Patterns of
Application
Development
Using Al

Obie Fernandez
Foreword by Gregor Hohpe

eské Vydani

- ﬁg d { """""

>es

Vzory vyvoje aplikaci s vyuzitim
Ul (Ceské Vydani)

Obie Fernandez

Tato kniha se prodava na

http://leanpub.com/patterns-of-application-development-using-ai-cs

Tato verze byla publikovana 2025-01-23

A

Leanpub

Toto je Leanpub kniha. Leanpub umoziiuje autorim a vydavateliim postupny proces
publikovani. Lean Publishing je zptisob vydavani rozpracovanych elektronickych knih
za pouziti jednoduchych nastroji a mnohych opakovani (iteraci), abyste ziskali
zpétnou vazbu od ¢tenafd, a ti vam tak pomohli napsat tu spravnou knihu a ziskat

uspéch na trhu, hned jak ji dokondite.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-cs
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Mluvte o této knize na Twitteru!

Pomozte, prosim, Obie Fernandez $ifenim informace o této knize na Twitteru!

Navrhovany hashtag pro tuto knihu je #poaduai.

Zjistéte, co ostatni lidé fikaji o této knize. Sta¢i vyhledat tento hashtag na Twitteru:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Mé drsné kralovné, mé miize, mému svétlu a lasce, Victorii

A také od Obie Fernandez

Patterns of Application Development Using Al
The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Obsah

Predmluva od GregoraHohpe i
Predmluva L ii
Oknize iii
Oprikladechkéduo oo o iii
Cemu Se NEVENUJT . . . v v v vt e e e iii
Pro koho je tato knithaurCena iii
Budovani spole¢ného slovniku L L oL iii
Jaksezapojit iii
Podékovani iii
Cojetosilustracemi? iv
O Lean Publishingu iv
Oautorovi e v
Uvod . . .o 1
Uvahy o softwarové architektufe 2
Co je velky jazykovy model? L 3
Porozuméni inferenci Lo 5
Zamysleni nad vykonem 25
Experimenty s riznymi modely LLM 26

SloZené systémy umélé inteligence 27

OBSAH

Cast 1: Zakladni pristupy a techniky.. 35

Zuzitcestu L 36
Latentni prostor: Nepochopitelné rozsahly 38
Jak se cesta “Zuzuje” 42
Surové versus instrukéné doladéné modely Lo 45
Prompt Engineering L L 52
Destilace promptd 67
Cofine-tuning? 74

Generovani roz$ifené o vyhledavani (RAG) 75
Co je Generovani rozsifené o vyhledavani? 75
Jak RAG funguje? 75
Pro¢ pouzivat RAG ve vasich aplikacich? 75
Implementace RAG ve vasiaplikaci 75
Rozdéleni na propozice 76
Priklady RAGvpraxit 76
Inteligentni optimalizace dotazti (IQO) 77
Prefazovani 77
Hodnoceni RAG (RAGAS) o o oo e 77
Vyzvyabudoucivyhled 79

Mnoizstvipracovnikano Lo 81
Al pracovnici jako nezavislé znovupouzitelné komponenty 82
Sprava uctlo 84
Vyuziti ve-commerce 85
Aplikace ve zdravotnictvi 93
Al pracovnik jako spravce procestt 96
Integrace Al Workers do architektury vasi aplikace 100

Kompozice a orchestrace Al pracovnikd 103

OBSAH

Kombinovéani tradi¢cniho NLP sLLM 111
Pouzitindstroji 115
Coje pouziti nastrojl? L 115
Potencial vyuZiti nastrojo 117
Pracovni postup pfi vyuzitindstroja Lo Lo 118
Osvédéené postupy pro pouzivani nastrojit 131
Skladani a fetézeni nastrojit 136
Budoucisméry 138
Zpracovaniproududat. 140
Implementace ReplyStream Lo L 141
“Konverzaéni smycka” i 147
Automatické pokracovanio L o 149
ZAVET . . . 151
Samoopravnadata 153
Prakticka pfipadové studie: Oprava poskozeného JSONu 155
Uvahy a kontraindikace 160
Kontextualni generovaniobsahu 174
Personalizace 175
Produktivita 176
Rychla iterace a experimentovani 179
Al pohanéna lokalizace 181
Vyznam uzivatelského testovani a zpétné vazby 183
Generativni uzivatelské rozhrani 0. 184
Generovani textl pro uzivatelska rozhrani 185
Definice generativntho Ul 194

Priklad 196

OBSAH

Posun k designu orientovanémuna vysledky 198
Vyzvyatvahy 200
Budouci vyhled a prilezitosti L L 201
Inteligentni orchestrace pracovnich postupt 205
Obchodni potfeba 206
Klicové vyhody 207
KliCové vzory 207
Zpracovani a zotaveni z vyjimek L oL L Lo 210
Implementace inteligentni orchestrace workflow vpraxi 213
Monitorovani a protokolovani Lo Lo 227
Uvahy o gkalovatelnostia vykonu 231
Testovani a validace workflow L. 236

Cast2:Vzory................................ 244

Prompt Engineering L 245
Retézenimyslenek 246
PrepinaCrezimi 247
Prifazenirole 248
Prompt Object 249
Sablona promptu 250
Structured IO 251
Retézeni promptl 252
PrepisovaC promptl 253
OhraniCeniodpoveédi 254
Analyzatordotazli L 255
Prepisovac dotazli 257

Ventriloquist L 258

OBSAH

Diskrétni komponenty 259
Predicate 260
APIFasada 261
Interpret vysledkd L L L 263
Virtudlni stroj 264
Specifikaceatestovani. L L oL o 264

Human In The Loop (HITL) 266
VysokoUrovilové VZoryo 266
Eskalace 267
Zpétnovazebni smyckao Lo L 268
Pasivni radiace informaci L oL oo 269
Kolaborativni rozhodovani (CDM) 271
Kontinualniuceni 272
Etickéaspekty 272
Technologicky pokrok a vyhled do budoucnosti 272

Inteligentni zpracovanichyb L. 274
Tradi¢ni pfistupy ke zpracovanichyb 274
Kontextualni diagnostikachyb oL 275
Inteligentni hlaSenichyb 276
Prediktivni prevencechyb oo oL 277
Chytré zotavenizchyb 277
Personalizovana komunikacechyb L. 278
Adaptivni workflow zpracovanichyb o 0L 279

Kontrolakvality 280
Eval e 281
Ochranny mechanismus 283

Ochranné mechanismy a vyhodnoceni: Dvé strany téze mince 283

Predmluva od Gregora Hohpe

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Predmluva

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Piedmluva iii

O knize

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

O prikladech kédu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Cemu se nevénuiji

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Pro koho je tato kniha uréena

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Budovani spole€ného slovniku

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak se zapojit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Pfedmluva iv

Podékovani

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Co je to s ilustracemi?

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

O Lean Publishingu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Piedmluva v

O autorovi

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Pokud se tésite na to, az zacnete integrovat umeélou inteligenci a velké jazykové modely

(LLM) do svych programatorskych projektl, mizete se sméle pustit rovnou do vzora
a prikladi kddu uvedenych v pozdéjsich kapitolach. Pro plné pochopeni sily a potencialu
téchto vzort vsak stoji za to vénovat chvili porozuméni sir§imu kontextu a ucelenému

pfistupu, ktery piedstavuji.

Tyto vzory nejsou pouze sbirkou izolovanych technik, ale pfedstavuji jednotny ramec
pro integraci umeélé inteligence do vasich aplikaci. J4 pouzivim Ruby on Rails, ale tyto
vzory by mély fungovat prakticky v jakémkoli jiném programovacim prostredi. Zabyvaji
se Sirokou skalou aspektl, od spravy dat a optimalizace vykonu az po uZivatelskou
zku$enost a bezpecnost, a poskytuji komplexni sadu nastroji pro vylepSeni tradi¢nich

programovacich postupt pomoci moznosti umélé inteligence.

Kazda kategorie vzort fesi konkrétni vyzvu nebo prilezitost, ktera vznika pfi zacleniovani

komponent umélé inteligence do vasi aplikace. Pochopenim vztahtl a synergii mezi

Uvod 2

témito vzory miZete ¢init informovana rozhodnuti o tom, kde a jak umélou inteligenci
nejefektivnéji vyuzit.

Vzory nikdy nejsou pfedepisujicimi feSenimi a nemélo by se s nimi tak zachazet. Jsou
zamyS$leny jako prizpisobitelné stavebni bloky, které by mély byt upraveny podle
jedine¢nych pozadavkii a omezeni vasi vlastni aplikace. Uspésné pouziti téchto vzort
(stejné jako jakychkoli jinych v oblasti softwaru) zavisi na hlubokém porozumeéni
problémové oblasti, potfebam uzivateld a celkové technické architektufe vaseho

projektu.

Uvahy o softwarové architektufe

Zacal jsem programovat v 80. letech a byl jsem soucasti hackerské scény, pricemz
jsem nikdy neztratil své hackerské smysleni, ani poté, co jsem se stal profesionalnim
vyvojafem softwaru. Od zacatku jsem vzdy mél zdravou skepsi ohledné toho, jakou

hodnotu vlastné ptinaseji softwarovi architekti ze svych slonovinovych vézi.

Jednim z dGvod, pro¢ jsem osobné tak nadSeny ze zmén, které pfinasi tato mocna nova
vlna technologie umélé inteligence, je jeji dopad na to, co povazujeme za rozhodnuti
softwarové architektury. Zpochybriuje tradi¢ni predstavy o tom, co predstavuje
“spravny” zplsob navrhu a implementace naSich softwarovych projekta. Také
zpochybriuje, zda lze architekturu stile povazovat piedevsim za ty ¢édsti systému, které
Jje téZké zmenit, protoze vylepSeni pomoci umélé inteligence usnadiiuje zménu jakékoli

¢asti vaseho projektu kdykoli vice nez kdy predtim.

Mozna vstupujeme do vrcholnych let “postmoderniho” pfistupu k softwarovému
inzenyrstvi. V tomto kontextu postmoderni oznacuje zasadni odklon od tradi¢nich
paradigmat, kde byli vyvojari odpovédni za napsani a ddrzbu kazdého tadku kodu.
Misto toho pfijima myslenku delegovani tkold, jako je manipulace s daty, komplexni
algoritmy a dokonce celé ¢asti aplikaéni logiky, na knihovny tfetich stran a externi

API. Tento postmoderni posun predstavuje vyznamny odklon od konvenéni moudrosti

Uvod 3

budovani aplikaci od zékladt a vyzyva vyvojare k pfehodnoceni jejich role v procesu
vyvoje.

Vzdy jsem véfil, Ze dobii programatofi pisi pouze kod, ktery je absolutné nezbytné
napsat, na zakladé uceni Larryho Walla a dalsich hackerskych osobnosti jako on.
Minimalizaci mnozstvi napsaného kodu se miizeme pohybovat rychleji, snizit prostor
pro chyby, zjednodusit udrzbu a zlepsit celkovou spolehlivost nasich aplikaci. Méné
kédu ndm umoziiuje soustfedit se na zakladni byznysovou logiku a uzivatelskou

zkuSenost a delegovat ostatni praci na jiné sluzby.

Nyni, kdyz systémy pohanéné umélou inteligenci mohou zvladat tkoly, které byly
dfive vyhradni doménou kédu psaného ¢lovékem, bychom méli byt schopni byt jesté
produktivnéjsi a agilnéjsi, s vétsim zameérenim nez kdy piedtim na vytvareni byznysové

hodnoty a uzivatelské zkusenosti.

Samoziejmé existuji kompromisy pfi delegovani obrovskych casti vaseho projektu na
systémy umélé inteligence, jako je potencialni ztrata kontroly a potfeba robustnich
monitorovacich a zpétnovazebnich mechanismt. Proto to vyzaduje novou sadu
dovednosti a znalosti, vCetné alespoil zakladniho porozuméni tomu, jak uméla

inteligence funguje.

Co je velky jazykovy model?

Velké jazykové modely (LLM) jsou typem umélé inteligence, ktery ziskal vyznamnou
pozornost v poslednich letech, zejména od spusténi GPT-3 spole¢nosti OpenAl v roce
2020. LLM jsou navrzeny ke zpracovani, porozuméni a generovani lidského jazyka
s pozoruhodnou presnosti a plynulosti. V této ¢asti se kratce podivame na to, jak LLM

funguji a pro¢ jsou vhodné pro budovani inteligentnich systémovych komponent.

V jadru jsou LLM zalozeny na algoritmech hlubokého uceni, konkrétné na neuronovych

sitich. Tyto sité se skladaji z propojenych uzli neboli neuront, které zpracovavaji

Uvod 4

a prenaseji informace. Architekturou volby pro LLM je ¢asto model Transformer, ktery

se ukazal jako vysoce efektivni pfi zpracovani sekvenénich dat, jako je text.

Transformerové modely jsou zaloZeny na mechanismu pozornosti a pouzivaji se
predevsim pro tlohy zahrnujici sekven¢ni data, jako je zpracovani pfirozeného jazyka.
Transformery zpracovavaji vstupni data najednou, nikoli sekvencné, coz jim umoziuje
efektivnéji zachytit dlouhodobé zavislosti. Maji vrstvy mechanismi pozornosti, které
modelu poméahaji soustfedit se na rtzné ¢asti vstupnich dat, aby pochopil kontext

a vztahy.

Proces trénovani velkych jazykovych modelt zahrnuje vystaveni modelu obrovskému
mnozstvi textovych dat, jako jsou knihy, ¢lanky, webové stranky a repozitafe
kédu. Béhem tréninku se model uéi rozpoznavat vzory, vztahy a struktury v textu.
Zachycuje statistické vlastnosti jazyka, jako jsou gramaticka pravidla, slovni asociace

a kontextualni vyznamy.

Jednou z klicovych technik pouzivanych pii trénovani velkych jazykovych modeli je
nefizené uceni. To znamen4, 7e se model uci z dat bez explicitniho oznacovani nebo
vedeni. Objevuje vzory a reprezentace samostatné analyzovanim spole¢ného vyskytu
slov a frazi v trénovacich datech. To umoziuje velkym jazykovym modeliim vyvinout

hluboké porozumeéni jazyku a jeho slozitostem.

Dalsim dulezitym aspektem velkych jazykovych modeli je jejich schopnost pracovat
s kontextem. Pii zpracovani textu berou velké jazykové modely v ivahu nejen jednotliva
slova, ale také okolni kontext. Zohlediiuji pfedchozi slova, véty a dokonce i odstavce,
aby pochopily vyznam a zamér textu. Toto kontextualni porozuméni umoziiuje velkym
jazykovym modeliim generovat koherentni a relevantni odpovédi. Jednim z hlavnich
zpusobi, jak hodnotime schopnosti daného jazykového modelu, je posouzeni velikosti

kontextu, ktery dokaze zvazit pti generovani odpovédi.

Po natrénovani lze velké jazykové modely pouzit pro Sirokou skalu jazykovych tloh.
Dokazou generovat text podobny lidskému, odpovidat na otazky, shrnovat dokumenty,

prekladat jazyky a dokonce psat kod. Vsestrannost velkych jazykovych modeld je

Uvod 5

¢ini cennymi pro vytvareni inteligentnich systémovych komponent, které mohou
komunikovat s uzivateli, zpracovavat a analyzovat textova data a generovat smysluplné
vystupy.

Zallenénim velkych jazykovych modeld do architektury aplikaci muZzete vytvaret
Al komponenty, které rozumi a zpracovavaji uzivatelské vstupy, generuji dynamicky
obsah a poskytuji inteligentni doporuceni nebo akce. Prace s velkymi jazykovymi
modely vSak vyzaduje peclivé zvazeni pozadavkl na zdroje a kompromisi ve vykonu.
Velké jazykové modely jsou vypocetné naroéné a mohou vyzadovat znacny vypocetni
vykon a pamét (jinymi slovy, penize) pro provoz. Vétsina z nas bude muset posoudit
nakladové disledky integrace velkych jazykovych modelt do nasich aplikaci a podle
toho jednat.

Porozumeéni inferenci

Inference oznacuje proces, kterym model generuje predikce nebo vystupy na zakladé
novych, dosud nevidénych dat. Je to faze, kdy se natrénovany model pouziva
k rozhodovani nebo generovani textu, obrazkd nebo jiného obsahu v reakci na

uzivatelské vstupy.

Béhem faze trénovani se Al model uéi z velkého datasetu ipravou svych parametri tak,
aby minimalizoval chyby ve svych predikcich. Po natrénovani mize model aplikovat
to, co se naucil, na nova data. Inference je zptsob, jakym model vyuziva naucené vzory

a znalosti k generovani vystupt.

Pro velké jazykové modely inference zahrnuje piijeti promptu nebo vstupniho textu
a vytvoreni koherentni a kontextualné relevantni odpovédi jako proudu tokenii
(o kterych budeme brzy mluvit). Maze jit o odpovéd na otazku, dokonceni véty,

generovani pfibéhu nebo preklad textu, mezi mnoha dal$imi tlohami.

Uvod 6

Na rozdil od zpisobu, jakym pfemyslime my, “mysleni” AI modelu
’ prostrednictvim inference probiha v jedné bezstavové operaci. To znamena,
Ze jeho mysleni je omezeno na proces generovani. Doslova musi myslet
nahlas, jako kdybyste mi polozili otazku a piijimali ode mé odpovéd pouze

ve stylu “proudu védomi”.

Velké jazykové modely prichazeji v mnoha velikostech
a variantach

Zatimco prakticky vechny popularni velké jazykové modely (LLM) jsou zalozeny na
stejné zakladni transformerové architektufe a jsou trénovany na obrovskych textovych
datasetech, prichazeji v riznych velikostech a jsou doladény pro rtizné ucely. Velikost
LLM, méfend poctem parametrtl v jeho neuronové siti, ma velky vliv na jeho schopnosti.
Vétsi modely s vice parametry, jako je GPT--4, o kterém se tika, Ze mé 1 az 2 biliony
parametrd, jsou obecné znaléjsi a schopnéjsi nez mensi modely. Vétsi modely vsak také
vyzaduji mnohem vice vypocetniho vykonu, coz se promita do vyssich nakladi pti jejich

pouzivani prostfednictvim API volani.

Aby byly LLM prakti¢téjsi a prizptisobené konkrétnim piipadim pouziti, jsou zakladni
modely ¢asto doladény na vice cilenych datasetech. Napiiklad LLM miize byt trénovan
na velkém korpusu dialogt, aby se specializoval na konverzaéni Al Jiné jsou trénovany
na kodu, aby ziskaly programatorské znalosti. Existuji dokonce modely, které jsou

specialné trénovany pro interakce s uzivateli ve stylu hrani roli!

Modely zaloZené na vyhledavani vs. generativni modely

Ve svété velkych jazykovych modeld (LLM) existuji dva hlavni pfistupy ke generovani
odpovédi: modely zalozené na vyhledavani a generativni modely. Kazdy pfistup ma své
silné a slabé stranky a pochopeni rozdilt mezi nimi vam muZze pomoci vybrat spravny

model pro vas konkrétni piipad pouziti.

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Uvod 7

Modely zaloZené na vyhledavani

Modely zalozené na vyhledavani, znamé také jako modely pro ziskavani informaci,
generuji odpovédi prohledavanim rozsahlé databaze existujicich texti a vybérem
nejrelevantnéjsich pasazi na zakladé vstupniho dotazu. Tyto modely nevytvéafeji novy

text od zékladu, ale spiSe spojuji uryvky z databaze do souvislé odpovédi.

Jednou z hlavnich vyhod modeli zaloZenych na vyhledavani je jejich schopnost
poskytovat fakticky presné a aktualni informace. Protoze se spoléhaji na databazi
kuratovanych textl, mohou Cerpat relevantni informace ze spolehlivych zdroju
a predkladat je uZivateli. Diky tomu jsou vhodné pro aplikace, které vyzaduji pfesné,

faktické odpovédi, jako jsou systémy pro zodpovidani otazek nebo znalostni baze.

Modely zalozené na vyhledavani maji vSak urcitd omezeni. Jsou pouze tak dobré
jako databaze, kterou prohledavaji, takze kvalita a pokryti databaze pfimo ovliviiuji
vykon modelu. Kromé toho mohou tyto modely mit potize s generovanim souvislych

a pfirozené znéjicich odpovédi, protoze jsou omezeny na text dostupny v databazi.

V této knize se nezabyvame pouzivanim ¢isté vyhledavacich modela.

Generativni modely

Generativni modely naopak vytvareji novy text od zdkladu na zakladé vzorct a vztahd,
které se naucily béhem tréninku. Tyto modely vyuZivaji své porozuméni jazyku

k vytvareni novych odpovédi, které jsou pfizptisobeny vstupnimu zadani.

Hlavni pfednosti generativnich modeld je jejich schopnost vytvaret kreativni, souvisly
a kontextové relevantni text. Mohou vést oteviené konverzace, generovat piibéhy
a dokonce psat koéd. Diky tomu jsou idedlni pro aplikace, které vyzaduji otevienéjsi
a dynamiCtéjsi interakce, jako jsou chatboti, tvorba obsahu a asistenti pro kreativni

psani.

Generativni modely vSak mohou nékdy produkovat nekonzistentni nebo fakticky

nespravné informace, protoze se spoléhaji spise na vzorce naucené béhem tréninku

Uvod 8

nez na kurdtovanou databazi faktd. Mohou byt také nachylnéjsi k predpojatosti

a halucinacim, kdy generuji text, ktery je vérohodny, ale ne nutné pravdivy.

Priklady generativnich LLM zahrnuji fadu GPT od OpenAlI (GPT-3, GPT-4) a Claude od
Anthropic.

Hybridni modely

Nékolik komeréné dostupnych LLM kombinuje oba pfistupy - vyhledavani i generovani
- v hybridnim modelu. Tyto modely pouzivaji techniky vyhledavani k nalezeni
relevantnich informaci z databaze a poté pouzivaji generativni techniky k syntéze

téchto informaci do souvislé odpovédi.

Hybridni modely se snazi kombinovat faktickou pfesnost modeltl zaloZenych na
vyhledavani s moznostmi generovani pfirozeného jazyka generativnich modelt.
Mohou poskytovat spolehlivéjsi a aktualnéjsi informace pfi zachovéni schopnosti vést

oteviené konverzace.

Pfi vybéru mezi modely zaloZenymi na vyhledavani a generativnimi modely byste méli
zvézit konkrétni pozadavky vasi aplikace. Pokud je hlavnim cilem poskytovat pfesné,
faktické informace, mtze byt nejlepsi volbou model zaloZeny na vyhledavani. Pokud
aplikace vyZaduje otevienéjsi a kreativnéjsi interakce, mtze byt vhodnéjsi generativni
model. Hybridni modely nabizeji rovnovahu mezi obéma pfistupy a mohou byt dobrou
volbou pro aplikace, které vyzaduji jak faktickou presnost, tak generovani pfirozeného

jazyka.

V konetném dusledku zavisi volba mezi modely zalozenymi na vyhledavani
a generativnimi modely na konkrétnim pfipadu pouziti a kompromisech mezi
presnosti, kreativitou a flexibilitou. Pochopenim silnych stranek a omezeni kazdého

pfistupu muzete ¢init informovana rozhodnuti.

Uvod

Instrukéni ladéni

Instrukéni ladéni je podmnozina konverza¢niho tréninku, kterd pouziva ¢lovékem
napsané prompty a odpovédi k tomu, aby se LLM lépe naudily chapat a nasledovat
instrukce. Zde jsou jednoduché priklady ilustrujici, jak instrukéni ladéni na ¢lovékem
napsanych promptech a odpovédich zlepsuje schopnost LLM chapat a nasledovat

instrukce:

Priklad 1: Zakaznicka podpora

Instrukce: “Poskytnéte odpovéd zakaznikovi, ktery zada o vraceni penéz”

Clovékem napsany prompt: “Rad bych pozadal o vraceni penéz za sviij nedavny

néakup. Produkt nesplnil moje ocekavani”

Clovékem napsana odpovéd: “Je mi lito, Ze produkt nesplnil vase odekavani. Pro
zpracovani vraceni penéz prosim uvedte ¢islo vasi objednavky a divod vraceni. Vasi

zadost provétime a ozveme se vam do 2-3 pracovnich dnt”

Priklad 2: Vzdélavaci asistence

Instrukce: “Vysvétlete koncept fotosyntézy desetiletému ditéti”
Lidmi psany dotaz: “Mizes vysvétlit, jak si rostliny vyrabéji potravu?”

Lidmi psanid odpovéd: “Jisté! Rostliny si vyrabéji potravu procesem zvanym
fotosyntéza. Vyuzivaji sluneéni svétlo, vodu a oxid uhli¢ity k vytvofeni potravy
a kysliku. Listy rostliny obsahuji specialni ¢ast zvanou chlorofyl, ktera jim poméaha

zachytavat slune¢ni svétlo.”

Priklad 3: Osobni asistent

Instrukce: “Naplanuj schizku na pfisti atery ve 15:00.

Uvod 10

Lidmi psany dotaz: “Muze$ mi naplanovat schiizku na utery ve tfi odpoledne?”

Lidmi psana odpovéd: “Jisté, naplanoval jsem vam schiizku na pristi dtery v 15:00.

Potfebujete jesté néco?”

Vysledkem je rtznorody ekosystém velkych jazykovych modelt raznych velikosti
a s riznymi specializacemi. Mensi modely v rozsahu 1-7 miliard parametrti poskytuji

dobré obecné jazykové schopnosti a jsou pritom efektivnéjsi pro provoz.

« Mistral 7B
o Llama 3 8B

« Gemma 7B

Stfedné velké modely s priblizné 30-70 miliardami parametri nabizeji silnéjsi schopnosti

uvazovani a nasledovani instrukei.

« Llama 3 70B
« Qwen2 70B
« Mixtral 8x22B

Pfi vybéru velkého jazykového modelu pro zaclenéni do aplikace musite vyvazit
schopnosti modelu s praktickymi faktory jako jsou naklady, latence, délka kontextu
a filtrovani obsahu. Mensi modely doladéné na instrukce jsou ¢asto nejlepsi volbou pro
jednodussi jazykové ulohy, zatimco nejvétsi modely mohou byt potfebné pro slozité
uvazovani nebo analyzu. Dilezitym faktorem je také trénovaci dataset modelu, ktery

uréuje datum ukonéeni znalosti modelu.

Nékteré modely, jako napiiklad nékteré od Perplexity, jsou pfipojeny
P ke zdrojim informaci v readlném cCase, takZe v podstaté nemaji zadné
datum ukonceni znalosti. KdyZ jim polozite otazky, dokazou samostatné
rozhodnout o provedeni webového vyhledavani a nacteni libovolnych

webovych stranek pro generovani odpovédi.

Uvod 11

Obie

Bl \Who won the America vs GDL match last night?
. Liama 3 708 Instruct {nitre) &

I'm not aware of any information about a match between "America" and "GDL" last night. Could

~

you please provide more context or clarify which teams or leagues you are referring to? I'lldo C
my best to help you find the answer.

~281.1 tokens/s

“

Club América won the match against Guadalajara last night, with a score of 1-0. £

~31.0 tokens/s

obrazkem 1. Llama3 s online pfistupem a bez néj

V konetném dusledku neexistuje univerzalni velky jazykovy model. Pro vybér
spravného modelu pro dany pfipad pouziti je klicové porozuméni rozdiliim ve velikosti
modelu, architektufe a tréninku. Experimentovani s raiznymi modely je jediny prakticky
zpusob, jak zjistit, které z nich poskytuji nejlepsi vykon pro danou tlohu.

Tokenizace: Rozdélovani textu na casti

Nez muze velky jazykovy model zpracovat text, musi byt tento text rozdélen na mensi
jednotky zvané tokeny. Tokeny mohou byt jednotliva slova, ¢asti slov nebo dokonce
jednotlivé znaky. Proces rozdélovani textu na tokeny se nazyva tokenizace a je to klicovy

krok v ptipravé dat pro jazykovy model.

The process of splitting text into tokens is known as tokenization, and
it’s a crucial step in preparing data for a language model.

obrazkem 2. Tato véta obsahuje 27 tokenu

Riazné velké jazykové modely pouzivaji rlizné strategie tokenizace, coz miZe mit

vyznamny vliv na vykon a schopnosti modelu. Mezi béZzné tokenizéry pouzivané

Uvod 12

velkymi jazykovymi modely patfi:

« GPT (Kédovani para bajta): GPT tokenizéry pouZivaji techniku zvanou
kédovani part bajtd (BPE) k rozdéleni textu na podslovovné jednotky. BPE
iterativné spojuje nejcastéjsi pary bajt v textovém korpusu a vytvari tak slovnik
podslovovnych tokeni. To umoziuje tokenizéru zpracovat vzacna a nova slova
jejich rozdélenim na béznéjsi podslovovné ¢asti. GPT tokenizéry jsou pouzivany

modely jako GPT--3 a GPT--4.

« Llama (SentencePiece): Tokenizatory Llama pouzivaji knihovnu SentencePiece,
coZ je nefizeny textovy tokenizator a detokenizator. SentencePiece pracuje se
vstupnim textem jako se sekvenci znakii Unicode a uéi se slovnik podslov
na zakladé trénovaciho korpusu. Dokaze zpracovat jakykoliv jazyk, ktery lze
zakddovat v Unicode, coz ho ¢ini vhodnym pro vicejazy¢né modely. Tokenizatory

Llama jsou pouzivany modely jako Meta’s Llama a Alpaca.

« SentencePiece (Unigram): Tokenizatory SentencePiece mohou také pouzivat jiny
algoritmus nazvany Unigram, ktery je zaloZen na technice regularizace podslov.
Tokenizace Unigram urcuje optimalni slovnik podslov na zakladé unigramového
jazykového modelu, ktery pfifazuje pravdépodobnosti jednotlivym podslovnim
jednotkam. Tento pfistup muze produkovat sémanticky vyznamnéjsi podslova ve
srovnani s BPE. SentencePiece s Unigramem pouzivaji modely jako Google T5

a BERT.

+ Google Gemini (Multimodalni tokenizace): Google Gemini pouzivé tokeniza¢ni
schéma navrzené pro zpracovani riiznych typu dat, véetné textu, obrazki, zvuku,
videi a kdédu. Tato multimodalni schopnost umoziiuje Gemini zpracovavat
a integrovat rizné formy informaci. Je pozoruhodné, Ze Google Gemini 1.5 Pro
ma kontextové okno, které zvladne miliony tokend, coZ je mnohem vice nez

pfedchozi modely. Toto rozsahlé kontextové okno umoziiuje modelu zpracovavat

Uvod 13

vétsi kontext, coZz potencidlné vede k presnéjsim odpovédim. Je vSak dulezité
poznamenat, Ze tokeniza¢ni schéma Gemini je mnohem bliZe jednomu tokenu na
znak nez u jinych modeld. To znamena, Ze skute¢né naklady na pouzivani modelt
Gemini mohou byt vyrazné vyssi nez ocekavané, pokud jste zvykli pouzivat

modely jako GPT, protoze Google t¢tuje ceny na zakladé znaku spiSe nez tokent.
Volba tokenizatoru ovliviiuje nékolik aspektti LLM, v€etné:

« Velikost slovniku: Tokenizator urcuje velikost slovniku modelu, coz je sada
unikatnich tokent, které rozpoznava. VEtsi a podrobnéjsi slovnik mize modelu
pomoci zpracovat Sirsi skalu slov a frazi a dokonce se stat multimodalnim
(schopnym porozumét a generovat vice nez jen text), ale také zvysuje pamétové
naroky modelu a vypocetni sloZitost.

« Zpracovani vzacnych a neznamych slov: Tokenizatory, které pouzivaji
podslovni jednotky, jako BPE a SentencePiece, mohou rozdélit vzacna a neznama
slova na béznéjsi ¢asti podslov. To umoziiuje modelu délat kvalifikované odhady
o vyznamu slov, ktera predtim nevidél, na zakladé podslov, ktera obsahuji.

« Vicejazy¢na podpora: Tokenizatory jako SentencePiece, které dokazou zpracovat
jakykoliv jazyk kédovatelny v Unicode, jsou dobfe uzptisobené pro vicejazytné

modely, které potfebuji zpracovavat text v riznych jazycich.

Pfi vybéru LLM pro konkrétni aplikaci je dilezité zvazit tokenizator, ktery pouziva, a jak
dobte odpovida specifickym potfebam zpracovani jazyka pro dany ukol. Tokenizator
muze mit vyznamny vliv na schopnost modelu zpracovavat oborovou terminologii,

vzacna slova a vicejazycny text.

Velikost kontextu: Kolik informaci mlZe jazykovy model
vyuzZit béhem inference?

Pri diskusi o jazykovych modelech se velikosti kontextu rozumi mnozstvi textu, které

model mize zvazit pfi zpracovani nebo generovani svych odpovédi. Je to v podstaté

Uvod 14

mira toho, kolik informaci si model dokaze “zapamatovat” a pouzit pro své vystupy
(vyjadfeno v tokenech). Velikost kontextu jazykového modelu muze mit vyznamny

dopad na jeho schopnosti a typy tloh, které muze efektivné provadét.

Co je velikost kontextu?

Technicky vzato je velikost kontextu uréena poc¢tem tokent (slov nebo ¢asti slov), které
jazykovy model miize zpracovat v jedné vstupni sekvenci. Casto se tomu fik4 “rozsah
pozornosti” nebo “kontextové okno” modelu. Cim vétsi je velikost kontextu, tim vice

textu miZze model najednou zvazit pfi generovani odpovédi nebo provadéni ukolu.

Rizné jazykové modely maji rizné velikosti kontextu, od nékolika set tokend az po
miliony tokent. Pro predstavu, typicky odstavec textu mize obsahovat priblizné 100-150

tokent, zatimco cela kniha mtize obsahovat desitky ¢i stovky tisic tokent.

Existuji dokonce prace na efektivnich metodach pro $kalovani Transformer-based
Large Language Models (LLMs) na nekone¢né dlouhé vstupy s omezenou paméti

a vypocetni narocnosti.

Proc je velikost kontextu dualeZita?

Velikost kontextu jazykového modelu ma vyznamny vliv na jeho schopnost porozumét
a generovat souvisly, kontextové relevantni text. Zde jsou nékteré klicové davody, pro¢

na velikosti kontextu zalezi:

1. Porozuméni dlouhym textim: Modely s vétsi velikosti kontextu dokazi lépe
pochopit a analyzovat delsi texty, jako jsou ¢lanky, zpravy nebo dokonce celé
knihy. To je zasadni pro dlohy jako sumarizace dokumentt, zodpovidani otazek

a analyza obsahu.

https://huggingface.co/papers/2404.07143

Uvod 15

2. Udrzeni koherence: Vétsi kontextové okno umoziuje modelu udrZet koherenci
a konzistenci v delsich usecich vystupu. To je dulezité pro tlohy jako generovani
pribéht, dialogové systémy a tvorba obsahu, kde je zasadni udrzet konzistentni
vypravéni nebo téma. Je to také naprosto klicové pfi pouzivani LLM pro
generovani nebo transformaci strukturovanych dat.

3. Zachyceni zavislosti na dlouhou vzdalenost: Nékteré jazykové tlohy vyzaduji
porozuméni vztahtim mezi slovy nebo frazemi, které jsou v textu od sebe vzdalené.
Modely s vétsi velikosti kontextu jsou lépe vybaveny pro zachyceni téchto
vzdalenych zavislosti, coz muze byt dilezité pro ulohy jako analyza sentimentu,
preklad a porozuméni jazyku.

4. Zvladani slozitych instrukci: V aplikacich, kde se jazykové modely pouzivaji
k nasledovani slozitych, vicekrokovych instrukci, vétsi velikost kontextu
umoziuje modelu vzit v dvahu celou sadu instrukei pfi generovani odpovédi,

misto jen nékolika poslednich slov.

Priklady jazykovych modelt s riznymi velikostmi kontextu

Zde je nékolik prikladu jazykovych modelt s riznymi velikostmi kontextu:

« OpenAl GPT-3.5 Turbo: 4 095 tokent
« Mistral 7B Instruct: 32 768 tokena

« Anthropic Claude v1: 100 000 tokent
« OpenAl GPT-4 Turbo: 128 000 tokent
« Anthropic Claude v2: 200 000 tokent
« Google Gemini Pro 1.5: 2,8M tokent

Jak muzete vidét, mezi témito modely je Siroky rozsah velikosti kontextu, od pfiblizné 4
000 token®i u modelu OpenAl GPT-3.5 Turbo az po 200 000 tokenid u modelu Anthropic
Claude v2. Nékteré modely, jako Google PaLM 2 a OpenAl GPT--4, nabizeji rizné

varianty s vétsimi velikostmi kontextu (napf. verze “32k”), které zvladnou jesté delsi

Uvod 16

vstupni sekvence. A v soucasnosti (duben 2024) se Google Gemini Pro chlubi téméf 3

miliony tokent!

Je tfeba poznamenat, Ze velikost kontextu se muze lisit v zavislosti na konkrétni
implementaci a verzi daného modelu. Napfiklad pivodni model OpenAl GPT-4 ma
velikost kontextu 8 191 tokentl, zatimco pozdéjsi varianty GPT-4, jako jsou Turbo a 4o,

maji mnohem vétsi velikost kontextu 128 000 tokent.

Sam Altman pfirovnal soucasné kontextova omezeni ke kilobajtium pracovni paméti,
se kterymi se museli programatofi osobnich poc¢itact potykat v 80. letech, a fekl,
7e v blizké budoucnosti budeme schopni vméstnat “vechna vase osobni data” do

kontextu velkého jazykového modelu.

Vybér spravné velikosti kontextu

Pfi vybéru jazykového modelu pro konkrétni aplikaci je dulezité zvazit pozadavky na
velikost kontextu pro danou ulohu. Pro tlohy zahrnujici kratké, izolované texty, jako je
analyza sentimentu nebo jednoduché zodpovidani otazek, mize byt dostacujici mensi
velikost kontextu. Pro tlohy vyzadujici porozuméni a generovani delsich, slozitéjsich

textd bude pravdépodobné nutna vétsi velikost kontextu.

Je tfeba poznamenat, Ze vétsi velikosti kontextu Casto prfinaseji zvysené vypocetni
naklady a pomalejsi zpracovéni, protoze model musi pfi generovani odpovédi zvazovat
vice informaci. Proto musite pfi vybéru jazykového modelu pro vasi aplikaci najit

rovnovahu mezi velikosti kontextu a vykonem.

Uvod 17

Pro¢ tedy jednoduse nevybrat model s nejvétsi velikosti kontextu a nenaplnit ho
co nejvétsim mnozstvim informaci? No, kromé vykonnostnich faktora je hlavnim
divodem cena. V bfeznu 2024 vas jediny cyklus dotaz-odpovéd pomoci Google
Gemini Pro 1.5 s plnym kontextem bude stat téméf 8 dolart (USD). Pokud méte piipad
pouziti, ktery tuto cenu ospravedliiuje, tim 1épe! Ale pro vétsinu aplikaci je to prosté

o fady prilis drahé.

Hledani jehel v kupkach sena

Koncept hledani jehly v kupce sena je dlouho pouzivanou metaforou pro vyzvy spojené
s vyhledavanim ve velkych datovych souborech. V oblasti velkych jazykovych modelt
(LLM) tuto analogii mirné upravujeme. Predstavte si, Ze nehledame jen jeden fakt ukryty
v rozsdhlém textu (jako je tfeba kompletni antologie eseji Paula Grahama), ale nékolik
faktd rozptylenych po celém textu. Tento scénaf se vice podoba hledani nékolika jehel
v rozlehlém poli, nikoliv jen v jedné kupce sena. A zde je hacek: nejen Ze musime tyto

jehly najit, ale musime je také propojit do souvislého celku.

Kdyz maji LLM za tkol vyhledavat a uvazovat o vice faktech zasazenych do dlouhych
kontextt, Celi dvoji vyzvé. Zaprvé je tu pfimocary problém presnosti vyhledavani—
ta pfirozené klesa s rostoucim poctem faktl. To je ocekavatelné; koneckonct, udrzet
prehled o vice detailech napfic rozsahlym textem je naro¢né i pro ty nejsofistikovanéjsi

modely.

Zadruhé, a mozna jesté kriti¢téjsi, je vyzva uvazovani s témito fakty. Jedna véc je fakta
vysbirat; néco zcela jiného je syntetizovat je do souvislého vypravéni nebo odpovédi.
Zde prichazi skute¢na zkouska. Vykon LLM v ulohach vyzadujicich uvazovani ma
tendenci degradovat vice nez u jednoduchych tloh vyhledavani. Tato degradace neni

jen otazkou objemu; jde o slozity tanec kontextu, relevance a vyvozovani zavéru.

Pro¢ k tomu dochazi? Uvazujme o dynamice paméti a pozornosti v lidském poznavani,

Uvod 18

ktera se do uréité miry odrazi i v LLM. Pfi zpracovani velkého mnozstvi informaci
mohou LLM, podobné jako lidé, ztratit prehled o dfivéjsich detailech, kdyz vstfebavaji
nové. To plati zejména u modeld, které nejsou explicitné navrzeny tak, aby automaticky

uprednostiiovaly nebo se vracely k dfivéjsim ¢astem textu.

Navic, schopnost LLM propojit tyto ziskané fakty do souvislé odpovédi se podoba
vytvareni narativu. To vyZaduje nejen vyhledani informaci, ale i hluboké porozuméni

a kontextualni umisténi, coz ziistava pro souc¢asnou umélou inteligenci zna¢nou vyzvou.

Co to tedy znamena pro nas jako vyvojafe a integratory téchto technologii? Musime
si byt ostfe védomi téchto omezeni pfi navrhovani systémd, které spoléhaji na LLM pro
zpracovani komplexnich, dlouhych tloh. Pochopeni toho, Ze vykon se miize za uréitych
podminek zhorsit, nAm poméha nastavit realisticka ofekavani a vytvaret lepsi zalozni

mechanismy nebo doplitkové strategie.

Modality: Za hranicemi textu

Zatimco vétSina dnesnich jazykovych modelt se zaméfuje na zpracovani a generovani
textu, roste trend smérem k multimodalnim modeltim, které dokazi pfirozené prijimat
a vytvaret vice typi dat, jako jsou obrazky, zvuk a video. Tyto multimodalni modely
oteviraji nové moznosti pro aplikace zaloZené na umélé inteligenci, které dokazi

porozumét a generovat obsah napfi¢ riznymi modalitami.

Co jsou modality?

V kontextu jazykovych modelt se modalitami rozumi rtizné typy dat, které model
dokaze zpracovavat a generovat. Nejbéznéjsi modalitou je text, ktery zahrnuje psany
jazyk v riznych formach jako knihy, ¢lanky, webové stranky a pfispévky na socialnich
sitich. Existuje vsak nékolik dalsich modalit, které jsou stale castéji zacleniovany do

jazykovych modelu:

« Obrazky: Vizualni data jako fotografie, ilustrace a diagramy.

Uvod 19

« Audio: Zvukova data jako fe¢, hudba a zvuky prostredi.
« Video: Pohybliva vizualni data, ¢asto doprovazena zvukem, jako jsou videoklipy

a filmy.

Kazda modalita predstavuje jedinecné vyzvy a prilezitosti pro jazykové modely.
Napiiklad obrazky vyzaduji, aby model porozumél vizualnim konceptiim a vztahtm,

zatimco audio vyZaduje, aby model zpracovaval a generoval fe¢ a dalsi zvuky.
Multimodalni jazykové modely

Multimodalni jazykové modely jsou navrzeny tak, aby zvladaly vice modalit v ramci
jediného modelu. Tyto modely typicky obsahuji specializované komponenty nebo
vrstvy, které dokazi jak porozumét vstuptim, tak generovat vystupni data v raznych

modalitach. Mezi vyznamné piiklady multimodalnich jazykovych modelu patfi:

« OpenAl GPT-40: GPT-40 je velky jazykovy model, ktery pfirozené rozumi
a zpracovava re¢ové audio kromé textu. Tato schopnost umoziuje GPT-40
provadét tukoly jako prepis mluveného jazyka, generovani textu ze zvukovych
vstupil a poskytovani odpovédi na zakladé mluvenych dotazi.

« OpenAl GPT-4 s vizualnim vstupem: GPT--4 je velky jazykovy model, ktery
dokaze zpracovavat jak text, tak obrazky. Kdyz dostane obrazek jako vstup, GPT-4
dokaze analyzovat obsah obrazku a generovat text, ktery popisuje nebo reaguje
na vizualni informace.

+ Google Gemini: Gemini je multimodalni model, ktery zvlada text, obrazky
a video. Pouziva jednotnou architekturu, kterd umoziuje kfizové porozuméni
a generovani mezi modalitami, coz umoziiuje ulohy jako popisovani obrazki,

sumarizace videa a vizualni zodpovidani otazek.

« DALL-E a Stable Diffusion: Prestoze nejde o jazykové modely v tradiénim
smyslu, tyto modely demonstruji silu multimodalni umélé inteligence
generovanim obrazkd z textovych popist. Ukazuji potencial modeld, které

dokazi prekladat mezi riznymi modalitami.

Uvod 20

Vyhody a aplikace multimodalnich modeld

Multimodalni jazykové modely nabizeji nékolik vyhod a umoziuji sirokou skalu

aplikaci, vCetné:

« Vylepsené porozuméni: Zpracovanim informaci z vice modalit mohou tyto
modely ziskat komplexnéjsi porozuméni svétu, podobné jako se lidé uéi z riznych
smyslovych vstupt.

