type kunstig intelligens-model, der har fået betydelig

opmærksomhed i de senere år, siden lanceringen af GPT-3 af OpenAI i 2020. LLMs er

designet til at behandle, forstå og generere menneskeligt sprog med bemærkelsesværdig

præcision og flydende. I dette afsnit vil vi kort se på, hvordan LLMs fungerer, og hvorfor

de er velegnede til at bygge intelligente systemkomponenter.

I deres kerne er LLMs baseret på algoritmer inden for dyb læring, specifikt neurale

netværk. Disse netværk består af sammenkoblede knudepunkter eller neuroner,

der behandler og overfører information. Den foretrukne arkitektur for LLMs er

ofte Transformer-modellen, som har vist sig at være meget effektiv til at håndtere

sekventielle data som tekst.

Transformer-modeller er baseret på opmærksomhedsmekanismen og bruges primært

Introduktion 4

til opgaver med sekventielle data, såsom naturlig sprogbehandling. Transformers

behandler inputdata på én gang i stedet for sekventielt, hvilket gør dem i

stand til at opfange langdistanceafhængigheder mere effektivt. De har lag af

opmærksomhedsmekanismer, der hjælper modellen med at fokusere på forskellige dele

af inputdataene for at forstå kontekst og relationer.

Træningsprocessen for store sprogmodeller involverer at eksponere modellen for

enorme mængder tekstdata, såsom bøger, artikler, hjemmesider og kodearkiver. Under

træningen lærer modellen at genkende mønstre, relationer og strukturer i teksten. Den

opfanger sprogets statistiske egenskaber, såsom grammatiske regler, ordassociationer

og kontekstuelle betydninger.

En af de vigtigste teknikker, der bruges i træningen af store sprogmodeller, er

ikke-superviseret læring. Dette betyder, at modellen lærer fra data uden eksplicit

mærkning eller vejledning. Den opdager mønstre og repræsentationer på egen hånd

ved at analysere samforekomsten af ord og fraser i træningsdataene. Dette giver store

sprogmodeller mulighed for at udvikle en dyb forståelse af sprog og dets nuancer.

Et andet vigtigt aspekt ved store sprogmodeller er deres evne til at håndtere kontekst.

Når de behandler et stykke tekst, tager store sprogmodeller ikke kun de enkelte ord

i betragtning, men også den omgivende kontekst. De tager højde for de foregående

ord, sætninger og endda afsnit for at forstå tekstens betydning og hensigt. Denne

kontekstuelle forståelse gør store sprogmodeller i stand til at generere sammenhængende

og relevante svar. En af de primære måder, hvorpå vi evaluerer en given sprogmodels

kapacitet, er ved at overveje størrelsen af den kontekst, de kan tage i betragtning for at

generere svar.

Når de er trænet, kan store sprogmodeller bruges til en lang række sprogrelaterede

opgaver. De kan generere menneskelig tekst, besvare spørgsmål, opsummere

dokumenter, oversætte sprog og endda skrive kode. Store sprogmodellers alsidighed

gør dem værdifulde til at opbygge intelligente systemkomponenter, der kan interagere

med brugere, behandle og analysere tekstdata og generere meningsfuldt output.

Introduktion 5

Ved at inkorporere store sprogmodeller i applikationsarkitekturen kan du skabe

AI-komponenter, der forstår og behandler brugerinput, genererer dynamisk

indhold og leverer intelligente anbefalinger eller handlinger. Men at arbejde med

store sprogmodeller kræver omhyggelig overvejelse af ressourcekrav og ydelses-

kompromiser. Store sprogmodeller er beregningstunge og kan kræve betydelig

processorkraft og hukommelse (med andre ord, penge) at drive. De fleste af os bliver

nødt til at vurdere omkostningsimplikationerne ved at integrere store sprogmodeller i

vores applikationer og handle derefter.

Forståelse af inferens

Inferens refererer til den proces, hvorved en model genererer forudsigelser eller output

baseret på nye, usete data. Det er den fase, hvor den trænede model bruges til at træffe

beslutninger eller generere tekst, billeder eller andet indhold som svar på brugerinput.

Under træningsfasen lærer en AI-model fra et stort datasæt ved at justere sine parametre

for at minimere fejlen i sine forudsigelser. Når modellen er trænet, kan den anvende det,

den har lært, på nye data. Inferens er hvordan modellen bruger sine lærte mønstre og

viden til at generere output.

For store sprogmodeller involverer inferens at tage et prompt eller inputtekst og

producere et sammenhængende og kontekstuelt relevant svar, som en strøm af tokens

(som vi snart vil tale om). Dette kunne være at besvare et spørgsmål, fuldføre en sætning,

generere en historie eller oversætte tekst, blandt mange andre opgaver.

I modsætning til den måde, du og jeg tænker på, sker en AI-models

“tænkning” via inferens i én samlet tilstandsløs operation. Det vil sige, at

dens tænkning er begrænset til dens genereringsproces. Den er bogstaveligt

talt nødt til at tænke højt, som hvis jeg stillede dig et spørgsmål og kun

accepterede et svar fra dig i “stream of consciousness”-stil.

Introduktion 6

Store sprogmodeller kommer i mange størrelser og
varianter

Mens praktisk talt alle populære store sprogmodeller er baseret på den samme

grundlæggende transformer-arkitektur og trænet på enorme tekstdatasæt, kommer

de i forskellige størrelser og er finjusteret til forskellige formål. Størrelsen på en stor

sprogmodel, målt i antallet af parametre i dens neurale netværk, har stor indflydelse på

dens kapaciteter. Større modeller med flere parametre, som GPT-4, der rygtes at have

1 til 2 billioner parametre, er generelt mere vidende og kapable end mindre modeller.

Dog kræver større modeller også meget mere computerkraft at køre, hvilket oversættes

til højere udgifter, når du bruger dem via API-kald.

For at gøre store sprogmodeller mere praktiske og skræddersyede til specifikke

anvendelser bliver basismodellerne ofte finjusteret på mere målrettede datasæt. For

eksempel kan en stor sprogmodel trænes på et stort korpus af dialog for at specialisere

den til konversations-AI. Andre er trænet på kode for at give dem programmeringsviden.

Der er endda modeller, der er særligt trænet til rollespilslignende interaktioner med

brugere!

Genfinding vs Generative Modeller

I verden af store sprogmodeller (LLMs) findes der to hovedtilgange til at generere svar:

genfindingsbaseredemodeller og generative modeller. Hver tilgang har sine egne styrker

og svagheder, og forståelsen af forskellene mellem dem kan hjælpe dig med at vælge den

rigtige model til dit specifikke anvendelsesformål.

Genfindingsbaserede Modeller

Genfindingsbaserede modeller, også kendt som informationsgenfindingsmodeller,

genererer svar ved at søge gennem en stor database af eksisterende tekst og udvælge de

mest relevante passager baseret på input-forespørgslen. Disse modeller genererer ikke

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Introduktion 7

ny tekst fra bunden, men sammensætter i stedet uddrag fra databasen for at danne et

sammenhængende svar.

En af de største fordele ved genfindingsbaserede modeller er deres evne til at levere

faktuelt korrekt og opdateret information. Da de er afhængige af en database med

kurateret tekst, kan de hente relevant information fra pålidelige kilder og præsentere den

for brugeren. Dette gør dem velegnede til applikationer, der kræver præcise, faktuelle

svar, såsom spørgsmål-svar-systemer eller videnbaser.

Genfindingsbaserede modeller har dog nogle begrænsninger. De er kun så gode som

den database, de søger i, så databasens kvalitet og dækning påvirker direkte modellens

ydeevne. Derudover kan disse modeller have svært ved at generere sammenhængende

og naturligt lydende svar, da de er begrænset til den tekst, der er tilgængelig i databasen.

Vi dækker ikke brugen af rene genfindingsmodeller i denne bog.

Generative Modeller

Generative modeller skaber derimod ny tekst fra bunden baseret på de mønstre og

sammenhænge, de har lært under træningen. Disse modeller bruger deres forståelse af

sprog til at generere nye svar, der er skræddersyet til input-prompten.

Den største styrke ved generative modeller er deres evne til at producere kreativ,

sammenhængende og kontekstuelt relevant tekst. De kan deltage i åbne samtaler,

generere historier og endda skrive kode. Dette gør dem ideelle til applikationer, der

kræver mere åbne og dynamiske interaktioner, såsom chatbots, indholdsproduktion og

kreative skriveassistenter.

Generative modeller kan dog nogle gange producere inkonsistent eller faktuelt ukorrekt

information, da de er afhængige af de mønstre, der er lært under træningen, frem

for en kurateret database med fakta. De kan også være mere tilbøjelige til bias og

hallucinationer, hvor de genererer tekst, der er plausibel, men ikke nødvendigvis sand.

Eksempler på generative LLMs inkluderer OpenAI’s GPT-serie (GPT-3, GPT-4) og

Anthropics Claude.

Introduktion 8

Hybridmodeller

Flere kommercielt tilgængelige LLMs kombinerer både genfinding og generative

tilgange i en hybridmodel. Disse modeller bruger genfindingsteknikker til at finde

relevant information fra en database og bruger derefter generative teknikker til at

sammenfatte denne information til et sammenhængende svar.

Hybridmodeller sigter mod at kombinere den faktuelle nøjagtighed fra

genfindingsbaserede modeller med de naturlige sproggenereringsevner fra generative

modeller. De kan levere mere pålidelig og opdateret information, mens de stadig

bevarer evnen til at deltage i åbne samtaler.

Når du vælger mellem genfindingsbaserede og generative modeller, bør du overveje de

specifikke krav til din applikation. Hvis det primære mål er at levere præcis, faktuel

information, kan en genfindingsbaseret model være det bedste valg. Hvis applikationen

krævermere åbne og kreative interaktioner, kan en generativmodel væremere passende.

Hybridmodeller tilbyder en balance mellem de to tilgange og kan være et godt valg til

applikationer, der kræver både faktuel nøjagtighed og naturlig sproggenerering.

I sidste ende afhænger valget mellem genfindingsbaserede og generative modeller af den

specifikke anvendelse og afvejningen mellem nøjagtighed, kreativitet og fleksibilitet.

Ved at forstå styrkerne og begrænsningerne ved hver tilgang kan du træffe informerede

beslutninger.

Introduktion 9

Instruktionstilpasning

Instruktionstilpasning er en undergruppe af samtaletræning, der bruger

menneskeforfattede prompts og svar til at gøre LLMs bedre til at forstå og

følge instruktioner. Her er nogle simple eksempler, der illustrerer, hvordan

instruktionstilpasning på menneskeforfattede prompts og svar gør LLMs bedre til at

forstå og følge instruktioner:

Eksempel 1: Kundeservice

Instruktion: “Giv et svar til en kunde, der beder om refundering.”

Menneskeforfattet Prompt: “Jeg vil gerne anmode om en refundering for mit nylige

køb. Produktet levede ikke op til mine forventninger.”

Menneskeforfattet Svar: “Jeg beklager at høre, at produktet ikke levede op til dine

forventninger. For at behandle din refundering bedes du oplyse dit ordrenummer og

årsagen til returneringen. Vi vil gennemgå din anmodning og vende tilbage til dig

inden for 2-3 arbejdsdage.”

Eksempel 2: Uddannelsesmæssig Assistance

Instruktion: “Forklar konceptet fotosyntese til en 10-årig.”

Human-Written Prompt: “Kan du forklare, hvordan planter laver deres mad?”

Human-Written Response: “Selvfølgelig! Planter laver deres mad gennem en proces,

der kaldes fotosyntese. De bruger sollys, vand og kuldioxid til at skabe mad og

ilt. Plantens blade har en særlig del, der kaldes klorofyl, som hjælper dem med at

indfange sollys.”

Example 3: Personlig Assistent

Introduktion 10

Instruction: “Planlæg et møde til næste tirsdag klokken 15.”

Human-Written Prompt: “Kan du arrangere et møde til tirsdag klokken 15?”

Human-Written Response: “Selvfølgelig, jeg har planlagt et møde til dig næste tirsdag

klokken 15. Er der andet, du har brug for?”

Resultatet er et mangfoldigt økosystem af LLM’er i forskellige størrelser og med

forskellige specialer. Mindre modeller i området 1-7 milliarder parametre giver gode

generelle sproglige evner, samtidig med at de er mere effektive at køre.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Mellemstore modeller omkring 30-70 milliarder parametre tilbyder stærkere

ræsonnements- og instruktionsfølgende evner.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Når man vælger en LLM til at indbygge i en applikation, skal man afbalancere modellens

kapaciteter mod praktiske faktorer som omkostninger, latenstid, kontekstlængde og

indholdsfiltrering. Mindre, instruktionstilpassede modeller er ofte det bedste valg til

enklere sprogopgaver, mens de største modeller kan være nødvendige til kompleks

ræsonnement eller analyse. Modellens træningsdata er også en vigtig overvejelse, da

det bestemmer modellens vidensskæringsdato.

Visse modeller, som nogle fra Perplexity, er forbundet til realtids

informationskilder, så de reelt set ikke har nogen skæringsdato. Når du stiller

dem spørgsmål, kan de selvstændigt beslutte at foretage websøgninger og

hente vilkårlige websider for at generere et svar.

Introduktion 11

Figur 1. Llama3 med og uden online adgang

I sidste ende findes der ikke én LLM, der passer til alle formål. At forstå variationerne

i modelstørrelse, arkitektur og træning er nøglen til at vælge den rigtige model til en

given anvendelse. At eksperimentere med forskellige modeller er den eneste praktiske

måde at afdække, hvilke der giver den bedste ydeevne til den pågældende opgave.

Tokenisering: At opdele tekst i stykker

Før en stor sprogmodel kan behandle tekst, skal teksten opdeles i mindre enheder kaldet

tokens. Tokens kan være enkelte ord, dele af ord eller endda enkelte tegn. Processen med

at opdele tekst i tokens kaldes tokenisering, og det er et afgørende trin i forberedelsen

af data til en sprogmodel.

Figur 2. Denne sætning indeholder 27 tokens

Forskellige LLM’er bruger forskellige tokeniseringsstrategier, hvilket kan have betydelig

indflydelse på modellens ydeevne og kapaciteter. Nogle almindelige tokenizers, der

Introduktion 12

bruges af LLM’er, omfatter:

• GPT (Byte Pair Encoding): GPT-tokenizers bruger en teknik kaldet byte pair

encoding (BPE) til at opdele tekst i delord-enheder. BPE sammenlægger iterativt

de hyppigst forekommende byte-par i et tekstkorpus og danner derved et ordforråd

af delord-tokens. Dette gør det muligt for tokenizeren at håndtere sjældne og nye

ord ved at opdele dem i mere almindelige delord-stykker. GPT-tokenizers bruges

af modeller som GPT-3 og GPT-4.

• Llama (SentencePiece): Llama-tokenizere bruger SentencePiece-biblioteket, som

er en ikke-superviseret teksttokenizer og detokenizer. SentencePiece behandler

inputteksten som en sekvens af Unicode-tegn og lærer et delordsvokabular baseret

på et træningskorpus. Det kan håndtere ethvert sprog, der kan kodes i Unicode,

hvilket gør det velegnet til flersprogede modeller. Llama-tokenizere bruges af

modeller som Metas Llama og Alpaca.

• SentencePiece (Unigram): SentencePiece-tokenizere kan også bruge en anden

algoritme kaldet Unigram, som er baseret på en delords-regulariseringsteknik.

Unigram-tokenisering bestemmer det optimale delordsvokabular baseret

på en unigram-sprogmodel, som tildeler sandsynligheder til individuelle

delordsenheder. Denne tilgang kan producere mere semantisk meningsfulde

delord sammenlignet med BPE. SentencePiece med Unigram bruges af modeller

som Googles T5 og BERT.

• Google Gemini (Multimodal Tokenisering): Google Gemini bruger et

tokeniseringsskema designet til at håndtere forskellige datatyper, herunder

tekst, billeder, lyd, videoer og kode. Denne multimodale kapacitet gør det

muligt for Gemini at behandle og integrere forskellige former for information.

Særligt bemærkelsesværdigt har Google Gemini 1.5 Pro et kontekstvindue, der

kan håndtere millioner af tokens, meget større end tidligere modeller. Dette

Introduktion 13

omfattende kontekstvindue gør det muligt for modellen at behandle en større

kontekst, hvilket potentielt fører til mere præcise svar. Det er dog vigtigt at

bemærke, at Geminis tokeniseringsskema er meget tættere på ét token pr. tegn

end andre modeller. Dette betyder, at de faktiske omkostninger ved at bruge

Gemini-modeller kan være betydeligt højere end forventet, hvis du er vant til

at bruge modeller som GPT, da Googles prissætning er baseret på tegn frem for

tokens.

Valget af tokenizer påvirker flere aspekter af en LLM, herunder:

• Vokabularstørrelse: Tokenizeren bestemmer størrelsen af modellens vokabular,

som er sættet af unikke tokens, den genkender. Et større, mere detaljeret vokabular

kan hjælpe modellen med at håndtere en bredere vifte af ord og fraser og endda

blive multimodal (i stand til at forstå og generere mere end bare tekst), men det

øger også modellens hukommelseskrav og beregningsmæssige kompleksitet.

• Håndtering af sjældne og ukendte ord: Tokenizere, der bruger delordsenheder,

som BPE og SentencePiece, kan nedbryde sjældne og ukendte ord i mere

almindelige delordsstykker. Dette gør det muligt for modellen at lave

kvalificerede gæt om betydningen af ord, den ikke har set før, baseret på

de delord, de indeholder.

• Flersproget support: Tokenizere som SentencePiece, der kan håndtere ethvert

Unicode-koderbart sprog, er velegnede til flersprogedemodeller, der skal behandle

tekst på flere sprog.

Når man vælger en LLM til en bestemt anvendelse, er det vigtigt at overveje, hvilken

tokenizer den bruger, og hvor godt den passer til de specifikke sprogbehandlingsbehov

for den pågældende opgave. Tokenizeren kan have en betydelig indvirkning på

modellens evne til at håndtere domænespecifik terminologi, sjældne ord og flersproget

tekst.

Introduktion 14

Kontekststørrelse: Hvor Meget Information Kan en
Sprogmodel Bruge Under Inferens?

Når man diskuterer sprogmodeller, refererer kontekststørrelse til mængden af tekst,

som en model kan overveje, når den behandler eller genererer sine svar. Det er

grundlæggende et mål for, hvor meget information modellen kan “huske” og bruge til

at informere sine outputs (udtrykt i tokens). Kontekststørrelsen af en sprogmodel kan

have en betydelig indvirkning på dens kapaciteter og de typer opgaver, den effektivt kan

udføre.

Hvad er Kontekststørrelse?

I tekniske termer bestemmes kontekststørrelsen af antallet af tokens (ord eller orddele),

som en sprogmodel kan behandle i en enkelt inputsekvens. Dette omtales ofte som

modellens “opmærksomhedsspænd” eller “kontekstvindue”. Jo større kontekststørrelsen

er, jomere tekst kanmodellen overveje på én gang, når den genererer et svar eller udfører

en opgave.

Forskellige sprogmodeller har varierende kontekststørrelser, der spænder fra nogle få

hundrede tokens til millioner af tokens. Til reference kan et typisk tekstafsnit indeholde

omkring 100-150 tokens, mens en hel bog kan indeholde titusinder eller hundredtusinder

af tokens.

Der er endda arbejde med effektive metoder til at skalere Transformer-baserede

Store Sprogmodeller (LLM) til uendeligt lange inputs med begrænset hukommelse

og beregning.

https://huggingface.co/papers/2404.07143

Introduktion 15

Hvorfor er kontekststørrelse vigtig?

Kontekststørrelsen i en sprogmodel har en betydelig indflydelse på dens evne til at forstå

og generere sammenhængende, kontekstuelt relevant tekst. Her er nogle vigtige grunde

til, at kontekststørrelse betyder noget:

1. Forståelse af længere indhold:Modeller med større kontekststørrelser kan bedre

forstå og analysere længere tekster, såsom artikler, rapporter eller endda hele

bøger. Dette er afgørende for opgaver som dokumentsammenfatning, besvarelse

af spørgsmål og indholdsanalyse.

2. Opretholdelse af sammenhæng: Et større kontekstvindue gør det muligt

for modellen at opretholde sammenhæng og konsistens på tværs af længere

output. Dette er vigtigt for opgaver som historiegenerering, dialogsystemer og

indholdsproduktion, hvor det er essentielt at opretholde en konsistent fortælling

eller emne. Det er også absolut afgørende, når man bruger LLM’er til at generere

eller transformere strukturerede data.

3. Opfangelse af langdistanceafhængigheder: Nogle sprogopgaver kræver

forståelse af relationer mellem ord eller sætninger, der er langt fra hinanden i

en tekst. Modeller med større kontekststørrelser er bedre rustet til at opfange

disse langdistanceafhængigheder, hvilket kan være vigtigt for opgaver som

sentimentanalyse, oversættelse og sprogforståelse.

4. Håndtering af komplekse instruktioner: I anvendelser hvor sprogmodeller

bruges til at følge komplekse instruktioner i flere trin, tillader en større

kontekststørrelse modellen at tage hele sættet af instruktioner i betragtning, når

den genererer et svar, i stedet for kun de seneste få ord.

Eksempler på sprogmodeller med forskellige kontekststørrelser

Her er nogle eksempler på sprogmodeller med forskellige kontekststørrelser:

Introduktion 16

• OpenAI GPT-3.5 Turbo: 4.095 tokens

• Mistral 7B Instruct: 32.768 tokens

• Anthropic Claude v1: 100.000 tokens

• OpenAI GPT-4 Turbo: 128.000 tokens

• Anthropic Claude v2: 200.000 tokens

• Google Gemini Pro 1.5: 2,8M tokens

Som du kan se, er der en bred vifte af kontekststørrelser blandt disse modeller, fra

omkring 4.000 tokens for OpenAI GPT-3.5 Turbo-modellen til 200.000 tokens for

Anthropic Claude v2-modellen. Nogle modeller, som Google’s PaLM 2 og OpenAI’s

GPT-4, tilbyder forskellige varianter med større kontekststørrelser (f.eks. “32k”-

versioner), som kan håndtere endnu længere inputsekvenser. Og i øjeblikket (april 2024)

praler Google Gemini Pro med næsten 3 millioner tokens!

Det er værd at bemærke, at kontekststørrelsen kan variere afhængigt af den specifikke

implementering og version af en bestemt model. For eksempel har den oprindelige

OpenAI GPT-4-model en kontekststørrelse på 8.191 tokens, mens de senere GPT-4-

varianter som Turbo og 4o har en meget større kontekststørrelse på 128.000 tokens.

Sam Altman har sammenlignet nuværende kontekstbegrænsninger med de kilobyte

arbejdshukommelse, som personlige computerprogrammører måtte arbejde med i

80’erne, og sagde, at vi i den nærmeste fremtid vil kunne passe “alle dine personlige

data” ind i konteksten af en stor sprogmodel.

Valg af den rigtige kontekststørrelse

Når man vælger en sprogmodel til en bestemt anvendelse, er det vigtigt at overveje

opgavens kontekststørrelseskrav. For opgaver der involverer korte, isolerede

Introduktion 17

tekstdele, som sentimentanalyse eller simpel spørgsmålsbesvarelse, kan en mindre

kontekststørrelse være tilstrækkelig. For opgaver der kræver forståelse og generering

af længere, mere komplekse tekster, vil en større kontekststørrelse sandsynligvis være

nødvendig.

Det er værd at bemærke, at større kontekststørrelser ofte medfører øgede

beregningsomkostninger og langsommere behandlingstider, da modellen skal tage mere

information i betragtning, når den genererer et svar. Derfor skal du finde en balance

mellem kontekststørrelse og ydeevne, når du vælger en sprogmodel til din anvendelse.

Hvorfor ikke bare vælge modellen med den største kontekststørrelse og fylde den

med så meget information som muligt? Tja, ud over ydelsesfaktorer er den anden

hovedovervejelse omkostningerne. I marts 2024 vil en enkelt prompt-respons-cyklus

med Google Gemini Pro 1.5 med fuld kontekst koste dig næsten 8 dollars (USD). Hvis

du har et anvendelsesformål, der retfærdiggør den udgift, så held og lykke med det!

Men for de fleste anvendelser er det simpelthen for dyrt med flere størrelsesordener.

At finde nåle i høstakke

Konceptet med at finde en nål i en høstak har længe været enmetafor for udfordringerne

ved udtrækning i store datasæt. Inden for store sprogmodeller justerer vi denne analogi

en smule. Forestil dig, at vi ikke bare leder efter én enkelt oplysning begravet i

en omfattende tekst (som en komplet antologi af Paul Graham essays), men flere

oplysninger spredt ud over det hele. Dette scenarie minder mere om at finde flere nåle

i en kæmpemæssig mark, ikke bare en enkelt høstak. Her kommer det interessante: vi

skal ikke kun lokalisere disse nåle, men også væve dem sammen til en sammenhængende

tråd.

Når store sprogmodeller får til opgave at udtrække og ræsonnere over flere oplysninger

Introduktion 18

indlejret i lange kontekster, står de over for en dobbelt udfordring. For det første er der

det simple problemmed præcisionen af udtrækningen - den falder naturligt, efterhånden

som antallet af oplysninger stiger. Dette er forventeligt; når alt kommer til alt, belaster

det selv de mest sofistikerede modeller at holde styr på flere detaljer på tværs af en

omfattende tekst.

For det andet, og måske mere kritisk, er der udfordringen med at ræsonnere over

disse oplysninger. Det er én ting at plukke oplysninger ud; det er noget helt andet at

sammenfatte dem til et sammenhængende narrativ eller svar. Det er her, den virkelige

test kommer ind. Sprogmodellernes ydeevne i ræsonnementsopgaver har en tendens

til at forringes mere end i simple udtrækningsopgaver. Denne forringelse handler ikke

kun om mængden; det handler om det komplekse samspil mellem kontekst, relevans og

følgeslutning.

Hvorfor sker dette? Tja, tænk på dynamikken i hukommelse og opmærksomhed i

menneskelig kognition, som til en vis grad afspejles i store sprogmodeller. Når de

behandler store mængder information, kan sprogmodeller, ligesom mennesker, miste

overblikket over tidligere detaljer, mens de absorberer nye. Dette er især tilfældet i

modeller, der ikke er eksplicit designet til automatisk at prioritere eller genbesøge

tidligere tekstsegmenter.

Desuden er en sprogmodels evne til at væve disse udtrukne oplysninger sammen til et

sammenhængende svar beslægtet med opbygning af narrativ. Dette kræver ikke kun

udtrækning af information, men en dyb forståelse og kontekstuel placering, hvilket

fortsat er en stor udfordring for nuværende kunstig intelligens.

Så hvad betyder dette for os som udviklere og integratorer af disse teknologier? Vi

skal være meget opmærksomme på disse begrænsninger, når vi designer systemer,

der er afhængige af store sprogmodeller til at håndtere komplekse opgaver med lange

tekster. At forstå at ydeevnen kan forringes under visse forhold hjælper os med at

sætte realistiske forventninger og udvikle bedre fallback-mekanismer eller supplerende

strategier.

Introduktion 19

Modaliteter: Ud over tekst

Mens størstedelen af sprogmodeller i dag fokuserer på at behandle og generere tekst,

er der en voksende tendens mod multimodale modeller, der naturligt kan indlæse og

outputte flere typer data, såsom billeder, lyd og video. Disse multimodale modeller åbner

nye muligheder for AI-drevne applikationer, der kan forstå og generere indhold på tværs

af forskellige modaliteter.

Hvad er modaliteter?

I forbindelse med sprogmodeller refererer modaliteter til de forskellige typer data, som

en model kan behandle og generere. Den mest almindelige modalitet er tekst, som

omfatter skrevet sprog i forskellige former som bøger, artikler, hjemmesider og sociale

medieindlæg. Der er dog flere andre modaliteter, som i stigende grad bliver inkorporeret

i sprogmodeller:

• Billeder: Visuelle data såsom fotografier, illustrationer og diagrammer.

• Lyd: Lyddata såsom tale, musik og omgivelseslyde.

• Video: Bevægelige visuelle data, ofte ledsaget af lyd, såsom videoklip og film.

Hver modalitet præsenterer unikke udfordringer og muligheder for sprogmodeller. For

eksempel kræver billeder, at modellen forstår visuelle koncepter og relationer, mens lyd

kræver, at modellen behandler og genererer tale og andre lyde.

Multimodale sprogmodeller

Multimodale sprogmodeller er designet til at håndtere flere modaliteter inden for

en enkelt model. Disse modeller har typisk specialiserede komponenter eller lag,

der både kan forstå input og generere output-data i forskellige modaliteter. Nogle

bemærkelsesværdige eksempler på multimodale sprogmodeller omfatter:

Introduktion 20

• OpenAI’s GPT-4o: GPT-4o er en stor sprogmodel, der naturligt forstår og

behandler talelyd ud over tekst. Denne kapabilitet gør det muligt for GPT-4o at

udføre opgaver såsom transskription af talt sprog, generering af tekst fra lydinput

og levering af svar baseret på talte forespørgsler.

• OpenAI’s GPT-4 med visuelt input: GPT-4 er en stor sprogmodel, der kan

behandle både tekst og billeder. Når den får et billede som input, kan GPT-4

analysere billedets indhold og generere tekst, der beskriver eller reagerer på den

visuelle information.

• Google’s Gemini: Gemini er en multimodal model, der kan håndtere tekst,

billeder og video. Den bruger en samlet arkitektur, der muliggør tværmodal

forståelse og generering, hvilket muliggør opgaver som billedtekstning,

videoopsummering og visuel spørgsmål-besvarelse.

• DALL-E og Stable Diffusion: Selvom disse ikke er sprogmodeller i traditionel

forstand, demonstrerer de kraften i multimodal AI ved at generere billeder fra

tekstbeskrivelser. De viser potentialet for modeller, der kan oversætte mellem

forskellige modaliteter.

Fordele og Anvendelser af Multimodale Modeller

Multimodale sprogmodeller tilbyder flere fordele og muliggør en bred vifte af

anvendelser, herunder:

• Forbedret forståelse: Ved at behandle information fra flere modaliteter kan

disse modeller opnå en mere omfattende forståelse af verden, lignende den måde

mennesker lærer fra forskellige sensoriske inputs.

• Krydsmodal generering: Multimodale modeller kan generere indhold i én

modalitet baseret på input fra en anden, såsom at skabe et billede fra en

tekstbeskrivelse eller generere et videosammendrag fra en skreven artikel.

Introduktion 21

• Tilgængelighed: Multimodale modeller kan gøre information mere tilgængelig

ved at oversætte mellem modaliteter, såsom at generere tekstbeskrivelser af

billeder for synshandicappede brugere eller skabe lydversioner af skrevet indhold.

• Kreative anvendelser:Multimodale modeller kan bruges til kreative opgaver som

at generere kunst, musik eller videoer baseret på tekstprompter, hvilket åbner nye

muligheder for kunstnere og indholdskreatører.

Efterhånden som multimodale sprogmodeller fortsætter med at udvikle sig, vil de

sandsynligvis spille en stadig vigtigere rolle i udviklingen af AI-drevne applikationer,

der kan forstå og generere indhold på tværs af flere modaliteter. Dette vil muliggøre

mere naturlige og intuitive interaktioner mellem mennesker og AI-systemer samt åbne

for nye muligheder inden for kreativ udfoldelse og vidensformidling.

Udbyder-økosystemer

Når det kommer til at inkorporere store sprogmodeller (LLMs) i applikationer, har

du et voksende udvalg af muligheder at vælge imellem. Hver større LLM-udbyder,

såsom OpenAI, Anthropic, Google og Cohere, tilbyder sit eget økosystem af modeller,

API’er og værktøjer. At vælge den rigtige udbyder involverer overvejelse af forskellige

faktorer, herunder prissætning, ydeevne, indholdsfiltrering, databeskyttelse og

tilpasningsmuligheder.

OpenAI

OpenAI er en af demest velkendte udbydere af LLMs, hvor deres GPT-serie (GPT-3, GPT-

4) bruges bredt i forskellige applikationer. OpenAI tilbyder et brugervenligt API, der

gør det nemt at integrere deres modeller i applikationer. De tilbyder en række modeller

med forskellige kapaciteter og prisniveauer, fra den grundlæggende Ada-model til den

kraftfulde Davinci-model.

OpenAIs økosystem inkluderer også værktøjer som OpenAI Playground, der giver

dig mulighed for at eksperimentere med prompts og finjustere modeller til specifikke

Introduktion 22

anvendelser. De tilbyder indholdsfiltrering for at hjælpe med at forhindre generering af

upassende eller skadeligt indhold.

Når jeg bruger OpenAIs modeller direkte, benytter jeg Alex Rudalls ruby-openai

bibliotek.

Anthropic

Anthropic er en anden stor aktør inden for LLM-området, hvor deres Claude-modeller

vinder popularitet for stærk ydeevne og etiske overvejelser. Anthropic fokuserer på

at udvikle sikre og ansvarlige AI-systemer med stor vægt på indholdsfiltrering og

undgåelse af skadelige outputs.

Anthropics økosystem omfatter Claude API’et, som giver dig mulighed for at integrere

modellen i deres applikationer, samt værktøjer til prompt-udvikling og finjustering.

De tilbyder også Claude Instant-modellen, som inkorporerer websøgning for mere

opdaterede og faktuelle svar.

Når jeg bruger Anthropics modeller direkte, benytter jeg Alex Rudalls anthrophic

bibliotek.

Google

Google har udviklet flere kraftfulde LLMs, herunder Gemini, BERT, T5 og PaLM.

Disse modeller er kendt for deres stærke præstationer inden for en bred vifte af

opgaver inden for naturlig sprogbehandling. Googles økosystem omfatter TensorFlow-

og Keras-bibliotekerne, som leverer værktøjer og rammer til at bygge og træne

maskinlæringsmodeller.

Google tilbyder også en Cloud AI Platform, som gør det nemt at implementere og skalere

deres modeller i skyen. De leverer en række prætrænede modeller og API’er til opgaver

som sentimentanalyse, entitetsgenkendelse og oversættelse.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Introduktion 23

Meta

Meta, tidligere kendt som Facebook, er dybt involveret i udviklingen af store

sprogmodeller, hvilket understreges af deres frigivelse af modeller som LLaMA og OPT.

Disse modeller udmærker sig ved deres stærke præstationer i forskellige sprogopgaver

og er primært tilgængelige gennem open source-kanaler, hvilket understøtter Metas

engagement i forskning og samarbejde med fællesskabet.

Metas økosystem er primært bygget omkring PyTorch, et open source-

maskinlæringsbibliotek, der er foretrukket for dets dynamiske beregningsevner

og fleksibilitet, hvilket faciliterer innovativ AI-forskning og -udvikling.

Ud over deres tekniske tilbud lægger Meta stor vægt på etisk AI-udvikling. De

implementerer robust indholdsfiltrering og fokuserer på at reducere bias, hvilket

stemmer overens med deres bredere mål om sikkerhed og ansvarlighed i AI-

applikationer.

Cohere

Cohere er en nyere aktør inden for LLM-området, der fokuserer på at gøre LLM’er

mere tilgængelige og lettere at bruge end konkurrenterne. Deres økosystem inkluderer

Cohere API’en, som giver adgang til en række præ-trænede modeller til opgaver som

tekstgenerering, klassificering og opsummering.

Cohere tilbyder også værktøjer til prompt engineering, fine-tuning og indholdsfiltrering.

De lægger vægt på databeskyttelse og sikkerhed med funktioner som krypteret

datalagring og adgangskontrol.

Ollama

Ollama er en selvhostet platform, der giver brugere mulighed for at administrere og

implementere forskellige store sprogmodeller (LLM’er) lokalt på deres maskiner, hvilket

Introduktion 24

giver dem fuld kontrol over deres AI-modeller uden at være afhængige af eksterne cloud-

tjenester. Denne opsætning er ideel for dem, der prioriterer databeskyttelse og ønsker at

håndtere deres AI-operationer internt.

Platformen understøtter en række modeller, herunder versioner af Llama, Phi, Gemma

og Mistral, som varierer i størrelse og beregningskrav. Ollama gør det nemt at

downloade og køre disse modeller direkte fra kommandolinjen ved hjælp af simple

kommandoer som ollama run <model_name>, og den er designet til at fungere på

tværs af forskellige operativsystemer, herunder macOS, Linux og Windows.

For udviklere, der ønsker at integrere open source-modeller i deres applikationer uden at

bruge et eksternt API, tilbyder Ollama en CLI til håndtering af modellers livscyklus, der

minder om værktøjer til containerhåndtering. Den understøtter også brugerdefinerede

konfigurationer og prompts, hvilket giver mulighed for en høj grad af tilpasning til

specifikke behov eller anvendelser.

Ollama er særligt velegnet til teknisk kyndige brugere og udviklere på grund af dens

kommandolinjeinterface og den fleksibilitet, den tilbyder i forhold til at administrere og

implementere AI-modeller. Dette gør det til et kraftfuldt værktøj for virksomheder og

enkeltpersoner, der har behov for robuste AI-funktioner uden at gå på kompromis med

sikkerhed og kontrol.

Multi-model-platforme

Derudover findes der udbydere, der hoster en bred vifte af open source-modeller, såsom

Together.ai og Groq. Disse platforme tilbyder fleksibilitet og tilpasningsmuligheder,

der giver dig mulighed for at køre og i nogle tilfælde endda fine-tune open source-

modeller efter dine specifikke behov. For eksempel giver Together.ai adgang til en

række open source LLM’er, hvilket giver brugerne mulighed for at eksperimentere med

forskellige modeller og konfigurationer. Groq fokuserer på at levere ultrahøj ydeevne i

færdiggørelsen, som på tidspunktet for denne bogs udgivelse virker næsten magisk

Introduktion 25

Valg af LLM-udbyder

Når du vælger en LLM-udbyder, bør du overveje faktorer som:

• Prissætning: Forskellige udbydere tilbyder forskellige prismodeller, lige fra

betaling pr. brug til abonnementsbaserede planer. Det er vigtigt at overveje det

forventede forbrug og budget, når man vælger en udbyder.

• Ydeevne: LLM’ers ydeevne kan variere betydeligt mellem udbydere, så det er

vigtigt at benchmarke og teste modeller på specifikke anvendelser, før man træffer

en beslutning.

• Indholdsfiltrering: Afhængigt af anvendelsen kan indholdsfiltrering være en

kritisk overvejelse. Nogle udbydere tilbyder mere robuste indholdsfiltrerings-

muligheder end andre.

• Databeskyttelse: Hvis applikationen håndterer følsomme brugerdata, er det

vigtigt at vælge en udbyder med stærk databeskyttelse og sikkerhedspraksis.

• Tilpasning:Nogle udbydere tilbyder mere fleksibilitet med hensyn til fine-tuning

og tilpasning af modeller til specifikke anvendelser.

I sidste ende afhænger valget af LLM-udbyder af applikationens specifikke krav og

begrænsninger. Ved omhyggeligt at evaluere mulighederne og overveje faktorer som

prissætning, ydeevne og databeskyttelse kan du vælge den udbyder, der bedst opfylder

dine behov.

Det er også værd at bemærke, at LLM-landskabet konstant udvikler sig, og nye udbydere

og modeller dukker regelmæssigt op. Du bør holde dig opdateret med den seneste

udvikling og være åben for at udforske nye muligheder, efterhånden som de bliver

tilgængelige.

OpenRouter

Gennem denne bog vil jeg udelukkende bruge OpenRouter som min foretrukne

API-udbyder. Årsagen er enkel: det er en one-stop-shop for alle de mest populære

https://openrouter.ai

Introduktion 26

kommercielle og open source-modeller. Hvis du er ivrig efter at komme i gang med

noget AI-kodning, er et af de bedste steder at starte med mit eget OpenRouter Ruby

Library.

Om Ydeevne

Når man indbygger sprogmodeller i applikationer, er ydeevne en kritisk overvejelse. En

sprogmodels ydeevne kan måles i form af dens latens (den tid det tager at generere et

svar) og gennemløb (antallet af forespørgsler den kan håndtere pr. tidsenhed).

Tid til første token (TTFT) er endnu et væsentligt ydeevnemål, særligt relevant for

chatbots og applikationer der kræver interaktive svar i realtid. TTFT måler latenstiden

fra det øjeblik en brugers forespørgsel modtages, til det første ord (eller token) i svaret

genereres. Dette mål er afgørende for at opretholde en problemfri og engagerende

brugeroplevelse, da forsinkede svar kan føre til brugerfrustrationer og manglende

engagement.

Disse ydelsesmål kan have betydelig indflydelse på brugeroplevelsen og applikationens

skalerbarhed.

Flere faktorer kan påvirke en sprogmodels ydeevne, herunder:

Parameterantal: Større modeller med flere parametre kræver generelt flere

computerressourcer og kan have højere latens og lavere gennemløb sammenlignet med

mindre modeller.

Hardware: En sprogmodels ydeevne kan variere betydeligt afhængigt af den

hardware, den kører på. Cloud-udbydere tilbyder GPU- og TPU-instanser optimeret til

maskinlæringsworkloads, hvilket kan accelerere modelinferens betydeligt.

En af de fine ting ved OpenRouter er, at for mange af de modeller

den tilbyder, får du valget mellem cloud-udbydere med forskellige

ydeevneprofiler og omkostninger.

https://github.com/OlympiaAI/open_router
https://github.com/OlympiaAI/open_router

Introduktion 27

Kvantisering: Kvantiseringsteknikker kan bruges til at reducere en models

hukommelsesforbrug og beregningskrav ved at repræsentere vægte og aktiveringer

med datatyper af lavere præcision. Dette kan forbedre ydeevnen uden at ofre kvaliteten

væsentligt. Som applikationsudvikler vil du sandsynligvis ikke blive involveret i

træning af dine egne modeller med forskellige kvantiseringsniveauer, men det er godt

at være fortrolig med terminologien.

Batchprocessering: Behandling af flere forespørgsler samtidigt i batches kan forbedre

gennemløbet ved at amortisere overhead fra modelindlæsning og dataoverførsel.

Cachelagring: Cachelagring af resultater fra hyppigt anvendte prompts eller

inputsekvenser kan reducere antallet af inferensforespørgsler og forbedre den

generelle ydeevne.

Når man vælger en sprogmodel til en produktionsapplikation, er det vigtigt at

benchmarke dens ydeevne på repræsentative workloads og hardwarekonfigurationer.

Dette kan hjælpe med at identificere potentielle flaskehalse og sikre, at modellen kan

opfylde de krævede ydelsesmål.

Det er også værd at overveje afvejningerne mellem modelydeevne og andre faktorer

som omkostninger, fleksibilitet og integrationsvenlighed. For eksempel kan brugen af

en mindre, billigere model med lavere latens være at foretrække for applikationer, der

kræver realtidssvar, mens en større, mere kraftfuld model kan være bedre egnet til

batchprocessering eller komplekse ræsonnementsopgaver.

Eksperimenter Med Forskellige LLM-Modeller

At vælge en LLM er sjældent en permanent beslutning. Da nye og forbedrede modeller

udgives regelmæssigt, er det godt at bygge applikationer på en modulær måde, der

tillader udskiftning af forskellige sprogmodeller over tid. Prompts og datasæt kan ofte

genbruges på tværs af modeller med minimale ændringer. Dette giver dig mulighed for

Introduktion 28

at udnytte de seneste fremskridt inden for sprogmodellering uden at skulle redesigne

dine applikationer fuldstændigt.

Muligheden for nemt at skifte mellem et bredt udvalg af modelvalg er endnu

en grund til, at jeg elsker OpenRouter.

Når man opgraderer til en ny sprogmodel, er det vigtigt grundigt at teste og validere

dens ydeevne og outputkvalitet for at sikre, at den opfylder applikationens krav. Dette

kan involvere gentræning eller finjustering af modellen på domænespecifikke data, samt

opdatering af eventuelle downstream-komponenter, der afhænger af modellens output.

Ved at designe applikationer med fokus på ydeevne og modularitet kan du skabe

skalerbare, effektive og fremtidssikrede systemer, der kan tilpasse sig det hurtigt

udviklende landskab inden for sprogmodelleringsteknologi.

Sammensatte AI-Systemer

Før vi afslutter vores introduktion, er det værd at nævne, at før 2023 og eksplosionen

i interessen for generativ AI udløst af ChatGPT, var traditionelle AI-tilgange typisk

afhængige af integration af enkelte, lukkede modeller. I modsætning hertil udnytter

Sammensatte AI-Systemer komplekse pipelines af sammenkoblede komponenter, der

arbejder sammen om at opnå intelligent adfærd.

I kernen består sammensatte AI-systemer af flere moduler, der hver er designet til

at udføre specifikke opgaver eller funktioner. Disse moduler kan omfatte generatorer,

hentningskomponenter, rangeringskomponenter, klassifikatorer og forskellige andre

specialiserede komponenter. Ved at opdele det samlede system i mindre, fokuserede

enheder kan udviklere skabe mere fleksible, skalerbare og vedligeholdelsesvenlige AI-

arkitekturer.

En af de vigtigste fordele ved sammensatte AI-systemer er deres evne til at kombinere

styrkerne fra forskellige AI-teknikker og modeller. For eksempel kan et system bruge en

Introduktion 29

stort sprogmodel (LLM) til forståelse og generering af naturligt sprog, mens det anvender

en separat model til informationssøgning eller regelbaseret beslutningstagning. Denne

modulære tilgang giver dig mulighed for at vælge de bedste værktøjer og teknikker til

hver specifik opgave, frem for at være afhængig af en universalløsning.

Dog præsenterer opbygningen af sammensatte AI-systemer også unikke udfordringer.

Særligt kræver sikring af systemets overordnede sammenhæng og konsistens robuste

test-, overvågnings- og styringsmekanismer.

Fremkomsten af kraftfulde LLM’er somGPT-4 gør det lettere end nogensinde

før at eksperimentere med sammensatte AI-systemer, fordi disse avancerede

modeller er i stand til at håndtere flere roller inden for et sammensat system,

såsom klassificering, rangering og generering, ud over deres evner til at

forstå naturligt sprog. Denne alsidighed gør det muligt for udviklere hurtigt

at udvikle prototyper og iterere på sammensatte AI-arkitekturer, hvilket

åbner nye muligheder for udvikling af intelligente applikationer.

Implementeringsmønstre for Sammensatte AI-systemer

Sammensatte AI-systemer kan implementeres ved hjælp af forskellige mønstre, der hver

er designet til at imødekomme specifikke krav og anvendelsesområder. Lad os udforske

fire almindelige implementeringsmønstre: Spørgsmål og Svar, Multi-Agent/Agentiske

Problemløsere, Konversations-AI og CoPilots.

Spørgsmål og Svar

Spørgsmål og Svar (Q&A) systemer fokuserer på at levere informationssøgning, der

er forbedret med AI-modellers forståelsesevner for at fungere som mere end blot en

søgemaskine. Ved at kombinere kraftfulde sprogmodeller med eksterne videnskilder

ved hjælp af Genfindelses-forstærket Generering (RAG), undgår Spørgsmål og

Introduktion 30

Svar-systemer hallucinationer og giver præcise og kontekstuelt relevante svar på

brugerforespørgsler.

De vigtigste komponenter i et LLM-baseret Q&A-system omfatter:

• Forespørgselsforståelse og -omformulering: Analyse af brugerforespørgsler og

omformulering af disse for bedre at matche de underliggende videnskilder.

• Vidensgenfinding: Genfinding af relevant information fra strukturerede eller

ustrukturerede datakilder baseret på den omformulerede forespørgsel.

• Svargenerering: Generering af sammenhængende og informative svar ved at

integrere den genfundne viden med sprogmodellens generative evner.

RAG-delsystemer er særligt vigtige i Q&A-domæner, hvor det er afgørende at

levere præcis og opdateret information, såsom kundesupport, vidensstyring eller

uddannelsesapplikationer

Multi-Agent/Agentiske Problemløsere

Multi-agent, også kendt som Agentiske, systemer består af flere autonome agenter, der

arbejder sammen om at løse komplekse problemer. Hver agent har en specifik rolle,

et sæt færdigheder og adgang til relevante værktøjer eller informationskilder. Ved at

samarbejde og udveksle information kan disse agenter tackle opgaver, som ville være

vanskelige eller umulige for en enkelt agent at håndtere alene.

De vigtigste principper for multi-agent problemløsere omfatter:

• Specialisering: Hver agent fokuserer på et specifikt aspekt af problemet og

udnytter sine unikke evner og viden.

• Samarbejde: Agenter kommunikerer og koordinerer deres handlinger for at nå et

fælles mål, ofte gennem beskeder eller delt hukommelse.

• Tilpasningsevne: Systemet kan tilpasse sig ændrede forhold eller krav ved at

justere de enkelte agenters roller og adfærd.

Introduktion 31

Multi-agent systemer er velegnede til applikationer, der kræver distribueret

problemløsning, såsom forsyningskædeoptimering, trafikstyring eller planlægning

af beredskab

Konversations-AI

Konversations-AI-systemer muliggør interaktioner på naturligt sprog mellem brugere

og intelligente agenter. Disse systemer kombinerer forståelse af naturligt sprog,

dialoghåndtering og sproggenereringsevner for at levere engagerende og personlige

samtalebaserede oplevelser.

Hovedkomponenterne i et konversations-AI-system omfatter:

• Intentionsgenkendelse: Identificering af brugerens intention baseret på deres

input, såsom at stille et spørgsmål, fremsætte en anmodning eller udtrykke en

følelse.

• Entitetsudtrækning: Udtrækning af relevante entiteter eller parametre fra

brugerens input, såsom datoer, lokationer eller produktnavne.

• Dialoghåndtering: Vedligeholdelse af samtalens tilstand, bestemmelse af

passende svar baseret på brugerens intention og kontekst, samt håndtering af

flerturs-interaktioner.

• Svargenerering: Generering af menneskelignende svar ved hjælp af

sprogmodeller, skabeloner eller genfindelsesbaserede metoder.

Konversations-AI-systemer bruges almindeligvis i kundeservice-chatbots, virtuelle

assistenter og stemmestyrede grænseflader. Som nævnt tidligere er de fleste af

tilgangene, mønstrene og kodeeksemplerne i denne bog direkte uddraget fra mit arbejde

med et stort konversations-AI-system kaldet Olympia

CoPilots

CoPilots er AI-drevne assistenter, der arbejder sammen med menneskelige brugere

for at forbedre deres produktivitet og beslutningstagning. Disse systemer udnytter en

https://olympia.chat

Introduktion 32

kombination af naturlig sprogbehandling, maskinlæring og domænespecifik viden til at

give intelligente anbefalinger, automatisere opgaver og tilbyde kontekstuel støtte.

Centrale funktioner i CoPilots omfatter:

• Personalisering: Tilpasning til individuelle brugerpræferencer, arbejdsgange og

kommunikationsstile.

• Proaktiv assistance: Foregribelse af brugerens behov og tilbud om relevante

forslag eller handlinger uden eksplicitte forespørgsler.

• Kontinuerlig læring: Forbedring af ydeevne over tid gennem læring fra

brugerfeedback, interaktioner og data.

CoPilots bruges i stigende grad inden for forskellige domæner, såsom softwareudvikling

(f.eks. kodekomplettering og fejlfinding), kreativ skrivning (f.eks. indholdsforslag og

redigering), og dataanalyse (f.eks. indsigter og visualiseringsanbefalinger)

Disse implementeringsmønstre viser alsidigheden og potentialet i sammensatte

AI-systemer. Ved at forstå karakteristikaene og anvendelsesmulighederne for hvert

mønster kan du træffe informerede beslutninger ved design og implementering af

intelligente applikationer. Selvom denne bog ikke specifikt handler om implementering

af sammensatte AI-systemer, gælder mange, hvis ikke alle, af de samme tilgange

og mønstre for integration af diskrete AI-komponenter inden for ellers traditionel

applikationsudvikling.

Roller i sammensatte AI-systemer

Sammensatte AI-systemer er bygget på et fundament af sammenkoblede moduler, der

hver er designet til at udføre en specifik rolle. Disse moduler arbejder sammen om at

skabe intelligent adfærd og løse komplekse problemer. Det er nyttigt at være fortrolig

med disse roller, når man overvejer, hvor man kunne implementere eller erstatte dele af

sin applikation med diskrete AI-komponenter.

Introduktion 33

Generator

Generatorer er ansvarlige for at producere nye data eller indhold baseret på lærte

mønstre eller input-prompts. AI-verdenen har mange forskellige slags generatorer,

men i forbindelse med de sprogmodeller, der præsenteres i denne bog, kan generatorer

skabe menneskelignende tekst, fuldføre delvise sætninger eller generere svar på

brugerforespørgsler. De spiller en afgørende rolle i opgaver som indholdsproduktion,

dialoggenerering og dataforøgelse.

Informationshenter

Informationshentere bruges til at søge og udtrække relevant information fra

store datasæt eller videnbaser. De anvender teknikker som semantisk søgning,

nøgleordsmatchning eller vektorsimilaritet til at finde de mest relevante datapunkter

baseret på en given forespørgsel eller kontekst. Informationshentere er essentielle

for opgaver, der kræver hurtig adgang til specifik information, såsom besvarelse af

spørgsmål, faktakontrol eller indholdsanbefaling.

Rangordner

Rangordnere er ansvarlige for at ordne eller prioritere et sæt elementer baseret på

bestemte kriterier eller relevansscorer. De tildeler vægte eller scorer til hvert element

og sorterer dem derefter i overensstemmelse hermed. Rangordnere bruges almindeligvis

i søgemaskiner, anbefalingssystemer eller enhver applikation, hvor præsentation af de

mest relevante resultater for brugerne er afgørende.

Klassifikator

Klassifikatorer bruges til at kategorisere eller mærke datapunkter baseret på

foruddefinerede klasser eller kategorier. De lærer fra mærket træningsdata og

forudsiger derefter klassen for nye, usete tilfælde. Klassifikatorer er fundamentale for

Introduktion 34

opgaver som sentimentanalyse, spam-detektion eller billedgenkendelse, hvor målet er

at tildele en specifik kategori til hvert input.

Værktøjer & Agenter

Ud over disse kerneroller inkorporerer sammensatte AI-systemer ofte værktøjer og

agenter for at forbedre deres funktionalitet og tilpasningsevne:

• Værktøjer: Værktøjer er diskrete softwarekomponenter eller API’er, der udfører

specifikke handlinger eller beregninger. De kan kaldes af andre moduler, såsom

generatorer eller informationshentere, for at udføre delopgaver eller indsamle

yderligere information. Eksempler på værktøjer omfatter websøgemaskiner,

lommeregnere eller datavisualiseringsbiblioteker.

• Agenter: Agenter er autonome enheder, der kan opfatte deres omgivelser, træffe

beslutninger og handle for at opnå specifikke mål. De er ofte afhængige af en

kombination af forskellige AI-teknikker, såsom planlægning, ræsonnement og

læring, for at fungere effektivt under dynamiske eller usikre forhold. Agenter kan

bruges til at modellere kompleks adfærd eller til at koordinere handlinger mellem

flere moduler i et sammensat AI-system.

I et rent sammensat AI-system orchestreres interaktionen mellem disse komponenter

gennem veldefinerede grænseflader og kommunikationsprotokoller. Data flyder

mellem moduler, hvor output fra én komponent fungerer som input for en anden.

Denne modulære arkitektur muliggør fleksibilitet, skalerbarhed og vedligeholdelse, da

individuelle komponenter kan opdateres, erstattes eller udvides uden at påvirke hele

systemet.

Ved at udnytte styrken i disse komponenter og deres interaktioner kan sammensatte

AI-systemer tackle komplekse, virkelige problemer, der kræver en kombination af

forskellige AI-kapabiliteter. Mens vi udforsker tilgangene og mønstrene for integration

af AI i applikationsudvikling, skal du huske på, at de samme principper og teknikker,

Introduktion 35

der bruges i sammensatte AI-systemer, kan anvendes til at skabe intelligente, adaptive

og brugercentrerede applikationer.

I de følgende kapitler i Del 1 vil vi dykke dybere ned i de fundamentale tilgange

og teknikker til integration af AI-komponenter i din applikationsudviklingsproces. Fra

prompt-udvikling og retrieval-augmented generation til selvhelende data og intelligent

workflow-orkestrering vil vi dække en bred vifte af mønstre og best practices for at

hjælpe dig med at bygge banebrydende AI-drevne applikationer.

Del 1: Grundlæggende
Tilgange & Teknikker

Denne del af bogen præsenterer forskellige måder at integrere brugen af AI i dine

applikationer. Kapitlerne dækker en række beslægtede tilgange og teknikker, der

spænder fra de mere overordnede koncepter som Indsnævre Stien og Retrieval

Augmented Generation helt ned til idéer om at programmere dit eget abstraktionslag

oven på LLM chat-færdiggørelses-API’er.

Målet med denne del af bogen er at hjælpe dig med at forstå de forskellige former

for adfærd, du kan implementere med AI, før vi går for dybt ind i specifikke

implementeringsmønstre, som er fokus i Del 2.

Tilgangene i Del 1 er baseret på idéer, som jeg har brugt i min kode, klassiske mønstre

inden for virksomhedsapplikationsarkitektur og integration, plus metaforer, som jeg har

brugt, når jeg har skullet forklare AI’s muligheder til andre mennesker, herunder ikke-

tekniske forretningsinteressenter.

Indsnævre Stien

“Indsnævre stien” henviser til at fokusere AI’en på den opgave, der skal løses. Jeg bruger

det som et mantra, når jeg bliver frustreret over, at AI’en opfører sig “dumt” eller på

uventede måder. Mantraet minder mig om, at fejlen sandsynligvis er min egen, og at jeg

formentlig bør indsnævre stien noget mere.

Behovet for at indsnævre stien opstår fra den enorme mængde viden, der findes i

store sprogmodeller, især verdensklassemodeller som dem fra OpenAI og Anthropic,

der bogstaveligt talt har billioner af parametre.

Indsnævre Stien 38

At have adgang til sådan et bredt spektrum af viden er uden tvivl kraftfuldt og

producerer emergent adfærd såsom theory of mind og evnen til at ræsonnere

på menneskelig vis. Denne skelsættende mængde information skaber dog også

udfordringer, når det kommer til at generere præcise og nøjagtige svar på specifikke

prompts, især hvis disse prompts skal udvise deterministisk adfærd, der kan integreres

med “normal” softwareudvikling og algoritmer.

En række faktorer fører til disse udfordringer.

Informationsoverbelastning: Store sprogmodeller er trænet på massive mængder data,

der spænder over forskellige domæner, kilder og tidsperioder. Denne omfattende viden

gør dem i stand til at engagere sig i forskellige emner og generere svar baseret på en bred

forståelse af verden. Når modellen står over for et specifikt prompt, kan den dog kæmpe

med at filtrere irrelevant, modstridende eller forældet/obsolet information fra, hvilket

fører til svar, der mangler fokus eller præcision. Afhængigt af hvad du forsøger at gøre,

kan den rene mængde af modstridende information, der er tilgængelig for modellen, let

overvælde dens evne til at give det svar eller den adfærd, du søger.

Kontekstuel Tvetydighed: I betragtning af det enorme latente rum af viden kan store

sprogmodeller støde på tvetydighed, når de forsøger at forstå konteksten af dit prompt.

Uden ordentlig indsnævring eller vejledning kan modellen generere svar, der kun er

perifert relaterede, men ikke direkte relevante for dine intentioner. Denne type fejl fører

til svar, der er uden for emnet, inkonsistente eller ikke imødekommer dine angivne

behov. I dette tilfælde henviser indsnævring af stien til kontekst afklaring, der sikrer,

at den kontekst, du giver, får modellen til kun at fokusere på den mest relevante

information i dens grundlæggende viden.

Bemærk: Når du starter med “prompt engineering”, er du meget mere

tilbøjelig til at bede modellen om at gøre ting uden at forklare det ønskede

resultat ordentligt; det kræver øvelse ikke at være tvetydig!

Tidsmæssige Uoverensstemmelser:Da sprogmodeller er trænet på data, der blev skabt

Indsnævre Stien 39

på forskellige tidspunkter, kan de besidde viden, der er forældet, erstattet eller ikke

længere præcis. For eksempel kan information om aktuelle begivenheder, videnskabelige

opdagelser eller teknologiske fremskridt have udviklet sig siden modellens træningsdata

blev indsamlet. Uden at indsnævre stien til at prioritere nyere og mere pålidelige kilder

kan modellen generere svar baseret på forældet eller ukorrekt information, hvilket fører

til unøjagtigheder og inkonsistens i dens output.

Domænespecifikke Nuancer: Forskellige domæner og felter har deres egen specifikke

terminologi, konventioner og vidensbase. Tænk på stort set enhver TLA (Three Letter

Acronym), og du vil indse, at de fleste af dem har mere end én betydning. For eksempel

kan MSK henvise til Amazon’s Managed Streaming for Apache Kafka, Memorial Sloan

Kettering Cancer Center eller det menneskelige muskuloskeletale system.

Når et prompt kræver ekspertise inden for et bestemt domæne, er en stor sprogmodels

generiske viden måske ikke tilstrækkelig til at give præcise og nuancerede svar. At

indsnævre stien ved at fokusere på domænespecifik information, enten gennem prompt

engineering eller retrieval-augmented generation, gør det muligt for modellen at

generere svar, der er mere på linje med dit specifikke domænes krav og forventninger.

Latent Rum: Ubegribeligt Stort

Når jeg nævner “latent rum” i en sprogmodel, henviser jeg til det enorme,

multidimensionelle landskab af viden og information, som modellen har lært

under sin træningsproces. Det er som et skjult rige inden i modellens neurale netværk,

hvor alle mønstre, associationer og repræsentationer af sprog er gemt.

Forestil dig, at du udforsker et stort, ukendt territorium fyldt med utallige

sammenkoblede knudepunkter. Hvert knudepunkt repræsenterer et stykke information,

et koncept eller en relation, som modellen har lært. Når du navigerer gennem dette

rum, vil du opdage, at nogle knudepunkter er tættere på hinanden, hvilket indikerer en

stærk forbindelse eller lighed, mens andre er længere fra hinanden, hvilket antyder en

svagere eller mere fjern relation.

Indsnævre Stien 40

Udfordringen med det latente rum er, at det er utroligt komplekst og højdimensionelt.

Tænk på det som værende lige så enormt som vores fysiske univers, med dets

galaksehobe og enorme, ufattelige afstande af tomt rum imellem dem.

Fordi det indeholder tusindvis af dimensioner, er det latente rum ikke direkte

observerbart eller fortolkeligt for mennesker. Det er en abstrakt repræsentation, som

modellen bruger internt til at behandle og generere sprog. Når du giver modellen et

input-prompt, kortlægger den i princippet dette prompt til en specifik placering i det

latente rum. Modellen bruger derefter den omkringliggende information og forbindelser

i dette rum til at generere et svar.

Sagen er, at modellen har lært en enorm mængde information fra sine træningsdata, og

ikke alt er relevant eller præcist for en given opgave. Det er derfor, indsnævring af stien

bliver så vigtig. Ved at give klare instruktioner, eksempler og kontekst i dine prompts,

guider du i realiteten modellen til at fokusere på specifikke områder inden for det latente

rum, som er mest relevante for dit ønskede output.

En anden måde at tænke på det er som at bruge en spotlight i et helt mørkt museum.

Hvis du nogensinde har besøgt Louvre eller Metropolitan Museum of Art, så er det den

slags skala, jeg taler om. Det latente rum er museet, fyldt med utallige genstande og

detaljer. Dit prompt er spotlightet, der oplyser specifikke områder og leder modellens

opmærksomhed hen på den vigtigste information. Uden denne vejledning kan modellen

vandre formålsløst gennem det latente rum og samle irrelevant eller modstridende

information op undervejs.

Når du arbejder med sprogmodeller og udformer dine prompts, så husk konceptet om

det latente rum. Dit mål er at navigere effektivt gennem dette enorme videnslandskab

og styre modellen mod den mest relevante og præcise information til din opgave. Ved at

indsnævre stien og give klar vejledning kan du frigøre det fulde potentiale i modellens

latente rum og generere sammenhængende svar af høj kvalitet.

Mens de tidligere beskrivelser af sprogmodeller og det latente rum, de navigerer i,

kan virke lidt magiske eller abstrakte, er det vigtigt at forstå, at prompts ikke er

Indsnævre Stien 41

trylleformularer eller besværgelser. Måden sprogmodeller fungerer på er forankret i

principperne om lineær algebra og sandsynlighedsteori.

I deres kerne er sprogmodeller probabilistiske modeller af tekst, meget ligesom hvordan

en normalfordelingskurve er en statistisk model af data. De trænes gennem en proces

kaldet autoregressiv modellering, hvor modellen lærer at forudsige sandsynligheden for

det næste ord i en sekvens baseret på de ord, der kommer før det. Under træningen

starter modellen med tilfældige vægte og justerer dem gradvist for at tildele højere

sandsynligheder til tekst, der ligner de virkelige eksempler, den blev trænet på.

Men at tænke på sprogmodeller som simple statistiske modeller, som lineær regression,

giver ikke den bedste intuition for at forstå deres adfærd. En mere passende analogi

er at tænke på dem som probabilistiske programmer, som er modeller der tillader

manipulation af tilfældige variabler og kan repræsentere komplekse statistiske

relationer.

Probabilistiske programmer kan repræsenteres af grafiske modeller, som giver en

visuel måde at forstå afhængigheder og relationer mellem variabler i modellen. Dette

perspektiv kan give værdifuld indsigt i funktionen af komplekse tekstgenererende

modeller som GPT-4 og Claude.

I artiklen “Language Model Cascades” af Dohan et al. dykker forfatterne ned i detaljerne

om, hvordan probabilistiske programmer kan anvendes på sprogmodeller. De viser,

hvordan denne ramme kan bruges til at forstå disse modellers adfærd og guide

udviklingen af mere effektive promptning-strategier.

En central indsigt fra dette probabilistiske perspektiv er, at sprogmodellen i det

væsentlige skaber en portal til et alternativt univers, hvor de ønskede dokumenter

eksisterer. Modellen tildeler vægte til alle mulige dokumenter baseret på deres

sandsynlighed og indsnævrer effektivt rummet af muligheder for at fokusere på de

mest relevante.

Dette bringer os tilbage til det centrale tema om “at indsnævre stien.” Det primære mål

med promptning er at betinge den probabilistiske model på en måde, der fokuserer

Indsnævre Stien 42

massen af dens forudsigelser og indsnævrer det til den specifikke information eller

adfærd, vi ønsker at fremkalde. Ved at give omhyggeligt udformede prompts kan vi

guide modellen til at navigere det latente rum mere effektivt og generere output, der er

mere relevante og sammenhængende.

Det er dog vigtigt at huske, at sprogmodellen i sidste ende er begrænset af den

information, den blev trænet på. Mens den kan generere tekst, der ligner eksisterende

dokumenter eller kombinere idéer på nye måder, kan den ikke fremtrylle helt ny

information ud af det blå. For eksempel kan vi ikke forvente, at modellen kan give

en kur mod kræft, hvis en sådan kur ikke er blevet opdaget og dokumenteret i dens

træningsdata.

I stedet ligger modellens styrke i dens evne til at finde og syntetisere information, der

ligner det, vi prompter den med. Ved at forstå disse modellers probabilistiske natur og

hvordan prompts kan bruges til at betinge deres output, kan vi mere effektivt udnytte

deres evner til at generere værdifuld indsigt og indhold.

Overvej følgende prompts. I den første kunne “Mercury” alene henvise til planeten,

grundstoffet eller den romerske gud, men det mest sandsynlige er planeten. GPT-4 giver

faktisk et langt svar, der begynder med Merkur er den mindste og inderste planet i

solsystemet…. Den anden prompt henviser specifikt til grundstoffet. Den tredje henviser

til den romerske mytologiske figur, kendt for sin hastighed og rolle som guddommelig

budbringer.

Indsnævre Stien 43

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Ved at tilføje blot en håndfuld ekstra ord har vi fuldstændigt ændret, hvordan AI’en

reagerer. Som du vil lære senere i bogen, er avancerede prompt-engineering-teknikker

som n-shot prompting, struktureret input/output og tankerække (Chain of Thought) blot

smarte måder at betinge modellens output på.

Så i sidste ende handler kunsten at lave prompt-engineering om at forstå, hvordan man

navigerer i sprogmodellens omfattende probabilistiske videnslandskab for at indsnævre

stien til den specifikke information eller adfærd, vi søger.

For læsere med en solid forståelse af avanceret matematik kan det bestemt hjælpe at

basere din forståelse af disse modeller på principperne inden for sandsynlighedsteori og

lineær algebra! For resten af jer, der ønsker at udvikle effektive strategier til at fremkalde

ønskede outputs, lad os holde os til mere intuitive tilgange.

Hvordan Stien Bliver “Indsnævret”

For at håndtere disse udfordringer med for meget viden anvender vi teknikker,

der hjælper med at guide sprogmodellens genereringsproces og fokusere dens

opmærksomhed på den mest relevante og præcise information.

Her er de vigtigste teknikker i anbefalet rækkefølge, det vil sige, du bør først prøve

Prompt Engineering, derefter RAG, og til sidst, hvis det er nødvendigt, fin-tuning.

Prompt Engineering Den mest grundlæggende tilgang er at udforme prompts, der

inkluderer specifikke instruktioner, begrænsninger eller eksempler til at guidemodellens

Indsnævre Stien 44

responsgenerering. Dette kapitel dækker grundprincipperne i Prompt Engineering i

næste afsnit, og vi dækker mange specifikke prompt-engineering-mønstre i Del 2 af

bogen. Disse mønstre inkluderer Prompt-destillering, en teknik der fokuserer på at

forfine og optimere prompts for at udtrække det, som AI’en anser for at være den mest

relevante og præcise information.

Kontekstudvidelse. Dynamisk hentning af relevant information fra eksterne

vidensbasere eller dokumenter for at forsyne modellen med fokuseret kontekst på

det tidspunkt, hvor den promptes. Populære kontekstudvidelsesteknikker inkluderer

Retrieval-Augmented Generation (RAG) Såkaldte “online-modeller” som dem,

der leveres af Perplexity, er i stand til at udvide deres kontekst med realtids

internetsøgeresultater.

På trods af deres kraft er LLM’er ikke trænet på dine unikke datasæt,

som kan være private eller specifikke for det problem, du forsøger at løse.

Kontekstudvidelsesteknikker lader dig give LLM’er adgang til data bag

API’er, i SQL-databaser eller fanget i PDF’er og præsentationer.

Fin-tuning eller domænetilpasning Træning af modellen på domænespecifikke

datasæt for at specialisere dens viden og genereringsevner til en bestemt opgave eller

felt.

At Skrue Ned For Temperaturen

Temperatur er en hyperparameter, der bruges i transformer-baserede sprogmodeller til

at kontrollere tilfældigheden og kreativiteten i den genererede tekst. Det er en værdi

mellem 0 og 1, hvor lavere værdier gør outputtet mere fokuseret og deterministisk, mens

højere værdier gør det mere mangfoldigt og uforudsigeligt.

Når temperaturen er sat til 1, genererer sprogmodellen tekst baseret på den fulde

sandsynlighedsfordeling for det næste token, hvilket tillader mere kreative og varierede

https://perplexity.ai

Indsnævre Stien 45

svar. Dette kan dog også føre til, at modellen genererer tekst, der er mindre relevant eller

sammenhængende.

På den anden side, når temperaturen er sat til 0, vælger sprogmodellen altid det token

med den højeste sandsynlighed, hvilket effektivt “indsnævrer dens sti.” Næsten alle mine

AI-komponenter bruger en temperatur sat på eller tæt på 0, da det resulterer i mere

fokuserede og forudsigelige svar. Det er absolut nyttigt, når du vil have modellen til

at følge instruktioner, være opmærksom på funktioner, den har fået stillet til rådighed,

eller simpelthen har brug for mere præcise og relevante svar end det, du får.

For eksempel, hvis du bygger en chatbot, der skal levere faktuel information, vil du

måske indstille temperaturen til en lavere værdi for at sikre, at svarene er mere præcise

og relevante. Omvendt, hvis du bygger en kreativ skriveassistent, vil du måske indstille

temperaturen til en højere værdi for at fremme mere mangfoldige og fantasifulde

outputs.

Hyperparametre: Inferensens Knapper og Drejehjul

Når du arbejder med sprogmodeller, vil du ofte støde på begrebet “hyperparametre”.

I forbindelse med inferens (dvs. når du bruger modellen til at generere svar) er

hyperparametre som knapper og drejehjul, du kan justere for at kontrollere modellens

adfærd og output.

Tænk på det som at justere indstillingerne på en kompleks maskine. Ligesom du

måske drejer på en knap for at kontrollere temperaturen eller skifter en kontakt for

at ændre driftsmåden, giver hyperparametre dig mulighed for at finjustere den måde,

sprogmodellen behandler og genererer tekst på.

Nogle almindelige hyperparametre, du vil støde på under inferens, omfatter:

• Temperatur: Som lige nævnt styrer denne parameter tilfældigheden og

kreativiteten i den genererede tekst. En højere temperatur fører til mere

Indsnævre Stien 46

forskelligartede og uforudsigelige outputs, mens en lavere temperatur resulterer i

mere fokuserede og deterministiske svar.

• Top-p (nucleus) sampling: Denne parameter styrer udvælgelsen af det mindste

sæt tokens, hvis kumulative sandsynlighed overstiger en bestemt tærskel (p). Det

muliggør mere forskelligartede outputs, samtidig med at sammenhængen bevares.

• Top-k sampling: Denne teknik vælger de k mest sandsynlige næste tokens og

omfordeler sandsynlighedsmassen mellem dem. Det kan hjælpe med at forhindre

modellen i at generere tokens med lav sandsynlighed eller irrelevante tokens.

• Frekvens- og Tilstedeværelsesstraf : Disse parametre straffer modellen for at

gentage de samme ord eller sætninger for ofte (frekvensstraf) eller for at generere

ord, der ikke er til stede i input-prompten (tilstedeværelsesstraf). Ved at justere

disse værdier kan du få modellen til at producere mere varierede og relevante

outputs.

• Maksimal længde: Denne hyperparameter sætter en øvre grænse for antallet af

tokens (ord eller delord), som modellen kan generere i et enkelt svar. Det hjælper

med at kontrollere ordrigeligheden og præcisionen af den genererede tekst.

Når du eksperimenterer med forskellige hyperparameterindstillinger, vil du opdage, at

selv små justeringer kan have en betydelig indvirkning på modellens output. Det er som

at finjustere en opskrift – en smule mere salt eller en lidt længere tilberedningstid kan

gøre hele forskellen i den endelige ret.

Nøglen er at forstå, hvordan hver hyperparameter påvirker modellens adfærd og at finde

den rette balance til din specifikke opgave. Vær ikke bange for at lege med forskellige

indstillinger og se, hvordan de påvirker den genererede tekst. Med tiden vil du udvikle

en intuition for, hvilke hyperparametre du skal justere, og hvordan du opnår de ønskede

resultater.

Indsnævre Stien 47

Ved at kombinere brugen af disse parametre med prompt engineering, retrieval-

augmented generation og finjustering kan du effektivt indsnævre stien og guide

sprogmodellen til at generere mere præcise, relevante og værdifulde svar til deres

specifikke anvendelse.

Rå versus instruktionstunede modeller

Rå modeller er de urefinerede, utrænede versioner af LLM’er. Forestil dig dem som

et blankt lærred, der endnu ikke er påvirket af specifik træning i at forstå eller følge

instruktioner. De er bygget på de enorme datamængder, de oprindeligt blev trænet

på, og er i stand til at generere en bred vifte af outputs. Men uden yderligere lag

af instruktionsbaseret finjustering kan deres svar være uforudsigelige og kræve mere

nuancerede, omhyggeligt udformede prompts for at guide demmod det ønskede output.

At arbejde med rå modeller er som at lokke kommunikation ud af en lærd tosse, der

har en enorm mængde viden, men mangler enhver intuition om, hvad du beder om,

medmindre du er ekstremt præcis i dine instruktioner. De føles ofte som en papegøje, i

den forstand at når de siger noget forståeligt, er det oftere end ikke bare en gentagelse

af noget, de har hørt dig sige.

Instruktionstunedemodeller har derimod gennemgået runder af træning, der er specifikt

designet til at forstå og følge instruktioner. GPT-4, Claude 3 og mange andre af de mest

populære LLM-modeller er alle kraftigt instruktionstunede. Denne træning involverer

at fodre modellen med eksempler på instruktioner sammen med de ønskede resultater,

hvilket effektivt lærer modellen hvordan den skal fortolke og udføre en bred vifte af

kommandoer. Som følge heraf kan instruktionstunede modeller lettere forstå hensigten

bag en prompt og generere svar, der er tæt på brugerens forventninger. Dette gør dem

mere brugervenlige og lettere at arbejde med, især for dem, der måske ikke har tid eller

ekspertise til at engagere sig i omfattende prompt engineering.

Indsnævre Stien 48

Rå modeller: Det ufiltrerede lærred

Rå modeller, såsom Llama 2-70B eller Yi-34B, tilbyder mere ufiltreret adgang til

modellens kapaciteter end hvad du måske er vant til, hvis du har eksperimenteret med

populære LLM’er som GPT-4. Disse modeller er ikke fortrænet til at følge specifikke

instruktioner, hvilket giver dig et blankt lærred til direkte at manipulere modellens

output gennem omhyggelig prompt engineering. Denne tilgang kræver en dyb forståelse

af, hvordan man udformer prompts, der guider AI’en i den ønskede retning uden

eksplicit at instruere den. Det svarer til at have direkte adgang til de “rå” lag af den

underliggende AI, uden nogen mellemliggende lag der fortolker eller guider modellens

svar (deraf navnet).

Indsnævre Stien 49

Figur 3. Test af en rå model ved brug af en del af Abbott og Costellos klassiske ’Who’s on First’ sketch

Udfordringen med rå modeller ligger i deres tendens til at falde ind i gentagende

mønstre eller producere tilfældigt output. Dog kan råmodeller med omhyggelig prompt-

engineering og justering af parametre såsom gentagelsesstraffe lokkes til at generere

unikt og kreativt indhold. Denne proces er ikke uden kompromiser; mens rå modeller

tilbyder uovertruffen fleksibilitet for innovation, kræver de et højere ekspertiseniveau.

Indsnævre Stien 50

Figur 4. Til sammenligning, her er den samme tvetydige prompt givet til GPT-4

Instruktionstunede Modeller: Den Guidede Oplevelse

Instruktionstunede modeller er designet til at forstå og følge specifikke instruktioner,

hvilket gør dem mere brugervenlige og tilgængelige for en bredere vifte af anvendelser.

De forstår mekanikken i en samtale og at de skal stoppe med at generere, når det er

slutningen af deres tur til at tale. For mange udviklere, især dem der arbejder med enkle

applikationer, tilbyder instruktionstunede modeller en bekvem og effektiv løsning.

Processen med instruktionstunning involverer træning af modellen på et stort korpus af

menneskeskabte instruktionsprompts og svar. Et bemærkelsesværdigt eksempel er det

open source databricks-dolly-15k dataset, som indeholder over 15.000 prompt/svar-par

skabt af Databricks-medarbejdere, som du selv kan undersøge. Datasættet dækker

otte forskellige instruktionskategorier, herunder kreativ skrivning, lukket og åben

spørgsmålsbesvarelse, opsummering, informationsudtrækning, klassifikation og

brainstorming.

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Indsnævre Stien 51

Under datagenereringsprocessen fik bidragyderne retningslinjer for, hvordan de

skulle oprette prompts og svar for hver kategori. For eksempel blev de ved kreative

skriveopgaver instrueret i at give specifikke begrænsninger, instruktioner eller krav for

at guide modellens output. For lukket spørgsmålsbesvarelse blev de bedt om at skrive

spørgsmål, der kræver faktuelt korrekte svar baseret på et givet Wikipedia-afsnit.

Det resulterende datasæt fungerer som en værdifuld ressource til fin-tuning af store

sprogmodeller for at opnå de interaktive og instruktionsfølgende egenskaber kendt fra

systemer som ChatGPT. Ved at træne på en mangfoldig række af menneskeskabte

instruktioner og svar lærer modellen at forstå og følge specifikke direktiver, hvilket gør

den mere egnet til at håndtere en bred vifte af opgaver.

Ud over direkte fin-tuning kan instruktionsprompts i datasæt som databricks-dolly-15k

også bruges til syntetisk datagenerering. Ved at indsende bidragydergenererede prompts

som få-skuds eksempler til en stor åben sprogmodel kan udviklere generere et meget

større korpus af instruktioner i hver kategori. Denne tilgang, som er beskrevet i Self-

Instruct-artiklen, muliggør skabelsen af mere robuste instruktionsfølgende modeller.

Desuden kan instruktionerne og svarene i disse datasæt udvides gennem teknikker

som omskrivning. Ved at omformulere hver prompt eller korte svar og forbinde den

resulterende tekst med den tilsvarende grundsandhedsprøve, kan udviklere introducere

en form for regularisering, der forbedrer modellens evne til at følge instruktioner.

Den brugervenlighed, som instruktionstilpassede modeller tilbyder, kommer på

bekostning af en vis fleksibilitet. Disse modeller er ofte kraftigt censurerede, hvilket

betyder, at de ikke altid kan levere den grad af kreativ frihed, som visse opgaver kræver.

Deres output er stærkt påvirket af de bias og begrænsninger, der er indbygget i deres

finjusteringsdata.

På trods af disse begrænsninger er instruktionstilpassede modeller blevet stadigt mere

populære på grund af deres brugervenlige natur og evne til at håndtere en bred vifte af

opgaver med minimal promptkonstruktion. Efterhånden som flere instruktionsdatasæt

af høj kvalitet bliver tilgængelige, kan vi forvente at se yderligere forbedringer i disse

Indsnævre Stien 52

modellers ydeevne og alsidighed.

Valg af den Rette Model til Dit Projekt

Valget mellem grundmodeller (rå) og instruktionstilpassede modeller afhænger i sidste

ende af de specifikke krav i dit projekt. Til opgaver der kræver en høj grad af

kreativitet og originalitet, tilbyder grundmodeller et kraftfuldt værktøj til innovation.

Disse modeller giver udviklere mulighed for at udforske det fulde potentiale af LLM’er

og skubbe grænserne for, hvad der kan opnås gennem AI-drevne applikationer, men de

kræver en mere praktisk tilgang og villighed til at eksperimentere. Temperatur og andre

indstillinger har enmeget større effekt i grundmodeller end i deres instruktionstilpassede

modstykker.

Alt hvad du inkluderer i din prompt, er det som grundmodeller vil forsøge

at gentage. Så hvis for eksempel din prompt er et chat-transcript, vil den

rå model forsøge at fortsætte chatten. Afhængigt af grænsen for maksimalt

antal tokens, vil den ikke bare generere den følgende besked i chatten, den

kan have en hel samtale med sig selv!

Indsnævre Stien 53

Figur 5. Mixtral 8x7B (grundmodel) Eksempel på Sætningsomskrivning med Few-Shot Completion

Mens jeg forberedte ovenstående eksempel på Sætningsomskrivning af Reddit-brugeren

phree_radical, kunne jeg kun få brugbare resultater efter meget eksperimentering med

parameterindstillinger, og endte med at vælge: Temperatur 0.08, Top P: 0.2, Top K: 1, og

Gentagelsesstraf: 1.26.

https://www.reddit.com/user/phree_radical/

Indsnævre Stien 54

At forsøge at bruge denne tilgang med en grundmodel i produktion ville være vanskeligt

på grund af den kraftige effekt af max_tokens-parameteren. Indstil den for kort, og

outputtet bliver afkortet. Indstil den længere end hvad modellen behøver til det ønskede

output, og den vil fortsætte med at hallucinere yderligere eksempler.

Konklusionen er, at medmindre du virkelig har brug for fuld kontrol og mangel på

censur, kan instruktionstilpassede modeller betydeligt strømline din udviklingsprocess.

For at understrege dette punkt, her er Mixtral 8x7B’s svar på den samme prompt, men

denne gang i dens instruktionstilpassede version:

Jeg beklager at måtte informere dig om, at isen ikke lever op til mine

forventninger, da den mangler den fyldige, cremede tekstur og den dejlige

smag, jeg normalt forbinder med en dessert af høj kvalitet. Jeg havde håbet

på en mere tilfredsstillende og behagelig oplevelse.

Bemærkelsesværdigt nok kunne jeg lade max tokens-indstillingen forblive på 500, og

modellen stoppede pålideligt ved slutningen af det ønskede output uden at hallucinere

yderligere eksempler.

Prompt Engineering

Når du begynder at anvende AI i dine projekter, vil du hurtigt opdage, at en af de mest

afgørende færdigheder, du skal mestre, er kunsten at lave prompt engineering. Men hvad

er prompt engineering egentlig, og hvorfor er det så vigtigt?

I sin kerne er prompt engineering processen med at designe og udforme de input-

prompts, som du giver til en sprogmodel for at styre dens output. Det handler om at

forstå, hvordan man kommunikerer effektivt med AI’en ved at bruge en kombination af

instruktioner, eksempler og kontekst for at lede modellen mod at generere det ønskede

svar.

Indsnævre Stien 55

Tænk på det som at have en samtale med en meget intelligent, men også ret bogstavelig

ven. For at få mest muligt ud af interaktionen skal du være klar, specifik og give

tilstrækkelig kontekst til at sikre, at din ven forstår præcis, hvad du beder om. Det er her

prompt engineering kommer ind i billedet, og selvom det måske virker nemt i starten,

så tro mig, det kræver meget øvelse at mestre.

De Grundlæggende Byggesten i Effektive Prompts

For at begynde at udvikle effektive prompts må du først forstå de centrale komponenter,

der udgør et velformuleret input. Her er nogle af de essentielle byggesten:

1. Instruktioner: Klare og præcise instruktioner, der fortæller modellen, hvad du

ønsker, den skal gøre. Dette kan være alt fra “Opsummér følgende artikel” til

“Generér et digt om en solnedgang” til “omdan denne projektændringsanmodning

til et JSON-objekt”.

2. Kontekst: Relevant information, der hjælper modellen med at forstå baggrunden

og omfanget af opgaven. Dette kan omfatte detaljer om den tiltænkte målgruppe,

den ønskede tone og stil, eller specifikke begrænsninger eller krav til outputtet,

såsom et JSON-skema der skal overholdes.

3. Eksempler: Konkrete eksempler, der demonstrerer den type output, du leder

efter. Ved at give nogle velvalgte eksempler kan du hjælpe modellen med at lære

mønstrene og karakteristikaene for det ønskede svar.

4. Input-formatering: Linjeskift og markdown-formatering giver struktur til vores

prompt. At opdele prompten i afsnit lader os gruppere relaterede instruktioner, så

det bliver lettere for både mennesker og AI at forstå. Punkter og nummererede

lister lader os definere lister og rækkefølge af elementer. Fed skrift og kursiv lader

os markere fremhævelse.

5. Output-formatering: Specifikke instruktioner om, hvordan outputtet skal

struktureres og formateres. Dette kan omfatte direktiver om den ønskede længde,

Indsnævre Stien 56

brugen af overskrifter eller punktopstillinger, markdown-formatering eller andre

specifikke output-skabeloner eller konventioner, der skal følges.

Ved at kombinere disse byggesten på forskellige måder kan du skabe prompts, der er

skræddersyet til dine specifikke behov og guide modellen mod at generere højkvalitets,

relevante svar.

Kunsten og Videnskaben i Prompt-design

At udforme effektive prompts er både en kunst og en videnskab. (Det er derfor, vi

kalder det et håndværk.) Det kræver en dyb forståelse af sprogmodellers muligheder

og begrænsninger, samt en kreativ tilgang til at designe prompts, der fremkalder den

ønskede adfærd. Kreativiteten involveret er det, der gør det så sjovt, i hvert fald for mig.

Det kan også gøre det meget frustrerende, især når du søger deterministisk adfærd

Et centralt aspekt af prompt engineering er at forstå, hvordanman balancerer specificitet

og fleksibilitet. På den ene side ønsker du at give tilstrækkelig vejledning til at styre

modellen i den rigtige retning. På den anden side ønsker du ikke at være så foreskrivende,

at du begrænser modellens evne til at udnytte sin egen kreativitet og fleksibilitet til at

håndtere kanttilfælde.

En anden vigtig overvejelse er brugen af eksempler. Velvalgte eksempler kan være

utroligt effektive til at hjælpe modellen med at forstå den type output, du leder efter.

Det er dog vigtigt at bruge eksempler med omtanke og sikre, at de er repræsentative for

det ønskede svar. Et dårligt eksempel er i bedste fald blot spild af tokens og i værste fald

ødelæggende for det ønskede output.

Prompt Engineering-teknikker og Best Practices

Når du dykker dybere ned i prompt engineering-verdenen, vil du opdage en række

teknikker og best practices, der kan hjælpe dig med at skabe mere effektive prompts.

Her er nogle centrale områder at udforske:

Indsnævre Stien 57

1. Zero-shot vs. few-shot learning: At forstå hvornår man skal bruge zero-shot-

læring (ingen eksempler) versus one-shot eller few-shot-læring (et lille antal

eksempler) kan hjælpe dig med at skabe prompts, der er mere effektive og

virkningsfulde.

2. Iterativ forfining: Processen med iterativt at forfine prompts baseret på

modellens output kan hjælpe dig med at indkredse det optimale prompt-design.

Feedback Loop er en kraftfuld tilgang, der udnytter sprogmodellens eget output

til løbende at forbedre kvaliteten og relevansen af det genererede indhold.

3. Prompt-kædekobling: At kombinere flere prompts i en sekvens kan hjælpe dig

med at nedbryde komplekse opgaver i mindre, mere håndterbare trin. Prompt

Chaining indebærer at nedbryde en kompleks opgave eller samtale i en serie af

mindre, sammenkoblede prompts. Ved at kæde prompts sammen kan du guide

AI’en gennem en flertrinsprocedure, mens kontekst og sammenhæng bevares

gennem hele interaktionen.

4. Prompt-justering: Skræddersyede prompts til specifikke domæner eller

opgaver kan hjælpe dig med at skabe mere specialiserede og effektive prompts.

Prompt Template hjælper dig med at skabe fleksible, genanvendelige og

vedligeholdelsesvenlige prompt-strukturer, der er lettere at tilpasse til den givne

opgave.

At lære hvornår man skal bruge zero-shot, one-shot eller few-shot læring er en særligt

vigtig del af at mestre prompt engineering. Hver tilgang har sine egne styrker og

svagheder, og forståelsen af hvornår man skal bruge hvilken kan hjælpe dig med at

skabe mere effektive og virkningsfulde prompts.

Zero-Shot-Læring: Når Eksempler Ikke Er Nødvendige

Zero-shot-læring henviser til en sprogmodels evne til at udføre en opgave uden

eksempler eller eksplicit træning. Med andre ord giver du modellen et prompt,

Indsnævre Stien 58

der beskriver opgaven, og modellen genererer et svar udelukkende baseret på sin

eksisterende viden og sprogforståelse.

Zero-shot-læring er særligt nyttigt når:

1. Opgaven er relativt simpel og ligetil, og modellen sandsynligvis har mødt lignende

opgaver under sin forudtræning.

2. Du ønsker at teste modellens iboende evner og se, hvordan den reagerer på en ny

opgave uden yderligere vejledning.

3. Du arbejder med en stor og alsidig sprogmodel, der er blevet trænet på et bredt

udvalg af opgaver og domæner.

Dog kan zero-shot-læring også være uforudsigelig og vil ikke altid producere de ønskede

resultater. Modellens svar kan være påvirket af skævheder eller uoverensstemmelser i

dens forudtræningsdata, og den kan have svært ved mere komplekse eller nuancerede

opgaver.

Jeg har set zero-shot prompts, der fungerer fint for 80% af mine testtilfælde og

producerer vildt forkerte eller uforståelige resultater for de resterende 20%. Det

er meget vigtigt at implementere en grundig testprotokol, især hvis du er meget

afhængig af zero-shot prompting.

One-Shot-Læring: Når Et Enkelt Eksempel Kan Gøre en
Forskel

One-shot-læring indebærer at give modellen et enkelt eksempel på det ønskede output

sammen med opgavebeskrivelsen. Dette eksempel fungerer som en skabelon eller et

mønster, som modellen kan bruge til at generere sit eget svar.

One-shot-læring kan være effektivt når:

Indsnævre Stien 59

1. Opgaven er relativt ny eller specifik, og modellen måske ikke har mødt mange

lignende eksempler under sin forudtræning.

2. Du ønsker at give en klar og præcis demonstration af det ønskede outputformat

eller stil.

3. Opgaven kræver en specifik struktur eller konvention, der måske ikke er

indlysende ud fra opgavebeskrivelsen alene.

Beskrivelser, der er indlysende for dig, er ikke nødvendigvis indlysende for

AI’en. One-shot eksempler kan hjælpe med at tydeliggøre tingene.

One-shot-læring kan hjælpe modellen med at forstå forventningerne mere tydeligt og

generere et svar, der er tættere aligned med det givne eksempel. Det er dog vigtigt at

vælge eksemplet omhyggeligt og sikre, at det er repræsentativt for det ønskede output.

Når du vælger eksemplet, bør du overveje potentielle kanttilfælde og omfanget af input,

som promptet skal håndtere.

Figur 6. Et one-shot eksempel på ønsket JSON

1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Indsnævre Stien 60

Few-Shot Learning: Når flere eksempler kan forbedre
ydeevnen

Few-shot learning involverer at forsyne modellen med et lille antal eksempler (typisk

mellem 2 og 10) sammen med opgavebeskrivelsen. Disse eksempler tjener til at give

modellen mere kontekst og variation, hvilket hjælper den med at generere mere

forskelligartede og præcise svar.

Few-shot learning er særligt nyttigt når:

1. Opgaven er kompleks eller nuanceret, og et enkelt eksempel måske ikke er

tilstrækkeligt til at indfange alle relevante aspekter.

2. Du ønsker at give modellen en række eksempler, der demonstrerer forskellige

variationer eller særtilfælde.