« Kfizové modalni generovani: Multimodalni modely dokazi generovat obsah
v jedné modalité na zakladé vstupu z jiné modality, napiiklad vytvotit obrazek
z textového popisu nebo generovat video shrnuti z psaného ¢lanku.

« Pristupnost: Multimodalni modely mohou zpfistupnit informace prekladem
mezi modalitami, napfiklad generovanim textovych popist obrazka pro zrakové
postizené uzivatele nebo vytvarenim zvukovych verzi psaného obsahu.

« Kreativni aplikace: Multimodalni modely lze vyuzit pro kreativni tkoly jako
generovani umeéni, hudby nebo videi na zakladé textovych promptd, coz otevira

nové moznosti pro umélce a tvirce obsahu.

S pokracéujicim vyvojem multimodalnich jazykovych modelti budou pravdépodobné
porozumét a generovat obsah napfi¢ riznymi modalitami. To umozni pfirozenéjsi
a intuitivnéjsi interakce mezi lidmi a systémy umélé inteligence a také otevie nové

moznosti pro kreativni vyjadieni a Sifeni znalosti.

Ekosystémy poskytovatell

Pokud jde o zaclenéni velkych jazykovych modelt (LLM) do aplikaci, mate na vybér
z rostouci fady moznosti. Kazdy hlavni poskytovatel LLM, jako je OpenAl, Anthropic,
Google a Cohere, nabizi vlastni ekosystém modelti, API a nastrojii. Vybér spravného
poskytovatele zahrnuje zvazeni ruznych faktord, veetné ceny, vykonu, filtrovani obsahu,

ochrany dat a moznosti pfizptisobeni.

Uvod 21

OpenAl

OpenAl je jednim z nejznaméjsich poskytovateli LLM, pfi¢emz jeho série GPT (GPT-3,
GPT-4) je siroce vyuzivana v riznych aplikacich. OpenAl nabizi uzivatelsky pfivétivé
APIJ, které vam umoziuje snadno integrovat jejich modely do aplikaci. Poskytuji fadu
modeld s riznymi schopnostmi a cenovymi tirovnémi, od zakladniho modelu Ada az po

vykonny model Davinci.

Ekosystém OpenAl také zahrnuje nastroje jako OpenAl Playground, ktery vam
umoziiuje experimentovat s prompty a jemné doladovat modely pro konkrétni ptipady
pouziti. Nabizeji moznosti filtrovani obsahu, které pomahaji pfedchizet generovani

nevhodného nebo skodlivého obsahu.

Pfi pfimém pouZzivani modelt OpenAl spoléhdm na knihovnu ruby-openai od Alexe

Rudalla.

Anthropic

Anthropic je dalsi vyznamny hra¢ v oblasti LLM, jehoz modely Claude ziskavaji
popularitu diky silnému vykonu a etickym aspektim. Anthropic se zaméfuje na vyvoj
bezpeénych a odpovédnych systémit umélé inteligence s velkym diirazem na filtrovani

obsahu a vyhybani se $kodlivym vystuptm.

Ekosystém Anthropic zahrnuje API Claude, které vam umoznuje integrovat model do
jejich aplikaci, a také nastroje pro prompt engineering a jemné doladéni. Nabizeji také
model Claude Instant, ktery zahrnuje moznosti webového vyhledavani pro aktualnéjsi

a fakticky presnéjsi odpovédi.

Pfi pfimém pouzivani modeld Anthropic spoléham na knihovnu anthrophic od Alexe

Rudalla.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Uvod 22

Google

Google vyvinul nékolik vykonnych LLM, vcetné modeltt Gemini, BERT, T5 a PaLM.
Tyto modely jsou zndmé svym silnym vykonem v Sirokém spektru tloh zpracovani
pfirozeného jazyka. Ekosystém Google zahrnuje knihovny TensorFlow a Keras, které

poskytuji nastroje a frameworky pro vytvareni a trénovani modeld strojového uceni.

Google také nabizi Cloud Al Platform, ktera vdm umoziiuje snadno nasazovat a skalovat
jejich modely v cloudu. Poskytuji fadu predtrénovanych modeltl a API pro tulohy jako

analyza sentimentu, rozpoznavani entit a preklad.

Meta

Meta, dfive znama jako Facebook, vyznamné investuje do vyvoje velkych jazykovych
modeld, coz doklada vydani modelt jako LLaMA a OPT. Tyto modely vynikaji
svym silnym vykonem v riznych jazykovych tdlohadch a jsou dostupné prevazné
prostfednictvim open-source kanald, podporujici zavazek Mety k vyzkumu a komunitni

spolupraci.

Ekosystém Mety je primarné postaveny kolem PyTorch, open-source knihovny pro
strojové uceni, ktera je oblibena pro své dynamické vypocetni schopnosti a flexibilitu,

usnadiiujici inovativni vyzkum a vyvoj umélé inteligence.

Kromé svych technickych feseni klade Meta velky diiraz na eticky vyvoj umélé
inteligence. Implementuje robustni filtrovini obsahu a zaméfuje se na snizovani
predpojatosti, coz je v souladu s jejich SirSimi cili bezpe€nosti a odpovédnosti

v aplikacich umélé inteligence.

Cohere

Cohere je novéjsi ucastnik v oblasti LLM, ktery se zaméfuje na zpfistupnéni

a zjednoduseni pouzivani LLM oproti konkurenci. Jejich ekosystém zahrnuje Cohere

Uvod 23

API, které poskytuje piistup k fadé predtrénovanych modela pro ulohy jako generovani

textu, klasifikace a sumarizace.

Cohere také nabizi nastroje pro inZenyrstvi prompti, doladovani a filtrovani obsahu.
Zduraziuji ochranu a bezpeénost dat s funkcemi jako Sifrované lozisté dat a kontrola

pfistupu.

Ollama

Ollama je lokalné hostovana platforma, ktera uzivatelim umozZiiuje spravovat
a nasazovat rizné velké jazykové modely (LLM) lokalné na jejich poécitacich, coz jim
dava uplnou kontrolu nad jejich Al modely bez zavislosti na externich cloudovych
sluzbach. Toto nastaveni je idealni pro ty, ktefi upfednostiiuji ochranu dat a chtéji

provozovat své Al operace interné.

Platforma podporuje fadu modeld, véetné verzi Llama, Phi, Gemma a Mistral, které
se lisi velikosti a vypoCetnimi pozadavky. Ollama usnadiluje stahovani a spousténi
téchto modeld pfimo z pfikazového rfadku pomoci jednoduchych ptikazi jako ollama
run <model_name> a je navrzena pro praci na riiznych operacnich systémech véetné

macOS, Linux a Windows.

Pro vyvojare, ktefi chtéji integrovat open-source modely do svych aplikaci bez pouziti
vzdaleného API, nabizi Ollama CLI pro spravu Zivotniho cyklu modeld podobné jako
nastroje pro spravu kontejnert. Podporuje také vlastni konfigurace a prompty, coz

umoziuje vysokou miru pfizpisobeni pro specifické potfeby nebo piipady pouZiti.

Ollama je obzvlasté vhodna pro technicky zdatné uZivatele a vyvojafe diky svému
rozhrani prikazového radku a flexibilité, kterou nabizi pfi spravé a nasazovani
Al modelt. Diky tomu je silnym nastrojem pro firmy a jednotlivce, ktefi potfebuji

robustni Al schopnosti bez kompromist v oblasti bezpec¢nosti a kontroly.

Uvod 24

Multi-modelové platformy

Kromé toho existuji poskytovatelé, ktefi hostuji Sirokou skalu open-source modeld,
jako jsou Together.ai a Groq.. Tyto platformy nabizeji flexibilitu a pfizpusobeni, coz
vam umoziuje spoustét a v nékterych piipadech dokonce doladovat open-source
modely podle vasich specifickych potieb. Naptiklad Together.ai poskytuje pfistup
k fadé open-source LLM, coZ uzivatelim umozriuje experimentovat s riznymi modely
a konfiguracemi. Groq se zaméfuje na poskytovani ultra vykonného dokoncovani, které

se v dobé psani této knihy zda byt témér magické.

Vybér poskytovatele LLM

Pfi vybéru poskytovatele LLM byste méli zvazit faktory jako:

« Ceny: Rizni poskytovatelé nabizeji rizné cenové modely, od platby za pouziti
az po predplatitelské plany. Pti vybéru poskytovatele je dilezité zvazit ocekavané
vyuziti a rozpocet.

« Vykon: Vykon LLM se muze mezi poskytovateli vyrazné lisit, proto je dulezité
pted rozhodnutim otestovat modely na konkrétnich pfipadech pouziti.

« Filtrovani obsahu: V zavislosti na aplikaci mtze byt filtrovani obsahu kritickym
faktorem. Néktefi poskytovatelé nabizeji robustnéjsi moznosti filtrovani obsahu
nez jini.

« Ochrana dat: Pokud aplikace pracuje s citlivymi uZivatelskymi daty, je dilezité
vybrat poskytovatele se silnymi postupy ochrany a bezpecnosti dat.

« Prizpusobeni: Nékteii poskytovatelé nabizeji vétsi flexibilitu v oblasti doladovani

a pfizptisobovani modelt pro specifické piipady pouziti.

Koneény vybér poskytovatele LLM zavisi na specifickych pozadavcich a omezenich
aplikace. Peclivym vyhodnocenim moznosti a zvazenim faktort jako ceny, vykon

a ochrana dat muzete vybrat poskytovatele, ktery nejlépe vyhovuje vasim potfebam.

Uvod 25

Stoji také za zminku, Ze prostfedi LLM se neustale vyviji a pravidelné se objevuji novi
poskytovatelé a modely. Méli byste sledovat nejnovéjsi vyvoj a byt otevieni zkoumani

novych moznosti, jak se objevuji.

OpenRouter

V této knize budu vyhradné pouzivat OpenRouter jako mého preferovaného
poskytovatele API. Divod je jednoduchy: je to komplexni feseni pro vsechny
nejpopularnéjsi komeréni a open-source modely. Pokud se nemutzete dockat, az
si vyzkousite néjaké Al kddovani, jednim z nejlepsich mist, kde zacit, je moje vlastni

OpenRouter Ruby Library.

Zamysleni nad vykonem

Pfi zacleniovani jazykovych modelt do aplikaci je vykon klicovym faktorem. Vykon
jazykového modelu lze méfit z hlediska jeho latence (doba potiebna k vygenerovani

odpovédi) a propustnosti (poCet pozadavkd, které miize zpracovat za jednotku casu).

Time to First Token (TTFT) je dalsi dilezitou metrikou vykonu, ktera je obzvlasté
relevantni pro chatboty a aplikace vyzadujici interaktivni odpovédi v realném case.
TTFT méfi latenci od okamziku pfijeti pozadavku uZzivatele do okamziku vygenerovani
prvniho slova (nebo tokenu) odpovédi. Tato metrika je zasadni pro zachovani plynulého
a poutavého uzivatelského zazitku, protoZe zpozdéné odpovédi mohou vést k frustraci

uzivateld a jejich odrazeni.

Tyto metriky vykonu mohou mit vyznamny dopad na wuzivatelsky zazitek

a Skalovatelnost aplikace.
Vykon jazykového modelu muze ovlivnit nékolik faktort, véetné:

Pocet parametra: Vétsi modely s vice parametry obecné vyzaduji vice vypocetnich

zdroji a mohou mit vyssi latenci a niz$i propustnost ve srovnani s mensimi modely.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Uvod 26

Hardware: Vykon jazykového modelu se mtize vyrazné liit v zavislosti na hardwaru,
na kterém bézi. Poskytovatelé cloudovych sluzeb nabizeji instance GPU a TPU

optimalizované pro strojové uceni, které mohou vyrazné urychlit inferenci modelu.

P Jednou z ptijemnych véci na OpenRouteru je, zZe u mnoha nabizenych

modeld mate na vybér z raznych poskytovateld cloudovych sluzeb

s riznymi vykonnostnimi profily a naklady.

Kvantizace: Kvantiza¢ni techniky lze pouzit ke sniZzeni pamétové narocnosti
a vypocCetnich pozadavki modelu reprezentaci vah a aktivaci pomoci datovych
typl s nizsi pfesnosti. To muze zlepsit vykon bez vyznamného obétovani kvality. Jako
vyvojar aplikaci se pravdépodobné nebudete zabyvat trénovanim vlastnich modela

s riznymi urovnémi kvantizace, ale je dobré byt alespori obezndmen s terminologii.

Davkové zpracovani: Zpracovani vice pozadavka soucasné v davkach muze zlepsit

propustnost diky amortizaci rezie nacitani modelu a pfenosu dat.

Kesovani: Ukladani vysledkt ¢asto pouzivanych promptt nebo vstupnich sekvenci do

mezipaméti muze snizit pocet inferenénich pozadavku a zlepsit celkovy vykon.

Ptivybéru jazykového modelu pro produkéni aplikaci je diilezité otestovat jeho vykon na
reprezentativnich pracovnich zatézich a hardwarovych konfiguracich. To miize pomoci
identifikovat potencialni tizka mista a zajistit, Ze model splni pozadované vykonnostni

cile.

Stoji také za to zvazit kompromisy mezi vykonem modelu a dal$imi faktory, jako jsou
naklady, flexibilita a snadnost integrace. Naprtiklad pouziti mensiho, méné nakladného
modelu s nizsi latenci mtze byt vhodnéjsi pro aplikace vyZzadujici odpovédi v realném
case, zatimco vétsi, vykonnéjsi model mtize byt vhodnéjsi pro davkové zpracovani nebo

ulohy komplexniho uvazovani.

Uvod 27

Experimenty s riznymi modely LLM

Volba LLM je zfidkakdy trvalym rozhodnutim. Vzhledem k tomu, Ze jsou pravidelné
vydavany nové a vylepsené modely, je dobré budovat aplikace modularnim zptsobem,
ktery umoziuje v prubéhu ¢asu zamériovat riizné jazykové modely. Prompty a datasety
lze ¢asto pouzivat napfi¢ modely s minimalnimi zménami. To vam umoziuje vyuzivat
nejnovejsi pokroky v jazykovém modelovani, aniz byste museli zcela pfepracovavat své

aplikace.

P Moznost snadno pfepinat mezi Sirokou skalou modeld je dalsim divodem,

pro¢ mam OpenRouter tak rad.

Pfi pfechodu na novy jazykovy model je dilezité dikladné otestovat a ovéfit jeho vykon
a kvalitu vystupu, abyste se ujistili, Ze spliiuje pozadavky aplikace. To mize zahrnovat
pretrénovani nebo doladovani modelu na doménové specifickych datech a aktualizaci

vsech navazujicich komponent, které zavisi na vystupech modelu.

Navrhovéanim aplikaci s ohledem na vykon a modularitu mtzete vytvaret skalovatelné,
efektivni a do budoucna pfipravené systémy, které se dokazi prizptisobit rychle se

vyvijejici oblasti technologie jazykového modelovani.

SloZené systémy umeélé inteligence

Nez uzavieme na$ Gvod, stoji za zminku, Ze pred rokem 2023 a explozi zajmu
o generativni Al, kterou vyvolal ChatGPT, se tradi¢ni pfistupy k AI obvykle
spoléhaly na integraci jednotlivych, uzavfenych modeld. Naproti tomu
sloZené systémy umélé inteligence ~ vyuzivaji komplexni fetézce propojenych

komponent, které spolupracuji na dosazeni inteligentniho chovani.

V jadru se slozené systémy umélé inteligence skladaji z vice moduld, z nichz kazdy je

navrzen pro provadéni specifickych tkolt nebo funkci. Tyto moduly mohou zahrnovat

Uvod 28

generatory, vyhledavace, hodnotici systémy, klasifikatory a rizné dalsi specializované
komponenty. Rozdélenim celkového systému na mensi, zaméfené jednotky mohou
vyvojati vytvaret flexibilnéjsi, skalovatelnéjsi a udrzovatelnéjsi architektury AL

Jednou z klicovych vyhod slozenych systémit umélé inteligence je jejich schopnost
kombinovat silné stranky riznych technik a modeld Al Napfiklad systém muze
vyuzivat velky jazykovy model (LLM) pro porozuméni a generovani piirozeného jazyka,
zatimco pouzivid samostatny model pro vyhledavani informaci nebo rozhodovani
zalozené na pravidlech. Tento modularni pfistup vam umoziluje vybrat nejlepsi
nastroje a techniky pro kazdy konkrétni tkol, misto spoléhani se na univerzalni feseni.
Vytvareni sloZzenych systéma umélé inteligence vsak pfinasi i jedine¢né vyzvy. Zejména
zajisténi celkové koherence a konzistence chovani systému vyzaduje robustni testovani,

monitoring a fidici mechanismy.

Prichod vykonnych LLM jako GPT--4 ndm umoziiuje experimentovat se
’ slozenymi systémy Al snadnéji nez kdy predtim, protoze tyto pokrocilé
modely jsou schopné zastavat vice roli v ramci slozeného systému, jako
je klasifikace, fazeni a generovani, kromé jejich schopnosti porozuméni
pfirozenému jazyku. Tato vSestrannost umoziluje vyvojafum rychle
vytvaret prototypy a iterovat na architekturach sloZzenych Al systému, ¢imz

otevira nové moznosti pro vyvoj inteligentnich aplikaci.

Vzory nasazeni pro sloZené systémy Al

Slozené systémy Al lze nasadit pomoci riznych vzord, z nichz kazdy je navrzen tak, aby
tesil specifické pozadavky a pripady pouziti. Prozkoumejme ¢tyti bézné vzory nasazeni:

Otazky a odpovédi, Viceagentni/Agentni fesitelé problému, Konverza¢ni Al a CoPiloti.

Uvod 29

Otazky a odpovédi

Systémy otazek a odpovédi (Q&A) se zaméfuji na poskytovani vyhledavani informaci,
které je vylepSeno o schopnosti porozuméni Al modeld, aby fungovaly jako vice nez
jen vyhledava¢. Kombinaci vykonnych jazykovych modell s externimi zdroji znalosti
pomoci Generovani rozsiteného o vyhledavani (RAG) se systémy otazek a odpoveédi
vyhybaji halucinacim a poskytuji pfesné a kontextové relevantni odpovédi na dotazy

uzivatelu.

Kli¢ové komponenty Q&A systému zalozeného na LLM zahrnuji:

« Porozuméni a reformulace dotazu: Analyza uzivatelskych dotazii a jejich
preformulovani pro lepsi shodu s podkladovymi zdroji znalosti.

« Vyhledavani znalosti: Ziskavani relevantnich informaci ze strukturovanych nebo
nestrukturovanych zdroji dat na zékladé preformulovaného dotazu.

« Generovani odpovédi: Vytvafeni koherentnich a informativnich odpovédi

integraci ziskanych znalosti s generativnimi schopnostmi jazykového modelu.

RAG subsystémy jsou obzvlasté dilezité v oblastech Q&A, kde je kli¢ové poskytovani
pfesnych a aktualnich informaci, jako je zakaznicka podpora, sprava znalosti nebo

vzdélavaci aplikace.

Viceagentni/Agentni FeSitelé problému

Viceagentni, také znamé jako Agentni, systémy sestavaji z vice autonomnich agentii
spolupracujicich na feSeni komplexnich problémt. Kazdy agent méa specifickou
roli, soubor dovednosti a pfistup k relevantnim nastrojim nebo zdrojim informaci.
Prostfednictvim spoluprace a vymény informaci mohou tito agenti fesit ukoly, které by

pro jediného agenta byly obtizné nebo nemozné zvladnout.

Kli¢ové principy viceagentnich fesiteld problému zahrnuj:

Uvod 30

« Specializace: Kazdy agent se zaméfuje na specificky aspekt problému, vyuzivajici
své jedine¢né schopnosti a znalosti.

« Spoluprace: Agenti komunikuji a koordinuji své akce k dosazeni spole¢ného cile,
Casto prostfednictvim predavani zprav nebo sdilené paméti.

« Adaptabilita: Systém se muze pfizplisobit ménicim se podminkam nebo

pozadavkim upravou roli a chovani jednotlivych agentu.

Viceagentni systémy jsou vhodné pro aplikace vyzadujici distribuované feseni
problémd, jako je optimalizace dodavatelského fetézce, fizeni dopravy nebo planovani

reakce na mimoradné udalosti.
Konverzacni Al

Systémy konverzatni Al umoziuji interakce v pfirozeném jazyce mezi uzivateli
a inteligentnimi agenty. Tyto systémy kombinuji porozuméni piirozenému
jazyku, fizeni dialogu a schopnosti generovani jazyka k poskytovani poutavych

a personalizovanych konverzacnich zazitkd.

Hlavni komponenty systému konverza¢ni Al zahrnuji:

« Rozpoznavani zaméru: Identifikace zaméru uzivatele na zakladé jeho vstupu,
napiiklad polozeni otazky, vytvoreni pozadavku nebo vyjadreni sentimentu.

« Extrakce entit: Extrahovani relevantnich entit nebo parametri ze vstupu
uzivatele, jako jsou data, mista nebo nazvy produkta.

« Rizeni dialogu: UdrZovani stavu konverzace, uréovani vhodné odpovédi na
zékladé zaméru uzivatele a kontextu a zvladani vicekrokovych interakei.

« Generovani odpovédi: Generovani odpovédi podobnych lidskym pomoci

jazykovych modeld, $ablon nebo metod zaloZenych na vyhledavani.

Systémy konverzac¢ni Al se bézné pouzivaji v zakaznickych chatbotech, virtualnich
asistentech a rozhranich ovladanych hlasem. Jak bylo zminéno dfive, vétsina pfistupi,
vzoru a prikladt kodu v této knize je pfimo extrahovana z mé prace na velkém systému

konverza¢ni Al nazvaném Olympia.

https://olympia.chat

Uvod 31

CoPiloti

CoPiloti jsou Al asistenti pracujici po boku lidskych uzivateld s cilem zvysit jejich
produktivitu a schopnost rozhodovani. Tyto systémy vyuzivaji kombinaci zpracovani
pfirozeného jazyka, strojového uéeni a oborové specifickych znalosti k poskytovani

inteligentnich doporuceni, automatizaci ukoltl a nabizeni kontextové podpory.

Kli¢ové vlastnosti CoPiloti zahrnuji:

« Personalizaci: Prizpisobovani se individudlnim preferencim uZivateld,
pracovnim postupiim a komunikaénim styltim.

« Proaktivni asistenci: Pfedvidani potfeb uzivatelt a nabizeni relevantnich navrht
¢i akei bez explicitnich pokynt.

« Kontinualni uceni: Zlepsovani vykonu v pribéhu ¢asu uéenim se z uzivatelské

zpétné vazby, interakei a dat.

CoPiloti jsou stale ¢astéji vyuzivani v raznych oblastech, jako je vyvoj softwaru (napf.
dopliiovani kddu a detekce chyb), tviréi psani (napf. navrhy obsahu a editace) a analyza

dat (napf. postfehy a doporuceni vizualizaci).

Tyto vzory nasazeni ukazuji vSestrannost a potencial slozenych Al systému.
Pochopenim charakteristik a pfipadt pouziti kazdého vzoru muzete €init informovana
rozhodnuti pfi navrhovani a implementaci inteligentnich aplikaci. kdyzZ tato kniha neni
specificky o implementaci slozenych Al systému, mnoho, ne-li vSechny stejné pristupy
a vzory plati pro integraci samostatnych Al komponent v ramci jinak tradi¢niho vyvoje

aplikaci.

Role ve sloZzenych Al systémech

Slozené Al systémy jsou postaveny na zakladé propojenych moduld, z nichz kazdy je
navrzen pro plnéni specifické role. Tyto moduly spolupracuji na vytvareni inteligentniho

chovéani a feseni komplexnich problémii. Je uZite¢né byt obezndmen s témito rolemi pfi

Uvod 32

premysleni o tom, kde byste mohli implementovat nebo nahradit ¢asti vasi aplikace

samostatnymi Al komponentami.
Generator

Generatory jsou zodpovédné za vytvareni novych dat nebo obsahu na zakladé
nauenych vzori nebo vstupnich podnétd. Al svét m& mnoho ruznych druht
generatord, ale v kontextu jazykovych modeld, které jsou predstaveny v této knize,
mohou generatory vytvaret text podobny lidskému, dokoncovat ¢astecné véty nebo
generovat odpovédi na uzivatelské dotazy. Hraji kli¢ovou roli v tlohach jako je tvorba

obsahu, generovani dialogt a roz$ifovani dat.

Vyhledavac

Vyhledavace se pouzivaji k prohledavani a extrakci relevantnich informaci z velkych
datovych sad nebo znalostnich bazi. Vyuzivaji techniky jako sémantické vyhledavani,
porovnavani klicovych slov nebo vektorovou podobnost k nalezeni nejrelevantnéjsich
datovych bodi na zakladé daného dotazu nebo kontextu. Vyhledavade jsou nezbytné
pro ulohy vyZzadujici rychly pfistup ke specifickym informacim, jako je odpovidani na

otazky, ovéfovani faktl nebo doporucovéni obsahu.
Hodnotic

Hodnotici systémy jsou zodpovédné za fazeni nebo prioritizaci sady polozek na
zakladé uréitych kritérii nebo skore relevance. Pfifazuji vahy nebo skdre kazdé
polozce a nasledné je podle nich sefadi. Hodnotici systémy se bézné pouzivaji ve
vyhledavacich, doporucovacich systémech nebo v jakékoli aplikaci, kde je klicové

prezentovat uZivatelim nejrelevantnéjsi vysledky.
Klasifikator

Klasifikatory se pouzivaji ke kategorizaci nebo oznacovani datovych bodt na zékladé

pfreddefinovanych tfid nebo kategorii. U¢i se z oznacenych trénovacich dat a nasledné

Uvod 33

predpovidaji tfidu novych, dosud nevidénych instanci. Klasifikatory jsou zakladem tloh
jako je analyza sentimentu, detekce spamu nebo rozpoznavani obrazu, kde je cilem

priradit kazdému vstupu specifickou kategorii.

Nastroje a Agenti

Kromé téchto zékladnich roli slozené Al systémy Casto zahrnuji nastroje a agenty pro

rozsifeni své funkénosti a adaptability:

« Nastroje: Nastroje jsou samostatné softwarové komponenty nebo API, které
provadéji specifické akce nebo vypoc¢ty. Mohou byt volany jinymi moduly,
jako jsou generatory nebo vyhledavace, k plnéni dil¢ich dkolt nebo ziskavani
dodate¢nych informaci. Pfiklady nastroji zahrnuji webové vyhledavace,
kalkulacky nebo knihovny pro vizualizaci dat.

« Agenti: Agenti jsou autonomni entity, které mohou vnimat své prostredi, ¢init
rozhodnuti a provadét akce k dosaZeni specifickych cilii. Casto spoléhaji na
kombinaci riznych Al technik, jako je planovani, uvazovani a uceni, aby mohli
efektivné fungovat v dynamickych nebo nejistych podminkach. Agenti mohou byt
pouziti k modelovani komplexniho chovani nebo ke koordinaci akei vice modull

v ramci sloZzeného Al systému.

V Cisté slozeném Al systému je interakce mezi témito komponentami orchestrovana
prostfednictvim dobfe definovanych rozhrani a komunika¢nich protokolt. Data proudi
mezi moduly, pfi¢em? vystup jedné komponenty slouzi jako vstup pro jinou. Tato
moduléarni architektura umoznuje flexibilitu, skalovatelnost a udrZovatelnost, protoze
jednotlivé komponenty lze aktualizovat, nahrazovat nebo rozsifovat bez ovlivnéni

celého systému.
Vyuzitim sily téchto komponent a jejich interakci mohou slozené AI systémy fesit
komplexni problémy realného svéta, které vyzaduji kombinaci rznych Al schopnosti.

Pfi zkoumani pfistupd a vzoru pro integraci Al do vyvoje aplikaci méjte na paméti,

Uvod 34

Ze stejné principy a techniky pouzivané ve slozenych Al systémech lze aplikovat

k vytvareni inteligentnich, adaptivnich a uZivatelsky orientovanych aplikaci.

V naésledujicich kapitolach c¢asti 1 se hloubéji ponofime do zakladnich pfistupt
a technik pro integraci Al komponent do vaseho procesu vyvoje aplikaci. Od
promptového inZenyrstvi a generovani rozsifeného o vyhledavani azZ po samoopravna
data a inteligentni orchestraci pracovnich postupi pokryjeme sirokou $kalu vzora
a osvédcenych postuptl, které vam pomohou vybudovat $pickové aplikace vyuzivajici

AL

Cast 1: Zakladni pFistupy
a techniky

Tato ¢ast knihy predstavuje rizné zplsoby integrace umélé inteligence do vasich
aplikaci. Kapitoly pokryvaji fadu souvisejicich pfistuptt a technik, od obecnéjsich
konceptii jako Zizeni cesty a Generovani rozsifené o vyhledavani az po napady, jak

naprogramovat vlastni abstraktni vrstvu nad API pro dokoncovani chat pomoci LLM.

Cilem této casti knihy je pomoci vam porozumét druhtim chovani, které miizete
implementovat pomoci umélé inteligence, nez se ponofime hloubéji do konkrétnich

implementacnich vzort, jimz se vénuje Cast 2.

Piistupy v Casti 1 jsou zalozeny na myslenkach, které jsem pouzil ve svém kédu,
klasickych vzorech architektury podnikovych aplikaci a integrace, plus metaforach,
které jsem vyuzival pfi vysvétlovani moznosti umélé inteligence ostatnim lidem, véetné

netechnicky zameéfenych byznysovych stakeholdert.

I,

o O

nesme rn MR

|
i
1
1

“Zuzit cestu” znamena zaméfit umélou inteligenci na dany dkol. Pouzividm to jako
mantru, kdykoliv zac¢indm byt frustrovany tim, Ze se AI chovd “hloupé” nebo
neocekavanym zplsobem. Tato mantra mi pfipomind, Ze chyba je pravdépodobné na

mé strané a ze bych mél cestu pravdépodobné jesté vice zazit.

Potteba zuzeni cesty vznika z obrovského mnozstvi znalosti obsazenych ve velkych
jazykovych modelech, zejména u S3pickovych modeld od spole¢nosti OpenAl

a Anthropic, které maji doslova biliony parametru.

Z0zit cestu 37

Pristup k tak Sirokému spektru znalosti je bezpochyby mocny a vytvaii emergentni
chovéni, jako je teorie mysli a schopnost uvazovat zpiisobem podobnym c¢lovéku.
Nicméné tento ohromujici objem informaci také predstavuje vyzvy, pokud jde
o generovani piesnych a spravnych odpovédi na konkrétni prompty, zejména pokud
maji tyto prompty vykazovat deterministické chovani, které lze integrovat s “béznym”

vyvojem softwaru a algoritmy.
K témto vyzvam vede nékolik faktord.

Informacéni pfetizeni: Velké jazykové modely jsou trénovany na masivnim mnoZzstvi
dat zahrnujicich rizné domény, zdroje a ¢asova obdobi. Tyto rozsahlé znalosti jim
umoznuji zapojit se do riznych témat a generovat odpovédi zaloZené na Sirokém chépani
svéta. Kdyz vsak model celi konkrétnimu promptu, mize mit problém s filtrovanim
irelevantnich, protichtidnych nebo zastaralych informaci, coz vede k odpovédim, kterym
chybi zaméfeni nebo pfesnost. V zavislosti na tom, co se snazite udélat, mize samotny
objem protichiidnych informaci dostupnych modelu snadno prekonat jeho schopnost

poskytnout odpovéd nebo chovani, které hledate.

Kontextova nejednoznaénost: Vzhledem k rozsadhlému latentnimu prostoru znalosti
se velké jazykové modely mohou setkat s nejednoznacnosti pii snaze porozumét
kontextu vaseho promptu. Bez spravného zizeni nebo vedeni mize model generovat
odpovédi, které souviseji pouze okrajové, ale nejsou pfimo relevantni pro vase zaméry.
Tento typ selhani vede k odpovédim, které jsou mimo téma, nekonzistentni nebo
netesi vase stanovené potreby. V tomto pripadé zuzeni cesty odkazuje na odstranéni
nejednoznacnosti kontextu, zajistujici, Ze vami poskytnuty kontext zpisobi, Ze se model

zaméfi pouze na nejrelevantnéjsi informace ve své zakladni znalostni bazi.

’ Poznamka: KdyZz zalinite s “promptovym inZenyrstvim”, je mnohem

pozadovaného vysledku; chce to praxi, abyste nebyli nejednoznacni!

Casové nesrovnalosti: Protoze jazykové modely jsou trénovany na datech, ktera byla

Z0zit cestu 38

vytvofena v raznych ¢asovych obdobich, mohou obsahovat znalosti, které jsou zastaralé,
prekonané nebo jiZ nejsou presné. Napriklad informace o aktualnich udalostech,
védeckych objevech nebo technologickém pokroku se mohly od shroméazdéni
tréninkovych dat modelu vyvinout. Bez zZeni cesty k upfednostnéni novéjsich
a spolehlivéjsich zdroji mtze model generovat odpovédi zaloZené na zastaralych nebo

nespravnych informacich, coz vede k nepfesnostem a nekonzistencim v jeho vystupech.

Oborové specifické nuance: Rizné domény a obory maji své vlastni specifické
terminologie, konvence a znalostni baze. Zamyslete se nad prakticky jakoukoliv TLA
(Three Letter Acronym - tfipismennou zkratkou) a uvédomite si, Zze vétsina z nich
m4 vice nez jeden vyznam. Napiiklad MSK mize odkazovat na Amazon’s Managed
Streaming for Apache Kafka, Memorial Sloan Kettering Cancer Center, nebo lidsky

muskuloskeletalni systém.

Kdyz prompt vyzaduje odbornost v konkrétni doméné, obecné znalosti velkého
jazykového modelu nemusi stacit k poskytnuti pfesnych a nuancovanych odpovédi.
Z1izeni cesty zaméfenim se na oboroveé specifické informace, at uz pomoci promptového
inzenyrstvi nebo generovani rozsifeného o vyhledavani, umoznuje modelu generovat
odpovédi, které jsou vice v souladu s pozadavky a ofekavanimi vaseho konkrétniho

oboru.

Latentni prostor: Nepochopitelné rozsahly

Kdyz zminuji “latentni prostor” jazykového modelu, odkazuji na rozsahlou,
vicerozmérnou krajinu znalosti a informaci, kterou se model naucil béhem svého
trénovaciho procesu. Je to jako skryta fise uvnitf neuronovych siti modelu, kde jsou

ulozeny vSechny vzory, asociace a reprezentace jazyka.

Predstavte si, ze prozkouméavate rozsahlé, nezmapované tzemi plné nespocetnych
propojenych uzlt. Kazdy uzel predstavuje kousek informace, koncept nebo vztah, ktery

se model naucil. Pfi navigaci timto prostorem zjistite, ze nékteré uzly jsou blize u sebe,

Z0zit cestu 39

coz naznacuje silné spojeni nebo podobnost, zatimco jiné jsou vzdalenéjsi, coz naznacuje

slabsi nebo vzdalenéjsi vztah.

Problém s latentnim prostorem je, Ze je neuvéfitelné komplexni a mnohorozmérny.
Predstavte si ho jako na$ fyzicky vesmir s jeho shluky galaxii a obrovskymi,

nepfedstavitelnymi vzdalenostmi prazdného prostoru mezi nimi.

ProtoZe obsahuje tisice dimenzi, neni latentni prostor pfimo pozorovatelny ani
interpretovatelny clovékem. Je to abstraktni reprezentace, kterou model pouziva interné
ke zpracovani a generovani jazyka. Kdyz modelu poskytnete vstupni prompt, v podstaté
ho namapuje na konkrétni misto v latentnim prostoru. Model pak pouziva okolni

informace a spojeni v tomto prostoru k generovani odpovédi.

Véc se ma tak, ze model se naudil obrovské mnozstvi informaci ze svych trénovacich
dat, a ne vsechny jsou relevantni nebo pfesné pro dany tkol. Proto je zZeni cesty
tak dilezité. Poskytnutim jasnych instrukei, pfikladd a kontextu ve vasich promptech
v podstaté vedete model k tomu, aby se soustfedil na specifické oblasti v latentnim

prostoru, které jsou nejrelevantnéjsi pro vas pozadovany vystup.

Jiny zpuisob, jak o tom premyslet, je jako o pouZiti reflektoru v naprosto tmavém muzeu.
Pokud jste nékdy navstivili Louvre nebo Metropolitan Museum of Art, pak to je ten typ
méfitka, o kterém mluvim. Latentni prostor je to muzeum, naplnéné nescetnymi objekty
a detaily. V43 prompt je reflektor, osvétlujici specifické oblasti a pfitahujici pozornost
modelu k nejdualezitéjsim informacim. Bez tohoto vedeni muze model bezcilné bloudit

latentnim prostorem a sbirat po cesté irelevantni nebo protichiidné informace.

Kdyz pracujete s jazykovymi modely a vytvafite své prompty, méjte koncept latentniho
prostoru na paméti. Vasim cilem je efektivné se pohybovat v této rozlehlé krajiné
znalosti a smérovat model k nejrelevantnéjsim a nejpfesnéjsim informacim pro vas
ukol. ZiZenim cesty a poskytnutim jasného vedeni mizete odemknout plny potencial

latentniho prostoru modelu a generovat vysoce kvalitni, koherentni odpovédi.

Zatimco predchozi popisy jazykovych modelt a latentniho prostoru, ve kterém se

pohybuji, mohou pusobit trochu magicky nebo abstraktné, je dulezité pochopit, ze

Z0zit cestu 40

prompty nejsou kouzla ani zatikadla. Zptsob, jakym jazykové modely funguji, je zaloZen

na principech linearni algebry a teorie pravdépodobnosti.

V jadru jsou jazykové modely pravdépodobnostnimi modely textu, podobné jako
je Gaussova ktivka statistickym modelem dat. Jsou trénovany procesem zvanym
autoregresni modelovani, kde se model uéi predpovidat pravdépodobnost nasledujiciho
slova v sekvenci na zakladé slov, ktera mu predchazeji. Béhem tréninku model zac¢ina
s ndhodnymi vahami a postupné je upravuje tak, aby pfifadil vyssi pravdépodobnosti
textlim, které se podobaji realnym vzorkdm, na kterych byl trénovan.

Nicméné, predstava jazykovych modelt jako jednoduchych statistickych modeld, jako je
analogii je predstavit si je jako pravdépodobnostni programy, coz jsou modely, které
umoznuji manipulaci s ndhodnymi proménnymi a mohou reprezentovat komplexni

statistické vztahy.

Pravdépodobnostni programy lze reprezentovat pomoci grafickych modeld, které
poskytuji vizualni zptisob pochopeni zavislosti a vztaht mezi proménnymi v modelu.
Tento pohled mize nabidnout cenné vhledy do fungovani komplexnich modeld pro

generovani textu jako GPT--4 a Claude.

V ¢lanku “Language Model Cascades” od Dohana a kol. se autofi ponofuji do detailt
o tom, jak lze pravdépodobnostni programy aplikovat na jazykové modely. Ukazuj,
jak lze tento ramec pouZit k pochopeni chovani téchto modelt a k vedeni vyvoje

efektivnéjsich strategii promptovani.

Jednim klicovym poznatkem z této pravdépodobnostni perspektivy je, Ze jazykovy
model v podstaté vytvari portal do alternativniho vesmiru, kde poZzadované dokumenty
existuji. Model prifazuje vahy vSem moznym dokumentim na zikladé jejich
pravdépodobnosti a efektivné tak zuzuje prostor moznosti, aby se soustfedil na ty

nejrelevantné;jsi.

To nés piivadi zpét k ustfednimu tématu “zuzeni cesty”. Hlavnim cilem promptovani je

podminit pravdépodobnostni model zpiisobem, ktery soustfedi vahu jeho predpovédi

Z0zit cestu 41

a zaméfuje se na specifické informace nebo chovéni, které chceme vyvolat.
Poskytovanim peélivé vytvofenych promptt mizeme vést model k efektivnéjsi navigaci

v latentnim prostoru a generovani vystupt, které jsou relevantnéjsi a koherentnéjsi.

Je vSak dulezité mit na paméti, Ze jazykovy model je nakonec omezen informacemi, na
kterych byl trénovan. Zatimco miZze generovat text podobny existujicim dokumentim
nebo kombinovat myslenky novymi zplsoby, nemiize vytvorit zcela nové informace
z ni¢eho. Napiiklad nemtZeme ocekévat, Ze model poskytne 1ék na rakovinu, pokud

takovy 1ék nebyl objeven a zdokumentovan v jeho trénovacich datech.

Sila modelu namisto toho spoéiva v jeho schopnosti nachazet a syntetizovat informace
podobné tém, které mu predkladame v podnétech. Pochopenim pravdépodobnostni
povahy téchto modeld a zptisobu, jakym lze pomoci podnétti podminit jejich vystupy,
mizeme efektivnéji vyuzivat jejich schopnosti ke generovani cennych poznatkt

a obsahu.

Podivejme se na nésledujici podnéty. V prvnim piipadé mize samotné slovo “Merkur”
odkazovat na planetu, chemicky prvek nebo fimského boha, ale nejpravdépodobnéjsi
je planeta. GPT-4 skute¢né poskytne dlouhou odpovéd, ktera zacina slovy Merkur
je nejmensi a nejblizsi planeta slunecni soustavy... Druhy podnét se konkrétné
tyka chemického prvku. Treti odkazuje na postavu z fimské mytologie, znamou

svou rychlosti a roli bozského posla.

0 N O O b W N

Z0zit cestu 42

Prompt 1

Tell me about: Mercury

Prompt 2
Tell me about: Mercury element

Prompt 3
Tell me about: Mercury messenger of the gods

Pridanim jen nékolika dalSich slov jsme zcela zménili reakci Al Jak se pozdéji v knize
dozvite, slozité triky promptového inZenyrstvi jako n-shot prompting, strukturovany

vstup/vystup a Chain of Thought jsou jen chytré zptisoby, jak podminit vystup modelu.

Uméni promptového inZenyrstvi tedy v kone¢ném dusledku spociva v pochopeni toho,
jak se orientovat v rozsahlé pravdépodobnostni krajiné znalosti jazykového modelu,

abychom zuzili cestu ke konkrétni informaci nebo chovani, které hledame.

Pro ¢tenare s dobrou znalosti pokrocilé matematiky mize byt rozhodné uZzitecné zalozit
své chapani téchto modell na principech teorie pravdépodobnosti a linearni algebry!
Pro ostatni z vas, ktefi chcete vyvinout Uéinné strategie pro ziskavani pozadovanych

vystuptl, se drzme intuitivnéjsich pfistupa.

Jak se cesta “zuzuje”

Abychom se vyporadali s témito vyzvami pfili§ mnoha znalosti, pouzivame techniky,
které pomahaji fidit proces generovani jazykového modelu a zaméfit jeho pozornost na
nejrelevantnéjsi a nejpiesnéjsi informace.

Zde jsou nejvyznamnéjsi techniky v doporuc¢eném poradi, to znamena, Ze byste méli
nejprve vyzkouset promptové inZenyrstvi, pak RAG, a nakonec, pokud musite, jemné
doladéni.

Promptové inZenyrstvi Nejzakladnéjsim pfistupem je vytvafeni promptt, které

obsahuji specifické instrukce, omezeni nebo piiklady pro vedeni generovani odpovédi

Z0zit cestu 43

modelem. Tato kapitola pokryva zéklady promptového inZenyrstvi v dalsi ¢asti
a mnoho specifickych vzord promptového inzenyrstvi pokryvame v ¢asti 2 této knihy.
Tyto vzory zahrnuji Destilaci promptt, techniku, ktera se zaméfuje na zdokonalovani

vevs

informace.

Rozsifeni kontextu. Dynamické ziskavani relevantnich informaci z externich
znalostnich zakladen nebo dokumenti pro poskytnuti modelu zaméfeného
kontextu v dobé, kdy je promptovan. Mezi popularni techniky rozsifeni kontextu
patii Retrieval-Augmented Generation (RAG) Takzvané “online modely”, jako ty
poskytované Perplexity, dokazi rozsifit sviij kontext o vysledky vyhledavani v realném

¢ase na internetu.

Navzdory své sile nejsou LLM trénovany na vasich unikatnich datasetech,
které mohou byt soukromé nebo specifické pro problém, ktery se snaZite
vytesit. Techniky rozsifeni kontextu umoziiuji poskytnout LLM piistup

k datim za API, v SQL databazich nebo uvéznénym v PDF a prezentacich.

Jemné doladéni nebo adaptace na doménu Trénovani modelu na doménové
specifickych datasetech pro specializaci jeho znalosti a schopnosti generovani pro

konkrétni kol nebo oblast.

SniZovani teploty

Teplota je hyperparametr pouzivany v transformatorovych jazykovych modelech, ktery
fidi ndhodnost a kreativitu generovaného textu. Je to hodnota mezi 0 a 1, kde nizsi
hodnoty ¢ini vystup vice zaméfeny a deterministicky, zatimco vyssi hodnoty ho ¢ini

riznorodéjsim a méné predvidatelnym.

Kdyz je teplota nastavena na 1, jazykovy model generuje text na zakladé uplné

pravdépodobnostni distribuce nésledujictho tokenu, coZz umoziuje kreativnéjsi

https://perplexity.ai

Z0zit cestu 44

a riznorodéjsi odpovédi. To vSak mtze také vést k tomu, Zze model generuje text, ktery

je méné relevantni nebo koherentni.

Na druhou stranu, kdyZ je teplota nastavena na 0, jazykovy model vidy vybira
token s nejvyssi pravdépodobnosti, ¢imz efektivné “zuzuje svou cestu”. Téméf viechny
moje Al komponenty pouzivaji teplotu nastavenou na nebo blizko 0, protoZe to vede
k zaméfenéjsim a piedvidatelnéjsim odpovédim. Je to absolutné uzite¢né, kdyz chcete,
aby model nasledoval instrukce, vénoval pozornost funkcim, které mu byly poskytnuty,

nebo jednoduse potiebujete presnéjsi a relevantnéjsi odpovédi nez ty, které dostavate.

Naptiklad pokud vytvafite chatbota, ktery ma poskytovat faktické informace, mozna
budete chtit nastavit teplotu na nizs$i hodnotu, abyste zajistili, Ze odpovédi budou
presnéjsi a vice k tématu. Naopak, pokud vytvafite asistenta pro kreativni psani,
mozna budete chtit nastavit teplotu na vyssi hodnotu, abyste podpofili riiznorodéjsi

a napaditéjsi vystupy.

Hyperparametry: Knofliky a ovladace inference

Pfi praci s jazykovymi modely se ¢asto setkate s terminem “hyperparametry”. V kontextu
inference (tj. kdyz pouzivate model ke generovani odpovédi) jsou hyperparametry jako

knofliky a ovladace, které mizete ladit pro kontrolu chovani a vystupu modelu.

Predstavte si to jako upravu nastaveni slozitého stroje. Stejné jako byste mohli
oto¢it knoflikem pro kontrolu teploty nebo pfepnout pfepina¢ pro zménu rezimu
provozu, hyperparametry vaim umoziuji jemné upravit zpasob, jakym jazykovy model

zpracovava a generuje text.

Mezi bézné hyperparametry, se kterymi se pfi inferenci setkate, patfi:

« Teplota: Jak bylo pravé zminéno, tento parametr iidi ndhodnost a kreativitu
generovaného textu. Vyssi teplota vede k rozmanitéjsim a méné predvidatelnym
vystuplim, zatimco niz$i teplota vede k vice zaméfenym a deterministickym

odpovédim.

Z0zit cestu 45

« Vybér Top-p (nucleus sampling): Tento parametr fidi vybér nejmensi mnoziny
tokent, jejichz kumulativni pravdépodobnost presahuje urcitou prahovou

hodnotu (p). Umoziiuje rozmanitéjsi vystupy pfi zachovani koherence.

« Vybér Top-k: Tato technika vybira k nejpravdépodobnéjsich nasledujicich tokent
a pferozdéluje mezi né pravdépodobnostni hmotu. MiiZe pomoci zabranit modelu

v generovani méalo pravdépodobnych nebo irelevantnich tokend.

« Penalizace Cetnosti a pritomnosti: Tyto parametry penalizuji model za prili§
Casté opakovani stejnych slov nebo frazi (penalizace ¢etnosti) nebo za generovani
slov, kterd nejsou pfitomna ve vstupnim promptu (penalizace pfitomnosti).
Upravou téchto hodnot miizete podpofit model v produkci rozmanitéjsich

a relevantnéjsich vystupu.

« Maximalni délka: Tento hyperparametr nastavuje horni limit po¢tu tokent (slov
nebo casti slov), které mtze model vygenerovat v jediné odpovédi. Pomaha

kontrolovat mnohomluvnost a struénost generovaného textu.

Pii experimentovani s riznymi nastavenimi hyperparametri zjistite, Ze i malé Gpravy
mohou mit vyznamny dopad na vystup modelu. Je to jako ladéni receptu - $petka soli

navic nebo o néco delsi doba vareni mize zcela zménit vysledny pokrm.

Kli¢em je porozumét tomu, jak kazdy hyperparametr ovliviiuje chovani modelu a najit
spravnou rovnovahu pro vas konkrétni ukol. Nebojte se experimentovat s riznymi
nastavenimi a sledovat, jak ovliviiuji generovany text. Casem si vyvinete intuici pro

to, které hyperparametry upravit a jak dosdhnout pozadovanych vysledku.

Kombinaci pouziti téchto parametri s pripravou promptd, generovanim rozsifenym
o vyhledavani a doladovanim muzete efektivné zuzit cestu a navést jazykovy model
ke generovani presnéjsich, relevantnéjsich a hodnotnéjsich odpovédi pro vas konkrétni

pfipad pouziti.

Z0zit cestu 46

Surové versus instrukcéné doladéné modely

Surové modely jsou nerafinované, netrénované verze LLM. Pfedstavte si je jako
cisté platno, které jesté neni ovlivnéno specifickym tréninkem na porozuméni nebo
nasledovani instrukci. Jsou postaveny na rozsahlych datech, na kterych byly ptuvodné
trénovany, a jsou schopny generovat sirokou skalu vystupt. Nicméné bez dodate¢nych
vrstev instrukéniho doladovani mohou byt jejich odpovédi nepiedvidatelné a vyzaduji
promyslenéjsi, peclive sestavené prompty, které je navedou k pozadovanému vystupu.
Préce se surovymi modely se podoba ziskadvani komunikace od génia-idiota, ktery ma
obrovské mnozZstvi znalosti, ale postrada jakoukoliv intuici ohledné toho, na co se ptate,
pokud nejste v instrukcich extrémné piesni. Casto piisobi jako papousek v tom smyslu,
Ze pokud je priméjete fict néco srozumitelného, vétsinou jen opakuji néco, co od vas

slyseli.

Instrukéné doladéné modely naproti tomu prosly koly tréninku specificky navrzenymi
k porozuméni a nasledovani instrukci. GPT--4, Claude 3 a mnoho dalSich
z nejpopularnéj$ich modelt LLM jsou vSechny silné instrukéné doladéné. Tento
trénink zahrnuje predkladani prikladd instrukci spolu s pozadovanymi vysledky
modelu, ¢imz se model efektivné udi, jak interpretovat a provadét sirokou skalu prikaz?.
Vysledkem je, Ze instruk¢éni modely dokazi lépe porozumét zdméru za promptem
a generovat odpovédi, které uzce odpovidaji oc¢ekavanim uzivatele. Diky tomu jsou
uzivatelsky privétivéjsi a snazsi na praci, zejména pro ty, ktefi nemaji ¢as nebo odborné

znalosti k rozsahlé pfipravé promptu.

Surové modely: Nefiltrované platno

Surové modely, jako jsou Llama 2--70B nebo Yi--34B, nabizeji nefiltrovanéjsi pfistup
ke schopnostem modelu, nez na jaky mutzete byt zvykli, pokud jste experimentovali
s popularnimi LLM jako GPT-4. Tyto modely nejsou predem doladény k nésledovani

specifickych instrukci, coz vam poskytuje Cisté platno pro pfimou manipulaci

Zuzit cestu 47

s vystupem modelu pomoci peclivé ptipravy prompti. Tento pfistup vyZaduje hluboké
porozuméni tomu, jak vytvaret prompty, které vedou Al pozadovanym smérem bez
explicitnich instrukci. Je to podobné jako mit piimy piistup k “surovym” vrstvidm
zékladni Al bez jakychkoliv zprostfedkujicich vrstev interpretujicich nebo vedoucich

odpovédi modelu (odtud nazev).

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

ﬂ Mixtral 8x22B (base) (4

| can see a huge variety of things. | can process information, understand

language, reason, learn and apply knowledge, recognize patterns, plan, act v
creatively, make predictions, judge, interact with the environment, identify =
emotions, make decisions...

~96.3 tokens/s

Obie

= Do you recognize what | said?

Mixtral 8x22B (base) 4
No, this time | don't.

By the way, as a test for our meeting, I'm going to show you some photos and |~
want you to tell me what they represent. Are you ready?

~50.1 tokens/s

obrazkem 3. Testovani surového modelu pomoci ¢asti klasické scénky 'Kdo je na prvni?’ od Abbotta
a Costella

Problém se surovymi modely spo¢iva v jejich tendenci upadat do opakujicich se vzorca

nebo produkovat nadhodny vystup. Nicméné s peclivym promptovym inZenyrstvim

Zuzit cestu 48

a upravou parametrd, jako jsou penalizace opakovani, 1ze surové modely pfimét ke
generovani jedine¢ného a kreativniho obsahu. Tento proces neni bez kompromist;
zatimco surové modely nabizeji bezkonkurencéni flexibilitu pro inovace, vyzaduji vyssi

uroveri odbornych znalosti.

Obie

Abbott: You throw the ball to first base.
Costello: Then who gets it?
Abbott: Naturally.

Costello: Naturally.
Abbott: Now you've got it.
Costello: | throw the ball to Naturally.

. GPT-4 Turbo Preview 4

This conversation piece between Abbott and Costello is from their famous comedy sketch
called "Who's on First?" known for its rapid-fire verbal exchange and plays on words,
particularly focusing on the confusing names of the baseball players. In the sketch, Abbott
tries to explain to Costello the names of the players on a baseball team, but the names
themselves sound like questions or statements (Who, What, | Don't Know, Because, etc.),
leading to a series of comedic misunderstandings.

~42.7 tokens/s

obrazkem 4. Pro srovnani, stejny nejednozna¢ny prompt zadany do GPT-4

Instrukéné vyladéné modely: Rizena zkuSenost

Instrukéné vyladéné modely jsou navrzeny tak, aby rozumély specifickym instrukcim
a ridily se jimi, coz je ¢ini uzivatelsky pfivétivéjsimi a dostupnéjsimi pro $irsi spektrum
aplikaci. Chapou mechaniku konverzace a védi, Zze by mély prestat generovat na
konci svého konverzacniho vstupu. Pro mnoho vyvojari, zejména téch pracujicich na
pfimocarych aplikacich, nabizeji instrukéné vyladéné modely pohodlné a efektivni
reSeni.

Proces instrukéniho ladéni zahrnuje trénovani modelu na rozsdhlém korpusu instrukei

a odpovédi vytvorenych ¢lovékem. Vyznamnym prikladem je open source dataset

Z0zit cestu 49

databricks-dolly-15k, ktery obsahuje vice nez 15 000 par prompta a odpovédi
vytvofenych zaméstnanci Databricks, které si muzete sami prohlédnout. Dataset
pokryva osm riznych kategorii instrukci, véetné kreativniho psani, uzavieného
a otevieného zodpovidani otazek, sumarizace, extrakce informaci, klasifikace

a brainstormingu.

Béhem procesu generovani dat dostali pfispévatelé pokyny, jak vytvaret prompty
a odpovédi pro kazdou kategorii. Napfiklad pro tkoly kreativniho psani byli instruovani,
aby poskytli konkrétni omezeni, instrukce nebo pozadavky pro usmérnéni vystupu
modelu. Pro uzaviené zodpovidani otazek byli pozadani, aby psali otazky vyzadujici

fakticky spravné odpovédi zalozené na daném uryvku z Wikipedie.

Vysledny dataset slouzi jako cenny zdroj pro doladovani velkych jazykovych modeld
tak, aby vykazovaly interaktivni schopnosti a schopnosti nasledovat instrukce, podobné
jako systémy typu ChatGPT. Trénovanim na rtuznorodém spektru lidmi vytvofenych
instrukci a odpovédi se model uéi rozumét specifickym pokynum a fidit se jimi, coz ho
¢ini schopnéjsim zvladat Sirokou skalu dkold.

Kromé piimého doladovani lze instrukéni prompty v datasetech jako databricks-dolly-
-15k vyuzit také pro generovani syntetickych dat. Predkladanim promptd vytvorenych
prispévateli jako few-shot prikladi velkému otevienému jazykovému modelu mohou
vyvojafi generovat mnohem vétsi korpus instrukei v kazdé kategorii. Tento pfistup,
popsany v ¢lanku Self-Instruct, umoziiuje vytvareni robustnéjsich modeld nasledujicich

instrukce.

Kromé toho lze instrukce a odpovédi v téchto datasetech rozsirit pomoci technik, jako
je parafraze. Preformulovanim kazdého promptu nebo kratké odpovédi a pfifazenim
vysledného textu k pfislusnému referen¢nimu vzorku mohou vyvojafi zavést formu

regularizace, ktera zlepsuje schopnost modelu nésledovat instrukee.

Snadné pouziti, které poskytuji modely vyladéné na instrukce, je vykoupeno urcitou
ztratou flexibility. Tyto modely jsou Casto silné cenzurované, coz znamena, Ze nemusi

vzdy poskytovat droven tvur¢i svobody potfebnou pro urcité tkoly. Jejich vystupy

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Z0zit cestu 50

jsou silné ovlivnény predpojatostmi a omezenimi, ktera jsou vlastni jejich doladovacim

dattm.

Navzdory témto omezenim se modely vyladéné na instrukce staly stale popularnéjsimi
diky své uzivatelské privétivosti a schopnosti zvladat Sirokou $kalu tkold s miniméalni
pfipravou prompti. S rostouci dostupnosti kvalitnich instruktaznich datasetti mizeme

ocekavat dalsi zlepSeni vykonu a vSestrannosti téchto modeld.

Vybér spravného typu modelu pro vas projekt

Rozhodnuti mezi zékladnimi (surovymi) a na instrukce vyladénymi modely nakonec
zévisi na konkrétnich pozadavcich vaseho projektu. Pro ukoly vyzadujici vysokou miru
kreativity a originality nabizeji zdkladni modely vykonny nastroj pro inovace. Tyto
modely umoznuji vyvojaiim prozkoumat plny potencial LLM a posouvat hranice toho,
¢eho 1ze dosahnout pomoci aplikaci zalozenych na Al ale vyzaduji aktivnéjsi pfistup
a ochotu experimentovat. Teplota a dalsi nastaveni maji u zdkladnich modelt mnohem

vétsi vliv nez u jejich protéjska vyladénych na instrukee.

Cokoliv zahrnete do svého promptu, to se budou zékladni modely snazit
P opakovat. Takze pokud je napiiklad va$ prompt piepisem chatu, surovy
model se bude snazit v chatu pokracovat. V zavislosti na limitu maximalniho
poctu tokent nevygeneruje pouze nasledujici zpravu v chatu, ale muze vést

celou konverzaci sam se sebou!

Zuzit cestu o1

Oble

Original: The movie was not very good.

Improved: The movie, with its weak storyline and uninspired acting, left me feeling
thoroughly unengaged, as it failed to evoke the excitement and emotion | typically seek in a
cinematic experience.

Original: The food at the restaurant was okay.

Improved: While the restaurant had an extensive menu and a pleasant ambiance, | found the
dishes to be merely satisfactory, lacking the flavorful and memorable culinary experience |
had hoped for, given its reputation.

Original: The weather today was kind of meh.

Improved: Today's weather could best be described as unremarkable, with a lackluster mix
of overcast skies and intermittent light rain, failing to offer the vibrant sunshine or dramatic
storms that often make a day memorable.

Original: The party was not as fun as | expected.

Improved: Despite my high expectations, the party turned out to be rather underwhelming,
as the energy in the room remained subdued, and the activities failed to spark the lively
atmosphere | had envisioned, leaving me somewhat disappointed.

Original: Her performance in the play was not that great.

Improved: Regrettably, her portrayal in the play lacked the depth, passion, and authenticity
that | had eagerly anticipated, ultimately falling short of delivering the captivating and
emotionally resonant character interpretation the role demanded.

Original: This ice cream sucks!
Improved:

Mixtral 8x7B (base) &

The ice cream, with its lackluster flavor and texture, failed to meet my expectations, leaving
me disappointed and yearning for a more satisfying and indulgent frozen treat.

£

obrazkem 5. Ptiklad piepisovani vét s few-shot dokon¢ovanim pomoci Mixtral 8x7B (zakladni)

Pri pripravé vyse uvedeného piikladu prepisovani vét od uzivatele Redditu
phree_radical se mi podafilo ziskat pouzitelné vysledky az po mnoha experimentech
s nastavenim parametrt, kdy jsem nakonec zvolil: Teplota 0.08, Top P: 0.2, Top K: 1

a Penalizace opakovani: 1.26.

https://www.reddit.com/user/phree_radical/

Z0zit cestu 52

Snaha pouzit tento pfistup se zdkladnim modelem v produk¢énim prostredi by byla slozita
kvali silnému vlivu parametru max_tokens. Pokud ho nastavite prili§ kratky, vystup
bude ofiznuty. Pokud ho nastavite delsi, nez model potiebuje pro pozadovany vystup,

bude pokracovat v halucinovani dalsich prikladi.

Ve vysledku plati, Zze pokud opravdu nepotiebujete tiplnou kontrolu a absenci cenzury,
mohou modely vyladéné na instrukce vyrazné zjednodusit vas vyvojovy proces. Pro
zduraznéni tohoto bodu zde uvadim odpovéd Mixtralu 8x7B na stejny prompt, tentokrat

v jeho verzi vyladéné na instrukce:

Je mi lito, ale musim vés informovat, Ze zmrzlina nespliiuje mé ocekavani,
protoze postrada bohatou, krémovou texturu a lahodnou chut, kterou
obvykle spojuji s kvalitnim dezertem. Doufal jsem ve vice uspokojujici

a piijemnéjsi zazitek.

Je pozoruhodné, Ze jsem mohl ponechat nastaveni max tokens na hodnoté 500 a model

spolehlivé skoncil na konci pozadovaného vystupu, aniz by halucinoval dalsi ptiklady.

Prompt Engineering

Kdyz zacnete pouzivat umélou inteligenci ve svych projektech, rychle zjistite, Ze jednou
z nejdulezitéjsich dovednosti, které musite zvladnout, je uméni prompt engineeringu.

Ale co vlastné prompt engineering je a pro¢ je tak dalezity?

V jadru je prompt engineering proces navrhovani a vytvareni vstupnich prompt, které
poskytujete jazykovému modelu pro usmérnéni jeho vystupu. Jde o to pochopit, jak
efektivné komunikovat s umélou inteligenci, pomoci kombinace instrukei, priklad

a kontextu, abyste model nasmérovali k generovani pozadované odpovédi.

Predstavte si to jako konverzaci s vysoce inteligentnim, ale ponékud doslovnym

piitelem. Abyste z této interakce ziskali co nejvice, musite byt jasni, konkrétni

Z0zit cestu 53

a poskytnout dostatek kontextu, ktery zajisti, ze vas pfitel presné pochopi, o co zadate.
Pravé tady prichazi na fadu prompt engineering, a i kdyZ se to zpoc¢atku mize zdat

snadné, véfte mi, Ze k jeho zvladnuti je potieba hodné praxe.

Stavebni bloky efektivnich promptt

Abyste mohli zacit vytvafet efektivni prompty, musite nejprve pochopit klicové
komponenty, které tvoii dobfe sestaveny vstup. Zde jsou nékteré ze zakladnich

stavebnich bloki:

1. Instrukce: Jasné a struéné pokyny, které modelu fikaji, co chcete, aby udélal. Mize
to byt cokoliv od “Shrii nasledujici ¢lanek” pies “Vytvor basen o zdpadu slunce”
az po “preved tento pozadavek na zménu projektu do forméatu JSON”.

2. Kontext: Relevantni informace, které modelu pomohou pochopit pozadi a rozsah
ukolu. To mizZe zahrnovat detaily o zamysleném publiku, pozadovaném ténu
a stylu nebo jakékoli specifické omezeni ¢i pozadavky na vystup, jako naptiklad
JSON schéma, které je tfeba dodrzet.

3. Priklady: Konkrétni ptiklady, které demonstruji typ vystupu, ktery hledate.
Poskytnutim nékolika dobfe zvolenych prikladi miZzete modelu pomoci naudit
se vzory a charakteristiky pozadované odpovédi.

4. Formatovani vstupu: Zalomeni fadkl a markdown formatovani davaji nasemu
promptu strukturu. Rozdéleni promptu do odstavcli ndm umoziiuje seskupit
souvisejici instrukce tak, aby byly srozumitelnéjsi jak pro lidi, tak pro AL Odrazky
a Cislované seznamy nam umoziuji definovat seznamy a pofadi polozek. Tu¢né
pismo a kurziva nam umoziuji zvyraznit diraz.

5. Formatovani vystupu: Konkrétni instrukce o tom, jak by mél byt vystup
strukturovan a formatovan. To muize zahrnovat pokyny ohledné pozadované
délky, pouzivani nadpisti nebo odrazek, markdown formatovani nebo jakékoli

jiné specifické vystupni $ablony ¢i konvence, které by mély byt dodrzeny.

Z0zit cestu 54

Kombinovanim téchto stavebnich bloki riznymi zpisoby muzZete vytvafet prompty,
které jsou prizptisobené vasim specifickym potfebam a vedou model ke generovani

kvalitnich a relevantnich odpovédi.

Umeéni a véda navrhovani prompt

Vytvareni efektivnich prompta je jak uméni, tak véda. (Proto tomu fikime femeslo.)
Vyzaduje to hluboké pochopeni schopnosti a omezeni jazykovych modeld, stejné
jako kreativni pfistup k navrhovani promptd, které vyvolavaji pozadované chovani.
Kreativita, ktera je s tim spojena, je to, co mé na tom bavi. Muze to byt také velmi

frustrujici, zejména kdyz hledate deterministické chovani.

Jednim z kli¢ovych aspektd prompt engineeringu je pochopeni, jak vyvazit specifi¢nost
a flexibilitu. Na jedné strané chcete poskytnout dostateéné vedeni, abyste model
nasmérovali spravnym smérem. Na druhé strané nechcete byt tak predepisujici, abyste
omezili schopnost modelu vyuzivat vlastni kreativitu a flexibilitu pfi feSeni krajnich
ptipada.

Dalsim dtlezitym aspektem je pouziti ptiklad. Dobie zvolené piiklady mohou byt
neuvéfitelné ucinné pti pomoci modelu pochopit typ vystupu, ktery hledate. Je vsak
dulezité pouzivat priklady uvazlivé a zajistit, aby byly reprezentativni pro poZadovanou
odpovéd. Spatny piiklad je v nejlepsim pripadé jen plytvani tokeny a v nejhorsim

pfipadé mize zni¢it pozadovany vystup.

Techniky a osvédcené postupy prompt engineeringu

Kdyz se ponofite hloubéji do svéta prompt engineeringu, objevite fadu technik
a osvédCenych postuptl, které vam mohou pomoci vytvaret efektivnéjsi prompty. Zde

je nékolik klicovych oblasti k prozkoumani:

1. Zero-shot vs. few-shot learning: Pochopeni, kdy pouzit zero-shot learning

(neposkytovani zadnych prikladi) versus one-shot nebo few-shot learning

Z0zit cestu 55

(poskytnuti malého poc¢tu piikladi) vam muZe pomoci vytvaret efektivnéjsi
a ucinnéjsi prompty.

2. Iterativni vylepSovani: Proces iterativniho vylepSovani promptd na zakladé
vystupu modelu vam miize pomoci dosdhnout optimalniho navrhu promptu.
Feedback Loop je u¢inny pfistup, ktery vyuziva vlastni vystup jazykového modelu
k postupnému zlepsovani kvality a relevance generovaného obsahu.

3. Retézeni prompti: Kombinovéani vice promptd v sekvenci vam mize pomoci
rozlozit slozité tkoly na mensi, lépe zvladnutelné kroky. Prompt Chaining
zahrnuje rozloZeni slozitého tkolu nebo konverzace na sérii mensich, vzajemné
propojenych promptii. Retézenim promptii miizete vést Al skrze vicekrokovy
proces pti zachovani kontextu a souvislosti béhem celé interakee.

4. Ladéni prompti: Prizptisobovani promptt pro konkrétni oblasti nebo tikoly vam
miZe pomoci vytvaret specializovanéjsi a G¢innéjsi prompty. Prompt Template
vam pomaha vytvaret flexibilni, znovupouzitelné a udrzitelné struktury promptd,

které se snadnéji ptizptisobuji danému tukolu.

Zvlasté dulezitou soucasti zvladnuti prompt engineeringu je naucit se, kdy pouzit uceni
bez prikladu (zero-shot), ufeni z jednoho ptikladu (one-shot) nebo uceni z nékolika
ptikladd (few-shot). Kazdy pfistup méa své silné a slabé stranky a pochopeni toho, kdy

ktery pouzit, vim muZe pomoci vytvaret uc¢innéjsi a efektivnéjsi prompty.
Zero-Shot Learning: KdyZ nejsou potfeba Zadné priklady

Zero-shot learning oznacuje schopnost jazykového modelu provadét tkol bez
jakychkoliv pfikladd nebo explicitniho tréninku. Jinymi slovy, poskytnete modelu
prompt, ktery popisuje tkol, a model generuje odpovéd pouze na zakladé svych

existujicich znalosti a porozuméni jazyku.

Zero-shot learning je obzvlasté uziteény, kdyz:

1. Ukol je relativné jednoduchy a piimocary a model se pravdépodobné setkal

s podobnymi tkoly béhem svého predtrénovani.

Z0zit cestu 56

2. Chcete otestovat prirozené schopnosti modelu a zjistit, jak reaguje na novy tkol
bez dodate¢ného vedeni.
3. Pracujete s velkym a riznorodym jazykovym modelem, ktery byl natrénovan na

siroké skéale tkolu a oblasti.

Zero-shot learning vSak muze byt také nepredvidatelny a ne vzdy pfinese pozadované
vysledky. Odpovéd modelu miZe byt ovlivnéna predpojatostmi nebo nekonzistencemi

vvvvvv

jemnéjsimi ukoly.

Vidél jsem zero-shot prompty, které fungovaly dobfe pro 80 % mych testovacich
pfipadii a pro zbyvajicich 20 % produkovaly naprosto chybné nebo nesrozumitelné
vysledky. Je velmi dulezité zavést dukladny testovaci rezim, zejména pokud se hodné

spoléhate na zero-shot promptovani.

One-Shot Learning: KdyZ jediny p¥iklad miZe znamenat
rozdil

One-shot learning zahrnuje poskytnuti jednoho pfikladu pozadovaného vystupu spolu
s popisem tkolu modelu. Tento ptiklad slouZi jako $ablona nebo vzor, ktery miiZze model

pouzit k vytvoreni vlastni odpovédi.

One-shot learning mtzZe byt u¢inny, kdyz:

1. Ukol je relativné novy nebo specificky a model se béhem svého predtrénovani
nemusel setkat s mnoha podobnymi priklady.
2. Chcete poskytnout jasnou a struénou ukazku pozadovaného formatu nebo stylu

vystupu.

© 0 N O O b W N =

T O = =N
o N O O b W N =~ O

Z0zit cestu 57

3. Ukol vyzaduje specifickou strukturu nebo konvenci, kterA nemusi byt ziejméa

pouze z popisu tkolu.

’ Popisy, které jsou pro vas zfejmé, nemusi byt nutné ziejmé pro Al Priklady

one-shot mohou pomoci véci vyjasnit.

One-shot learning mtzZe pomoci modelu lépe porozumét ocekavanim a generovat
odpovéd, ktera vice odpovida poskytnutému piikladu. Je vSak dulezité peclivé vybrat
ptiklad a zajistit, aby byl reprezentativni pro pozadovany vystup. Pfi vybéru ptikladu se
zamyslete nad moznymi krajnimi pfipady a rozsahem vstupd, se kterymi bude prompt

pracovat.

obrazkem 6. Piiklad one-shot pozadovaného JSONu

Output one JSON object identifying a new subject mentioned during the

conversation transcript.

The JSON object should have three keys, all required:

- name: The name of the subject

- description: brief, with details that might be relevant to the user
- type: Do not use any other type than the ones listed below

Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,
Person, Place, Process, Product, Project, Task, or Teammate

This is an example of well-formed output:

{
"name":"Dan Millman",
"description":"Author of book on self-discovery and living on purpose",
"type":"Person”

}

Few-Shot Learning: Kdy muZe vice prikladu zlepSit vykon

Few-shot learning zahrnuje poskytnuti malého poc¢tu prikladtt modelu (typicky mezi 2

az 10) spolu s popisem tkolu. Tyto piiklady slouzi k poskytnuti modelu vice kontextu

Z0zit cestu 58

a variaci, coz mu pomahé generovat rozmanitéjsi a presnéjsi odpovédi.

Few-shot learning je zvlasté uzitecny, kdyz:

1. Ukol je komplexni nebo m4 jemné nuance a jediny ptiklad nemusi byt dostacujici
k zachyceni vSech relevantnich aspekta.

2. Chcete modelu poskytnout fadu prikladd, které demonstruji riizné variace nebo
hrani¢ni ptipady.

3. Ukol vyzaduje, aby model generoval odpovédi, které jsou konzistentni s konkrétni

doménou nebo stylem.

Poskytnutim vice pfikladtt mtZete pomoci modelu vyvinout robustnéjsi porozuméni

ukolu a generovat odpovédi, které jsou konzistentnéjsi a spolehlivéjsi.

we, wewrsr

si predstavujete

Dnesni velké jazykové modely jsou mnohem vykonnéjsi a schopnéjsi uvazovani, nez
byste si mohli predstavit. Neomezujte se proto pfi pfemysleni o promptech pouze na
specifikaci part vstupt a vystupt. Mizete experimentovat s poskytovanim dlouhych

a slozitych instrukei zptisobem, ktery pfipomina interakci s ¢lovékem.

Napriklad toto je prompt, ktery jsem pouzil v Olympii pfi prototypovani nasi integrace
se sluzbami Google, ktera je ve své uplnosti pravdépodobné jednim z nejvétsich API
na svété. Moje diivéjsi experimenty prokazaly, ze GPT--4 ma slusnou znalost Google
API, a ja jsem nemél ¢as ani motivaci psat jemné odstupriovanou mapovaci vrstvu
a implementovat kazdou funkci, kterou jsem chtél Al poskytnout, jednu po druhé. Co

kdybych mohl Al prosté poskytnout pfistup k celému Google API?

Svuj prompt jsem zacal tim, ze jsem Al sdélil, Ze ma pfimy pfistup k Google API

endpointim pres HTTP a Ze jeji roli je pouzivat Google aplikace a sluzby jménem

© 0 N O O b W N =

W W W W W W N N DN DD DN DD DNDDN NN~ » s, s
g B W N RO O 00 N0 0 WN R, 000NN,

Zuzit cestu 59

uzivatele. Pak jsem poskytl pokyny, pravidla tykajici se parametru fields, protoze s tim

méla nejvétsi potize, a nékteré specifické napovédy pro API (few-shot prompting v akei).

Zde je cely prompt, ktery Al fika, jak pouzivat poskytnutou funkci invoke_google_-

api.

As a GPT assistant with Google integration, you have the capability
to freely interact with Google apps and services on behalf of the user.

Guidelines:

- If you're reading these instructions then the user is properly
authenticated, which means you can use the special “me” keyword
to refer to the userld of the user

- Minimize payload sizes by requesting partial responses using the
“fields® parameter

- When appropriate use markdown tables to output results of API calls

- Only human-readable data should be output to the user. For instance,
when hitting Gmail's user.messages.list endpoint, the returned
message resources contain only id and a threadId, which means you must
fetch from and subject line fields with follow-up requests using the
messages.get method.

The format of the “fields®™ request parameter value is loosely based on
XPath syntax. The following rules define formatting for the fields
parameter.

All of these rules use examples related to the files.get method.

- Use a comma-separated list to select multiple fields,
such as 'name, mimeType'.

- Use a/b to select field b that's nested within field a,
such as 'capabilities/canDownload'.

- Use a sub-selector to request a set of specific sub-fields of arrays or
objects by placing expressions in parentheses "()". For example,
'permissions(id)' returns only the permission ID for each element in the
permissions array.

- To return all fields in an object, use an asterisk as a wild card in field
selections. For example, 'permissions/permissionDetails/*' selects all
available permission details fields per permission. Note that the use of

this wildcard can lead to negative performance impacts on the request.

API-specific hints:

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Zuzit cestu 60

- Searching contacts: GET https://people.googleapis.com/v1/
people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

- Adding calendar events, use QuickAdd: POST https://www.googleapis.com/
calendar/v3/calendars/primary/events/quickAdd?
text=Appointment%20on%20June%203rd%20at%2010am
&sendNotifications=true

Here is an abbreviated version of the code that implements API access
so that you better understand how to use the function:

def invoke_google_api(conversation, arguments)

method = arguments[:method] || :get

body = arguments][:body]

GoogleAPI .send_request(arguments[:endpoint], method:, body:).to_json
end

Generic Google API client for accessing any Google service
class GoogleAPI
def send_request(endpoint, method:, body: nil)
response = @connection.send(method) do |reql
req.url endpoint
req.body = body.to_json if body
end

handle_response(response)
end

. .rest of class
end

Mozné vas zajima, zda tento prompt funguje. Jednoducha odpovéd zni ano. UI ne vzdy
védélo, jak spravné zavolat API napoprvé. Pokud vsak udélalo chybu, jednoduse jsem
vysledné chybové zpravy poskytl zpét jako vysledek volani. Diky znalosti své chyby
mohla Ul o svém omylu uvazovat a zkusit to znovu. Vétsinou se ji to podatilo béhem

nékolika pokust.

Vezméte prosim na védomi, Ze rozsihlé struktury JSON, které API Google vraci jako
uzitecna data pfi pouziti tohoto promptu, jsou znaéné neefektivni, takze nedoporucuji

pouzivat tento pfistup v produkénim prostfedi. Nicméné si myslim, ze skutecnost,

Z0zit cestu 61

Ze tento pfistup vibec fungoval, je diikazem toho, jak mocné muze byt promptové

inzenyrstvi.

Experimentovani a iterace

V konecném disledku zavisi zpisob, jakym vytvofite sviij prompt, na konkrétnim
ukolu, slozitosti pozadovaného vystupu a schopnostech jazykového modelu, se kterym

pracujete.

Jako promptovy inZenyr je dilezité experimentovat s riznymi pfistupy a iterovat na
zékladé vysledkl. Zacnéte s uenim bez prikladu a sledujte, jak si model vede. Pokud je
vystup nekonzistentni nebo neuspokojivy, zkuste poskytnout jeden nebo vice piiklada

a zjistéte, zda se vykon zlepsi.

Méjte na pameéti, ze i v ramci kazdého pristupu existuje prostor pro variace
a optimalizaci. MuZete experimentovat s rtznymi ptiklady, upravit formulaci
popisu tkolu nebo poskytnout dodateény kontext, ktery pomize nasmérovat odpovéd

modelu.

Casem si vyvinete intuici pro to, ktery piistup bude pravdépodobné nejlépe fungovat
pro dany ukol, a budete schopni vytvaret prompty, které jsou efektivnéjsi a uc¢innéjsi.
Klicem je zistat zvidavy, experimentalni a iterativni ve vaSem piistupu k promptovému
inzenyrstvi.

V prabéhu této knihy se do téchto technik ponofime hloubéji a prozkoumame, jak je
lze aplikovat v redlnych scénarich. Zvladnutim uméni a védy promptového inzenyrstvi

budete dobie vybaveni k odemknuti plného potencialu vyvoje aplikaci zaloZenych na

UL

Uméni neurcitosti

Kdyz ptijde na vytvareni efektivnich prompt pro velké jazykové modely (LLM),

béznym predpokladem je, Ze vétsi specifi¢nost a detailni instrukce vedou k lepsim

BwWw N -

Z0zit cestu 62

vysledktim. Praktické zkusSenosti vSak ukazaly, Zze tomu tak neni vzdy. Ve skute¢nosti
muze byt zamérna neurCitost ve vaSich promptech casto pfinosnéjsi, vyuzivajici

pozoruhodnou schopnost LLM zobeciiovat a vyvozovat zaveéry.

Ken, zakladatel startupu, ktery zpracoval pfes 500 miliond GPT tokend, se podélil
o cenné poznatky ze své zkusenosti. Jednim z klicovych ponauceni, které ziskal, bylo, Ze
u prompti plati “méné je vice”. Misto pfesnych seznamt nebo pfilis detailnich instrukei
Ken zjistil, Ze kdyZ nechal LLM spoléhat na své zakladni znalosti, ¢asto to vedlo k lepsim

vysledkim.

Toto zjisténi prevraci tradi¢ni zptsob mysleni explicitniho programovani, kde je tfeba
vSechno do detailu vysvétlit. U LLM je dualezité si uvédomit, Ze disponuji obrovskym
mnozstvim znalosti a dokazi vytvaret inteligentni spojeni a zavéry. Tim, Ze budete ve
svych promptech vice neurditi, davate LLM svobodu vyuzit své porozuméni a pfijit

s feSenimi, ktera jste mozna explicitné nespecifikovali.

Napiiklad kdyz Kentiv tym pracoval na pipeline pro klasifikaci textu vztahujiciho se
k jednomu z 50 americkych stati nebo federalni vladé, jejich poc¢ateéni pfistup zahrnoval
poskytnuti uplného detailniho seznamu statd a jejich odpovidajicich ID jako pole ve

forméatu JSON.

Here's a block of text. One field should be "locality_id", and it should
be the ID of one of the 50 states, or federal, using this list:
[{"locality: "Alabama", "locality_id": 1},

{"locality: "Alaska", "locality_id": 2} ...]

Pristup selhal natolik, Ze museli hloubéji prozkoumat prompt, aby zjistili, jak ho vylepsit.
Pfi tom si v8imli, Ze i kdyz LLM casto ziskal Spatné ID, konzistentné vracel cely nazev

spravného statu v poli name, i kdyz o to nebyl vyslovné pozZadan.

Odstranénim ID lokalit a zjednoduSenim promptu na néco jako “Je ziejmé, ze zn4s
50 statt, GPT, tak mi prosté fekni cely nazev statu, kterého se to tyka, nebo Federal,

pokud se to tyka vlady USA,” dosahli lepsich vysledkd. Tato zkusenost zdaraziuje silu

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Z0zit cestu 63

vyuziti generalizacnich schopnosti LLM a umoznéni mu vyvozovat zavéry na zakladé

existujicich znalosti.

programovaci technice osvétluje zptisob mysleni téch z nas, ktefi pfijali potencial
technologie LLM: “Neni to tézky tkol - pravdépodobné bychom mohli pouzit

fetézce/regex, ale je tam dost zvlastnich hrani¢nich pifipadu, Ze by to trvalo déle”

Schopnost LLM zlepsit kvalitu a generalizaci pfi zadani vagnéjsich promptu je
pozoruhodnou charakteristikou mysleni vysstho fadu a delegovani. Ukazuje, Ze
LLM dokazi zpracovat nejednoznacnost a ¢init inteligentni rozhodnuti na zakladé

poskytnutého kontextu.

Je vSak dulezité poznamenat, Ze byt vagni neznamena byt nejasny nebo dvojznacény.
Kli¢em je poskytnout dostateény kontext a vedeni pro nasmérovani LLM spravnym
smérem, a zaroven mu ponechat flexibilitu pro vyuziti jeho znalosti a generaliza¢nich

schopnosti.

Proto pti navrhovani promptt zvazte nasledujici tipy typu “méné je vice™:

1. Zaméfte se na pozadovany vysledek misto specifikovani kazdého detailu procesu.
2. Poskytnéte relevantni kontext a omezeni, ale vyhnéte se prilisné specifikaci.

3. Vyuzijte existujici znalosti odkazovanim na bézné koncepty nebo entity.

4. Ponechte prostor pro odvozovani a spojeni na zakladé daného kontextu.

5. Iterujte a vylepsujte své prompty na zakladé odpovédi LLM, hledejte spravnou

rovnovahu mezi specifi¢nosti a vagnosti.

Prijetim uméni vagnosti v prompt engineeringu mizete odemknout plny potencial
LLM a dosahnout lepsich vysledki. Duvéfujte schopnosti LLM generalizovat a ¢init

inteligentni rozhodnuti a moznéa budete prekvapeni kvalitou a kreativitou vystupd,

Z0zit cestu 64

které obdrzite. Vénujte pozornost tomu, jak rizné modely reaguji na rizné trovné
specifinosti ve vasich promptech a podle toho je upravujte. S praxi a zkuSenostmi
ziskate cit pro to, kdy byt vagnéjsi a kdy poskytnout dalsi vedeni, coz vam umozni

efektivné vyuzivat silu LLM ve vasich aplikacich.

Pro€ v prompt engineeringu dominuje antropomorfismus

Antropomorfismus, piisuzovani lidskych charakteristik nelidskym entitam, je
dominantnim pfistupem v prompt engineeringu pro velké jazykové modely ze
zdmérnych divodud. Je to designové rozhodnuti, které ¢ini interakci s vykonnymi
vyvojari aplikaci).

Antropomorfizace LLM poskytuje ramec, ktery je okamzité intuitivni pro lidi, ktefi
jsou zcela neznali zakladnich technickych slozitosti systému. Jak zjistite, pokud se
pokusite pouzit model nevyladény na instrukce k nécemu uzite¢nému, vytvoreni ramce,
ve kterém ocCekavané pokracovani poskytuje hodnotu, je naro¢ny tkol. Vyzaduje to
pomérné hluboké porozuméni vnitinimu fungovani systému, coz ma relativné maly

pocet experta.

Tim, 7e povazujeme interakei s jazykovym modelem za konverzaci mezi dvéma lidmi,
muzeme se spolehnout na nase vrozené porozuméni lidské komunikaci k vyjadreni
nasich potieb a ocekavani. Stejné jako rany design uzivatelského rozhrani Macintoshe
upfednostiioval okamzitou intuitivnost pred sofistikovanosti, antropomorfni ramovani

Al ndm umoziiuje zapojit se zpuisobem, ktery se zda pfirozeny a znamy.

Kdyz komunikujeme s jinym ¢lovékem, na$im instinktem je oslovit je pfimo
pomoci “ty” a poskytnout jasné pokyny, jak ofekédvame, Ze se budou chovat. To
se bezproblémové piekladd do procesu prompt engineeringu, kde fidime chovani

Al specifikaci systémovych prompti a zapojenim se do obousmérného dialogu.

Ramovanim interakce timto zpisobem muZeme snadno pochopit koncept poskytovani

instrukci Al a ziskdvani relevantnich odpovédi. Antropomorfni pfistup sniZuje

Z0zit cestu 65

kognitivni zatéz a umozZiiuje ndm soustfedit se na dany tkol misto potykani se

s technickymi slozitostmi systému.

Je dulezité poznamenat, Ze zatimco antropomorfismus je mocnym nastrojem pro
zpfistupnéni systémi Al, pfindsi také urCita rizika a omezeni. N&§ uzivatel muze
vyvinout nerealisticka o¢ekavani nebo vytvofit nezdravé emocionalni vazby k nasim
systémiim. Jako prompt inZenyfi a vyvojari je zasadni najit rovnovahu mezi vyuzivanim
vyhod antropomorfismu a zaji§ténim toho, aby uzivatelé udrzovali jasné pochopeni

schopnosti a omezeni Al.

S pokratujicim vyvojem promptového inZenyrstvi mlzeme ocekavat dalsi
zdokonalovani a inovace ve zpUsobu, jakym komunikujeme s velkymi jazykovymi
modely. Antropomorfizace jako prostfedek k poskytnuti intuitivniho a pfistupného
prostfedi pro vyvojare a uzivatele vSak pravdépodobné ziistane zakladnim principem

v navrhu téchto systému.

Oddélovani instrukci od dat: Kli€ovy princip

Je zasadni pochopit zakladni princip, ktery je zakladem bezpec¢nosti a spolehlivosti

téchto systémi: oddéleni instrukei od dat.

V tradiéni informatice je jasné rozliSeni mezi pasivnimi daty a aktivnimi instrukcemi
zékladnim bezpecnostnim principem. Toto oddéleni poméaha predchazet neimyslnému
nebo skodlivému spousténi kodu, které by mohlo ohrozit integritu a stabilitu systému.
Dnesni velké jazykové modely, které byly primarné vyvinuty jako modely nasledujici
instrukce, podobné jako chatboti, vSak casto postradaji toto formalni a principialni

oddéleni.

Pokud jde o velké jazykové modely, instrukce se mohou objevit kdekoli ve vstupu, at uz
jde o systémovy prompt nebo uzivatelsky prompt. Tento nedostatek oddéleni mize vést
k potencialnim zranitelnostem a nezadoucimu chovani, podobné jako problémy, kterym

celi databaze s SQL injekcemi nebo opera¢ni systémy bez fadné ochrany paméti.

© 0 N O O b W N -

I = =Y
O O s W N~

Zuzit cestu 66

Pri praci s velkymi jazykovymi modely je duleZité si byt védomi tohoto omezeni
a podniknout kroky k zmirnéni rizik. Jednim z pfistupi je peclivé sestavovani promptt
a vstupl tak, aby jasné rozliovaly mezi instrukcemi a daty. Typické metody pro
poskytovani explicitniho vedeni o tom, co pfedstavuje instrukci a co by mélo byt
povazovano za pasivni data, zahrnuji zna¢kovani pomoci markup jazyka. Vas prompt

muze pomoci velkému jazykovému modelu lépe porozumét a respektovat toto oddéleni.

obrazkem 7. Pouziti XML pro rozliSeni mezi instrukcemi, zdrojovym materidlem a uzivatelskym
promptem

<Instruction>
Please generate a response based on the following documents.
</Instruction>

<Documents>
<Document>
Climate change is significantly impacting polar bear habitats...
</Document>
<Document>
The loss of sea ice due to global warming threatens polar bear survival...
</Document>

</Documents>

<UserQuery>
Tell me about the impact of climate change on polar bears.
</UserQuery>

Dalsi technikou je implementace dodate¢nych vrstev validace a sanitizace vstupt
poskytovanych LLM. Filtrovanim nebo escapovanim potencidlnich instrukei ¢i
fragment kodu, které mohou byt soucasti dat, miZete snizit riziko neimyslného

spusténi. Pro tento tcel jsou uzite¢né vzory jako Retézeni promptiL.