3. Opgaven kræver, at modellen genererer svar, der er i overensstemmelse med et

specifikt domæne eller en bestemt stil.

Ved at give flere eksempler kan du hjælpe modellen med at udvikle en mere robust

forståelse af opgaven og generere svar, der er mere konsistente og pålidelige.

Eksempel: Prompts kan være meget mere komplekse end
du forestiller dig

Nutidens LLM’er er meget mere kraftfulde og i stand til at ræsonnere, end du måske

forestiller dig. Så begræns ikke dig selv til at tænke på prompts som blot en specifikation

af input- og output-par. Du kan eksperimentere med at give lange og komplekse

instruktioner på måder, der minder om, hvordan du ville interagere med et menneske.

For eksempel er dette et prompt, som jeg brugte i Olympia, da jeg var ved at prototype

vores integration med Google-tjenester, som i sin helhed sandsynligvis er et af de

største API’er i verden. Mine tidligere eksperimenter beviste, at GPT-4 har et ordentligt

Indsnævre Stien 61

kendskab til Google API’et, og jeg havde hverken tid eller motivation til at skrive et

finkornet mappinglag, der implementerede hver funktion, jeg ønskede at give til min

AI, én efter én. Hvad nu hvis jeg kunne give AI’en adgang til hele Google API’et?

Jeg startede mit prompt ved at fortælle AI’en, at den havde direkte adgang til Google

API-endepunkterne via HTTP, og at dens rolle er at bruge Google-apps og -tjenester

på vegne af brugeren. Derefter gav jeg retningslinjer, regler relateret til fields-

parameteren, da det syntes at være den, den havde mest besvær med, og nogle API-

specifikke hints (few-shot prompting i aktion).

Her er hele promptet, som fortæller AI’en, hvordan den skal bruge den tilvejebragte

invoke_google_api-funktion.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

Indsnævre Stien 62

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Du undrer dig måske over, om denne prompt virker. Det korte svar er ja. AI’en vidste

ikke altid, hvordan den skulle kalde API’et perfekt i første forsøg. Men hvis den lavede en

Indsnævre Stien 63

fejl, ville jeg blot sende de resulterende fejlmeddelelser tilbage som resultatet af kaldet.

Med kendskab til sin fejl kunne AI’en ræsonnere over sin fejltagelse og prøve igen. Det

meste af tiden ville den få det rigtigt inden for et par forsøg.

Vel at mærke er de store JSON-strukturer, som Google API’et returnerer som payload

ved brug af denne prompt, groft ineffektive, så jeg kan ikke anbefale, at du bruger denne

tilgang i produktion. Dogmener jeg, at det faktum, at denne tilgang overhovedet virkede,

er et vidnesbyrd om, hvor kraftfuld prompt-engineering kan være.

Eksperimentering og Iteration

I sidste ende afhænger måden, du udvikler din prompt på, af den specifikke opgave,

kompleksiteten af det ønskede output og mulighederne i den sprogmodel, du arbejder

med.

Som prompt-ingeniør er det vigtigt at eksperimentere med forskellige tilgange og iterere

baseret på resultaterne. Start med zero-shot-læring og se, hvordan modellen præsterer.

Hvis outputtet er inkonsistent eller utilfredsstillende, så prøv at give et eller flere

eksempler og se, om præstationen forbedres.

Husk, at selv inden for hver tilgang er der plads til variation og optimering. Du kan

eksperimentere med forskellige eksempler, justere formuleringen af opgavebeskrivelsen

eller give yderligere kontekst for at hjælpe med at guide modellens respons.

Med tiden vil du udvikle en intuition for, hvilken tilgang der sandsynligvis vil virke

bedst til en given opgave, og du vil være i stand til at udarbejde prompts, der er mere

effektive. Nøglen er at forblive nysgerrig, eksperimenterende og iterativ i din tilgang til

prompt-engineering.

Gennem denne bog vil vi dykke dybere ned i disse teknikker og undersøge, hvordan

de kan anvendes i virkelige scenarier. Ved at mestre kunsten og videnskaben bag

prompt-engineering vil du være godt rustet til at frigøre det fulde potentiale i AI-drevet

applikationsudvikling.

Indsnævre Stien 64

Kunsten at være vag

Når det kommer til at udforme effektive prompts til store sprogmodeller (LLM’er), er

en almindelig antagelse, at mere specificitet og detaljerede instruktioner fører til bedre

resultater. Dog har praktisk erfaring vist, at dette ikke altid er tilfældet. Faktisk kan det

ofte give bedre resultater at være bevidst vag i dine prompts, hvilket udnytter LLM’ens

bemærkelsesværdige evne til at generalisere og drage slutninger.

Ken, en startup-grundlægger som har behandlet over 500 millioner GPT-tokens, delte

værdifuld indsigt fra sin erfaring. En af de vigtigste lektioner, han lærte, var at “mindre

er mere”, når det kommer til prompts. I stedet for præcise lister eller overdrevent

detaljerede instruktioner opdagede Ken, at det ofte gav bedre resultater at lade LLM’en

stole på sin basisviden.

Denne erkendelse vender op og ned på den traditionelle tankegang omkring eksplicit

kodning, hvor alt skal specificeres i minutiøse detaljer. Med LLM’er er det vigtigt at

erkende, at de besidder en enorm mængde viden og kan lave intelligente forbindelser og

slutninger. Ved at være mere vag i dine prompts giver du LLM’en friheden til at udnytte

sin forståelse og komme med løsninger, som du måske ikke eksplicit havde specificeret.

For eksempel, da Kens team arbejdede på en pipeline til at klassificere tekst som

relateret til en af de 50 amerikanske stater eller den føderale regering, involverede deres

oprindelige tilgang at levere en komplet detaljeret liste over stater og deres tilhørende

ID’er som et JSON-formateret array.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Tilgangen fejlede så meget, at de måtte grave dybere ned i prompten for at finde ud af,

hvordan de kunne forbedre den. I processen bemærkede de, at selvom sprogmodellen

ofte fik id’et forkert, returnerede den konsekvent det fulde navn på den korrekte stat i

et name-felt, selvom de ikke udtrykkeligt havde bedt om det.

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Indsnævre Stien 65

Ved at fjerne lokalitets-id’erne og forenkle prompten til noget i retning af “Du kender

jo åbenlyst de 50 stater, GPT, så giv mig bare det fulde navn på den stat, dette vedrører,

eller Federal hvis det vedrører den amerikanske regering,” opnåede de bedre resultater.

Denne erfaring fremhæver styrken ved at udnytte sprogmodellens generaliseringsevner

og lade den drage slutninger baseret på sin eksisterende viden.

Kens begrundelse for denne særlige klassificeringstilgang frem for enmere traditionel

programmeringsteknik belyser tankegangen hos os, der har omfavnet potentialet i

LLM-teknologi: “Dette er ikke en svær opgave – vi kunne sandsynligvis have brugt

string/regex, men der er nok mærkelige hjørnetilfælde til, at det ville have taget

længere tid.”

Sprogmodellers evne til at forbedre kvalitet og generalisering, når de får mere vage

prompter, er en bemærkelsesværdig egenskab ved højere ordens tænkning og delegation.

Det demonstrerer, at sprogmodeller kan håndtere tvetydighed og træffe intelligente

beslutninger baseret på den givne kontekst.

Det er dog vigtigt at bemærke, at det at være vag ikke betyder at være uklar eller

tvetydig. Nøglen er at give tilstrækkelig kontekst og vejledning til at styre sprogmodellen

i den rigtige retning, samtidig med at den får fleksibilitet til at udnytte sin viden og

generaliseringsevner.

Derfor bør du overveje følgende “mindre er mere” tips, når du designer prompter:

1. Fokusér på det ønskede resultat frem for at specificere hver detalje i processen.

2. Giv relevant kontekst og begrænsninger, men undgå overspecificering.

3. Udnyt eksisterende viden ved at henvise til almindelige koncepter eller enheder.

4. Giv plads til slutninger og forbindelser baseret på den givne kontekst.

5. Iterér og forfin dine prompter baseret på sprogmodellens svar, og find den rette

balance mellem specificitet og vaghed.

Indsnævre Stien 66

Ved at omfavne kunsten at være vag i promptkonstruktion kan du låse op for det fulde

potentiale i sprogmodeller og opnå bedre resultater. Stol på sprogmodellens evne til at

generalisere og træffe intelligente beslutninger, og du vil måske blive overrasket over

kvaliteten og kreativiteten i de outputs, du modtager. Vær opmærksom på, hvordan de

forskellige modeller reagerer på forskellige niveauer af specificitet i dine prompter, og

justér derefter. Med øvelse og erfaring vil du udvikle en skarp fornemmelse for, hvornår

du skal være mere vag, og hvornår du skal give yderligere vejledning, hvilket gør dig i

stand til effektivt at udnytte sprogmodellers kraft i dine applikationer.

Hvorfor Antropomorfisme Dominerer
Promptkonstruktion

Antropomorfisme, tilskrivningen af menneskelige egenskaber til ikke-menneskelige

enheder, er den dominerende tilgang i promptkonstruktion for store sprogmodeller

af velovervejet årsager. Det er et designvalg, der gør interaktion med kraftfulde

AI-systemer mere intuitiv og tilgængelig for en bred vifte af brugere (inklusive os

applikationsudviklere).

At antropomorfisere sprogmodeller giver en ramme, der er umiddelbart intuitiv for

mennesker, som er helt ubekendte med systemets underliggende tekniske kompleksitet.

Som du vil opleve, hvis du prøver at bruge en model, der ikke er instruct-tuned, til at

gøre noget nyttigt, er det en udfordrende opgave at konstruere en indramning, hvor den

forventede fortsættelse giver værdi. Det kræver en ret dyb forståelse af systemets indre

funktioner, noget som et relativt lille antal eksperter besidder.

Ved at behandle interaktionen med en sprogmodel som en samtale mellem to mennesker

kan vi stole på vores medfødte forståelse af menneskelig kommunikation til at formidle

vores behov og forventninger. Ligesom tidligt Macintosh UI-design prioriterede

umiddelbar intuitivitet over sofistikering, tillader den antropomorfiske indramning af

AI os at engagere os på en måde, der føles naturlig og velkendt.

Når vi kommunikerer med et andet menneske, er vores instinkt at henvende os direkte til

Indsnævre Stien 67

dem ved at bruge “du” og give klare anvisninger om, hvordan vi forventer, de skal opføre

sig. Dette oversættes problemfrit til promptkonstruktionsprocessen, hvor vi styrer AI’ens

adfærd ved at specificere systemprompter og engagere os i en frem-og-tilbage dialog.

Ved at indramme interaktionen på denne måde kan vi let forstå konceptet med at give

instrukser til AI’en og modtage relevante svar tilbage. Den antropomorfiske tilgang

reducerer den kognitive belastning og tillader os at fokusere på opgaven frem for at

kæmpe med systemets tekniske detaljer.

Det er vigtigt at bemærke, at selvom antropomorfisme er et kraftfuldt værktøj til at gøre

AI-systemer mere tilgængelige, kommer det også med visse risici og begrænsninger.

Vores bruger kan udvikle urealistiske forventninger eller danne usunde følelsesmæssige

tilknytninger til vores systemer. Som promptkonstruktører og udviklere er det afgørende

at finde en balance mellem at udnytte fordelene ved antropomorfisme og sikre, at

brugerne opretholder en klar forståelse af AI’ens muligheder og begrænsninger.

Efterhånden som området prompt engineering fortsætter med at udvikle sig, kan vi

forvente at se yderligere forbedringer og innovationer i måden, hvorpå vi interagerer

med store sprogmodeller. Dog vil antropomorfisme som middel til at skabe en intuitiv

og tilgængelig udvikler- og brugeroplevelse sandsynligvis forblive et grundlæggende

princip i designet af disse systemer.

Adskillelse af Instruktioner fra Data: Et Afgørende Princip

Det er essentielt at forstå et grundlæggende princip, der understøtter disse systemers

sikkerhed og pålidelighed: adskillelsen af instruktioner fra data.

I traditionel datalogi er den klare skelnen mellem passive data og aktive instruktioner

et centralt sikkerhedsprincip. Denne adskillelse hjælper med at forhindre utilsigtet eller

ondsindet udførelse af kode, der kunne kompromittere systemets integritet og stabilitet.

Men nutidens LLM’er, som primært er udviklet som instruktionsfølgende modeller som

chatbots, mangler ofte denne formelle og principielle adskillelse.

Indsnævre Stien 68

Hvad angår LLM’er kan instruktioner optræde hvor som helst i inputtet, hvad enten

det er en systemprompt eller en brugergenereret prompt. Denne mangel på adskillelse

kan føre til potentielle sårbarheder og uønsket adfærd, lignende de problemer som

databaser står over for med SQL-injektioner eller operativsystemer uden ordentlig

hukommelsesbeskyttelse.

Når du arbejder med LLM’er, er det afgørende at være opmærksom på denne

begrænsning og tage skridt til at mindske risiciene. En tilgang er at omhyggeligt

udforme dine prompts og inputs for tydeligt at skelne mellem instruktioner og data.

Typiske metoder til at give eksplicit vejledning om, hvad der udgør en instruktion,

og hvad der skal behandles som passive data, involverer markup-opmærkning. Din

prompt kan hjælpe LLM’en med bedre at forstå og respektere denne adskillelse.

Figur 7. Brug af XML til at skelne mellem instruktioner, kildemateriale og brugerens prompt

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

En anden teknik er at implementere yderligere lag af validering og sanitering af de

input, der gives til LLM’en. Ved at filtrere eller escape potentielle instruktioner eller

kodestumper, der kan være indlejret i dataene, kan du reducere risikoen for utilsigtet

udførelse. Mønstre som Prompt-kædekobling er nyttige til dette formål.

Indsnævre Stien 69

Når du designer din applikationsarkitektur, bør du desuden overveje at indbygge

mekanismer til at håndhæve adskillelsen af instruktioner og data på et højere niveau.

Dette kan omfatte brug af separate endpoints eller API’er til håndtering af instruktioner

og data, implementering af streng inputvalidering og parsing samt anvendelse af

princippet om mindst muligt privilegium for at begrænse omfanget af, hvad LLM’en kan

tilgå og udføre.

Princippet ommindst muligt privilegium

At følge princippet om mindst muligt privilegium er som at afholde en yderst

eksklusiv fest, hvor gæsterne kun får adgang til de rum, de absolut har brug for at

være i. Forestil dig, at du er vært for denne sammenkomst i en stor villa. Ikke alle

behøver at vandre ind i vinkælderen eller hovedsoveværelset, vel? Ved at anvende

dette princip uddeler du i praksis nøgler, der kun åbner specifikke døre, hvilket sikrer,

at hver gæst - eller i vores tilfælde hver komponent i din LLM-applikation - kun har

den adgang, der er nødvendig for at opfylde sin rolle.

Det handler ikke bare om at være nærig med nøglerne, det handler om at erkende, at i

en verden hvor trusler kan komme fra hvor som helst, er det klogeste træk at begrænse

legepladsen. Hvis en uinviteret gæst skulle snige sig ind til festen, vil de finde sig selv

begrænset til forhallen, så at sige, hvilket drastisk begrænser det ballade, de kan lave.

Så når du sikrer dine LLM-applikationer, husk: Uddel kun nøgler til de rum, der er

nødvendige, og hold resten af villaen sikker. Det er ikke bare god etikette; det er god

sikkerhed.

Selvom den nuværende tilstand af LLM’er måske ikke har en formel adskillelse af

instruktioner og data, er det afgørende for dig som udvikler at være opmærksom på

denne begrænsning og tage proaktive skridt for at mindske risiciene. Ved at anvende

best practices fra traditionel datalogi og tilpasse dem til LLM’ers unikke karakteristika,

Indsnævre Stien 70

kan du bygge mere sikre og pålidelige applikationer, der udnytter disse modellers kraft,

samtidig med at systemets integritet opretholdes.

Prompt-destillering

At udforme den perfekte prompt er ofte en udfordrende og tidskrævende opgave, der

kræver en dyb forståelse af måldomænet og sprogmodellernes nuancer. Her kommer

teknikken “Prompt-destillering” ind i billedet og tilbyder en kraftfuld tilgang til prompt

engineering, der udnytter store sprogmodellers (LLM’ers) kapacitet til at strømline og

optimere processen.

Prompt-destillering er en flertrinsteknik, der involverer brugen af LLM’er til at assistere

i skabelsen, forfining og optimering af prompts. I stedet for udelukkende at stole på

menneskelig ekspertise og intuition, udnytter denne tilgang LLM’ers viden og generative

kapaciteter til i fællesskab at udforme prompts af høj kvalitet.

Ved at engagere sig i en iterativ proces af generering, forfining og integration gør

Prompt-destillering dig i stand til at skabe prompts, der er mere sammenhængende,

omfattende og tilpasset den ønskede opgave eller output. Bemærk, at

destilleringsprocessen kan udføres manuelt i en af de mange “playgrounds”, som

de store AI-leverandører som OpenAI eller Anthropic stiller til rådighed, eller den kan

automatiseres som en del af din applikationskode, afhængigt af anvendelsesformålet.

Hvordan det virker

Prompt-destillering involverer typisk følgende trin:

1. Identificer kernehensigten: Analyser prompten for at bestemme dens primære

formål og ønskede resultat. Fjern al overflødig information og fokuser på

promptens kernehensigt.

Indsnævre Stien 71

2. Eliminer tvetydighed: Gennemgå prompten for tvetydig eller uklar sprogbrug.

Præciser betydningen og giv specifikke detaljer for at guide AI’en mod at generere

præcise og relevante svar.

3. Forenkl sproget: Forenkl prompten ved at bruge klart og præcist sprog. Undgå

komplekse sætningsstrukturer, fagsprog eller unødvendige detaljer, der kan

forvirre AI’en eller introducere støj.

4. Giv relevant kontekst: Medtag kun den mest relevante kontekstuelle

information, der er nødvendig for at AI’en kan forstå og behandle prompten

effektivt. Undgå at inkludere irrelevante eller overflødige detaljer, der kan

distrahere fra kernehensigten.

5. Iterer og forfin: Fortsæt med at iterere og forfine prompten baseret på AI’ens

svar og feedback. Evaluer de genererede outputs og foretag nødvendige justeringer

for at forbedre promptens klarhed og effektivitet. Du kan valgfrit versionere dine

prompts i databasen ved hjælp af Prompt-objekt for at holde styr på iterationer og

give dig mulighed for nemt at rulle ændringer tilbage under kørslen.

Initial Prompt-generering

Det første trin i Prompt Distillation er at give LLM’en en overordnet beskrivelse eller

formål med den ønskede opgave eller output. Dette kan være en kort erklæring eller et

sæt nøgleord, der indfanger essensen af, hvad prompten skal opnå. LLM’en genererer

derefter en initial prompt baseret på dette input og inkorporerer relevante instruktioner,

eksempler eller kontekst, som den finder passende.

Lad os prøve at give Claude 3 Opus følgende initiale prompt:

Indsnævre Stien 72

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude svarer med følgende output:

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Indsnævre Stien 73

Prompt-forfining

Når den indledende prompt er genereret, gennemgå den og bed derefter LLM’en om

at overveje eventuel yderligere kontekst, begrænsninger eller feedback. Lad LLM’en

generere en forfinet version af prompten, der tager højde for det givne input og dens egen

forståelse af opgaven. Denne forfiningsproces kan gentages iterativt, hvor hver iteration

yderligere forfiner prompten baseret på samarbejdet mellem brugeren og LLM’en.

Her er min anmodning om forfining, som fortsætter den tidligere destillationsproces.

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

Og Claudes svar:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

Indsnævre Stien 74

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Prompt-komprimering

Som du måske har bemærket, har LLM’er en tendens til at være ordrige, medmindre

du beder dem om at være kortfattede. Den prompt, vi har arbejdet med i de foregående

afsnit, er ret lang, så lad os få Claude til at skære den ned:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude svarer med følgende drastisk kortere prompt:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Systemdirektiv og Kontekstintegration

Ud over at forfine selve prompten kan sprogmodellen også generere passende

systemdirektiver eller kontekstinformation for at guide det endelige output. Når du

udvikler AI-rutiner med prompt-udvikling, der skal integreres i din applikationskode, vil

du næsten helt sikkert fokusere på output-begrænsninger på dette trin af destilleringen,

men du kan også arbejde med ønsket tone, stil, format eller andre relevante parametre,

der påvirker det genererede svar.

Indsnævre Stien 75

Endelig Prompt-samling

Kulminationen på Prompt-destilleringsprocessen er samlingen af den endelige prompt.

Dette involverer at kombinere den forfinede prompt, genererede systemdirektiver og

integreret kontekst til en sammenhængende og omfattende kode, der er klar til at blive

brugt til at generere det ønskede output.

Du kan eksperimentere med prompt-komprimering igen i den endelige

prompt-samlingsfase ved at bede sprogmodellen om at reducere ordlyden

af prompten til den korteste række tokens muligt, mens den stadig bevarer

essensen af dens adfærd. Det er bestemt en usikker øvelse, men især i tilfælde

af prompts, der skal køres i stor skala, kan effektivitetsgevinsterne spare dig

for en del penge i token-forbrug.

Centrale Fordele

Ved at udnytte sprogmodellernes viden og generative kapaciteter til at forfine dine

prompts, er dine resulterende prompts mere tilbøjelige til at være velstrukturerede,

informative og skræddersyede til den specifikke opgave. Den iterative forfinelsesproces

hjælper med at sikre, at promptsne er af høj kvalitet og effektivt indfanger den ønskede

hensigt. Andre fordele omfatter:

Effektivitet og Hastighed: Prompt-destillering strømliner prompt-udviklingsprocessen

ved at automatisere visse aspekter af prompt-oprettelse og -forfining. Teknikkens

samarbejdende natur muliggør hurtigere konvergens mod en effektiv prompt, hvilket

reducerer den tid og indsats, der kræves til manuel prompt-udformning.

Konsistens og Skalerbarhed: Brugen af sprogmodeller i prompt-udviklingsprocessen

hjælper med at opretholde konsistens på tværs af prompts, da sprogmodellerne kan lære

og anvende best practices ogmønstre fra tidligere vellykkede prompts. Denne konsistens,

Indsnævre Stien 76

kombineret med evnen til at generere prompts i stor skala, gør Prompt-destillering til en

værdifuld teknik for AI-drevne applikationer i stor skala.

Projektidé: Værktøjer på biblioteksniveau, der forenkler processen med

prompt-versionering og -graduering i systemer, der udfører automatiserede

prompt-destilleringer som en del af deres applikationskode.

For at implementere Prompt-destillering kan udviklere designe et workflow

eller en pipeline, der integrerer sprogmodeller på forskellige stadier af prompt-

udviklingsprocessen. Dette kan opnås gennem API-kald, specialudviklede værktøjer

eller integrerede udviklingsmiljøer, der muliggør problemfri interaktion mellem brugere

og sprogmodeller under prompt-oprettelse. De specifikke implementeringsdetaljer kan

variere afhængigt af den valgte sprogmodel-platform og applikationens krav.

Hvad med finjustering?

I denne bog dækker vi prompt-udvikling og RAG omfattende, men ikke finjustering.

Hovedårsagen til denne beslutning er, at efter min mening har de fleste

applikationsudviklere ikke brug for finjustering til deres AI-integrationsbehov.

Prompt-udvikling, som involverer omhyggelig udformning af prompts med nul til få-

skuds eksempler, begrænsninger og instruktioner, kan effektivt guide modellen til at

generere relevante og præcise svar på en bred vifte af opgaver. Ved at give klar kontekst

og indsnævre stien gennem veldesignede prompts kan du udnytte den omfattende viden

i store sprogmodeller uden behov for finjustering.

Tilsvarende tilbyder Genfindelses-forstærket Generering (RAG) en kraftfuld tilgang

til at integrere AI i applikationer. Ved dynamisk at hente relevant information

fra eksterne videnbaser eller dokumenter giver RAG modellen fokuseret kontekst

på prompttidspunktet. Dette gør det muligt for modellen at generere svar, der

Indsnævre Stien 77

er mere præcise, opdaterede og domænespecifikke, uden at kræve den tids- og

ressourcekrævende proces med finjustering.

Mens finjustering kan være gavnlig for højt specialiserede domæner eller opgaver,

der kræver et dybt niveau af tilpasning, kommer det ofte med betydelige

beregningsomkostninger, datakrav og vedligeholdelsesoverhead. For de fleste

applikationsudviklingsscenarier bør kombinationen af effektiv prompt-udvikling

og RAG være tilstrækkelig til at opnå den ønskede AI-drevne funktionalitet og

brugeroplevelse.

Retrieval Augmented Generation
(RAG)
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvad er Retrieval Augmented Generation?

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan fungerer RAG?

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvorfor bruge RAG i dine applikationer?

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementering af RAG i Din Applikation

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 79

Forberedelse af Videnskilder (Chunking)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Propositionsopdeling

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementeringsnoter

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kvalitetskontrol

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele ved Propositionsbaseret Udtrækning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Virkelige Eksempler på RAG

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 80

Case Study: RAG i en Selvangivelsesapplikation Uden
Embeddings

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Intelligent Forespørgselsoptimering (IQO)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Omrangering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

RAG-vurdering (RAGAs)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Trofasthed

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Svarrelevans

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 81

Kontekstpræcision

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstrelevans

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstgenkaldelse

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstentitetsgenkaldelse

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Semantisk Svarslighed (ANSS)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Svarkorrekthed

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 82

Aspektkritik

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Udfordringer og Fremtidsudsigter

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Semantisk Opdeling: Forbedring af Hentning med
Kontekstbevidst Segmentering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hierarkisk Indeksering: Strukturering af Data for
Forbedret Genfinding

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Self-RAG: En Selvreflekterende Forbedring

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

HyDE: Hypotetiske Dokument-Embeddings

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Retrieval Augmented Generation (RAG) 83

Hvad er Kontrastiv Læring?

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Mangfoldighed af Arbejdere

Jeg kan godt lide at tænke på mine AI-komponenter som små, næsten menneskelige

virtuelle “arbejdere”, der problemfrit kan integreres i min applikationslogik for at

udføre specifikke opgaver eller træffe komplekse beslutninger. Idéen er bevidst at

menneskeliggøre LLM’ets kapaciteter, så ingen bliver for begejstrede og tillægger dem

magiske egenskaber, som de ikke besidder.

I stedet for udelukkende at være afhængig af komplicerede algoritmer eller tidskrævende

manuelle implementeringer, kan udviklere forestille sig AI-komponenter som

intelligente, dedikerede, menneskelignende enheder, der kan kaldes frem når som helst

der er behov for at tackle komplekse problemer og levere løsninger baseret på deres

træning og viden. Disse enheder bliver ikke distraherede eller melder sig syge. De

beslutter ikke spontant at gøre tingene på andre måder end de er blevet instrueret i, og

generelt set, hvis de er programmeret korrekt, laver de heller ikke fejl.

Mangfoldighed af Arbejdere 85

Teknisk set er det grundlæggende princip bag denne tilgang at nedbryde komplekse

opgaver eller beslutningsprocesser i mindre, mere håndterbare enheder, som kan

håndteres af specialiserede AI-arbejdere. Hver arbejder er designet til at fokusere på

et specifikt aspekt af problemet og bidrage med sin unikke ekspertise og kapacitet.

Ved at fordele arbejdsbyrden mellem flere AI-arbejdere kan applikationen opnå større

effektivitet, skalerbarhed og tilpasningsevne.

For eksempel kan man overveje en webapplikation, der kræver realtidsmoderering

af brugergenereret indhold. At implementere et omfattende modereringssystem fra

bunden ville være en overvældende opgave, der kræver betydelig udviklingsindsats

og løbende vedligeholdelse. Men ved at anvende tilgangen med Mangfoldighed

af Arbejdere kan udviklere integrere AI-drevne modereringsarbejdere i

applikationslogikken. Disse arbejdere kan automatisk analysere og markere

upassende indhold, hvilket frigør udviklere til at fokusere på andre kritiske aspekter af

applikationen.

AI-Arbejdere Som Uafhængige Genbrugelige

Komponenter

Et centralt aspekt ved tilgangen med Mangfoldighed af Arbejdere er dens modularitet.

Fortalere for objektorienteret programmering har i årtier fortalt os at tænke på

objektinteraktioner som beskeder. Tja, AI-arbejdere kan designes som uafhængige,

genbrugelige komponenter, der kan “tale med hinanden” via almindelige sprogbeskeder,

næsten som hvis de virkelig var små mennesker, der talte sammen. Denne løst koblede

tilgang gør det muligt for applikationen at tilpasse og udvikle sig over tid, efterhånden

som nye AI-teknologier opstår, eller krav til forretningslogikken ændrer sig.

I praksis har behovet for at designe klare grænseflader og kommunikationsprotokoller

mellem komponenterne ikke ændret sig, bare fordi AI-arbejdere er involveret. Du skal

stadig tage hensyn til andre faktorer såsom ydeevne, skalerbarhed og sikkerhed, men nu

Mangfoldighed af Arbejdere 86

er der også helt nye “bløde krav” at overveje. For eksempel er mange brugere imod at

få deres private data brugt til at træne nye AI-modeller. Har du verificeret niveauet af

privatlivsbeskyttelse, som modeludbyderen du bruger, tilbyder?

AI-Arbejdere Som Mikroservices?

Når du læser om tilgangen med Mangfoldighed af Arbejdere, vil du måske bemærke

nogle ligheder med Mikroservice-arkitektur. Begge lægger vægt på nedbrydningen

af komplekse systemer i mindre, mere håndterbare og uafhængigt implementerbare

enheder. Ligesom mikroservices er designet til at være løst koblede, fokuserede på

specifikke forretningskapaciteter og kommunikerer gennem veldefinerede API’er,

er AI-arbejdere designet til at være modulære, specialiserede i deres opgaver og

interagere med hinanden gennem klare grænseflader og kommunikationsprotokoller.

Der er dog nogle vigtige forskelle at huske på. Mens mikroservices typisk

implementeres som separate processer eller tjenester, der kører på forskellige

maskiner eller containere, kan AI-arbejdere implementeres som selvstændige

komponenter inden for en enkelt applikation eller som separate tjenester, afhængigt

af dine specifikke krav og skaleringsbehov. Derudover involverer kommunikationen

mellem AI-arbejdere ofte udveksling af rig, naturlig sprogbaseret information, såsom

prompts, instruktioner og genereret indhold, snarere end de mere strukturerede

dataformater, der almindeligvis bruges i mikroservices.

På trods af disse forskelle forbliver principperne om modularitet, løs kobling og

klare kommunikationsgrænseflader centrale for begge mønstre. Ved at anvende

disse principper på din AI-arbejder-arkitektur kan du skabe fleksible, skalerbare

og vedligeholdelsesvenlige systemer, der udnytter AI’s kraft til at løse komplekse

problemer og levere værdi til dine brugere.

Mangfoldighed af Arbejdere 87

Tilgangen med Mangfoldighed af Arbejdere kan anvendes på tværs af forskellige

domæner og applikationer, hvor man udnytter AI’s kraft til at tackle komplekse opgaver

og levere intelligente løsninger. Lad os udforske nogle konkrete eksempler på, hvordan

AI-arbejdere kan anvendes i forskellige sammenhænge.

Kontoadministration

Praktisk talt hver eneste selvstændig webapplikation har konceptet om en konto (eller

bruger). I Olympia anvender vi en AccountManager AI-arbejder, der er programmeret

til at kunne håndtere forskellige typer af ændringsanmodninger relateret til brugerkonti.

Dets direktiv lyder således:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Den indledende tilstand af kontoen produceret af account.to_directive er ganske

enkelt en tekstbeskrivelse af kontoen, herunder relevante tilknyttede data såsom brugere,

abonnementer osv.

Udvalget af funktioner tilgængelige for AccountManager giver den mulighed for

at redigere brugerens abonnement, tilføje og fjerne AI-konsulenter og andre typer

Mangfoldighed af Arbejdere 88

betalte tilføjelser samt sende notifikations-e-mails til kontoens ejer. Ud over finished-

funktionen kan den også notify_human_administrator, hvis den støder på en fejl

under behandlingen eller har brug for anden form for assistance med en anmodning.

Bemærk, at i tilfælde af spørgsmål kan AccountManager vælge at søge i Olympias

vidensbase, hvor den kan finde instruktioner om, hvordan man håndterer særtilfælde

og enhver anden situation, hvor den er usikker på, hvordan den skal fortsætte.

E-handelsapplikationer

Inden for e-handel kan AI-arbejdere spille en afgørende rolle i at forbedre

brugeroplevelsen og optimere forretningsdriften. Her er nogle måder, hvorpå AI-

arbejdere kan anvendes:

Produktanbefalinger

En af de mest effektive anvendelser af AI-arbejdere inden for e-handel er generering

af personlige produktanbefalinger. Ved at analysere brugeradfærd, købshistorik og

præferencer kan disse arbejdere foreslå produkter, der er skræddersyet til hver enkelt

brugers interesser og behov.

Nøglen til effektive produktanbefalinger er at udnytte en kombination af kollaborativ

filtrering og indholdsbaseret filtrering. Kollaborativ filtrering ser på adfærden hos

lignende brugere for at identificere mønstre og lave anbefalinger baseret på, hvad andre

med lignende smag har købt eller syntes godt om. Indholdsbaseret filtrering fokuserer

derimod på produkternes egenskaber og attributter og anbefaler varer, der deler lignende

funktioner med dem, en bruger tidligere har vist interesse for.

Her er et forenklet eksempel på, hvordan du kan implementere en produktanbefalings-

worker i Ruby, denne gang ved hjælp af en “Railway Oriented (ROP)” funktionel

programmeringsstil:

https://fsharpforfunandprofit.com/rop/

Mangfoldighed af Arbejdere 89

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Ruby-stilen med funktionel programmering, der bruges i eksemplet, er

inspireret af F# og Rust. Du kan læse mere om det i min ven Chad Wooleys

forklaring af teknikken hos GitLab

I dette eksempel tager ProductRecommendationWorker en bruger som input og

genererer personlige produktanbefalinger ved at sende et værdiobjekt gennem en kæde

af funktionelle trin. Lad os gennemgå hvert trin:

1. ValidateUser.validate: Dette trin sikrer, at brugeren er gyldig og berettiget til

personlige anbefalinger. Det kontrollerer, om brugeren eksisterer, er aktiv og har

de nødvendige data tilgængelige til at generere anbefalinger. Hvis valideringen

fejler, returneres et fejlresultat, og kæden afbrydes tidligt.

2. AnalyzeCurrentSession.analyze: Hvis brugeren er gyldig, analyserer

dette trin brugerens aktuelle browsing-session for at indsamle kontekstuel

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mangfoldighed af Arbejdere 90

information. Det ser på brugerens seneste interaktioner, såsom viste produkter,

søgeforespørgsler og indhold i indkøbskurven, for at forstå deres aktuelle

interesser og hensigt.

3. CollaborativeFilter.filter: Ved hjælp af adfærden fra lignende brugere

anvender dette trin kollaborative filtreringsteknikker til at identificere produkter,

som sandsynligvis vil interessere brugeren. Det tager højde for faktorer som

købshistorik, bedømmelser og bruger-produkt-interaktioner for at generere et sæt

af mulige anbefalinger.

4. ContentBasedFilter.filter: Dette trin forfiner yderligere

kandidatanbefalingerne ved at anvende indholdsbaseret filtrering. Det

sammenligner egenskaber og karakteristika for kandidatprodukterne med

brugerens præferencer og historiske data for at vælge de mest relevante varer.

5. ProductSelector.select: Endelig vælger dette trin de bedste N produkter

fra de filtrerede anbefalinger baseret på foruddefinerede kriterier, såsom

relevansscore, popularitet eller andre forretningsregler. De udvalgte produkter

returneres derefter som de endelige personlige anbefalinger.

Det smukke ved at bruge en funktionel Ruby-programmeringsstil her er, at det tillader os

at kæde disse trin sammen på en klar og præcis måde. Hvert trin fokuserer på en specifik

opgave og returnerer et Result-objekt, som enten kan være en succes (ok) eller en fejl

(err). Hvis et trin støder på en fejl, afbrydes kæden tidligt, og fejlen videregives til det

endelige resultat.

I case-sætningen til sidst laver vi mønstergenkendelse på det endelige resultat. Hvis

resultatet er en fejl (ProductRecommendationError), logger vi fejlen ved hjælp

af et værktøj som Honeybadger til overvågning og fejlfinding. Hvis resultatet er

en succes (ProductRecommendations), udsender vi en :new_recommendations-

begivenhed ved hjælp af Wisper pub/sub-biblioteket, hvor vi videresender brugeren og

de genererede anbefalinger.

Ved at udnytte funktionelle programmeringsteknikker kan vi skabe en modulær og

Mangfoldighed af Arbejdere 91

vedligeholdelsesvenlig product recommendation worker. Hvert trin er selvstændigt og

kan nemt testes, ændres eller udskiftes uden at påvirke det overordnede flow. Brugen

af mønstergenkendelse og Result-klassen hjælper os med at håndtere fejl elegant og

sikrer, at workeren fejler hurtigt, hvis et trin støder på et problem.

Dette er naturligvis et forenklet eksempel, og i en virkelig situation ville du skulle

integrere med din e-handelsplatform, håndtere særtilfælde og endda dykke ned i

implementeringen af anbefalingsalgoritmerne. Dog forbliver kerneprincipper om at

opdele problemet i mindre trin og udnytte funktionelle programmeringsteknikker de

samme.

Svindelregistrering

Her er et forenklet eksempel på, hvordan du kan implementere en svindelregistrerings-

worker ved hjælp af samme Railway Oriented Programming (ROP)-stil i Ruby:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

Mangfoldighed af Arbejdere 92

22 end

23 end

24 end

Klassen FraudDetection er et value object, der indkapsler svigdetektionsstatus for en

given transaktion. Den giver en struktureret måde at analysere og vurdere risikoen for

svindel forbundet med en transaktion baseret på forskellige risikofaktorer.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

Klassen FraudDetection har følgende attributter:

Mangfoldighed af Arbejdere 93

• transaction: En reference til den transaktion, der analyseres for svindel.

• risk_factors: Et array, der gemmer risikofaktorerne forbundet med

transaktionen. Hver risikofaktor er repræsenteret som et hash, hvor nøglen

er beskrivelsen af risikofaktoren, og værdien er sandsynligheden for svindel

forbundet med den pågældende risikofaktor.

Metoden add_risk_factor gør det muligt at tilføje en risikofaktor til risk_factors-

arrayet. Den tager to parametre: description, som er en streng, der beskriver

risikofaktoren, og probability, som er et decimaltal, der repræsenterer

sandsynligheden for svindel forbundet med den pågældende risikofaktor. Vi bruger en

case..in-betingelse til at udføre simpel typevalidering.

Metoden high_risk?, som vil blive kontrolleret i slutningen af kæden, er en

prædikatsmetode, der sammenligner fraud_probability (beregnet ved at summere

sandsynlighederne for alle risikofaktorer) med RISK_THRESHOLD.

Klassen FraudDetection giver en ren og indkapslet måde at håndtere svigdetektion

for en transaktion. Den tillader tilføjelse af flere risikofaktorer, hver med sin egen

beskrivelse og sandsynlighed, og leverer en metode til at afgøre, om transaktionen

anses for at være høj-risiko baseret på den beregnede svindelsandsynlighed. Klassen

kan nemt integreres i et større svigdetektionssystem, hvor forskellige komponenter kan

samarbejde om at vurdere og reducere risikoen for svigagtige transaktioner.

Endelig, eftersom dette trods alt er en bog om programmering ved hjælp af AI, er her

et eksempel på implementering af klassen CheckCustomerHistory, der udnytter AI-

behandling ved hjælp af mit Raix-biblioteks ChatCompletion-modul:

https://github.com/OlympiaAI/raix-rails

Mangfoldighed af Arbejdere 94

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

Mangfoldighed af Arbejdere 95

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

I dette eksempel definerer CheckCustomerHistory en INSTRUCTION-konstant, der

giver specifikke instruktioner til AI-modellen om, hvordan kundens transaktionshistorik

skal analyseres for potentielle svigindikationer via et systemdirektiv

self.check-metoden er en klassemetode, der initialiserer en ny instans af

CheckCustomerHistory med fraud_detection-objektet og kalder call-metoden

for at udføre analysen af kundehistorikken.

I call-metoden hentes kundens transaktionshistorik og formateres til et transskript,

der sendes til AI-modellen. AI-modellen analyserer transaktionshistorikken baseret på

de givne instruktioner og returnerer et sammendrag af sine fund.

Resultaterne tilføjes til fraud_detection-objektet, og det opdaterede

fraud_detection-objekt returneres som et vellykket Result.

Ved at udnytte ChatCompletion-modulet kan CheckCustomerHistory-klassen

anvende AI’ens kraft til at analysere kundens transaktionshistorik og identificere

potentielle svigindikationer. Dette muliggør mere sofistikerede og tilpasningsdygtige

svigdetektionsteknikker, da AI-modellen kan lære og tilpasse sig nye mønstre og

anomalier over tid.

Den opdaterede FraudDetectionWorker og CheckCustomerHistory-klassen

demonstrerer, hvordan AI-arbejdere kan integreres problemfrit og forbedre

svigdetektionsprocessen med intelligent analyse og beslutningstagningsevner.

Mangfoldighed af Arbejdere 96

Kundesentimentanalyse

Her er endnu et lignende eksempel på, hvordan du kan implementere en

kundesentimentanalyse-worker. Meget mindre forklaring denne gang, da du burde

være ved at forstå, hvordan denne programmeringsstil fungerer:

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

I dette eksempel omfatter trinnene i CustomerSentimentAnalysisWorker

forbehandling af feedback (f.eks. fjernelse af støj, tokenisering), udførelse af

sentimentanalyse for at bestemme den overordnede stemning (positiv, negativ

eller neutral), udtrækning af nøglefraser og emner, identifikation af tendenser og

mønstre samt generering af handlingsorienterede indsigter baseret på analysen.

Mangfoldighed af Arbejdere 97

Sundhedsvæsenets anvendelser

Inden for sundhedssektoren kan AI-arbejdere assistere sundhedspersonale og forskere

med forskellige opgaver, hvilket fører til forbedrede patientresultater og accelererede

medicinske opdagelser. Nogle eksempler omfatter:

Patientmodtagelse

AI-arbejdere kan effektivisere patientmodtagelsesprocessen ved at automatisere

forskellige opgaver og yde intelligent assistance.

Tidsbestilling: AI-arbejdere kan håndtere tidsbestilling ved at forstå patienternes

præferencer, tilgængelighed og deres medicinske behovs hastende karakter. De kan

interagere med patienter gennem samtalebaserede grænseflader, guide dem gennem

bookingprocessen og finde de mest passende tidspunkter baseret på patientens behov

og sundhedspersonalets tilgængelighed.

Indsamling af sygehistorie:Under patientmodtagelsen kan AI-arbejdere hjælpe med at

indsamle og dokumentere patientens sygehistorie. De kan føre interaktive dialoger med

patienter og stille relevante spørgsmål om deres tidligere sygdomme, medicin, allergier

og familiehistorie. AI-arbejderne kan bruge naturlig sprogbehandling til at fortolke og

strukturere de indsamlede oplysninger og sikre, at de registreres nøjagtigt i patientens

elektroniske patientjournal.

Symptomvurdering og stratificering: AI-arbejdere kan udføre indledende

symptomvurderinger ved at spørge patienter om deres aktuelle symptomer,

varighed, sværhedsgrad og eventuelle tilknyttede faktorer. Ved at udnytte medicinske

videnbaser og maskinlæringsmodeller kan disse arbejdere analysere de givne

oplysninger og generere foreløbige differentialdiagnoser eller anbefale passende

næste trin, såsom at planlægge en konsultation hos en sundhedsudbyder eller foreslå

selvhjælpsforanstaltninger.

Mangfoldighed af Arbejdere 98

Forsikringsverifikation: AI-arbejdere kan assistere med forsikringsverifikation

under patientmodtagelsen. De kan indsamle patientens forsikringsoplysninger,

kommunikere med forsikringsselskaber gennem API’er eller webtjenester og verificere

dækningsberettigelse og ydelser. Denne automatisering hjælper med at strømline

forsikringsverifikationsprocessen, reducere den administrative byrde og sikre nøjagtig

informationsregistrering.

Patientuddannelse og instruktioner: AI-arbejdere kan forsyne patienter med

relevant uddannelsesmateriale og instruktioner baseret på deres specifikke medicinske

tilstande eller kommende procedurer. De kan levere personligt tilpasset indhold,

besvare almindelige spørgsmål og give vejledning om forberedelser før konsultation,

medicininstruktioner eller efterbehandlingspleje. Dette hjælper med at holde patienter

informerede og engagerede gennem hele deres sundhedsrejse.

Ved at udnytte AI-arbejdere i patientmodtagelsen kan sundhedsorganisationer øge

effektiviteten, reducere ventetider og forbedre den samlede patientoplevelse. Disse

arbejdere kan håndtere rutineopgaver, indsamle nøjagtige oplysninger og yde personlig

assistance, hvilket giver sundhedspersonalet mulighed for at fokusere på at levere pleje

af høj kvalitet til patienterne.

Patientrisiko-vurdering

AI-arbejdere kan spille en afgørende rolle i vurdering af patientrisiko ved at analysere

forskellige datakilder og anvende avancerede analyseteknikker.

Dataintegration: AI-arbejdere kan indsamle og skabe mening i patientdata

fra flere kilder, såsom elektroniske patientjournaler (EPJ), medicinske billeder,

laboratorieresultater, wearables og sociale sundhedsdeterminanter. Ved at konsolidere

disse oplysninger til en omfattende patientprofil kan AI-arbejdere give et holistisk

billede af patientens helbredstilstand og risikofaktorer.

Risikostratificering: AI-arbejdere kan bruge prædiktive modeller til at stratificere

patienter i forskellige risikokategorier baseret på deres individuelle karakteristika og

Mangfoldighed af Arbejdere 99

sundhedsdata. Denne risikostratificering gør det muligt for sundhedspersonalet at

prioritere patienter, der kræver mere umiddelbar opmærksomhed eller intervention. For

eksempel kan patienter, der identificeres som højrisiko for en bestemt tilstand, markeres

til tættere overvågning, forebyggende foranstaltninger eller tidlig intervention.

Personlige risikoprofiler: AI-arbejdere kan generere personlige risikoprofiler for hver

patient, der fremhæver de specifikke faktorer, der bidrager til deres risikoscorer. Disse

profiler kan omfatte indsigt i patientens livsstil, genetiske dispositioner, miljømæssige

faktorer og sociale sundhedsdeterminanter. Ved at give en detaljeret nedbrydning

af risikofaktorer kan AI-arbejdere hjælpe sundhedspersonalet med at skræddersy

forebyggelsesstrategier og behandlingsplaner til individuelle patientbehov.

Kontinuerlig risikoovervågning: AI-arbejdere kan kontinuerligt overvåge

patientdata og opdatere risikovurderinger i realtid. Efterhånden som nye

oplysninger bliver tilgængelige, såsom ændringer i vitale tegn, laboratorieresultater

eller medicinefterlevelse, kan AI-arbejdere genberegne risikoscorer og advare

sundhedspersonalet om eventuelle væsentlige ændringer. Denne proaktive overvågning

muliggør rettidige interventioner og justeringer af patientens behandlingsplaner.