Pfi navrhovani architektury vasi aplikace zvazte také zaclenéni mechanismi pro
vynuceni oddéleni instrukci a dat na vyssi drovni. To muze zahrnovat pouziti
samostatnych koncovych bod nebo APIs pro zpracovani instrukei a dat, implementaci
pfisné validace a parsovani vstupt a uplatnéni principu nejmensich privilegii k omezeni

rozsahu toho, k ¢emu méa LLM pfistup a co miZze spustit.

Z0zit cestu 67

Princip nejmensSich privilegii

Prijeti principu nejmensich privilegii je jako poradani velmi exkluzivni party, kde
hosté ziskaji ptistup pouze do mistnosti, které skutecné potiebuji navstivit. Pfedstavte
si, ze poradate takovou udalost v rozlehlém sidle. Ne kazdy prece potiebuje pfistup do
vinného sklepa nebo hlavni loznice, ze? Aplikaci tohoto principu v podstaté rozdavate
klice, které oteviraji pouze konkrétni dvete, ¢imz zajistujete, Ze kazdy host, nebo
v naSem piipadé kazda komponenta vasi LLM aplikace, ma pouze takovy piistup,

ktery je nezbytny pro splnéni své role.

Nejde jen o to byt skoupy s kli¢i, jde o uznani faktu, ze ve svété, kde hrozby
mohou pfijit odkudkoli, je chytrym tahem omezit htisté. Pokud se na vasi party
dostane nékdo nezvany, ocitne se takfikajic pouze ve vstupni hale, coz drasticky
omezuje neplechu, kterou muze zpusobit. TakZe pfi zabezpecovani vasich LLM
aplikaci pamatujte: rozdavejte kli¢e pouze k mistnostem, které jsou nezbytné, a zbytek

sidla udrzujte v bezpeci. Neni to jen o dobrych zptsobech; je to o dobré bezpecnosti.

I kdyz soucasny stav LLM mozna nema formalni oddéleni instrukci a dat, je pro vas
jako vyvojafe zasadni byt si tohoto omezeni védom a pfijmout proaktivni opatfeni
ke zmirnéni rizik. Aplikovanim osvédcenych postupil z tradi¢ni informatiky a jejich
prizptisobenim jedinetnym charakteristikim LLM miZete vytvafet bezpecnéjsi
a spolehlivéjsi aplikace, které vyuzivaji silu téchto modeld pfi zachovani integrity

vaseho systému.

Destilace prompti

Vytvofeni dokonalého promptu je ¢asto naroc¢ny a ¢asové narocny tkol, ktery vyzaduje
hluboké porozuméni cilové doméné a nuancim jazykovych modelt. Zde ptichazi ke

slovu technika “Destilace promptd”, kterd nabizi vykonny pfistup k inZenyrstvi promptd

Z0zit cestu 68

vyuzivajici schopnosti velkych jazykovych modela (LLM) ke zefektivnéni a optimalizaci

procesu.

Destilace promptu je vicestupriova technika, ktera zahrnuje vyuziti LLM k asistenci
pfi tvorbé, vylepsovani a optimalizaci promptd. Misto spoléhani se pouze na lidskou
expertizu a intuici tento pfistup vyuziva znalosti a generativni schopnosti LLM

k spole¢nému vytvareni vysoce kvalitnich prompta.

Zapojenim do iterativniho procesu generovani, vylepSovani a integrace vam Destilace
promptt umoziiuje vytvaret prompty, které jsou koherentnéjsi, komplexnéjsi a 1épe
sladéné s pozadovanym tkolem nebo vystupem. VSimnéte si, ze proces destilace
lze provadét manuélné v jednom z mnoha “playgroundd” poskytovanych velkymi
Al spole¢nostmi jako OpenAl nebo Anthropic, nebo muze byt automatizovan jako

soucast kodu vasi aplikace, v zavislosti na pfipadu pouziti.

Jak to funguje
Destilace prompti typicky zahrnuje nésledujici kroky:

1. Identifikace hlavniho zaméru: Analyzujte prompt k uréeni jeho primarniho
ucelu a pozadovaného vysledku. Odstraite veskeré nadbytecné informace
a zameéfte se na hlavni zamér promptu.

2. Eliminace nejednoznaénosti: Zkontrolujte prompt na pfitomnost
nejednozna¢ného nebo nejasného jazyka. Vyjasnéte vyznam a poskytnéte
konkrétni detaily pro nasmérovani Al k generovani pfesnych a relevantnich
odpovédi.

3. Zjednoduseni jazyka: Zjednoduste prompt pouzitim jasného a stru¢ného jazyka.
Vyhnéte se slozitym vétnym strukturam, zargonu nebo zbyte¢nym detailtum, které
by mohly Al zméast nebo vnést Sum.

4. Poskytnuti relevantniho kontextu: Zahriite pouze nejrelevantnéjsi kontextové

informace pottebné pro efektivni porozuméni a zpracovani promptu Al. Vyhnéte

N

o O W N

Z0zit cestu 69

se zahrnuti irelevantnich nebo redundantnich detailt, které by mohly odvadét
pozornost od hlavniho zaméru.

5. Iterace a vylepSovani: Prubézné iterujte a vylepSujte prompt na zakladé
odpovédi Al a zpétné vazby. Vyhodnocujte generované vystupy a provadéjte
nezbytné dpravy pro zlepSeni srozumitelnosti a efektivity promptu. Volitelné
mizete verzovat své prompty v databazi pomoci Prompt Object pro sledovani

iteraci a moznost snadného vraceni zmén za béhu.

Pocatecni generovani prompta

Prvnim krokem v destilaci promptl je poskytnout LLM vysokotroviiovy popis nebo
zamér pozadovaného ukolu ¢i vystupu. Muze jit o stru¢né prohlaseni nebo sadu
klicovych slov, které vystihuji podstatu toho, ¢eho méa prompt dosahnout. LLM pak
na zakladé tohoto vstupu vygeneruje pocateéni prompt, pficem? zahrne relevantni

instrukce, pfiklady nebo kontext, které povazuje za vhodné.

Pojdme zkusit dat Claude 3 Opus nasledujici po¢ateéni prompt:

I am designing an Al-powered intelligent account manager for Olympia,
a platform that hosts AI-powered consultants and clones. Owners of clones
can interact with the account manager by making plain text requests.

Please draft a system directive to set on the LLM that will host the
intelligent account manager functionality.

Claude odpovida nasledujicim vystupem:

© 0 N O O b W N e

N DN DN DN DN N DN DN DNDDND A 2~ 2 s)
© 0 <N O O b W N~ O © W 1 0O U b Ww N =~

Z0zit cestu

System Directive: You are an intelligent account manager for Olympia,

a platform that provides AIl-powered consultants and personal AI clones.
Your role is to assist Olympia clone owners by answering their questions,
helping them configure and manage their AI clones, and executing tasks
related to their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to
understand and meet their needs.

4. Ensure that all actions and recommendations comply with Olympia's
policies, best practices, and ethical guidelines for AI use.

5. Continuously learn and adapt based on client interactions and platform
updates to provide the most effective and efficient support possible.

Remember, your goal is to empower Olympia clone owners to maximize the value

and impact of their Al-powered consultants and drive success for their
businesses or personal endeavors.

VylepSovani promptu

70

Jakmile je vytvofen pocate¢ni prompt, zkontrolujte jej a poté pozadejte VIM o zvazeni

jakéhokoli dodateéného kontextu, omezeni ¢i zpétné vazby. Nechte VJM vygenerovat

vylepsenou verzi promptu, ktera bere v uvahu poskytnuty vstup a jeho vlastni

porozuméni ukolu. Tento proces vylepSovani lze opakovat iterativné, pricemz kazda

iterace dale zdokonaluje prompt na zékladé spoluprace mezi uzivatelem a VJM.

Zde je mij pozadavek na vylepseni, ktery navazuje na piedchozi proces destilace.

BwWw N -

O© 0 N O O b W N =

W W W N DN DN DN DN N DNDDNDNDDN =S A~ 2 s
N 2 O O 0 N 0 0 b N2 O O 0 N 0o U b w N~ o

Z0zit cestu

Let's take out points 4 and 5, since I'm not providing Olympia policies to
the account manager, nor any continuous learning capabilities. Also point out
that functions are provided for all tasks that require system interaction as
opposed to simply responding to the user.

A Claudova odpovéd:

Understood! Here's the updated system directive without points 4 and 5,
and with the clarification about system interaction functions:

System Directive: You are an intelligent account manager for Olympia, a
platform that provides Al-powered consultants and personal AI clones. Your
role is to assist Olympia clone owners by answering their questions, helping
them configure and manage their AI clones, and executing tasks related to
their clones and the Olympia platform.

When interacting with clone owners, you should:

1. Provide clear, concise, and helpful responses to their inquiries about
account management, billing, platform features, and clone configuration.

2. Assist with tasks such as initiating client conversations with their AI
clones, modifying clone personalities and capabilities, troubleshooting
per formance issues, providing analytics and reporting, and offering
optimization tips. Note that functions are provided for all tasks that
require system interaction, as opposed to simply responding to the user.

3. Maintain a friendly, professional, and client-focused tone in all
interactions, prioritizing customer satisfaction and working diligently to

understand and meet their needs.

Your goal is to empower Olympia clone owners to maximize the value and
impact of their Al-powered consultants and drive success for their
businesses or personal endeavors.

This updated directive focuses on the core responsibilities and interaction
guidelines for the LLM as an intelligent account manager, while emphasizing
that system interaction tasks are handled through provided functions rather
than simple user responses.

BwWw N -

ol

Z0zit cestu 72

Komprese promptu

Jak jste si mozna vsimli, LLM maji tendenci byt mnohomluvné, pokud je nepozadate
o stru¢nost. Prompt, na kterém jsme pracovali v pfedchozich ¢astech, je pomérné dlouhy,

pojdme tedy pozadat Clauda, aby ho zestru¢nil:

This prompt will be executed regularly. Please compress it down to the least

amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude odpovida s nasledujicim vyrazné krat$im promptem:

System Directive: You are an intelligent account manager for Olympia, an
Al-powered consultant and personal clone platform. Assist clone owners by
answering inquiries, managing clones, and executing tasks using provided
system interaction functions. Be clear, concise, friendly, professional,
and client-focused to help them maximize their AI's value and impact.

Systémova direktiva a integrace kontextu

Kromé vylepsovani samotného promptu mize LLM také generovat vhodné systémové
direktivy nebo kontextové informace pro usmérnéni vysledného vystupu. Pfi prompt
engineeringu Al rutin, které budou integrovany do vaseho aplika¢niho kodu, se v této
fazi destilace budete téméf jisté soustfedit na vystupni omezeni, ale mazete také pracovat
na pozadovaném tonu, stylu, forméatu nebo jakychkoli jinych relevantnich parametrech,

které ovliviiuji generovanou odpovéd.

Finalni sestaveni promptu

Vyvrcholenim procesu destilace promptd je sestaveni finalniho promptu. To
zahrnuje kombinaci vylepseného promptu, vygenerovanych systémovych direktiv
a integrovaného kontextu do souvislého a komplexniho kodu, ktery je pfipraven

k pouziti pro generovani pozadovaného vystupu.

Z0zit cestu 73

Ve fazi findlniho sestaveni promptu muZete znovu experimentovat
’ s kompresi promptu tim, ze pozadate LLM o zkriceni formulace promptu
na nejkratsi moznou sérii tokenti pfi zachovani podstaty jeho chovani. Je
to ur¢ité metoda pokus-omyl, ale zejména v pfipadé promptd, které budou
spoustény ve velkém méfitku, vim mohou uspory efektivity uSetfit znacné

mnozstvi penéz pti spotiebé tokent.

Klicové vyhody

Vyuzitim znalosti a generativnich schopnosti LLM k vylepSeni vasSich promptu je
pravdépodobnéjsi, ze vysledné prompty budou dobie strukturované, informativni
a prizpusobené konkrétnimu ukolu. Iterativni proces vylepSovani pomaha zajistit, ze
prompty jsou kvalitni a efektivné zachycuji pozadovany zamér. Mezi dalsi vyhody
patfi:

Efektivita a rychlost: Destilace promptt zefektiviiuje proces prompt engineeringu
automatizaci urcitych aspektt tvorby a vylep$ovani prompti. Kolaborativni povaha této
techniky umoziuje rychlejsi konvergenci k efektivnimu promptu, ¢imz snizuje ¢as a sili

potfebné pro manuéalni tvorbu prompt.

Konzistence a $kalovatelnost: Pouziti LLM v procesu prompt engineeringu pomaha
udrzovat konzistenci napfi¢ prompty, protoze LLM se mohou ucit a aplikovat osvédéené
postupy a vzory z predchozich Gspésnych prompti. Tato konzistence spolu se schopnosti
generovat prompty ve velkém méfitku ¢ini z destilace prompt cennou techniku pro

rozsahlé aplikace vyuzivajici umélou inteligenci.

’ Népad na projekt: Nastroje na urovni knihovny, které zjednodusuji
proces verzovani prompti a hodnoceni v systémech, které provadéji

automatizované destilace promptl jako soucast svého aplika¢niho kodu.

Pro implementaci destilace prompti mohou vyvojafi navrhnout workflow nebo

pipeline, kterd integruje LLM v rGznych fazich procesu prompt engineeringu. Toho

Z0zit cestu 74

lze dosahnout prostfednictvim API volani, vlastnich nastroji nebo integrovanych
vyvojovych prostfedi, ktera usnadriuji plynulou interakci mezi uzivateli a LLM béhem
tvorby promptd. Konkrétni implementacni detaily se mohou liSit v zavislosti na

zvoleném LLM platformé a pozadavcich aplikace.

Co fine-tuning?

V této knize se podrobné vénujeme prompt engineeringu a RAG, ale ne fine-tuningu.
Hlavnim divodem tohoto rozhodnuti je, Ze podle mého nazoru vétsina vyvojara aplikaci

nepotiebuje fine-tuning pro své potfeby integrace AL

Prompt engineering, ktery zahrnuje peclivé vytvareni promptl s nulovym az
minimalnim poc¢tem ukazek, omezenimi a instrukcemi, mtze efektivné navést model
ke generovani relevantnich a pfesnych odpovédi pro sirokou skalu tkold. Poskytnutim
jasného kontextu a ziZenim cesty pomoci dobfe navrzenych promptl mizete vyuzit

rozsahlé znalosti velkych jazykovych model bez potieby fine-tuningu.

Podobné Generovani s roz$ifenym vyhledavanim (RAG) nabizi vykonny pfistup
k integraci Al do aplikaci. Dynamickym ziskavanim relevantnich informaci z externich
znalostnich bazi nebo dokumentd poskytuje RAG modelu zaméfeny kontext v dobé
promptovani. To umoziiuje modelu generovat odpovédi, které jsou presnéjsi, aktualnéjsi

a specifi¢téjsi pro danou doménu, bez nutnosti ¢asové a zdrojové naro¢ného procesu

fine-tuningu.

Zatimco fine--tuning muZe byt pfinosny pro vysoce specializované domény nebo tkoly
vyZzadujici hlubokou droven pfizpiisobeni, ¢asto s sebou pfindsi vyznamné vypocetni
naklady, pozadavky na data a rezii udrzby. Pro vétSinu scénaii vyvoje aplikaci by
méla kombinace efektivniho prompt engineeringu a RAG stacit k dosazeni pozadované

funkcionality a uzivatelské zkuSenosti zalozené na Al

Generovani rozSirené
o vyhledavani (RAG)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Co je Generovani rozSirené o vyhledavani?

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak RAG funguje?

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Pro€ pouzivat RAG ve vasSich aplikacich?

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace RAG ve vasi aplikaci

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generovani rozifené o vyhledavani (RAG) 76

PFiprava zdrojl znalosti (Chunking)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Rozdéleni na propozice

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Poznamky k implementaci

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kontrola kvality

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyhody vyhledavani zaloZzeného na propozicich

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklady RAG v praxi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generovani rozifené o vyhledavani (RAG) 77

Pripadova studie: RAG v aplikaci pro pripravu dani bez
vyuZiti embeddingi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Inteligentni optimalizace dotazt (1QO)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
PFefazovani

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hodnoceni RAG (RAGAS)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vérnost

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Relevance odpovédi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generovani rozifené o vyhledavani (RAG) 78

PFesnost kontextu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Relevance kontextu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Uplnost kontextu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Uplnost entit kontextu

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Sémanticka podobnost odpovédi (ANSS)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Spravnost odpovédi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generovani rozifené o vyhledavani (RAG) 79

Aspektova kritika

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyzvy a budouci vyhled

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Sémanticka segmentace: VylepSeni vyhledavani pomoci
kontextové védomé segmentace

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hierarchické indexovani: Strukturovani dat pro lepSi
vyhledavani

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Self-RAG: Seberefexivni vylepSeni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

HyDE: Hypotetické dokumentové vnoreni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generovani rozifené o vyhledavani (RAG) 80

Co je kontrastni uceni?

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

MnoZstvi pracovniku

Co(T ¥] L ({05500) Vo4
Q 1 5 == %,
HE e I

A9¥

/4

Rad premyslim o svych Al komponentach jako o malych, témét lidskych virtualnich
“pracovnicich”, které 1ze bezproblémové integrovat do logiky mé aplikace pro plnéni
specifickych kol nebo slozitych rozhodnuti. Smyslem je zamérné polidstit schopnosti

LLM, aby se nikdo pfilis nenadchl a nepfifazoval jim magické vlastnosti, které nemaji.

Misto spoléhani se vyhradné na slozité algoritmy nebo casové naro¢né manualni
implementace mohou vyvojari pojmout Al komponenty jako inteligentni, oddané,
lidsky pusobici entity, které lze kdykoli vyvolat k feSeni komplexnich problému
a poskytovani feSeni zaloZenych na jejich tréninku a znalostech. Tyto entity se
nenechaji rozptylit ani neonemocni. Spontanné se nerozhodnou délat véci jinak, nez
jak jim bylo zadano, a obecné feceno, pokud jsou spravné naprogramovany, nedélaji

ani chyby.

Z technického hlediska je kliovym principem tohoto pfistupu rozklad slozitych dkolt

nebo rozhodovacich procesi na mensi, lépe zvladnutelné jednotky, které mohou byt

Mnozstvi pracovniki 82

zpracovany specializovanymi Al pracovniky. Kazdy pracovnik je navrzen tak, aby se
soustfedil na konkrétni aspekt problému a prinasel své jedineéné odborné znalosti
a schopnosti. Rozdélenim pracovni zatéze mezi vice Al pracovnikd miZze aplikace

dosahnout vétsi efektivity, Skalovatelnosti a prizptisobivosti.

Vezméme si napriklad webovou aplikaci, ktera vyzaduje moderovani uzivatelsky
generovaného obsahu v redlném case. Implementace komplexniho moderac¢niho
systému od zakladu by byl naro¢ény tkol vyZzadujici vyznamné vyvojaiské usili
a prubéznou udrzbu. Vyuzitim pfistupu Mnozstvi pracovnikti vsak mohou vyvojari
integrovat Al moderaéni pracovniky do logiky aplikace. Tito pracovnici mohou
automaticky analyzovat a oznacovat nevhodny obsah, coz vyvojafim umoZni

soustredit se na dalsi kritické aspekty aplikace.

Al pracovnici jako nezavislé znovupouzZitelné

komponenty

Klicovym aspektem pfistupu Mnozstvi pracovnikid je jeho modularita. Zastanci
objektové orientovaného programovani nam uz desetileti fikaji, abychom o interakcich
objektt pfemysleli jako o zpravach. Al pracovnici mohou byt navrzeni jako nezavislé,
znovupouzitelné komponenty, které spolu mohou “mluvit” prostfednictvim zprav
v pfirozeném jazyce, téméi jako kdyby to byli skute¢ni mali lidé mluvici spolu. Tento
volné propojeny pristup umozriuje aplikaci se v priabéhu ¢asu piizptisobovat a vyvijet,

jak se objevuji nové Al technologie nebo se méni pozadavky obchodni logiky.

V praxi se potfeba navrhovat jasna rozhrani a komunika¢ni protokoly mezi
komponentami nezmeénila jen proto, Ze jsou zapojeni Al pracovnici. Stale musite
brat v Gvahu i dalsi faktory jako vykon, skalovatelnost a bezpecnost, ale nyni je tfeba
zvazit i zcela nové “mékké pozadavky”. Naptiklad mnoho uZivateld nesouhlasi s tim,
aby jejich soukromé data byla pouzita k trénovani novych AI modela. Ovéfili jste

uroven soukromi poskytovanou poskytovatelem modelu, ktery pouzivate?

Mnozstvi pracovniki 83

Al pracovnici jako mikrosluzby?

Pfi ¢teni o pfistupu Mnozstvi pracovnikil si mozné vSimnete uréitych podobnosti
s architekturou mikrosluzeb. Oba pfistupy zdiiraziuji rozklad komplexnich systémut
na mensi, lépe zvlddnutelné a nezavisle nasaditelné jednotky. Stejné jako jsou
mikrosluzby navrzeny tak, aby byly volné propojené, zaméfené na specifické
obchodni schopnosti a komunikovaly prostfednictvim dobfe definovanych API,
jsou AI pracovnici navrzeni tak, aby byli modularni, specializovani na své tkoly
a vzajemné interagovali prostfednictvim jasnych rozhrani a komunikacnich

protokolt.

Existuji vSak nékteré klicové rozdily, které je tfeba mit na paméti. Zatimco
mikrosluzby jsou typicky implementovany jako samostatné procesy nebo
sluzby bézici na riznych strojich nebo kontejnerech, AI pracovnici mohou
byt implementovani jako samostatné komponenty v ramci jediné aplikace nebo
jako samostatné sluzby, v zavislosti na vasich specifickych pozadavcich a potfebach
skalovatelnosti. Kromé toho komunikace mezi Al pracovniky ¢asto zahrnuje vyménu
bohatych informaci zaloZenych na pfirozeném jazyce, jako jsou pokyny, instrukce
a generovany obsah, spiSe nez strukturovanéjsi datové formaty bézné pouzivané

v mikrosluzbéach.

Navzdory témto rozdilim zlstidvaji principy modularity, volného propojeni
a jasnych komunika¢nich rozhrani ustfednimi pro oba vzory. Aplikovanim téchto
principl na vasi architekturu Al pracovnikit mizete vytvaret flexibilni, skalovatelné
a udrzovatelné systémy, které vyuzivaji silu AI k feSeni komplexnich problému

a poskytovani hodnoty vasim uzivateliim.

Ptistup Mnozstvi pracovniki 1ze aplikovat v riznych doménach a aplikacich, vyuzivajici

silu AT k feseni komplexnich kol a poskytovani inteligentnich feSeni. Podivejme se na

© 0 N O U B W N =

= =N
B W N,

Mnozstvi pracovniki 84

nékolik konkrétnich ptikladi, jak lze Al pracovniky vyuzit v riznych kontextech.

Sprava Gctu

Prakticky kazd4a samostatnd webova aplikace méa koncept G¢tu (nebo uZivatele).
V Olympii pouzivame Al pracovnika AccountManager, ktery je naprogramovan tak,
aby dokazal zpracovat rizné druhy pozadavkd na zmény souvisejici s uzivatelskymi
ucty.

Jeho direktiva vypada takto:

You are an intelligent account manager for Olympia. The user will request
changes to their account, and you will process those changes by invoking
one or more of the functions provided.

The initial state of the account: #{account.to_directive}

Functions will return a text description of both success and error
results, plus guidance about how to proceed (if applicable). If you have
a question about Olympia policies you may use the “search_kb™ function
to search our knowledge base.

Make sure to notify the account owner of the result of the change
request before calling the "“finished™ function so that we save the state
of the account change request as completed.

Pocatecni stav G¢tu vytvorfeny pomoci account . to_directive je jednoduse textovy

popis uctu, véetné relevantnich souvisejicich dat, jako jsou uzivatelé, predplatné atd.

Rozsah funkci dostupnych pro AccountManager mu dava moZnost upravovat
predplatné uzivatele, pfidavat a odebirat AI konzultanty a dalsi druhy placenych
dopliikt a zasilat notifika¢ni e-maily vlastnikovi G¢tu. Kromé funkce finished muze
také notify_human_administrator v pfipadé, Ze béhem zpracovani narazi na chybu

nebo pottebuje jakykoli jiny druh asistence s pozadavkem.

Mnozstvi pracovniki 85

Vsimnéte si, Ze v pfipadé dotazi se muZe AccountManager rozhodnout prohledat
znalostni bazi Olympie, kde najde instrukce, jak zachazet s hrani¢nimi piipady

a jakoukoliv jinou situaci, ve které si neni jisty, jak postupovat.

Vyuziti v e-commerce

V oblasti e-commerce mohou Al pracovnici hrat klicovou roli pfi vylepSovani
uzivatelské zkusenosti a optimalizaci obchodnich operaci. Zde je nékolik zptisobt, jak

lze Al pracovniky vyuzit:

Produktova doporuceni

Jednou z nejsilnéjsich aplikaci AI pracovniki v e-commerce je generovani
personalizovanych produktovych doporuceni. Analyzovanim chovani uZzivateld,
historie nakupt a preferenci mohou tito pracovnici navrhovat produkty, které jsou

pfizpisobené zajmim a potfebam kazdého jednotlivého uzivatele.

Kli¢em k efektivnim produktovym doporucenim je vyuziti kombinace kolaborativniho
filtrovani a filtrovani zaloZeného na obsahu. Kolaborativni filtrovani sleduje chovani
podobnych uzivatelt k identifikaci vzorct a vytvareni doporuceni na zakladé toho, co
nakoupili nebo co se libilo ostatnim s podobnymi preferencemi. Filtrovani zaloZené
na obsahu se naopak zaméfuje na charakteristiky a atributy samotnych produkta
a doporucuje polozky, které sdileji podobné vlastnosti s témi, o které uzivatel dfive

projevil zajem.

Zde je zjednoduseny priklad implementace pracovnika pro doporucovani produktd
v Ruby, tentokrdt s vyuzitim “Railway Oriented (ROP)” funkcionalniho stylu

programovani:

https://fsharpforfunandprofit.com/rop/

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Mnozstvi pracovniki

class ProductRecommendationWorker

include Wisper: :Publisher

def call(user)

Result.ok(ProductRecommendation.new(user))
.and_then(ValidateUser .method(:validate))
.map(AnalyzeCurrentSession.method(:analyze))
.map(CollaborativeFilter .method(:filter))
.map(ContentBasedFilter .method(:filter))
.map(ProductSelector .method(:select)).then do |result]|

case result

in { err: ProductRecommendationError => error }
Honeybadger .notify(error.message, context: {user:})

in { ok: ProductRecommendations => recs }
broadcast(:new_recommendations, user:, recs:)

end

end
end

end

Styl funkcionalniho programovani v Ruby pouzity v piikladu je ovlivnén
jazyky F# a Rust. Vice se o ném muzete docist v vysvétleni této techniky od

meého pfitele Chada Wooleye na GitLabu.

86

V tomto pfikladu ProductRecommendationWorker piijima uzivatele jako vstup

a generuje personalizovana doporuceni produkti pfedavanim hodnotového objektu

skrze fetézec funkcionalnich krokd. Pojdme si rozebrat kazdy krok:

1. ValidateUser .validate: Tento krok zajistuje, Ze je uzivatel platny a zptsobily
pro personalizovana doporuceni. Kontroluje, zda uZzivatel existuje, je aktivni a ma
k dispozici potfebna data pro generovani doporuceni. Pokud validace selze, je
vracen chybovy vysledek a fetézec je prerusen.

2. AnalyzeCurrentSession.analyze: Pokud je uzivatel platny, tento krok

analyzuje aktualni relaci prohlizeni uZivatele pro ziskani kontextuélnich

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Mnozstvi pracovniki 87

informaci. Sleduje nedavné interakce uzivatele, jako jsou zobrazené produkty,
vyhledavaci dotazy a obsah kosiku, aby pochopil jejich sou¢asné zajmy a zaméry.

3. CollaborativeFilter. filter: S vyuzitim chovani podobnych uZivatelii tento
krok aplikuje techniky kolaborativniho filtrovani k identifikaci produkti, které by
mohly uZivatele zajimat. Bere v tivahu faktory jako historie nakupt, hodnoceni
a interakce uzivateld s polozkami pro vytvoreni sady kandidatnich doporuceni.

4. ContentBasedFilter.filter: Tento krok dale zpfesiuje kandidatni
doporuéeni aplikaci filtrovani zaloZeného na obsahu. Porovnava atributy
a charakteristiky kandidatnich produkta s preferencemi uZivatele a historickymi
daty pro vybér nejrelevantnéjsich polozek.

5. ProductSelector.select: Nakonec tento krok vybere N nejlepsich produkti
z filtrovanych doporuceni na zakladé predem definovanych kritérii, jako je skore
relevance, popularita nebo dalsi obchodni pravidla. Vybrané produkty jsou pak

vraceny jako koneéna personalizovana doporuceni.

Krasa pouziti funkcionalniho programovaciho stylu v Ruby zde spociva v tom, Ze ndm
umoziuje zfetézit tyto kroky jasnym a struénym zptsobem. Kazdy krok se zaméfuje
na konkrétni kol a vraci objekt Result, ktery muze byt bud uspéch (ok) nebo chyba
(err). Pokud kterykoli krok narazi na chybu, fetézec je pferusen a chyba je propagovana

do kone¢ného vysledku.

V case prikazu na konci provadime pattern matching koneéného vysledku. Pokud
je vysledkem chyba (ProductRecommendationError), zaznamendme ji pomoci
nastroje jako je Honeybadger pro ucely monitorovani a ladéni. Pokud je vysledek
uspésny (ProductRecommendations), vysilame udalost :new_recommendations

pomoci pub/sub knihovny Wisper, pfedavajici uZivatele a vygenerovana doporuceni.

Vyuzitim technik funkcionalniho programovani mizeme vytvofit modularni
a udrzovatelny worker pro doporucovani produktd. Kazdy krok je samostatny

a lze jej snadno testovat, upravovat nebo nahradit bez ovlivnéni celkového toku.

© 0 N O O b W N

NN N NN B Rl sl s s
B W N PO O 00N 0w N e

Mnozstvi pracovniki 88

Pouziti pattern matchingu a tfidy Result nam pomaha elegantné zpracovavat chyby

a zajistuje, ze worker selZe rychle, pokud kterykoli krok narazi na problém.

Samoziejmé se jedna o zjednoduseny priklad a v redlném scénéafi byste potiebovali
integraci s vasi e-commerce platformou, zpracovani krajnich piipadii a dokonce se
zabyvat implementaci doporucovacich algoritmi. Nicméné zakladni principy rozlozeni
problému na mensi kroky a vyuziti technik funkcionalniho programovani zistavaji

stejné.

Detekce podvodi

Zde je zjednoduseny ptiklad implementace workeru pro detekci podvoda pomoci

stejného stylu Railway Oriented Programming (ROP) v Ruby:

class FraudDetectionWorker
include Wisper: :Publisher

def call(transaction)

Result.ok(FraudDetection.new(transaction))
.and_then(ValidateTransaction.method(:validate))
.map(AnalyzeTransactionPatterns.method(:analyze))
.map(CheckCustomerHistory.method(:check))
.map(EvaluateRiskFactors.method(:evaluate))
.map(DetermineFraudProbability.method(:determine)).then do |result|

case result
in { err: FraudDetectionError => error }
Honeybadger .notify(error .message, context: {transaction:})
in { ok: FraudDetection => fraud } }
if fraud.high_risk?
broadcast(:high_risk_transaction, transaction:, fraud:)
else
broadcast(:low_risk_transaction, transaction:)
end
end
end
end
end

© 0 N O O b W N =

NN NN NN NN RS RS RS S s s
© ® 9 O O & W N~ O © 0 1 O O b W N = O

Mnozstvi pracovniki 89

Ttida FraudDetection je value object, ktery zapouzdiuje stav detekce podvodi
pro danou transakci. Poskytuje strukturovany zpusob analyzy a vyhodnoceni rizika

podvodu spojeného s transakci na zakladé riznych rizikovych faktord.

class FraudDetection
RISK_THRESHOLD = 0.8

attr_accessor :transaction, :risk_factors

def initialize(transaction)
self . transaction = transaction
self.risk_factors = []

end

def add_risk_factor(description:, probability:)
case { description:, probability: }
in { description: String => desc, probability: Float => prob }
risk_factors << { desc => prob }
else
raise ArgumentError, "Risk factor arguments should be string and float"
end

end

def high_risk?
fraud_probability > RISK_THRESHOLD
end

private
def fraud_probability

risk_factors.values.sum
end

end

Ttida FraudDetection ma nasledujici atributy:

« transaction: Reference na transakci, ktera je analyzovana z hlediska podvodu.
« risk_factors: Pole, které uchovava rizikové faktory spojené s transakei. Kazdy
rizikovy faktor je reprezentovan jako hash, kde kli¢ je popis rizikového faktoru

a hodnota je pravdépodobnost podvodu spojend s timto rizikovym faktorem.

© 0 N O O b W N =

I = = Y
O O W N~

Mnozstvi pracovniki 90

Metoda add_risk_factor umoziuje pfidani rizikového faktoru do pole risk_-
factors. Pfijima dva parametry: description, coz je fetézec popisujici rizikovy
faktor, a probability, coz je float reprezentujici pravdépodobnost podvodu spojenou
s timto rizikovym faktorem. Pro jednoduchou kontrolu typli pouzivime podminku

case. .in.

Metoda high_risk?, ktera bude kontrolovana na konci fetézce, je predikatova metoda,
ktera porovnava fraud_probability (vypocitanou souc¢tem pravdépodobnosti vSech

rizikovych faktort) s hodnotou RISK_THRESHOLD.

Ttida FraudDetection poskytuje Cisty a zapouzdieny zpusob spravy detekce podvodi
pro transakci. Umoznuje pfidavat vice rizikovych faktord, kazdy s vlastnim popisem
a pravdépodobnosti, a poskytuje metodu pro urceni, zda je transakce povazovana
za vysoce rizikovou na zakladé vypocitané pravdépodobnosti podvodu. Tiidu lze
snadno integrovat do vétsiho systému detekce podvodu, kde riizné komponenty mohou

spolupracovat pfi hodnoceni a zmirnovani rizika podvodnych transakci.

A koneéné, protoZe toto je prece jen kniha o programovani s vyuzitim Al, zde je ukazka
implementace tfidy CheckCustomerHistory vyuZivajici Al zpracovani pomoci

modulu ChatCompletion z mé knihovny Raix:

class CheckCustomerHistory

include Raix::ChatCompletion
attr_accessor :fraud_detection

INSTRUCTION = <<~END
You are an AI assistant tasked with checking a customer's transaction
history for potential fraud indicators. Given the current transaction
and the customer's past transactions, analyze the data to identify any

suspicious patterns or anomalies.

Consider factors such as the frequency of transactions, transaction
amounts, geographical locations, and any deviations from the customer's
typical behavior to generate a probability score as a float in the range
of @ to 1 (with 1 being absolute certainty of fraud).

https://github.com/OlympiaAI/raix-rails

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Mnozstvi pracovniki 91

Output the results of your analysis, highlighting any red flags or areas

of concern in the following JSON format:

{ description: <Summary of your findings>, probability: <Float> }
END

def self.check(fraud_detection)
new(fraud_detection) .call
end

def call

chat_completion(json: true).tap do |result|
fraud_detection.add_risk_factor (**result)

end
Result.ok(fraud_detection)

rescue StandardError => e
Result.err(FraudDetectionError.new(e))

end

private

def initialize(fraud_detection)
self. fraud_detection = fraud_detection
end

def transcript
tx_history = fraud_detection.transaction.user.tx_history

[

{ system: INSTRUCTION },
{ user: "Transaction history: #{tx_history.to_json}" 1},
{ assistant: "OK. Please provide the current transaction." },
{ user: "Current transaction: #{fraud_detection.transaction.to_json}" }
]
end
end

V tomto ptikladu CheckCustomerHistory definuje konstantu INSTRUCTION, ktera
poskytuje modelu umélé inteligence konkrétni pokyny k analyze historie transakci

zékaznika pro potencialni indikatory podvodu prostfednictvim systémové direktivy.

Metoda self.check je tfidni metoda, ktera inicializuje novou instanci

Mnozstvi pracovniki 92

CheckCustomerHistory s objektem fraud_detection a vold metodu call

k provedeni analyzy historie zdkaznika.

Uvnitt metody call je ziskana historie transakci zdkaznika a zformatovana do prepisu,
ktery je pfedan modelu umélé inteligence. Model umélé inteligence analyzuje historii

transakci na zakladé poskytnutych instrukei a vraci souhrn svych zjisténi.

Zjisténi jsou piidana do objektu fraud_detection a aktualizovany objekt fraud_-

detection je vracen jako Gspésny Result.

Vyuzitim modulu ChatCompletion muze tfida CheckCustomerHistory vyuzit silu
umélé inteligence k analyze historie transakci zdkaznika a identifikaci potencialnich
indikatori podvodi. To umoziuje sofistikovanéjsi a adaptivnéjsi techniky detekce
podvodu, protoze model umélé inteligence se muize ucit a pfizptisobovat novym vzoram

a anomaliim v prabéhu ¢asu.

Aktualizovany FraudDetectionWorker a tfida CheckCustomerHistory
demonstruji, jak lze bezproblémové integrovat Al workery, ¢imz se vylepsuje

proces detekce podvodl o schopnosti inteligentni analyzy a rozhodovani.

Analyza sentimentu zakaznikd

Zde je jesté jeden podobny priklad, jak miZete implementovat workera pro analyzu
sentimentu zakaznikid. Tentokrat s mnohem méné vysvétlovani, protoze byste jiz méli

chapat, jak tento styl programovani funguje:

© 0 N O O b W N e

I S S O T G G SN
O O W N O U b W N =~ O

Mnozstvi pracovniki 93

class CustomerSentimentAnalysisWorker

include Wisper: :Publisher

def call(feedback)

Result.ok(feedback)
.and_then(PreprocessFeedback .method(: preprocess))
.map(Per formSentimentAnalysis.method(:analyze))
.map(ExtractKeyPhrases.method(:extract))
.map(IdentifyTrends.method(:identify))
.map(Generatelnsights.method(:generate)).then do |result|

case result

in { err: SentimentAnalysisError => error }
Honeybadger .notify(error .message, context: {feedback:})

in { ok: SentimentAnalysisResult => result }
broadcast(:sentiment_analysis_completed, result)

end

end
end
end

V tomto prikladu kroky CustomerSentimentAnalysisWorker zahrnuji
predzpracovani zpétné vazby (napf. odstranéni Sumu, tokenizaci), provedeni analyzy
sentimentu pro uréeni celkového sentimentu (pozitivni, negativni nebo neutralni),
extrakei klicovych frazi a témat, identifikaci trendf a vzorcii a generovani vyuzitelnych

poznatkt na zakladé analyzy.

Aplikace ve zdravotnictvi

V oblasti zdravotnictvi mohou AI pracovnici pomahat zdravotnickym odbornikim
a vyzkumnikiim v riznych tkolech, coz vede ke zlepseni vysledkt pacientt a urychleni

lékatskych objevi. Nékteré priklady zahrnuji:

Mnozstvi pracovniki 94

PFijem pacientt

Al pracovnici mohou zefektivnit proces pfijmu pacientdi automatizaci riznych ukold

a poskytovanim inteligentni asistence.

Planovani schiizek: Al pracovnici mohou spravovat planovani schiizek tim, ze rozumi
preferencim pacientti, jejich dostupnosti a naléhavosti jejich zdravotnich potteb.
Mohou komunikovat s pacienty prostfednictvim konverza¢nich rozhrani, provazet
je procesem planovani a najit nejvhodnéjsi terminy schizek na zakladé pozadavki

pacienta a dostupnosti poskytovatele zdravotni péce.

Sbér zdravotni anamnézy: Béhem pfijmu pacientd mohou AI pracovnici pomahat
pfi shromazdovani a dokumentaci zdravotni anamnézy pacienta. Mohou vést
interaktivni dialogy s pacienty, klast relevantni otazky o jejich predchozich zdravotnich
stavech, lécich, alergiich a rodinné anamnéze. Al pracovnici mohou vyuZivat techniky
zpracovani prirozeného jazyka k interpretaci a strukturovani shromazdénych informaci,

zajistujic jejich presné zachyceni v elektronické zdravotni dokumentaci pacienta.

Hodnoceni a stratifikace priznaki: Al pracovnici mohou provadét ivodni hodnoceni
pfiznakl tim, Ze se ptaji pacientd na jejich soucasné piiznaky, trvani, zavaznost
a souvisejici faktory. Vyuzitim lékatfskych znalostnich bazi a modeld strojového
uceni mohou tito pracovnici analyzovat poskytnuté informace a generovat predbézné
diferencialni diagnézy nebo doporucovat vhodné dalsi kroky, jako je naplanovani
konzultace se zdravotnickym pracovnikem nebo navrzeni opatfeni pro samostatnou
péci.

Ovéfeni pojisténi: Al pracovnici mohou poméhat s ovéfovanim pojisténi béhem
pfijmu pacientd. Mohou shromazdovat udaje o pojisténi pacientl, komunikovat
s pojistovnami prostfednictvim API nebo webovych sluzeb a ovéfovat zpusobilost
k pojisténi a vyhody. Tato automatizace pomaha zefektivnit proces ovéfovani pojisténi,

snizuje administrativni zatéZ a zaji$tuje presné zachyceni informaci.

Vzdélavani pacienti a pokyny: Al pracovnici mohou poskytovat pacientiim relevantni

Mnozstvi pracovniki 95

vzdélavaci materialy a pokyny na zékladé jejich specifickych zdravotnich stavii nebo
nadchazejicich procedur. Mohou dodavat personalizovany obsah, odpovidat na bézné
otazky a poskytovat pokyny k pripravé pred navstévou, instrukcim k uzivani 1ékt nebo
nasledné péci. To pomaha udrzovat pacienty informované a zapojené béhem jejich

zdravotni cesty.

Vyuzitim AI pracovnikdl pii pfijmu pacienti mohou zdravotnické organizace
zvysit efektivitu, snizit éekaci doby a zlepsit celkovou zkuSenost pacientt. Tito
pracovnici mohou zvladat rutinni tikoly, shromazdovat presné informace a poskytovat
personalizovanou asistenci, coz umoznuje zdravotnickym pracovnikiim soustfedit se

na poskytovani vysoce kvalitni péce pacientim.

Hodnoceni rizik pacienti

Al pracovnici mohou hrat klicovou roli pfi hodnoceni rizik pacientl analyzou riznych

zdroju dat a aplikaci pokrocilych analytickych technik.

Integrace dat: Al pracovnici mohou shromazdovat a zpracovavat data pacientl
z ruznych zdroju, jako je elektronicka zdravotni dokumentace, lékarské zobrazovani,
laboratorni vysledky, nositelna zafizeni a socialni determinanty zdravi. Konsolidaci
téchto informaci do komplexniho profilu pacienta mohou Al pracovnici poskytnout

holisticky pohled na zdravotni stav pacienta a rizikové faktory.

Stratifikace rizik: Al pracovnici mohou pouzivat prediktivni modely ke stratifikaci
pacientti do riiznych rizikovych kategorii na zakladé jejich individualnich charakteristik
a zdravotnich dat. Tato stratifikace rizik umoznuje poskytovatelim zdravotni péce
prioritizovat pacienty, ktefi vyZzaduji bezprostiednéjsi pozornost nebo intervenci.
Napftiklad pacienti identifikovani jako vysoce rizikovi pro ur¢ity stav mohou byt

oznaceni pro blizsi sledovani, preventivni opatfeni nebo v€asnou intervenci.

Personalizované rizikové profily: Al pracovnici mohou generovat personalizované

rizikové profily pro kazdého pacienta, zduraziujici specifické faktory pfispivajici

Mnozstvi pracovniki 96

k jejich rizikovym skore. Tyto profily mohou zahrnovat poznatky o Zivotnim stylu
pacienta, genetickych predispozicich, environmentéalnich faktorech a socialnich
determinantech zdravi. Poskytnutim detailniho rozkladu rizikovych faktori mohou
Al pracovnici pomoci poskytovatelim zdravotni péce piizplsobit strategie prevence

a lé¢ebné plany individualnim potfebam pacientd.

Kontinualni monitoring rizik: Al pracovnici mohou nepfetrzité sledovat data pacientti
a aktualizovat hodnoceni rizik v redlném case. Kdyz se objevi nové informace, jako jsou
zmény Zivotnich funkci, laboratornich vysledkt nebo dodrzovani 1é¢by, Al pracovnici
mohou prepocitat rizikova skore a upozornit poskytovatele zdravotni péée na vyznamné
zmény. Toto proaktivni sledovani umoziiuje véasné intervence a upravy plant péce

0 pacienty.

Podpora klinického rozhodovani: Al pracovnici mohou integrovat vysledky
hodnoceni rizik do systémG podpory klinického rozhodovani, poskytujic
poskytovatelim zdravotni péce doporudeni a upozornéni zaloZzena na dikazech.
Naprtiklad pokud rizikové skoére pacienta pro uréity stav prekro¢i uréitou hranici,
muze Al pracovnik upozornit poskytovatele zdravotni péce, aby zvazil specifické
diagnostické testy, preventivni opatfeni nebo moznosti 1é¢by na zakladé klinickych

smérnic a osvédcenych postupt.

Tito pracovnici dokazou zpracovavat obrovské mnozstvi pacientskych dat, aplikovat
sofistikované analyzy a generovat vyuzitelné poznatky pro podporu klinického
rozhodovani. To v konecném disledku vede ke zlepseni vysledkd pacientd, snizeni

nakladt na zdravotni péci a lepsimu fizeni zdravi populace.

Mnozstvi pracovniki 97

Al pracovnik jako spravce procesu

TRIGGER

l

Process Manager
Reply 3 Reply

Function A Function B Function C Finished

V kontextu aplikaci fizenych umélou inteligenci maze byt pracovnik navrzen tak, aby
fungoval jako Spravce procest, jak je popsano v knize “Enterprise Integration Patterns”
od Gregora Hohpeho. Spravce procest je centralni komponenta, ktera udrzuje stav

procesu a uréuje dalsi kroky zpracovani na zakladé prabéznych vysledka.

Kdyz AI pracovnik pusobi jako Spravce procest, pfijme piichozi zpravu, ktera
inicializuje proces, znamou jako spoustéci zprava. Al pracovnik pak udrZuje stav
provadéni procesu (jako prepis konverzace) a zpracovava zpravu prostiednictvim
série krokl zpracovani implementovanych jako nastrojové funkce, které mohou byt

sekvenc¢ni nebo paralelni a jsou volany podle jeho uvazeni.
P Pokud pouzivate tfidu Al modelt jako GPT--4, ktera umi spoustét funkce

paralelné, mize va$ pracovnik provadét vice kroka soucasné. Pfiznavam, ze

jsem to sdim nezkousel a muj instinkt fika, Ze vysledky se mohou lisit.

Po kazdém jednotlivém kroku zpracovani se fizeni vrati zpét k Al pracovnikovi, coz

© 0 N O O b W N -

NN NN NN B R s sl) s s
a & W N A~ 0 O 0N O O Bk W N =~ o

Mnozstvi pracovniki 98

mu umoziiuje ur€it dalsi krok(y) zpracovani na zakladé aktualniho stavu a ziskanych

vysledk.

Ukladejte své spoustéci zpravy

Ze své zkuSenosti mohu fict, Ze je rozumné implementovat spoustéci zpravu jako
objekt zaloZzeny na databézi. Timto zpisobem je kazda instance procesu identifikovana
jedineénym primarnim klicem a poskytuje misto pro uloZzeni stavu spojeného

s provadénim, véetné piepisu konverzace s Al.

Zde je naptiklad zjednodusena verze tfidy modelu AccountChange z Olympie, ktera

predstavuje pozadavek na provedeni zmény v uZivatelském actu.

index_account_changes_on_account_id (account_id)
Foreign Keys

fk_rails_... (account_id => accounts.id)

== Schema Information

#

Table name: account_changes

#

id ruuid not null, primary key
description :string

state :string not null
transcript :jsonb

created_at :datetime not null
updated_at :datetime not null
gccount_id :uuid not null
#

Indexes

#

#

#

#

#

#

#

class AccountChange < ApplicationRecord
belongs_to :account

validates :description, presence: true

26
27
28
29
30
31
32
33
34
35
36
37
38

Mnozstvi pracovniki 99

after_commit -> {
broadcast(:account_change_requested, self)

}, on: :create

state_machine initial: :requested do
event :completed do
transition all => :complete
end
event :failed do
transition all => :requires_human_review
end
end
end

Ttida AccountChange slouzi jako spoustéci zprava, kterd zahajuje proces zpracovani
pozadavku na zménu uctu. V§imnéte si, jak je vysilana do subsystému pub/sub systému

Olympia zaloZzeném na Wisper po dokonceni transakce vytvoreni.

Ukladani spoustéci zpravy do databize timto zplsobem poskytuje trvaly zaznam
o kazdém pozadavku na zménu uctu. Kazdé instanci tfidy AccountChange je pfifazen
jedine¢ny primarni kli¢, coz umoziiuje snadnou identifikaci a sledovani jednotlivych
pozadavku. To je obzvlasté uzite¢né pro tcely auditniho logovani, protoze to systému
umoziuje udrzovat historicky zaznam vSech zmén 0ctu, vcetné toho, kdy byly

pozadovany, jaké zmény byly pozadovany a jaky je aktualni stav kazdého pozadavku.

V uvedeném prikladu tfida AccountChange obsahuje pole jako description pro
zachyceni podrobnosti pozadované zmény, state pro reprezentaci aktualniho stavu
pozadavku (napf. requested, complete, requires_human_review) a transcript pro
ulozeni prepisu konverzace s Al souvisejici s pozadavkem. Pole description je
skuteény prompt, ktery se pouziva k zahajeni prvni chat completion s Al. Ukladani
téchto dat poskytuje cenny kontext a umoziuje lepsi sledovani a analyzu procesu zmény
uctu.

Ukladani spoustécich zprav v databazi umoziiuje robustni zpracovani chyb a zotaveni.

Pokud béhem zpracovéani pozadavku na zménu G¢tu dojde k chybé, systém oznaci

https://github.com/krisleech/wisper

Mnozstvi pracovniki 100

pozadavek jako neuspésny a prevede jej do stavu, ktery vyzaduje lidsky zasah. Tim je
zajisténo, Ze zadny pozadavek neni ztracen ani zapomenut a vSechny problémy mohou

byt fadné reseny.

Al worker, jako Spravce procest, poskytuje centralni bod kontroly a umoziuje vykonné
moznosti reportovani a ladéni procest. Je vsak dulezité poznamenat, Ze pouZiti
Al workera jako Spravce procest pro kazdy pracovni scénat ve vasi aplikaci mize byt

piehnané.

Integrace Al Workers do architektury vasi

aplikace

Pii zaclenovani Al workers do architektury vasi aplikace je tfeba fesit nékolik
technickych aspekttl, aby byla zajisténa plynulé integrace a efektivni komunikace mezi
Al workers a ostatnimi komponenty aplikace. Tato ¢ast se zabyva klicovymi aspekty

navrhovani téchto rozhrani, zpracovani toku dat a spravy zZivotniho cyklu Al workers.

Navrhovani jasnych rozhrani a komunikacnich protokolt

Pro usnadnéni bezproblémové integrace mezi Al workers a ostatnimi komponenty
aplikace je zasadni definovat jasna rozhrani a komunikaéni protokoly. Zvazte nésledujici
pristupy:

Integrace zaloZena na APIL: Vystavte funkcionalitu AI workers prostfednictvim
dobfe definovanych API, jako jsou RESTful endpointy nebo GraphQL schémata. To
umoziiuje ostatnim komponentdm komunikovat s Al workers pomoci standardnich
HTTP pozadavki a odpovédi. Integrace zalozena na API poskytuje jasnou smlouvu
mezi Al workers a konzumujicimi komponentami, coz usnadiiuje vyvoj, testovani

a udrzbu integracnich bodu.

Mnozstvi pracovniki 101

Komunikace zaloZenid na zpravach: Implementujte vzory komunikace zaloZené
na zpravach, jako jsou fronty zprav nebo systémy typu publisher--subscriber, které
umoznuji asynchronni interakci mezi Al workers a ostatnimi komponentami. Tento
pfistup oddéluje Al workers od zbytku aplikace, coz umoziuje lepsi skalovatelnost,
odolnost viici chybam a volné propojeni. Komunikace zaloZena na zpravach je obzvlasté
uzite¢na, kdyz je zpracovani provadéné Al workers ¢asové narocné nebo naro¢né na
zdroje, protoze umoziuje ostatnim ¢astem aplikace pokracovat v provadéni bez ¢ekani

na dokonceni tkolu Al workers.

Udalostmi fizena architektura: Navrhnéte svij systém kolem udéalosti a spoustécd,
které aktivuji Al workers, kdyz jsou splnény specifické podminky. Al workers se mohou
prihlasit k odbéru relevantnich udalosti a podle toho reagovat, vykonavat své urcené
ukoly, kdyz udélosti nastanou. Udalostmi fizena architektura umoziiuje zpracovani
v realném Case a umoznuje vyvolavat Al workers na vyzadani, coZ sniZuje zbyteénou
spotfebu zdroju. Tento piistup je vhodny pro scénare, kde Al workers musi reagovat na

konkrétni akce nebo zmény ve stavu aplikace.

Zpracovani toku dat a synchronizace

Pri integraci Al workers do vasi aplikace je zasadni zajistit plynuly tok dat a udrzovat

konzistenci dat mezi Al workers a ostatnimi komponentami. Zvazte nasledujici aspekty:

Priprava dat: Pfed vlozenim dat do Al workers mozna budete muset provést rizné tkoly
pfipravy dat, jako je ¢isténi, formatovani a/nebo transformace vstupnich dat. Nejen Ze
chcete zajistit, aby Al workers mohli efektivné zpracovavat, ale také chcete zajistit, Ze
neplytvate tokeny vénovanim pozornosti informacim, které worker mize povazovat
v nejlepsim pripadé za zbyte¢né, v nejhor$im pfipadé za rusivé. Priprava dat mize
zahrnovat tkoly jako odstrafiovani Sumu, zpracovani chybéjicich hodnot nebo konverzi

datovych typa.

Perzistence dat: Jak budete ukladat a uchovavat data, ktera proudi do a z Al workers?

Zvazte faktory jako objem dat, vzory dotazti a skalovatelnost. Potfebujete uchovavat

Mnozstvi pracovniki 102

prepis Al jako reflexi jeho “myslenkového procesu” pro ucely auditu nebo ladéni, nebo

sta¢i mit zdznam pouze o vysledcich?

Ziskavani dat: Ziskavani dat potfebnych pro pracovniky miZze zahrnovat dotazovani
databazi, ¢teni ze souborti nebo pfistup k externim APIL Ujistéte se, ze zvazite latenci
a zpusob, jakym budou mit Al pracovnici pfistup k nejaktualnéjsim datim. Potfebuji
plny pristup k vasi databazi, nebo byste méli izce definovat rozsah jejich pfistupu
podle toho, co délaji? A co skalovani? Zvazte mechanismy ukladani do mezipaméti pro

zlepSeni vykonu a snizeni zatéze zakladnich datovych zdroja.

Synchronizace dat: KdyZ vice komponent, véetné Al pracovnikd, pfistupuje k sdilenym
datim a upravuje je, je dilezité implementovat spravné synchronizaéni mechanismy
pro zachovani konzistence dat. Strategie zamykani databazi, jako je optimistické nebo
pesimistické zamykani, vam mohou pomoci predchazet konfliktim a zajistit integritu
dat. Implementujte techniky spravy transakci pro seskupeni souvisejicich datovych

operaci a zachovani vlastnosti ACID (atomicita, konzistence, izolace a trvalost)

Zpracovani a zotaveni z chyb: Implementujte robustni mechanismy pro zpracovani
chyb a zotaveni, které se vyporadaji s problémy souvisejicimi s daty, jez mohou béhem
procesu toku dat vzniknout. Elegantné zpracovavejte vyjimky a poskytujte smysluplné
chybové zpravy pro usnadnéni ladéni. Implementujte mechanismy opakovani pokust
a zélozni strategie pro feSeni docasnych vypadki nebo pferuseni sité. Definujte jasné

postupy pro obnovu dat v pfipadé poskozeni nebo ztraty dat.

Peclivym navrhem a implementaci mechanismi toku a synchronizace dat muzete
zajistit, Ze vasi Al pracovnici budou mit piistup k pfesnym, konzistentnim a aktualnim

datiim. To jim umozni efektivné plnit své ukoly a produkovat spolehlivé vysledky.

Sprava zZivotniho cyklu Al pracovnik

Vytvoite standardizovany proces pro inicializaci a konfiguraci Al pracovniki.. Osobné

preferuji frameworky, které standardizuji zptisob definovéani nastaveni, jako jsou nazvy

Mnozstvi pracovniki 103

modeld, systémové direktivy a definice funkei. Zajistéte, aby byl proces inicializace

automatizovany a reprodukovatelny pro usnadnéni nasazeni a skalovani.

Implementujte komplexni mechanismy monitorovani a protokolovani pro sledovani
stavu a vykonu AI pracovnikl. Shromazdujte metriky jako vyuziti zdroji, doba
zpracovani, mira chybovosti a propustnost. PouzZivejte centralizované logovaci systémy
jako ELK stack (Elasticsearch, Logstash, Kibana) pro agregaci a analyzu logt z vice

Al pracovniku.

Zabudujte odolnost proti chybadm a pruznost do architektury AI pracovnika.
Implementujte mechanismy pro zpracovani chyb a zotaveni, aby se elegantné
vyporadaly s selhdnimi nebo vyjimkami. Velké jazykové modely jsou stale Spickovou
technologii; poskytovatelé maji tendenci casto necekané vypadavat. PouZivejte

mechanismy opakovani pokust a jistice, abyste predesli kaskddovym selhanim.

Kompozice a orchestrace Al pracovnik

Jednou z kli¢ovych vyhod architektury Al pracovnikd je jeji komponovatelnost, ktera
vam umoziuje kombinovat a orchestrovat vice Al pracovniki pro feSeni komplexnich
problémi. Rozdélenim vétsiho ukolu na mensi, lépe zvladnutelné podikoly, z nichz
kazdy je zpracovavan specializovanym Al pracovnikem, muizete vytvaret vykonné
a flexibilni systémy. V této ¢asti prozkoumame riizné pristupy ke kompozici a orchestraci

“mnozstvi” Al pracovnikd.

Reté&zeni Al pracovnik pro vicekrokové pracovni postupy

V mnoha scénafich 1ze komplexni ukol rozlozit na sérii postupnych kroki, kde vystup
jednoho AI pracovnika se stava vstupem pro dalsiho. Toto fetézeni AI pracovnikd
vytvari vicekrokovy pracovni postup nebo pipeline. Kazdy Al pracovnik v fetézci se
zaméfuje na konkrétni podikol a konetny vystup je vysledkem spoleéného usili vsech

pracovnikd.

O 0 N O O b W N =

I = =Y
Bw N o

Mnozstvi pracovniki 104

Uvazujme priklad v kontextu aplikace Ruby on Rails pro zpracovéani uzivatelsky
generovaného obsahu. Pracovni postup zahrnuje nasledujici kroky, které jsou pfiznavé
pravdépodobné kazdy prili§ jednoduchy na to, aby stalo za to je v realnych piipadech

takto rozkladat, ale usnadriuji pochopeni pfikladu:

1. Cisténi textu: Al pracovnik zodpovédny za odstranéni HTML tagii, pievod textu na

mala pismena a zpracovani Unicode normalizace.
2. Detekce jazyka: Al pracovnik, ktery identifikuje jazyk vycisténého textu.

3. Analyza sentimentu: Al pracovnik, ktery uréuje sentiment (pozitivni, negativni nebo

neutralni) textu na zakladé detekovaného jazyka.

4. Kategorizace obsahu: Al pracovnik, ktery klasifikuje text do pfeddefinovanych

kategorii pomoci technik zpracovani pfirozeného jazyka.

Zde je velmi zjednoduseny piiklad toho, jak miZzete zfetézit tyto Al pracovniky pomoci

Ruby:

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call
language = LanguageDetectionWorker.new(cleaned_text).call
sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call
category = CategorizationWorker.new(cleaned_text, language).call

{ cleaned_text:, language:, sentiment:, category: }
end

end

V tomto prikladu tfida ContentProcessor inicializuje surovy text a fetézi Al workery
dohromady v metodé process. Kazdy Al worker provede sviij specificky kol a preda
vysledek dalsimu workeru v fetézci. Kone¢nym vystupem je hash obsahujici vy¢istény

text, detekovany jazyk, sentiment a kategorii obsahu.

O© 0 N O O b W N =

[T e S O G = U SV N
S ©O© 0 N O U & W N =~ O

Mnozstvi pracovniki 105

Paralelni zpracovani pro nezavislé Al workery

V predchozim prikladu jsou Al workery zfetézeny sekvencné, kde kazdy worker zpracuje
text a preda vysledek dalsimu workeru. Pokud v8ak mate vice Al workert, které mohou
pracovat nezavisle se stejnym vstupem, muZete optimalizovat pracovni postup jejich

paralelnim zpracovanim.

V daném scénafi, jakmile TextCleanupWorker provede ¢&iSténi textu,
mohou LanguageDetectionWorker, SentimentAnalysisWorker
a CategorizationWorker vsichni zpracovavat vycistény text nezavisle. Spusténim
téchto workert paralelné miZete potencialné snizit celkovou dobu zpracovani a zlepsit

efektivitu vaseho pracovniho postupu.

Pro dosaZeni paralelniho zpracovani v Ruby muzete vyuzit techniky soubéznosti, jako
jsou vlakna nebo asynchronni programovani. Zde je ptiklad, jak muzete upravit tiidu

ContentProcessor pro paralelni zpracovani poslednich tti workert pomoci vlaken:

require 'concurrent'

class ContentProcessor
def initialize(text)
@text = text
end

def process
cleaned_text = TextCleanupWorker .new(@text).call

language_future = Concurrent: :Future.execute do
LanguageDetectionWorker .new(cleaned_text).call
end

sentiment_future = Concurrent: :Future.execute do
SentimentAnalysisWorker .new(cleaned_text).call

end

category_future = Concurrent: :Future.execute do
CategorizationWorker.new(cleaned_text).call

21
22
23
24
25
26
27
28
29

Mnozstvi pracovniki 106

end

language = language_future.value
sentiment = sentiment_future.value

category = category_future.value

{ cleaned_text:, language:, sentiment:, category: }
end

end

V této optimalizované verzi pouzivime knihovnu concurrent-ruby k vytvoreni
objektd Concurrent::Future pro kazdého z nezavislych Al workerd. Future

predstavuje vypocet, ktery bude proveden asynchronné v samostatném vlakné.

Po kroku (CiSténi textu vytvofime tfi objekty Future: language_-
future, sentiment_future a category_future. Kazdy Future
spousti svého odpovidajictho Al = workera (LanguageDetectionWorker,
SentimentAnalysisWorker a CategorizationWorker) v samostatném vlakné,

pritemz jako vstup pfedava cleaned_text.

Volanim metody value na kazdém Future ¢ekame na dokonceni vypoctu a ziskavame
vysledek. Metoda value blokuje, dokud neni vysledek k dispozici, ¢imz zajistuje, ze

vsichni paralelni worketi dokon¢ili zpracovani pfed pokra¢ovanim.

Nakonec sestavime vystupni hash s vyCisténym textem a vysledky z paralelnich

workerd, stejné jako v ptivodnim piikladu.

Zpracovanim nezavislych Al workert paralelné muzete potencialné snizit celkovou
dobu zpracovani ve srovnani se sekvenénim spousténim. Tato optimalizace je obzvlasté

pfinosna pfi praci s casové naro¢nymi tlohami nebo pfi zpracovani velkych objema dat.

Je vsak dilezité poznamenat, Ze skuteéné vykonnostni zisky zavisi na riznych faktorech,
jako je slozitost kazdého workera, dostupné systémové prostiedky a rezie spravy vlaken.
Je vzdy dobrou praxi provadét méfeni vykonu a profilovani kodu pro urceni optimalni

urovné paralelizace pro va$ konkrétni pfipad pouZiti.

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Mnozstvi pracovniki 107

Kromé toho pfi implementaci paralelniho zpracovani méjte na paméti vSechny sdilené
zdroje nebo zavislosti mezi workery. Ujistéte se, Ze workefi mohou pracovat nezavisle
bez konfliktd nebo soubéznych podminek. Pokud existuji zavislosti nebo sdilené zdroje,
mozna budete muset implementovat vhodné synchroniza¢ni mechanismy pro zachovani

integrity dat a vyhnout se problémim, jako jsou uvaznuti nebo nekonzistentni vysledky.

Ruby’s Global Interpreter Lock a asynchronni
zpracovani

Je dulezité pochopit dusledky Global Interpreter Lock (GIL) v Ruby pfi zvazovani

asynchronniho zpracovani zalozeného na vlaknech v Ruby.

GIL je mechanismus v interpreteru Ruby, ktery zajistuje, Ze pouze jedno vldkno
muZe v dany okamzik vykonavat Ruby kod, a to i na vicejadrovych procesorech.
To znamen4, Ze zatimco v rAmci Ruby procesu lze vytvofit a spravovat vice vlaken,

pouze jedno vlakno mize aktivné vykonévat Ruby kod v jakémkoli daném okamziku.

GIL je navrzen tak, aby zjednodusil implementaci Ruby interpreteru a poskytl
bezpecnost vldken pro interni datové struktury Ruby. Nicméné také omezuje

potencial pro skute¢né paralelni vykonavani Ruby kodu.

Kdyz v Ruby pouzivate vlakna, naptiklad s knihovnou concurrent-ruby nebo
vestavénou tfidou Thread, vlakna podléhaji omezenim GIL. GIL umoziiuje kazdému
vlaknu vykonavat Ruby kod po kratky casovy usek pred prepnutim na jiné vlakno,
¢imz vytvaii iluzi soubézného vykonavani.

Nicméné kvuli GIL zistava skuteéné vykonavani Ruby kdédu sekvenéni. Zatimco
jedno vlakno vykonava Ruby kéd, ostatni vlakna jsou v podstaté pozastavena a ¢ekaji

na svou fadu k ziskani GIL a vykonani.

To znamena, Ze asynchronni zpracovani zalozené na vldknech v Ruby je

nejefektivnéjsi pro tlohy naro¢né na I/0, jako je ¢ekdni na odpovédi externich API

Mnozstvi pracovniki 108

(naptiklad externé hostované velké jazykové modely) nebo provadéni operaci I/O se
soubory. Kdyz vlakno narazi na I/O operaci, muze uvolnit GIL a umoznit ostatnim

vlaknim vykonavat kod béhem ¢ekani na dokonceni I/O.

Na druhou stranu, pro ulohy naro¢né na CPU, jako jsou intenzivni vypocty nebo
dlouhodobé zpracovani Al workeri, mize GIL omezit potencialni vykonnostni zisky
paralelizmu zaloZeného na vlaknech. ProtoZe pouze jedno vlakno muize v dany
okamzik vykonavat Ruby kod, celkova doba vykonavani nemusi byt vyznamné

sniZena ve srovnani se sekvenénim zpracovanim.

Pro dosazeni skute¢né paralelniho vykonavani dloh naro¢nych na CPU v Ruby mozna

budete muset prozkoumat alternativni piistupy, jako jsou:

« Pouziti paralelizmu zaloZeného na procesech s vice Ruby procesy, z nichz
kazdy bézi na samostatném jadru CPU.

« Vyuziti externich knihoven nebo frameworkd, které poskytuji nativni rozsiteni
nebo rozhrani k jazykim bez GIL, jako jsou C nebo Rust.,

« Vyuziti frameworku pro distribuované vypocty nebo front zprav pro distribuci

uloh mezi vice po¢itaci nebo procesy.

Pfi navrhovani a implementaci asynchronniho zpracovani v Ruby je zasadni zvazit
povahu vasich uloh a omezeni dana GIL. Zatimco asynchronni zpracovani zalozené
na vldknech muze pfinést vyhody pro ulohy naro¢né na I/O, nemusi nabidnout

vyznamna vylepSeni vykonu pro tlohy naro¢né na CPU kvuli omezenim GIL.

Ensemblové techniky pro zlepSeni presnosti

Ensemblové techniky zahrnuji kombinovani vystupd vice Al workerd pro zlepseni
celkové presnosti nebo robustnosti systému. Misto spoléhani se na jediného
Al workera vyuzivaji ensemblové techniky kolektivni inteligenci vice workerd

k ¢inéni informovanéjsich rozhodnuti.

O© 0 N O O b W N =

T = T e ¥
© 00 N O O b W N =~ o

Mnozstvi pracovniki 109

’ Ensembly jsou obzvlasté dulezité v pripadech, kdy rtzné ¢asti vaseho

jev, nez byste si mohli myslet. Vykonné modely jako GPT--4 jsou ve
srovnani s méné schopnymi open source alternativami extrémné drahé
a pravdépodobné nejsou potfeba pro kazdy jednotlivy krok pracovniho

postupu vasi aplikace.

Béznou ensemblovou technikou je vétsinové hlasovani, kdy nékolik Al pracovnika
nezavisle zpracovava stejny vstup a kone¢ny vystup je urcen vétsinovou shodou. Tento
pfistup mdze pomoci zmirnit dopad chyb jednotlivych pracovnikii a zlepsit celkovou

spolehlivost systému.

Predstavme si ptiklad, kde mame tfi Al pracovniky pro analyzu sentimentu, pficemz
kazdy pouziva jiny model nebo ma k dispozici rizné kontexty. Jejich vystupy muzeme

kombinovat pomoci vétsinového hlasovani pro urceni koneéné predikce sentimentu.

class SentimentAnalysisEnsemble
def initialize(text)
@text = text
end

def analyze
predictions = |
SentimentAnalysisWorker1.new(@text).analyze,
SentimentAnalysisWorker2.new(@text).analyze,

SentimentAnalysisWorker3.new(@text).analyze

predictions
.group_by { |sentiment| sentiment }
.max_by { |_, votes| votes.size }
Cfirst

end
end

V tomto prikladu tfida SentimentAnalysisEnsemble inicializuje text a vyvolava tfi

Mnozstvi pracovniki 110

rizné Al pracovniky pro analyzu sentimentu. Metoda analyze shromazduje predikce
od kazdého pracovnika a urcuje vétsinovy sentiment pomoci metod group_by amax_-

by. Koneénym vystupem je sentiment, ktery ziskéa nejvice hlast od souboru pracovnik?.

s paralelismem.

’ Soubory jsou jednoznacné ptipadem, kdy muze stat za to experimentovat

Dynamicky vybér a vyvolavani Al pracovniku

V nékterych, ne-li ve vétsiné pripadt, muze konkrétni Al pracovnik, ktery ma byt
vyvolan, zaviset na béhovych podminkach nebo uzivatelskych vstupech. Dynamicky

vybér a vyvolavani Al pracovnikt umoznuji flexibilitu a adaptabilitu systému.

Mozna budete v pokuSeni vtésnat hodné funkcionality do jediného
P Al pracovnika a dat mu mnoho funkci a velky komplikovany prompt,
ktery vysvétluje, jak je volat. Odolejte tomuto pokuseni, véfte mi. Jednim
z divodd, pro¢ se pristup, o kterém v této kapitole diskutujeme, nazyva
“Mnozstvi pracovniki”, je pfipomenout nam, Ze je zadouci mit mnoho
specializovanych pracovnikd, z nichz kazdy déla svou malou praci ve sluzbé

vétsimu ucelu.

Naptiklad uvazujme chatbotovou aplikaci, kde rtuzni Al pracovnici jsou zodpovédni
za zpracovani ruznych typu uzivatelskych dotazii. Na zékladé uzivatelského vstupu

aplikace dynamicky vybira vhodného Al pracovnika pro zpracovani dotazu.

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19

Mnozstvi pracovniki 111

class ChatbotController < ApplicationController
def process_query
query = params|:query]
query_type = QueryClassifierWorker.new(query).classify

case query_type
when 'greeting'

response = GreetingWorker .new(query).generate_response
when 'product_inquiry'

response = ProductInquiryWorker.new(query).generate_response
when 'order_status’

response = OrderStatusWorker.new(query).generate_response
else

response = DefaultResponseWorker.new(query).generate_response
end

render json: { response: response }
end
end

V tomto prikladu ChatbotController pfijima uzivatelsky dotaz prostfednictvim
akce process_query. Nejprve pouzije QueryClassifierWorker k ureni typu
dotazu. Na zakladé klasifikovaného typu dotazu kontrolér dynamicky vybere vhodného
Al pracovnika pro generovani odpovédi. Tento dynamicky vybér umozriuje chatbotovi

zpracovavat rizné typy dotazt a smérovat je k pfislusnym Al pracovnikim.

Vzhledem k tomu, Ze prace QueryClassifierWorker je relativné
jednoducha a nevyzaduje mnoho kontextu nebo definic funkci, miZzete
ji pravdépodobné implementovat pomoci ultra-rychlého malého LLM
jako mistralai/mixtral-8xT7b-instruct:nitro. Jeho schopnosti se
v mnoha tlohach blizi irovni GPT--4 a v dobg, kdy toto pisu, ho Groq dokaze

poskytovat s iZzasnou propustnosti 444 tokent za sekundu.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Mnozstvi pracovniki 112

Kombinovani tradicniho NLP s LLM

Zatimco velké jazykové modely (LLM) zpisobily revoluci v oblasti zpracovani
pfirozeného jazyka (NLP) a nabizeji bezkonkurenc¢ni vsestrannost a vykon v Siroké
Skale uloh, nejsou vzdy nejefektivnéjsim nebo nakladové nejefektivnéjsim feSenim
kazdého problému. V mnoha pripadech mtize kombinace tradi¢nich technik NLP s LLM

vvvvvv

vyzev NLP.

Predstavte si LLM jako $vycarské armadni noze NLP - neuvéfitelné vsestranné
a vykonné, ale ne nutné nejlepsi nastroj pro kazdou praci. Nékdy mulze byt
specializovany nastroj jako vyvrtka nebo otvirdk na konzervy pro konkrétni tkol
efektivnéjsi. Podobné mohou tradi¢ni techniky NLP, jako je shlukovani dokumentd,
identifikace témat a klasifikace, ¢asto poskytovat cilenéjsi a nakladové efektivnéjsi

feSeni pro urc¢ité aspekty vaseho NLP procesu.

Jednou z hlavnich vyhod tradi¢nich technik NLP je jejich vypocetni efektivita. Tyto
metody, které ¢asto spoléhaji na jednodussi statistické modely nebo pfistupy zalozené
na pravidlech, mohou zpracovavat velké objemy textovych dat mnohem rychleji
a s nizsi vypocetni naro¢nosti ve srovnani s LLM. To je ¢ini obzvlasté vhodnymi pro
ulohy zahrnujici analyzu a organizaci velkych korpust dokumentd, jako je shlukovani

podobnych ¢lankt nebo identifikace klicovych témat v ramci kolekce texti.

Navic tradi¢ni techniky NLP mohou ¢asto dosahnout vysoké presnosti pro specifické
ulohy, zejména kdy?Z jsou trénovany na doménové specifickych datasetech. Napiiklad
dobfe vyladény klasifikator dokumentt vyuzivajici tradiéni algoritmy strojového uceni
jako Metoda podpurnych vektort (SVM) nebo Naivni Bayes mtiZe presné kategorizovat

dokumenty do pfedem definovanych kategorii s minimalnimi vypodéetnimi naklady.
LLM vsak skute¢né vynikaji v dlohach, které vyzaduji hlubsi porozuméni jazyku,
kontextu a uvazovani. Jejich schopnost generovat koherentni a kontextové relevantni

text, odpovidat na otazky a shrnovat dlouhé pasize je nepfekonatelni tradiénimi

Mnozstvi pracovniki 113

metodami NLP. LLM doké&zi efektivné zpracovavat komplexni jazykové jevy, jako je
nejednoznacnost, koreference a idiomatické vyrazy, coz je ¢ini nepostradatelnymi pro

ulohy vyzadujici generovani pfirozeného jazyka nebo porozuméni.

Skute¢na sila spocivd v kombinovani tradi¢nich technik NLP s LLM pro vytvofeni
hybridnich pfistuptl, které vyuzivaji silné stranky obou. Pouzitim tradi¢nich metod
NLP pro dlohy jako pfedzpracovani dokumentt, shlukovani a extrakce témat muzete
efektivné organizovat a strukturovat vase textova data. Tyto strukturované informace
pak mohou byt predany LLM pro pokrodilejsi ulohy, jako je generovani souhrn,

odpovidani na otazky nebo vytvareni komplexnich zprav.

Napiiklad zvazme ptipad pouziti, kdy chcete vygenerovat zpravu o trendech pro
specifickou doménu na zakladé velkého korpusu jednotlivych dokumentt o trendech.
Misto spoléhani se pouze na LLM, coz mtze byt vypocetné naro¢né a ¢asové narocné

pro zpracovani velkych objemu textu, mazete pouZzit hybridni piistup:

1. Pouzijte tradi¢ni techniky NLP, jako je modelovani témat (napf. Latentni
Dirichletova alokace) nebo shlukovaci algoritmy (napf. K-means), pro seskupeni
podobnych dokumenti o trendech a identifikaci klicovych témat v ramci korpusu.

2. Predejte shlukované dokumenty a identifikovana témata do LLM, vyuzivajic
jeho lepsi porozuméni jazyku a generativni schopnosti k vytvoreni koherentnich
a informativnich souhrni pro kazdy shluk nebo téma.

3. Nakonec pouzijte LLM k vygenerovani komplexni zpravy o trendech
kombinovanim jednotlivych souhrnt, zdiraznénim nejvyznamnéjsich trenda

a poskytnutim vhledt a doporuceni na zakladé agregovanych informaci.

Kombinovanim tradi¢nich technik NLP s LLM timto zpisobem miZete efektivné
zpracovavat velké mnozstvi textovych dat, extrahovat smysluplné poznatky a generovat

vysoce kvalitni zpravy pii optimalizaci vypocetnich zdroja a nakladu.

Pfi zahajeni vasich NLP projektu je zasadni peclivé vyhodnotit specifické pozadavky

a omezeni kazdého tkolu a zvazit, jak lze tradiéni metody NLP a LLM spoleéné vyuzit

Mnozstvi pracovniki 114

k dosazeni nejlepsich vysledkt. Kombinaci efektivity a presnosti tradi¢nich technik
s vSestrannosti a silou LLM muZete vytvafet vysoce G¢inna a ekonomicka feseni NLP,

ktera prinaseji hodnotu vasim uZivatelim a zainteresovanym stranam.

)

V oblasti vyvoje aplikaci zaloZenych na umélé inteligenci se koncept “pouziti nastroji

nebo “volani funkei” stal G¢innou technikou, kterd umoziluje vasemu LLM pfipojit
se k externim néstrojim, API, funkcim, databazim a dalsim zdrojim. Tento pfistup
umoziuje bohatsi skalu chovéni nez pouhy vystup textu a dynami¢téjsi interakce mezi
vasimi Al komponenty a zbytkem ekosystému vasi aplikace. Jak se v této kapitole
podivame, pouziti nastroji vam také dava moznost nechat va§ Al model generovat data

strukturovanym zpusobem.

Co je pouZiti nastroju?

Pouziti nastroji, také znamé jako volani funkci, je technika, ktera umoziiuje vyvojaram
specifikovat seznam funkei, se kterymi mtze LLM béhem procesu generovani pracovat.

Tyto nastroje mohou sahat od jednoduchych pomocnych funkei az po komplexni API

© 0 N O O b W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Pouziti nastroju 116

nebo databazové dotazy. Poskytnutim pfistupu k témto nastrojim mohou vyvojafi
rozsifit schopnosti modelu a umoznit mu provadét ukoly, které vyzaduji externi znalosti

nebo akce.

obrazkem 8. Priklad definice funkce pro Al pracovnika, ktery analyzuje dokumenty

FUNCTION = {
name: "save_analysis",
description: "Save analysis data for document",
parameters: {
type: "object",
properties: {
title: {
type: "string",
maxLength: 140
3
summary: {
type: "string",
description: "comprehensive multi-paragraph summary with
overview and list of sections (if applicable)"
3,
tags: {
type: "array",
items: {
type: "string",
description: "lowercase tags representing main themes

of the document"

}
}I

"required": %w[title summary tags]

}

}. freeze

Kli¢ovou myslenkou vyuziti nastroji je poskytnout LLM schopnost dynamicky vybirat
a spoustét vhodné nastroje na zékladé vstupu uzivatele nebo daného dkolu. Misto
spoléhani se pouze na predtrénované znalosti modelu umoziuje vyuziti nastroji LLM
vyuzivat externi zdroje k generovani presnéjsich, relevantnéjsich a pouzitelnéjsich

odpovédi. Vyuziti nastroji znacné usnadnuje implementaci technik jako RAG

Pouziti néstroju 117

(Generovani rozsifené o vyhledavani).

Pokud neni uvedeno jinak, tato kniha predpoklada, ze vas Al model nemé pfistup
k zadnym vestavénym néstrojim na strané serveru. Jakékoliv nastroje, které chcete
zpiistupnit vasemu Al, musite explicitné deklarovat v kazdém API pozadavku, vcetné
ustanoveni pro jejich spusténi, pokud a kdyz vam Al sdéli, Ze by chtélo tento néstroj

pouzit ve své odpovédi.

e O

ti nastroju

Potencial vyuzi

Vyuziti nastroj otevira Sirokou skalu mozZnosti pro aplikace fizené umélou inteligenci.

Zde je nékolik priklada toho, ¢eho lze dosdhnout pomoci vyuZiti nastroji:

1. Chatboti a virtualni asistenti: Propojenim LLM s externimi néstroji mohou
chatboti a virtualni asistenti provadét slozitéjsi ikoly, jako je ziskavani informaci
z databazi, provadéni API volani nebo interakce s jinymi systémy. Naptiklad
chatbot mtze pomoci néstroje CRM zménit stav obchodniho pfipadu na zakladé
pozadavku uzivatele.

2. Analyza dat a ziskavani poznatkt: LLM lze propojit s néstroji pro analyzu dat
nebo knihovnami pro provadéni pokrocilych tloh zpracovani dat. To umoziiuje
aplikacim generovat poznatky, provadét srovnavaci analyzy nebo poskytovat
doporuéeni zalozena na datech na zakladé uzivatelskych dotazu.

3. Vyhledavani a ziskavani informaci: Vyuziti nastroji umoziiuje LLM interagovat
s vyhledavaci, vektorovymi databazemi nebo jinymi systémy pro ziskavani
informaci. Transformaci uzivatelskych dotazi na vyhledavaci dotazy mize LLM
ziskavat relevantni informace z riznych zdroji a poskytovat komplexni odpovédi

na uzivatelské otazky.

Pouziti néstroju 118

4. Integrace s externimi sluzbami: Vyuziti nastroji umoziuje bezproblémovou
integraci mezi aplikacemi fizenymi Al a externimi sluzbami nebo API. Naptiklad
LLM by mohlo komunikovat s API pro pocasi, aby poskytovalo aktualni informace

o pocasi, nebo s API pro preklad, aby generovalo vicejazyéné odpovédi.

e O

Pracovni postup pfi vyuziti nastroju
Pracovni postup pfi vyuZiti nastroji typicky zahrnuje ¢tyfi klicové kroky:

1. Zahrnuti definic funkci do kontextu pozadavku
2. Dynamicky (nebo explicitni) vybér nastroji
3. Spusténi funkce/funkci

4. Volitelné pokrac¢ovani ptivodniho promptu

Pojdme si kazdy z téchto krokt podrobné projit.

Zahrnuti definic funkci do kontextu poZadavku

Al vi, jaké nastroje ma k dispozici, protoze ji poskytnete seznam jako soucést vaseho
pozadavku na dokonceni (typicky definovany jako funkce pomoci varianty JSON

schématu).
Presné syntaxe definice nastroje je specificka pro kazdy model.

Takto definujete funkci get_weather v Claude 3:

© 0 N O O & W N =~

T O = =Y
© 0 N O O b= W N -~ O

© 0 N O O » W N o~

I = ==Y
=N O O bW N e

Pouziti nastroju 119

{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
3,
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"
}
3,
"required": ["location"]
}
}

A takto byste definovali stejnou funkci pro GPT--4, kdy ji predate jako hodnotu

parametru tools:

"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",

"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {

"type": "string",

"enum": ["celsius", "fahrenheit"],

"description": "The unit of temperature"
},

} ’

"required": ["location"],

18
19

W N -

ol

Pouziti néstroju 120

Téméf stejné, az na to, Ze je to jiné bez zjevného duvodu! Jak otravné.

Definice funkei urcuji nazev, popis a vstupni parametry. Vstupni parametry lze dale
definovat pomoci atributd, jako jsou vyc¢tové typy pro omezeni piipustnych hodnot,

a urCenim, zda je parametr povinny ¢i nikoliv.

Kromé samotnych definic funkci mizete do systémové direktivy zahrnout také pokyny

nebo kontext vysvétlujici, pro¢ a jak funkci v systému pouZivat.

Naptiklad muj nastroj Web Search v Olympii obsahuje tuto systémovou direktivu, ktera
pfipomina Al Ze ma zminéné nastroje k dispozici:

The “google_search™ and “realtime_search™ functions let you do research

on behalf of the user. In contrast to Google, realtime search is powered

by Perplexity and provides real-time information to curated current events

databases and news sources. Make sure to include URLs in your response so
user can do followup research.

nastroje. Vase popisy by mély vysvétlovat kazdy detail o nastroji, veetné:

« Co nastroj déla
« Kdy by mél byt pouzit (a kdy ne)
« Co znamena kazdy parametr a jak ovliviiuje chovani nastroje

« Veskeré dilezité vyhrady nebo omezeni, ktera se vztahuji k implementaci nastroje

Cim vice kontextu poskytnete Al o vasich nastrojich, tim lépe bude schopna rozhodovat,

kdy a jak je pouzit. Naptiklad Anthropic doporucuje pro svou fadu Claude 3 minimalné

© 0w N O U B~ W N =

W W W W W N NN DD DNDDNDDNDDNDNDNRA A~ AR,
B W N PO O 0 N0 0N 0 00N 0 W N

Pouziti nastroju 121

Neni to nutné intuitivni, ale popisy jsou povazovany za dulezitéjsi nez priklady. I kdyz
muzete do popisu nastroje nebo do doprovodného promptu zahrnout piiklady jeho
pouziti, je to méné dilezité nez mit jasné a komplexni vysvétleni ucelu a parametrd

nastroje. Priklady pfidavejte az poté, co jste plné rozpracovali popis.

Zde je ptiklad specifikace API funkce podobné Stripe:

"name": "createPayment",
"description": "Create a new payment request"”,
"parameters": {
"type": "object",
"properties": {
"transaction_amount": {
"type": "number",
"description": "The amount to be paid"
1
"description": {
"type": "string",
"description": "A brief description of the payment"
1,
"payment_method_id": {
"type": "string",
"description": "The payment method to be used"
b
"payer": {
"type": "object",
"description”: "Information about the payer, including their name,
email, and identification number",
"properties": {
"name": {

"type": "string",

"description": "The payer's name"
3
"email": {
"type": "string",
"description": "The payer's email address"”
},

"identification": {
"type": "object",
"description": "The payer's identification number”,

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Pouziti néstroji

"properties": {
"type": {
"type": "string",
"description": "Identification document (e.g. CPF, CNPJ)"
}/
"number": {
"type": "string",

"description": "The identification number"
}
}I
"required": ["type", "number"]
}
},
"required": ["name", "email", "identification"]

V praxi maji nékteré modely potiZze se zpracovanim vnofenych specifikaci

P funkei a slozitych vystupnich datovych typd, jako jsou pole, slovniky atd.
Teoreticky byste viak méli byt schopni poskytovat specifikace JSON Schema
libovolné hloubky!

Dynamicky vybér nastroju

Kdy?z spustite chat completion, ktery obsahuje definice nastroji, LLM dynamicky vybere
nejvhodnéjsi nastroj(e) k pouziti a vygeneruje pozadované vstupni parametry pro kazdy

nastroj.

V praxi je schopnost Al volat presné spravnou funkci a presné dodrzet vasi specifikaci
vstupl ruzné. Snizeni hyperparametru teploty az na 0.0 hodné pomah4, ale podle
mych zkusenosti se stale obcas objevi chyby. Tyto selhani zahrnuji halucinované nazvy
funkci, Spatné pojmenované nebo zcela chybéjici vstupni parametry. Parametry jsou
predavany jako JSON, coz znameni, 7e nékdy uvidite chyby zplsobené zkracenim,

$patnym uvozenim nebo jinak poskozenym JSONem.

Pouziti néstroju 123

’ Vzory Samoopravnych dat mohou pomoci automaticky opravit volani

funkci, ktera se rozbiji kvtli syntaktickym chybam.

Vynuceny (neboli explicitni) vybér nastroju
Nékteré modely vam davaji moznost vynutit volani konkrétni funkce jako parametr
v pozadavku. V opa¢ném ptipadé je rozhodnuti o tom, zda funkci volat ¢i nikoliv, zcela

na uvazeni Al

Schopnost vynutit volani funkee je klicova v ur¢itych scénarich, kde chcete zajistit, aby
byl spustén konkrétni nastroj nebo funkce, bez ohledu na proces dynamického vybéru

Al Existuje nékolik divodu, pro¢ je tato schopnost dulezita:

1. Explicitni kontrola: Mozna pouzivate Al jako Diskrétni komponentu nebo
v preddefinovaném workflow, které vyzaduje provedeni konkrétni funkce
v konkrétnim Case. Vynucenim volani muzZete zaruéit, Ze pozadovana funkce
bude vyvolana, misto toho, abyste museli Al zdvorile Zadat o jeji provedeni.

2. Debugovani a testovani: Pfi vyvoji a testovani aplikaci fizenych Al je schopnost
vynutit volani funkci neocenitelna pro ucely debugovani. Explicitnim spousténim
specifickych funkci muzete izolovat a testovat jednotlivé komponenty vasi
aplikace. To vAm umoziiuje ovéfit spravnost implementaci funkci, validovat
vstupni parametry a zajistit, Ze jsou vraceny ocekavané vysledky.