Klinisk beslutningsstøtte: AI-arbejdere kan integrere resultater af risikovurderinger

i kliniske beslutningsstøttesystemer og give sundhedspersonalet evidensbaserede

anbefalinger og advarsler. For eksempel, hvis en patients risikoscore for en bestemt

tilstand overstiger en vis tærskel, kan AI-arbejderen opfordre sundhedspersonalet

til at overveje specifikke diagnostiske tests, forebyggende foranstaltninger eller

behandlingsmuligheder baseret på kliniske retningslinjer og best practices.

Disse workers kan behandle store mængder patientdata, anvende avanceret analyse og

generere handlingsorienterede indsigter til støtte for klinisk beslutningstagning. Dette

fører i sidste ende til forbedrede patientresultater, reducerede sundhedsomkostninger og

forbedret befolkningssundhedsstyring.

Mangfoldighed af Arbejdere 100

AI Worker som Processtyring

I forbindelse med AI-drevne applikationer kan en worker designes til at fungere som

en Processtyring, som beskrevet i bogen “Enterprise Integration Patterns” af Gregor

Hohpe. En Processtyring er en central komponent, der opretholder processens tilstand

og bestemmer de næste behandlingstrin baseret på mellemliggende resultater.

Når en AI-worker fungerer som Processtyring, modtager den en indgående besked,

der initialiserer processen, kendt som udløserbeskeden. AI-workeren opretholder

derefter processens udførelsestilstand (som en samtaleudskrift) og håndterer beskeden

gennem en række behandlingstrin implementeret som værktøjsfunktioner, der kan

være sekventielle eller parallelle, og kaldes efter dens skøn.

Hvis du bruger en klasse af AI-model som GPT-4, der ved, hvordan man

udfører funktioner parallelt, kan din worker udføre flere trin samtidigt. Jeg

må indrømme, at jeg ikke selv har prøvet det, og min mavefornemmelse

siger, at resultaterne kan variere.

Mangfoldighed af Arbejdere 101

Efter hvert enkelt behandlingstrin returneres kontrollen tilbage til AI-workeren, hvilket

giver den mulighed for at bestemme de(t) næste behandlingstrin baseret på den aktuelle

tilstand og de opnåede resultater.

Gem dine udløserbeskeder

Efter min erfaring er det klogt at implementere din udløserbesked som et

databaseunderstøttet objekt. På den måde identificeres hver procesinstans af en

unik primærnøgle og giver dig et sted at gemme den tilstand, der er forbundet med

udførelsen, herunder AI’ens samtaleudskrift.

Her er for eksempel en forenklet version af Olympias AccountChange-modelklasse,

som repræsenterer en anmodning om at foretage en ændring i en brugers konto.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

Mangfoldighed af Arbejdere 102

25

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

Klassen AccountChange fungerer som en udløserbesked, der igangsætter en proces

til håndtering af kontoændringsanmodningen. Bemærk, hvordan den broadcastes til

Olympias Wisper-baserede pub/sub-undersystem efter oprettelsestransaktionen er

færdig med at blive gennemført.

At gemme udløserbeskeden i databasen på denne måde giver en vedvarende registrering

af hver kontoændringsanmodning. Hver instans af klassen AccountChange tildeles

en unik primærnøgle, hvilket muliggør nem identifikation og sporing af individuelle

anmodninger. Dette er særligt nyttigt i forbindelse med revisionslogning, da det gør

det muligt for systemet at opretholde en historisk oversigt over alle kontoændringer,

herunder hvornår de blev anmodet, hvilke ændringer der blev anmodet om, og den

aktuelle status for hver anmodning.

I det givne eksempel indeholder klassen AccountChange felter som description til at

registrere detaljerne for den ønskede ændring, state til at repræsentere anmodningens

aktuelle tilstand (f.eks. anmodet, fuldført, kræver_manuel_gennemgang), og

transcript til at gemme AI’ens samtaleudskrift relateret til anmodningen. Feltet

description er den faktiske prompt, der bruges til at igangsætte den første chat-

færdiggørelse med AI’en. At gemme disse data giver værdifuld kontekst og muliggør

bedre sporing og analyse af kontoændringsprocessen.

https://github.com/krisleech/wisper

Mangfoldighed af Arbejdere 103

At gemme udløserbeskeder i databasen muliggør robust fejlhåndtering og genopretning.

Hvis der opstår en fejl under behandlingen af en kontoændringsanmodning, markerer

systemet anmodningen som fejlet og overfører den til en tilstand, der kræver

menneskelig indgriben. Dette sikrer, at ingen anmodninger går tabt eller bliver glemt,

og at eventuelle problemer kan håndteres og løses korrekt.

AI-workeren fungerer som en Process Manager og giver et centralt kontrolpunkt samt

kraftfulde muligheder for procesrapportering og fejlfinding. Det er dog vigtigt at

bemærke, at brugen af en AI-worker som Process Manager for hvert workflow-scenarie

i din applikation kan være overdrevet.

Integration af AI-Workers I Din

Applikationsarkitektur

Når man integrerer AI-workers i sin applikationsarkitektur, er der flere tekniske

overvejelser, der skal adresseres for at sikre en gnidningsfri integration og effektiv

kommunikation mellem AI-workers og andre applikationskomponenter. Dette afsnit

behandler vigtige aspekter af design af disse grænseflader, håndtering af dataflow og

styring af AI-workers’ livscyklus.

Design af Klare Grænseflader og
Kommunikationsprotokoller

For at facilitere en problemfri integration mellem AI-workers og andre

applikationskomponenter er det afgørende at definere klare grænseflader og

kommunikationsprotokoller. Overvej følgende tilgange:

API-baseret Integration: Eksponér AI-workers’ funktionalitet gennem veldefinerede

API’er, såsom RESTful endpoints eller GraphQL-skemaer. Dette gør det muligt for andre

Mangfoldighed af Arbejdere 104

komponenter at interagere med AI-workers ved hjælp af standard HTTP-anmodninger

og -svar. API-baseret integration giver en klar kontrakt mellem AI-workers og de

forbrugende komponenter, hvilket gør det lettere at udvikle, teste og vedligeholde

integrationspunkterne.

Beskedbaseret Kommunikation: Implementér beskedbaserede kommunikationsmønstre,

såsom beskedkøer eller publish-subscribe-systemer, for at muliggøre asynkron

interaktion mellem AI-workers og andre komponenter. Denne tilgang afkobler AI-

workers fra resten af applikationen, hvilket muliggør bedre skalerbarhed, fejltolerance

og løs kobling. Beskedbaseret kommunikation er særligt nyttig, når behandlingen

udført af AI-workers er tidskrævende eller ressourceintensiv, da det tillader andre dele

af applikationen at fortsætte uden at vente på, at AI-workers færdiggør deres opgaver.

Hændelsesdrevet Arkitektur: Design dit system omkring hændelser og udløsere,

der aktiverer AI-workers, når specifikke betingelser er opfyldt. AI-workers kan

abonnere på relevante hændelser og reagere i overensstemmelse hermed, udføre deres

designerede opgaver når hændelserne opstår. Hændelsesdrevet arkitektur muliggør

realtidsbehandling og tillader AI-workers at blive aktiveret efter behov, hvilket

reducerer unødvendigt ressourceforbrug. Denne tilgang er velegnet til scenarier, hvor

AI-workers skal reagere på specifikke handlinger eller ændringer i applikationens

tilstand.

Håndtering af Dataflow og Synkronisering

Når du integrerer AI-workers i din applikation, er det afgørende at sikre et gnidningsfrit

dataflow og opretholde datakonsistens mellem AI-workers og andre komponenter.

Overvej følgende aspekter:

Dataforberedelse: Før data fødes ind i AI-workers, kan det være nødvendigt at

udføre forskellige dataforberedelsesopgaver, såsom rensning, formatering og/eller

transformation af inputdata. Du vil ikke kun sikre, at AI-workers kan behandle

effektivt, men også sikre, at du ikke spilder tokens ved at give opmærksomhed til

Mangfoldighed af Arbejdere 105

information, som workeren måske anser for ubrugelig i bedste fald og distraherende i

værste fald. Dataforberedelse kan omfatte opgaver som fjernelse af støj, håndtering af

manglende værdier eller konvertering af datatyper.

Datapersistens: Hvordan vil du gemme og bevare de data, der flyder ind og ud af

AI-workers? Overvej faktorer som datavolumen, forespørgselsmønstre og skalerbarhed.

Har du behov for at gemme AI’ens udskrift som en afspejling af dens “tankeproces” til

revisions- eller fejlfindingsformål, eller er det tilstrækkeligt at have en registrering af

resultaterne alene?

Datahentning: At hente de data, som workers har brug for, kan involvere

databaseforespørgsler, læsning fra filer eller adgang til eksterne API’er. Sørg for

at overveje latenstid og hvordan AI-workers vil have adgang til de mest opdaterede

data. Har de brug for fuld adgang til din database, eller bør du definere omfanget af

deres adgang snævert i forhold til deres opgaver? Hvadmed skalering? Overvej caching-

mekanismer for at forbedre ydeevnen og reducere belastningen på de underliggende

datakilder.

Datasynkronisering: Når flere komponenter, herunder AI-workers, tilgår og ændrer

delte data, er det vigtigt at implementere passende synkroniseringsmekanismer for

at opretholde datakonsistens. Databaselåsningsstrategier, såsom optimistisk eller

pessimistisk låsning, kan hjælpe dig med at forhindre konflikter og sikre dataintegritet.

Implementer transaktionsstyringsteknikker for at gruppere relaterede dataoperationer

og opretholde ACID-egenskaberne (atomaritet, konsistens, isolation og holdbarhed)

Fejlhåndtering og Genopretning: Implementer robuste fejlhåndterings- og

genopretningsmekanismer til at håndtere datarelaterede problemer, der kan opstå under

dataflowprocessen. Håndter undtagelser elegant og giv meningsfulde fejlmeddelelser

til hjælp ved fejlfinding. Implementer gentagelsesmekanismer og fallback-strategier til

at håndtere midlertidige fejl eller netværksforstyrrelser. Definer klare procedurer for

datagenopretning og -gendannelse i tilfælde af datakorruption eller -tab.

Ved omhyggelig design og implementering af dataflow- og synkroniseringsmekanismer

Mangfoldighed af Arbejdere 106

kan du sikre, at dine AI-workers har adgang til præcise, konsistente og opdaterede

data. Dette gør dem i stand til at udføre deres opgaver effektivt og producere pålidelige

resultater.

Håndtering af AI-Workers’ Livscyklus

Udvikl en standardiseret proces til initialisering og konfiguration af AI-workers. Jeg

foretrækker frameworks, der standardiserer, hvordan du definerer indstillinger

såsom modelnavne, systemdirektiver og funktionsdefinitioner. Sørg for, at

initialiseringsprocessen er automatiseret og reproducerbar for at lette implementering

og skalering.

Implementer omfattende overvågnings- og logningsmekanismer til at spore AI-workers’

sundhed og ydeevne. Indsaml målinger såsom ressourceforbrug, behandlingstid,

fejlrater og gennemløb. Brug centraliserede logningssystemer som ELK-stack

(Elasticsearch, Logstash, Kibana) til at aggregere og analysere logs fra flere AI-

workers.

Byg fejltolerance og robusthed ind i AI-worker-arkitekturen. Implementer

fejlhåndterings- og genopretningsmekanismer til elegant at håndtere fejl eller

undtagelser. Store Sprogmodeller er stadig cutting-edge teknologi; udbydere har

tendens til ofte at gå ned på uventede tidspunkter. Brug gentagelsesmekanismer og

kredsløbsafbrydere for at forhindre kaskaderende fejl.

Sammensættelighed og Orkestrering af

AI-Workers

En af de vigtigste fordele ved AI-worker-arkitekturen er dens sammensættelighed,

som gør det muligt at kombinere og orkestrere flere AI-workers til at løse komplekse

problemer. Ved at nedbryde en større opgave i mindre, mere håndterbare delopgaver,

Mangfoldighed af Arbejdere 107

der hver håndteres af en specialiseret AI-worker, kan du skabe kraftfulde og fleksible

systemer. I dette afsnit vil vi udforske forskellige tilgange til at sammensætte og

orkestrere “en mangfoldighed” af AI-workers.

Sammenkædning af AI-Workers til Flertrinsprocedurer

I mange scenarier kan en kompleks opgave nedbrydes i en serie af sekventielle trin, hvor

outputtet fra én AI-worker bliver inputtet for den næste. Denne sammenkædning af AI-

workers skaber en flertrinsprocedure eller pipeline. Hver AI-worker i kæden fokuserer

på en specifik delopgave, og det endelige output er resultatet af den kombinerede indsats

fra alle workers.

Lad os betragte et eksempel i konteksten af en Ruby on Rails-applikation til behandling

af brugergenereret indhold. Arbejdsgangen involverer følgende trin, som indrømmet

sandsynligvis hver især er for simple til at være værd at nedbryde på denne måde i

virkelige anvendelser, men de gør eksemplet lettere at forstå:

1. Tekstrensning: En AI-worker ansvarlig for at fjerne HTML-tags, konvertere tekst til

små bogstaver og håndtere Unicode-normalisering.

2. Sprogdetektering: En AI-worker der identificerer sproget i den rensede tekst.

3. Sentimentanalyse: En AI-worker der bestemmer sentimentet (positiv, negativ eller

neutral) i teksten baseret på det detekterede sprog.

4. Indholdskateogorisering: En AI-worker der klassificerer teksten i foruddefinerede

kategorier ved hjælp af naturlig sprogbehandlingsteknikker.

Her er et meget forenklet eksempel på, hvordan du kan sammenkæde disse AI-workers

ved hjælp af Ruby:

Mangfoldighed af Arbejdere 108

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

I dette eksempel initialiserer ContentProcessor-klassen med råteksten og kæder AI-

arbejderne sammen i process-metoden. Hver AI-arbejder udfører sin specifikke opgave

og sender resultatet videre til den næste arbejder i kæden. Det endelige output er et hash,

der indeholder den rensede tekst, det detekterede sprog, sentiment og indholdskategori.

Parallel behandling for uafhængige AI-arbejdere

I det foregående eksempel er AI-arbejderne kædet sekventielt sammen, hvor hver

arbejder behandler teksten og sender resultatet videre til den næste arbejder. Men hvis

du har flere AI-arbejdere, der kan operere uafhængigt på samme input, kan du optimere

arbejdsgangen ved at behandle dem parallelt.

I det givne scenarie kan LanguageDetectionWorker, SentimentAnalysisWorker

og CategorizationWorker alle behandle den rensede tekst uafhængigt, når

tekstrensningen er udført af TextCleanupWorker. Ved at køre disse arbejdere parallelt

kan du potentielt reducere den samlede behandlingstid og forbedre effektiviteten af din

arbejdsgang.

For at opnå parallel behandling i Ruby kan du udnytte samtidighedsteknikker såsom

tråde eller asynkron programmering. Her er et eksempel på, hvordan du kan modificere

Mangfoldighed af Arbejdere 109

ContentProcessor-klassen til at behandle de sidste tre arbejdere parallelt ved hjælp

af tråde:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

I denne optimerede version bruger vi concurrent-ruby-biblioteket til at oprette

Concurrent::Future-objekter for hver af de uafhængige AI-arbejdere. En Future

repræsenterer en beregning, der vil blive udført asynkront i en separat tråd.

Efter tekstrensnings-trinnet opretter vi tre Future-objekter: language_future,

sentiment_future og category_future. Hver Future udfører sin tilsvarende

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mangfoldighed af Arbejdere 110

AI-arbejder (LanguageDetectionWorker, SentimentAnalysisWorker og

CategorizationWorker) i en separat tråd og sender cleaned_text som input.

Ved at kalde value-metoden på hver Future, venter vi på at beregningen færdiggøres

og henter resultatet. value-metoden blokerer indtil resultatet er tilgængeligt, hvilket

sikrer at alle parallelle arbejdere har afsluttet deres behandling før vi fortsætter.

Til sidst konstruerer vi output-hashen med den rensede tekst og resultaterne fra de

parallelle arbejdere, præcis som i det oprindelige eksempel.

Ved at behandle de uafhængige AI-arbejdere parallelt kan du potentielt reducere den

samlede behandlingstid sammenlignet med at køre dem sekventielt. Denne optimering

er særligt fordelagtig når der arbejdes med tidskrævende opgaver eller ved behandling

af store datamængder.

Det er dog vigtigt at bemærke, at de faktiske ydelsesforbedringer afhænger af forskellige

faktorer, såsom kompleksiteten af hver arbejder, de tilgængelige systemressourcer og

overhead fra trådhåndtering. Det er altid god praksis at lave benchmark og profilering

af din kode for at bestemme det optimale niveau af parallelisme for dit specifikke

anvendelsestilfælde.

Derudover skal du, når du implementerer parallel behandling, være opmærksom

på eventuelle delte ressourcer eller afhængigheder mellem arbejderne. Sørg for at

arbejderne kan operere uafhængigt uden konflikter eller kapløbstilstande. Hvis der er

afhængigheder eller delte ressourcer, kan du blive nødt til at implementere passende

synkroniseringsmekanismer for at opretholde dataintegritet og undgå problemer som

deadlocks eller inkonsistente resultater.

Rubys Global Interpreter Lock og Asynkron
Behandling

Mangfoldighed af Arbejdere 111

Det er vigtigt at forstå implikationerne af Rubys Global Interpreter Lock (GIL) når

man overvejer asynkron trådbaseret behandling i Ruby.

GIL’en er en mekanisme i Rubys fortolker, der sikrer at kun én tråd kan udføre Ruby-

kode ad gangen, selv på multicore-processorer. Dette betyder, at selvom flere tråde

kan oprettes og håndteres inden for en Ruby-proces, kan kun én tråd aktivt udføre

Ruby-kode på et givet tidspunkt.

GIL’en er designet til at forenkle implementeringen af Ruby-fortolkeren og give

trådsikkerhed for Rubys interne datastrukturer. Den begrænser dog også muligheden

for ægte parallel udførelse af Ruby-kode.

Når du bruger tråde i Ruby, såsom med concurrent-ruby-biblioteket eller den

indbyggede Thread-klasse, er trådene underlagt GIL’ens begrænsninger. GIL’en

tillader hver tråd at udføre Ruby-kode i en kort tidsperiode, før den skifter til en

anden tråd, hvilket skaber illusionen af samtidig udførelse.

På grund af GIL’en forbliver den faktiske udførelse af Ruby-kode dog sekventiel. Mens

én tråd udfører Ruby-kode, er andre tråde i praksis sat på pause, ventende på deres

tur til at erhverve GIL’en og udføre kode.

Dette betyder, at trådbaseret asynkron behandling i Ruby er mest effektiv for I/O-

bundne opgaver, såsom at vente på svar fra eksterne API’er (som f.eks. eksternt

hostede store sprogmodeller) eller udføre fil-I/O-operationer. Når en tråd møder en

I/O-operation, kan den frigive GIL’en, hvilket tillader andre tråde at udføre kodemens

der ventes på at I/O’en færdiggøres.

På den anden side kan GIL’en for CPU-bundne opgaver, såsom intensive beregninger

eller langvarig AI-arbejder-behandling, begrænse de potentielle ydelsesgevinster ved

trådbaseret parallelisme. Siden kun én tråd kan udføre Ruby-kode ad gangen, vil

den samlede udførelsestid måske ikke blive væsentligt reduceret sammenlignet med

sekventiel behandling.

For at opnå ægte parallel udførelse af CPU-bundne opgaver i Ruby kan du blive nødt

til at udforske alternative tilgange, såsom:

Mangfoldighed af Arbejdere 112

• Brug af procesbaseret parallelisme med flere Ruby-processer, der hver kører

på en separat CPU-kerne.

• Udnyttelse af eksterne biblioteker eller frameworks, der tilbyder native

udvidelser eller grænseflader til sprog uden en GIL, såsom C eller Rust.,

• Anvendelse af distribuerede beregningsframeworks eller meddelelseskøer til

at fordele opgaver på tværs af flere maskiner eller processer.

Det er afgørende at overveje karakteren af dine opgaver og de begrænsninger, som

GIL’en pålægger, når du designer og implementerer asynkron behandling i Ruby.

Mens trådbaseret asynkron behandling kan give fordele for I/O-bundne opgaver,

tilbyder den måske ikke væsentlige ydelsesforbedringer for CPU-bundne opgaver på

grund af GIL’ens begrænsninger.

Ensemble-teknikker for Forbedret Nøjagtighed

Ensemble-teknikker involverer kombinationen af output fra flere AI-arbejdere for at

forbedre systemets overordnede nøjagtighed eller robusthed. I stedet for at stole på

en enkelt AI-arbejder, udnytter ensemble-teknikker den kollektive intelligens fra flere

arbejdere til at træffe mere informerede beslutninger.

Ensembler er særligt vigtige, hvis forskellige dele af din arbejdsgang fungerer

bedst med forskellige AI-modeller, hvilket er mere almindeligt, end du

måske tror. Kraftfulde modeller som GPT-4 er ekstremt dyre sammenlignet

med mindre avancerede open source-alternativer og er sandsynligvis ikke

nødvendige for hvert eneste arbejdstrin i din applikation.

En almindelig ensemble-teknik er flertalsafstemning, hvor flere AI-arbejdere

uafhængigt behandler det samme input, og det endelige output bestemmes af

Mangfoldighed af Arbejdere 113

flertallets konsensus. Denne tilgang kan hjælpe med at reducere påvirkningen af

individuelle arbejderfejl og forbedre systemets generelle pålidelighed.

Lad os se på et eksempel, hvor vi har tre AI-arbejdere til sentimentanalyse, der hver

især bruger en forskellig model eller er udstyret med forskellige kontekster. Vi kan

kombinere deres output ved hjælp af flertalsafstemning for at bestemme den endelige

sentimentforudsigelse.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

I dette eksempel initialiserer klassen SentimentAnalysisEnsemble. med teksten og

aktiverer tre forskellige AI-arbejdere til sentimentanalyse. Metoden analyze indsamler

forudsigelserne fra hver arbejder og bestemmer det dominerende sentiment ved hjælp

af metoderne group_by og max_by. Det endelige output er det sentiment, der modtager

flest stemmer fra ensemblet af arbejdere

Ensembler er helt klart et tilfælde, hvor det kan være værd at eksperimentere

med parallelisme.

Mangfoldighed af Arbejdere 114

Dynamisk udvælgelse og aktivering af AI-arbejdere

I nogle, hvis ikke de fleste tilfælde, kan den specifikke AI-arbejder, der skal aktiveres,

afhænge af kørselstidsbetingelser eller brugerinput. Dynamisk udvælgelse og aktivering

af AI-arbejdere giver fleksibilitet og tilpasningsevne i systemet.

Du kan måske blive fristet til at forsøge at passe meget funktionalitet ind i en

enkelt AI-arbejder ved at give den mange funktioner og en stor kompliceret

prompt, der forklarer, hvordan man bruger dem. Modstå fristelsen, stol på

mig. En af grundene til, at den tilgang, vi diskuterer i dette kapitel, kaldes

“Mangfoldighed af Arbejdere”, er for at minde os om, at det er ønskværdigt

at have mange specialiserede arbejdere, der hver især udfører deres egen lille

opgave i den større sags tjeneste.

For eksempel kan man overveje en chatbot-applikation, hvor forskellige AI-arbejdere er

ansvarlige for at håndtere forskellige typer af brugerforespørgsler. Baseret på brugerens

input vælger applikationen dynamisk den passende AI-arbejder til at behandle

forespørgslen.

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

Mangfoldighed af Arbejdere 115

17 render json: { response: response }

18 end

19 end

I dette eksempel modtager ChatbotController en brugerforespørgsel gennem

process_query-handlingen. Den bruger først en QueryClassifierWorker til at

bestemme forespørgslens type. Baseret på den klassificerede forespørgselstype vælger

controlleren dynamisk den passende AI-worker til at generere svaret. Denne dynamiske

udvælgelse gør det muligt for chatbotten at håndtere forskellige typer forespørgsler og

dirigere dem til de relevante AI-workers.

Da arbejdet med QueryClassifierWorker er relativt enkelt og

ikke kræver meget kontekst eller funktionsdefinitioner, kan du

sandsynligvis implementere det ved hjælp af en ultrahurtig lille LLM

som mistralai/mixtral-8x7b-instruct:nitro. Den har kapaciteter,

der kommer tæt på GPT-4-niveau på mange opgaver, og på tidspunktet

hvor jeg skriver dette, kan Groq levere den med en imponerende hastighed

på 444 tokens i sekundet.

Kombination af Traditionel NLP med LLM’er

Mens Store Sprogmodeller (LLM’er) har revolutioneret området inden for naturlig

sprogbehandling (NLP), og tilbyder uovertruffen alsidighed og ydeevne på tværs af

en bred vifte af opgaver, er de ikke altid den mest effektive eller omkostningseffektive

løsning på ethvert problem. I mange tilfælde kan kombinationen af traditionelle NLP-

teknikker med LLM’er føre til mere optimerede, målrettede og økonomiske tilgange til

at løse specifikke NLP-udfordringer.

Tænk på LLM’er som schweizerknive inden for NLP - utroligt alsidige og kraftfulde,

men ikke nødvendigvis det bedste værktøj til enhver opgave. Nogle gange kan

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mangfoldighed af Arbejdere 116

et dedikeret værktøj som en proptrækker eller en dåseåbner være mere effektivt

til en specifik opgave. På samme måde kan traditionelle NLP-teknikker, såsom

dokumentklyngedannelse, emneidentifikation og klassificering, ofte give mere

målrettede og omkostningseffektive løsninger til visse aspekter af din NLP-pipeline.

En af de vigtigste fordele ved traditionelle NLP-teknikker er deres beregningsmæssige

effektivitet. Disse metoder, som ofte er baseret på enklere statistiske modeller eller

regelbaserede tilgange, kan behandle store mængder tekstdata meget hurtigere

og med mindre beregningsoverhead sammenlignet med LLM’er. Dette gør dem

særligt velegnede til opgaver, der involverer analyse og organisering af store

dokumentsamlinger, såsom klyngedannelse af lignende artikler eller identifikation af

nøgleemner inden for en samling af tekster.

Desuden kan traditionelle NLP-teknikker ofte opnå høj nøjagtighed og præcision for

specifikke opgaver, især når de trænes på domænespecifikke datasæt. For eksempel kan

en velindstillet dokumentklassifikator, der bruger traditionelle maskinlæringsalgoritmer

som Support VectorMachines (SVM) eller Naive Bayes, præcist kategorisere dokumenter

i foruddefinerede kategorier med minimal beregningsomkostning.

LLM’er skinner dog virkelig igennem, når det kommer til opgaver, der kræver en

dybere forståelse af sprog, kontekst og ræsonnement. Deres evne til at generere

sammenhængende og kontekstuelt relevant tekst, besvare spørgsmål og opsummere

lange passager er uovertruffen af traditionelle NLP-metoder. LLM’er kan effektivt

håndtere komplekse sproglige fænomener, såsom tvetydighed, koreference og

idiomatiske udtryk, hvilket gør dem uvurderlige til opgaver, der kræver naturlig

sproggenerering eller forståelse.

Den virkelige styrke ligger i at kombinere traditionelle NLP-teknikker med LLM’er

for at skabe hybride tilgange, der udnytter styrkerne ved begge. Ved at bruge

traditionelle NLP-metoder til opgaver som dokumentforbehandling, klyngedannelse

og emneekstraktion kan du effektivt organisere og strukturere dine tekstdata. Denne

strukturerede information kan derefter fødes ind i LLM’er til mere avancerede opgaver,

Mangfoldighed af Arbejdere 117

såsom generering af sammendrag, besvarelse af spørgsmål eller oprettelse af omfattende

rapporter.

Lad os for eksempel overveje et anvendelsestilfælde, hvor du ønsker at generere en

tendensrapport for et specifikt domæne baseret på et stort korpus af individuelle

tendensdokumenter. I stedet for udelukkende at stole på LLM’er, som kan være

beregningsmæssigt dyre og tidskrævende til behandling af store mængder tekst, kan

du anvende en hybrid tilgang:

1. Brug traditionelle NLP-teknikker, såsom emnemodellering (f.eks. Latent Dirichlet

Allocation) eller klyngedannelsesalgoritmer (f.eks. K-means), til at gruppere

lignende tendensdokumenter sammen og identificere nøgletemaer og emner

inden for korpusset.

2. Før de grupperede dokumenter og identificerede emner ind i en LLM, og

udnyt dens overlegne sprogforståelse og genererende egenskaber til at skabe

sammenhængende og informative sammendrag for hver klynge eller emne.

3. Brug endelig LLM’en til at generere en omfattende tendensrapport ved at

kombinere de individuelle sammendrag, fremhæve de mest betydningsfulde

tendenser og give indsigt og anbefalinger baseret på den samlede information.

Ved at kombinere traditionelle NLP-teknikker med LLM’er på denne måde kan du

effektivt behandle store mængder tekstdata, udtrække meningsfuld indsigt og generere

rapporter af høj kvalitet, samtidig med at du optimerer beregningsressourcer og

omkostninger.

Når du går i gang med dine NLP-projekter, er det afgørende at evaluere de specifikke

krav og begrænsninger for hver opgave grundigt og overveje, hvordan traditionelle

NLP-metoder og LLM’er kan udnyttes sammen for at opnå de bedste resultater. Ved

at kombinere effektiviteten og præcisionen fra traditionelle teknikker med alsidigheden

og styrken fra LLM’er kan du skabe yderst effektive og økonomiske NLP-løsninger, der

skaber værdi for dine brugere og interessenter.

Brug af værktøjer

Inden for AI-drevet applikationsudvikling er konceptet “værktøjsbrug” eller

“funktionskald” blevet en kraftfuld teknik, der gør det muligt for din LLM at

forbinde sig til eksterne værktøjer, API’er, funktioner, databaser og andre ressourcer.

Denne tilgang muliggør et rigere sæt af adfærdsmønstre end blot at outputte tekst

og mere dynamiske interaktioner mellem dine AI-komponenter og resten af din

applikations økosystem. Som vi vil undersøge i dette kapitel, giver værktøjsbrug dig

også muligheden for at få din AI-model til at generere data på strukturerede måder.

Hvad er værktøjsbrug?

Værktøjsbrug, også kendt som funktionskald, er en teknik, der gør det muligt for

udviklere at specificere en liste af funktioner, som en LLM kan interagere med under

genereringsprocessen. Disse værktøjer kan variere fra simple hjælpefunktioner til

Brug af værktøjer 119

komplekse API’er eller databaseforespørgsler. Ved at give LLM’en adgang til disse

værktøjer kan udviklere udvide modellens muligheder og gøre den i stand til at udføre

opgaver, der kræver ekstern viden eller handlinger.

Figur 8. Eksempel på en funktionsdefinition for en AI-medarbejder, der analyserer dokumenter

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Hovedidéen bag værktøjsanvendelse er at give LLM’en mulighed for dynamisk at vælge

og udføre de relevante værktøjer baseret på brugerens input eller den aktuelle opgave.

I stedet for udelukkende at være afhængig af modellens forudtrænede viden, giver

værktøjsanvendelse LLM’en mulighed for at udnytte eksterne ressourcer til at generere

mere præcise, relevante og handlingsorienterede svar. Værktøjsanvendelse gør teknikker

Brug af værktøjer 120

somRAG (Retrieval AugmentedGeneration)meget lettere at implementere, end de ellers

ville være.

Bemærk, at medmindre andet er angivet, antager denne bog, at din AI-model ikke

har adgang til indbyggede serverside-værktøjer. Alle værktøjer, du ønsker at stille

til rådighed for din AI, skal eksplicit erklæres af dig i hver API-anmodning, med

bestemmelser for deres udførelse, hvis og når din AI fortæller dig, at den ønsker at

bruge det pågældende værktøj i sit svar.

Potentialet i Værktøjsanvendelse

Værktøjsanvendelse åbner op for en bred vifte af muligheder for AI-drevne

applikationer. Her er nogle eksempler på, hvad der kan opnås med værktøjsanvendelse:

1. Chatbots og Virtuelle Assistenter: Ved at forbinde en LLM til eksterne værktøjer

kan chatbots og virtuelle assistenter udføre mere komplekse opgaver, såsom at

hente information fra databaser, udføre API-kald eller interagere med andre

systemer. For eksempel kunne en chatbot bruge et CRM-værktøj til at ændre status

på en handel baseret på brugerens anmodning.

2. Dataanalyse og Indsigter: LLM’er kan forbindes til dataanalyseværktøjer eller

biblioteker for at udføre avancerede databehandlingsopgaver. Dette gør det muligt

for applikationer at generere indsigter, udføre komparative analyser eller give

datadrevne anbefalinger baseret på brugerforespørgsler.

3. Søgning og Informationshentning: Værktøjsanvendelse giver LLM’er

mulighed for at interagere med søgemaskiner, vektordatabaser eller andre

informationshentningssystemer. Ved at omdanne brugerforespørgsler til

søgeforespørgsler kan LLM’en hente relevant information fra flere kilder og give

omfattende svar på brugerspørgsmål.

Brug af værktøjer 121

4. Integration med Eksterne Tjenester: Værktøjsanvendelse muliggør problemfri

integration mellem AI-drevne applikationer og eksterne tjenester eller API’er.

For eksempel kunne en LLM interagere med et vejr-API for at give realtids

vejropdateringer eller et oversættelses-API for at generere flersprogede svar.

Arbejdsgangen for Værktøjsanvendelse

Arbejdsgangen for værktøjsanvendelse involverer typisk fire hovedtrin:

1. Inkluder funktionsdefinitioner i din anmodningskontekst

2. Dynamisk (eller eksplicit) værktøjsvalg

3. Udførelse af funktion(er)

4. Valgfri fortsættelse af den oprindelige prompt

Lad os gennemgå hvert af disse trin i detaljer.

Inkluder funktionsdefinitioner i din anmodningskontekst

AI’en ved, hvilke værktøjer den har til rådighed, fordi du giver den en liste som en del

af din completion-anmodning (typisk defineret som funktioner ved hjælp af en variant

af JSON-skema).

Den præcise syntaks for værktøjsdefinition er modelspecifik.

Sådan definerer du en get_weather-funktion i Claude 3:

Brug af værktøjer 122

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

Og sådan definerer du den samme funktion for GPT-4, hvor du sender den som værdi

til tools-parameteren:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Brug af værktøjer 123

18 },

19 }

Næsten det samme, bortset fra at det er anderledes uden nogen åbenlys grund! Hvor

irriterende.

Funktionsdefinitioner angiver navn, beskrivelse og inputparametre. Inputparametre kan

defineres yderligere ved hjælp af attributter såsom enums til at begrænse de acceptable

værdier og ved at specificere, om en parameter er påkrævet eller ej.

Ud over de egentlige funktionsdefinitioner kan du også inkludere instruktioner eller

kontekst for, hvorfor og hvordan funktionen skal bruges i systemdirektivet.

For eksempel indeholder mit Websøgningsværktøj i Olympia dette systemdirektiv, som

minder AI’en om, at den har de nævnte værktøjer til rådighed:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

At give detaljerede beskrivelser anses for at være den vigtigste faktor for værktøjets

ydeevne. Dine beskrivelser bør forklare alle detaljer om værktøjet, herunder:

• Hvad værktøjet gør

• Hvornår det bør bruges (og hvornår det ikke bør)

• Hvad hver parameter betyder, og hvordan den påvirker værktøjets adfærd

• Alle vigtige forbehold eller begrænsninger, der gælder for værktøjets

implementering

Brug af værktøjer 124

Jo mere kontekst du kan give AI’en om dine værktøjer, jo bedre vil den være til at

beslutte hvornår og hvordan de skal bruges. For eksempel anbefaler Anthropic mindst

3-4 sætninger per værktøjsbeskrivelse for deres Claude 3-serie, og flere hvis værktøjet

er komplekst.

Det er ikke nødvendigvis intuitivt, men beskrivelser anses også for at være vigtigere

end eksempler. Selvom du kan inkludere eksempler på, hvordan et værktøj bruges i dets

beskrivelse eller i den medfølgende prompt, er dette mindre vigtigt end at have en klar

og omfattende forklaring af værktøjets formål og parametre. Tilføj kun eksempler, efter

du har udarbejdet beskrivelsen fuldt ud.

Her er et eksempel på en Stripe-lignende API-funktionsspecifikation:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

Brug af værktøjer 125

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

I praksis har nogle modeller problemer med at håndtere indlejrede

funktionsspecifikationer og komplekse output-datatyper som arrays,

dictionaries osv. Men i teorien burde du kunne levere JSON Schema-

specifikationer i vilkårlig dybde!

Dynamisk Værktøjsvalg

Når du udfører en chat-færdiggørelse, der inkluderer værktøjsdefinitioner, vælger

LLM’en dynamisk det mest passende værktøj(er) at bruge og genererer de nødvendige

inputparametre for hvert værktøj.

Brug af værktøjer 126

I praksis er AI’ens evne til at kalde præcis den rigtige funktion og præcis følge din

specifikation for inputs ikke altid pålidelig. At sætte temperature-hyperparameteren helt

ned til 0.0 hjælper meget, men efter min erfaring vil du stadig opleve lejlighedsvise fejl.

Disse fejl omfatter hallucinerede funktionsnavne, fejlnavngivne eller helt manglende

inputparametre. Parametre overføres som JSON, hvilket betyder, at du nogle gange vil

se fejl forårsaget af afkortet, fejlciteret eller på anden måde ødelagt JSON.

Selvhelende Data-mønstre kan hjælpe med at automatisk rette

funktionskald, der går i stykker på grund af syntaksfejl.

Tvunget (også kendt som Eksplicit) Værktøjsvalg

Nogle modeller giver dig mulighed for at tvinge kald af en bestemt funktion som en

parameter i forespørgslen. Ellers er det helt op til AI’ens skøn, om funktionen skal kaldes

eller ej.

Evnen til at tvinge et funktionskald er afgørende i visse scenarier, hvor du ønsker

at sikre, at et specifikt værktøj eller funktion udføres, uanset AI’ens dynamiske

udvælgelsesproces. Der er flere grunde til, at denne funktion er vigtig:

1. Eksplicit Kontrol: Du bruger måske AI’en som en Diskret Komponent eller i et

foruddefineret workflow, der nødvendiggør udførelsen af en bestemt funktion

på et bestemt tidspunkt. Ved at tvinge kaldet kan du garantere, at den ønskede

funktion bliver aktiveret i stedet for at skulle bede AI’en pænt om at gøre det.

2. Fejlfinding og Test: Når man udvikler og tester AI-drevne applikationer, er

muligheden for at tvinge funktionskald uvurderlig til fejlfindingsformål. Ved

eksplicit at udløse specifikke funktioner kan du isolere og teste individuelle

komponenter i din applikation. Dette giver dig mulighed for at verificere

korrektheden af funktionsimplementeringerne, validere inputparametrene og

sikre, at de forventede resultater returneres.

Brug af værktøjer 127

3. Håndtering af Særtilfælde: Der kan være særtilfælde eller exceptionelle

scenarier, hvor AI’ens dynamiske udvælgelsesproces måske ikke vælger at udføre

en funktion, som den burde, og du ved det baseret på eksterne processer. I

sådanne tilfælde giver muligheden for at tvinge et funktionskald dig mulighed

for at håndtere disse situationer eksplicit. Definer regler eller betingelser i din

applikationslogik for at bestemme, hvornår AI’ens skøn skal tilsidesættes.

4. Konsistens og Reproducerbarhed: Hvis du har en specifik sekvens af funktioner,

der skal udføres i en bestemt rækkefølge, garanterer tvungne kald, at den samme

sekvens følges hver gang. Dette er særligt vigtigt i applikationer, hvor konsistens

og forudsigelig adfærd er kritisk, såsom i finansielle systemer eller videnskabelige

simuleringer.

5. Ydelseoptimering: I nogle tilfælde kan tvungne funktionskald føre til

ydelseoptimeringer. Hvis du ved, at en specifik funktion er påkrævet til en

bestemt opgave, og at AI’ens dynamiske udvælgelsesproces måske introducerer

unødvendig overhead, kan du omgå udvælgelsesprocessen og direkte aktivere

den påkrævede funktion. Dette kan hjælpe med at reducere latenstid og forbedre

den overordnede effektivitet af din applikation.

Kort sagt giver muligheden for at tvinge funktionskald i AI-drevne applikationer

eksplicit kontrol, hjælper med fejlfinding og test, håndterer særtilfælde og sikrer

konsistens og reproducerbarhed. Det er et kraftfuldt værktøj i dit arsenal, men vi bliver

nødt til at diskutere endnu et aspekt af denne vigtige funktion.

I mange beslutningstagningsscenarier ønsker vi altid, at modellen foretager

et funktionskald og måske aldrig ønsker, at modellen svarer kun med sin

interne viden. For eksempel, hvis du router mellem flere modeller, der er

specialiseret i forskellige opgaver (flersproget input, matematik osv.), kan

du bruge den funktionskaldende model til at delegere forespørgsler til en af

hjælpemodellerne og aldrig svare selvstændigt.

Brug af værktøjer 128

Værktøjsvalgparameter

GPT-4 og andre sprogmodeller, der understøtter funktionskald, giver dig en tool_-

choice-parameter til at kontrollere, om værktøjsbrug er påkrævet som en del af en

færdiggørelse. Denne parameter har tre mulige værdier:

• auto giver AI’en fuld frihed til at bruge et værktøj eller blot svare

• required fortæller AI’en, at den skal kalde et værktøj i stedet for at svare, men

overlader valget af værktøjet til AI’en

• Den tredje mulighed er at indstille parameteren til name_of_function, som du

ønsker at tvinge. Mere om det i næste afsnit.

Bemærk, at hvis du sætter tool choice til required, vil modellen blive

tvunget til at vælge den mest relevante funktion at kalde blandt de

tilgængelige funktioner, selv hvis ingen af dem rigtig passer til prompten.

På udgivelsestidspunktet kender jeg ikke til nogen model, der vil returnere

et tomt tool_calls svar eller på anden måde lade dig vide, at den ikke

fandt en passende funktion at kalde.

Tvungen Funktionskald for Struktureret Output

Muligheden for at tvinge et funktionskald giver dig en måde at fremtvinge strukturerede

data fra en chat-færdiggørelse i stedet for selv at skulle udtrække det fra dens klartekst-

svar.

Hvorfor er det en stor sag at tvinge funktioner til at få struktureret output? Kort sagt,

fordi udtrækning af strukturerede data fra LLM-output er en pine i nakken. Du kan

gøre dit liv lidt lettere ved at bede om data i XML, men så skal du parse XML. Og

hvad gør du, når den XML mangler, fordi din AI svarede: “Jeg beklager, men jeg kan

Brug af værktøjer 129

ikke generere de data, du har anmodet om, fordi bla, bla, bla…”

Når du bruger værktøjer på denne måde:

• Du bør sandsynligvis definere et enkelt værktøj i din anmodning

• Husk at tvinge brugen af dens funktion ved hjælp af tool_choice-parameteren

• Husk, at modellen vil videregive inputtet til værktøjet, så navnet på værktøjet og

beskrivelsen skal være fra modellens perspektiv, ikke dit.

Dette sidste punkt fortjener et eksempel for klarhedens skyld. Lad os sige, at du beder

AI’en om at lave sentimentanalyse på brugertekst. Funktionens navn ville ikke være

analyze_sentiment, men snarere noget som save_sentiment_analysis. Det er

AI’en, der laver sentimentanalysen, ikke værktøjet. Alt hvad værktøjet gør (set fra AI’ens

perspektiv) er at gemme resultaterne af analysen.

Her er et eksempel på brug af Claude 3 til at optage et resumé af et billede i

velstruktureret JSON, denne gang fra kommandolinjen ved hjælp af curl:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

Brug af værktøjer 130

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

Brug af værktøjer 131

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

75 }

76]

77 }

78]

79 }'

I det givne eksempel bruger vi Claude 3-modellen fra Anthropic til at generere en

struktureret JSON-oversigt af et billede. Sådan fungerer det:

1. Vi definerer et enkelt værktøj ved navn record_summary i request-payloadens

tools-array. Dette værktøj er ansvarligt for at registrere en oversigt over billedet

i velstruktureret JSON.

2. record_summary-værktøjet har et input_schema, der specificerer den

forventede struktur for JSON-outputtet. Det definerer tre egenskaber:

• key_colors: Et array af objekter, der repræsenterer nøglefarverne i billedet.

Hvert farveobjekt har egenskaber for rød-, grøn- og blå-værdier (fra 0.0 til

1.0) og et menneskelæsbart farvenavn i snake_case-format.

• description: En string-egenskab til en kort beskrivelse af billedet,

begrænset til 1-2 sætninger.

Brug af værktøjer 132

• estimated_year: En valgfri integer-egenskab for det estimerede år, billedet

blev taget, hvis det ser ud til at være et ikke-fiktivt foto.

3. I messages-arrayet leverer vi billeddata som en base64-kodet streng sammenmed

mediatypen. Dette gør det muligt for modellen at behandle billedet som en del af

inputtet.

4. Vi beder også Claude om at bruge record_summary-værktøjet til at beskrive

billedet.

5. Når anmodningen sendes til Claude 3-modellen, analyserer den billedet og

genererer en JSON-oversigt baseret på det specificerede input_schema.

Modellen udtrækker nøglefarverne, giver en kort beskrivelse og estimerer året,

billedet blev taget (hvis relevant).

6. Den genererede JSON-oversigt sendes som parametre til record_summary-

værktøjet og giver en struktureret repræsentation af billedets væsentlige

karakteristika.

Ved at bruge record_summary-værktøjet med et veldefineret input_schema kan vi

opnå en struktureret JSON-oversigt af et billede uden at være afhængige af almindelig

tekstudtrækning. Denne tilgang sikrer, at outputtet følger et konsistent format og nemt

kan analyseres og behandles af efterfølgende komponenter i applikationen.

Evnen til at fremtvinge et funktionskald og specificere den forventede output-struktur

er en kraftfuld funktion ved værktøjsbrug i AI-drevne applikationer. Det giver udviklere

mere kontrol over det genererede output og forenkler integrationen af AI-genereret data

i applikationens arbejdsgang.

Udførelse af funktion(er)

Du har defineret funktioner og promptet din AI, som besluttede, at den skulle kalde en af

dine funktioner. Nu er det tid for din applikationskode eller dit bibliotek, hvis du bruger

Brug af værktøjer 133

en Ruby gem som raix-rails, til at sende funktionskaldet og dets parametre til den

tilsvarende implementering i din applikationskode.

Din applikationskode bestemmer, hvad der skal gøres med resultaterne af

funktionsudførelsen. Måske involverer det, der skal gøres, en enkelt linje kode i

en lambda, eller måske involverer det at kalde et eksternt API. Måske involverer det

at kalde en anden AI-komponent, eller måske involverer det hundredvis eller endda

tusindvis af kodelinjer i resten af dit system. Det er helt op til dig.

Nogle gange er funktionskaldet slutningen på operationen, men hvis resultaterne

repræsenterer information i en tankerække, der skal fortsættes af AI’en, så skal din

applikationskode indsætte udførelsesresultaterne i chat-transkriptet og lade AI’en

fortsætte behandlingen.

For eksempel, her er en Raix-funktionserklæring brugt af Olympias AccountManager

til at kommunikere med vores klienter som en del af en Intelligent

Arbejdsgangsorkestration for kundeservice.

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Det er måske ikke umiddelbart klart, hvad der sker her, så lad mig bryde det ned.

1. AccountManager-klassen definerer mange funktioner relateret til

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Brug af værktøjer 134

kontohåndtering. Den kan ændre din plan, tilføje og fjerne teammedlemmer

blandt andre ting.

2. Dens instruktioner på øverste niveau fortæller AccountManager, at den skal

underrette kontoejeren om resultaterne af kontoanmodningen ved hjælp af

funktionen notify_account_owner.

3. Den koncise definition af funktionen inkluderer dens:

• navn

• beskrivelse

• parametre message: { type: "string" }

• en blok der skal udføres, når funktionen kaldes

Efter at have opdateret transskriptionen med resultaterne af funktionsblokken, kaldes

chat_completion-metoden igen. Denne metode er ansvarlig for at sende den

opdaterede samtaletranskription tilbage til AI-modellen til videre behandling. Vi

henviser til denne proces som en samtalesløjfe.

Når AI-modellen modtager en ny chatfuldførelsesanmodning med en opdateret

transskription, har den adgang til resultaterne af den tidligere udførte funktion. Den

kan analysere disse resultater, inkorporere dem i sin beslutningsproces og generere det

næste svar eller handling baseret på samtalens samlede kontekst. Den kan vælge at

udføre yderligere funktioner baseret på den opdaterede kontekst, eller den kan generere

et endeligt svar på den oprindelige prompt, hvis den vurderer, at ingen yderligere

funktionskald er nødvendige.

Valgfri fortsættelse af den oprindelige prompt

Når du sender værktøjsresultaterne tilbage til LLM’en og fortsætter behandlingen af den

oprindelige prompt, bruger AI’en disse resultater til enten at kalde yderligere funktioner

eller generere et endeligt tekstsvar.

Brug af værktøjer 135

Nogle modeller som Coheres Command-R kan citere de specifikke

værktøjer, de brugte i deres svar, hvilket giver yderligere gennemsigtighed

og sporbarhed.

Afhængigt af den anvendte model vil resultaterne af funktionskaldet leve i

transskriptionsmeddelelser, der har deres egen særlige rolle, eller blive afspejlet i

en anden syntaks. Men den vigtige del er, at disse data er i transskriptionen, så AI’en

kan tage dem i betragtning, når den beslutter, hvad der skal gøres næst.

En almindelig (og potentielt dyr) fejltilstand er at glemme at tilføje

funktionsresultaterne til transskriptionen, før man fortsætter chatten. Som

resultat vil AI’en blive promptet på stort set samme måde, som den blev, før

den kaldte funktionen første gang. Med andre ord, så vidt AI’en ved, har

den ikke kaldt funktionen endnu. Så den kalder den igen. Og igen. Og igen,

for evigt indtil du afbryder den. Håber din kontekst ikke var for stor, og din

model ikke var for dyr!

Bedste praksis for værktøjsbrug

For at få mest muligt ud af værktøjsbrug, overvej følgende bedste praksis.

Beskrivende definitioner

Giv klare og beskrivende navne og beskrivelser for hvert værktøj og dets inputparametre.

Dette hjælper LLM’en med bedre at forstå formålet og mulighederne for hvert værktøj.

https://openrouter.ai/models/cohere/command-r

Brug af værktøjer 136

Jeg kan fortælle dig fra erfaring, at den almindelige visdom der siger, at “navngivning

er svært” gælder her; jeg har set dramatisk forskellige resultater fra LLM’er bare ved

at ændre navnene på funktioner eller ordlyden af beskrivelser. Nogle gange forbedrer

fjernelse af beskrivelser faktisk ydeevnen.

Behandling af værktøjsresultater

Når du sender værktøjsresultater tilbage til LLM’en, skal du sikre, at de er

velstrukturerede og omfattende. Brug meningsfulde nøgler og værdier til at

repræsentere outputtet fra hvert værktøj. Eksperimenter med forskellige formater

og se hvilke der virker bedst, fra JSON til almindelig tekst.

Resultatfortolkeren adresserer denne udfordring ved at anvende AI til at analysere

resultaterne og givemenneskevenlige forklaringer, sammenfatninger eller hovedpointer.

Fejlhåndtering

Implementer robuste fejlhåndteringsmekanismer til at håndtere tilfælde, hvor LLM’en

kan generere ugyldige eller ikke-understøttede inputparametre for værktøjskald.

Håndter og genopret elegant fra eventuelle fejl, der kan opstå under værktøjsudførelse.

En særdeles god egenskab ved AI’en er, at den forstår fejlmeddelelser! Hvilket betyder,

at hvis du arbejder i en hurtig og beskidt tankegang, kan du simpelthen fange eventuelle

undtagelser genereret i implementeringen af et værktøj og sende det tilbage til AI’en, så

den ved, hvad der skete!

For eksempel, her er en forenklet version af implementeringen af Google-søgning i

Olympia:

Brug af værktøjer 137

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Google-søgninger i Olympia er en totrinsproces. Først udfører du søgningen, derefter

opsummerer du resultaterne. Hvis der opstår en fejl, uanset hvad det er, bliver

fejlmeddelelsen pakket sammen og sendt tilbage til AI’en. Denne teknik er fundamentet

for praktisk talt alle Intelligent Fejlhåndterings-mønstre

Lad os for eksempel sige, at GoogleSearch API-kaldet fejler på grund af en 503

Servicen er ikke tilgængelig-undtagelse. Det bobler op til redningen på øverste niveau,

og beskrivelsen af fejlen sendes tilbage til AI’en som resultatet af funktionskaldet. I stedet

for bare at give brugeren en blank skærm eller teknisk fejl, siger AI’en noget i retning af

“Jeg beklager, men jeg kan ikke få adgang til mine Google-søgefunktioner i øjeblikket.

Jeg kan prøve igen senere, hvis du ønsker det.”

Dette kan måske virke som et smart trick, men overvej en anden type fejl, hvor AI’en

kaldte et eksternt API og havde direkte kontrol over de parametre, der skulle sendes

til API’et. Måske lavede den en fejl i måden, den genererede disse parametre på?

Forudsat at fejlmeddelelsen fra det eksterne API er detaljeret nok, betyder det at sende

fejlmeddelelsen tilbage til den kaldende AI, at den kan genoverveje disse parametre og

prøve igen. Automatisk. Uanset hvad fejlen var.

Tænk nu på, hvad det ville kræve at genskabe den slags robust fejlhåndtering i normal

kode. Det er praktisk talt umuligt.

Brug af værktøjer 138

Iterativ Forbedring

Hvis LLM’en ikke anbefaler de passende værktøjer eller genererer suboptimale svar,

skal du iterere på værktøjsdefinitionerne, beskrivelserne og inputparametrene. Fortsæt

med at forfine og forbedre værktøjsopsætningen baseret på den observerede adfærd og

ønskede resultater.

1. Start med simple værktøjsdefinitioner: Begynd med at definere værktøjer med

klare og koncise navne, beskrivelser og inputparametre. Undgå at overkomplicere

værktøjsopsætningen i starten og fokuser på kernefunktionaliteten. Hvis du

for eksempel ønsker at gemme resultaterne af sentimentanalyse, start med en

grundlæggende definition som:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Test og observer: Når du har de første værktøjsdefinitioner på plads, test dem

med forskellige prompts og observer, hvordan LLM’et interagerer med værktøjet.

Vær opmærksom på kvaliteten og relevansen af de genererede svar. Hvis LLM’et

genererer suboptimale svar, er det tid til at forfine værktøjsdefinitionerne.

3. Forfin beskrivelser: Hvis LLM’et misforstår formålet med et værktøj, så prøv at

forfine værktøjets beskrivelse. Tilføj mere kontekst, eksempler eller præciseringer

Brug af værktøjer 139

for at guide LLM’et i at bruge værktøjet effektivt. For eksempel kan du opdatere

beskrivelsen af sentimentanalyseværktøjet til mere specifikt at adressere den

emotionelle tone i den tekst, der analyseres:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Juster inputparametre: Hvis LLM’en genererer ugyldige eller irrelevante

inputparametre til et værktøj, bør du overveje at justere parameterdefinitionerne.

Tilføj mere specifikke begrænsninger, valideringsregler eller eksempler for at

tydeliggøre det forventede inputformat.

5. Iterer baseret på feedback: Overvåg løbende dine værktøjers ydeevne og

indsaml feedback fra brugere eller interessenter. Brug denne feedback til at

identificere områder, der kan forbedres, og foretag løbende forbedringer af

værktøjsdefinitionerne. Hvis brugerne for eksempel rapporterer, at analysen ikke

håndterer sarkasme særlig godt, kan du tilføje en bemærkning i beskrivelsen:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Ved iterativt at forfine dine værktøjsdefinitioner baseret på observeret adfærd og

feedback kan du gradvist forbedre ydeevnen og effektiviteten af din AI-drevne

applikation. Husk at holde værktøjsdefinitionerne klare, præcise og fokuserede på den

specifikke opgave. Test og valider regelmæssigt værktøjsinteraktionerne for at sikre, at

de stemmer overens med dine ønskede resultater.

Brug af værktøjer 140

Sammensætning og Kædekobling af Værktøjer

Et af de mest kraftfulde aspekter ved værktøjsbrug, som kun er blevet antydet indtil

nu, er muligheden for at sammensætte og kæde flere værktøjer sammen for at udføre

komplekse opgaver. Ved omhyggeligt at designe dine værktøjsdefinitioner og deres

input-/outputformater kan du skabe genbrugelige byggeklodser, der kan kombineres på

forskellige måder.

Lad os se på et eksempel, hvor du bygger en dataanalysepipeline til din AI-drevne

applikation. Du kan have følgende værktøjer:

1. DataRetrieval: Et værktøj, der henter data fra en database eller API baseret på

specificerede kriterier.

2. DataProcessing: Et værktøj, der udfører beregninger, transformationer eller

aggregeringer på de hentede data.

3. DataVisualization: Et værktøj, der præsenterer de behandlede data i et

brugervenligt format, såsom diagrammer eller grafer.

Ved at kæde disse værktøjer sammen kan du skabe en kraftfuld arbejdsgang, der henter

relevante data, behandler dem og præsenterer resultaterne på en meningsfuld måde. Her

er hvordan værktøjsbrugens arbejdsgang kunne se ud:

1. LLM’en modtager en brugerforespørgsel, der beder om indsigt i salgsdata for en

specifik produktkategori.

2. LLM’en vælger DataRetrieval-værktøjet og genererer de passende

inputparametre for at hente de relevante salgsdata fra databasen.

3. De hentede data “videregives” til DataProcessing-værktøjet, som beregner

målinger såsom samlet omsætning, gennemsnitlig salgspris og vækstrate.

4. De behandlede data bliver derefter bearbejdet af DataVisualization-

værktøjet, som skaber et visuelt tiltalende diagram eller graf til at repræsentere

indsigterne, og sender URL’en til diagrammet tilbage til LLM’en.

Brug af værktøjer 141

5. Endelig genererer LLM’en et formateret svar på brugerforespørgslen ved hjælp af

markdown, der inkorporerer de visualiserede data og giver et sammendrag af de

vigtigste resultater.

Ved at sammensætte disse værktøjer kan du skabe en problemfri

dataanalysearbejdsgang, der nemt kan integreres i din applikation. Det smukke

ved denne tilgang er, at hvert værktøj kan udvikles og testes uafhængigt og derefter

kombineres på forskellige måder for at løse forskellige problemer.

For at muliggøre en gnidningsløs sammensætning og kædekobling af værktøjer er det

vigtigt at definere klare input- og outputformater for hvert værktøj.

For eksempel kunne DataRetrieval-værktøjet acceptere parametre såsom

databaseforbindelsesdetaljer, tabelnavn og forespørgselsbetingelser og returnere

resultatsættet som et struktureret JSON-objekt. DataProcessing-værktøjet kan så

forvente dette JSON-objekt som input og producere et transformeret JSON-objekt som

output. Ved at standardisere dataflowet mellem værktøjer kan du sikre kompatibilitet

og genbrugelighed.

Når du designer dit værktøjsøkosystem, så tænk over hvordan forskellige værktøjer

kan kombineres for at adressere almindelige anvendelsestilfælde i din applikation.

Overvej at skabe højniveauværktøjer, der indkapsler almindelige arbejdsgange eller

forretningslogik, hvilket gør det lettere for LLM’en at vælge og bruge dem effektivt.

Husk, at styrken ved værktøjsbrug ligger i den fleksibilitet og modularitet, det giver. Ved

at nedbryde komplekse opgaver i mindre, genbrugelige værktøjer kan du skabe en robust

og tilpasningsdygtig AI-dreven applikation, der kan tackle en bred vifte af udfordringer.

Fremtidige Retninger

Efterhånden som området for AI-dreven applikationsudvikling udvikler sig, kan

vi forvente yderligere fremskridt i værktøjsbrugsfunktionaliteter. Nogle potentielle

fremtidige retninger omfatter:

Brug af værktøjer 142

1. Multi-hop Værktøjsbrug: LLM’er kan muligvis beslutte, hvor mange gange de

skal bruge værktøjer for at generere et tilfredsstillende svar. Dette kunne involvere

flere runder af værktøjsvalg og -udførelse baseret på mellemliggende resultater.

2. Foruddefinerede Værktøjer: AI-platforme kan muligvis tilbyde et sæt

foruddefinerede værktøjer, som udviklere kan udnytte uden videre

tilpasning, såsom Python-fortolkere, websøgningsværktøjer eller almindelige

hjælpefunktioner.

3. Problemfri Integration: Efterhånden som værktøjsbrug bliver mere udbredt,

kan vi forvente bedre integration mellem AI-platforme og populære

udviklingsrammer, hvilket gør det lettere for udviklere at inkorporere

værktøjsbrug i deres applikationer.

Værktøjsbrug er en kraftfuld teknik, der gør det muligt for udviklere at udnytte det

fulde potentiale af LLM’er i AI-drevne applikationer. Ved at forbinde LLM’er til eksterne

værktøjer og ressourcer kan du skabe mere dynamiske, intelligente og kontekstbevidste

systemer, der kan tilpasse sig brugerens behov og levere værdifulde indsigter og

handlinger.

Mens værktøjsbrug tilbyder enorme muligheder, er det vigtigt at være opmærksom på

potentielle udfordringer og overvejelser. Et centralt aspekt er at håndtere kompleksiteten

af værktøjsinteraktioner og sikre stabilitet og pålidelighed i det samlede system. Du

skal håndtere scenarier, hvor værktøjskald kan fejle, returnere uventede resultater

eller have konsekvenser for ydeevnen. Derudover bør du overveje sikkerheds- og

adgangskontrolforanstaltninger for at forhindre uautoriseret eller ondsindet brug af

værktøjer. Korrekt fejlhåndtering, logning og overvågningsmekanismer er afgørende

for at opretholde integriteten og ydeevnen i din AI-drevne applikation.

Når du udforsker mulighederne for værktøjsbrug i dine egne projekter, så husk at

begynde med klare målsætninger, design velstrukturerede værktøjsdefinitioner og

Brug af værktøjer 143

iterer på baggrund af feedback og resultater. Med den rigtige tilgang og tankegang

kan værktøjsbrug låse op for nye niveauer af innovation og værdi i dine AI-drevne

applikationer

Strømbehandling

Streaming af data over HTTP, også kendt som server-sendte begivenheder (SSE), er

en mekanisme, hvor serveren kontinuerligt sender data til klienten, efterhånden som

de bliver tilgængelige, uden at klienten eksplicit skal anmode om det. Da AI’ens svar

genereres trinvist, giver det mening at skabe en responsiv brugeroplevelse ved at vise

AI’ens output, mens det bliver genereret. Og faktisk tilbyder alle AI-udbyder-API’er,

som jeg kender til, streaming-svar som en mulighed i deres færdiggørelsesendpoints.

Grunden til, at dette kapitel optræder her i bogen, lige efter Brug af værktøjer, er på

grund af, hvor kraftfuldt det kan være at kombinere brugen af værktøjer med live AI-

svar til brugerne. Dette muliggør dynamiske og interaktive oplevelser, hvor AI’en kan

behandle brugerinput, udnytte forskellige værktøjer og funktioner efter eget skøn og

derefter give realtidssvar.

For at opnå denne problemfrie interaktion skal du skrive strømhåndterere, der kan

ekspedere AI-aktiverede værktøjsfunktionskald såvel som almindelig tekstoutput til

Strømbehandling 145

slutbrugeren. Behovet for at løkke efter behandling af en værktøjsfunktion tilføjer en

interessant udfordring til opgaven.

Implementering af en ReplyStream

For at demonstrere hvordan strømbehandling kan implementeres, vil dette kapitel dykke

dybt ned i en forenklet version af ReplyStream-klassen, der bruges i Olympia. Instanser

af denne klasse kan sendes som stream-parameteren i AI-klientbiblioteker såsom ruby-

openai og openrouter

Her er hvordan jeg bruger ReplyStream i Olympias PromptSubscriber, som lytter

via Wisper efter oprettelsen af nye brugermeddelelser.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Ud over en context-reference til den prompt-abonnent, der instantierede den, har

ReplyStream-klassen også instansvariabler til at gemme en buffer med modtaget data

samt arrays til at holde styr på funktionsnavne og argumenter, der bliver anvendt under

strømbehandlingen.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Strømbehandling 146

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

initialize-metoden opsætter den initielle tilstand af ReplyStream-instansen ved at

initialisere bufferen, konteksten og andre variabler.

call-metoden er hovedindgangspunktet for behandling af streaming-dataene.

Den tager en chunk af data (repræsenteret som et hash) og en valgfri bytesize-

parameter, som i vores eksempel ikke bliver brugt. Inde i denne metode bruger klassen

mønstergenkendelse til at håndtere forskellige scenarier baseret på strukturen af den

modtagne chunk.

At kalde deep_symbolize_keys på chunken hjælper med at gøre

mønstergenkendelsen mere elegant ved at lade os arbejde med symboler i

stedet for strenge.

Strømbehandling 147

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

Det første mønster, vi matcher efter, er et værktøjskald sammen med dets tilhørende

funktionsnavn. Hvis vi opdager et, lægger vi det i f_name-arrayet. Vi gemmer

funktionsnavne i et indekseret array, fordi modellen er i stand til at udføre parallelle

funktionskald, hvor den sender mere end én funktion til udførelse ad gangen.

Parallel funktionskald er en AI-models evne til at udføre flere funktionskald sammen,

hvilket tillader effekterne og resultaterne af disse funktionskald at blive løst parallelt.

Dette er særligt nyttigt, hvis funktioner tager lang tid, og det reducerer antallet af

forespørgsler til API’et, hvilket igen kan spare et betydeligt token-forbrug.

Dernæst skal vi matche argumenterne, der svarer til funktionskaldene.

Strømbehandling 148

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Ligesom vi håndterede funktionsnavnene, gemmer vi argumenterne i et indekseret

array.

Dernæst holder vi øje med normale brugervendte beskeder, som vil ankomme fra

serveren én token ad gangen og blive tildelt new_content-variablen. Vi skal også holde

øje med finish_reason. Den vil være nil indtil det sidste stykke af output-sekvensen.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Vigtigt er det, at vi tilføjer et mønstergenkendelsesudtryk til at håndtere fejlmeddelelser

sendt af AI-modeludbyderen. I lokale udviklingsmiljøer kaster vi en undtagelse, men i

produktion logger vi fejlen og afslutter.

Strømbehandling 149

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Den afsluttende else-sætning i case vil blive udført, hvis ingen af de foregående mønstre

matchede. Det er blot en sikkerhedsforanstaltning, så vi opdager det, hvis AI-modellen

begynder at sende os ukendte bidder.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Metoden send_to_client er ansvarlig for at sende det bufferede indhold til klienten.

Den kontrollerer, at bufferen ikke er tom, opdaterer bot-beskedens indhold, renderer

bot-beskeden og gemmer indholdet i databasen for at sikre datapersistens.

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Strømbehandling 150

finalize-metoden kaldes, når strømbehandlingen er færdig. Den udfører

funktionskaldene, hvis der er modtaget nogen under strømmen, opdaterer bot-

beskeden med det endelige indhold og andre relevante oplysninger og nulstiller

funktionskaldshistorikken

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Hvis modellen beslutter sig for at kalde en funktion, skal du “afsende” dette

funktionskald (navn og argumenter) på en sådan måde, at det bliver udført, og

function_call og function_result beskeder bliver tilføjet til samtalehistorikken

Ud fra min erfaring er det bedre at håndtere oprettelsen af funktionsbeskeder ét sted i

din kodebase, i stedet for at være afhængig af værktøjsimplementeringerne. Det er ikke

kun mere overskueligt, men har også en meget vigtig praktisk grund: hvis AI-modellen

kalder en funktion, og ikke ser de resulterende kald og resultatbeskeder i historikken,

når du looper, vil den kalde den samme funktion igen. Potentielt i det uendelige. Husk,

at AI’en er fuldstændig tilstandsløs, så medmindre du sender disse funktionskald tilbage

til den, er de aldrig sket.

Strømbehandling 151

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

At rydde funktionskaldsoversigten efter afsendelse er lige så vigtigt som at

sikre, at kaldet og resultaterne ender i dit transskript, så du ikke bare bliver

ved med at kalde de samme funktioner igen og igen hver gang du løber

gennem løjfen.

“Samtalesløjfen”

I PromptSubscriber-klassen bruger vi prompt-metoden fra PromptDeclarations-

modulet til at definere samtalesløjfens opførsel. until-parameteren er sat til -> {

bot_message.complete? }, hvilket betyder, at løjfen vil fortsætte indtil bot_-

message er markeret som færdig.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Men hvornår markeres bot_message som fuldført? Hvis du har glemt det,

så kig tilbage på linje 13 i finalize-metoden.

Lad os gennemgå hele strømbehandlingslogikken.

Strømbehandling 152

1. PromptSubscriber modtager en ny brugerbesked via message_created-

metoden, som aktiveres af Wisper pub/sub-systemet, hver gang slutbrugeren

opretter et nyt prompt.

2. Klassemetoden prompt definerer deklarativt chatfærdiggørelseslogikken

for PromptSubscriber. AI-modellen vil udføre en chatfærdiggørelse med

brugerens beskedindhold, en ny instans af ReplyStream som strømparameter

og den specificerede løkkebetingelse.

3. AI-modellen behandler promptet og begynder at generere et svar. Efterhånden

som svaret strømmes, kaldes call-metoden på ReplyStream-instansen for hver

datadel.

4. Hvis AI-modellen beslutter at kalde en værktøjsfunktion, udtrækkes

funktionsnavnet og argumenterne fra datadelen og gemmes henholdsvis i

f_name- og f_arguments-arrayerne.

5. Hvis AI-modellen genererer brugervendt indhold, bliver det buffereret og sendt

til klienten via send_to_client-metoden.

6. Når strømbehandlingen er færdig, kaldes finalize-metoden. Hvis der blev

kaldt værktøjsfunktioner under strømmen, bliver de ekspederet ved hjælp af

dispatch-metoden i PromptSubscriber.

7. dispatch-metoden tilføjer en function_call-besked til samtaleudskriften,

udfører den tilsvarende værktøjsfunktion og tilføjer en function_result-

besked til udskriften med resultatet af funktionskaldet.

8. Efter ekspedition af værktøjsfunktionerne ryddes funktionskaldshistorikken for at

forhindre dublerede funktionskald i efterfølgende løkker.

9. Hvis der ikke blev kaldt nogen værktøjsfunktioner, opdaterer finalize-metoden

bot_messagemed det endelige indhold, markerer det som fuldført og sender den

opdaterede besked til klienten.

10. Løkkebetingelsen -> { bot_message.complete? } evalueres. Hvis

bot_message ikke er markeret som fuldført, fortsætter løkken, og det oprindelige

prompt indsendes igen med den opdaterede samtaleudskrift.

Strømbehandling 153

11. Trin 3-10 gentages, indtil bot_message er markeret som fuldført, hvilket

indikerer, at AI-modellen har afsluttet genereringen af sit svar, og ingen

yderligere værktøjsfunktioner skal udføres.

Ved at implementere denne samtaleløkke gør du det muligt for AI-modellen at indgå i en

frem-og-tilbage-interaktion med applikationen, udføre værktøjsfunktioner efter behov

og generere brugervendte svar, indtil samtalen når en naturlig afslutning.

Kombinationen af strømbehandling og samtaleløkken muliggør dynamiske og

interaktive AI-drevne oplevelser, hvor AI-modellen kan behandle brugerinput, udnytte

forskellige værktøjer og funktioner og give realtidssvar baseret på den udviklende

samtalekontekst.

Automatisk Fortsættelse

Det er vigtigt at være opmærksom på AI-outputbegrænsninger. De fleste modeller har

et maksimalt antal tokens, de kan generere i et enkelt svar, hvilket bestemmes af max_-

tokens-parameteren. Hvis AI-modellen når denne grænse under generering af et svar,

vil den brat stoppe og indikere, at outputtet blev afkortet.

I streamingsvaret fra AI-platformens API kan du opdage denne situation ved at

undersøge finish_reason-variablen i datadelen. Hvis finish_reason er sat til

"length" (eller en anden nøgleværdi specifik for modellen), betyder det, at modellen

nåede sin maksimale token-grænse under genereringen, og outputtet er blevet afkortet.

En måde at håndtere dette scenarie elegant på og give en problemfri brugeroplevelse

er at implementere en automatisk fortsættelsesmekanisme i din strømbehandlingslogik.

Ved at tilføje et mønstermatch for længderelaterede afslutningsårsager kan du vælge at

løkke og automatisk fortsætte outputtet fra hvor det slap.

Her er et bevidst forenklet eksempel på, hvordan du kan modificere call-metoden i

ReplyStream-klassen for at understøtte automatisk fortsættelse:

Strømbehandling 154

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

I denne modificerede version, når finish_reason indikerer afkortet output, i stedet

for at afslutte strømmen, tilføjer vi et par beskeder til transskriptet uden at afslutte

det, flytter den oprindelige brugervendte svarbesked til “bunden” af transskriptet ved

at opdatere dens created_at-attribut, og lader derefter løkken fortsætte, så AI’en

fortsætter med at generere hvor den slap.

Husk at AI-fuldførelsesendepunktet er tilstandsløst. Det “kender” kun det, du fortæller

Strømbehandling 155

det via transskriptet. I dette tilfælde er måden, hvorpå vi kommunikerer til AI’en, at

den blev afbrudt, ved at tilføje “usynlige” (for slutbrugeren) beskeder til transskriptet.

Husk dog, at dette er et bevidst forenklet eksempel. En rigtig implementering ville have

behov for yderligere transskripthåndtering for at sikre, at vi ikke spildte tokens og/eller

forvirrede AI’en med duplikerede assistentbeskeder i transskriptet.

En rigtig implementering af auto-fortsættelse bør også have såkaldt

“kredsløbsbryder-logik” på plads for at forhindre løbsk løkkekørsel. Årsagen er,

at AI’en med bestemte typer af brugerprompts og lave max_tokens-indstillinger kunne

fortsætte med at loop brugervendt output endeløst.

Husk, at hver løkke kræver en separat forespørgsel, og at hver forespørgsel

forbruger hele dit transskript igen. Du bør helt sikkert overveje afvejningerne

mellem brugeroplevelse og API-forbrug, når du beslutter, om du vil implementere

auto-fortsættelse i din applikation. Auto-fortsættelse kan især være farligt dyrt,

særligt når der bruges premium kommercielle modeller.

Konklusion

Strømbehandling er et kritisk aspekt af at bygge AI-drevne applikationer, der

kombinerer værktøjsanvendelse med live AI-svar. Ved effektivt at håndtere

streamingdata fra AI-platform-API’er kan du levere en problemfri og interaktiv

brugeroplevelse, håndtere store svar, optimere ressourceforbruget og elegant håndtere

fejl.

Den leverede Conversation::ReplyStream-klasse demonstrerer, hvordan

strømbehandling kan implementeres i en Ruby-applikation ved hjælp af

mønstergenkendelse og hændelsesdrevet arkitektur. Ved at forstå og udnytte

Strømbehandling 156

strømbehandlingsteknikker kan du frigøre det fulde potentiale af AI-integration i

dine applikationer og levere kraftfulde og engagerende brugeroplevelser.

Selvhelende data

Selvhelende data er en kraftfuld tilgang til at sikre dataintegritet, konsistens og kvalitet i

applikationer ved at udnyttemulighederne i store sprogmodeller (LLMs). Denne kategori

af mønstre fokuserer på idéen om at bruge AI til automatisk at opdage, diagnosticere og

korrigere dataanomalier, inkonsistens eller fejl, og dermed reducere byrden for udviklere

og opretholde et højt niveau af datapålidelighed.

I kernen anerkender de selvhelende datamønstre, at data er livsblodet i enhver

applikation, og at sikring af deres nøjagtighed og integritet er afgørende for

applikationens korrekte funktion og brugeroplevelse. Dog kan styring og vedligeholdelse

af datakvalitet være en kompleks og tidskrævende opgave, især når applikationer vokser

i størrelse og kompleksitet. Det er her, AI’s kraft kommer i spil.

I de selvhelende datamønstre anvendes AI-workers til kontinuerligt at overvåge og

analysere din applikations data. Disse modeller har evnen til at forstå og fortolke

Selvhelende data 158

mønstre, relationer og anomalier i dataene. Ved at udnytte deres evner inden for

naturlig sprogbehandling og forståelse kan de identificere potentielle problemer eller

inkonsistenser i dataene og træffe passende foranstaltninger for at rette dem.

Processen med selvhelende data involverer typisk flere centrale trin:

1. Dataovervågning: AI-workers overvåger konstant applikationens datastrømme,

databaser eller lagringssystemer for at lede efter tegn på anomalier, inkonsistens

eller fejl. Alternativt kan du aktivere en AI-komponent som reaktion på en

undtagelse.

2. Anomalidetektion: Når et problem opdages, analyserer AI-workeren dataene i

detaljer for at identificere problemets specifikke karakter og omfang. Dette kan

omfatte opdagelse af manglende værdier, inkonsistente formater eller data, der

overtræder foruddefinerede regler eller begrænsninger.

3. Diagnose og korrektion: Når problemet er identificeret, bruger AI-workeren sin

viden og forståelse af datadomænet til at bestemme den passende handlingsplan.

Dette kan involvere automatisk korrektion af data, udfyldning af manglende

værdier eller markering af problemet til menneskelig intervention, hvis

nødvendigt.

4. Kontinuerlig læring (valgfrit, afhængigt af anvendelsestilfælde): Når din AI-

worker møder og løser forskellige dataproblemer, kan den output beskrivelser

af, hvad der skete, og hvordan den reagerede. Disse metadata kan fødes ind

i læringsprocesser, der gør det muligt for dig (og måske den underliggende

model via finjustering) at blive mere effektiv over tid i at identificere og løse

dataanomalier.

Ved automatisk at opdage og korrigere dataproblemer kan du sikre, at din applikation

opererer med data af høj kvalitet og pålidelighed. Dette reducerer risikoen for fejl,

inkonsistens eller datarelaterede fejl, der påvirker applikationens funktionalitet eller

brugeroplevelse.

Selvhelende data 159

Når du har AI-workers til at håndtere opgaven med dataovervågning og -korrektion,

kan du fokusere dine kræfter på andre kritiske aspekter af applikationen. Dette sparer

tid og ressourcer, der ellers ville blive brugt på manuel datarensning og vedligeholdelse.

Faktisk bliver manuel håndtering af datakvalitet stadig mere udfordrende, efterhånden

som dine applikationer vokser i størrelse og kompleksitet. “Selvhelende data”-mønstrene

skalerer effektivt ved at udnytte AI’s kraft til at håndtere store mængder data og opdage

problemer i realtid.

På grund af deres natur kan AI-modeller tilpasse sig ændrede datamønstre,

skemaer eller krav over tid med lille eller ingen overvågning. Så

længe deres direktiver giver tilstrækkelig vejledning, især vedrørende

tilsigtede resultater, kan din applikation muligvis udvikle sig og håndtere

nye datascenarier uden at kræve omfattende manuel intervention eller

kodeændringer.

De selvhelende datamønstre harmonerer godtmed de andre kategorier af mønstre, vi har

diskuteret, såsom “Multitude ofWorkers”. Selvhelende datafunktionalitet kan ses som en

specialiseret type worker, der specifikt fokuserer på at sikre datakvalitet og -integritet.

Denne type worker fungerer sammen med andre AI-workers, hvor hver bidrager til

forskellige aspekter af applikationens funktionalitet.

Implementering af selvhelende datamønstre i praksis kræver omhyggelig design og

integration af AI-modeller i applikationsarkitekturen. På grund af risikoen for datatab og

-korruption bør du definere klare retningslinjer for, hvordan du vil bruge denne teknik.

Du bør også overveje faktorer som ydeevne, skalerbarhed og datasikkerhed.

Praktisk casestudie: Reparation af ødelagt JSON

En af de mest praktiske og bekvemme måder at udnytte selvhelende data på er også

meget simpel at forklare: reparation af ødelagt JSON.

Selvhelende data 160

Denne teknik kan anvendes på den almindelige udfordring med at håndtere

ufuldstændige eller inkonsistente data genereret af LLMs, såsom ødelagt JSON,

og giver en tilgang til automatisk at opdage og korrigere disse problemer.

Hos Olympia støder jeg jævnligt på scenarier, hvor LLM’er genererer JSON-data, som

ikke er fuldstændig valide. Dette kan ske af forskellige årsager, såsom at LLM’en

tilføjer kommentarer før eller efter selve JSON-koden, eller introducerer syntaksfejl som

manglende kommaer eller ikke-escapede dobbelte citationstegn. Disse problemer kan

føre til parsing-fejl og forårsage forstyrrelser i applikationens funktionalitet.

For at løse dette problem har jeg implementeret en praktisk løsning i form af en

JsonFixer-klasse. Denne klasse implementerer “Selvhelbredende Data”-mønsteret ved

at tage den ødelagte JSON som input og udnytte en LLM til at reparere den, mens den

bevarer så meget information og intention som muligt.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

Selvhelende data 161

24 end

Bemærk hvordan JsonFixer bruger Ventriloquist til at styre AI’ens svar.

Processen med selvhelbredende JSON-data fungerer som følger:

1. JSON-generering: En LLM bruges til at generere JSON-data baseret på bestemte

prompts eller krav. På grund af LLM’ers natur vil den genererede JSON dog ikke

altid være perfekt gyldig. JSON-parseren vil naturligvis udløse en ParserError,

hvis du giver den ugyldig JSON.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Bemærk, at fejlmeddelelsen også sendes til JSONFixer-kaldet, så den ikke behøver at

antage fuldt ud, hvad der er galt med dataene, især da parseren ofte vil fortælle dig

præcis, hvad der er galt.

2. LLM-baseret Korrektion: JSONFixer-klassen sender den ødelagte JSON tilbage

til en LLM sammen med en specifik prompt eller instruktion om at rette JSON’en,

mens den originale information og hensigt bevares så meget som muligt. LLM’en,

som er trænet på store mængder data og har en forståelse af JSON-syntaks,

forsøger at rette fejlene og generere en gyldig JSON-streng. Response Fencing

bruges til at begrænse LLM’ens output, og vi vælger Mixtral 8x7B som AI-

modellen, da den er særligt god til denne type opgave.

Selvhelende data 162

3. Validering og Integration: Den rettede JSON-streng, der returneres

af LLM’en, bliver parset af selve JSONFixer-klassen, fordi den kaldte

chat_completion(json: true). Hvis den rettede JSON består valideringen,

integreres den tilbage i applikationens arbejdsgang, hvilket gør det muligt for

applikationen at fortsætte databehandlingen uden problemer. Den dårlige JSON

er blevet “helbredt”.

Selvom jeg har skrevet og omskrevet min egen JSONFixer-implementering adskillige

gange, tvivler jeg på, at den samlede tid investeret i alle disse versioner er mere end en

time eller to.

Bemærk, at bevarelse af hensigt er et nøgleelement i ethvert selvhelende data-mønster.

Den LLM-baserede korrektionsproces sigter mod at bevare den originale information

og hensigt i den genererede JSON så meget som muligt. Dette sikrer, at den rettede

JSON bevarer sin semantiske betydning og kan bruges effektivt inden for applikationens

kontekst.

Denne praktiske implementering af “Selvhelende Data”-tilgangen i Olympia

demonstrerer tydeligt, hvordan AI, specifikt LLM’er, kan udnyttes til at løse

virkelige dataudfordringer. Det viser styrken ved at kombinere traditionelle

programmeringsteknikker med AI-kapaciteter for at bygge robuste og effektive

applikationer.

Postels Lov og “Selvhelende Data”-Mønsteret

“Selvhelende Data”, som eksemplificeret ved JSONFixer-klassen, stemmer godt

overens med princippet kendt som Postels Lov, også kendt som Robusthedsprincippet.

Postels Lov siger:

“Vær konservativ i det, du gør, vær liberal i det, du accepterer fra andre.”

Selvhelende data 163

Dette princip, oprindeligt formuleret af Jon Postel, en pioner inden for det tidlige

internet, understreger vigtigheden af at bygge systemer, der er tolerante over for

forskellige eller endda let ukorrekte input, mens de opretholder streng overholdelse

af specificerede protokoller ved afsendelse af output.

I konteksten af “Selvhelende Data” legemliggør JSONFixer-klassen Postels Lov ved at

være liberal i accepten af ødelagt eller ufuldkommen JSON-data genereret af LLM’er.

Den afviser eller fejler ikke øjeblikkeligt, når den møder JSON, der ikke strengt

overholder det forventede format. I stedet tager den en tolerant tilgang og forsøger

at rette JSON’en ved hjælp af LLM’ernes kraft.

Ved at være liberal i accepten af ufuldkommen JSON demonstrerer JSONFixer-

klassen robusthed og fleksibilitet. Den anerkender, at data i den virkelige verden

ofte kommer i forskellige former og ikke altid overholder strenge specifikationer. Ved

elegant at håndtere og korrigere disse afvigelser sikrer klassen, at applikationen kan

fortsætte med at fungere problemfrit, selv når der er ufuldkomne data.

På den anden side overholder JSONFixer-klassen også det konservative aspekt af

Postels Lov, når det kommer til output. Efter at have rettet JSON’en ved hjælp af

LLM’er, validerer klassen den korrigerede JSON for at sikre, at den strengt overholder

det forventede format. Den opretholder dataenes integritet og korrekthed, før de

sendes videre til andre dele af applikationen. Denne konservative tilgang garanterer,

at outputtet fra JSONFixer-klassen er pålideligt og konsistent, hvilket fremmer

interoperabilitet og forhindrer spredning af fejl.

Interessante fakta om Jon Postel:

• Jon Postel (1943-1998) var en amerikansk datalog, som spillede en afgørende

rolle i udviklingen af internettet. Han var kendt som “Internettets Gud” for

hans betydelige bidrag til de underliggende protokoller og standarder.

• Postel var redaktør for Request for Comments (RFC) dokumentserien, som er

en serie af tekniske og organisatoriske noter om internettet. Han forfattede

eller medforfattede over 200 RFC’er, inklusive de grundlæggende protokoller

Selvhelende data 164

såsom TCP, IP og SMTP.

• Ud over hans tekniske bidrag var Postel kendt for sin ydmyge og

samarbejdende tilgang. Han troede på vigtigheden af at nå konsensus

og arbejde sammen om at bygge et robust og interoperabelt netværk.

• Postel fungerede som direktør for Computer Networks Division ved

Information Sciences Institute (ISI) ved University of Southern California

(USC) fra 1977 indtil hans alt for tidlige død i 1998.

• Som anerkendelse for hans enorme bidrag blev Postel posthumt tildelt den

prestigefyldte Turing Award i 1998, ofte omtalt som “Datalogiens Nobelpris.”

JSONFixer-klassen fremmer robusthed, fleksibilitet og interoperabilitet, hvilket var

kerneværdier, som Postel opretholdt gennem hele sin karriere. Ved at bygge systemer,

der er tolerante over for ufuldkommenheder, mens de samtidig opretholder streng

overholdelse af protokoller, kan vi skabe applikationer, der er mere modstandsdygtige

og tilpasningsdygtige over for virkelighedens udfordringer.

Overvejelser og Kontraindikationer

Anvendeligheden af selvhelbredende datatilgange afhænger fuldstændigt af, hvilken

type data din applikation håndterer. Der er en grund til, at du måske ikke ønsker at

monkeypatch JSON.parse til automatisk at selvkorrigere alle JSON-parsing fejl i din

applikation: ikke alle fejl kan eller bør korrigeres automatisk.

Selvhelbredende er særligt problematisk, når det er koblet sammenmed lovmæssige eller

compliance-krav relateret til datahåndtering og -behandling. Nogle brancher, såsom

sundhedsvæsenet og finanssektoren, har så strenge regler vedrørende dataintegritet og

sporbarhed, at enhver form for “black box” datakorrektion uden ordentligt tilsyn eller

logføring kan overtræde disse regler. Det er afgørende at sikre, at alle selvhelbredende

datateknikker, du udvikler, er i overensstemmelse med de gældende juridiske og

Selvhelende data 165

regulatoriske rammer.

Anvendelsen af selvhelbredende datateknikker, særligt dem der involverer AI-modeller,

kan også have stor indvirkning på applikationens ydeevne og ressourceudnyttelse.

Behandling af store mængder data gennem AI-modeller til fejldetektion og -korrektion

kan være beregningsmæssigt krævende. Det er vigtigt at vurdere afvejningerne mellem

fordelene ved selvhelbredende data og de tilhørende omkostninger i forhold til ydeevne

og ressourcer.

Lad os dykke ned i de faktorer, der er involveret i at beslutte hvornår og hvor denne

kraftfulde tilgang skal anvendes.

Data Kritikalitet

Når man overvejer anvendelsen af selvhelbredende datateknikker, er det afgørende

at vurdere kritikaliteten af de data, der behandles. Kritikalitetsniveauet henviser

til vigtigheden og følsomheden af dataene i konteksten af din applikation og dens

forretningsområde.

I nogle tilfælde er det måske ikke hensigtsmæssigt at korrigere datafejl automatisk, især

hvis dataene er meget følsomme eller har juridiske implikationer. Overvej for eksempel

følgende scenarier:

1. Finansielle Transaktioner: I finansielle applikationer, såsom banksystemer eller

handelsplatforme, er datanøjagtighed af største betydning. Selv mindre fejl i

finansielle data kan have betydelige konsekvenser, såsom forkerte kontosaldi,

fejldirigerede midler eller fejlagtige handelsbeslutninger. I disse tilfælde kan

automatiserede korrektioner uden grundig verifikation og revision medføre

uacceptable risici.

2. Medicinske Journaler: Sundhedsapplikationer håndterer meget følsomme og

fortrolige patientdata. Unøjagtigheder i medicinske journaler kan have alvorlige

konsekvenser for patientsikkerheden og behandlingsbeslutninger. Automatisk

Selvhelende data 166

ændring af medicinske data uden ordentligt tilsyn og validering af kvalificeret

sundhedspersonale kan overtræde lovkrav og bringe patientens velbefindende i

fare.

3. Juridiske Dokumenter: Applikationer, der håndterer juridiske dokumenter,

såsom kontrakter, aftaler eller retsdokumenter, kræver streng nøjagtighed

og integritet. Selv mindre fejl i juridiske data kan have betydelige juridiske

konsekvenser. Automatiserede korrektioner på dette område er måske ikke

hensigtsmæssige, da dataene ofte kræver manuel gennemgang og verifikation af

juridiske eksperter for at sikre deres gyldighed og retskraft.

I disse kritiske datascenarier opvejer risiciene forbundet med automatiserede

korrektioner ofte de potentielle fordele. Konsekvenserne af at introducere fejl

eller ændre data forkert kan være alvorlige og føre til økonomiske tab, juridiske

forpligtelser eller endda skade på personer.

Når man håndterer meget kritiske data, er det essentielt at prioritere manuelle

verifikations- og valideringsprocesser. Menneskeligt tilsyn og ekspertise er afgørende

for at sikre dataenes nøjagtighed og integritet. Automatiserede selvhelbredende

teknikker kan stadig anvendes til at markere potentielle fejl eller uoverensstemmelser,

men den endelige beslutning om korrektioner bør involvere menneskelig bedømmelse

og godkendelse.

Det er dog vigtigt at bemærke, at ikke alle data i en applikation nødvendigvis har

samme kritikalitetsniveau. Inden for samme applikation kan der være delmængder

af data, som er mindre følsomme eller har lavere konsekvenser, hvis der opstår

fejl. I sådanne tilfælde kan selvhelbredende datateknikker anvendes selektivt på disse

specifikke datadelmængder, mens kritiske data forbliver underlagt manuel verifikation.

Det afgørende er at vurdere kritikaliteten af hver datakategori i din applikation

omhyggeligt og definere klare retningslinjer og processer for håndtering af korrektioner

baseret på de tilknyttede risici og implikationer. Ved at skelne mellem kritiske

(f.eks. hovedbøger, medicinske journaler) og ikke-kritiske data (f.eks. postadresser,

Selvhelende data 167

ressourceadvarsler), kan du finde en balance mellem at udnytte fordelene ved

selvhelbredende datateknikker, hvor det er passende, og opretholde streng kontrol og

tilsyn, hvor det er nødvendigt.

I sidste ende bør beslutningen om at anvende selvhelbredende datateknikker på

kritiske data træffes i samråd med domæneeksperter, juridiske rådgivere og andre

relevante interessenter. Det er essentielt at overveje de specifikke krav, regler og risici,

der er forbundet med din applikations data og tilpasse datakorrekturstrategierne i

overensstemmelse hermed.

Fejlens Alvorlighed

Når man anvender selvhelbredende datateknikker, er det vigtigt at vurdere alvoren og

påvirkningen af datafejlene. Ikke alle fejl er skabt lige, og den passende fremgangsmåde

kan variere afhængigt af problemets alvorlighed.

Mindre uoverensstemmelser eller formateringsproblemer kan være egnede til

automatisk korrektion. For eksempel kan en selvhelbredende dataarbejder, der er sat til

at rette ødelagt JSON, håndtere manglende kommaer eller ikke-escapede anførselstegn

uden at ændre væsentligt ved dataenes betydning eller struktur. Disse typer fejl er ofte

lige til at rette og har minimal indvirkning på den overordnede dataintegritet.

Dog kan mere alvorlige fejl, der fundamentalt ændrer betydningen eller integriteten

af dataene, kræve en anden tilgang. I sådanne tilfælde er automatiserede korrektioner

måske ikke tilstrækkelige, og menneskelig indgriben kan være nødvendig for at sikre

dataenes nøjagtighed og gyldighed.