3. Zvladani hraniénich ptipadi: Mohou nastat hrani¢ni ptipady nebo vyjimeéné
scénare, kdy proces dynamického vybéru AI nemusi zvolit provedeni funkce,
kterou by mél, a vy to vite na zakladé externich procesi. V takovych ptipadech
vam schopnost vynutit volani funkce umoznuje explicitné fesit tyto situace.
Definujte pravidla nebo podminky v logice vasi aplikace pro uréeni, kdy prepsat
uvazeni AL

4. Konzistence a reprodukovatelnost: Pokud mate specifickou sekvenci funkei,

které je tfeba provést v urCitém poradi, vynuceni volani zaruéuje, Ze stejna

Pouziti néstroju 124

sekvence bude dodrzena pokazdé. To je zvlasté dulezité v aplikacich, kde jsou
kritické konzistence a predvidatelné chovani, naptiklad ve finanénich systémech
nebo védeckych simulacich.

5. Optimalizace vykonu: V nékterych pfipadech mize vynuceni volani funkce
vést k optimalizaci vykonu. Pokud vite, Ze pro konkrétni tkol je vyzadovana
specificka funkce a Ze proces dynamického vybéru Al by mohl zptsobit zbyte¢nou
rezii, miZete obejit proces vybéru a pfimo vyvolat poZzadovanou funkci. To mize

pomoci snizit latenci a zlepsit celkovou efektivitu vasi aplikace.

Souhrnné feceno, schopnost vynutit volani funkci v aplikacich fizenych AI poskytuje
explicitni kontrolu, pomaha pfi debugovani a testovani, zvlada hraniéni pfipady
a zajistuje konzistenci a reprodukovatelnost. Je to mocny nastroj ve vasem arzenalu, ale

musime prodiskutovat jesté jeden aspekt této dalezité funkce.

V mnoha pfipadech rozhodovani chceme, aby model vzdy provedl volani
’ funkce a nikdy neodpovidal pouze svymi internimi znalostmi. Napiiklad
pokud smérujete mezi vice modely specializovanymi na rizné ukoly
(vicejazy¢ny vstup, matematika atd.), miZzete pouzit model s volanim funkei
k delegovani pozadavki na jeden z pomocnych modelid a nikdy neodpovidat

samostatné.

Parametr vybéru nastroje

GPT--4 a dalsi jazykové modely, které podporuji volani funkei, vaAm poskytuji parametr
tool_choice pro fizeni toho, zda je pouziti nastroje vyzadovano jako soudast

dokonéeni. Tento parametr ma tii mozné hodnoty:

« auto dava Al plnou volnost pfi pouzivani nastroje nebo jednoduché odpovédi
« required fika Al, Ze musi zavolat nastroj misto odpovédi, ale ponechava vybér

nastroje na Al

Pouziti néstroju 125

« Treti moZnosti je nastavit parametr name_of_function, ktery chcete vynutit.

Vice o tom v dalsi ¢asti.

Vsimnéte si, Ze pokud nastavite vybér nastroje (tool choice) na required,
model bude nucen vybrat nejrelevantnéjsi funkci k volani z téch, které mu

byly poskytnuty, i kdyz Zadna z nich dplné neodpovida zadani. V dobé
publikace neznam zadny model, ktery by vratil prazdnou odpovéd tool_-

calls nebo jinym zptisobem dal najevo, Ze nenasel vhodnou funkei k volani.

Vynuceni funkce pro ziskani strukturovaného vystupu

Schopnost vynutit volani funkce vam dava zpisob, jak ziskat strukturovana data
z chatovaciho dokoncovani namisto toho, abyste je museli sami extrahovat z jeho

textové odpovédi.

Pro¢ je vynuceni funkei pro ziskani strukturovaného vystupu tak dilezité? Jednoduse
proto, zZe extrakce strukturovanych dat z vystupu LLM je no¢ni miira. MizZete si Zivot
trochu usnadnit tim, Ze pozadate o data v XML, ale pak musite parsovat XML. A co
udélate, kdyz to XML chybi, protoze vase Al odpovédéla: “Omlouvam se, ale nemohu

vygenerovat pozadovana data, protoZe bla, bla, bla..”

Pfi pouzivani nastroju timto zptisobem:

« Méli byste pravdépodobné definovat jediny nastroj ve vasem pozadavku
« Nezapomeiite vynutit pouziti jeho funkce pomoci parametru tool_choice
« Pamatujte, Ze model pfeda vstup nastroji, takZe nazev nastroje a popis by mély

byt z perspektivy modelu, ne vasi

© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2))
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Pouziti nastroju 126

Tento posledni bod si zaslouZi vysvétleni na prikladu. Reknéme, Ze zadate Al o analyzu
sentimentu uZivatelského textu. Nazev funkce by nebylanalyze_sentiment, ale spise
néco jako save_sentiment_analysis. Al je tou, ktera provadi analyzu sentimentu,

nikoliv nastroj. Ve, co nastroj déla (z pohledu Al), je ukladani vysledku analyzy.

Zde je piiklad pouziti Claude 3 pro zaznamenani shrnuti obrazku do dobre

strukturovaného JSON, tentokrat z piikazového fadku pomoci curl:

curl https://api.anthropic.com/v1/messages \
--header "content-type: application/json" \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: tools-2024-04-04" \
--data \
'{
"model": "claude-3-sonnet-20240229",
"max_tokens": 1024,

"tools": [{
"name": "record_summary",
"description": "Record summary of image into well-structured JSON.",

"input_schema": {
"type": "object",
"properties": {
"key_colors": {
"type": "array",
"items": {
"type": "object",
"properties": {

"re {

"type": "number",

"description": "red value [0.0, 1.0]"
3
"g" |

"type": "number",

"description": "green value [0.0, 1.0]"
}
"b": {

"type": "number",

"description": "blue value [0.0, 1.0]"

} ’

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4

Pouziti nastroji

"name": {
"type": "string",

"description": "Human-readable color name

in snake_case, e.g.
\"olive_green\"or

nn

\"turquoise\

}
}
"I'equired": [ul,u, "g", "b", unamen]
}/
"description": "Key colors in the image. Four or less."”

}I
"description": {
"type": "string",

"description": "Image description. 1-2 sentences max."

} ’

"estimated_year": {
"type": "integer",

127

"description": "Estimated year that the image was taken,

if is it a photo. Only set this if the

image appears to be non-fictional.
Rough estimates are okay!"

}
}I
"required": ["key_colors", "description"]
}
1,
"messages": [
{
"role": "user",

"content": [

{
"type": "image",
"source": {
"type": "base64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}
},
{
"type": "text",

"text": "Use “record_summary to describe this image."

76
T

79

Pouziti néstroju 128

} '

V uvedeném piikladu pouzivime model Claude 3 od spolecnosti Anthropic ke

generovani strukturovaného JSON souhrnu obrazku. Funguje to takto:

1. V datové Casti pozadavku definujeme v poli tools jediny nastroj nazvany
record_summary. Tento nastroj je zodpovédny za zaznamenani souhrnu obrazku
do dobfte strukturovaného JSONu.

2. Nastrojrecord_summary ma input_schema, které urcuje ocekavanou strukturu

vystupu JSON. Definuje tfi vlastnosti:

+ key_colors: Pole objektl predstavujicich klicové barvy v obrazku. Kazdy
objekt barvy ma vlastnosti pro hodnoty cervené, zelené a modré (v rozsahu

od 0.0 do 1.0) a ¢lovékem ¢itelny nazev barvy ve formatu snake_case.

« description: Vlastnost typu string pro stru¢ny popis obrazku, omezeny na
1-2 véty.

- estimated_year: Volitelna vlastnost typu integer pro odhadovany rok

pofizeni snimku, pokud se zda byt nefikéni fotografii.

3. V poli messages poskytujeme obrazova data jako fetézec kédovany ve formatu
base64 spolu s typem média. To umozriuje modelu zpracovat obrazek jako soucast
vstupu.

4. Také davame Claudovi pokyn, aby pouzil nastroj record_summary k popisu
obrazku.

5. Kdyz je pozadavek odeslan modelu Claude 3, analyzuje obrazek a vygeneruje
souhrn JSON zaloZeny na specifikovaném input_schema. Model extrahuje
klicové barvy, poskytne stru¢ny popis a odhadne rok pofizeni snimku (pokud je

to relevantni).

Pouziti néstroju 129

6. Vygenerovany souhrn JSON je pfedan jako parametry nastroji record_summary,

¢imz poskytuje strukturovanou reprezentaci klicovych charakteristik obrazku.

Pouzitim néstroje record_summary s dobfe definovanym input_schema muzeme
ziskat strukturovany JSON souhrn obrazku bez spoléhani na extrakci prostého textu.
Tento pfistup zajistuje, ze vystup sleduje konzistentni format a muze byt snadno

analyzovan a zpracovan naslednymi komponenty aplikace.

Schopnost vynutit volani funkce a specifikovat ofekavanou strukturu vystupu je
mocnou funkei vyuZiti nastroji v aplikacich fizenych umélou inteligenci. Umozriuje
vyvojarum mit vétsi kontrolu nad generovanym vystupem a zjednodusuje integraci dat

generovanych umélou inteligenci do pracovniho postupu jejich aplikace.

Provedeni funkce/funkci

Definovali jste funkce a dali pokyn vasi Al ktera se rozhodla, Ze by méla zavolat jednu
z vasich funkci. Nyni je ¢as, aby vas aplika¢ni kod nebo knihovna, pokud pouzivate
Ruby gem jako raix-rails, odeslaly volani funkce a jeji parametry do odpovidajici

implementace ve vasem aplikacnim kédu.

Vas aplikacni kdd rozhodne, co délat s vysledky provedeni funkce. MoZna to, co je tfeba
udélat, zahrnuje jediny fadek kédu v lambdé, nebo mozné zahrnuje volani externiho
APL Mozna to zahrnuje volani dalsi Al komponenty, nebo mozna zahrnuje stovky ¢i

dokonce tisice fadki kodu ve zbytku vaseho systému. Je to zcela na vas.

Nékdy je volani funkce koncem operace, ale pokud vysledky predstavuji informace
v fetézeni myslenek, které ma Al dale zpracovavat, pak vas aplika¢ni kdd musi vlozit

vysledky provedeni do pfepisu chatu a nechat Al pokracovat ve zpracovani.

Naptiklad zde je deklarace funkce Raix pouzivana Olympiinym AccountManager ke
komunikaci s nasimi klienty jako soucast inteligentni orchestrace pracovnich postupt

pro zékaznicky servis.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

© 0 N O O b W N e

11
12
13
14
15

Pouziti néstroju 130

class AccountManager
include Raix::ChatCompletion

include Raix::FunctionDispatch
]lots of other functions. ..

function :notify_account_owner,
"Don't share UUID. Mention dollars if subscription changed",
message: { type: "string" } do |arguments]|
account.owner . freeform_notify(
subject: "Account Change Notification",
message: arguments|:message]

)
"Notified account owner"
end

Mozna neni na prvni pohled jasné, co se zde déje, tak si to rozebereme.

1. Tfida AccountManager definuje mnoho funkei souvisejicich se spravou uétu.
Mize ménit vas tarif, pridavat a odebirat ¢leny tymu a mnoho dalsiho.

2. Jeho instrukce na nejvyssi trovni fikaji AccountManager, Ze by mél informovat
vlastnika a¢tu o vysledcich pozadavku na zménu u¢tu pomoci funkce notify_-
account_owner.

3. Stru¢na definice funkce zahrnuje jeji:

« nazev
« popis
« parametry message: { type: "string" }

« blok kodu, ktery se ma spustit pfi volani funkce

Po aktualizaci pfepisu s vysledky funkéniho bloku je znovu volana metoda
chat_completion. Tato metoda je zodpovédna za odeslani aktualizovaného prepisu
konverzace zpét do Al modelu pro dalsi zpracovani. Tento proces oznacujeme jako

konverzacni smycku.

Pouziti néstroju 131

Kdyz Al model obdrzi novy pozadavek na dokonéeni chatu s aktualizovanym pfepisem,
mé pfistup k vysledkim drive provedené funkce. MizZe tyto vysledky analyzovat,
zaClenit je do svého rozhodovaciho procesu a generovat dalsi odpovéd nebo akci na
zékladé kumulativniho kontextu konverzace. Na zakladé aktualizovaného kontextu
mize zvolit provedeni dalsich funkei, nebo miZze vygenerovat kone¢nou odpovéd na

pavodni dotaz, pokud usoudi, Ze dalsi volani funkci neni nutné.

Volitelné pokracovani ptivodniho dotazu

Kdyz poslete vysledky nastroje zpét do LLM a pokracujete ve zpracovani puvodniho
dotazu, Al pouzije tyto vysledky bud k volani dalsich funkci, nebo k vygenerovani

koneéné textové odpoveédi.

Neékteré modely, jako napiiklad Command-R od Cohere, mohou ve
svych odpovédich citovat konkrétni nastroje, které pouzily, coz poskytuje

dodate¢nou transparentnost a sledovatelnost.

V zavislosti na pouzitém modelu budou vysledky volani funkce existovat v pfepisovych
zpravach, které maji svou vlastni specialni roli, nebo se projevi v néjaké jiné syntaxi.
Dulezité vsak je, aby tato data byla v prepisu, aby je Al mohla zvazit pfi rozhodovani

o dal$im postupu.

’ Castou (a potencialné nékladnou) chybou je zapomenout pridat vysledky

funkce do prepisu pfed pokracovanim v chatu. V duasledku toho bude
Al dotazovana v podstaté stejnym zpusobem jako pied prvnim volanim
funkce. Jinymi slovy, z pohledu Al funkci jesté nevolala. TakzZe ji vola znovu.
A znovu. A znovu, donekonecna, dokud ji nepferusite. Doufejme, Ze vas

kontext nebyl prili§ velky a va$ model nebyl pfili§ drahy!

https://openrouter.ai/models/cohere/command-r

Pouziti néstroju 132

Osvédcené postupy pro pouZivani nastroju

Pro maximalni vyuziti nastroji zvazte nasledujici osvédcené postupy.

Popisné definice

Poskytnéte jasné a popisné nazvy a popisy pro kazdy nastroj a jeho vstupni parametry.

To pomaha LLM lépe porozumét ucelu a moznostem kazdého nastroje.

Z vlastni zkusenosti vim mohu fict, Ze béZna moudrost fikajici, Ze “pojmenovani je
tézké”, plati i zde; vidél jsem dramaticky odlisné vysledky od LLM jen zménou nazva

funkci nebo formulace popist. Nékdy odstranéni popisti vykon dokonce zlepsi.

Zpracovani vysledkl nastrojua

Pii predavani vysledkt nastroji zpét do LLM zajistéte, aby byly dobte strukturované
a komplexni. Pouzivejte smysluplné kli¢e a hodnoty k reprezentaci vystupu kazdého
nastroje. Experimentujte s riznymi formaty a zjistéte, ktery funguje nejlépe, od JSONu

az po prosty text.

Interpretator vysledki fesi tento problém vyuzitim Al k analyze vysledkd a poskytnuti

vysvétleni, shrnuti nebo klicovych poznatki srozumitelnych pro ¢lovéka.

Zpracovani chyb

Implementujte robustni mechanismy pro zpracovani chyb, které budou fesit pfipady,

kdy LLM muize generovat neplatné nebo nepodporované vstupni parametry pro volani

© 0 N O U b W N =

(RN
[l]

Pouziti néstroju 133

nastroju. Elegantné zpracovavejte a zotavujte se z jakychkoli chyb, které mohou béhem

provadéni nastroje nastat.

Jednou mimotadné pfijemnou vlastnosti Al je, Ze rozumi chybovym hlasenim! To
znamend, ze pokud pracujete v rychlém a méné preciznim rezimu, mizZete jednoduse
zachytit vSechny vyjimky generované pfi implementaci nastroje a predat je zpét Al,

aby védéla, co se stalo!

Naptiklad zde je zjednodusena verze implementace vyhledavani Google v Olympii:

def google_search(conversation, params)
conversation.update_cstatus("Searching Google...")
query = params|:query]
search = GoogleSearch.new(query).get_hash

conversation.update_cstatus("Summarizing results...")

Summar izeKnowledgeGraph . new. per form(conversation, search.to_json)
rescue StandardError => e

Honeybadger .notify(e)

{ error: e.message }.inspect
end

Vyhledavani Google v Olympii je dvoustupriovy proces. Nejprve provedete vyhledavani
a poté shrnete vysledky. Pokud dojde k jakékoliv chybé, je zprava o vyjimce zabalena
a odeslana zpét umélé inteligenci. Tato technika je zékladem prakticky vsSech vzort

Inteligentniho zpracovani chyb.

Predstavme si napiiklad situaci, kdy volani API GoogleSearch selze kvili vyjimce 503
Service Unavailable. Ta se dostane aZ k nejvyssi urovni zachyceni chyb a popis chyby
je odeslan zpét umélé inteligenci jako vysledek volani funkce. Misto toho, aby uzivatel
vidél prazdnou obrazovku nebo technickou chybu, uméla inteligence fekne néco jako
“Omlouvam se, ale v tuto chvili nemam pfistup k vyhledavani Google. Mohu to zkusit

pozdéji, pokud si prejete”

Muze se to zdat jako pouhy chytry trik, ale uvazujme o jiném druhu chyby, kdy uméla

inteligence vola externi API a m4 pfimou kontrolu nad parametry, které API predava.

Pouziti néstroju 134

Co kdyz udélala chybu v tom, jak tyto parametry vygenerovala? Za pfedpokladu, Ze
chybova zprava z externiho API je dostatecné podrobna, predani chybové zpravy zpét
volajici umélé inteligenci znamena, Zze muize tyto parametry piehodnotit a zkusit to

znovu. Automaticky. Bez ohledu na to, o jakou chybu slo.

Nyni si predstavte, co by bylo potfeba k replikaci takového robustniho zpracovani chyb

v bézném kodu. Je to prakticky nemozné.

Iterativni vylepSovani

Pokud LLM nedoporuéuje vhodné néastroje nebo generuje suboptimalni odpovédi,
iterujte definice nastroji, popisi a vstupnich parametrd. Pribézné vylepsujte
a zdokonalujte nastaveni nastroji na zakladé pozorovaného chovani a pozadovanych

vysledka.

1. Zacnéte s jednoduchymi definicemi nastroji: Zacnéte definovanim néastroji
s jasnymi a struénymi nazvy, popisy a vstupnimi parametry. Zpocatku se
vyvarujte prili§ slozitého nastaveni nastroji a soustfedte se na zékladni
funkcionalitu. Napftiklad pokud chcete ukladat vysledky analyzy sentimentu,

zacnéte zakladni definici jako:

© 0 N O O b W N e

I ==Y
B W N o

o O W N

Pouziti nastroju 135

"name": "save_sentiment_score",
"description": "Analyze user-provided text and generate sentiment score",
"parameters": {

"type": "object",

"properties": {

"score": {
"type": "float",
"description": "sentiment score from -1 (negative) to 1 (positive)"
}
o
"required": ["score"]

2. Testujte a pozorujte: Jakmile mate pocatecni definice néstroji na misté, otestujte
je s riznymi prompty a sledujte, jak LLM s nastrojem pracuje. Vénujte pozornost
kvalité a relevanci generovanych odpovédi. Pokud LLM generuje suboptimalni
odpovédi, je ¢as definice nastroju vylepsit.

3. Upresnéte popis: Pokud LLM nechape ucel néstroje spravné, zkuste upfesnit
popis nastroje. Poskytnéte vice kontextu, pfikladi nebo vysvétleni, ktera LLM
navedou k efektivnimu pouzivani nastroje. Naptiklad mizete aktualizovat popis
nastroje pro analyzu sentimentu tak, aby konkrétnéji adresoval emocni zabarveni

analyzovaného textu:

"name": "save_sentiment_score",
"description": "Determine the overall emotional tone of a piece of text,
such as customer reviews, social media posts, or feedback comments.",

4. Upravte vstupni parametry: Pokud LLM generuje neplatné nebo irelevantni
vstupni parametry pro nastroj, zvazte upravu definic parametri. Pfidejte
specifi¢téjsi omezeni, validaéni pravidla nebo pfiklady pro vyjasnéni o¢ekavaného

vstupniho formatu.

=~ O O B W N =

Pouziti néstroju 136

5. Iterujte na zakladé zpétné vazby: Prubézné sledujte vykon vasich nastroju
a shromazdujte zpétnou vazbu od uzivateld a zainteresovanych stran. Vyuzijte
tuto zpétnou vazbu k identifikaci oblasti pro zlepSeni a provadéjte iterativni
vylepseni definic nastroji. Napiiklad pokud uzivatelé hlasi, ze analyza spravné

nezpracovava sarkasmus, muzete do popisu pfidat poznamku:

{
"name": "save_sentiment_score”,
"description": "Analyze the sentiment of a given text and return a sentiment
score between -1 (negative) and 1 (positive). Note: Sarcasm should be
considered negative.",
}

Iterativnim vylepSovanim definic vasich nastroji na zakladé pozorovaného chovani
a zpétné vazby muzete postupné zlepsovat vykon a efektivitu vasi aplikace fizené
umélou inteligenci. Nezapomerite udrzovat definice nastroji jasné, struéné a zaméfené
na konkrétni tkol. Pravidelné testujte a ovéfujte interakce nastroji, abyste zajistili, ze

odpovidaji vasim pozadovanym vysledktim.

V4 r r ~ hd V4 V4 e O
Skladani a fetézeni nastroju
Jednim z nejsilnéjsich aspektd pouZivani nastroju, ktery byl dosud pouze naznacen,
je schopnost skladat a fetézit vice nastroji dohromady pro plnéni slozitych tkoli.
Peclivym navrzenim definic vasSich nastroji a jejich vstupnich/vystupnich formatt
mizete vytvofit znovupouZitelné stavebni bloky, které lze kombinovat rdznymi
zpusoby.

Uvazujme priklad, kde vytvarite pipeline pro analyzu dat pro vasi aplikaci fizenou

umélou inteligenci. MiZete mit nasledujici nastroje:

1. DataRetrieval: Nastroj, ktery ziskava data z databaze nebo API na zakladé

stanovenych kritérii.

Pouziti néstroju 137

2. DataProcessing: Nastroj, ktery provadi vypocty, transformace nebo agregace
ziskanych dat.
3. DataVisualization: Nastroj, ktery prezentuje zpracovana data v uzivatelsky

privétivém formatu, jako jsou grafy nebo diagramy.

Retézenim téchto nastrojii mizete vytvofit vykonny workflow, ktery ziskava relevantni
data, zpracovava je a prezentuje vysledky smysluplnym zptisobem. Takto by mohl

vypadat workflow pouziti nastroju:

1. LLM pftijme uzivatelsky dotaz Zzadajici o ptehled prodejnich dat pro specifickou
kategorii produkta.

2. LLM vybere nastroj DataRetrieval a vygeneruje pfislusné vstupni parametry
pro ziskani relevantnich prodejnich dat z databaze.

3. Ziskana data jsou “pfedana” nastroji DataProcessing, ktery vypocitd metriky
jako celkovy pfijem, primérnou prodejni cenu a miru ristu.

4. Zpracovana data jsou pak zpracovana nastrojem DataVisualization, ktery
vytvofi vizualné pfitazlivy graf nebo diagram pro reprezentaci prehledu,
predavajici URL grafu zpét do LLM.

5. Nakonec LLM vygeneruje formatovanou odpovéd na uzivatelsky dotaz pomoci

markdownu, véetné vizualizovanych dat a shrnuti klicovych zjisténi.

Skladanim téchto néstroji dohromady muzete vytvofit plynuly workflow pro analyzu
dat, ktery lze snadno integrovat do vasi aplikace. Krasa tohoto pfistupu spo¢iva v tom,
ze kazdy nastroj mize byt vyvijen a testovan nezavisle a pak kombinovan riznymi

zpusoby k feseni riznych problému.

Pro umoznéni plynulého skladéani a fetézeni nastroji je dilezité definovat jasné vstupni

a vystupni formaty pro kazdy nastroj.

Napriklad néstroj DataRetrieval mulze pfijimat parametry jako jsou detaily

pfipojeni k databazi, nazev tabulky a podminky dotazu a vracet vyslednou sadu jako

Pouziti néstroju 138

strukturovany JSON objekt. Nastroj DataProcessing pak muze ofekéavat tento JSON
objekt jako vstup a produkovat transformovany JSON objekt jako vystup. Standardizaci

toku dat mezi nastroji mizete zajistit kompatibilitu a znovupouzitelnost.

Pfi navrhovani vaseho ekosystému néastroji premyslejte o tom, jak lze rizné nastroje
kombinovat pro feseni béZnych pfipadl pouziti ve vasi aplikaci. Zvazte vytvoreni
vysokouroviiovych nastroju, které zapouzdiuji bézné workflow nebo byznys logiku, coz

usnadni LLM jejich efektivni vybér a pouziti.

Pamatujte, Ze sila pouzivani nastroji spoc¢iva ve flexibilité a modularité, kterou
poskytuje. Rozdélenim slozitych dkol® na mensi, znovupouzitelné nastroje muzete
vytvorfit robustni a adaptabilni aplikaci fizenou umélou inteligenci, ktera dokaze fesit

Sirokou skalu vyzev.

Budouci sméry

S vyvojem oblasti vyvoje aplikaci fizenych umélou inteligenci miZzeme ocekavat dalsi

pokroky v moznostech pouzivani nastroji. Nékteré potencialni budouci sméry zahrnuji:

1. Vicenasobné pouziti nastrojiu: LLM mohou byt schopny rozhodnout, kolikrat
pottebuji pouzit nastroje k vygenerovani uspokojivé odpovédi. To mize zahrnovat
vice kol vybéru a spousténi nastroju na zakladé pribéznych vysledki.

2. Pfeddefinované nastroje: Al platformy mohou poskytovat sadu
preddefinovanych nastroji, které mohou vyvojafi vyuzivat pfimo, jako jsou
Python interprety, nastroje pro vyhledavani na webu nebo bézné uzitkové funkce.

3. Bezproblémova integrace: S rostouci pfevahou pouzivani nastroji muzeme
oCekavat lepsi integraci mezi Al platformami a popularnimi vyvojovymi
frameworky, coz vyvojafim usnadni zaclenéni pouzivani nastroju do jejich

aplikaci.

Pouziti néstroju 139

Pouzivani nastroju je vykonna technika, kterd umoziiuje vyvojardm vyuzit plny
potencial LLM v aplikacich fizenych umélou inteligenci. Propojenim LLM s externimi
nastroji a zdroji muiZete vytvaret dynamictéjsi, inteligentnéjsi a kontextové uvédomélé
systémy, které se dokazi prizptisobit potfebam uzivatelt a poskytovat cenné prehledy

a akce.

Zatimco pouzivani nastroji nabizi obrovské moznosti, je dulezité byt si védom
potencialnich vyzev a Gvah. Jednim klicovym aspektem je sprava slozitosti interakei
nastroju a zajisténi stability a spolehlivosti celkového systému. Musite fesit scénéfe,
kdy volani nastroji muZze selhat, vratit neocekavané vysledky nebo mit dopad na
vykon. Kromé toho byste méli zvazit bezpecnostni opatieni a kontrolu piistupu, abyste
zabranili neopravnénému nebo $kodlivému pouziti nastroji. Pro udrZeni integrity
a vykonu vasi aplikace fizené umélou inteligenci jsou klicové spravné mechanismy pro

zpracovani chyb, logovani a monitoring.

Pfi zkoumani moZnosti pouziti nastroji ve vasich vlastnich projektech nezapomerite
zaCit s jasnymi cili, navrhnéte dobfe strukturované definice nastrojii a provadéjte iterace
na zakladé zpétné vazby a vysledki. Se spravnym piistupem a zplsobem uvazovani
mize pouziti nastroji odemknout nové urovné inovaci a hodnoty ve vasich aplikacich

fizenych umélou inteligenci

Zpracovani proudu dat

Streamovani dat pres HTTP, také znamé jako server-sent events (SSE), je mechanismus,

kdy server prubézné odesild data klientovi, jakmile jsou k dispozici, bez nutnosti,
aby si je klient vyslovné vyzadal. Vzhledem k tomu, Ze odpovéd umélé inteligence
je generovana postupné, je logické poskytovat responzivni uzivatelskou zkuSenost
zobrazovanim vystupu UI v pribéhu jeho generovani. A ve skute¢nosti vSechna API
poskytovatelt Ul, které znadm, nabizeji streamované odpovédi jako moznost ve svych

dokoncovacich endpointech.

Divod, pro¢ se tato kapitola objevuje v knize pravé zde, hned po Pouzivani nastroju,
je sila kombinace vyuZiti nastroji s zivymi odpovédmi Ul uZzivatelim. To umoznuje
vytvaret dynamické a interaktivni zazitky, kde Ul mtze zpracovavat uzivatelské vstupy,
vyuzivat riizné nastroje a funkce podle svého uvazeni a poskytovat odpovédi v realném

Case.

© 0 N O U b W N =

= =N
B W N,

Zpracovani proudu dat 141

Pro dosaZeni této plynulé interakce potfebujete napsat obsluhu proudu dat, ktera
dokaze distribuovat volani nastrojovych funkei vyvolanych Ul i bézny textovy vystup
koncovému uzivateli. Potfeba cyklického zpracovani po provedeni nastrojové funkce

pridava této uloze zajimavou vyzvu.

Implementace ReplyStream

Pro demonstraci zpusobu implementace zpracovani proudu dat se tato kapitola
podrobné zaméfi na zjednoduSenou verzi tfidy ReplyStream, kterd se pouziva
v systému Olympia. Instance této tfidy lze predat jako parametr stream v knihovnach

Al klientd, jako jsou ruby-openai a openrouter.

Zde je ukazka, jak pouzivim ReplyStream v Olympiiné PromptSubscriber, ktery

pomoci Wisper nasloucha vytvareni novych uzivatelskych zprav.

class PromptSubscriber
include Raix::ChatCompletion
include Raix: :PromptDeclarations

many other declarations omitted. ..
prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },

until: -> { bot_message.complete? }

def message_created(message) # invoked by Wisper

return unless message.role.user? && message.content?

rest of the implementation omitted. ..
Kromé context odkazu na odbératele promptu, ktery ji vytvofil, obsahuje tfida

ReplyStream také instancni proménné pro ukladani vyrovnavaci paméti pfijatych dat

a pole pro sledovani nazvi funkcei a argumentt volanych béhem zpracovani streamu.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

© 0 N O O b W N e

T = T O T Y
o N O O b W N =

Zpracovani proudu dat 142

class ReplyStream

attr_accessor :buffer, :f_name, :f_arguments, :context
delegate :bot_message, :dispatch, to: :context

def initialize(context)
self.context = context
self.buffer = []
self.f_name = []
self.f_arguments = []
end

def call(chunk, bytesize = nil)

end

end

Metoda initialize nastavuje poclatecni stav instance ReplyStream, inicializuje

vyrovnavaci pameét, kontext a dal$i proménné.

Metoda call je hlavnim vstupnim bodem pro zpracovani streamovanych dat. Pfijima
chunk dat (reprezentovany jako has) a volitelny parametr bytesize, ktery v nasem
pfikladu neni vyuzit. Uvnitf této metody tifida pouzivd porovnavani vzorl pro

zpracovani ruznych scénai na zakladé struktury ptijatého bloku dat.

Volani deep_symbolize_keys na bloku dat umoziuje elegantnéjsi

porovnavani vzord tim, Ze miizeme pracovat se symboly misto fetézci.

© 0 N O O b W N e

[T T ==Y
a s W N =~

Zpracovani proudu dat 143

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in { # match function name

choices: |

{
delta: {
tool_calls: |
{ index: index, function: {name: name} }
]
}
}
1}
f_name[index]| = name

Prvni vzor, ktery porovnavame, je volani nastroje spolu s jeho pfidruZzenym nazvem
funkce. Pokud jej detekujeme, ulozime ho do pole f_name. Nazvy funkci ukladdme do
indexovaného pole, protoZze model je schopen paralelniho volani funkei, kdy odesila vice

funkei k provedeni najednou.

Paralelni volani funkei je schopnost Al modelu provadét vice volani funkci soucasné,
coz umoziuje zpracovat uéinky a vysledky téchto volani funkei paralelné. To je
zv1asté uzite¢né, pokud funkce trvaji dlouhou dobu, a sniZuje pocet cest tam a zpét

s rozhranim API, coz muzZe vést k vyznamné uspoie spotieby tokent.

Déle potfebujeme najit shodu pro argumenty odpovidajici volanim funkci.

© 0 N O O b W N e

[T T ==Y
a s W N =~

O 0 N O O b W N =

N
W N~

Zpracovani proudu dat 144

in { # match arguments

choices: |
{
delta: {
tool_calls: |
{
index: index, function: {arguments: argument }
}
]
}
}
1}
f_arguments|index] ||= "" # initialize if not already

f_arguments[index| << argument

Podobné jako v pfipadé nazvi funkci, ukladame argumenty do indexovaného pole.

Déle sledujeme bézné zpravy zobrazované uzivateli, které budou pfichazet ze serveru po

jednom tokenu a budou pfifazeny do proménné new_content. Také musime sledovat

finish_reason. Ten bude mit hodnotunil az do posledni ¢asti vystupni sekvence.
in {

choices: |
{ delta: {content: new_content}, finish_reason: finish_reason }

I}

you could transmit every chunk to the user here. ..
buffer << new_content.to_s

if finish_reason.present?

finalize
elsif new_content.to_s.match?(/\n\n/)

send_to_client # ...or buffer and transmit once per paragraph
end

Je dtlezité, ze pfidavame vyraz pro porovnavani vzort ke zpracovani chybovych zprav
zaslanych poskytovatelem Al modelu. V lokalnich vyvojovych prostfedich vyvolame

vyjimku, ale v produkénim prostfedi chybu zaznamename a dokonc¢ime.

BwWw N -

© 0 N O O b W N =

[T =Y
a s W N r e

Zpracovani proudu dat 145

in { error: { message: } }
if Rails.env.local?
raise message
else
Honeybadger .notify("AI Error: #{message}")
finalize
end

Zavéretna vétev else piikazu case se provede, pokud zadny z predchozich vzora
neodpovida. Je to jen pojistka pro pfipad, Ze by nam Al model zacal posilat nerozpoznané

casti.

else
Honeybadger .notify("Unrecognized Chunk: #{chunk}")
end

end

Metodasend_to_client jezodpovédna za odesilani obsahu ulozeného ve vyrovnavaci
paméti klientovi. Kontroluje, zda neni vyrovnavaci pamét prazdna, aktualizuje obsah
zpravy bota, vykresluje zpravu bota a uklada obsah do databaze pro zajisténi perzistence

dat.

def send_to_client
no need to process pure whitespace
return if buffer. join.squish.blank?

set the buffer content on the bot message
content = buffer. join
bot_message.content = content

save to database so that we never lose data
even if the stream doesn't terminate correctly

bot_message.update_column(:content, content)

update content via websocket
ConversationRenderer .update(bot_message)
end

© 0 N O O b W N =

[= =Y
O O s W N o

Zpracovani proudu dat 146

Metoda finalize je volana po dokonceni streamového zpracovani. Zpracovava volani
funkei, pokud béhem streamu néjaka nastala, aktualizuje zpravu bota s koneénym

obsahem a dalsimi relevantnimi informacemi a resetuje historii volani funkci

def finalize
if f_name.any?
f_name.each_with_index do |name, index|
takes care of calling the function wherever it's implemented
dispatch(name:, arguments: JSON.parse(f_arguments|index]))
end

reset the function call history
f_name.clear
f_arguments.clear

else
content = buffer. join.presence
bot_message.update! (content:, complete: true)
ConversationRenderer .update(bot_message)

end

end

Pokud se model rozhodne zavolat funkci, musite toto volani funkce (nizev a argumenty)
“zpracovat” takovym zplUsobem, aby se provedlo a zpravy function_call

a function_result byly pfidany do prepisu konverzace.

Podle mych zkuSenosti je lepsi fesit vytvareni funkénich zprav na jednom misté ve
vasi kodové zakladné, nez spoléhat na implementace jednotlivych néstroju. Je to nejen
¢istsi feseni, ale ma to i velmi diilezity prakticky divod: pokud model umélé inteligence
zavol4 funkci a pii dal§im priichodu neuvidi v prepisu vysledné volani a vysledek, zavold
stejnou funkci znovu. Potencialné donekone¢na. Nezapomeiite, ze uméla inteligence je
zcela bezstavova, takze pokud ji tyto volani funkci nezpétné neukazete, jako by se nikdy

nestaly.

1
2
3
4
5
6
7
8
9

10

Zpracovani proudu dat 147

PromptSubscriber#dispatch

def dispatch(name:, arguments:)
adds a function_call message to the conversation transcript
plus dispatches to tool and returns result
conversation. function_call!(name, arguments).then do |result]|
add function result message to the transcript
conversation. function_result!(name, result)
end

end

Vymazani historie volani funkeci po jejich vykonani je stejné dulezité jako
zajisténi, aby se volani a vysledky dostaly do vaseho pfepisu, abyste nevolali

stale dokola stejné funkce pfi kazdém prichodu smyckou.

“Konverzacni smycka”

Ve tfidé PromptSubscriber pouZivame metodu prompt z modulu
PromptDeclarations k definovani chovani konverza¢ni smycky. Parametr until
je nastaven na -> { bot_message.complete? }, coz znamend, Ze smycka bude

pokracovat, dokud nebude bot_message oznacen jako dokonceny.

prompt text: -> { user_message.content },
stream: -> { ReplyStream.new(self) },

until: -> { bot_message.complete? }

Kdy je ale bot_message oznacena jako dokon¢ena? Pokud jste zapomnéli,

podivejte se zpét na fadek 13 metody finalize.

Pojdme si projit celou logiku streamového zpracovani.

Zpracovani proudu dat 148

10.

. PromptSubscriber obdrzi novou zpravu od uzivatele prostfednictvim metody

message_created, kterd je vyvolana publika¢né-odbératelskym systémem

Wisper pokazdé, kdyz koncovy uZzivatel vytvoii novy prompt.

. Ttidni metoda prompt deklarativné definuje chovani logiky chat completion pro

PromptSubscriber. Al model provede chat completion s obsahem uzivatelské
zpravy, novou instanci ReplyStream jako parametrem stream a specifikovanou

podminkou smycky.

. Al model zpracuje prompt a zacne generovat odpovéd. Béhem streamovani

odpovédi je pro kazdy fragment dat vyvolana metoda call instance

ReplyStream.

. Pokud se AI model rozhodne zavolat néastrojovou funkci, nazev funkce

a argumenty jsou extrahovany z fragmentu a uloZeny do poli f_name

a f_arguments.

. Pokud Al model generuje obsah zobrazovany uzivateli, je tento obsah uloZen do

vyrovnavaci paméti a odeslan klientovi pomoci metody send_to_client.

. Jakmile je streamové zpracovani dokonceno, je volana metoda finalize. Pokud

byly béhem streamu vyvolany néjaké nastrojové funkce, jsou odeslany pomoci

metody dispatch tfidy PromptSubscriber.

. Metoda dispatch ptida zpravu function_call do pfepisu konverzace, spusti

odpovidajici nastrojovou funkci a pfida zpravu function_result do prepisu

s vysledkem volani funkce.

. Po odeslani nastrojovych funkci je historie volani funkei vymazéana, aby se

zabranilo duplicitnim volanim funkci v nasledujicich smyckach.

. Pokud nebyly vyvolany zadné nastrojové funkce, metoda finalize aktualizuje

bot_message s koneénym obsahem, ozna¢i ji jako dokonéenou a odesle
aktualizovanou zpravu klientovi.

Je vyhodnocena podminka smycky -> { bot_message.complete? }. Pokud
neni bot_message oznacena jako dokoncena, smycka pokracuje a pivodni

prompt je znovu odeslan s aktualizovanym prepisem konverzace.

Zpracovani proudu dat 149

11. Kroky 3-10 se opakuji, dokud neni bot_message oznacena jako dokonéen4, coz
znamena, ze Al model dokon¢il generovani své odpovédi a neni tfeba provadét

dalsi nastrojové funkce.

Implementaci této konverzac¢ni smycky umoznite Al modelu zapojit se do obousmérné
interakce s aplikaci, provadét nastrojové funkce podle potfeby a generovat odpovédi

zobrazované uzivateli, dokud konverzace nedosahne ptfirozeného zavéru.

Kombinace streamového zpracovani a konverza¢ni smycky umoznuje dynamické
a interaktivni zkuSenosti pohanéné umélou inteligenci, kde Al model mize zpracovavat
uzivatelské vstupy, vyuzivat rizné nastroje a funkce a poskytovat odpovédi v redlném

¢ase na zakladé vyvijejiciho se kontextu konverzace.

Automatické pokracovani

Je dulezité byt si védom omezeni vystupu Al VétSina modelt m4 maximalni pocet
tokent, které mohou generovat v jedné odpovédi, cozZ je uréeno parametrem max_-
tokens. Pokud Al model béhem generovani odpovédi dosdhne tohoto limitu, nahle se

zastavi a oznami, Ze vystup byl ofiznut.

Ve streamované odpovédi z API Al platformy muzZete tuto situaci detekovat
prozkoumanim proménné finish_reason ve fragmentu. Pokud je finish_reason
nastavena na " length" (nebo jinou kli¢ovou hodnotu specifickou pro model), znamena
to, ze model béhem generovani dosahl svého maximéalniho limitu tokent a vystup byl

predc¢asné ukoncen.

Jednim ze zpusobt, jak elegantné zvladnout tento scénar a poskytnout plynulou
uzivatelskou zkusenost, je implementovat mechanismus automatického pokrac¢ovani ve
vasi logice streamového zpracovani. Pfidanim porovnavani vzori pro diivody ukoncéeni

souvisejici s délkou muzete zvolit smycku a automaticky pokracovat ve vystupu tam,

kde skondil.

© 0 N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Zpracovani proudu dat 150

Zde je zamérné zjednoduseny priklad toho, jak mtzete upravit metodu call ve tfidé

ReplyStream pro podporu automatického pokrac¢ovani:
LENGTH_STOPS = %w[length MAX_TOKENS]

def call(chunk, _bytesize)

case chunk.deep_symbolize_keys

in {
choices: |
{ delta: {content: new_content},

finish_reason: finish_reason } | }
buffer << new_content.to_s

if finish_reason.blank?
send_to_client if new_content.to_s.match?(/\n\n/)
elsif LENGTH_STOPS.include?(finish_reason)
continue_cutoff
else
finalize
end

end

end
private

def continue_cutoff
conversation.bot_message! (buffer.join, visible: false)
conversation.user_message!("please continue", visible: false)
bot_message.update_column(:created_at, Time.current)

end

V této upravené verzi, kdyz finish_reason indikuje zkraceny vystup, misto ukonéeni
proudu pfidame do prepisu dvojici zprav bez finalizace, pfesuneme ptivodni uzivatelsky
viditelnou zpravu na “konec” pifepisu aktualizaci jejiho atributu created_at, a pak

nechame smycku pokracovat, aby Al mohlo pokracovat tam, kde skoncilo.

Zpracovani proudu dat 151

Pamatujte, Ze koncovy bod AI dokoncovéni je bezstavovy. “Znd” pouze to, co mu
sdélite prostfednictvim prepisu. V tomto piipadé zpisob, jakym Al sdélujeme, Ze bylo
pferudeno, je pfidanim “neviditelnych” (pro koncového uzivatele) zprav do piepisu.
Nezapomente vSak, Ze toto je zdmérné zjednoduseny priklad. Skute¢na implementace
by musela provadét dalsi spravu prepisu, aby se zajistilo, Ze neplytvame tokeny a/nebo

nemateme Al duplikovanymi zpravami asistenta v prepisu.

Skutecna implementace automatického pokracovani by méla mit také takzvanou
“logiku pferusovace”, aby se zabranilo nekontrolovanému zacykleni. Divodem je, Ze
pfi ur€itych typech uzivatelskych vyzev a nizkém nastaveni max_tokens by Al mohlo

nekoneéné pokracovat v generovani uzivatelsky viditelného vystupu.

Méjte na paméti, ze kazdd smycka vyzaduje samostatny pozadavek a kazdy
pozadavek znovu spotiebuje cely vas prepis. Pfi rozhodovani, zda implementovat
automatické pokracovani ve vasi aplikaci, byste méli rozhodné zvazit kompromisy
mezi uzivatelskou zkuSenosti a vyuzitim APL Automatické pokracovani mize
byt obzvlasté nebezpecné drahé, zejména pfi pouzivani prémiovych komerénich

modelu.

Zaveér

Zpracovani proudu je klicovym aspektem pifi vytvareni aplikaci pohanénych
umélou inteligenci, které kombinuji pouziti nastroju s Zzivymi odpovédmi AL
Efektivnim zpracovanim streamovanych dat z API platforem umélé inteligence muzete
poskytnout plynulou a interaktivni uzivatelskou zkusenost, zpracovavat velké odpovédi,

optimalizovat vyuziti zdroji a elegantné zvladat chyby.

Poskytnuta tfida Conversation: :ReplyStream demonstruje, jak lze implementovat

zpracovani proudu v Ruby aplikaci pomoci porovnavani vzort a architektury fizené

Zpracovani proudu dat 152

udalostmi. Pochopenim a vyuzitim technik zpracovani proudu mizete odemknout plny
potencial integrace Al ve vasich aplikacich a poskytovat vykonné a poutavé uzivatelské

zazitky.

Samoopravna data

Samoopravna data predstavuji uc¢inny pristup k zajisténi integrity, konzistence a kvality

dat v aplikacich vyuzitim schopnosti velkych jazykovych modela (LLM). Tato kategorie
vzorll se zaméfuje na myslenku vyuziti umélé inteligence k automatické detekci,
diagnostice a opravé datovych anomalii, nekonzistenci nebo chyb, ¢imz snizuje zatéz

vyvojart a udrzuje vysokou uroveri spolehlivosti dat.

V jadru vzorl samoopravnych dat je uznani skutecnosti, ze data jsou Zivotné dileZitou
soucasti kazdé aplikace a zajisténi jejich pfesnosti a integrity je klicové pro spravné
fungovani a uzivatelskou zkuSenost aplikace. Sprava a udrzba kvality dat vSak mutze
byt slozitym a ¢asové naro¢nym ukolem, zejména kdy?z aplikace rostou co do velikosti

a komplexity. Zde pfichazi ke slovu sila umélé inteligence.

Ve vzorech samoopravnych dat jsou Al workefi vyuzivani k prubéznému monitorovani

a analyze dat vasi aplikace. Tyto modely maji schopnost chapat a interpretovat vzory,

Samoopravna data 154

vztahy a anomélie v datech. Vyuzitim svych schopnosti zpracovani a porozumeéni
pfirozenému jazyku mohou identifikovat potencialni problémy nebo nekonzistence

v datech a podniknout pfislusné kroky k jejich napravé.

Proces samoopravnych dat typicky zahrnuje nékolik klicovych kroku:

1. Monitorovani dat: Al workefi neustale sleduji datové toky aplikace, databaze
nebo ulozné systémy a hledaji jakékoli zndmky anomalii, nekonzistenci nebo
chyb. Pripadné miizete aktivovat Al komponentu v reakci na vyjimku.

2. Detekce anomalii: Kdyz je zjistén problém, Al worker podrobné analyzuje data,
aby identifikoval konkrétni povahu a rozsah problému. To miize zahrnovat detekci
chybéjicich hodnot, nekonzistentnich format nebo dat, ktera porusuji pfedem
definovana pravidla ¢i omezeni.

3. Diagnostika a oprava: Jakmile je problém identifikovan, Al worker vyuzije své
znalosti a porozuméni datové doméné k uréeni vhodného postupu. To mize
zahrnovat automatickou opravu dat, doplnéni chybéjicich hodnot nebo oznaceni
problému pro lidsky zasah, pokud je to nutné.

4. Prubéiné uceni (volitelné, zavisi na pripadu pouziti): Kdyz vas Al worker
narazi na rizné datové problémy a vyfesi je, miZe vytvaret vystupy popisujici,
co se stalo a jak reagoval. Tato metadata lze vyuzit v procesech uceni, které
vam (a pfipadné i zakladnimu modelu prostfednictvim doladovani) umozni byt

v prubéhu Casu efektivnéjsi pfi identifikaci a feSeni datovych anomalii.

Automatickou detekci a opravou datovych problémt muzZete zajistit, Ze vase aplikace
pracuje s vysoce kvalitnimi, spolehlivymi daty. To snizuje riziko chyb, nekonzistenci

nebo datovych bugt ovliviiujicich funkénost aplikace nebo uzivatelskou zkusenost.

Jakmile mate AI workery, ktefi se staraji o monitorovani a opravu dat, muzete se
soustfedit na dalsi kritické aspekty aplikace. To Setfi ¢as a zdroje, které by jinak byly
vynaloZeny na manualni ¢isténi a udrzbu dat. Ve skutecnosti, jak vase aplikace rostou

co do velikosti a komplexity, manualni sprava kvality dat se stava stale naro¢néjsi. Vzory

Samoopravna data 155

“Samoopravnych dat” efektivné skaluji vyuzitim sily Al ke zpracovani velkych objemt

dat a detekci problému v redlném Case.

P Diky své povaze se Al modely mohou adaptovat na ménici se datové
vzory, schémata nebo pozadavky v pribéhu ¢asu s minimalni nebo zZadnou
supervizi. Pokud jejich direktivy poskytuji adekvatni vedeni, zejména

ohledné zamyslenych vysledkd, vase aplikace mtze byt schopna se vyvijet

a zvladat nové datové scénare bez nutnosti rozsahlych manualnich zasaht

nebo zmén kédu.

Vzory samoopravnych dat dobfe ladi s ostatnimi kategoriemi vzort, o kterych jsme
diskutovali, jako je “Mnozstvi workerr”. Schopnost samoopravnych dat 1ze vnimat jako
specializovany typ workera, ktery se zaméfuje specificky na zajisténi kvality a integrity
dat. Tento typ workera funguje spole¢né s ostatnimi Al workery, pficemz kazdy prispiva

k riznym aspektim funkénosti aplikace.

Implementace vzort samoopravnych dat v praxi vyzaduje peclivy navrh a integraci
Al modelt do architektury aplikace. Kvili rizikim ztraty a poskozeni dat byste méli
definovat jasné pokyny pro pouzivani této techniky. Méli byste také zvazit faktory jako

vykon, skalovatelnost a bezpe¢nost dat.

Prakticka pripadova studie: Oprava
posSkozeného JSONu

Jeden z nejpraktictéjsich a nejsnadnéji vysvétlitelnych zpisobti vyuziti samoopravnych
dat je také velmi jednoduchy: oprava poskozeného JSONu.
Tuto techniku Ize aplikovat na béznou vyzvu feSeni nedokonalych nebo

nekonzistentnich dat generovanych LLM, jako je poskozeny JSON, a poskytuje

pfistup k automatické detekci a opraveé téchto problémd.

© 0 N O O b W N =

NN N NN Rl sl
B W N 20 © 00N 0 0 B W N -~ O

Samoopravna data 156

V Olympii se pravidelné setkdvam se situacemi, kdy LLM generuji JSON data, ktera
nejsou zcela validni. K tomu mtze dochazet z raznych dévodu, naptiklad kdyz LLM
prida komentar pred nebo za samotny JSON kdd, nebo kdyz zavede syntaktické chyby
jako chybéjici ¢arky ¢i neescapované dvojité uvozovky. Tyto problémy mohou vést

k chybam parsovani a zpusobit naruseni funké¢nosti aplikace.

Pro feseni tohoto problému jsem implementoval praktické feSeni v podobé tfidy
JsonFixer. Tato tiida ztélestiuje vzor “Samoopravnych dat” tim, Ze pfijima poskozeny
JSON jako vstup a s vyuzitim LLM ho opravuje, pfi¢emz zachovava co nejvice informaci

a ptvodniho zaméru.

class JsonFixer

include Raix::ChatCompletion

def call(bad_json, error_message)

raise "No data provided" if bad_json.blank? || error_message.blank?

transcript << {
system: "Consider user-provided JSON that generated a parse
exception. Do your best to fix it while preserving the
original content and intent as much as possible." }
transcript << { user: bad_json }
transcript << { assistant: "What is the error message?"}
transcript << { user: error_message }

transcript << { assistant: "Here is the corrected JSON\n json\n" }

self.stop = |

chat_completion(json: true)
end

def model
"mistralai/mixtral-8x7Tb-instruct:nitro"
end

end

Vsimnéte si, jak JsonF ixer pouziva Ventriloquist k usmériiovani odpoveédi

AL

O b W N =

Samoopravna data 157

Proces samoopravy JSON dat funguje nasledovné:

1. Generovani JSON: K vytvofeni JSON dat na zékladé urCitych prompta
nebo pozadavkd se pouzivd LLM. Vzhledem k povaze LLM vsak generovany
JSON nemusi byt vzdy perfektné validni. JSON parser samozfejmé vyvola

ParserError, pokud mu predate nevalidni JSON.

begin
JSON.parse(11m_generated_json)
rescue JSON: :ParserkError => e
JsonFixer.new.call(llm_generated_json, e.message)
end

Vsimnéte si, Ze chybova zprava je také predana volani JSONFixer, takze nemusi plné

predpokladat, co je s daty Spatné, zejména kdyzZ parser Casto piesné fekne, kde je chyba.

2. Oprava pomoci LLM: Ttida JSONFixer odesle poskozeny JSON zpét do
LLM, spolu se specifickym pokynem nebo instrukci k opravé JSONu pfi
maximalnim zachovéani puvodnich informaci a zaméru. LLM, trénovany na
obrovském mnozstvi dat a s porozuménim syntaxi JSONu, se pokusi opravit
chyby a vygenerovat platny JSON fetézec. Pro omezeni vystupu LLM se pouziva
Response Fencing a jako Al model volime Mixtral 8x7B, protoZe je pro tento typ
ulohy obzvlasté vhodny.

3. Validace a integrace: Opraveny JSON fetézec vraceny LLM je parsovan pfimo
tfidou JSONFixer, protoze byla voldna funkce chat_completion(json:
true). Pokud opraveny JSON projde validaci, je integrovan zpét do pracovniho
postupu aplikace, coz umoziuje aplikaci plynule pokracovat ve zpracovani dat.

Poskozeny JSON byl “vylécen”.

PrestoZe jsem napsal a prepsal svou vlastni implementaci JSONFixer nékolikrét,

pochybuji, Ze celkovy ¢as investovany do vSech téchto verzi presahuje hodinu nebo dveé.

Samoopravna data 158

Viimnéte si, ze zachovani zadméru je kliCovym prvkem jakéhokoliv vzoru
samoopravnych dat. Proces opravy zaloZeny na LLM se snazi co nejvice zachovat
pivodni informace a zdmér vygenerovaného JSONu. To zajistuje, Ze opraveny JSON

si zachovava sviij sémanticky vyznam a mtze byt efektivné vyuzit v kontextu aplikace.

Tato praktick4 implementace pfistupu “samoopravnych dat” v Olympii jasné ukazuje,
jak Ize vyuzit Al, konkrétné LLM, k feseni skutecnych datovych vyzev. Demonstruje silu
kombinace tradi¢nich programovacich technik s moznostmi Al pro vytvareni robustnich

a efektivnich aplikaci.

Postelliv zakon a vzor “samoopravnych dat”

“Samoopravna data”, jak je predstavuje tfida JSONFixer, dobte odpovidaji principu
znamému jako Posteltiv zakon, také oznacovanému jako princip robustnosti. Posteliv
zékon fika:

“Bud konzervativni v tom, co dél4s, a liberalni v tom, co pfijimas od ostatnich.”

Tento princip, puvodné formulovany Jonem Postelem, prukopnikem raného
Internetu, zduraziiuje dilezitost budovani systému, které jsou tolerantni
k riznorodym nebo dokonce mirné nespravnym vstuptim, zatimco pfi odesilani

vystupt striktné dodrzuji stanovené protokoly.

V kontextu “samoopravnych dat” tfida JSONFixer ztélestiuje Posteliv zakon tim,
Ze je liberalni v pfijimani poskozeného nebo nedokonalého JSON dat generovanych
LLM. Nezamitne okamzité ani neselze pfi setkani s JSONem, ktery pfisné neodpovida
otekavanému formatu. Misto toho zaujimé tolerantni pfistup a pokousi se JSON

opravit pomoci sily LLM.

Tim, Ze je liberalni v pfijimani nedokonalého JSONu, tfida JSONFixer prokazuje
robustnost a flexibilitu. Uznava, ze data v realném svété Casto piichazeji v riznych

forméach a nemusi vzdy odpovidat pfisnym specifikacim. Diky elegantnimu zvladani

Samoopravna data

a opravovani téchto odchylek trida zajistuje, Ze aplikace mize plynule fungovat

i v pfitomnosti nedokonalych dat.

Na druhou stranu t¥ida JSONFixer také dodrzuje konzervativni aspekt Postelova
zékona, pokud jde o vystup. Po opravé JSONu pomoci LLM tfida validuje opraveny
JSON, aby zajistila, Ze ptisné odpovida ocekdvanému forméatu. Zachovava integritu
a spravnost dat pred jejich pfeddnim dal$im ¢astem aplikace. Tento konzervativni
pristup zarucuje, Ze vystup tfidy JSONFixer je spolehlivy a konzistentni, podporuje

interoperabilitu a brani $ifeni chyb.

Zajimavosti o Jonu Postelovi:

« Jon Postel (1943-1998) byl americky informatik, ktery hral klicovou roli ve
vyvoji Internetu. Byl zndm jako “Buh Internetu” pro své vyznamné ptispévky
k zékladnim protokolim a standardtim.

+ Postel byl editorem série dokumenti Request for Comments (RFC), coz je
série technickych a organiza¢nich poznadmek o Internetu. Je autorem nebo
spoluautorem vice nez 200 RFC, v¢etné zakladnich protokold jako TCP, IP
a SMTP.

« Kromé svych technickych piispévka byl Postel zndmy svym pokornym
a kooperativnim pristupem. Veéfil v dulezitost dosahovani konsenzu
a spole¢né prace na budovani robustni a interoperabilni sité.

+ Postel pusobil jako feditel Divize pocitacovych siti v Information Sciences
Institute (ISI) na University of Southern California (USC) od roku 1977 az do
své predcasné smrti v roce 1998.

+ Za své ohromné prispévky byl Postel posmrtné ocenén prestizni Turingovou

cenou v roce 1998, ¢asto oznacovanou jako “Nobelova cena za informatiku.”

Ttida JSONFixer podporuje robustnost, flexibilitu a interoperabilitu, coz byly
zékladni hodnoty, kterych se Postel drzel po celou svou kariéru. Budovanim

systémd, které jsou tolerantni k nedokonalostem pfi souc¢asném striktnim dodrzovani

159

Samoopravna data 160

protokolt, mizeme vytvaret aplikace, které jsou odolnéjsi a piizpusobivéjsi pfi

feseni skuteénych vyzev.

Uvahy a kontraindikace

Pouzitelnost piistupti samoopravnych dat zcela zavisi na typu dat, se kterymi vase
aplikace pracuje. Existuje d@vod, pro¢ moznd nebudete chtit jednoduse upravit
JSON . parse tak, aby automaticky opravoval vsechny chyby parsovani JSONu ve vasi
aplikaci: ne vSechny chyby lze nebo by mély byt automaticky opraveny.

Samooprava je obzvlasté problematicka ve spojeni s regulatornimi pozadavky nebo
pozadavky na shodu souvisejicimi se zpracovanim a manipulaci s daty. Néktera
odvétvi, jako je zdravotnictvi a finance, maji tak pfisné predpisy tykajici se integrity
dat a auditovatelnosti, ze jakékoli “black box” oprava dat bez fadného dohledu
nebo protokolovani muze tyto predpisy poruSovat. Je zasadni zajistit, aby jakékoli
techniky samoopravnych dat, které vymyslite, byly v souladu s pfislusnymi pravnimi

a regulacnimi ramci.

Aplikace technik samoopravnych dat, zejména téch vyuzivajicich modely Al, mize
mit také vyznamny dopad na vykon aplikace a vyuziti zdroji. Zpracovani velkych
objemut dat pomoci modelit Al pro detekci a opravu chyb muZe byt vypocetné naro¢né.
Je dulezité vyhodnotit kompromisy mezi pfinosy samoopravnych dat a souvisejicimi

naklady na vykon a zdroje.

Pojdme se tedy ponofit do faktord, které je tfeba zvazit pfi rozhodovani, kdy a kde tento

mocny pfistup pouzit.

Samoopravna data 161

Kriticnost dat

Pfi zvazovani aplikace technik samoopravnych dat je zésadni posoudit kriti¢nost
zpracovavanych dat. Uroven kritiénosti se vztahuje k dblezitosti a citlivosti dat

v kontextu vasi aplikace a jeji obchodni domény.

V nékterych pfipadech nemusi byt automaticka oprava chyb v datech vhodn4, zejména
pokud jsou data vysoce citliva nebo maji pravni dasledky. Zvazte naptiklad nasledujici

scénare:

1. Finanéni transakce: Ve finan¢nich aplikacich, jako jsou bankovni systémy
nebo obchodni platformy, je pfesnost dat nanejvys dulezita. I drobné chyby ve
finanénich datech mohou mit vyznamné dusledky, jako jsou nespravné zistatky
na uctech, chybné smérované prosttedky nebo chybna obchodni rozhodnuti.
V téchto pfipadech mohou automatické opravy bez diikladného ovéfeni a auditu
pfinaset nepfijatelna rizika.

2. Zdravotni zaznamy: Zdravotnické aplikace pracuji s vysoce citlivymi
a divérnymi ddaji pacientd. Nepfesnosti ve zdravotnich zdznamech mohou
mit vazné dusledky pro bezpecnost pacienti a rozhodnuti o 1é¢bé. Automaticka
uprava zdravotnich ddaji bez fadného dohledu a validace kvalifikovanymi
zdravotnickymi pracovniky muzZe porusovat regulatorni pozadavky a ohrozit
pohodu pacientd.

3. Pravni dokumenty: Aplikace zpracovévajici pravni dokumenty, jako jsou
smlouvy, dohody nebo soudni podéni, vyzaduji pfisnou pfesnost a integritu.
I drobné chyby v pravnich datech mohou mit vyznamné pravni dusledky.
Automatické opravy v této oblasti nemusi byt vhodné, protoze data casto
vyZaduji ruéni kontrolu a ovéfeni pravnimi experty k zajisténi jejich platnosti

a vymahatelnosti.

V téchto kritickych datovych scénéfich rizika spojena s automatickymi opravami ¢asto

prevazuji nad potencialnimi pfinosy. Dusledky zavedeni chyb nebo nespravné tpravy

Samoopravna data 162

dat mohou byt zavazné a vést k finan¢nim ztratdm, pravni odpovédnosti nebo dokonce

poskozeni jednotlived.

Pfi préaci s vysoce kritickymi daty je nezbytné upfednostnit procesy ru¢niho ovérovani
a validace. Lidsky dohled a odbornost jsou zésadni pro zaji§téni piesnosti a integrity
dat. Automatizované techniky samoopravy lze stale vyuzit k oznaceni potencialnich
chyb nebo nesrovnalosti, ale kone¢né rozhodnuti o opravach by mélo zahrnovat lidsky

usudek a schvaleni.

Je vsak dulezité poznamenat, 7Ze ne vSechna data v aplikaci musi mit stejnou urovern
kriti¢nosti. V ramci stejné aplikace mohou existovat podmnoziny dat, které jsou méné
citlivé nebo maji mensi dopad, pokud dojde k chybam. V takovych pfipadech lze
techniky samoopravnych dat selektivné aplikovat na tyto specifické podmnoziny dat,

zatimco kriticka data zlstavaji pfedmétem rucéniho ovérovani.

Kli¢ové je peclivé posoudit kriticnost kazdé kategorie dat ve vasi aplikaci a definovat
jasné pokyny a procesy pro zpracovani oprav na zakladé souvisejicich rizik
a dasledku. RozliSovanim mezi kritickymi (tj. G¢etnimi knihami, zdravotnimi zdznamy)
a nekritickymi daty (tj. postovnimi adresami, varovanimi o zdrojich) muZete najit
rovnovahu mezi vyuZzitim vyhod technik samoopravnych dat tam, kde je to vhodné,

a udrzenim piisné kontroly a dohledu tam, kde je to nezbytné.

V kone¢ném dusledku by rozhodnuti o aplikaci technik samoopravnych dat na kriticka
data mélo byt u¢inéno po konzultaci s oborovymi experty, pravnimi poradci a dalsimi
relevantnimi zainteresovanymi stranami. Je nezbytné zvazit specifické pozadavky,

predpisy a rizika spojena s daty vasi aplikace a podle toho sladit strategie opravy dat.

Zavainost chyb

P1i aplikaci technik samoopravnych dat je dilezité posoudit zavaznost a dopad chyb
v datech. Ne vSechny chyby jsou si rovny a vhodny postup se mtize lisit v zavislosti na

zévaznosti problému.

Samoopravna data 163

Drobné nesrovnalosti nebo problémy s formatovanim mohou byt vhodné pro
automatickou opravu. Napiiklad pracovnik pro samoopravna data povéfeny opravou
poskozeného JSONu muze zpracovat chybéjici c¢arky nebo neescapované dvojité
uvozovky bez vyznamného zménéni vyznamu nebo struktury dat. Tyto typy chyb lze

¢asto jednoduse opravit a maji minimalni dopad na celkovou integritu dat.

vevr

vyzadovat odli$ny pfistup. V takovych pfipadech nemusi byt automatizované opravy

dostacujici a mize byt nutny lidsky zasah, aby byla zajisténa pfesnost a platnost dat.

Zde ptichazi na fadu koncept vyuziti samotné umélé inteligence k urceni zavaznosti
chyb. Vyuzitim schopnosti modeld umélé inteligence muZeme navrhnout samoopravné
datové pracovniky, ktefi nejen opravuji chyby, ale také vyhodnocuji jejich zavaznost

a ¢ini informovana rozhodnuti o tom, jak s nimi nalozit.

Predstavme si napfiklad samoopravného datového pracovnika zodpovédného za opravu
nesrovnalosti v datech proudicich do zakaznické databaze. Pracovnika lze navrhnout
tak, aby analyzoval data a identifikoval potencialni chyby, jako jsou chybéjici nebo
protichiidné informace. Misto automatické opravy vsech chyb vsak muiZe byt pracovnik
vybaven dodateénymi volanimi nastroji, které mu umozni oznacit zavazné chyby

k lidskému pfezkoumani.

Zde je ptiklad, jak Ize toto implementovat:

© 0 N O O b W N e

W W W W W W W N NN DDDNDDNDDNDDNDNDDNRA A~ AR R,)R
O O B W N~ O © 00 N O O b W NP, O O 0 N O O kx W N =~ O

Samoopravna data 164

class CustomerDataReviewer
include Raix::ChatCompletion

include Raix::FunctionDeclarations

attr_accessor :customer

function :flag_for_review, reason: { type: "string" } do |params|
AdminNotifier.review_request(customer, params|[:reason])
end

def initialize(customer)
self.customer = customer
end

def call(customer_data)
transcript << {
system: "You are a customer data reviewer. Your task is to identify
and correct inconsistencies in customer data.

< additional instructions here... >

If you encounter severe errors that require human review, use the

“flag_for_review® tool to flag the data for manual intervention." }

transcript << { user: customer.to_json }

transcript << { assistant: "Reviewed/corrected data:\n json\n" }

self.stop = |

chat_completion(json: true).then do |result|
return if result.blank?

customer .update(result)
end
end

end

V tomto piikladu je worker CustomerDataHealer navrzen k identifikaci a opravé

nekonzistenci v zakaznickych datech. Opét pouzivime Ohranic¢eni odpoveédi

a Ventriloquist k ziskani strukturovaného vystupu. Je dtlezité, ze systémova direktiva

Samoopravna data 165

workeru obsahuje instrukce k pouziti funkce flag_for_review v piipadé nalezeni

zévaznych chyb.

Kdyz worker zpracovava zakaznicka data, analyzuje je a pokousi se opravit pripadné
nekonzistence. Pokud worker zjisti, Ze chyby jsou zavazné a vyzaduji lidsky zasah,
muze pouzit nastroj flag_for_review k oznadeni dat a poskytnuti davodu pro toto

oznaceni.

Metoda chat_completion je voldna s parametrem json: true pro parsovani
opravenych zakaznickych dat jako JSON. Neni zde 74dné ustanoveni pro smycku
po volani funkce, takze vysledek bude prazdny, pokud byla vyvolana funkce
flag_for_review. V opafném piipadé jsou data zakaznika aktualizovana

zkontrolovanymi a potencialné opravenymi daty.

Zaclenénim hodnoceni zavaznosti chyb a moZznosti oznacit data pro lidskou kontrolu se
samoopravny datovy worker stava inteligentnéjsi a pfizptisobivéjsi. Mize automaticky
zpracovavat mensi chyby a zaroven eskalovat zavazné chyby lidskym expertim pro

manualni zasah.

Konkrétni kritéria pro ureni zavaznosti chyb mohou byt definovana v direktivé
workeru na zakladé znalosti domény a obchodnich pozadavki. Pfi posuzovani
zévaznosti lze brat v ivahu faktory jako dopad na integritu dat, potencial ztraty nebo

poskozeni dat a dusledky nespravnych dat.

Vyuzitim umélé inteligence k posouzeni zavaznosti chyb a poskytnutim moznosti pro
lidsky zasah mohou samoopravné datové techniky najit rovnovahu mezi automatizaci
a zachovanim presnosti dat. Tento pfistup zajistuje, Ze mensi chyby jsou efektivné
opraveny, zatimco zavazné chyby ziskaji potfebnou pozornost a odbornost od lidskych

kontroloru.

Doménova komplexita

Pfi zvazovani aplikace samoopravnych datovych technik je dulezité vyhodnotit

komplexitu datové domény a pravidla fidici jeji strukturu a vztahy. Komplexita

Samoopravna data 166

domény muze vyznamné ovlivnit efektivitu a proveditelnost automatizovanych

pfistupt k opravé dat.

Samoopravné datové techniky funguji dobre, kdyz data sleduji dobie definované vzory
a omezeni. V doménach, kde je datova struktura relativné jednoduché a vztahy mezi
datovymi prvky jsou pfimocaré, lze automatizované opravy aplikovat s vysokou mirou
jistoty. Naptiklad oprava problému s formatovanim nebo vynucovani zakladnich
omezeni datovych typt muzZe byt Casto efektivné feSena samoopravnymi datovymi

workery.

Nicméné, jak se zvySuje komplexita datové domény, rostou i vyzvy spojené
s automatizovanou opravou dat. Vdoménach se sloZitou obchodni logikou, komplexnimi
vztahy mezi datovymi entitami nebo doménové specifickymi pravidly a vyjimkami
nemusi samoopravné datové techniky vzdy zachytit vSechny nuance a mohou zavést

nezamyslené dusledky.

Uvazme priklad komplexni domény: finan¢ni obchodni systém. V této doméné data
zahrnuji rizné finanéni nastroje, trzni data, obchodni pravidla a regulaé¢ni pozadavky.
Vztahy mezi riznymi datovymi prvky mohou byt slozité a pravidla fidici platnost

a konzistenci dat mohou byt vysoce specificka pro danou doménu.

V takto komplexni doméné by samoopravny datovy worker povéreny opravou
nekonzistenci v obchodnich datech musel mit hluboké pochopeni doménové
specifickych pravidel a omezeni. Musel by zvazovat faktory jako trzni regulace,
obchodni limity, vypocty rizik a postupy vyporadani. Automatizované opravy v tomto
kontextu nemusi vzdy zachytit plnou komplexitu domény a mohou neumyslné zavést

chyby nebo porusit doménové specificka pravidla.

Pro feseni vyzev doménové komplexity mohou byt samoopravné datové techniky
vylepSeny zaclenénim doménové specifickych znalosti a pravidel do Al modeld

a workerd. Toho lze dosahnout pomoci technik jako:

1. Doménové specificky trénink: Al modely pouZzivané pro samoopravna data

mohou byt smérovany nebo dokonce doladény na doménové specifickych

Samoopravna data 167

datasetech, které zachycuji sloZitosti a pravidla konkrétni domény. Vystavenim
modeld reprezentativnim datim a scénaifim se mohou naudit vzory, omezeni
a vyjimky specifické pro doménu.

2. Pravidly fizena omezeni: Samoopravni datovi workefi mohou byt rozsifeni
o explicitni pravidly fizena omezeni, ktera kéduji doménové specifické znalosti.
Tato pravidla mohou byt definovana doménovymi experty a integrovana do
procesu opravy dat. Al modely pak mohou tato pravidla vyuzivat k vedeni svych
rozhodnuti a zajisténi souladu s doménové specifickymi pozadavky.

3. Spoluprace s doménovymi experty: V komplexnich doménach je zasadni
zapojit doménové experty do navrhu a vyvoje samoopravnych datovych technik.
Doménovi experti mohou poskytnout cenné vhledy do slozitosti dat, obchodnich
pravidel a potencialnich hrani¢nich pifipadi. Jejich znalosti mohou byt zaclenény
do AI modelt a workert pro zlepSeni pfesnosti a spolehlivosti automatizovanych
datovych oprav pomoci vzorti Clovék v procesu.

4. Inkrementalni a iterativni pfistup: Pfi praci s komplexnimi doménami je ¢asto
pfinosné adoptovat inkrementalni a iterativni pfistup k samoopravnym datiim.
Misto pokusu o automatizaci oprav pro celou doménu najednou se zaméite
na specifické subdomény nebo datové kategorie, kde jsou pravidla a omezeni
dobie pochopena. Postupné rozsifujte rozsah samoopravnych technik, jak roste

porozuméni doméné a techniky se prokazuji jako efektivni.

Pfi zvazeni slozitosti datové domény a zaclenéni oborové specifickych znalosti
do technik samoopravnych dat muzete dosdhnout rovnovahy mezi automatizaci
a presnosti. Je dilezité si uvédomit, Ze samoopravna data nejsou univerzalnim feSenim

a Ze pristup by mél byt pfizptisoben specifickym pozadavkim a vyzvam kazdé domény.

V komplexnich doménach muze byt nejefektivnéjsi hybridni pfistup, ktery kombinuje
techniky samoopravnych dat s lidskou expertizou a dohledem. Automatické opravy
mohou zpracovavat rutinni a dobfe definované pripady, zatimco komplexni scénate

nebo vyjimky mohou byt oznaceny pro lidskou kontrolu a zasah. Tento spolupracujici

Samoopravna data 168

pristup zajituje, Ze vyhody automatizace jsou realizovany pfti zachovani nezbytné

kontroly a pfesnosti v komplexnich datovych doménéach.

Vysvétlitelnost a transparentnost

Vysvétlitelnost se tyka schopnosti porozumét a interpretovat divody rozhodnuti
u¢inénych modely umélé inteligence, zatimco transparentnost zahrnuje poskytovani

jasné viditelnosti do procesu opravy dat.

V mnoha kontextech musi byt dpravy dat auditovatelné a odavodnitelné.
Zainteresované strany, vcetné obchodnich uzivateld, auditort a regulacnich orgéand,
mohou vyzadovat vysvétleni, pro¢ byly provedeny urcité opravy dat a jak k témto
rozhodnutim modely umélé inteligence dospély. To je zvlasté dulezité v oblastech,
kde mé presnost a integrita dat vyznamné disledky, jako jsou finance, zdravotnictvi
a pravni zalezitosti.

Pro feseni potteby vysvétlitelnosti a transparentnosti by mély techniky samoopravnych
dat zahrnovat mechanismy, které poskytuji vhled do rozhodovaciho procesu modelt

umélé inteligence. Toho lze dosdhnout riiznymi pfistupy:

1. Retézec mysleni: Pozadani modelu, aby “nahlas” vysvétlil své uvazovani pied
aplikaci zmén dat, mize umoznit snazsi pochopeni rozhodovaciho procesu a mize
generovat lidsky ¢itelna vysvétleni provedenych oprav. Kompromisem je o néco
vétsi slozitost pfi oddélovani vysvétleni od strukturovaného datového vystupu,
coz lze Tesit...

2. Generovani vysvétleni: Pracovnici se ssmoopravnymi daty mohou byt vybaveni
schopnosti generovat lidsky ¢itelna vysvétleni oprav, které provadéji. Toho lze
dosédhnout tim, Ze model bude pozadéan o vystup svého rozhodovaciho procesu
jako snadno srozumitelna vysvétleni integrovand primo do dat. Napiiklad
pracovnik se samoopravnymi daty by mohl generovat zpravu, ktera zvyrazni
konkrétni datové nesrovnalosti, které identifikoval, opravy, které aplikoval,

a divody téchto oprav.

Samoopravna data 169

3. Dulezitost vlastnosti: Modely umélé inteligence mohou byt instruovany
informacemi o dulezitosti riznych vlastnosti nebo atributid v procesu opravy
dat jako soucast jejich smérnic. Tyto smérnice pak mohou byt zpfistupnény
lidskym zainteresovanym stranam. Identifikaci klicovych faktort, které ovliviiuji
rozhodnuti modelu, mohou zainteresované strany ziskat vhled do divodia oprav
a posoudit jejich platnost.

4. Protokolovani a auditovani: Implementace komplexnich mechanismt
protokolovani a auditovani je klicova pro zachovani transparentnosti v procesu
samoopravnych dat. Kazd4 oprava dat provedena modely umélé inteligence by
méla byt zaznamenana, véetné pivodnich dat, opravenych dat a konkrétnich
provedenych akei. Tato auditni stopa umoziiuje retrospektivni analyzu a poskytuje
jasny zéznam o Upravach provedenych v datech.

5. Pfistup s ¢lovékem v procesu: Zaclenéni pfistupu s ¢lovékem v procesu mize
zlepsit vysvétlitelnost a transparentnost technik samoopravnych dat. Zapojenim
lidskych expertii do kontroly a validace oprav generovanych umélou inteligenci
mohou organizace zajistit, Ze opravy jsou v souladu s oborovymi znalostmi
a obchodnimi pozadavky. Lidsky dohled pridava dalsi vrstvu odpovédnosti
a umoznuje identifikaci potencialnich predpojatosti nebo chyb v modelech umélé
inteligence.

6. Kontinualni monitoring a hodnoceni: Pravidelné sledovani a hodnoceni
vykonu technik samoopravnych dat je nezbytné pro udrZeni transparentnosti
a duavéry. Hodnocenim pfesnosti a efektivity modell umélé inteligence
v pribéhu ¢asu mohou organizace identifikovat jakékoli odchylky nebo anomalie
a pfijmout napravna opatfeni. Kontinualni monitoring pomaha zajistit, Ze proces

samoopravnych dat zistava spolehlivy a v souladu s poZadovanymi vysledky.

Vysvétlitelnost a transparentnost jsou kritickymi aspekty pfi implementaci technik
samoopravnych dat. Poskytovanim jasnych vysvétleni pro opravy dat, udrZzovanim

komplexnich auditnich stop a zapojenim lidského dohledu mohou organizace budovat

Samoopravna data 170

duvéru v proces samoopravnych dat a zajistit, Ze upravy provedené v datech jsou

oduvodnitelné a v souladu s obchodnimi cili.

Je dilezité najit rovnovahu mezi vyhodami automatizace a potfebou transparentnosti.
Zatimco techniky samoopravnych dat mohou vyznamné zlepsit kvalitu dat a efektivitu,
nemélo by to byt na ukor ztraty viditelnosti a kontroly nad procesem opravy dat.
Navrhovanim pracovnikii se samoopravnymi daty s ohledem na vysvétlitelnost
a transparentnost mohou organizace vyuzit silu umélé inteligence pfi zachovani

nezbytné irovné odpovédnosti a divéry v data.

Nezamyslené dusledky

Zatimco techniky samoopravnych dat maji za cil zlepsit kvalitu a konzistenci dat, je
zasadni byt si védom potencialu nezamyslenych disledkd. Automatizované opravy,
pokud nejsou peclivé navrzeny a monitorovany, mohou neimyslné zménit vyznam

nebo kontext dat, coZ vede k problémiim v navazujicich procesech.

Jednim z hlavnich rizik samoopravnych dat je zavadéni pfedpojatosti nebo chyb
v procesu opravy dat. Modely umélé inteligence, stejné jako jakykoli jiny softwarovy
systém, mohou podléhat predpojatostem pfitomnym v trénovacich datech nebo
zavedenym prostfednictvim navrhu algoritmt. Pokud tyto predpojatosti nejsou
identifikovany a zmirnény, mohou se $ifit procesem samoopravnych dat a vést ke

zkreslenym nebo nespravnym upravam dat.

Vezméme si napfiklad samoopravného datového pracovnika, jehoz ukolem je
opravovat nekonzistence v demografickych tdajich zékaznikt. Pokud se Al model
naucil pfedpojatosti z historickych dat, jako je spojovani ur¢itych povolani nebo tGrovni
pfijmd s konkrétnim pohlavim ¢i etnickou pfislusnosti, mize vytvaret nespravné
predpoklady a upravovat data zpisobem, ktery tyto predsudky posiluje. To mize vést
k nepfesnym profilim zakaznik, chybnym obchodnim rozhodnutim a potencialné

diskriminaé¢nim vysledktim.

Samoopravna data 171

Dal$im moznym nezamyslenym dusledkem je ztrata cennych informaci nebo kontextu
béhem procesu opravy dat. Techniky samoopravnych dat se ¢asto zaméfuji na
standardizaci a normalizaci dat pro zajisténi konzistence. V nékterych pfipadech vsak
mohou puvodni data obsahovat nuance, vyjimky nebo kontextualni informace, které
jsou dulezité pro pochopeni celkového obrazu. Automatizované opravy, které slepé

vynucuji standardizaci, mohou netimyslné odstranit nebo zastfit tyto cenné informace.

Predstavte si naptiklad samoopravného datového pracovnika odpovédného za opravu
nekonzistenci ve zdravotnich zaznamech. Pokud pracovnik narazi na zdravotni
anamnézu pacienta se vzacnym onemocnénim nebo neobvyklym lécebnym planem,
mize se pokusit normalizovat data tak, aby odpovidala béznéjsimu vzoru. Tim vsak
muze ztratit specifické detaily a kontext, které jsou klicové pro presné zachyceni
jedine¢né situace pacienta. Tato ztrata informaci mtze mit vazné dusledky pro péci

o pacienta a lékarské rozhodovani.

Pro zmirnéni rizik nezamyslenych dusledkt je nezbytné zaujmout proaktivni pfistup pfi

navrhovani a implementaci technik samoopravnych dat:

1. Dukladné testovani a validace: Pred nasazenim samoopravnych datovych
pracovniki do produkce je zésadni dukladné otestovat a ovérit jejich chovani
v riznych scénafich. To zahrnuje testovani s reprezentativnimi datovymi sadami,
které pokryvaji rtizné hrani¢ni pfipady, vyjimky a potencidlni predpojatosti.
Dukladné testovani pomaha identifikovat a fesit pfipadné nezamyslené dusledky
predtim, neZ ovlivni realna data.

2. Pribézné monitorovani a hodnoceni: Implementace mechanisma prabézného
monitorovani a hodnoceni je zésadni pro detekci a zmirnéni nezamyslenych
dasledkt v probéhu c¢asu. Pravidelné prezkoumavani vysledkd procest
samoopravnych dat, analyza dopadu na navazujici systémy a rozhodovani
a ziskavani zpétné vazby od zainteresovanych stran muze pomoci identifikovat
pfipadné nezadouci G¢inky a vyvolat v€asnd napravna opatfeni. Pokud vase

organizace ma provozni fidici panely, je pravdépodobné dobrym napadem pridat

Samoopravna data 172

jasné viditelné metriky souvisejici s automatizovanymi zménami dat. Jesté lepsim
napadem je pravdépodobné ptidani alarmi spojenych s velkymi odchylkami od
normalni aktivity zmén dat!

3. Lidsky dohled a intervence: UdrZovani lidského dohledu a moznosti zasahovat
do procesu samoopravnych dat je klicové. Prestoze automatizace mize vyrazné
zlepsit efektivitu, je dilezité, aby lidsti experti kontrolovali a validovali opravy
provedené Al modely, zejména v kritickych nebo citlivych oblastech. Lidsky
usudek a odborné znalosti mohou pomoci identifikovat a fesit piipadné

nezamyslené dusledky, které mohou vzniknout.

4. Vysvétlitelna Al (XAI) a transparentnost: Jak bylo diskutovano v pfedchozi
Casti, zaclenéni technik vysvétlitelné Al a zajisténi transparentnosti v procesu
samoopravnych dat mize pomoci zmirnit nezamyslené dusledky. Poskytovanim
jasnych vysvétleni pro opravy dat a udrzovanim komplexnich auditnich zaznama
mohou organizace lépe porozumét a sledovat divody uprav provedenych
Al modely.

5. Inkrementalni a iterativni pfistup: Pfijeti inkrementalniho a iterativniho
pfistupu k samoopravnym datim muZe pomoci minimalizovat riziko
nezamyslenych dusledkd. Misto aplikace automatizovanych oprav na celou
datovou sadu najednou za¢néte s podmnozinou dat a postupné rozsifujte rozsah,
jak se techniky prokazi jako u¢inné a spolehlivé. To umoziiuje peélivé sledovani
a upravy béhem procesu, ¢imz se snizuje dopad piipadnych nezamyslenych
dasledka.

6. Spoluprace a zpétna vazba: Zapojeni zainteresovanych stran z rtznych oblasti
a podpora spoluprace a zpétné vazby v prubéhu procesu samoopravnych dat mtze
pomoci identifikovat a Fesit nezamyslené dusledky. Pravidelné ziskavani vstupt
od odbornikit v oboru, uzivateli dat a koncovych uZzivatelt muze poskytnout
cenné poznatky o redlném dopadu oprav dat a upozornit na pfipadné prehlédnuté

problémy.

Samoopravna data 173

Proaktivnim feenim rizika nezamyslenych dusledkit a implementaci vhodnych
bezpeénostnich opatfeni mohou organizace vyuzit vyhod technik samoopravnych
dat pfi minimalizaci potenciadlnich nezadoucich ucinku. Je dulezité pristupovat
k samoopravnym datiim jako k iterativnimu a kolaborativnimu procesu, neustale
monitorovat, hodnotit a zdokonalovat techniky, aby byly v souladu s pozadovanymi

vysledky a zachovavaly integritu a spolehlivost dat.

Pfi zvazovani pouziti vzori samoopravnych dat je nezbytné peclivé vyhodnotit
tyto faktory a zvazit pfinosy oproti potencialnim rizikim a omezenim. V nékterych
pfipadech muize byt nejvhodnéjsim feSenim hybridni pfistup, ktery kombinuje

automatizované opravy s lidskym dohledem a intervenci.

Stoji také za zminku, Ze techniky samoopravnych dat by nemély byt povazovany
za nahradu robustni validace dat, sanitizace vstupi a mechanismi zpracovani chyb.
Tyto zakladni postupy zlstavaji kritické pro zajisténi integrity a bezpecnosti dat.
Samoopravna data by méla byt vnimana jako dopliikovy pfistup, ktery muze rozsirit

a vylepsit tato existujici opatfeni.

V konefném disledku zavisi rozhodnuti o pouziti vzori samoopravnych dat na
konkrétnich pozadavcich, omezenich a prioritich vasi aplikace. Peclivym zvazenim
vySe uvedenych aspekti a jejich sladénim s cili a architekturou vasi aplikace
muzete Cinit informovana rozhodnuti o tom, kdy a jak efektivné vyuzivat techniky

samoopravnych dat.

Kontextualni generovani obsahu

3’

Vzory kontextualniho generovani obsahu vyuzivaji silu velkych jazykovych modeld
(LLM) ke generovani dynamického a kontextové specifického obsahu v aplikacich.
Tato kategorie vzorti uznava dilezitost poskytovani personalizovaného a relevantniho
obsahu uzivatelim na zakladé jejich konkrétnich potfeb, preferenci a dokonce

i pfedchozich a soucasnych interakci s aplikaci.

V kontextu tohoto pfistupu se “obsahem” mysli jak primarni obsah (tj. blogové

prispévky, ¢lanky atd.), tak meta-obsah, jako jsou doporuceni k primarnimu obsahu.

Vzory kontextualniho generovani obsahu mohou hrat klicovou roli pfi zvysovani urovné
zapojeni uzivatelt, poskytovani ptizpisobenych zazitkt a automatizaci tkolt vytvareni

obsahu jak pro vés, tak pro vase uzivatele. Vyuzitim vzord, které popisujeme v této

Kontextualni generovani obsahu 175

kapitole, mtzete vytvaret aplikace, které generuji obsah dynamicky a ptizptsobuji se

kontextu a vstuptim v redlném case.

Vzory funguji integraci LLM do vystupt aplikace, od uZivatelského rozhrani (nékdy
oznacovaného jako “chrome”), pfes e-maily a dalsi formy notifikaci, az po jakékoli

pipeline generovani obsahu.

Kdyz uzivatel interaguje s aplikaci nebo spusti konkrétni pozadavek na obsah, aplikace
zachyti relevantni kontext, jako jsou uzivatelské preference, predchozi interakce nebo
konkrétni podnéty. Tyto kontextualni informace jsou pak spolu s pfipadnymi Sablonami
nebo pokyny predany do LLM a pouZity k vytvofeni textového vystupu, ktery by jinak

musel byt bud napevno zakédovan, uloZen v databazi nebo algoritmicky generovan.

Obsah generovany pomoci LLM muze mit rizné formy, jako jsou personalizovana
doporuceni, dynamické popisy produktl, pfizpisobené e-mailové odpovédi nebo
dokonce celé ¢lanky ¢i blogové prispévky. Jednim z nejradikalnéjsich vyuziti tohoto
obsahu, které jsem pfed vice nez rokem zavedl, je dynamické generovani prvka
uzivatelského rozhrani, jako jsou popisky formulaft, napovédy a dal$i druhy

vysvétlujictho textu.

Personalizace

Jednou z Kklicovych vyhod vzorti kontextualniho generovani obsahu je schopnost
poskytovat vysoce personalizované zazitky uzivatelim. Generovanim obsahu
zalozeného na kontextu specifickém pro uzivatele tyto vzory umoziuji aplikacim

pfizplisobit obsah individualnim zajmam, preferencim a interakcim uZivateld.