Det er her, at konceptet med at bruge selve AI’en til at hjælpe med at bestemme fejlenes

alvorlighed kommer i spil. Ved at udnytte AI-modellernes kapaciteter kan vi designe

selvhelbredende databehandlere, der ikke kun korrigerer fejl, men også vurderer fejlenes

alvorlighed og træffer velinformerede beslutninger om, hvordan de skal håndteres.

Lad os for eksempel se på en selvhelbredende databehandler med ansvar for at korrigere

uoverensstemmelser i datastrømmen til en kundedatabase. Behandleren kan designes til

Selvhelende data 168

at analysere dataene og identificere potentielle fejl, såsommanglende eller modstridende

information. I stedet for automatisk at korrigere alle fejl kan behandleren udstyres med

yderligere værktøjskald, der gør det muligt at markere alvorlige fejl til menneskelig

gennemgang.

Her er et eksempel på, hvordan dette kan implementeres:

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

Selvhelende data 169

35 end

36 end

I dette eksempel er CustomerDataHealer-workeren designet til at identificere

og korrigere uoverensstemmelser i kundedata. Igen bruger vi Response Fencing og

Ventriloquist til at få struktureret output. Vigtigt er det, at workerens systemdirektiv

indeholder instruktioner om at bruge flag_for_review-funktionen, hvis der opdages

alvorlige fejl.

Når workeren behandler kundedataene, analyserer den dataene og forsøger at rette

eventuelle uoverensstemmelser. Hvis workeren vurderer, at fejlene er alvorlige og

kræver menneskelig indgriben, kan den bruge flag_for_review-værktøjet til at

markere dataene og angive en årsag til markeringen.

chat_completion-metoden kaldes med json: true for at parse de korrigerede

kundedata som JSON. Der er ingen mulighed for at loope efter et funktionskald, så

resultatet vil være tomt, hvis flag_for_review blev aktiveret. Ellers opdateres kunden

med de gennemgåede og potentielt korrigerede data.

Ved at inkorporere vurdering af fejlens alvorlighed og muligheden for at markere data

til menneskelig gennemgang bliver den selvhelende dataworker mere intelligent og

tilpasningsdygtig. Den kan håndteremindre fejl automatisk, mens alvorlige fejl eskaleres

til menneskeelige eksperter for manuel intervention.

De specifikke kriterier for at bestemme fejlens alvorlighed kan defineres i workerens

direktiv baseret på domæneviden og forretningsmæssige krav. Faktorer som

påvirkningen på dataintegritet, risikoen for datatab eller -korruption og konsekvenserne

af ukorrekte data kan tages i betragtning ved vurdering af alvorsgraden.

Ved at udnytte AI til at vurdere fejlens alvorlighed og give muligheder for menneskelig

intervention kan selvhelende datateknikker skabe balance mellem automatisering og

opretholdelse af datanøjagtighed. Denne tilgang sikrer, at mindre fejl rettes effektivt,

mens alvorlige fejl modtager den nødvendige opmærksomhed og ekspertise fra

menneskelige bedømmere.

Selvhelende data 170

Domænekompleksitet

Når man overvejer anvendelsen af selvhelende datateknikker, er det vigtigt at

evaluere kompleksiteten af datademænet og de regler, der styrer dets struktur og

relationer. Domænets kompleksitet kan have betydelig indflydelse på effektiviteten og

gennemførligheden af automatiserede datakorrektionsmetoder.

Selvhelende datateknikker fungerer godt, når dataene følger veldefinerede mønstre

og begrænsninger. I domæner hvor datastrukturen er relativt simpel, og relationerne

mellem dataelementer er ligetil, kan automatiske korrektioner anvendes med høj grad

af sikkerhed. For eksempel kan korrigering af formateringsproblemer eller håndhævelse

af grundlæggende datatypebegrænsninger ofte håndteres effektivt af selvhelende

dataworkere.

Dog vokser udfordringerne forbundet med automatisk datakorrigering i takt med, at

kompleksiteten af datadomænet øges. I domæner med indviklet forretningslogik,

komplekse relationer mellem dataentiteter eller domænespecifikke regler og

undtagelser, kan selvhelende datateknikker ikke altid fange nuancerne og kan

introducere utilsigtede konsekvenser.

Lad os betragte et eksempel på et komplekst domæne: et finansielt handelssystem.

I dette domæne involverer dataene forskellige finansielle instrumenter, markedsdata,

handelsregler og lovmæssige krav. Relationerne mellem forskellige dataelementer kan

være indviklede, og reglerne for datavaliditet og konsistens kan være meget specifikke

for domænet.

I et så komplekst domæne ville en selvhelende dataworker, der har til opgave at

korrigere uoverensstemmelser i handelsdata, have behov for en dyb forståelse af

de domænespecifikke regler og begrænsninger. Den skulle tage hensyn til faktorer

som markedsreguleringer, handelsgrænser, risikoberegninger og afviklingsprocedurer.

Automatiske korrektioner i denne sammenhæng kan ikke altid fange domænets fulde

kompleksitet og kan utilsigtet introducere fejl eller overtræde domænespecifikke regler.

Selvhelende data 171

For at håndtere udfordringerne ved domænekompleksitet kan selvhelende datateknikker

forbedres ved at inkorporere domænespecifik viden og regler i AI-modellerne og

workerne. Dette kan opnås gennem teknikker som:

1. Domænespecifik Træning: AI-modellerne, der bruges til selvhelende data, kan

dirigeres eller endda finjusteres på domænespecifikke datasæt, der indfanger

særegenhederne og reglerne for det specifikke domæne. Ved at eksponere

modellerne for repræsentative data og scenarier kan de lære mønstrene,

begrænsningerne og undtagelserne, der er specifikke for domænet.

2. Regelbaserede Begrænsninger: Selvhelende dataworkere kan udvides med

eksplicitte regelbaserede begrænsninger, der koder domænespecifik viden. Disse

regler kan defineres af domæneeksperter og integreres i datakorrektionsprocessen.

AI-modellerne kan derefter bruge disse regler til at guide deres beslutninger og

sikre overholdelse af domænespecifikke krav.

3. Samarbejde med Domæneeksperter: I komplekse domæner er det afgørende at

involvere domæneeksperter i design og udvikling af selvhelende datateknikker.

Domæneeksperter kan bidrage med værdifuld indsigt i dataenes kompleksitet,

forretningsreglerne og potentielle særtilfælde. Deres viden kan inkorporeres i

AI-modellerne og workerne for at forbedre nøjagtigheden og pålideligheden af

automatiske datakorrektioner ved hjælp af Human In The Loop mønstre.

4. Inkrementel og Iterativ Tilgang:Når man arbejder med komplekse domæner, er

det ofte fordelagtigt at adoptere en inkrementel og iterativ tilgang til selvhelende

data. I stedet for at forsøge at automatisere korrektioner for hele domænet på

én gang, fokuserer man på specifikke subdomæner eller datakategorier, hvor

reglerne og begrænsningerne er velforståede. Gradvist udvider man omfanget

af selvhelende teknikker, efterhånden som forståelsen af domænet vokser, og

teknikkerne viser sig effektive.

Ved at tage højde for kompleksiteten i datadomænet og inkorporere domænespecifik

viden i selvhelende datateknikker kan man skabe balance mellem automatisering og

Selvhelende data 172

nøjagtighed. Det er vigtigt at erkende, at selvhelende data ikke er en universel løsning,

og at tilgangen bør tilpasses de specifikke krav og udfordringer i hvert domæne.

I komplekse domæner kan en hybrid tilgang, der kombinerer selvhelende datateknikker

med menneskelig ekspertise og overvågning, være mest effektiv. Automatiske

korrektioner kan håndtere rutineprægede og veldefinerede tilfælde, mens komplekse

scenarier eller undtagelser kan markeres til menneskelig gennemgang og indgriben.

Denne samarbejdende tilgang sikrer, at fordelene ved automatisering realiseres,

samtidig med at den nødvendige kontrol og nøjagtighed i komplekse datadomæner

opretholdes.

Forklarbarhed og Gennemsigtighed

Forklarbarhed henviser til evnen til at forstå og fortolke ræsonnementet bag de

beslutninger, der træffes af AI-modeller, mens gennemsigtighed involverer at give klar

indsigt i datakorrektionsprocessen.

I mange sammenhænge skal dataændringer være reviderbare og kunne retfærdiggøres.

Interessenter, herunder forretningsbrugere, revisorer og tilsynsmyndigheder, kan

kræve forklaringer på, hvorfor bestemte datakorrektioner blev foretaget, og hvordan

AI-modellerne nåede frem til disse beslutninger. Dette er især afgørende i domæner,

hvor datanøjagtighed og -integritet har væsentlige konsekvenser, såsom finans,

sundhedsvæsen og juridiske anliggender.

For at imødekomme behovet for forklarbarhed og gennemsigtighed bør selvhelende

datateknikker inkorporere mekanismer, der giver indsigt i AI-modellernes

beslutningsproces. Dette kan opnås gennem forskellige tilgange:

1. Tankerække: Ved at bede modellen om at forklare sin tænkning “højt” før

anvendelse af ændringer i data, kan man lettere forstå beslutningsprocessen

og kan generere menneskelæsbare forklaringer på de foretagne korrektioner.

Kompromisset er en smule mere kompleksitet i adskillelsen af forklaringen fra

det strukturerede dataoutput, hvilket kan håndteres ved…

Selvhelende data 173

2. Forklaringsgenerering: Selvhelende dataarbejdere kan udstyres med evnen

til at generere menneskelæsbare forklaringer på de korrektioner, de foretager.

Dette kan opnås ved at bede modellen om at outputte sin beslutningsproces

som letforståelige forklaringer integreret i selve dataene. For eksempel kunne

en selvhelende dataarbejder generere en rapport, der fremhæver de specifikke

datainkonsistenser den identificerede, de korrektioner den anvendte, og

begrundelsen bag disse korrektioner.

3. Funktionsvægtning: AI-modeller kan instrueres med information om

vigtigheden af forskellige funktioner eller attributter i datakorrektionsprocessen

som en del af deres direktiver. Disse direktiver kan derefter eksponeres for

menneskelige interessenter. Ved at identificere de nøglefaktorer, der påvirker

modellens beslutninger, kan interessenter få indsigt i ræsonnementet bag

korrektionerne og vurdere deres gyldighed.

4. Logning og Revision: Implementering af omfattende lognings- og

revisionsmekanismer er afgørende for at opretholde gennemsigtighed i den

selvhelende dataproces. Hver datakorrektion foretaget af AI-modeller bør logges,

inklusive de originale data, de korrigerede data og de specifikke handlinger, der

er foretaget. Dette revisionsspor muliggør retrospektiv analyse og giver en klar

registrering af de ændringer, der er foretaget i dataene.

5. Menneske-i-kredsløbet-tilgang: Inkorporering af en menneske-i-kredsløbet-

tilgang kan forbedre forklarbarheden og gennemsigtigheden af selvhelende

datateknikker. Ved at involvere menneskeeksperter i gennemgang og validering

af AI-genererede korrektioner kan organisationer sikre, at korrektionerne er i

overensstemmelse med domæneviden og forretningsmæssige krav. Menneskelig

overvågning tilføjer et ekstra lag af ansvarlighed og tillader identifikation af

potentielle bias eller fejl i AI-modellerne.

6. Kontinuerlig Overvågning og Evaluering: Regelmæssig overvågning og

evaluering af selvhelende datateknikkers ydeevne er essentielt for at opretholde

gennemsigtighed og tillid. Ved at vurdere AI-modellernes nøjagtighed og

Selvhelende data 174

effektivitet over tid kan organisationer identificere eventuelle afvigelser eller

anomalier og træffe korrigerende foranstaltninger. Kontinuerlig overvågning

hjælper med at sikre, at den selvhelende dataproces forbliver pålidelig og tilpasset

de ønskede resultater.

Forklarbarhed og gennemsigtighed er kritiske overvejelser ved implementering

af selvhelende datateknikker. Ved at give klare forklaringer på datakorrektioner,

vedligeholde omfattende revisionsspor og involvere menneskelig overvågning kan

organisationer opbygge tillid til den selvhelende dataproces og sikre, at ændringerne i

dataene er berettigede og i overensstemmelse med forretningsmålene.

Det er vigtigt at finde en balance mellem fordelene ved automatisering og behovet

for gennemsigtighed. Mens selvhelende datateknikker kan forbedre datakvalitet og

effektivitet betydeligt, bør det ikke ske på bekostning af at miste overblik og kontrol over

datakorrektionsprocessen. Ved at designe selvhelende dataarbejdere med forklarbarhed

og gennemsigtighed for øje kan organisationer udnytte AI’s kraft samtidig med at

opretholde det nødvendige niveau af ansvarlighed og tillid til dataene.

Utilsigtede Konsekvenser

Mens selvhelende datateknikker sigter mod at forbedre datakvalitet og konsistens, er det

afgørende at være opmærksom på potentialet for utilsigtede konsekvenser. Automatiske

korrektioner kan, hvis de ikke er omhyggeligt designet og overvåget, utilsigtet ændre

betydningen eller konteksten af dataene, hvilket fører til afledte problemer.

En af de primære risici ved selvhelende data er introduktionen af bias eller fejl i

datakorrektionsprocessen. AI-modeller kan, ligesom ethvert andet softwaresystem, være

underlagt bias, der er til stede i træningsdata eller introduceret gennem algoritmernes

design. Hvis disse bias ikke identificeres og afbødes, kan de forplante sig gennem den

selvhelende dataproces og resultere i skævvredne eller ukorrekte datamodifikationer.

Tag for eksempel en selvhelbredende dataarbejder, der har til opgave at korrigere

uoverensstemmelser i kunders demografiske data. Hvis AI-modellen har lært fordomme

Selvhelende data 175

fra historiske data, såsom at forbinde bestemte erhverv eller indkomstniveauer med

specifikke køn eller etniciteter, kan den foretage ukorrekte antagelser og ændre dataene

på en måde, der forstærker disse fordomme. Dette kan føre til unøjagtige kundeprofiler,

fejlagtige forretningsbeslutninger og potentielt diskriminerende resultater.

En anden potentiel utilsigtet konsekvens er tabet af værdifuld information eller

kontekst under datakorrigeringsprocessen. Selvhelbredende datateknikker fokuserer

ofte på at standardisere og normalisere data for at sikre konsistens. I nogle tilfælde kan

de oprindelige data dog indeholde nuancer, undtagelser eller kontekstuel information,

som er vigtig for at forstå det fulde billede. Automatiske korrektioner, der blindt

gennemtvinger standardisering, kan utilsigtet fjerne eller sløre denne værdifulde

information.

Forestil dig for eksempel en selvhelbredende dataarbejder med ansvar for at korrigere

uoverensstemmelser i medicinske journaler. Hvis arbejderen støder på en patients

sygehistorie med en sjælden tilstand eller en usædvanlig behandlingsplan, kan den

forsøge at normalisere dataene til at passe ind i et mere almindeligt mønster. Ved at

gøre dette kan den dog miste de specifikke detaljer og den kontekst, der er afgørende for

at repræsentere patientens unikke situation præcist. Dette tab af information kan have

alvorlige konsekvenser for patientpleje og medicinske beslutninger.

For at mindske risikoen for utilsigtede konsekvenser er det essentielt at tage en proaktiv

tilgang ved design og implementering af selvhelbredende datateknikker:

1. Grundig Test og Validering: Før selvhelbredende dataarbejdere implementeres

i produktion, er det afgørende at teste og validere deres adfærd grundigt mod en

række forskellige scenarier. Dette omfatter test med repræsentative datasæt, der

dækker forskellige kanttilfælde, undtagelser og potentielle fordomme. Rigoros test

hjælper med at identificere og håndtere eventuelle utilsigtede konsekvenser, før

de påvirker data i den virkelige verden.

2. Kontinuerlig Overvågning og Evaluering: Implementering af kontinuerlige

overvågnings- og evalueringsmekanismer er essentielt for at opdage og afbøde

Selvhelende data 176

utilsigtede konsekvenser over tid. Regelmæssig gennemgang af resultaterne fra

selvhelbredende dataprocesser, analyse af påvirkningen på downstream-systemer

og beslutningstagning, samt indsamling af feedback fra interessenter kan

hjælpe med at identificere eventuelle negative effekter og igangsætte rettidige

korrigerende handlinger. Hvis din organisation har operationelle dashboards,

er det sandsynligvis en god idé at tilføje tydeligt synlige metrikker relateret til

automatiserede dataændringer. At tilføje alarmer forbundet med store afvigelser

fra normal dataændringsaktivitet er sandsynligvis en endnu bedre idé!

3. Menneskelig Overvågning og Intervention: Det er afgørende at opretholde

menneskelig overvågning og muligheden for at gribe ind i den selvhelbredende

dataproces. Mens automatisering kan forbedre effektiviteten markant, er det

vigtigt at havemenneskelige eksperter til at gennemgå og validere de korrektioner,

der foretages af AI-modeller, især inden for kritiske eller følsomme domæner.

Menneskelig dømmekraft og domæneekspertise kan hjælpe med at identificere

og håndtere eventuelle utilsigtede konsekvenser, der måtte opstå.

4. ForklarbarAI (XAI) ogGennemsigtighed: Som diskuteret i det foregående afsnit

kan inkorporering af forklarbar AI-teknikker og sikring af gennemsigtighed i

den selvhelbredende dataproces hjælpe med at afbøde utilsigtede konsekvenser.

Ved at give klare forklaringer på datakorrektioner og vedligeholde omfattende

revisionsspor kan organisationer bedre forstå og spore ræsonnementet bag de

ændringer, der foretages af AI-modeller.

5. Inkrementel og Iterativ Tilgang: Adoption af en inkrementel og iterativ tilgang

til selvhelbredende data kan hjælpe med at minimere risikoen for utilsigtede

konsekvenser. I stedet for at anvende automatiske korrektioner på hele datasættet

på én gang, start med en delmængde af data og udvid gradvist omfanget

efterhånden som teknikkerne viser sig effektive og pålidelige. Dette muliggør

omhyggelig overvågning og justering undervejs, hvilket reducerer påvirkningen

af eventuelle utilsigtede konsekvenser.

Selvhelende data 177

6. Samarbejde og Feedback: Engagement af interessenter fra forskellige domæner

og opmuntring til samarbejde og feedback gennem hele den selvhelbredende

dataproces kan hjælpe med at identificere og håndtere utilsigtede konsekvenser.

Regelmæssig indhentning af input fra domæneeksperter, dataforbrugere

og slutbrugere kan give værdifuld indsigt i den praktiske påvirkning af

datakorrektionerne og fremhæve eventuelle oversete problemer.

Ved proaktivt at adressere risikoen for utilsigtede konsekvenser og implementere

passende sikkerhedsforanstaltninger kan organisationer udnytte fordelene ved

selvhelbredende datateknikker samtidig med at potentielle negative effekter minimeres.

Det er vigtigt at tilgå selvhelbredende data som en iterativ og kollaborativ proces,

kontinuerligt overvåge, evaluere og forfine teknikkerne for at sikre, at de er i

overensstemmelse med de ønskede resultater og opretholder dataenes integritet og

pålidelighed.

Når man overvejer brugen af selvhelbredende datamønstre, er det essentielt at

evaluere disse faktorer omhyggeligt og afveje fordelene mod de potentielle

risici og begrænsninger. I nogle tilfælde kan en hybrid tilgang, der kombinerer

automatiske korrektioner med menneskelig overvågning og intervention, være den

mest hensigtsmæssige løsning.

Det er også værd at bemærke, at selvhelbredende datateknikker ikke bør ses som en

erstatning for robust datavalidering, inputvalidering og fejlhåndteringsmekanismer.

Disse grundlæggende praksisser forbliver kritiske for at sikre dataintegritet og sikkerhed.

Selvhelbredende data bør ses som en komplementær tilgang, der kan udvide og forbedre

disse eksisterende foranstaltninger.

I sidste ende afhænger beslutningen om at anvende selvhelbredende datamønstre af

de specifikke krav, begrænsninger og prioriteter i din applikation. Ved omhyggeligt

at overveje de ovennævnte betragtninger og tilpasse dem til din applikations mål

Selvhelende data 178

og arkitektur kan du træffe velinformerede beslutninger om hvornår og hvordan

selvhelbredende datateknikker kan udnyttes effektivt.

Kontekstuel Indholdsgenering

Mønstre for Kontekstuel Indholdsgenering udnytter kraften i store sprogmodeller

(LLMs) til at generere dynamisk og kontekstspecifikt indhold i applikationer. Denne

kategori af mønstre anerkender vigtigheden af at levere personaliseret og relevant

indhold til brugere baseret på deres specifikke behov, præferencer og endda tidligere og

nuværende interaktioner med applikationen.

I denne tilgangs kontekst refererer “indhold” både til primært indhold (dvs.

blogindlæg, artikler osv.) og meta-indhold, såsom anbefalinger til primært indhold.

Mønstre for Kontekstuel Indholdsgenering kan spille en afgørende rolle i at forbedre

dine brugeres engagementsniveauer, levere skræddersyede oplevelser og automatisere

indholdsopgaver både for dig og dine brugere. Ved at anvende de mønstre, vi beskriver

Kontekstuel Indholdsgenering 180

i dette kapitel, kan du skabe applikationer, der genererer indhold dynamisk og tilpasser

sig kontekst og input i realtid.

Mønstrene fungerer ved at integrere LLMs i applikationens output, lige fra

brugergrænsefladen (nogle gange omtalt som “chrome”), til e-mails og andre former

for notifikationer, såvel som eventuelle indholdspipelines.

Når en bruger interagerer med applikationen eller udløser en specifik

indholdsanmodning, opfanger applikationen den relevante kontekst, såsom

brugerpræferencer, tidligere interaktioner eller specifikke prompts. Denne kontekstuelle

information fødes derefter ind i LLM’en, sammenmed eventuelle nødvendige skabeloner

eller retningslinjer, og bruges til at producere tekstoutput, som ellers skulle have været

enten hardkodet, gemt i en database eller algoritmisk genereret.

Det LLM-genererede indhold kan antage forskellige former, såsom personlige

anbefalinger, dynamiske produktbeskrivelser, tilpassede e-mailsvar eller endda hele

artikler eller blogindlæg. En af de mest radikale anvendelser af dette indhold, som

jeg var pionér for for over et år siden, er dynamisk generering af UI-elementer som

formularetiketter, værktøjstips og andre former for forklarende tekst.

Personalisering

En af de vigtigste fordele ved mønstre for Kontekstuel Indholdsgenering er muligheden

for at levere meget personlige oplevelser til brugerne. Ved at generere indhold baseret

på brugerspecifik kontekst gør disse mønstre det muligt for applikationer at skræddersy

indhold til individuelle brugeres interesser, præferencer og interaktioner.

Personalisering handler ommere end blot at indsætte en brugers navn i generisk indhold.

Det involverer udnyttelse af den righoldige kontekst, der er tilgængelig om hver bruger,

til at generere indhold, der resonerer med deres specifikke behov og ønsker. Denne

kontekst kan omfatte en bred vifte af faktorer, såsom:

Kontekstuel Indholdsgenering 181

1. Brugerprofiloplysninger: På det mest generelle niveau for anvendelse af denne

teknik kan demografiske data, interesser, præferencer og andre profilattributter

bruges til at generere indhold, der er i overensstemmelse med brugerens baggrund

og karakteristika.

2. Adfærdsdata: En brugers tidligere interaktioner med applikationen, såsom viste

sider, klikkede links eller købte produkter, kan give værdifuld indsigt i deres

adfærd og interesser. Disse data kan bruges til at generere indholdsforslag, der

afspejler deres engagementsmønstre og forudsiger deres fremtidige behov.

3. Kontekstuelle Faktorer: Brugerens aktuelle kontekst, såsom deres

placering, enhed, tidspunkt på dagen eller endda vejret, kan påvirke

indholdsgenereringsprocessen. For eksempel kunne en rejseapplikation have en

AI-medarbejder, der er i stand til at generere personlige anbefalinger baseret på

brugerens aktuelle placering og de aktuelle vejrforhold.

Ved at udnytte disse kontekstuelle faktorer gør mønstre for Kontekstuel

Indholdsgenering det muligt for applikationer at levere indhold, der føles skræddersyet

til hver enkelt bruger. Dette niveau af personalisering har flere væsentlige fordele:

1. Øget Engagement: Personaliseret indhold fanger brugernes opmærksomhed og

holder dem engagerede i applikationen. Når brugerne føler, at indholdet er

relevant og taler direkte til deres behov, er de mere tilbøjelige til at bruge mere tid

på at interagere med applikationen og udforske dens funktioner.

2. Forbedret Brugertilfredshed: Personaliseret indhold viser, at applikationen

forstår og tager hensyn til brugerens unikke krav. Ved at levere indhold, der

er hjælpsomt, informativt og i overensstemmelse med deres interesser, kan

applikationen øge brugertilfredsheden og opbygge en stærkere forbindelse med

sine brugere.

3. Højere Konverteringsrater: I forbindelse med e-handel eller

marketingapplikationer kan personaliseret indhold have betydelig indvirkning

på konverteringsrater. Ved at præsentere brugerne for produkter, tilbud

Kontekstuel Indholdsgenering 182

eller anbefalinger, der er skræddersyet til deres præferencer og adfærd,

kan applikationen øge sandsynligheden for, at brugerne foretager ønskede

handlinger, såsom at foretage et køb eller tilmelde sig en tjeneste.

Produktivitet

Mønstre for Kontekstuel Indholdsgenering kan markant øge visse former for

produktivitet ved at reducere behovet for manuel indholdsgenering og redigering

i kreative processer. Ved at udnytte kraften i LLMs kan du generere kvalitetsindhold i

stor skala og spare tid og kræfter, som dine indholdsskabere og udviklere ellers skulle

have brugt på kedeligt manuelt arbejde.

Traditionelt set skal indholdsproducenter researche, skrive, redigere og formatere

indhold for at sikre, at det opfylder applikationens krav og brugerens forventninger.

Denne proces kan være tidskrævende og ressourceintensiv, især når mængden af

indhold vokser.

Med mønstre for kontekstuel indholdsproduktion kan indholdsproduktionen dog i

vid udstrækning automatiseres. LLM’er kan generere sammenhængende, grammatisk

korrekt og kontekstuelt relevant indhold baseret på de givne prompter og retningslinjer.

Denne automatisering giver flere produktivitetsfordele:

1. Reduceret manuelt arbejde: Ved at uddelegere opgaver med indholdsproduktion

til LLM’er kan indholdsproducenter fokusere på opgaver på højere niveau såsom

indholdsstrategi, idéudvikling og kvalitetssikring. De kan give LLM’en den

nødvendige kontekst, skabeloner og retningslinjer og lade den håndtere selve

indholdsproduktionen. Dette reducerer den manuelle indsats, der kræves til at

skrive og redigere, hvilket gør indholdsproducenter mere produktive og effektive.

2. Hurtigere indholdsproduktion: LLM’er kan generere indhold meget hurtigere

end menneskelige forfattere. Med de rigtige prompter og retningslinjer kan en

Kontekstuel Indholdsgenering 183

LLM producere flere stykker indhold på få sekunder eller minutter. Denne

hastighed gør det muligt for applikationer at generere indhold i et meget hurtigere

tempo og dermed følge med brugernes behov og det konstant foranderlige digitale

landskab.

Fører hurtigere indholdsproduktion til en “tragedy of the commons” situation, hvor

internettet drukner i indhold, som ingen læser? Desværre tror jeg, at svaret er ja.

3. Konsistens og kvalitet: LLM’er kan uden problemer revidere indhold, så det

er konsistent i stil, tone og kvalitet. Med klare retningslinjer og eksempler

kan visse typer applikationer (f.eks. nyhedsredaktioner, PR osv.) sikre, at deres

menneskeskabte indhold stemmer overens med deres brand voice og opfylder de

ønskede kvalitetsstandarder. Denne konsistens reducerer behovet for omfattende

redigering og revision og sparer tid og kræfter i indholdsproduktionsprocessen.

4. Iteration og optimering: Mønstre for kontekstuel indholdsproduktion muliggør

hurtig iteration og optimering af indhold. Ved at justere prompterne, skabelonerne

eller retningslinjerne, der gives til LLM’en, kan dine applikationer hurtigt generere

variationer af indhold og teste forskellige tilgange på en automatiseret måde,

som aldrig har været mulig tidligere. Denne iterative proces tillader hurtigere

eksperimentering og forfining af indholdsstrategier, hvilket over tid fører til mere

effektivt og engagerende indhold. Denne særlige teknik kan være en total game-

changer for applikationer som e-handel, der lever og dør baseret på afvisningsrater

og engagement

Kontekstuel Indholdsgenering 184

Det er vigtigt at bemærke, at selvom mønstre for kontekstuel

indholdsproduktion kan forbedre produktiviteten markant, eliminerer

de ikke fuldstændigt behovet for menneskelig involvering.

Indholdsproducenter og redaktører spiller stadig en afgørende rolle i

at definere den overordnede indholdsstrategi, give vejledning til LLM’en og

sikre kvaliteten og hensigtsmæssigheden af det genererede indhold.

Ved at automatisere de mere repetitive og tidskrævende aspekter af indholdsproduktion

frigør mønstre for kontekstuel indholdsproduktion værdifuld menneskelig tid

og ressourcer, der kan omdirigeres til opgaver med højere værdi. Denne øgede

produktivitet gør det muligt for dig at levere mere personaliseret og engagerende

indhold til brugerne, samtidig med at arbejdsgangen for indholdsproduktion optimeres.

Hurtig iteration og eksperimentering

Mønstre for kontekstuel indholdsproduktion gør det muligt hurtigt at iterere og

eksperimentere med forskellige indholdsvariationer, hvilket muliggør hurtigere

optimering og forfining af din indholdsstrategi. Du kan generere flere versioner

af indhold på få sekunder ved blot at justere konteksten, skabelonerne eller

retningslinjerne, der gives til modellen.

Denne mulighed for hurtig iteration giver flere centrale fordele:

1. Test og optimering:Med muligheden for hurtigt at generere indholdsvariationer

kan du nemt teste forskellige tilgange og måle deres effektivitet. For eksempel kan

du generere flere versioner af en produktbeskrivelse eller et marketingbudskab,

hver tilpasset til et specifikt brugersegment eller en specifik kontekst. Ved at

analysere brugerengagementsmetrikker såsom klikrater eller konverteringsrater

kan du identificere de mest effektive indholdsvariationer og optimere din

indholdsstrategi i overensstemmelse hermed.

Kontekstuel Indholdsgenering 185

2. A/B-test: Mønstre for kontekstuel indholdsproduktion muliggør problemfri

A/B-test af indhold. Du kan generere to eller flere variationer af indhold og

tilfældigt vise dem til forskellige brugergrupper. Ved at sammenligne hver

variations ydeevne kan du afgøre, hvilket indhold der resonerer bedst med din

målgruppe. Denne datadrevne tilgang gør det muligt for dig at træffe informerede

beslutninger og løbende forfine dit indhold for at maksimere brugerengagement

og opnå dine ønskede resultater.

3. Personaliseringseksperimenter: Hurtig iteration og eksperimentering er særligt

værdifuldt, når det kommer til personalisering. Med mønstre for kontekstuel

indholdsproduktion kan du hurtigt generere personaliserede indholdsvariationer

baseret på forskellige brugersegmenter, præferencer eller adfærd. Ved at

eksperimentere med forskellige personaliseringsstrategier kan du identificere

de mest effektive tilgange til at engagere individuelle brugere og levere

skræddersyede oplevelser.

4. Tilpasning til Skiftende Tendenser: Evnen til at iterere og eksperimentere

hurtigt gør det muligt at forblive smidig og tilpasse sig skiftende tendenser og

brugerpræferencer. Når nye emner, søgeord eller brugeradfærd opstår, kan du

hurtigt generere indhold, der er i tråd med disse tendenser. Ved kontinuerligt

at eksperimentere og forfine dit indhold kan du forblive relevant og bevare en

konkurrencemæssig fordel i det konstant udviklende digitale landskab.

5. Omkostningseffektiv Eksperimentering: Traditionel indholdseksperimentering

involverer ofte betydelig tid og ressourcer, da indholdsskabere manuelt

skal udvikle og teste forskellige variationer. Med mønstre for Kontekstuel

Indholdsgenering er omkostningerne ved eksperimentering dog kraftigt

reduceret. Store sprogmodeller kan generere indholdsvariationer hurtigt og i stor

skala, hvilket giver dig mulighed for at udforske en bred vifte af idéer og tilgange

uden at pådrage sig væsentlige omkostninger.

For at få mest muligt ud af hurtig iteration og eksperimentering er det vigtigt at have

en veldefineret eksperimenteringsramme på plads. Denne ramme bør omfatte:

Kontekstuel Indholdsgenering 186

• Klare mål og hypoteser for hvert eksperiment

• Passende metrikker og sporingsmekanismer til at måle indholdets ydeevne

• Segmenterings- og målretningsstrategier for at sikre, at relevante

indholdsvariationer leveres til de rigtige brugere

• Analyse- og rapporteringsværktøjer til at udlede indsigter fra de eksperimentelle

data

• En proces for at inkorporere læring og optimeringer i din indholdsstrategi

Ved at omfavne hurtig iteration og eksperimentering kan du kontinuerligt forfine og

optimere dit indhold, så det forbliver engagerende, relevant og effektivt i forhold til at nå

din applikations mål. Denne smidige tilgang til indholdsproduktion giver dig mulighed

for at være på forkant og levere exceptionelle brugeroplevelser.

Skalerbarhed og Effektivitet

I takt med at applikationer vokser, og efterspørgslen efter personaliseret indhold

stiger, muliggør kontekstuelle indholdsgenereringsmønstre effektiv skalering af

indholdsproduktion. Store sprogmodeller kan generere indhold til et stort antal

brugere og kontekster samtidigt, uden behov for en proportionel stigning i

menneskelige ressourcer. Denne skalerbarhed giver applikationer mulighed for at

levere personlige oplevelser til en voksende brugerbase uden at overbelaste deres

indholdsproduktionskapacitet.

Bemærk, at kontekstuel indholdsgenering kan bruges effektivt til at

internationalisere din applikation “på farten”. Faktisk er det præcis det, jeg

gjorde ved hjælp af min Instant18n Gem til at levere Olympia på mere end

et halvt dusin sprog, selvom vi er mindre end et år gamle.

Kontekstuel Indholdsgenering 187

AI-drevet Lokalisering

Hvis I tillader mig at prale et øjeblik, mener jeg, at mit Instant18n-bibliotek til Rails-

apps er et banebrydende eksempel på “Kontekstuel Indholdsgenering”-mønstret i aktion,

der viser det transformative potentiale for AI i applikationsudvikling. Denne gem

udnytter kraften fra OpenAIs GPT store sprogmodel til at revolutionere måden, hvorpå

internationalisering og lokalisering håndteres i Rails-applikationer.

Traditionelt involverer internationalisering af en Rails-applikation manuel definition

af oversættelsesnøgler og tilvejebringelse af tilsvarende oversættelser for hvert

understøttet sprog. Denne proces kan være tidskrævende, ressourceintensiv og

tilbøjelig til inkonsistenser. Med Instant18n-gemmen er lokaliseringsparadigmet dog

fuldstændigt redefineret.

Ved at integrere en stor sprogmodel gør Instant18n-gemmen det muligt at generere

oversættelser on-the-fly, baseret på tekstens kontekst og betydning. I stedet for at være

afhængig af foruddefinerede oversættelsesnøgler og statiske oversættelser, oversætter

gemmen dynamisk tekst ved hjælp af AI’s kraft. Denne tilgang tilbyder flere centrale

fordele:

1. Problemfri Lokalisering: Med Instant18n-gemmen behøver udviklere ikke

længere manuelt at definere og vedligeholde oversættelsesfiler for hvert

understøttet sprog. Gemmen genererer automatisk oversættelser baseret på den

givne tekst og det ønskede målsprog, hvilket gør lokaliseringsprocessen ubesværet

og problemfri.

2. Kontekstuel Nøjagtighed: AI kan gives tilstrækkelig kontekst til at forstå

nuancerne i den tekst, der oversættes. Den kan tage højde for den omgivende

kontekst, talemåder og kulturelle referencer for at generere oversættelser, der er

præcise, naturligt lydende og kontekstuelt passende.

3. Omfattende Sprogunderstøttelse: Instant18n-gemmen udnytter GPT’s

omfattende viden og sproglige kapaciteter, hvilket muliggør oversættelser

Kontekstuel Indholdsgenering 188

til et omfattende udvalg af sprog. Fra almindelige sprog som spansk og fransk til

mere obskure eller fiktive sprog som klingon og elvisk kan gemmen håndtere en

bred vifte af oversættelseskrav.

4. Fleksibilitet og Kreativitet:Gemmen går ud over traditionelle sprogoversættelser

og tillader kreative og utraditionelle lokaliseringsmuligheder. Udviklere kan

oversætte tekst til forskellige stilarter, dialekter eller endda fiktive sprog, hvilket

åbner nye muligheder for unikke brugeroplevelser og engagerende indhold.

5. Ydelsesoptimering: Instant18n-gemmen inkorporerer cache-mekanismer for at

forbedre ydelsen og reducere overhead ved gentagne oversættelser. Oversat tekst

caches, hvilket gør det muligt at betjene efterfølgende anmodninger om samme

oversættelse hurtigt uden behov for redundante API-kald.

Instant18n-gemmen eksemplificerer kraften i “Kontekstuel Indholdsgenering”-mønstret

ved at udnytte AI til at generere lokaliseret indhold dynamisk. Den viser, hvordan AI

kan integreres i kernefunktionaliteten af en Rails-applikation og transformere denmåde,

udviklere tilgår internationalisering og lokalisering på.

Ved at eliminere behovet for manuel oversættelseshåndtering og muliggøre

oversættelser i realtid baseret på kontekst, sparer Instant18n gem udviklere betydelig tid

og kræfter. Det giver dem mulighed for at fokusere på at udvikle kernefunktionaliteten

i deres applikation, mens lokaliseringsaspektet håndteres problemfrit og præcist.

Vigtigheden af Brugertest og Feedback

Til sidst er det vigtigt altid at huske betydningen af brugertest og feedback. Det

er afgørende at validere, at kontekstuel indholdsgenering lever op til brugernes

forventninger og er i overensstemmelse med applikationens mål. Fortsæt med at

iterere og forfine det genererede indhold baseret på brugerindsigter og analyser.

Hvis du genererer dynamisk indhold i stor skala, som ville være umuligt at validere

manuelt af dig og dit team, bør du overveje at tilføje feedback-mekanismer, der giver

Kontekstuel Indholdsgenering 189

brugerne mulighed for at rapportere indhold, der er mærkeligt eller forkert, sammen

med en forklaring af hvorfor. Denne værdifulde feedback kan endda fødes til en

AI-medarbejder med opgaven at foretage justeringer i den komponent, der genererede

indholdet!

Generative UI

Opmærksomhed er så eftertragtet i disse dage, at effektivt brugerengagement nu

kræver softwareoplevelser, der ikke kun er problemfrie og intuitive, men også i høj

grad personligt tilpasset den enkeltes behov, præferencer og kontekst. Som følge

heraf står designere og udviklere i stigende grad over for udfordringen med at skabe

brugergrænseflader, der kan tilpasse sig og imødekomme hver enkelt brugers unikke

behov i stor skala.

Generative UI (GenUI) er en virkelig revolutionerende tilgang til design af

brugergrænseflader, der udnytter kraften i store sprogmodeller (LLMs) til at skabe

højt personaliserede og dynamiske brugeroplevelser i realtid. Jeg ønskede at sikre mig,

at jeg i det mindste gav dig en introduktion til GenUI i denne bog, fordi jeg mener,

at det er en af de mest lovende nye muligheder, der i øjeblikket eksisterer inden for

applikationsdesign og frameworks. Jeg er overbevist om, at dusinvis eller flere nye

succesfulde kommercielle og open source-projekter vil dukke op i denne særlige niche.

Generative UI 191

I sin kerne kombinerer GenUI principperne for Kontekstbaseret Indholdsgenering med

avancerede AI-teknikker til dynamisk at generere brugergrænsefladeelementer, såsom

tekst, billeder og layouts, baseret på en dyb forståelse af brugerens kontekst, præferencer

og mål. GenUI gør det muligt for designere og udviklere at skabe grænseflader, der

tilpasser og udvikler sig som reaktion på brugerinteraktioner, hvilket giver et niveau af

personalisering, der tidligere var uopnåeligt.

GenUI repræsenterer en fundamental ændring i måden, vi tilgår design af

brugergrænseflader. I stedet for at designe til masserne tillader GenUI os at designe

til individet. Personaliseret indhold og grænseflader har potentialet til at skabe

brugeroplevelser, der resonerer med hver bruger på et dybere niveau, hvilket øger

engagement, tilfredshed og loyalitet.

Som en banebrydende teknik er overgangen til GenUI fuld af konceptuelle og

praktiske udfordringer. Integration af AI i designprocessen, sikring af at de genererede

grænseflader ikke kun er personaliserede, men også brugbare, tilgængelige og aligned

med det overordnede brand og brugeroplevelse - alt dette er udfordringer, der gør GenUI

til en beskæftigelse for de få, ikke de mange. Derudover rejser involveringen af AI

spørgsmål om databeskyttelse, gennemsigtighed og måske endda etiske implikationer.

På trods af udfordringerne har personaliserede oplevelser i stor skala potentialet til at

transformere måden, vi interagerer med digitale produkter og tjenester på fuldstændigt.

Det åbner muligheder for at skabe inkluderende og tilgængelige grænseflader,

der imødekommer brugernes forskellige behov, uanset deres evner, baggrund eller

præferencer.

I dette kapitel vil vi udforske konceptet GenUI og undersøge nogle definerende

karakteristika, centrale fordele og potentielle udfordringer. Vi begynder med at

overveje den mest grundlæggende og tilgængelige form for GenUI: generering af

tekstindhold til ellers traditionelt designede og implementerede brugergrænseflader.

Generative UI 192

Generering af tekst til brugergrænseflader

Tekstelementer, der findes i din applikations brugergrænseflade-elementer, såsom

formularetiketter, værktøjstips og forklarende tekst, er typisk hardcodet ind i

skabelonerne eller UI-komponenterne, hvilket giver en konsistent men generisk

oplevelse for alle brugere. Ved at bruge mønstre for kontekstbaseret indholdsgenering

kan du transformere disse statiske elementer til dynamiske, kontekstbevidste og

personaliserede komponenter.

Personaliserede formularer

Formularer er en allestedsnærværende del af web- og mobilapplikationer og fungerer

som det primære middel til at indsamle brugerinput. Traditionelle formularer

præsenterer dog ofte en generisk og upersonlig oplevelse med standardetiketter og

-felter, der ikke altid stemmer overens med brugerens specifikke kontekst eller behov.

Brugere er mere tilbøjelige til at udfylde formularer, der føles skræddersyet til deres

behov og præferencer, hvilket fører til højere konverteringsrater og brugertilfredshed.

Det er dog vigtigt at finde en balance mellem personalisering og konsistens. Mens

tilpasning af formularer til individuelle brugere kan være gavnlig, er det afgørende at

opretholde et niveau af genkendelighed og forudsigelighed. Brugere skal stadig kunne

genkende og navigere i formularer let, selv med personaliserede elementer.

Her er nogle personaliserede formular-idéer til inspiration:

Kontekstuelle feltforslag

GenUI kan analysere brugerens tidligere interaktioner, præferencer og data for at

give intelligente feltforslag som forudsigelser. Hvis brugeren for eksempel tidligere har

indtastet deres leveringsadresse, kan formularen automatisk udfylde de relevante felter

med deres gemte oplysninger. Dette sparer ikke kun tid, men viser også, at applikationen

forstår og husker brugerens præferencer.

Generative UI 193

Vent lige et øjeblik, er denne teknik ikke noget, der kunne gøres uden at involvere AI?

Selvfølgelig, men det smukke ved at drive denne type funktionalitet med AI er todelt:

1) hvor nemt det kan være at implementere og 2) hvor modstandsdygtigt det kan være,

efterhånden som din brugergrænseflade ændrer og udvikler sig over tid.

Lad os hurtigt lave en service til vores teoretiske ordrehåndteringssystem, som forsøger

at udfylde den rigtige leveringsadresse for brugeren på forhånd.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Generative UI 194

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Dette eksempel er meget forenklet, men burde virke i de fleste tilfælde. Idéen er at lade

AI’en gætte på samme måde, som et menneske ville gøre. For at gøre det klart, hvad jeg

taler om, lad os se på nogle eksempeldata:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

Generative UI 195

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Lagde du mærke til mønstret i dataene? Jeg garanterer dig, at dette er let at forstå for

en LLM. For at demonstrere dette, lad os spørge GPT-4 hvad den mest sandsynlige

leveringsadresse er for et “termometer”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

Generative UI 196

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Hvis du tænker, at det er at skyde gråspurve med kanoner at bruge en dyr model som

GPT-4 til denne opgave, har du ret! Jeg prøvede den samme prompt på Mistral 7B

Instruct, og den producerede følgende svar med 75 tokens i sekundet og til den beskedne

pris af $0,000218 USD.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Er overhead og omkostninger ved denne teknik det værd for at gøre checkout-oplevelsen

mere magisk? For mange online forhandlere, helt bestemt. Og ud fra hvordan det ser

ud, vil omkostningerne ved AI-beregning kun falde, især for udbydere af open source

model-hosting i et kapløb mod bunden.

Brug en Prompt Template og StructuredIO sammen med Response Fencing

for at optimere denne type chat-færdiggørelse.

Generative UI 197

Adaptiv feltrækkefølge

Rækkefølgen, hvori formularfelter præsenteres, kan have betydelig indflydelse på

brugerens oplevelse og færdiggørelsesrater. Med GenUI kan du dynamisk justere

felternes rækkefølge baseret på brugerens kontekst og vigtigheden af hvert felt. For

eksempel, hvis brugeren udfylder en tilmeldingsformular til en fitness-app, kunne

formularen prioritere felter relateret til deres træningsmål og præferencer, hvilket gør

processen mere relevant og engagerende.

Personaliseret mikrotekst

Den instruerende tekst, fejlmeddelelser og anden mikrotekst forbundet med formularer

kan også personaliseres ved hjælp af GenUI. I stedet for at vise generiske fejlmeddelelser

som “Ugyldig e-mailadresse,” kan du generere mere hjælpsomme og kontekstuelle

beskeder såsom “Indtast venligst en gyldig e-mailadresse for at modtage din

ordrebekræftelse.” Disse personlige detaljer kan gøre formularoplevelsen mere

brugervenlig og mindre frustrerende.

Personaliseret validering

I forlængelse af Personaliseret mikrotekst, kunne du bruge AI til at validere formularen

på måder, der virker magiske. Forestil dig at lade en AI validere en brugerprofilformular,

hvor den leder efter potentielle fejl på et semantisk niveau.

Generative UI 198

Figur 9. Kan du få øje på den semantiske validering?

Progressiv afsløring

GenUI kan intelligent afgøre, hvilke formularfelter der er essentielle baseret

på brugerens kontekst og gradvist afsløre yderligere felter efter behov. Denne

progressive afsløring hjælper med at reducere den kognitive belastning og gør

formularudfyldningsprocessen mere håndterbar. For eksempel, hvis en bruger tilmelder

Generative UI 199

sig et basis-abonnement, kan formularen indledningsvist kun præsentere de essentielle

felter, og efterhånden som brugeren skrider frem eller vælger specifikke muligheder,

kan yderligere relevante felter introduceres dynamisk.

Kontekstbevidst forklarende tekst

Værktøjstips bruges ofte til at give yderligere information eller vejledning til brugere, når

de holder musen over eller interagerer med specifikke elementer. Med en “Kontekstuel

indholdsgenereringstilgang” kan du generere værktøjstips, der tilpasser sig brugerens

kontekst og giver relevant information. For eksempel, hvis en bruger udforsker en

kompleks funktion, kan værktøjstippet tilbyde personaliserede tips eller eksempler

baseret på deres tidligere interaktioner eller færdighedsniveau.

Forklarende tekst, såsom instruktioner, beskrivelser eller hjælpemeddelelser, kan

genereres dynamisk baseret på brugerens kontekst. I stedet for at præsentere generiske

forklaringer kan du bruge LLMs til at generere tekst, der er skræddersyet til brugerens

specifikke behov eller spørgsmål. For eksempel, hvis en bruger har problemer med et

bestemt trin i en proces, kan den forklarende tekst give personaliseret vejledning eller

fejlfindingstips.

Mikrotekst refererer til de små tekstbidder, der guider brugere gennem din applikation,

såsom knapetiketter, fejlmeddelelser eller bekræftelsesprompter. Ved at anvende

Kontekstuel indholdsgeneration tilgangen på mikrotekst kan du skabe et adaptivt

UI, der reagerer på brugerens handlinger og leverer relevant og hjælpsom tekst. For

eksempel, hvis en bruger er ved at udføre en kritisk handling, kan bekræftelsespromten

genereres dynamisk for at give en klar og personaliseret besked.

Personaliseret forklarende tekst og værktøjstips kan i høj grad forbedre onboarding-

processen for nye brugere. Ved at give kontekstspecifik vejledning og eksempler

kan du hjælpe brugere med hurtigt at forstå og navigere i applikationen, reducere

indlæringskurven og øge adoptionen.

Generative UI 200

Dynamiske og kontekstbevidste chrome-elementer kan også få applikationen til at føles

mere intuitiv og engagerende. Brugere er mere tilbøjelige til at interagere med og

udforske funktioner, når den medfølgende tekst er skræddersyet til deres specifikke

behov og interesser.

Indtil nu har vi dækket idéer til at forbedre eksisterende UI-paradigmer med AI, men

hvad med at gentænke hvordan brugergrænseflader designes og implementeres på en

mere radikal måde?

Definition af Generativ UI

I modsætning til traditionelt UI-design, hvor designere skaber faste, statiske

grænseflader, peger GenUI mod en fremtid, hvor vores software har fleksible,

personaliserede oplevelser, der kan udvikle sig og tilpasse sig i realtid. Hver gang

vi bruger en AI-drevet samtalegrænseflade, lader vi AI’en tilpasse sig brugerens

særlige behov. GenUI tager tingene et skridt videre ved at anvende dette niveau af

tilpasningsevne på softwarens visuelle grænseflade.

Grunden til at det er muligt at eksperimentere med GenUI-idéer i dag er, at store

sprogmodeller allerede forstår programmering, og deres grundlæggende viden omfatter

UI-teknologier og frameworks. Spørgsmålet er således, om store sprogmodeller kan

bruges til at generere UI-elementer, såsom tekst, billeder, layouts og endda hele

grænseflader, der er skræddersyet til hver enkelt bruger. Modellen kunne instrueres i

at tage højde for forskellige faktorer, såsom brugerens tidligere interaktioner, udtrykte

præferencer, demografiske information og den aktuelle brugskontekst, for at skabe

meget personaliserede og relevante grænseflader.

GenUI adskiller sig fra traditionelt brugergrænseflade-design på flere centrale måder:

Generative UI 201

1. Dynamisk og Adaptiv: Traditionelt UI-design involverer skabelsen af faste,

statiske grænseflader, der forbliver de samme for alle brugere. I modsætning hertil

muliggør GenUI grænseflader, der dynamisk kan tilpasse og ændre sig baseret på

brugerbehov og kontekst. Dette betyder, at den samme applikation kan præsentere

forskellige grænseflader til forskellige brugere eller endda til den samme bruger i

forskellige situationer.

2. Personalisering i Stor Skala:Med traditionelt design er det ofte upraktisk at skabe

personaliserede oplevelser for hver bruger på grund af den tid og de ressourcer,

det kræver. GenUI derimod tillader personalisering i stor skala. Ved at udnytte

AI kan designere skabe grænseflader, der automatisk tilpasser sig hver brugers

unikke behov og præferencer, uden at skulle manuelt designe og udvikle separate

grænseflader for hvert brugersegment.

3. Fokus på Resultater: Traditionelt UI-design fokuserer ofte på at skabe visuelt

tiltalende og funktionelle grænseflader. Mens disse aspekter stadig er vigtige i

GenUI, skifter det primære fokus mod at opnå ønskede brugerresultater. GenUI

sigter mod at skabe grænseflader, der er optimeret til hver brugers specifikke mål

og opgaver, hvor brugervenlighed og effektivitet prioriteres over rent æstetiske

overvejelser.

4. Kontinuerlig Læring og Forbedring: GenUI-systemer kan kontinuerligt lære og

forbedre sig over tid baseret på brugerinteraktioner og feedback. Når brugere

interagerer med de genererede grænseflader, kan AI-modellerne indsamle data om

brugeradfærd, præferencer og resultater og bruge denne information til at forfine

og optimere fremtidige grænseflade-generationer. Denne iterative læringsproces

gør det muligt for GenUI-systemer at blive stadig mere effektive til at opfylde

brugernes behov over tid.

Det er vigtigt at bemærke, at GenUI ikke er det samme som AI-assisterede

designværktøjer, såsom dem der giver forslag eller automatiserer visse designopgaver.

Mens disse værktøjer kan være nyttige til at strømline designprocessen, er de stadig

afhængige af designere til at træffe endelige beslutninger og skabe statiske grænseflader.

Generative UI 202

GenUI involverer derimod, at AI-systemet tager en mere aktiv rolle i den faktiske

generering og tilpasning af grænseflader baseret på brugerdata og kontekst.

GenUI repræsenterer et betydeligt skift i hvordan vi tilgår brugergrænseflade-design,

hvor vi bevæger os væk fra one-size-fits-all-løsninger og hen imod højt personaliserede,

adaptive oplevelser. Ved at udnytte AI’s kraft har GenUI potentialet til at revolutionere

den måde, vi interagerer med digitale produkter og tjenester på, ved at skabe

grænseflader der er mere intuitive, engagerende og effektive for hver enkelt bruger.

Eksempel

For at illustrere konceptet GenUI, lad os overveje en hypotetisk fitness-applikation kaldet

“FitAI”. Denne app sigter mod at give personaliserede træningsplaner og ernæringsråd

til brugere baseret på deres individuelle mål, fitnessniveauer og præferencer.

I en traditionel UI-design-tilgang ville FitAI måske have et fast sæt skærme og elementer,

der er ens for alle brugere. Med GenUI kunne appens grænseflade dog dynamisk tilpasse

sig hver brugers unikke behov og kontekst.

Denne tilgang er lidt af en udfordring at forestille sig implementeret i 2024 og har måske

ikke engang tilstrækkelig ROI, men det er muligt.

Sådan kunne det fungere:

1. Onboarding:

• I stedet for et standard spørgeskema bruger FitAI en konversations-AI til

at indsamle information om brugerens mål, nuværende fitnessniveau og

præferencer.

• Baseret på denne indledende interaktion genererer AI’en et personaliseret

dashboard-layout, der fremhæver de funktioner og informationer, der er

mest relevante for brugerens mål.

Generative UI 203

• Nuværende AI-teknologi kunne have et udvalg af skærmkomponenter til

rådighed til brug i sammensætningen af det personaliserede dashboard.

• Fremtidig AI-teknologi kunne påtage sig rollen som en erfaren UI-designer

og faktisk skabe dashboardet fra bunden.

2. Træningsprogram:

• Træningsprogrammets brugergrænseflade tilpasses af AI’en specifikt til

brugerens erfaringsniveau og tilgængeligt udstyr.

• For en nybegynder uden udstyr kan den vise simple kropsvægtsøvelser med

detaljerede instruktioner og videoer.

• For en avanceret bruger med adgang til et fitnesscenter kan den vise mere

komplekse rutiner med mindre forklarende indhold.

• Indholdet af træningsprogrammet er ikke blot filtreret fra en stor samling.

Det kan genereres på stedet baseret på en vidensbase, der forespørges med

kontekst, der omfatter alt kendt om brugeren.

3. Fremskridtssporing:

• Fremskridtssporingens brugergrænseflade udvikler sig baseret på brugerens

mål og engagementsmønstre.

• Hvis en bruger primært fokuserer på vægttab, vil grænsefladen fremhævet

vise en vægtudviklingsgraf og statistik over kalorieforbrænding.

• For en bruger, der opbygger muskler, kan den fremhæve styrkeforøgelser og

ændringer i kropskompositionen.

• AI’en kan tilpasse denne del af applikationen til brugerens faktiske

fremskridt. Hvis fremskridtet stopper i en periode, kan appen skifte til

en tilstand, hvor den forsøger at få brugeren til at afsløre årsagerne til

tilbageslaget for at afhjælpe dem.

4. Kostvejledning:

• Kostdelen tilpasser sig brugerens kostpræferencer og -begrænsninger.

Generative UI 204

• For en vegansk bruger kan den vise plantebaserede måltidsforslag og

proteinkilder.

• For en bruger med glutenintolerance vil den automatisk filtrere

glutenholdige fødevarer fra anbefalingerne.

• Igen er indholdet ikke hentet fra enmassiv samling afmåltidsdata, der gælder

for alle brugere, men syntetiseres derimod fra en vidensbase, der indeholder

information, der kan tilpasses baseret på brugerens specifikke situation og

begrænsninger.

• For eksempel genereres opskrifter med ingrediensspecifikationer, der

matcher brugerens konstant skiftende kaloriebeho, efterhånden som deres

fitnessniveau og kropsstatistikker udvikler sig.

5. Motivationselementer:

• Appens motiverende indhold og notifikationer er personliggjort baseret på

brugerens personlighedstype og respons på forskellige motivationsstrategier.

• Nogle brugere modtager opmuntrende beskeder, mens andre får mere

datadrevet feedback.

I dette eksempel gør GenUI det muligt for FitAI at skabe en højt tilpasset oplevelse for

hver bruger, hvilket potentielt øger engagement, tilfredshed og sandsynligheden for at nå

træningsmål. Grænsefladeelementer, indhold og endda appens “personlighed” tilpasser

sig for bedst at tjene hver enkelt brugers behov og præferencer.

Skiftet til resultatsorienteret design

GenUI repræsenterer et fundamentalt skift i tilgangen til brugergrænsefladedesign,

der bevæger sig fra et fokus på at skabe specifikke grænsefladeelementer til en mere

holistisk, resultatorienteret tilgang. Dette skift har flere vigtige implikationer:

1. Fokus på brugermål:

Generative UI 205

• Designere vil skulle tænke dybere over brugermål og ønskede resultater frem

for specifikke grænsefladekomponenter.

• Vægten vil være på at skabe systemer, der kan generere grænseflader, som

hjælper brugere med at nå deres mål effektivt.

• Nye UI-frameworks vil opstå, der giver AI-baserede designere de værktøjer,

de har brug for til at kunne generere brugeroplevelser på stedet og fra bunden

i stedet for baseret på foruddefinerede skærmspecifikationer.

2. Designeres ændrede rolle:

• Designere vil overgå fra at skabe faste layouts til at definere regler,

begrænsninger og retningslinjer, som AI-systemer skal følge, når de

genererer grænseflader.

• De vil skulle udvikle færdigheder inden for områder som dataanalyse, AI

prompt-udvikling og systemtænkning for effektivt at guide GenUI-systemer.

3. Vigtigheden af brugerundersøgelser:

• Brugerundersøgelser bliver endnu mere kritiske i en GenUI-kontekst, da

designere skal forstå ikke kun brugerpræferencer, men også hvordan disse

præferencer og behov ændrer sig i forskellige sammenhænge.

• Kontinuerlig brugertest og feedback-loops vil være essentielle for at forfine

og forbedre AI’ens evne til at generere effektive grænseflader.

4. Design for variabilitet:

• I stedet for at skabe en enkelt “perfekt” grænseflade vil designere skulle

overveje flere mulige variationer og sikre, at systemet kan generere passende

grænseflader til forskellige brugerbehov.

• Dette omfatter design til grænsetilfælde og sikring af, at de genererede

grænseflader opretholder brugervenlighed og tilgængelighed på tværs af

forskellige konfigurationer.

Generative UI 206

• Produktdifferentiering får nye dimensioner, der involverer divergerende

perspektiver på brugerpsykologi og udnyttelse af unikke datasæt og

videnbaser, der ikke er tilgængelige for konkurrenter.

Udfordringer og overvejelser

Mens GenUI tilbyder spændende muligheder, præsenterer det også flere udfordringer

og overvejelser:

1. Tekniske begrænsninger:

• Nuværende AI-teknologi har, selvom den er avanceret, stadig begrænsninger

i forhold til at forstå komplekse brugerintentioner og generere ægte

kontekstbevidste grænseflader.

• Ydelsesproblemer relateret til realtidsgenerering af grænsefladeelementer,

især på mindre kraftfulde enheder.

2. Datakrav:

• Afhængigt af anvendelsesformålet kan effektive GenUI-systemer

kræve betydelige mængder brugerdata for at generere personaliserede

brugergrænseflader.

• Udfordringerne ved etisk indsamling af autentiske brugerdata rejser

bekymringer om databeskyttelse og sikkerhed, samt potentielle skævheder i

de data, der bruges til at træne GenUI-modeller.

3. Brugervenlighed og Konsistens:

• I hvert fald indtil praksissen bliver udbredt, kan en applikation med

konstant skiftende brugergrænseflader føre til brugervenligheds-problemer,

da brugere kan have svært ved at finde velkendte elementer eller navigere

effektivt.

Generative UI 207

• Det vil være afgørende at finde en balance mellem personalisering og

opretholdelse af en konsistent, lærbar brugergrænseflade.

4. Overafhængighed af AI:

• Der er en risiko for overdelegering af designbeslutninger til AI-systemer,

hvilket potentielt kan føre til uinspirerede, problematiske eller simpelthen

defekte grænseflade-valg.

• Menneskelig overvågning og muligheden for at tilsidesætte AI-genererede

designs vil fortsat være vigtig i den overskuelige fremtid.

5. Tilgængelighedsbekymringer:

• At sikre at dynamisk genererede brugergrænseflader forbliver tilgængelige

for brugere med handicap præsenterer helt nye udfordringer,

hvilket er bekymrende i betragtning af det dårlige niveau af

tilgængelighedsoverholdelse, som typiske systemer udviser.

• På den anden side kan AI-designere implementeres med indbygget fokus

på tilgængelighed og muligheder for at bygge tilgængelige grænseflader på

farten, ligesom de bygger brugergrænseflader til ikke-handicappede brugere.

• Under alle omstændigheder bør GenUI-systemer designes med robuste

tilgængelighedsretningslinjer og testprocesser.

6. Brugertillid og Gennemsigtighed:

• Brugere kan føle sig utilpasse med brugergrænseflader, der synes at “vide for

meget” om dem eller ændrer sig på måder, de ikke forstår.

• At skabe gennemsigtighed omkring hvordan og hvorfor brugergrænseflader

personaliseres vil være vigtigt for at opbygge brugertillid.

Generative UI 208

Fremtidsudsigter og Muligheder

Fremtiden for Generativ UI (GenUI) rummer et enormt potentiale for at revolutionere

måden, hvorpå vi interagerer med digitale produkter og tjenester. I takt med at denne

teknologi fortsætter med at udvikle sig, kan vi forvente et skelsættende skift i hvordan

brugergrænseflader designes, implementeres og opleves. Jeg tror, at GenUI er det

fænomen, der endelig vil skubbe vores software ind i det område, der nu betragtes som

science fiction.

Et af de mest spændende aspekter ved GenUI er dets potentiale til at forbedre

tilgængelighed i en skala, der går ud over blot at sikre, at personer med alvorlige

handicap ikke er fuldstændig udelukket fra at bruge din software. Ved automatisk at

tilpasse brugergrænseflader til individuelle brugerbehov kunne GenUI gøre digitale

oplevelser mere inkluderende end nogensinde før. Forestil dig brugergrænseflader, der

problemfrit justerer sig for at give større tekst til yngre eller synshæmmede brugere

eller forenklede layouts til personer med kognitive udfordringer, alt sammen uden at

kræve manuel konfiguration eller separate “tilgængelige” versioner af applikationer.

Personaliseringsmulighederne i GenUI vil sandsynligvis drive øget brugerengagement,

tilfredshed og loyalitet på tværs af en bred vifte af digitale produkter. Efterhånden som

brugergrænseflader bliver mere afstemte med individuelle præferencer og adfærd, vil

brugere finde digitale oplevelser mere intuitive og behagelige, hvilket potentielt kan føre

til dybere og mere meningsfulde interaktioner med teknologi.

GenUI har også potentialet til at transformere onboarding-processen for nye brugere.

Ved at skabe intuitive, personaliserede førstegangsoplevelser, der hurtigt tilpasser

sig hver brugers ekspertiseniveau, kunne GenUI markant reducere indlæringskurven

forbundet med nye applikationer. Dette kunne føre til hurtigere adoptionsrater og øget

brugerselvsikkerhed i udforskningen af nye funktioner og funktionaliteter.

En anden spændende mulighed er GenUI’s evne til at opretholde en konsistent

brugeroplevelse på tværs af forskellige enheder og platforme, mens der optimeres for

Generative UI 209

hver specifik brugskontekst. Dette kunne løse den langvarige udfordring med at levere

sammenhængende oplevelser på tværs af et stadig mere fragmenteret enhedslandskab,

fra smartphones og tablets til stationære computere og fremspirende teknologier som

AR-briller.

Den datadrevne natur af GenUI åbner muligheder for hurtig iteration og forbedring i UI-

design. Ved at indsamle realtidsdata om, hvordan brugere interagerer med genererede

brugergrænseflader, kan designere og udviklere få hidtil usete indsigter i brugeradfærd

og præferencer. Denne feedback-loop kunne føre til kontinuerlige forbedringer i UI-

design, drevet af faktiske brugsmønstre frem for antagelser eller begrænset brugertest.

For at forberede sig på dette skift vil designere skulle udvikle deres færdigheder

og tankesæt. Fokus vil skifte fra at skabe faste layouts til at udvikle omfattende

designsystemer og retningslinjer, der kan informere AI-drevet grænsefladegenerering.

Designere vil skulle opbygge en dyb forståelse af dataanalyse, AI-teknologier og

systemtænkning for effektivt at kunne guide GenUI-systemer.

Desuden, efterhånden som GenUI udvisker grænserne mellem design og teknologi, vil

designere skulle samarbejde tættere med udviklere og data scientists. Denne tværfaglige

tilgang vil være afgørende i skabelsen af GenUI-systemer, der ikke kun er visuelt

tiltalende og brugervenlige, men også teknisk robuste og etisk forsvarlige.

De etiske konsekvenser af GenUI vil også komme i forgrunden, efterhånden som

teknologien modnes. Designere vil spille en afgørende rolle i udviklingen af rammer

for ansvarlig brug af kunstig intelligens i grænseflade-design, hvor de sikrer, at

personalisering forbedrer brugeroplevelser uden at kompromittere privatlivets fred

eller manipulere brugeradfærd på uetiske måder.

Når vi sermod fremtiden, præsenterer GenUI både spændendemuligheder og betydelige

udfordringer. Det har potentialet til at skabe mere intuitive, effektive og tilfredsstillende

digitale oplevelser for brugere over hele verden. Selvom det vil kræve, at designere

tilpasser sig og tilegner sig nye færdigheder, giver det også en hidtil uset mulighed for at

forme fremtiden for menneske-computer-interaktion på dybdegående og meningsfulde

Generative UI 210

måder. Rejsen mod fuldt realiserede GenUI-systemer vil uden tvivl være kompleks, men

de potentielle gevinster i form af forbedrede brugeroplevelser og digital tilgængelighed

gør det til en fremtid, der er værd at stræbe efter.

Intelligent
arbejdsgangsorkestrerering

Inden for applikationsudvikling spiller arbejdsgange en afgørende rolle i at definere,

hvordan opgaver, processer og brugerinteraktioner struktureres og udføres. I takt med

at applikationer bliver mere komplekse, og brugerforventningerne fortsætter med at

stige, bliver behovet for intelligent og adaptiv arbejdsgangsorkestrerering stadig mere

åbenlyst.

Tilgangen med “Intelligent arbejdsgangsorkestrerering” fokuserer på at udnytte

AI-komponenter til dynamisk at orkestrere og optimere komplekse arbejdsgange i

applikationer. Målet er at skabe applikationer, der er mere effektive, responsive og

tilpasningsdygtige i forhold til realtidsdata og kontekst.

I dette kapitel vil vi udforske de centrale principper og mønstre, der understøtter den

intelligente arbejdsgangsorkestreringstilgang. Vi vil undersøge, hvordan AI kan bruges

Intelligent arbejdsgangsorkestrerering 212

til intelligent at dirigere opgaver, automatisere beslutningstagning og dynamisk tilpasse

arbejdsgange baseret på forskellige faktorer såsom brugeradfærd, systemydeevne og

forretningsregler. Gennem praktiske eksempler og virkelige scenarier vil vi demonstrere

AI’s transformative potentiale i at strømline og optimere applikationers arbejdsgange.

Uanset om du bygger virksomhedsapplikationer med komplekse forretningsprocesser

eller forbrugerrettede applikationer med dynamiske brugerrejser, vil mønstrene og

teknikkerne, der diskuteres i dette kapitel, udruste dig med den viden og de værktøjer,

der skal til for at skabe intelligente og effektive arbejdsgange, som forbedrer den

overordnede brugeroplevelse og skaber forretningsværdi.

Forretningsmæssigt behov

Traditionelle tilgange til arbejdsgangsstyring er ofte afhængige af foruddefinerede regler

og statiske beslutningstræer, som kan være rigide, ufleksible og ude af stand til at

håndtere moderne applikationers dynamiske natur.

Overvej et scenarie, hvor en e-handelsapplikation skal håndtere en kompleks

ordreekspeditionsproces. Arbejdsgangen kan involvere flere trin såsom ordrevalidering,

lagerkontrol, betalingsbehandling, forsendelse og kundenotifikationer. Hvert

trin kan have sine egne regler, afhængigheder, eksterne integrationer og

undtagelseshåndteringsmekanismer. At administrere sådan en arbejdsgang manuelt

eller gennem hardkodet logik kan hurtigt blive besværligt, fejlbehæftet og svært at

vedligeholde.

Desuden kan arbejdsgangen, efterhånden som applikationen skalerer og antallet af

samtidige brugere vokser, have behov for at tilpasse og optimere sig selv baseret på

realtidsdata og systemydeevne. For eksempel kan applikationen under perioder med

spidsbelastning have behov for dynamisk at justere arbejdsgangen for at prioritere

bestemte opgaver, allokere ressourcer effektivt og sikre en gnidningsfri brugeroplevelse.

Det er her tilgangen med “Intelligent arbejdsgangsorkestrerering” kommer ind i billedet.

Intelligent arbejdsgangsorkestrerering 213

Ved at udnytte AI-komponenter kan udviklere skabe arbejdsgange, der er intelligente,

adaptive og selvoptimerende. AI kan analysere store mængder data, lære af tidligere

erfaringer og træffe informerede beslutninger i realtid for at orkestrere arbejdsgangen

effektivt.

Centrale fordele

1. Øget effektivitet: AI kan optimere opgaveallokering, ressourceudnyttelse og

arbejdsgangseksekvering, hvilket fører til hurtigere behandlingstider og forbedret

samlet effektivitet.

2. Tilpasningsevne: AI-drevne arbejdsgange kan dynamisk tilpasse sig

skiftende forhold, såsom udsving i brugerefterspørgsel, systemydeevne eller

forretningskrav, hvilket sikrer, at applikationen forbliver responsiv og robust.

3. Automatiseret beslutningstagning: AI kan automatisere komplekse

beslutningsprocesser inden for arbejdsgangen, reducere manuel indgriben

og minimere risikoen for menneskelige fejl.

4. Personalisering: AI kan analysere brugeradfærd, præferencer og kontekst for at

personalisere arbejdsgangen og levere skræddersyede oplevelser til individuelle

brugere.

5. Skalerbarhed: AI-drevne arbejdsgange kan skalere problemfrit for at håndtere

stigende mængder af data og brugerinteraktioner uden at gå på kompromis med

ydeevne eller pålidelighed.

I de følgende afsnit vil vi udforske de centrale mønstre og teknikker, der muliggør

implementeringen af intelligente arbejdsgange og vise virkelige eksempler på, hvordan

AI transformerer arbejdsgangsstyring i moderne applikationer.

Intelligent arbejdsgangsorkestrerering 214

Centrale mønstre

For at implementere intelligent arbejdsgangsorkestrerering i applikationer kan

udviklere udnytte flere centrale mønstre, der udnytter AI’s kraft. Disse mønstre

giver en struktureret tilgang til at designe og administrere arbejdsgange, hvilket gør

det muligt for applikationer at tilpasse, optimere og automatisere processer baseret

på realtidsdata og kontekst. Lad os udforske nogle af de grundlæggende mønstre i

intelligent arbejdsgangsorkestrerering.

Dynamisk opgavefordeling

Dette mønster involverer brugen af AI til intelligent at dirigere opgaver inden

for en arbejdsgang baseret på forskellige faktorer såsom opgaveprioritet,

ressourcetilgængelighed og systemydeevne. AI-algoritmer kan analysere

karakteristikaene for hver opgave, overveje systemets aktuelle tilstand og træffe

informerede beslutninger om at tildele opgaver til de mest passende ressourcer eller

behandlingsveje. Dynamisk opgavefordeling sikrer, at opgaver distribueres og udføres

effektivt, hvilket optimerer den samlede arbejdsgangsydeevne.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

Intelligent arbejdsgangsorkestrerering 215

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Bemærk løkken, der er skabt af while-udtrykket på linje 29, som fortsætter med at

spørge AI’en, indtil opgaven er tildelt. På linje 35 gemmer vi transkriptionen af opgaven

til senere analyse og fejlfinding, hvis det bliver nødvendigt.

Kontekstbaseret Beslutningstagning

Du kan bruge meget lignende kode til at træffe kontekstbevidste beslutninger i en

arbejdsgang. Ved at analysere relevante datapunkter såsom brugerindstillinger,

historiske mønstre og realtidsinput kan AI-komponenter bestemme den mest

hensigtsmæssige handlingsvej ved hvert beslutningspunkt i arbejdsgangen. Tilpas

din arbejdsgangs adfærd baseret på den specifikke kontekst for hver bruger eller

scenario, og levér personlige og optimerede oplevelser.

Intelligent arbejdsgangsorkestrerering 216

Adaptiv Arbejdsgangssammensætning

Dette mønster fokuserer på dynamisk at sammensætte og justere arbejdsgange baseret

på skiftende krav eller forhold. AI kan analysere arbejdsgangens nuværende tilstand,

identificere flaskehalse eller ineffektivitet og automatisk modificere arbejdsgangens

struktur for at optimere ydeevnen. Adaptiv arbejdsgangssammensætning tillader

applikationer at udvikle sig kontinuerligt og forbedre deres processer uden at kræve

manuel indgriben.

Håndtering og Genopretning af Undtagelser

Håndtering og genopretning af undtagelser er kritiske aspekter af intelligent

arbejdsgangsorkesterering. Når man arbejder med AI-komponenter og komplekse

arbejdsgange, er det essentielt at forudse og håndtere undtagelser elegant for at sikre

systemets stabilitet og pålidelighed.

Her er nogle vigtige overvejelser og teknikker til håndtering og genopretning af

undtagelser i intelligente arbejdsgange:

1. Undtagelsespropagering: Implementér en konsistent tilgang til at propagere

undtagelser på tværs af arbejdsgangskomponenter. Når en undtagelse opstår inden

for en komponent, bør den fanges, logges og propageres til orkestratoren eller en

diskret komponent ansvarlig for at håndtere undtagelser. Idéen er at centralisere

undtagelseshåndtering og forhindre, at undtagelser bliver stiltiende opslugt, samt

åbne muligheder for Intelligent Fejlhåndtering.

2. Gentagelsesmekanismer: Gentagelsesmekanismer hjælper med at forbedre

arbejdsgangens robusthed og håndtere midlertidige fejl elegant. Det er

absolut en god idé at implementere gentagelsesmekanismer for forbigående

eller genoprettelige undtagelser, såsom problemer med netværksforbindelse

eller utilgængelighed af ressourcer, som automatisk kan forsøges igen

Intelligent arbejdsgangsorkestrerering 217

efter en specificeret forsinkelse. At have en AI-drevet orkestrator eller

undtagelseshåndtering betyder, at dine gentagelsesstrategier ikke behøver

at være mekaniske i deres natur eller afhængige af faste algoritmer som

eksponentiel tilbagefald. Du kan overlade håndteringen af gentagelsen til AI-

komponentens “skøn”, som er ansvarlig for at beslutte, hvordan undtagelsen skal

håndteres.

3. Tilbagefaldsstrategier: Hvis en AI-komponent ikke kan levere et gyldigt svar

eller støder på en fejl—hvilket er en almindelig hændelse givet dens banebrydende

natur—skal der være en tilbagefaldsmekanisme på plads for at sikre, at

arbejdsgangen kan fortsætte. Dette kan involvere brug af standardværdier,

alternative algoritmer eller en Menneske I Loopet til at træffe beslutninger og

holde arbejdsgangen i gang.

4. Kompenserende Handlinger: Orkestratorens direktiver bør inkludere

instruktioner om kompenserende handlinger til at håndtere undtagelser,

der ikke kan løses automatisk. Kompenserende handlinger er trin, der tages for at

fortryde eller afbøde virkningerne af en mislykket operation. For eksempel, hvis

et betalingsprocesseringstrin mislykkes, kunne en kompenserende handling være

at tilbagerulle transaktionen og underrette brugeren. Kompenserende handlinger

hjælper med at opretholde datakonsistens og integritet i tilfælde af undtagelser.

5. Undtagelsesovervågning og -alarmering: Opsæt overvågnings- og

alarmeringsmekanismer til at opdage og underrette relevante interessenter

om kritiske undtagelser. Orkestratoren kan gøres opmærksom på tærskler og

regler for at udløse alarmer, når undtagelser overskrider visse grænser, eller når

specifikke typer af undtagelser opstår. Dette muliggør proaktiv identifikation og

løsning af problemer, før de påvirker det samlede system.

Her er et eksempel på håndtering og genopretning af undtagelser i en Ruby-

arbejdsgangskomponent:

Intelligent arbejdsgangsorkestrerering 218

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

I dette eksempel kontrollerer InventoryManager-komponenten tilgængeligheden af et

produkt for en given ordre. Hvis den tilgængelige mængde er utilstrækkelig, udløser

den en InsufficientInventoryError. Undtagelsen bliver fanget, logget, og en

gentagelsesmekanisme implementeres. Hvis grænsen for gentagelsesforsøg overskrides,

falder komponenten tilbage til manuel indgriben ved at underrette en administrator.

Ved at implementere robust undtagelseshåndtering og genopretningsmekanismer, kan

du sikre, at dine intelligente arbejdsgange er robuste, vedligeholdelsesvenlige og i stand

Intelligent arbejdsgangsorkestrerering 219

til at håndtere uventede situationer på en elegant måde.

Disse mønstre danner grundlaget for intelligent arbejdsgangsorkestering og kan

kombineres og tilpasses til at opfylde de specifikke krav i forskellige applikationer. Ved

at udnytte disse mønstre kan udviklere skabe arbejdsgange, der er fleksible, robuste og

optimerede med hensyn til ydeevne og brugeroplevelse.

I det næste afsnit vil vi undersøge, hvordan disse mønstre kan implementeres i praksis

ved hjælp af eksempler fra den virkelige verden og kodestykker for at illustrere

integrationen af AI-komponenter i workflowstyring.

Implementering af Intelligent

Arbejdsgangsorkestering i Praksis

Nu hvor vi har udforsket de vigtigste mønstre i intelligent arbejdsgangsorkestering,

lad os dykke ned i, hvordan disse mønstre kan implementeres i applikationer fra

den virkelige verden. Vi vil give praktiske eksempler og kodestykker for at illustrere

integrationen af AI-komponenter i workflowstyring.

Intelligent Ordrebehandler

Lad os dykke ned i et praktisk eksempel på implementering af intelligent

arbejdsgangsorkestering ved hjælp af en AI-drevet OrderProcessor-komponent

i en Ruby on Rails e-handelsapplikation. OrderProcessoren realiserer Process

Manager Enterprise Integration-konceptet, som vi først mødte i Kapitel 3, da

vi diskuterede Multitude of Workers. Komponenten vil være ansvarlig for at

administrere ordreekspeditionsarbejdsgangen, træffe rutningsbeslutninger baseret på

mellemliggende resultater og orkesterere udførelsen af forskellige behandlingstrin.

Intelligent arbejdsgangsorkestrerering 220

Ordreekspeditionsprocessen involverer flere trin såsom ordrevalidering, lagerkontrol,

betalingsbehandling og forsendelse. Hvert trin er implementeret som en separat

arbejderproces, der udfører en specifik opgave og returnerer resultatet til

OrderProcessoren. Trinnene er ikke obligatoriske og behøver ikke engang

nødvendigvis at blive udført i en præcis rækkefølge.

Her er et eksempel på implementering af OrderProcessoren. Den har to mixins fra

Raix. Den første (ChatCompletion) giver den mulighed for at udføre chat completion,

hvilket er det, der gør dette til en AI-komponent. Den anden (FunctionDispatch)

muliggør function calling fra AI’en, hvilket tillader den at reagere på en prompt med en

funktionsinvokering i stedet for en tekstbesked.

Arbejderfunktionerne (validate_order, check_inventory, et al) delegerer til deres

respektive arbejderklasser, som kan være AI- eller ikke-AI-komponenter, med det eneste

krav værende, at de returnerer resultaterne af deres arbejde i et format, der kan

repræsenteres som en streng.

Som med alle andre eksempler i denne del af bogen er denne kode praktisk

talt pseudo-kode og er kun meant til at formidle mønsterets betydning

og inspirere dine egne kreationer. Komplette beskrivelser af mønstre og

fuldstændige kodeeksempler er inkluderet i Del 2.

https://github.com/OlympiaAI/raix-rails

Intelligent arbejdsgangsorkestrerering 221

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

Intelligent arbejdsgangsorkestrerering 222

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

58 stop_looping!

59 end

60 end

I eksemplet initialiseres OrderProcessor med et ordreobjekt og vedligeholder en

transskription af arbejdsgangens udførelse i det typiske samtaleformat, som er

karakteristisk for store sprogmodeller. AI’en får fuld kontrol over orchestreringen af de

forskellige behandlingstrin, såsom ordrevalidering, lagerkontrol, betalingsbehandling

og forsendelse.

Hver gang chat_completion-metoden kaldes, sendes transskriptionen til AI’en, så den

kan levere en færdiggørelse som et funktionskald. Det er helt op til AI’en at analysere

resultatet af det foregående trin og bestemme den passende handling. For eksempel,

hvis lagerkontrollen afslører lave lagerniveauer, kan OrderProcessor planlægge en

genopfyldningsopgave. Hvis betalingsbehandlingen mislykkes, kan den igangsætte et

nyt forsøg eller underrette kundesupport.

Intelligent arbejdsgangsorkestrerering 223

Eksemplet ovenfor har ikke definerede funktioner til genopfyldning eller

underretning af kundesupport, men det kunne det sagtens have.

Transskriptionen vokser hver gang en funktion kaldes og fungerer som en registrering

af arbejdsgangens udførelse, herunder resultaterne af hvert trin og AI-genererede

instruktioner til de næste trin. Denne transskription kan bruges til fejlfinding, revision

og til at give indblik i ordreafviklingsprocessen.

Ved at udnytte AI i OrderProcessor kan e-handelsapplikationen dynamisk tilpasse

arbejdsgangen baseret på realtidsdata og håndtere undtagelser intelligent. AI-

komponenten kan træffe velinformerede beslutninger, optimere arbejdsgangen og sikre

en problemfri ordrebehandling selv i komplekse scenarier.

Det faktum, at det eneste krav til arbejdsprocesserne er at returnere et forståeligt output,

som AI’en kan overveje, når den beslutter, hvad der skal gøres næste gang, kan få dig

til at indse, hvordan denne tilgang kan reducere det input/output-kortlægningsarbejde,

der typisk er involveret, når forskellige systemer skal integreres med hinanden.

Intelligent Indholdsmoderator

Sociale medieapplikationer kræver generelt mindst minimal indholdsmoderation for

at sikre et sikkert og sundt fællesskab. Dette eksempel på en ContentModerator-

komponent udnytter AI til intelligent at orchestrere moderationsarbejdsgangen ved at

træffe beslutninger baseret på indholdets karakteristika og resultaterne af forskellige

moderationstrin.

Moderationsprocessen involverer flere trin såsom tekstanalyse, billedgenkendelse,

vurdering af brugerens omdømme og manuel gennemgang. Hvert trin er implementeret

som en separat arbejdsproces, der udfører en specifik opgave og returnerer resultatet til

ContentModerator.

Intelligent arbejdsgangsorkestrerering 224

Her er et eksempel på implementeringen af ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

Intelligent arbejdsgangsorkestrerering 225

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

Intelligent arbejdsgangsorkestrerering 226

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

I dette eksempel initialiseres ContentModerator med et indholdsobjekt og

vedligeholder en moderationslog i samtaleformat. AI-komponenten har fuld kontrol

over moderationsarbejdsgangen og beslutter, hvilke trin der skal udføres baseret på

indholdets karakteristika og resultaterne af hvert trin.

De tilgængelige arbejderfunktioner, som AI’en kan kalde, omfatter analyze_text,

recognize_image, assess_user_reputation og escalate_to_manual_-

review. Hver funktion delegerer opgaven til en tilsvarende arbejderproces

(TextAnalysisWorker, ImageRecognitionWorker osv.) og tilføjer resultatet

til moderationsloggen, med undtagelse af eskaleringsfunktionen, som fungerer som en

sluttilstand. Endelig fungerer funktionerne approve_content og reject_content

også som sluttilstande.

AI-komponenten analyserer indholdet og fastlægger den passende handling. Hvis

indholdet indeholder billedhenvisninger, kan den kalde recognize_image-arbejderen

for at få hjælp til en visuel gennemgang. Hvis nogen arbejder advarer om potentielt

skadeligt indhold, kan AI’en beslutte at eskalere indholdet til manuel gennemgang eller

blot afvise det med det samme. Men afhængigt af advarslens alvorlighed kan AI’en

vælge at bruge resultaterne af brugerens omdømmevurdering til at beslutte, hvordan den

skal håndtere indhold, som den ellers er usikker på. Afhængigt af anvendelsesscenariet

har betroede brugere måske mere spillerum i forhold til, hvad de kan dele. Og så videre,

og så videre…

Intelligent arbejdsgangsorkestrerering 227

Som med det tidligere eksempel med processtyring fungerer moderationsloggen som

en registrering af arbejdsgangens udførelse, herunder resultaterne af hvert trin og de

AI-genererede beslutninger. Denne log kan bruges til revision, gennemsigtighed og

forbedring af moderationsprocessen over tid.

Ved at udnytte AI i ContentModerator kan sociale medie-applikationen dynamisk

tilpasse moderationsarbejdsgangen baseret på indholdets karakteristika og intelligent

håndtere komplekse moderationsscenarier. AI-komponenten kan træffe velinformerede

beslutninger, optimere arbejdsgangen og sikre en sikker og sund fællesskabsoplevelse.

Lad os udforske to eksempler mere, der demonstrerer prædiktiv opgaveplanlægning

og fejlhåndtering og -genopretning inden for rammerne af intelligent

arbejdsgangsorkestrating.

Prædiktiv opgaveplanlægning i et kundesupportsystem

I en kundesupportapplikation bygget med Ruby on Rails er effektiv håndtering og

prioritering af supporthenvendelser afgørende for at yde rettidig assistance til kunder.

SupportTicketScheduler-komponenten udnytter AI til prædiktivt at planlægge og

tildele supporthenvendelser til tilgængelige supportmedarbejdere baseret på forskellige

faktorer såsom henvendelsens hastende karakter, medarbejderens ekspertise og

arbejdsbyrde.

Intelligent arbejdsgangsorkestrerering 228

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

Intelligent arbejdsgangsorkestrerering 229

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

Intelligent arbejdsgangsorkestrerering 230

I dette eksempel initialiseres SupportTicketSchedulermed et supportanmodningsobjekt

og vedligeholder en planlægningslog. AI-komponenten analyserer anmodningens

detaljer og planlægger forudsigende opgavetildelingen baseret på faktorer

som anmodningens hastende karakter, medarbejderkompetence og forventet

medarbejderarbejdsbelastning.

De tilgængelige funktioner, som AI’en kan anvende, omfatter analyze_-

ticket_urgency, list_available_agents, predict_agent_workload og

assign_ticket_to_agent. Hver funktion delegerer opgaven til en tilsvarende

analyse- eller prædiktionskomponent og tilføjer resultatet til planlægningsloggen.

AI’en har også mulighed for at udsætte tildelingen ved hjælp af delay_assignment-

funktionen.

AI-komponenten undersøger planlægningsloggen og træffer velinformerede

beslutninger om opgavetildeling. Den tager højde for anmodningens hastende karakter,

de tilgængelige medarbejderes kompetencer og den forventede arbejdsbelastning

for hver medarbejder for at bestemme den mest egnede medarbejder til at håndtere

opgaven.

Ved at udnytte forudsigende opgaveplanlægning kan kundesupportapplikationen

optimere opgavetildeling, reducere svartider og forbedre den generelle kundetilfredshed.

Proaktiv og effektiv håndtering af supportanmodninger sikrer, at de rigtige opgaver

tildeles de rigtige medarbejdere på det rigtige tidspunkt.

Fejlhåndtering og Genopretning i en
Databehandlingspipeline

Håndtering af fejl og genopretning efter nedbrud er afgørende for at sikre dataintegritet

og forhindre tab af data. DataProcessingOrchestrator-komponenten bruger

AI til intelligent at håndtere fejl og orchestrere genopretningsprocessen i en

databehandlingspipeline

Intelligent arbejdsgangsorkestrerering 231

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Intelligent arbejdsgangsorkestrerering 232

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Intelligent arbejdsgangsorkestrerering 233

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

I dette eksempel initialiseres DataProcessingOrchestrator med et databatch-

objekt og vedligeholder en behandlingsprotokol. AI-komponenten orchestrerer

databehandlingspipelinen, håndterer undtagelser og genopretter fra fejl efter behov.

De tilgængelige funktioner, som AI’en kan kalde, omfatter validate_data,

process_data, request_fix, retry_processing og mark_data_as_failed.

Hver funktion delegerer opgaven til en tilsvarende databehandlingskomponent og

tilføjer resultatet eller undtagelsesdetaljerne til behandlingsprotokollen.

Hvis der opstår en valideringsundtagelse under validate_data-trinnet, tilføjer

handle_validation_exception-funktionen undtagelsesdataene til protokollen og

returnerer kontrollen til AI’en. Tilsvarende, hvis der opstår en behandlingsundtagelse

under process_data-trinnet, kan AI’en beslutte genopretningsstrategien.

Afhængigt af den opståede undtagelses art kan AI’en efter eget skøn beslutte at

kalde request_fix, som delegerer til en AI-drevet SmartDataFixer-komponent (se

kapitlet om Selvhelende Data). Datafixeren får en almindelig dansk beskrivelse af,

Intelligent arbejdsgangsorkestrerering 234

hvordan den skal modificere @data_batch, så behandlingen kan genoptages. Måske

ville en vellykket genoptagelse indebære at fjerne poster fra databatchen, som ikke har

bestået valideringen og/eller kopiere dem til en anden behandlingspipeline til manuel

gennemgang? Mulighederne er næsten uendelige.

Ved at inkorporere AI-drevet undtagelseshåndtering og genopretning

bliver databehandlingsapplikationen mere modstandsdygtig og fejltolerant.

DataProcessingOrchestrator håndterer intelligent undtagelser, minimerer

datatab og sikrer en problemfri udførelse af databehandlingsarbejdsgangen.

Overvågning og Logføring

Overvågning og logføring giver indblik i fremskridt, ydeevne og sundhed af AI-drevne

arbejdsgangskomponenter, hvilket gør det muligt for udviklere at spore og analysere

systemets adfærd. Implementering af effektive overvågnings- og logføringsmekanismer

er afgørende for fejlfinding, revision og kontinuerlig forbedring af intelligente

arbejdsgange.

Overvågning af Arbejdsgangens Fremskridt og Ydeevne

For at sikre en problemfri udførelse af intelligente arbejdsgange er det vigtigt at overvåge

fremskridt og ydeevne for hver arbejdsgangskomponent. Dette indebærer at spore

nøgletal og begivenheder gennem arbejdsgangens livscyklus.

Vigtige aspekter at overvåge omfatter:

1. Arbejdsgangens Udførelsestid: Mål den tid, hver arbejdsgangskomponent bruger

på at fuldføre sin opgave. Dette hjælper med at identificere flaskehalse i ydeevnen og

optimere den samlede arbejdsgangseffektivitet.

2. Ressourceforbrug:Overvåg forbruget af systemressourcer, såsom CPU, hukommelse

og lagerplads, for hver arbejdsgangskomponent. Dette hjælper med at sikre, at systemet

opererer inden for sin kapacitet og effektivt kan håndtere arbejdsbyrden.

Intelligent arbejdsgangsorkestrerering 235

3. Fejlrater og Undtagelser: Spor forekomsten af fejl og undtagelser inden for

arbejdsgangskomponenter. Dette hjælper med at identificere potentielle problemer og

muliggør proaktiv fejlhåndtering og genopretning.

4. Beslutningspunkter og Resultater: Overvåg beslutningspunkterne i arbejdsgangen

og resultaterne af AI-drevne beslutninger. Dette giver indsigt i AI-komponenternes

adfærd og effektivitet.

De data, der opfanges af overvågningsprocesser, kan vises i dashboards eller bruges

som input til planlagte rapporter, der informerer systemadministratorer om systemets

sundhed.

Overvågningsdata kan fødes til en AI-drevet systemadministratorproces til

gennemgang og potentiel handling!

Logføring af Vigtige Begivenheder og Beslutninger

Logføring er en essentiel praksis, der involverer opfangning og lagring af relevant

information om vigtige begivenheder, beslutninger og undtagelser, der opstår under

arbejdsgangens udførelse.

Vigtige aspekter at logføre omfatter:

1. Arbejdsgangens Initiering og Fuldførelse: Log start- og sluttidspunkter for

hver arbejdsgangsinstans, sammen med relevant metadata såsom inputdata og

brugerkontekst.

2. Komponentudførelse: Log udførelsesdetaljerne for hver arbejdsgangskomponent,

herunder inputparametre, outputresultater og eventuelle mellemliggende data, der

genereres.

3. AI-beslutninger og Ræsonnement: Log de beslutninger, der træffes af AI-

komponenter, sammen med den underliggende begrundelse eller konfidensscorer. Dette

giver gennemsigtighed og muliggør revision af AI-drevne beslutninger.

Intelligent arbejdsgangsorkestrerering 236

4. Undtagelser og Fejlmeddelelser: Log eventuelle undtagelser eller fejlmeddelelser,

der opstår under arbejdsgangens udførelse, herunder staksporing og relevant

kontekstinformation.

Logføring kan implementeres ved hjælp af forskellige teknikker, såsom at skrive til

logfiler, gemme logs i en database eller sende logs til en centraliseret logføringstjeneste.

Det er vigtigt at vælge et logføringsframework, der giver fleksibilitet, skalerbarhed og

nem integration med applikationens arkitektur.

Her er et eksempel på, hvordan logføring kan implementeres i en Ruby on Rails-

applikation ved hjælp af ActiveSupport::Logger-klassen:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Ved strategisk at placere logningserklæringer gennem arbejdsgangskomponenterne og

AI-beslutningspunkterne kan udviklere indfange værdifuld information til fejlfinding,

revision og analyse.

Fordele ved Overvågning og Logning

Implementering af overvågning og logning i intelligent arbejdsgangsorkestrering giver

flere fordele:

Intelligent arbejdsgangsorkestrerering 237

1. Fejlfinding og Fejlsøgning: Detaljerede logs og overvågningsdata hjælper udviklere

med hurtigt at identificere og diagnosticere problemer. De giver indsigt i arbejdsgangens

udførelsesflow, komponentinteraktioner og eventuelle fejl eller undtagelser, der opstår.

2. Ydeevneoptimering: Overvågning af ydeevnemetrikker giver udviklere mulighed

for at identificere flaskehalse og optimere arbejdsgangskomponenterne for bedre

effektivitet. Ved at analysere udførelsestider, ressourceforbrug og andre metrikker

kan udviklere træffe informerede beslutninger for at forbedre systemets overordnede

ydeevne.

3. Revision og Overholdelse: Logning af vigtige hændelser og beslutninger giver et

revisionsspor for regulatorisk overholdelse og ansvarlighed. Det gør det muligt for

organisationer at spore og verificere de handlinger, der udføres af AI-komponenter og

sikre overholdelse af forretningsregler og lovkrav.

4. Kontinuerlig Forbedring: Overvågnings- og logningsdata fungerer som værdifulde

input til kontinuerlig forbedring af intelligente arbejdsgange. Ved at analysere historiske

data, identificere mønstre og måle effektiviteten af AI-beslutninger kan udviklere

iterativt forfine og forbedre arbejdsgangsorkestreringslogikken.

Overvejelser og Bedste Praksis

Ved implementering af overvågning og logning i intelligent arbejdsgangsorkestrering

bør følgende bedste praksis overvejes:

1. Definer Klare Overvågningsmetrikker: Identificer de vigtigste metrikker og

hændelser, der skal overvåges baseret på arbejdsgangens specifikke krav. Fokuser på

metrikker, der giver meningsfuld indsigt i systemets ydeevne, sundhed og adfærd.

2. Implementer Detaljeret Logning: Sørg for at logningserklæringer er placeret på

passende steder inden for arbejdsgangskomponenterne og AI-beslutningspunkterne.

Indfang relevant kontekstinformation, såsom inputparametre, outputresultater og

eventuelle mellemliggende data, der genereres.

Intelligent arbejdsgangsorkestrerering 238

3. Brug Struktureret Logning: Anvend et struktureret logningsformat for at lette nem

parsing og analyse af logdata. Struktureret logning muliggør bedre søgbarhed, filtrering

og aggregering af logposter.

4. Administrer Logopbevaring og -rotation: Implementer politikker for logopbevaring

og -rotation for at administrere lagring og livscyklus af logfiler. Fastlæg den passende

opbevaringsperiode baseret på lovkrav, lagringsbegrænsninger og analysebehov. Hvis

muligt, udliciter logning til en tredjepartstjeneste som Papertrail.

5. Sikr Følsom Information: Vær forsigtig ved logning af følsom information, såsom

personhenførbare oplysninger (PII) eller fortrolige forretningsdata. Implementer

passende sikkerhedsforanstaltninger, såsom datamaskning eller kryptering, for at

beskytte følsom information i logfiler.

6. Integrer med Overvågnings- og Alarmeringsværktøjer: Udnyt overvågnings-

og alarmeringsværktøjer til at centralisere indsamling, analyse og visualisering af

overvågnings- og logningsdata. Disse værktøjer kan give realtidsindsigt, generere

alarmer baseret på foruddefinerede tærskler og lette proaktiv problemdetektion og

-løsning. Mit foretrukne af disse værktøjer er Datadog.

Ved at implementere omfattende overvågnings- og logningsmekanismer kan udviklere

opnå værdifuld indsigt i adfærden og ydeevnen af intelligente arbejdsgange. Disse

indsigter muliggør effektiv fejlfinding, optimering og kontinuerlig forbedring af AI-

drevne arbejdsgangsorkestreringsystemer.

Skalerbarhed og Ydeevneovervejelser

Skalerbarhed og ydeevne er kritiske aspekter at overveje ved design og implementering

af intelligente arbejdsgangsorkestreringsystemer. Efterhånden som mængden af

samtidige arbejdsgange og kompleksiteten af AI-drevne komponenter øges, bliver

det essentielt at sikre, at systemet kan håndtere arbejdsbyrden effektivt og skalere

problemfrit for at imødekomme voksende krav.

https://papertrailapp.com
https://www.datadoghq.com

Intelligent arbejdsgangsorkestrerering 239

Håndtering af Store Mængder Samtidige Arbejdsgange

Intelligente arbejdsgangsorkestreringsystemer skal ofte håndtere et stort antal samtidige

arbejdsgange. For at sikre skalerbarhed bør følgende strategier overvejes:

1. Asynkron Behandling: Implementer asynkrone behandlingsmekanismer for at

afkoble udførelsen af arbejdsgangskomponenter. Dette gør det muligt for systemet

at håndtere flere arbejdsgange samtidigt uden at blokere eller vente på, at hver

komponent færdiggøres. Asynkron behandling kan opnås ved hjælp af meddelelseskøer,

hændelsesdrevne arkitekturer eller baggrundsjobbehandlingsframeworks som Sidekiq.

2. Distribueret Arkitektur: Design systemarkitekturen til at bruge serverløse

komponenter (såsom AWS Lambda) eller simpelthen distribuere arbejdsbyrden på

tværs af flere noder eller servere sammen med din hovedapplikationsserver. Dette

muliggør horisontal skalerbarhed, hvor yderligere noder kan tilføjes for at håndtere

øgede arbejdsgangsmængder.

3. Parallel Udførelse: Identificer muligheder for parallel udførelse inden for

arbejdsgange. Nogle arbejdsgangskomponenter kan være uafhængige af hinanden og

kan udføres samtidigt. Ved at udnytte parallelle behandlingsteknikker, såsom multi-

threading eller distribuerede opgavekøer, kan systemet optimere ressourceudnyttelsen

og reducere den samlede arbejdsgangsudførelsestid.

Optimering af Ydeevne for AI-drevne Komponenter

AI-drevne komponenter, såsom maskinlæringsmodeller eller sprogbehandlingsmotorer,

kan være beregningstunge og påvirke den overordnede ydeevne af

arbejdsprocesstyringssystemet. For at optimere ydeevnen af AI-komponenter bør

følgende teknikker overvejes:

1. Caching: Hvis din AI-behandling er rent generativ og ikke involverer realtidsopslag

eller eksterne integrationer for at generere chat-fuldførelser, kan du undersøge

Intelligent arbejdsgangsorkestrerering 240

cachingmekanismer til at gemme og genbruge resultater fra hyppigt anvendte eller

beregningstunge operationer.

2. Modeloptimering: Optimer løbende den måde, du bruger AI-modeller i

arbejdsprocesskomponenter. Dette kan involvere teknikker som Prompt-destillation

eller det kan simpelthen være et spørgsmål om at teste nye modeller, efterhånden som

de bliver tilgængelige.

3. Batchbehandling: Hvis du arbejder med GPT-4-klasse modeller, kan du muligvis

udnytte batchbehandlingsteknikker til at behandle flere datapunkter eller forespørgsler

i en enkelt batch i stedet for at behandle dem individuelt. Ved at behandle data i batches

kan systemet optimere ressourceudnyttelsen og reducere overheaden fra gentagne

modelforespørgsler.

Overvågning og Profilering af Ydeevne

For at identificere flaskehalse i ydeevnen og optimere skalerbarheden af det intelligente

arbejdsprocesstyringssystem, er det afgørende at implementere overvågnings- og

profileringsmekanismer. Overvej følgende tilgange:

1. Ydelsesmålinger: Definer og spor centrale ydelsesmålinger, såsom svartid,

gennemløb, ressourceudnyttelse og latenstid. Disse målinger giver indsigt i systemets

ydeevne og hjælper med at identificere områder til optimering. Den populære AI-

model-aggregator OpenRouter inkluderer Host1- og Speed2-målinger i hvert API-svar,

hvilket gør det enkelt at spore disse centrale målinger.

2. Profileringsværktøjer: Brug profileringsværktøjer til at analysere ydeevnen af

individuelle arbejdsprocesskomponenter og AI-operationer. Profileringsværktøjer

kan hjælpe med at identificere ydeevnehotspots, ineffektive kodestier eller

ressourcekrævende operationer. Populære profileringsværktøjer omfatter New

1Host er den tid, det tog at modtage den første byte af den streamede generering fra modelværten, også
kendt som “time to first byte.”

2Speed beregnes som antallet af fuldførelsestokens divideret med den samlede genereringstid. For ikke-
streamede forespørgsler betragtes latenstid som en del af genereringstiden.

https://openrouter.ai

Intelligent arbejdsgangsorkestrerering 241

Relic, Scout eller indbyggede profileringsværktøjer fra programmeringssproget eller

framework’et.

3. Belastningstest: Udfør belastningstest for at evaluere systemets ydeevne under

forskellige niveauer af samtidige arbejdsbelastninger. Belastningstest hjælper med at

identificere systemets skalerbarhedsgrænser, opdage forringelse af ydeevnen og sikre,

at systemet kan håndtere den forventede trafik uden at kompromittere ydeevnen.

4. Kontinuerlig Overvågning: Implementer kontinuerlig overvågning og

alarmeringsmekanismer for proaktivt at opdage ydelsesproblemer og flaskehalse.

Opsæt overvågningsdashboards og alarmer til at spore centrale præstationsindikatorer

(KPI’er) og modtag notifikationer, når foruddefinerede grænseværdier overskrides.

Dette muliggør hurtig identifikation og løsning af ydelsesproblemer.

Skaleringsstrategier

For at håndtere stigende arbejdsbelastninger og sikre skalerbarheden af det intelligente

arbejdsprocesstyringssystem, bør følgende skaleringsstrategier overvejes:

1. Vertikal Skalering: Vertikal skalering involverer forøgelse af ressourcerne (f.eks.

CPU, hukommelse) på individuelle noder eller servere for at håndtere højere

arbejdsbelastninger. Denne tilgang er velegnet, når systemet kræver mere processorkraft

eller hukommelse til at håndtere komplekse arbejdsprocesser eller AI-operationer.

2. Horisontal Skalering: Horisontal skalering involverer tilføjelse af flere noder eller

servere til systemet for at fordele arbejdsbelastningen. Denne tilgang er effektiv,

når systemet skal håndtere et stort antal samtidige arbejdsprocesser, eller når

arbejdsbelastningen nemt kan fordeles på tværs af flere noder. Horisontal skalering

kræver en distribueret arkitektur og load balancing-mekanismer for at sikre jævn

fordeling af trafikken.

3. Auto-skalering: Implementer auto-skaleringsmekanismer til automatisk at justere

antallet af noder eller ressourcer baseret på arbejdsbelastningsbehovet. Auto-skalering

Intelligent arbejdsgangsorkestrerering 242

tillader systemet dynamisk at skalere op eller ned afhængigt af den indkommende trafik,

hvilket sikrer optimal ressourceudnyttelse og omkostningseffektivitet. Cloudplatforme

som Amazon Web Services (AWS) eller Google Cloud Platform (GCP) tilbyder auto-

skaleringsmuligheder, der kan udnyttes til intelligente arbejdsprocesstyringssystemer.

Ydeevneoptimeringteknikker

Ud over skaleringsstrategierne bør følgende ydeevneoptimeringteknikker overvejes for

at forbedre effektiviteten af det intelligente arbejdsprocesstyringssystem:

1. Effektiv Datalagring og -hentning: Optimer de datalagring- og

hentningsmekanismer, der bruges af arbejdsprocesskomponenterne. Brug effektiv

databaseindeksering, forespørgselsoptimeringteknikker og datacaching for at minimere

latenstiden og forbedre ydeevnen af dataintensive operationer.

2. Asynkron I/O: Brug asynkrone I/O-operationer for at forhindre blokering og forbedre

systemets reaktionsevne. Asynkron I/O gør det muligt for systemet at håndtere flere

anmodninger samtidigt uden at vente på, at I/O-operationer bliver færdige, hvorved

ressourceudnyttelsen maksimeres.

3. Effektiv serialisering og deserialisering: Optimér de serialiserings- og

deserialiseringsprocesser, der bruges til dataudveksling mellemworkflow-komponenter.

Brug effektive serialiseringsformater som Protocol Buffers eller MessagePack for at

reducere overhead ved dataserialisering og forbedre ydeevnen af kommunikationen

mellem komponenter.

For Ruby-baserede applikationer kan du overveje at bruge Universal ID.

Universal ID udnytter både MessagePack og Brotli (en kombination bygget

til hastighed og førsteklasses datakomprimering). Når disse biblioteker

kombineres, er de op til 30% hurtigere og inden for 2-5% komprimeringsrater

sammenlignet med Protocol Buffers.

https://github.com/hopsoft/universalid

Intelligent arbejdsgangsorkestrerering 243

4. Komprimering og kodning: Anvend kompressions- og kodningsteknikker for

at reducere størrelsen af data, der overføres mellem workflow-komponenter.

Komprimeringsalgoritmer som gzip eller Brotli kan markant reducere

netværksbåndbreddeforbruget og forbedre systemets samlede ydeevne.

Ved at tage hensyn til skalerbarhed og ydeevneaspekter under design og implementering

af intelligente workflow-orchestreringssystemer, kan du sikre, at dit system kan

håndtere store mængder samtidige workflows, optimere ydeevnen af AI-drevne

komponenter og skalere problemfrit for at imødekomme voksende krav. Kontinuerlig

overvågning, profilering og optimering er afgørende for at opretholde systemets

ydeevne og reaktionsevne, efterhånden som arbejdsbelastningen og kompleksiteten

øges over tid.

Test og validering af workflows

Test og validering er kritiske aspekter af udvikling og vedligeholdelse af intelligente

workflow-orchestreringssystemer. I betragtning af den komplekse natur af AI-drevne

workflows er det afgørende at sikre, at hver komponent fungerer som forventet, at

det overordnede workflow opfører sig korrekt, og at AI-beslutningerne er nøjagtige og

pålidelige. I dette afsnit vil vi udforske forskellige teknikker og overvejelser for test og

validering af intelligente workflows.

Enhedstest af workflow-komponenter

Enhedstest involverer test af individuelle workflow-komponenter isoleret for at

verificere deres korrekthed og robusthed. Når du udfører enhedstest af AI-drevne

workflow-komponenter, bør du overveje følgende:

1. Input-validering: Test komponentens evne til at håndtere forskellige typer input,

herunder gyldige og ugyldige data. Verificér at komponenten håndterer grænsetilfælde

elegant og giver passende fejlmeddelelser eller undtagelser.

Intelligent arbejdsgangsorkestrerering 244

2. Output-verifikation: Bekræft at komponenten producerer det forventede output for

et givent sæt inputs. Sammenlign det faktiske output med de forventede resultater for

at sikre korrekthed.

3. Fejlhåndtering: Test komponentens fejlhåndteringsmekanismer ved at simulere

forskellige fejlscenarier, såsom ugyldigt input, utilgængelige ressourcer eller uventede

undtagelser. Verificér at komponenten fanger og håndterer fejl korrekt.

4. Grænseværdier: Test komponentens opførsel under grænseværdibetingelser, såsom

tomt input, maksimal inputstørrelse eller ekstreme værdier. Sikr at komponenten

håndterer disse betingelser elegant uden at gå ned eller producere ukorrekte resultater.

Her er et eksempel på en enhedstest for en workflow-komponent i Ruby ved hjælp af

RSpec test-frameworket:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

18 end

19 end

I dette eksempel testes OrderValidator-komponenten ved hjælp af to testtilfælde:

ét for en gyldig ordre og et andet for en ugyldig ordre. Testtilfældene verificerer,

Intelligent arbejdsgangsorkestrerering 245

at validate-metoden returnerer den forventede booleske værdi baseret på ordrens

gyldighed.

Integration Testing af Arbejdsgangsinteraktioner

Integrationstest fokuserer på at verificere interaktioner og dataflow mellem forskellige

arbejdsgangskomponenter. Det sikrer, at komponenterne arbejder problemfrit sammen

og producerer de forventede resultater. Når der udføres integrationstest af intelligente

arbejdsgange, bør følgende overvejes:

1. Komponentinteraktion: Test kommunikationen og dataudvekslingen mellem

arbejdsgangskomponenter. Verificér at outputtet fra én komponent korrekt videregives

som input til den næste komponent i arbejdsgangen.

2. Datakonsistens: Sikr at data forbliver konsistent og præcis, mens det flyder gennem

arbejdsgangen. Verificér at datatransformationer, beregninger og aggregeringer udføres

korrekt.

3. Undtagelseshåndtering: Test hvordan undtagelser og fejl forplanter sig og håndteres

på tværs af arbejdsgangskomponenter. Verificér at undtagelser opfanges, logges og

håndteres hensigtsmæssigt for at forhindre forstyrrelser i arbejdsgangen.

4. Asynkron Adfærd: Hvis arbejdsgangen involverer asynkrone komponenter eller

parallel eksekvering, test da koordinerings- og synkroniseringsmekanismerne. Sikr at

arbejdsgangen opfører sig korrekt under samtidige og asynkrone scenarier.

Her er et eksempel på en integrationstest for en arbejdsgang i Ruby ved hjælp af RSpec

test-frameworket:

Intelligent arbejdsgangsorkestrerering 246

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

I dette eksempel testes OrderProcessingWorkflow ved at verificere samspillet

mellem forskellige arbejdsgangskomponenter. Testscenariet opstiller forventninger til

hver komponents adfærd og sikrer, at arbejdsgangen behandler ordren succesfuldt og

opdaterer ordrens status i overensstemmelse hermed.

Test af AI-beslutningspunkter

Test af AI-beslutningspunkter er afgørende for at sikre nøjagtigheden og pålideligheden

af AI-drevne arbejdsgange. Ved test af AI-beslutningspunkter bør man overveje

følgende:

1. Beslutningsnøjagtighed:Verificér at AI-komponenten træffer nøjagtige beslutninger

baseret på inputdata og den trænede model. Sammenlign AI-beslutningerne med

forventede resultater eller referencedata.

2. Grænsetilfælde:Test AI-komponentens adfærd under grænsetilfælde og usædvanlige

scenarier. Verificér at AI-komponenten håndterer disse tilfælde elegant og træffer

fornuftige beslutninger.

Intelligent arbejdsgangsorkestrerering 247

3. Bias og retfærdighed: Vurdér AI-komponenten for potentielle bias og sikr, at den

træffer fair og upartiske beslutninger. Test komponenten med forskelligartede inputdata

og analysér resultaterne for eventuelle diskriminerende mønstre.

4. Forklarlighed: Hvis AI-komponenten giver forklaringer eller begrundelser for

sine beslutninger, skal du verificere, at forklaringerne er korrekte og klare. Sikr at

forklaringerne stemmer overens med den underliggende beslutningsproces.

Her er et eksempel på test af et AI-beslutningspunkt i Ruby ved brug af RSpec-

testrammeværket:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

I dette eksempel testes FraudDetector AI-komponenten med to testtilfælde: et for en

svigagtig transaktion og et andet for en legitim transaktion. Testtilfældene verificerer,

at detect_fraud-metoden returnerer den forventede booleske værdi baseret på

transaktionens karakteristika.

Intelligent arbejdsgangsorkestrerering 248

End-to-End Test

End-to-end test involverer test af hele arbejdsgangen fra start til slut, hvor man

simulerer virkelige scenarier og brugerinteraktioner. Det sikrer, at arbejdsgangen

opfører sig korrekt og producerer de ønskede resultater. Når der udføres end-to-end

test af intelligente arbejdsgange, bør man overveje følgende:

1. Brugerscenarier: Identificér almindelige brugerscenarier og test arbejdsgangens

adfærd under disse scenarier. Verificér at arbejdsgangen håndterer brugerinput korrekt,

træffer passende beslutninger og producerer de forventede output.

2. Datavalidering: Sikr at arbejdsgangen validerer og behandler brugerinput for at

forhindre datauoverensstemmelser eller sikkerhedssårbarheder. Test arbejdsgangenmed

forskellige typer inputdata, herunder både gyldige og ugyldige data.

3. Fejlhåndtering: Test arbejdsgangens evne til at komme sig efter fejl og undtagelser.

Simulér fejlscenarier og verificér, at arbejdsgangen håndterer dem elegant, logger fejlene

og udfører passende genopretningshandlinger.

4. Ydeevne og Skalerbarhed: Vurdér arbejdsgangens ydeevne og skalerbarhed under

forskellige belastningsforhold. Test arbejdsgangen med en stor mængde samtidige

anmodninger og mål responstider, ressourceforbrug og systemets generelle stabilitet.

Her er et eksempel på en end-to-end test af en arbejdsgang i Ruby ved hjælp af RSpec

testframework og Capybara-biblioteket til simulering af brugerinteraktioner:

Intelligent arbejdsgangsorkestrerering 249

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

I dette eksempel simulerer end-to-end testen en bruger, der afgiver en ordre gennem

webgrænsefladen. Den udfylder de påkrævede formularfelter, indsender ordren og

verificerer, at ordren behandles korrekt, viser den passende bekræftelsesbesked og

opdaterer ordrestatus i databasen.

Kontinuerlig Integration og Deployment

For at sikre pålideligheden og vedligeholdelsen af intelligente arbejdsgange anbefales det

at integrere test og validering i den kontinuerlige integrations- og deployment (CI/CD)

pipeline. Dette muliggør automatiseret test og validering af ændringer i arbejdsgangen,

før de implementeres i produktion. Overvej følgende praksisser:

1. Automatiseret Testkørsel: Konfigurer CI/CD-pipelinen til automatisk at køre test-

suiten, når der foretages ændringer i arbejdsgangens kodebase. Dette sikrer, at eventuelle

regressioner eller fejl opdages tidligt i udviklingsprocessen.

2. Overvågning af Testdækning: Mål og overvåg testdækningen af arbejdsgangens

komponenter og AI-beslutningspunkter. Stræb efter høj testdækning for at sikre, at

kritiske stier og scenarier testes grundigt.

3. Løbende Feedback: Integrer testresultater og kodekvalitetsmetrikker i

udviklingsarbejdsgangen. Giv løbende feedback til udviklere om testenes status,

Intelligent arbejdsgangsorkestrerering 250

kodekvalitet og eventuelle problemer, der opdages under CI/CD-processen.

4. Staging-miljøer: Implementer arbejdsgangen i staging-miljøer, der nøje afspejler

produktionsmiljøet. Udfør yderligere test og validering i staging-miljøet for at fange

eventuelle problemer relateret til infrastruktur, konfiguration eller dataintegration.

5. Rollback-mekanismer: Implementer rollback-mekanismer i tilfælde af

implementeringsfejl eller kritiske problemer opdaget i produktion. Sørg for, at

arbejdsgangen hurtigt kan rulles tilbage til en tidligere stabil version for at minimere

nedetid og påvirkning af brugerne.

Ved at inkorporere test og validering gennem hele udviklingslivscyklussen for

intelligente arbejdsgange kan organisationer sikre pålideligheden, nøjagtigheden og

vedligeholdelsen af deres AI-drevne systemer. Regelmæssig test og validering hjælper

med at fange fejl, forebygge regressioner og opbygge tillid til arbejdsgangens adfærd

og resultater.

Del 2: Mønstrene

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 253

Chain of Thought

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Indholdsproduktion

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Struktureret Entitetsoprettelse

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Vejledning af LLM-agenter

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og Overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 254

Tilstandsskift

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan Fungerer Det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 255

Rolletildeling

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 256

Prompt-objekt

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 257

Promptskabelon

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges:

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 258

Structured IO

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Skalering af Struktureret IO

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 259

Prompt-kædekobling

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår det skal bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel: Olympias Onboarding

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 260

Prompt-omskriver

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 261

Response Fencing

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele og Overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fejlhåndtering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 262

Forespørgselsanalysator

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Ordklassemærkning (POS) og Navngiven Entitetsgenkendelse (NER)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Intentionsklassificering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Nøgleordsudtrækning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 263

Forespørgselsomskriver

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan virker det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fordele

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Prompt Engineering 264

Ventriloquist

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 266

Prædikat

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 267

API-facade

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan det virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Centrale fordele

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår det skal bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Autentificering og Autorisering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 268

Håndtering af Forespørgsler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Formatering af Svar

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Fejlhåndtering og Særtilfælde

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser om Skalerbarhed og Ydeevne

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sammenligning med Andre Designmønstre

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 269

Resultatfortolker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår skal det bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 270

Virtuel Maskine

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvornår Det Skal Bruges

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Bag Magien

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Specifikation og Test

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Diskrete Komponenter 271

Specificering af Adfærd

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Skrivning af Testtilfælde

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel: Test af Oversætterkomponenten

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Genafspilning af HTTP-interaktioner

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL)
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overordnede Mønstre

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hybrid Intelligens

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Adaptiv Respons

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Menneske-AI-rolleskift

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 273

Eskalering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Vigtige fordele

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelse i Praksis: Sundhedsvæsenet

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 274

Feedbacksløjfe

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Virker

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Avancerede Teknikker i Integration af Menneskelig
Feedback

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 275

Passiv Informationsudstråling

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Fungerer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Kontekstuel Informationsvisning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Proaktive Notifikationer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Forklarende Indsigt

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Interaktiv Udforskning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 276

Centrale Fordele

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 277

Kollaborativ Beslutningstagning (CDM)

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Det Fungerer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 278

Kontinuerlig Læring

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan Fungerer Det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Anvendelser og Eksempler

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Etiske Overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

HITL’s Rolle i Reduktion af AI-Risici

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Human In The Loop (HITL) 279

Teknologiske Fremskridt og Fremtidsudsigter

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Udfordringer og Begrænsninger ved HITL-Systemer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Traditionelle Fejlhåndteringstilgange

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering 281

Kontekstuel fejldiagnose

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Prompt-engineering til kontekstuel fejldiagnose

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Retrieval-Augmented Generation til kontekstuel fejldiagnose

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering 282

Intelligent fejlrapportering

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering 283

Forebyggende Fejlprævention

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan Fungerer Det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Intelligent Fejlgenopretning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan Fungerer Det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering 284

Personaliseret Fejlkommunikation

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan Fungerer Det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Intelligent Fejlhåndtering 285

Adaptiv Fejlhåndteringsarbejdsgang

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol
Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 287

Eval

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Problem

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Løsning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 288

Forståelse af Gyldne Referencer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Hvordan Referencefri Evalueringer Fungerer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 289

Sikkerhedsmekanisme

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Problem

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Løsning

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Sådan fungerer det

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Eksempel

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Overvejelser

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Kvalitetskontrol 290

Sikkerhedsforanstaltninger og Evalueringer: To

Sider af Samme Sag

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Udskifteligheden mellem Sikkerhedsforanstaltninger og
Referencefri Evalueringer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Implementering af Tosidede Sikkerhedsforanstaltninger
og Evalueringer

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Ordliste

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Ordliste

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

A

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

B

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

C

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

292

D

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

E

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

F

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

G

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

H

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

I

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

293

J

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

K

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

L

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

M

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

N

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

O

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

294

P

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Q

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

R

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

S

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

T

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

U

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

295

V

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

W

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

Z

Dette indhold er ikke tilgængeligt i prøvebogen. Bogen kan købes på Leanpub på http:

//leanpub.com/patterns-of-application-development-using-ai-da.

http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da
http://leanpub.com/patterns-of-application-development-using-ai-da

Index

ACID-egenskaber, 105

adaptiv arbejdsgang

Adaptiv

Arbejdsgangssammensætning,

216

adaptivt UI, 199

Agentiske, 30

AI, 62, 71, 95, 123, 128, 137, 144, 194, 201

applikationer, 120, 132, 143, 155

beslutningspunkter, 246

konversations, 6, 29, 202

model, 86, 95, 149, 150, 152, 201

sammensatte systemer, 28, 29, 32

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 242

Anthropic, 21, 37, 70, 124, 131

anthropomorphism, 66

API’er, 69, 118, 147

applikationsdesign og frameworks, 190

applikationsudvikling, 211

AR-briller, 209

arrays, 125

asynkron behandling, 239

auto-skalering, 241

Automatisk Fortsættelse, 153

autoregressiv modellering, 41

batchbehandling, 240

behandlingstid, 106

beredskabsplanlægning, 31

BERT, 12, 22

beslutning

punkter, 235

træer, 212

beslutningstagning

scenarier, 127

bias

og retfærdighed i AI, 247

boundary conditions, 244

Brotli, 242, 243

brugergenereret indhold, 107

Brugergrænseflade

frameworks, 205

interfaces, 204

Brugergrænseflade (UI)

design, 209

grænseflader, 190

teknologier, 200

brugeroplevelse, 186

brugerpsykologi, 206

brugertest og feedback, 188

brugertillid, 207

Index 297

brugervenligheds-problemer, 206

Bugtaler, 169

Byte Pair Encoding (BPE), 12, 13

C (Programmeringssprog), 112

caching, 240

Capybara-biblioteket, 248

centrale mønstre, 214

Chain of Thought (CoT), 133

chatbot-applikation, 114

ChatGPT, 28, 51

Claude, 7, 41, 74

Claude 3, 47, 121, 124, 129, 131

Claude 3 Opus, 71

Claude v1, 16

Claude v2, 16

Cohere (LLM Provider), 21

Cohere (LLM-udbyder), 23

concurrent workflows, 243

context

Contextual Content Generation,

183–185

Continuous Integration and Deployment

(CI/CD), 249

pipeline, 249

conversation

samtalehistorik, 150

Customer Sentiment Analysis, 96

data

analyse, 32, 141

behandlingsopgaver, 120

behandlingspipeline, 230

beskyttelse, 25

Datahentning, 105

Datasynkronisering, 105

Datavalidering, 248

flow, 105

forberedelse, 104

integritet, 230

persistens, 105

privatlivsbeskyttelse, 206

databaser, 118

-understøttet objekt, 101

databases

locking strategies, 105

Databricks-medarbejdere, 50

Datadog, 238

datalogi, 67, 69

decision

-making capabilities, 95

destillationsproces, 73

detaljeret logning, 237

deterministisk adfærd, 56

digitalt landskab, 185

distribueret arkitektur, 239

Dohan, et al., 41

dokumentklyngedannelse, 116

Dynamisk opgavefordeling, 214

dynamisk UI-generering, 180

Dynamisk Værktøjsvalg, 125

e-commerce, 183

e-handel, 212

E-handelsapplikationer, 88

Index 298

effektivitet, 213

eksperimentering

ramme, 185

eksterne tjenester eller API’er, 121

ELK stack, 106

emneidentifikation, 116

emotionel tone, 139

end-to-end test, 248

end-to-end testing, 249

ensembler, 112, 113

ensemble af arbejdere, 113

Enterprise Integration Patterns, 100

errors

handling, 244

håndtering, 105

Intelligent Fejlhåndtering, 137

rater, 106

etik

implikationer, 191

F#, 89

Facebook, 23

fallback-strategier, 105

feedback

Feedback-loop, 57

fejl

håndtering, 103, 136, 248

fejlfinding, 215

og fejlsøgning, 237

og test, 126

few-shot

learning, 60

prompting, 61

finaliseringsmetode, 150

finalize-metode, 151, 152

finjustering, 77

FitAI, 202

flaskehalse, 216

fleksibilitet og kreativitet, 188

flertalsafstemning, 112

flertrinsprocedure, 107

forklarlighed, 247

forretningsregler, 212

Forsikringsverifikation, 98

forsyningskæde

optimering, 31

forudsigelser, 5

function

names, 148

funktion

kald, 118

kaldshistorik, 150

funktionel programmering, 88

funktionskald

fejl, 128

Gemma 7B, 10

Generativ brugergrænseflade (GenUI), 204

Generativ UI (GenUI), 200, 208

Generative Pre-trained Transformer (GPT),

7, 65

Generative UI (GenUI), 190, 197

Genfindelses-forstærket Generering (RAG),

29, 76

Index 299

genfindingsbaserede modeller, 6

gennemløb, 26

gentagelsesmekanismer, 105

gentagelsesstraffe, 49

GitLab, 89

Global Interpreter Lock (GIL), 111

Google, 21

API, 61, 63

Cloud AI Platform, 22

Cloud Platform, 242

Gemini, 20

Gemini 1.5 Pro, 12, 16, 17

PaLM (Pathways Language Model),

16, 22

T5, 12

GPT-3, 12, 16

GPT-4, 6, 12, 16, 20, 29, 41, 47, 60, 100, 112,

115, 122, 128, 195, 196, 240

grafiske modeller, 41

Graham, Paul, 17

grammatiske regler, 4

GraphQL, 103

Groq, 24, 115

grundmodeller, 52

gzip, 243

hardware, 26

hash, 146

historiske mønstre, 215

Hohpe, Gregor, 100

Honeybadger, 90

HTTP, 144

hyperparameter, 44

håndtering af undtagelser, 216

hændelsesdrevet arkitektur, 104

højtydende færdiggørelse, 24

ikke-superviseret læring, 4

indhold

filtrering, 25

Indholdskateogorisering, 107

indholdsbaseret filtrering, 88

Indsamling af sygehistorie, 97

indsnævre stien, 36, 37

Inferens, 5

information

genfinding, 6

hentning, 120

udtrækning, 50

inkluderende grænseflader, 191

input

prompts, 54

validation, 243

inputparametre, 123

instruktionstilpasning, 9

instruktionstræning

instruktionstunede modeller, 47

instruktionstunning

instruktionstunede modeller, 50

integrationstest, 245

integrering af LLMs, 180

intelligent arbejdsgangsorkestering, 219

intelligent arbejdsgangsorkestrerering, 211

intelligent arbejdsprocesstyring, 240

Index 300

Intelligent Indholdsmoderator, 223

intelligent workflow orchestration, 243

internationalisering, 186

iterativ forbedring, 138

iterativ forfining, 73

JSON (JavaScript Object Notation), 121,

125, 126, 129, 141, 159

K-means, 117

kanttilfælde, 56

klassificering, 116

klassifikation, 50

Klinisk beslutningsstøtte, 99

kollaborativ filtrering, 88

kommandolinje

Kommandolinjeinterface (CLI), 24

komplekse opgaver, 140

konceptuelle og praktiske udfordringer, 191

konsistens

og reproducerbarhed, 127

kontekst

kontekstbaseret beslutningstagning,

215

Kontekstbaseret Indholdsgenering,

191, 192

Kontekstuel Indholdsgenering, 179

Kontekstuelle Feltforslag, 192

Udvidelse, 44

uendeligt lange inputs, 14

vindue, 14, 215

Kontinuerlig risikoovervågning, 99

konto, 87

kreativ skrivning, 32, 50

kredsløbsbryder-logik, 155

krydsmodal generering, 20

kundeservice-chatbots, 31

kundesupport, 30

Kvantisering, 27

kviksølv (grundstof), 42

language

models, 63

Large Language Model (LLM), 16, 64, 66,

84, 138, 140

latens, 26

Latent Dirichlet Allocation, 117

latent rum, 38, 40

lineær algebra, 41

lineær regression, 41

Llama, 12

Llama 2-70B, 48

Llama 3 70B, 10

Llama 3 8B, 10

logopbevaring og -rotation, 238

lokale udviklingsmiljøer, 148

Louvre, 40

lukket og åben spørgsmålsbesvarelse, 50

Managed Streaming for Apache Kafka, 39

Mangfoldighed af Arbejdere, 114

manuel indgriben, 218

Markdown, 141

markup-opmærkning, 68

medicinske opdagelser, 97

Index 301

Memorial Sloan Kettering Cancer Center,

39

Menneske-i-loopet (HITL), 171

Merkur (planet), 42

Merkur (romersk gud), 42

MessagePack, 242

Meta, 23

Metropolitan Museum of Art, 40

Mikroservice-arkitektur, 86

Mistral, 24

7B, 10

7B Instruct, 16, 196

Mixtral

8x22B, 10

8x7B, 54

moderne applikationer, 213

modularitet, 85

motivationsstrategier, 204

Multi-Agent

Problemløsere, 29

Multimodale

modeller, 19

sprogmodeller, 19

Multitude of Workers, 159

mønstergenkendelse, 146

Naive Bayes, 116

naturlig sprog

Naturlig Sprogbehandling (NLP), 115

naturlig sprogbehandling

Natural Language Processing (NLP),

97

netværksforbindelse, 216

neurale netværk, 3, 6

New Relic, 241

Ollama, 23

Olympia, 31, 60, 123, 137, 145, 160

Olympias vidensbase, 88

omskrivning, 51

One-Shot-Læring, 58

online forhandlere, 196

opbygning af narrativ, 18

open source model hosting udbydere, 196

OpenAI, 3, 21, 37, 70

OpenRouter, 26, 145, 240

opgavetildeling, 230

opsummering, 50

OPT model, 23

optimistisk låsning, 105

ordbøger, 125

output verification, 244

oversættelse, 15, 187

overvågning

metrikker, 237

og alarmering, 217

og logning, 106, 236

parallel udførelse, 239

parameter

effekter, 123

Parameterantal, 26

parametre

område, 10

Perplexity (Udbyder), 10

Index 302

personalisering, 180, 208, 213

Personaliserede Formularer, 192

Personaliseret mikrotekst, 197

personlige produktanbefalinger, 88

pessimistisk låsning, 105

princippet om mindst muligt privilegium,

69

probabilistiske modeller, 41

Process Manager, 103

virksomhedsintegration, 219

Processtyring, 100

Produktanbefalinger, 88

Produktivitet, 182

progressiv afsløring, 198

prompts

design, 56, 65

engineering, 38, 43, 54, 57, 63, 64, 205

kædekobling, 57, 68

Prompt Template, 196

Prompt-destillation, 240

Prompt-destillering, 44, 70, 75

Prompt-objekt, 71

Prompt-skabelon, 57

refinement, 65

Protocol Buffers, 242

publish-subscribe-systemer, 104

PyTorch, 23

Qwen2 70B, 10

Rails, 187

Railway Oriented Programming (ROP), 91

Raix, 220

bibliotek, 93

rangordnere, 33

Responsafgrænsning, 169

Response Fencing, 196

Resultatfortolker, 136

Retrieval Augmented Generation (RAG),

36, 44, 120

revision og overholdelse, 237

revisionslogning, 102

risikofaktorer, 92, 93

Risikostratificering, 99

rollback mechanisms, 250

rollespilslignende interaktioner, 6

RSpec, 244, 245, 248

Ruby, 89, 90, 108, 155, 248

Ruby on Rails, 1, 107, 219, 227

Rudall, Alex, 22

Rust (Programmeringssprog), 112

Rust (Programming Language), 89

sammenkædning af AI-workers, 107

samtale

løkke, 153

udskrift, 152

Scout, 241

segmenterings- og målretningsstrategier,

186

Selvhelende Data, 233

Selvhelende data, 157

sentimentanalyse, 15, 96, 107, 108, 110, 113,

129, 139

server-sendte begivenheder (SSE), 144

Index 303

skalerbarhed, 213, 238

smartphones, 209

softwarearkitektur, 2

sporing af nøgletal, 234

sprog

-relaterede opgaver, 4

modeller, 40, 70

Sprogdetektering, 107

spørgsmål-svar-systemer, 7

SQL-injektioner, 68

staging environments, 250

stationære computere, 209

stemmestyrede grænseflader, 31

Stor sprogmodel (LLM), 27

Store Sprogmodel (LLM), 1, 3, 134

Store Sprogmodeller (LLM), 14, 68, 69, 73,

106, 115, 118, 119, 128, 138, 179,

190, 195, 200, 222

landskab, 25

Store sprogmodeller (LLM), 157, 160

Stort Sprogmodel (LLM), 74

streaming-data, 146

Stripe, 124

Structured IO, 196

strukturerede data, 128

struktureret logning, 238

strømbehandling, 144, 150, 155

logik, 151

strømhåndterere, 144

Support Vector Machines (SVM), 116

svigdetektion

system, 93

Symptomvurdering og stratificering, 97

syntaksfejl, 126

syntetisk datagenerering, 51

system directive, 95

systemdirektiv, 123

T5, 22

tablets, 209

Tankerække (Chain of Thought), 43

Tekstrensning, 107

Temperatur, 52

theory of mind, 38

Tid til første token (TTFT), 26

tilgængelighed, 207, 208

tilpasning, 25

tilstandsløs, 150

Tilstedeværelsesstraf, 46

Together.ai, 24

tokenisering, 11

tokens, 5, 11

Top-k sampling, 46

Top-p (nucleus) sampling, 46

trafikstyring, 31

tragedy of the commons, 183

transformer-arkitektur, 6

træningsdata, 40

Tvunget Værktøjsvalg, 126

uddannelsesapplikationer, 30

udløserbesked, 100

udviklingsrammer, 142

undtagelseshåndtering, 218

Unicode-koderbart sprog, 13

Index 304

Universal ID, 242

videnbaser, 7

vidensstyring, 30

virksomhedsapplikationsarkitektur, 36

virtuelle assistenter, 31

visuel grænseflade, 200

værktøjsbrug, 118, 142

værktøjskald, 147

Wall, Larry, 3

Wisper, 90, 102, 145, 152

Wooley, Chad, 89

XML, 128

ydeevne

optimering, 188, 237

problemer, 241

ydelse

optimering, 127

ydelses

-kompromiser, 5

Yi-34B, 48

zero-shot learning, 57

zero-shot-læring, 57

økosystem, 141

	Indholdsfortegnelse
	Forord af Gregor Hohpe
	Forord
	Om Bogen
	Om Kodeeksemplerne
	Hvad Jeg Ikke Dækker
	Hvem Denne Bog Er Til
	Opbygning af et Fælles Ordforråd
	Bliv Involveret
	Tak
	Hvad med illustrationerne?
	Om Lean Publishing
	Om forfatteren

	Introduktion
	Tanker om Softwarearkitektur
	Hvad er en Store Sprogmodel?
	Forståelse af inferens
	Om Ydeevne
	Eksperimenter Med Forskellige LLM-Modeller
	Sammensatte AI-Systemer

	Del 1: Grundlæggende Tilgange & Teknikker
	Indsnævre Stien
	Latent Rum: Ubegribeligt Stort
	Hvordan Stien Bliver ``Indsnævret''
	Rå versus instruktionstunede modeller
	Prompt Engineering
	Prompt-destillering
	Hvad med finjustering?

	Retrieval Augmented Generation (RAG)
	Hvad er Retrieval Augmented Generation?
	Hvordan fungerer RAG?
	Hvorfor bruge RAG i dine applikationer?
	Implementering af RAG i Din Applikation
	Propositionsopdeling
	Virkelige Eksempler på RAG
	Intelligent Forespørgselsoptimering (IQO)
	Omrangering
	RAG-vurdering (RAGAs)
	Udfordringer og Fremtidsudsigter

	Mangfoldighed af Arbejdere
	AI-Arbejdere Som Uafhængige Genbrugelige Komponenter
	Kontoadministration
	E-handelsapplikationer
	Sundhedsvæsenets anvendelser
	AI Worker som Processtyring
	Integration af AI-Workers I Din Applikationsarkitektur
	Sammensættelighed og Orkestrering af AI-Workers
	Kombination af Traditionel NLP med LLM'er

	Brug af værktøjer
	Hvad er værktøjsbrug?
	Potentialet i Værktøjsanvendelse
	Arbejdsgangen for Værktøjsanvendelse
	Bedste praksis for værktøjsbrug
	Sammensætning og Kædekobling af Værktøjer
	Fremtidige Retninger

	Strømbehandling
	Implementering af en ReplyStream
	``Samtalesløjfen''
	Automatisk Fortsættelse
	Konklusion

	Selvhelende data
	Praktisk casestudie: Reparation af ødelagt JSON
	Overvejelser og Kontraindikationer

	Kontekstuel Indholdsgenering
	Personalisering
	Produktivitet
	Hurtig iteration og eksperimentering
	AI-drevet Lokalisering
	Vigtigheden af Brugertest og Feedback

	Generative UI
	Generering af tekst til brugergrænseflader
	Definition af Generativ UI
	Eksempel
	Skiftet til resultatsorienteret design
	Udfordringer og overvejelser
	Fremtidsudsigter og Muligheder

	Intelligent arbejdsgangsorkestrerering
	Forretningsmæssigt behov
	Centrale fordele
	Centrale mønstre
	Håndtering og Genopretning af Undtagelser
	Implementering af Intelligent Arbejdsgangsorkestering i Praksis
	Overvågning og Logføring
	Skalerbarhed og Ydeevneovervejelser
	Test og validering af workflows

	Del 2: Mønstrene
	Prompt Engineering
	Chain of Thought
	Tilstandsskift
	Rolletildeling
	Prompt-objekt
	Promptskabelon
	Structured IO
	Prompt-kædekobling
	Prompt-omskriver
	Response Fencing
	Forespørgselsanalysator
	Forespørgselsomskriver
	Ventriloquist

	Diskrete Komponenter
	Prædikat
	API-facade
	Resultatfortolker
	Virtuel Maskine
	Specifikation og Test

	Human In The Loop (HITL)
	Overordnede Mønstre
	Eskalering
	Feedbacksløjfe
	Passiv Informationsudstråling
	Kollaborativ Beslutningstagning (CDM)
	Kontinuerlig Læring
	Etiske Overvejelser
	Teknologiske Fremskridt og Fremtidsudsigter

	Intelligent Fejlhåndtering
	Traditionelle Fejlhåndteringstilgange
	Kontekstuel fejldiagnose
	Intelligent fejlrapportering
	Forebyggende Fejlprævention
	Intelligent Fejlgenopretning
	Personaliseret Fejlkommunikation
	Adaptiv Fejlhåndteringsarbejdsgang

	Kvalitetskontrol
	Eval
	Sikkerhedsmekanisme
	Sikkerhedsforanstaltninger og Evalueringer: To Sider af Samme Sag

	Ordliste
	Ordliste
	Index