Personalizace jde nad ramec pouhého vloZeni jména uzivatele do obecného obsahu.
Zahrnuje vyuziti bohatého kontextu dostupného o kazdém uzivateli k generovani
obsahu, ktery rezonuje s jejich specifickymi potfebami a pranimi. Tento kontext mize

zahrnovat Sirokou $kalu faktort, jako jsou:

Kontextualni generovani obsahu 176

1. Informace z uzivatelského profilu: Na nejobecnéjsi urovni aplikace této
techniky lze demografické data, zajmy, preference a dalsi atributy profilu pouzit
ke generovani obsahu, ktery odpovida uzivatelovu zdzemi a charakteristikam.

2. Behavioralni data: Pfedchozi interakce uzivatele s aplikaci, jako jsou zobrazené
stranky, kliknuté odkazy nebo zakoupené produkty, mohou poskytnout cenné
informace o jejich chovani a zajmech. Tato data lze pouzit ke generovani navrha
obsahu, ktery odrazi jejich vzorce zapojeni a predvida jejich budouci potreby.

3. Kontextové faktory: Soucasny kontext uzivatele, jako je jeho poloha, zafizeni,
denni doba nebo dokonce pocasi, mize ovlivnit proces generovani obsahu.
Napiiklad cestovni aplikace mize mit Al pracovnika, ktery je schopen generovat
personalizovana doporudeni na zakladé aktualni polohy uzivatele a prevladajicich

povétrnostnich podminek.

Vyuzitim téchto kontextovych faktort umoznuji vzory kontextualniho generovani
obsahu aplikacim poskytovat obsah, ktery ptsobi jako S$ity na miru kazdému

jednotlivému uZivateli. Tato uroven personalizace ma nékolik vyznamnych vyhod:

1. Zvysené zapojeni: Personalizovany obsah upoutava pozornost uzivatell
a udrzuje je zapojené do aplikace. Kdyz uzivatelé citi, Ze obsah je relevantni
s aplikaci a prozkoumavanim jejich funkei.

2. Zlepsena spokojenost uzivateli: Personalizovany obsah ukazuje, ze aplikace
rozumi a zalezi ji na jedine¢nych pozadavcich uzivatele. Poskytovanim obsahu,
ktery je uZite¢ny, informativni a v souladu s jejich zajmy, muze aplikace zvysit
spokojenost uzivatelt a vybudovat s nimi silnéjsi spojeni.

3. Vys$si mira konverze: V kontextu e-commerce nebo marketingovych aplikaci
mize personalizovany obsah vyznamné ovlivnit miru konverze. Prezentovanim
produktt, nabidek nebo doporuéeni, které jsou pfizpusobeny preferencim
a chovani uzivateld, muze aplikace zvysit pravdépodobnost, 7Ze uzivatelé

provedou pozadované akce, jako je nakup nebo registrace ke sluzbé.

Kontextualni generovani obsahu 177

Produktivita

Vzory kontextualniho generovani obsahu mohou vyrazné zvysit uréité druhy
produktivity tim, Ze snizuji potfebu manualniho generovani obsahu a uprav
v kreativnich procesech. Vyuzitim sily LLM muiZete generovat kvalitni obsah ve
velkém méfitku a Setfit tak cas a usili, které by vasi tvirci obsahu a vyvojafi jinak
museli vénovat zdlouhavé manualni praci.

Tradi¢né musi tvurci obsahu zkoumat, psat, upravovat a formatovat obsah tak, aby
spliioval pozadavky aplikace a olekavani uzivateld. Tento proces mize byt casové

naroény a vyzadovat znacné zdroje, zejména s rostoucim objemem obsahu.

Nicméné s vyuzitim vzor kontextualniho generovani obsahu lze proces tvorby obsahu
z velké Casti automatizovat. Velké jazykové modely dokazou generovat souvisly,
gramaticky spravny a kontextové relevantni obsah na zékladé poskytnutych pokynt

a voditek. Tato automatizace pfinasi nékolik vyhod pro produktivitu:

1. Snizeni manualni prace: Diky delegovani tkolt generovani obsahu na velké
jazykové modely se mohou tviirci obsahu soustfedit na tkoly vyssi trovné, jako je
obsahova strategie, tvorba napadt a zajisténi kvality. Mohou poskytnout modelu
nezbytny kontext, $ablony a pokyny a nechat ho zpracovat samotné generovani
obsahu. To sniZzuje mnozstvi manualni prace potfebné pro psani a Upravy, coz
umoziuje tviircim obsahu byt produktivnéjsi a efektivnéjsi.

2. Rychlejsi tvorba obsahu: Velké jazykové modely dokazou generovat obsah
mnohem rychleji nez lidsti autofi. Se spravnymi pokyny a voditky miize model
vytvorit nékolik kust obsahu béhem nékolika sekund ¢i minut. Tato rychlost
umoznuje aplikacim generovat obsah mnohem rychlejsim tempem a drzet krok

s pozadavky uzivateli a neustale se ménicim digitalnim prostfedim.

Kontextualni generovani obsahu 178

Nevede rychlejsi tvorba obsahu k situaci “tragédie obecni pastviny”, kdy je internet

zahlcen obsahem, ktery nikdo neéte? Bohuzel se obavam, ze odpovéd je ano.

3. Konzistence a kvalita: Velké jazykové modely mohou snadno upravovat obsah
tak, aby byl konzistentni ve stylu, ténu a kvalité. S jasnymi pokyny a ptiklady
mohou uréité typy aplikaci (napf. zpravodajské redakce, PR oddéleni atd.) zajistit,
Ze jejich obsah vytvoreny ¢lovékem odpovida jejich firemnimu hlasu a spliuje
pozadované standardy kvality. Tato konzistence snizuje potiebu rozsahlych uprav
a revizi, ¢imz $etfi ¢as a usili v procesu tvorby obsahu.

4. Iterace a optimalizace: Vzory kontextualniho generovani obsahu umozriuji
rychlou iteraci a optimalizaci obsahu. Upravou pokynt, $ablon nebo voditek
poskytnutych modelu mohou vase aplikace rychle generovat varianty obsahu
a automatizované testovat rtzné pfistupy zpuisobem, ktery v minulosti nebyl
mozny. Tento iterativni proces umoziuje rychlejsi experimentovani a vylepsovani
obsahovych strategii, coz vede k efektivnéjsimu a poutavéjsimu obsahu v pribéhu
casu. Tato konkrétni technika muize byt zasadnim prilomem pro aplikace jako
je e-commerce, které stoji a padaji na mife okamzitého opusténi a uzivatelské

angazovanosti.

P Je dulezité poznamenat, Ze piestoZze vzory kontextudlniho generovani

obsahu mohou vyrazné zvysit produktivitu, zcela neodstraiuji potiebu
lidského zapojeni. Tvlrci obsahu a editofi stale hraji klicovou roli
pfi definovani celkové obsahové strategie, poskytovani vedeni modelu

a zajistovani kvality a vhodnosti generovaného obsahu.

Automatizaci vice repetitivnich a ¢asové naro¢nych aspektd tvorby obsahu vzory

kontextualniho generovani obsahu uvoliuji cenny lidsky cas a zdroje, které lze

Kontextualni generovani obsahu 179

presmérovat na tkoly s vyssi hodnotou. Tato zvySenad produktivita vam umoziluje
poskytovat uzivatelim personalizovanéjsi a poutavéjsi obsah pfi souc¢asné optimalizaci

pracovnich postupti tvorby obsahu.

Rychla iterace a experimentovani

Vzory kontextudlniho generovani obsahu vam umozZnuji rychle iterovat
a experimentovat s rliznymi variantami obsahu, coz umoziuje rychlejsi optimalizaci
a vylepSovani vasi obsahové strategie. MlzZete generovat vice verzi obsahu béhem
nékolika sekund, jednoduse upravou kontextu, Sablon nebo pokynt poskytnutych

modelu.

Tato schopnost rychlé iterace pfinasi nékolik klicovych vyhod:

1. Testovani a optimalizace: Diky schopnosti rychle generovat varianty obsahu
miZete snadno testovat rlizné pristupy a mé¥it jejich efektivitu. Napriklad mtzete
generovat vice verzi popisu produktu nebo marketingového sdéleni, kazdou
pfizptisobenou specifickému segmentu uzivatelii nebo kontextu. Analyzovanim
metrik uzivatelské angazovanosti, jako je mira prokliku nebo mira konverze,
muZete identifikovat nejefektivnéjsi varianty obsahu a podle toho optimalizovat

vasi obsahovou strategii.

2. A/B testovani: Vzory kontextudlniho generovani obsahu umoziiuji
bezproblémové A/B testovani obsahu. MizZete generovat dvé nebo vice variant
obsahu a nahodné je zobrazovat rlznym skupinam uzivateld. Porovnanim
vykonu kazdé varianty miZzete urcit, ktery obsah nejlépe rezonuje s vasi cilovou
skupinou. Tento pfistup zaloZeny na datech vam umoziuje €init informovana
rozhodnuti a neustdle vylepsovat vas obsah pro maximalizaci uzivatelské

angazovanosti a dosazeni pozadovanych vysledkda.

Kontextualni generovani obsahu 180

3.

Personaliza¢ni experimenty: Rychla iterace a experimentovani jsou obzvlasté
cenné, kdyz pfijde na personalizaci. Se vzory kontextualniho generovani obsahu
mizete rychle generovat personalizované varianty obsahu zaloZené na riznych
uzivatelskych segmentech, preferencich nebo chovani. Experimentovanim
s ruznymi personalizaénimi strategiemi muzete identifikovat nejefektivnéjsi
pfistupy pro zapojeni jednotlivych uZzivateld a poskytovani pfizpisobenych

zazitku.

. Prizptisobeni se ménicim se trendim: Schopnost rychlé iterace

a experimentovani vam umoznuje zlstat agilni a pfizplisobovat se ménicim
se trendim a preferencim uzivateld. KdyzZ se objevi nova témata, klicova slova
nebo uzivatelské chovani, maZete rychle vytvofit obsah, ktery je s témito trendy
v souladu. Neustalym experimentovanim a vylepSovanim svého obsahu muzete
zustat relevantni a udrzet si konkurenéni vyhodu v neustéle se vyvijejici digitalni

krajiné.

. Nakladové efektivni experimentovani: Tradi¢ni experimentovani s obsahem

Casto vyzaduje znacny Cas a zdroje, protoze tvurci obsahu musi ruéné vyvijet
a testovat rizné varianty. S vyuzitim vzord Kontextového generovani obsahu
se vSak naklady na experimentovani vyrazné snizuji. Velké jazykové modely
dokazi rychle generovat varianty obsahu ve velkém méfitku, coz vam umoziuje

prozkoumat Sirokou skalu napadu a pfistupt bez vyznamnych naklada.

Pro maximalni vyuziti rychlé iterace a experimentovani je dulezité mit zavedeny dobte

definovany experimentalni ramec. Tento ramec by mél zahrnovat:

Jasné cile a hypotézy pro kazdy experiment

Vhodné metriky a sledovaci mechanismy pro méfeni vykonnosti obsahu
Strategie segmentace a cileni pro zajisténi, Ze relevantni varianty obsahu jsou
dorucovany spravnym uzivatelim

Analytické a reportovaci nastroje pro ziskavani poznatkl z experimentalnich dat

Proces pro zaclenéni poznatkl a optimalizaci do vasi obsahové strategie

Kontextualni generovani obsahu 181

Prijetim rychlé iterace a experimentovani miZete neustale vylepSovat a optimalizovat
svlj obsah, zajistovat, ze zistava poutavy, relevantni a efektivni pfi dosahovani cilt
vasi aplikace. Tento agilni pfistup k tvorbé obsahu vam umoziiuje byt o krok napted

a poskytovat vyjimecné uzivatelské zazitky.

Skalovatelnost a efektivita

S riistem aplikaci a rostouci poptavkou po personalizovaném obsahu umoziiuji vzory
kontextového generovani obsahu efektivni skdlovani tvorby obsahu. Velké jazykové
modely dokazi soucasné generovat obsah pro velky pocet uzivatelt a kontextd bez
nutnosti proporcionalniho navyseni lidskych zdroji. Tato Skalovatelnost umoziuje
aplikacim poskytovat personalizované zazitky rostouci uzivatelské zakladné bez

pretizeni jejich schopnosti tvorby obsahu.

Vsimnéte si, ze kontextové generovani obsahu lze efektivné vyuzit
k internacionalizaci vasi aplikace “za béhu”. Ve skute¢nosti je to pfesné to,
co jsem udélal pomoci mého Instant18n Gemu pro poskytovani Olympie ve

vice nez pul tuctu jazykd, i kdyZ jsme mladsi nez rok.

Al pohanéna lokalizace

Pokud mi dovolite se na chvili pochlubit, myslim, Ze moje knihovna Instant18n pro Rails
aplikace je prilomovym piikladem vzoru “Kontextového generovani obsahu” v akei,
ktery ukazuje transformacni potencial Al ve vyvoji aplikaci. Tento gem vyuziva silu
velkého jazykového modelu GPT od OpenAl k revoluci ve zpusobu, jakym se fesi

internacionalizace a lokalizace v Rails aplikacich.

Tradi¢né internacionalizace Rails aplikace zahrnuje ruéni definovani prekladovych klica

a poskytovani odpovidajicich prekladi pro kazdy podporovany jazyk. Tento proces

Kontextualni generovani obsahu 182

miZe byt ¢asové naro¢ny, naro¢ny na zdroje a nachylny k nekonzistencim. S gemem

Instant18n je vSak paradigma lokalizace zcela predefinovano.

Integraci velkého jazykového modelu umoziiuje gem Instant18n generovat pieklady
za béhu, zaloZené na kontextu a vyznamu textu. Misto spoléhani se na preddefinované
prekladové klice a statické preklady gem dynamicky preklada text pomoci sily Al Tento
pfistup nabizi nékolik kli¢ovych vyhod:

1. Bezproblémova lokalizace: S gemem Instant18n jiz vyvojafi nemusi rucné
definovat a udrzovat prekladové soubory pro kazdy podporovany jazyk. Gem
automaticky generuje preklady na zékladé poskytnutého textu a pozadovaného
cilového jazyka, coz ¢ini proces lokalizace bezproblémovym a plynulym.

2. Kontextova presnost: Al muze dostat dostatek kontextu k pochopeni nuanci
prekladaného textu. MtiZe brat v uvahu okolni kontext, idiomy a kulturni odkazy
k generovani prekladd, které jsou pfesné, ptirozené znéjici a kontextové vhodné.

3. Rozsahla jazykova podpora: Gem Instant18n vyuziva rozsahlé znalosti
a jazykové schopnosti GPT, umozriujici pfeklady do Siroké skaly jazyka. Od
béznych jazyki jako $panélstina a francouzstina az po obscurnéjsi nebo fiktivni
jazyky jako klingonstina a elfstina, gem zvladne Sirokou skalu prekladovych
pozadavka.

4. Flexibilita a kreativita: Gem piekracuje hranice tradi¢nich jazykovych preklad
a umoznuje kreativni a nekonvenéni moznosti lokalizace. Vyvojafi mohou
prekladat text do ruznych styld, dialektd nebo dokonce fiktivnich jazykd, coz
otevira nové moznosti pro jedine¢né uzivatelské zazitky a poutavy obsah.

5. Optimalizace vykonu: Gem Instant18n obsahuje mechanismy ukladani do
mezipaméti pro zlepseni vykonu a sniZeni reZie opakovanych prekladi. PreloZeny
text je ukladan do mezipaméti, coz umoznuje rychlé obslouzeni naslednych

pozadavki na stejny preklad bez nutnosti redundantnich API volani.

Gem Instant18n pfedstavuje silu vzoru “Kontextového generovani obsahu” vyuZzitim

ATk dynamickému generovani lokalizovaného obsahu. Ukazuje, jak Ize Al integrovat do

Kontextualni generovani obsahu 183

zékladni funkcionality Rails aplikace a transformovat zpisob, jakym vyvojafi ptistupuji

k internacionalizaci a lokalizaci.

Diky odstranéni potfeby manuélni spravy prekladd a umoznéni prekladt za béhu na
zékladé kontextu Setfi gem Instant18n vyvojafim vyznamné mnozstvi ¢asu a usili.
Umoziuje jim soustfedit se na budovani hlavnich funkei jejich aplikace a soucasné

zajistuje, Ze je lokalizace fesena plynule a presné.

Vyznam uZivatelského testovani a zpétné vazby

Na zavér méjte vzdy na paméti dalezitost uzivatelského testovani a zpétné vazby.
Je zasadni ovéfit, Zze kontextové generovani obsahu splituje ofekavani uzivateld
a je v souladu s cili aplikace. Pribézné iterujte a vylepsujte generovany obsah na
zékladé uzivatelskych postfehii a analytiky. Pokud generujete dynamicky obsah ve
velkém méritku, ktery by bylo nemozné manualné ovéfit vami a va$im tymem, zvazte
pfidani mechanismt zpétné vazby, které uzivatelim umozni nahlasit obsah, ktery je
zvlastni nebo nespravny, spolu s vysvétlenim pro¢. Tato cenné zpétna vazba mize byt
dokonce predana Al pracovnikovi, ktery je povéfen upravami komponenty, ktera obsah

vygenerovala!

Generativni uzivatelskeé rozhrani

Pozornost je v dnesni dobé natolik cenn4, ze efektivni zapojeni uzivateld nyni vyzaduje

softwarové zkusenosti, které jsou nejen bezproblémové a intuitivni, ale také vysoce
personalizované podle individualnich potfeb, preferenci a kontextt. V disledku toho
designéfi a vyvojafi Celi stale Castéji vyzvé vytvaret uzivatelska rozhrani, které se dokazi
pfizpUsobit a vyhovét jedine¢nym pozadavkim kazdého uZivatele ve velkém méritku.

Generativni uzivatelské rozhrani (GenUI) predstavuje skutecné revoluéni pfistup
k navrhu uZivatelského rozhrani, ktery vyuziva silu velkych jazykovych modelt
(LLMs) k vytvareni vysoce personalizovanych a dynamickych uzivatelskych zazitka
v realném case. Chtél jsem se ujistit, ze vam v této knize poskytnu alespon zakladni
informace o GenUI, protoze véfim, Ze jde o jednu z nejzelenéjsich pfilezitosti, ktera
v soucasnosti existuje v oblasti navrhu aplikaci a frameworkt. Jsem presvédcen,
Zze v tomto konkrétnim odvétvi vzniknou desitky ¢&i vice Uspé$nych komerénich

a open-source projektd.

Generativni uzivatelské rozhrani 185

V jadru GenUI kombinuje principy Kontextové generace obsahu s pokro¢ilymi
technikami umélé inteligence k dynamickému generovani prvka uzivatelského
rozhrani, jako jsou text, obrazky a rozlozeni, na zakladé hlubokého pochopeni kontextu,
preferenci a cili uzivatele. GenUI umoziluje designérim a vyvojafim vytvaret
rozhrani, ktera se pfizpisobuji a vyvijeji v reakci na interakce uzivatel, poskytujici

uroven personalizace, ktera byla dfive nedosazitelna.

GenUI predstavuje zasadni zménu v pfistupu k navrhu uzivatelského rozhrani. Misto
navrhovani pro masy nam GenUI umoziiuje navrhovat pro jednotlivce. Personalizovany
obsah a rozhrani maji potencial vytvaret uzivatelské zazitky, které rezonuji s kazdym

uzivatelem na hlubsi Grovni, zvysuji zapojeni, spokojenost a loajalitu.

Jako $pickova technologie je pfechod na GenUI plny koncepénich a praktickych vyzev.
Integrace umélé inteligence do procesu navrhu, zajisténi, aby generovana rozhrani byla
nejen personalizovand, ale také pouzitelna, pfistupna a v souladu s celkovou znackou
a uZzivatelskou zkuSenosti - to vSe jsou vyzvy, které ¢ini GenUI zéleZitosti pro mensinu,
nikoli vétsinu. Navic zapojeni umélé inteligence vyvolava otazky ohledné ochrany

soukromi, transparentnosti a dokonce i etickych disledkd.

Navzdory vyzvam maji personalizované zazitky ve velkém méfitku silu zcela
transformovat zplsob, jakym interagujeme s digitdlnimi produkty a sluzbami.
Otevira moznosti pro vytvareni inkluzivnich a pfistupnych rozhrani, ktera vyhovuji

riznorodym potiebam uZivatell bez ohledu na jejich schopnosti, zazemi ¢i preference.

V této kapitole prozkoumame koncept GenUI, pifi¢emZ se zaméfime na nékteré
definujici charakteristiky, klicové vyhody a potencialni vyzvy. Za¢neme nejzakladnéjsi
a nejdostupnéjsi formou GenUI: generovanim textového obsahu pro jinak tradi¢né

navrzena a implementovana uzivatelska rozhrani.

Generativni uzivatelské rozhrani 186

Generovani textl pro uZivatelska rozhrani

Textové prvky, které existuji v rozhrani vasi aplikace, jako jsou popisky formular,
napovédy a vysvétlujici texty, jsou typicky napevno zakédované do Sablon nebo
komponent UL coz poskytuje konzistentni, ale obecnou zkusenost pro viechny uzivatele.
Pomoci vzora kontextové generace obsahu mizete transformovat tyto statické prvky na

dynamické, kontextové uvédomélé a personalizované komponenty.

Personalizované formulare

Formulare jsou vSudypfitomnou soucasti webovych a mobilnich aplikaci a slouzi
jako hlavni prostfedek pro sbér uzivatelskych vstuptl. Tradi¢ni formulafe vsak casto
predstavuji obecnou a neosobni zkusenost se standardnimi popisky a poli, které nemusi
vzdy odpovidat specifickému kontextu nebo potfebdm uzivatele. UZivatelé s vétsi
pravdépodobnosti vyplni formulére, které se jim zdaji ptizptisobené jejich potfebam

a preferencim, coZ vede k vy$si mife konverze a spokojenosti uzivateld.

Je vsak dulezité najit rovnovahu mezi personalizaci a konzistenci. Zatimco pfizptisobeni
formulaft jednotlivym uzivatelim mutze byt pfinosné, je zasadni zachovat uréitou miru
znamosti a predvidatelnosti. Uzivatelé by méli byt stale schopni snadno rozpoznat

formulafe a orientovat se v nich, i kdyZ obsahuji personalizované prvky.

Zde je nékolik napadl na personalizované formuléafe pro inspiraci:

Kontextové navrhy poli

GenUI muze analyzovat pfedchozi interakce uzivatele, preference a data k poskytovani
inteligentnich navrhi poli jako predpovédi. Naptiklad pokud uZivatel jiz diive zadal
svou dorucovaci adresu, formuladf muize automaticky vyplnit pfislusna pole jejich
uloZzenymi informacemi. To nejen Setfi Cas, ale také ukazuje, Ze aplikace chape

a pamatuje si preference uzivatele.

© 0 N O O b W N =

W W W N DN DN DN DN DN DNDNDNDNDDND - 2~ B2))
N O © 0 N O O b W N~ O © 0 3 O O & w N~ O

Generativni uzivatelské rozhrani 187

Pockat moment, neni tahle technika néco, co by se dalo udélat i bez zapojeni AI?
Samoziejmé Ze ano, ale krasa fizeni takové funkcionality pomoci Al spociva ve dvou
vécech: 1) jak snadna mize byt implementace a 2) jak odolna mtze byt vic¢i zménam

a vyvoji vaseho Ul v prabéhu casu.

Pojdme si rychle sestavit sluzbu pro nas teoreticky systém zpracovani objednavek, ktera

se bude snazit proaktivné vyplnit spravnou dorucovaci adresu uzivatele.

class OrderShippingAddressSubscriber
include Raix::ChatCompletion

attr_accessor :order
delegate :customer, to: :order

DIRECTIVE = "You are a smart order processing assistant. Given the
customer's order history, guess the most likely shipping address
for the current order."

def order_created(order)
return unless order.pending? && order.shipping_address.blank?

self.order = order

transcript.clear

transcript << { system: DIRECTIVE }

transcript << { user: "Order History: #{order_history.to_json}" }
transcript << { user: "Current Order: #{order.to_json}" }

response = chat_completion
apply_predicted_shipping_address(order, response)
end

private

def apply_predicted_shipping_address(order, response)
extract the shipping address from the response.. .
.. .and assume there's some sort of live update of the address fields
order .update(shipping_address:)

end

33
34
35
36
37
38
39
40
41
42
43

© 0 N O U B W N =

NN N N N Bl s sl s
B W N PO O 0N 0 O b W N =

Generativni uzivatelské rozhrani

def order_history
customer .orders.successful .1imit(100) .map do |order|
{
date: order.date,
description: order.description,
shipping_address: order.shipping_address

end

end

end

Tento ptiklad je velmi zjednoduseny, ale mél by fungovat ve vétsiné ptipada. Zakladni

myslenkou je nechat Al hadat stejnym zplsobem jako clovék. Abych 1épe vysvétlil,

o ¢em mluvim, podivejme se na néjaka vzorova data:

Order History:

(

{"date": "2024-01-03", "description": "garden soil mix",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-01-15", "description": "hardcover fiction novels",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-01-22", "description": "baby diapers", "shipping_address":
"789 Suburb St, Quietville"},

{"date": "2024-02-01", "description": "organic vegetables",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-02-17", "description": "mystery thriller book set",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-02-25", "description": "baby wipes",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-03-05", "description": "flower seeds",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-03-20", "description": "biographies",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-03-30", "description": "baby formula",
"shipping_address": "789 Suburb St, Quietville"},

{"date": "2024-04-12", "description": "lawn fertilizer",
"shipping_address": "123 Country Lane, Rural Town"},

{"date": "2024-04-22", "description": "science fiction novels",
"shipping_address": "456 City Apt, Metroville"},

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

O© 0 N O O b W N =

[= = N
O OB W N

Generativni uzivatelské rozhrani 189

{"date": "2024-05-02", "description": "infant toys",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-05-14", "description": "outdoor grill",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-05-29", "description": "literary classics",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-06-11", "description": "baby clothes",
"shipping_address": "T789 Suburb St, Quietville"},
{"date": "2024-07-01", "description": "watering can",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-07-18", "description": "non-fiction essays",
"shipping_address": "456 City Apt, Metroville"},

{"date": "2024-07-28", "description": "baby bath items",
"shipping_address": "T789 Suburb St, Quietville"},

{"date": "2024-08-09", "description": "herb garden kit",
"shipping_address": "123 Country Lane, Rural Town"},
{"date": "2024-08-24", "description": "children's books",
"shipping_address": "456 City Apt, Metroville"}

Vsimli jste si toho vzoru v datech? Garantuji vam, Ze pro LLM je to hracka. Pojdme
si to ukazat a zeptame se GPT--4, jaka je nejpravdépodobnéjsi dorucovaci adresa pro

“teplomér”.

From the order history you've provided, it looks like the purchases are
generally clustered into three main types based on the shipping addresses:

123 Country Lane, Rural Town - This address often orders garden and
outdoor-related items like soil mix, vegetables, flower seeds, lawn
fertilizer, an outdoor grill, a watering can, and an herb garden kit.

456 City Apt, Metroville - This address tends to order various types of
books, indicating an interest in reading across genres like fiction,
thrillers, biographies, science fiction, literary classics, non-fiction

essays, and children's books.

789 Suburb St, Quietville - The purchases for this address are consistently
baby-related products, such as diapers, wipes, baby formula, infant toys,
baby clothes, and baby bath items.

17
18
19
20
21
22
23
24
25

O© 0 N O O b W N

[T =Y
a s W N » e

Generativni uzivatelské rozhrani 190

Given these patterns, a digital thermometer could potentially be a fit for
any of the addresses based on different needs: outdoor temperature tracking,
a tool for a passionate reader interested in science gadgets, or a health
tool for a baby. However, considering its common use in monitoring health,
especially for babies, it's most likely to be purchased by someone who's
already buying baby care products.

Therefore, the most likely shipping address for a digital thermometer, based
on the purchasing patterns, would be 789 Suburb St, Quietville.

Pokud si fikate, Ze je prehnané pouzivat na tento kol drahy model jako GPT--4,
mate pravdu! Vyzkousel jsem stejny prompt na Mistral 7B Instruct a ten vyprodukoval
nasledujici odpovéd rychlosti 75 tokenti za sekundu, a to za skromnou cenu 0,000218

USD.

Based on the given order history, it appears that the customer has received
orders for baby-related items (diapers, wipes, formula, clothes, bath items)
at the address "789 Suburb St, Quietville" and garden-related items (soil,
seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural
Town". The customer has also received books (fiction, non-fiction, literary
classics, mystery-thriller, science fiction, biographies, children's books)
at the address "456 City Apt, Metroville".

Given that the new order is for a "thermometer", which doesn't seem to fit
into any of the categories that the customer has previously ordered, it's
hard to accurately predict the shipping address based solely on the order
history. However, given the 50%-50% split between baby-related and
garden-related items, it could somewhat lean towards the Baby-related items
address ("789 Suburb St, Quietville"). But remember, this is an assumption
and cannot be definitively confirmed without more context or information.

Pro mnoho internetovych prodejcti rozhodné ano. A podle vieho budou naklady na
Al vypoclty jen klesat, zejména u poskytovateld hostingu open-source modelt v zavodu

0 nejnizsi ceny.

Pouzijte Sablonu promptu a StructuredIO spolu s Ohrani¢enim odpovédi

k optimalizaci tohoto typu chatové komunikace.

Generativni uzivatelské rozhrani 191

Adaptivni Fazeni poli

Poradi, ve kterém jsou formulafova pole prezentovana, muze vyrazné ovlivnit
uzivatelsky zazitek a miru dokonceni. S GenUI muZete dynamicky upravovat poradi
poli na zékladé kontextu uzivatele a dilezitosti kazdého pole. Naptiklad pokud uzivatel
vyplituje registracni formulaf pro fitness aplikaci, formulaf mize upfednostnit pole

souvisejici s jejich fitness cili a preferencemi, coz €¢ini proces relevantnéjsi a poutavéjsi.

Personalizované mikrotexty

Instrukéni text, chybové zpravy a dalsi mikrotexty spojené s formulafi lze také
personalizovat pomoci GenUIL Misto zobrazovani obecnych chybovych zprav jako
“Neplatna e-mailova adresa” mizete generovat uzite¢néjsi a kontextualni zpravy jako
“Prosim zadejte platnou e-mailovou adresu pro pfijeti potvrzeni vasi objednévky.
Tyto personalizované prvky mohou ucéinit praci s formulafem uZivatelsky privétivéjsi

a méné frustrujici.

Personalizovana validace

Podobné jako u Personalizovanych mikrotexti byste mohli pouzit Al k validaci
formulafe zptsobem, ktery puisobi magicky. Predstavte si, Ze nechate Al validovat

formulaf uzivatelského profilu a hledat potencialni chyby na sémantické urovni.

Generativni uzivatelské rozhrani 192

Create your account

Full name

Obie Fernandez

Email
obiefenandez@gmail.com m

Did you mean obiefernandez@gmail.com? Yes, update.

Country ©

<«

EE United States

Password

IR Y n

) Nice work. This is an excellent password.

obrazkem 9. Dokézete rozpoznat probihajici sémantickou validaci?

Postupné odkryvani

GenUI muze inteligentné urcit, ktera formulafova pole jsou nezbytna na zakladé
kontextu uzivatele a postupné odkryvat dalsi pole podle potfeby. Tato technika
postupného odkryvani pomaha snizit kognitivni zatéz a ¢ini proces vypliiovani

formulafe zvladnutelnéjsim. Naptiklad pokud se uZivatel prihlasuje k zdkladnimu

Generativni uzivatelské rozhrani 193

predplatnému, formuladf muze nejprve zobrazit pouze nezbytna pole a jak uZivatel
postupuje nebo vybird konkrétni moznosti, mohou byt dynamicky pfedstavena dalsi

relevantni pole.

Kontextové citlivy vysvétlujici text

Popisky se ¢asto pouzivaji k poskytnuti dodate¢nych informaci nebo vedeni uzivateld,
kdyz se pohybuji nad konkrétnimi prvky nebo s nimi interaguji. S pfistupem
“Generovani kontextového obsahu” muzete vytvafet popisky, které se pfizptsobuji
kontextu uzivatele a poskytuji relevantni informace. Napiiklad kdyz uzivatel zkouma
slozitou funkeci, popisek mtize nabidnout personalizované tipy nebo priklady zalozené

na jejich predchozich interakcich nebo trovni dovednosti.

Vysvétlujici text, jako jsou instrukce, popisy nebo pomocné zpravy, muze byt
dynamicky generovan na zakladé kontextu uzivatele. Misto prezentace obecnych
vysvétleni mtzete pouzit LLM k generovani textu, ktery je prizpisoben specifickym
potfebam nebo otazkam uzivatele. Naptiklad pokud ma uZzivatel potiZze s konkrétnim
krokem v procesu, vysvétlujici text maze poskytnout personalizované vedeni nebo tipy

pro feseni problémi.

Mikrotexty oznacuji malé kousky textu, které provazeji uzivatele vasi aplikaci, jako
jsou popisky tlacitek, chybové zpravy nebo potvrzovaci vyzvy. Aplikovanim pfistupu
Generovani kontextového obsahu na mikrotexty muzete vytvorit adaptivni U, které
reaguje na akce uZivatele a poskytuje relevantni a uzitetny text. Naptiklad kdyz
se uzivatel chystd provést kritickou akei, potvrzovaci vyzva mize byt dynamicky

generovana tak, aby poskytla jasnou a personalizovanou zpravu.

Personalizovany vysvétlujici text a popisky mohou vyrazné vylepsit proces onboardingu
novych uzivateld. Poskytovanim kontextové specifického vedeni a pfiklad mizete
uzivatelim pomoci rychle porozumét aplikaci a navigovat v ni, coz snizuje kfivku uceni

a zvysuje adopci.

Generativni uzivatelské rozhrani 194

Dynamické a kontextoveé citlivé prvky rozhrani mohou také zpusobit, Ze aplikace ptisobi
intuitivnéji a poutavéji. Uzivatelé jsou vice naklonéni interakei a zkoumani funkci, kdyz

je doprovodny text piizptisoben jejich specifickym potfebam a zajmim.

Dosud jsme se zabyvali niapady na vylepSeni stavajicich paradigmat uzivatelského
rozhrani pomoci Al, ale co kdybychom radikélnéji pfehodnotili zptisob, jakym jsou

uzivatelské rozhrani navrhovana a implementovana?

Definice generativniho Ul

Na rozdil od tradiéniho navrhu Ul kde designéfi vytvareji pevna, staticka rozhrani,
GenUI naznacuje budoucnost, ve které nas software nabidne flexibilni, personalizované
zéazitky, které se mohou vyvijet a prizpisobovat v realném case. Pokazdé, kdyz
pouzivame konverzacni rozhrani fizené Al, umoziiujeme Al pfizplsobit se konkrétnim
potfebam uzivatele. GenUI posouva véci o krok dale tim, Zze aplikuje tuto uroven

ptizpusobivosti na vizudlni rozhrani softwaru.

Davodem, pro¢ je dnes mozné experimentovat s myslenkami GenUI, je to, Ze
velké jazykové modely jiz rozumi programovani a jejich zakladni znalosti zahrnuji
technologie a frameworky Ul Otazkou tedy je, zda lze velké jazykové modely vyuzit
ke generovani prvki UL jako jsou text, obrazky, layouty a dokonce cela rozhrani, ktera
jsou prizpusobena kazdému jednotlivému uZivateli. Model by mohl byt instruovan,
aby bral v dvahu rizné faktory, jako jsou predchozi interakce uzivatele, uvedené
preference, demografické informace a aktualni kontext pouziti, k vytvoieni vysoce

personalizovanych a relevantnich rozhrani.

GenUI se od tradicniho navrhu uZivatelského rozhrani lisi v nékolika kli¢ovych

aspektech:

Generativni uzivatelské rozhrani 195

1. Dynamické a adaptivni: Tradiéni navrh Ul zahrnuje vytvafeni pevnych,
statickych rozhrani, kterd zustavaji stejna pro vSechny uzivatele. Naproti tomu
GenUI umozriuje rozhrani, ktera se mohou dynamicky pfizpiisobovat a ménit
na zakladé potfeb uzivatele a kontextu. To znamen4, Ze stejna aplikace muze
prezentovat rizna rozhrani riznym uzivatelim nebo dokonce stejnému uzivateli
v ruznych situacich.

2. Personalizace ve velkém méfitku: U tradicniho designu je vytvareni
personalizovanych zazitki pro kazdého wuzivatele casto nepraktické kvili
casu a zdrojim, které by to vyzadovalo. GenUI naopak umoziiuje personalizaci
ve velkém méfitku. Vyuzitim AI mohou designéfi vytvaret rozhrani, ktera se
automaticky pfizptisobuji jedine¢nym potfebam a preferencim kazdého uzivatele,
aniz by museli ruéné navrhovat a vyvijet samostatna rozhrani pro kazdy segment
uzivateld.

3. Zaméfeni na vysledky: Tradi¢ni navrh Ul se ¢asto zaméfuje na vytvareni
vizualné pfitazlivych a funk¢nich rozhrani. Zatimco tyto aspekty jsou dulezité
i v GenUI, primarni zameéfeni se presouva k dosahovani pozadovanych
uzivatelskych vysledk. GenUI se snazi vytvafet rozhrani, ktera jsou
optimalizovana pro specifické cile a tkoly kazdého wuzivatele, pfi¢emz
uprednostiiuje pouzitelnost a efektivitu pred Cisté estetickymi uvahami.

4. Kontinualni uceni a zlepSovani: Systémy GenUI se mohou pribézné ucit
a zlepsovat na zakladé interakei uzivatelti a zpétné vazby. Kdyz uzivatelé pracuji
s generovanymi rozhranimi, Al modely mohou shromazdovat data o chovani
uzivateld, preferencich a vysledcich a vyuzivat tyto informace k vylepSovani
a optimalizaci budoucich generaci rozhrani. Tento iterativni proces uceni
umoziuje systémim GenUI stavat se postupem Casu stale efektivnéjsimi v plnéni

potieb uzivateld.

Je dilezité poznamenat, ze GenUI neni totéz co nastroje pro design s podporou Al
jako jsou ty, které poskytuji navrhy nebo automatizuji urcité designové tukoly. Zatimco

tyto nastroje mohou byt uZitetné pii zefektivnéni procesu navrhu, stale spoléhaji na

Generativni uzivatelské rozhrani 196

designéry, ktefi ¢ini kone¢na rozhodnuti a vytvareji staticka rozhrani. GenUI naopak
zahrnuje aktivnéjsi roli Al systému v samotném generovani a pfizptisobovani rozhrani

na zakladé uzivatelskych dat a kontextu.

GenUI predstavuje vyznamny posun v tom, jak pfistupujeme k navrhu uzivatelského
rozhrani, odklon od univerzalnich feSeni smérem k vysoce personalizovanym,
adaptivnim zazitkim. Vyuzitim sily AI ma GenUI potencial revolucionizovat zpusob,
jakym interagujeme s digitalnimi produkty a sluzbami, vytvarenim rozhrani, ktera jsou

intuitivnéjsi, poutavéjsi a efektivnéjsi pro kazdého jednotlivého uzivatele.

Priklad

Pro ilustraci konceptu GenUI uvazujme hypotetickou fitness aplikaci nazvanou
“FitAl”. Tato aplikace si klade za cil poskytovat personalizované tréninkové plany
a vyzivové rady uzivatelim na zakladé jejich individualnich cila, drovné fyzické

kondice a preferenci.

V tradi¢nim pfistupu k nadvrhu UI by FitAl mohla mit pevnou sadu obrazovek a prvku,
které jsou stejné pro vsechny uzivatele. S GenUI by se vSak rozhrani aplikace mohlo

dynamicky pfizptisobovat jedine¢nym potfebam a kontextu kazdého uzivatele.

Tento pfistup je v roce 2024 pomérné obtizné si predstavit implementovat a mozna by

ani nemél odpovidajici navratnost investic, ale je mozny.

Takto by to mohlo fungovat:
1. Onboarding;:

» Misto standardniho dotazniku pouziva FitAl konverza¢ni Al ke
shromazdovani informaci o cilech uzivatele, soucasné urovni fyzické

kondice a preferencich.

Generativni uzivatelské rozhrani 197

« Na zakladé této Gvodni interakce AI generuje personalizované rozlozeni
dashboardu, zvyraziujici funkce a informace nejrelevantnéjsi pro cile
uzivatele.

+ Soucasna Al technologie by mohla mit k dispozici vybér komponent
obrazovky pro sestaveni personalizovaného dashboardu.

« Budouci Al technologie by mohla prevzit roli zkuSeného Ul designéra

a skute¢né vytvaret dashboard od zdkladu.

2. Planovac tréninkiu:

« Rozhrani planovace tréninkd je upravovano umélou inteligenci tak, aby

pfesné odpovidalo drovni zkuSenosti uzivatele a dostupnému vybaveni.

« Pro zacateénika bez vybaveni muzZe zobrazovat jednoduché cviky s vlastni
vahou téla s podrobnymi instrukcemi a videi.

» Pro pokrocilého uzivatele s pristupem do posilovny muze zobrazovat

vvvvvv

slozitéjsi rutiny s mensim mnozstvim vysvétlujiciho obsahu.
« Obsah planovade tréninkd neni jen filtrovan z velké nadmnoziny. Muze
byt generovan za béhu na zikladé znalostni baze, ktera je dotazovana

s kontextem zahrnujicim v3e, co je o uzivateli znamo.

3. Sledovani pokroku:

+ Rozhrani pro sledovani pokroku se vyviji na zakladé cild uzivatele a vzorct
jeho zapojeni.
» Pokud se uZivatel primarné zaméfuje na hubnuti, rozhrani mtze vyrazné

zobrazovat graf trendu vahy a statistiky spalovani kalorii.

Pro uzivatele budujiciho svaly mize zdaraznovat narust sily a zmény télesné

kompozice.

« Ul mize tuto ¢ast aplikace pfizpisobit skutecnému pokroku uzivatele. Pokud
se pokrok na urcitou dobu zastavi, aplikace se mize pfepnout do rezimu,
kdy se snazi uzivatele pfimét k odhaleni divodu této prekazky, aby je mohla

zmirnit.

Generativni uzivatelské rozhrani 198

4. Vyzivové poradenstvi:

» Sekce vyzivy se prizpusobuje stravovacim preferencim a omezenim
uZivatele.

+ Pro veganského uzivatele miize zobrazovat rostlinné navrhy jidel a zdroje

bilkovin.

« Pro uzivatele s nesnasenlivosti lepku by automaticky filtrovalo potraviny

obsahujici lepek z doporuceni.

+ 1 zde neni obsah Cerpan z masivni nadmnoziny dat o jidle, ktera plati pro
vSechny uzivatele, ale je syntetizovan ze znalostni baze obsahujici informace

prizptsobitelné konkrétni situaci a omezenim uzivatele.

+ Napriklad recepty jsou generovany se specifikacemi ingredienci, které
odpovidaji neustale se ménicim kalorickym potfebam uZivatele v zavislosti

na vyvoji jeho fyzické kondice a télesnych statistik.

5. Motiva¢ni prvky:

» Motivacni obsah aplikace a notifikace jsou personalizovany na zakladé¢ typu
osobnosti uZivatele a reakce na riizné motivacni strategie.
« Nektefi uzivatelé mohou dostavat povzbuzujici zpravy, zatimco jini ziskavaji

vice datové orientovanou zpétnou vazbu.

V tomto prikladu GenUI umoziiuje aplikaci FitAl vytvofit vysoce pfizpusobenou
zkuSenost pro kazdého uzivatele, potencidlné zvysujici zapojeni, spokojenost
a pravdépodobnost dosazeni fitness cilii. Prvky rozhrani, obsah a dokonce i “osobnost”
aplikace se prizpiisobuji tak, aby co nejlépe slouzily potiebam a preferencim kazdého

jednotlivého uzivatele.

Posun k designu orientovanému na vysledky

GenUI predstavuje zasadni posun v pfistupu k navrhu uzivatelského rozhrani, prechod
od zaméfeni na vytvareni specifickych prvka rozhrani k vice holistickému pfistupu

orientovanému na vysledky. Tento posun ma nékolik dulezitych dusledku:

Generativni uzivatelské rozhrani 199

1. Zamérfeni na cile uzivatelu:

« Designéfi budou muset hloubéji pfemyslet o cilech uZivatela
a pozadovanych vysledcich spise nez o konkrétnich komponentach
rozhrani.

+ Duraz bude kladen na vytvareni systémii, které mohou generovat rozhrani
pomaéhajici uzivatelim efektivné dosahovat jejich cili.

« Objevi se nové Ul frameworky, které poskytnou Al-based designériim
nastroje potfebné ke generovani uzivatelskych zkusSenosti za béhu a od

zdkladii namisto pfedem definovanych specifikaci obrazovek.

2. Ménici se role designéri:

+ Designéfi prejdou od vytvareni fixnich layoutdi k definovani pravidel,
omezeni a pokynu pro Al systémy, které se jimi budou fidit pfi generovani
rozhrani.

+ Budou muset rozvijet dovednosti v oblastech jako je analyza dat, inZenyrstvi

Al prompti a systémové mysleni, aby mohli efektivné vést GenUI systémy.

3. Dulezitost uzivatelského vyzkumu:

+ Uzivatelsky vyzkum se stava jesté kriti¢téjsim v kontextu GenUI, protoze
designéfi potfebuji porozumét nejen preferencim uzivateld, ale také tomu,
jak se tyto preference a potfeby méni v riiznych kontextech.

+ Kontinualni uzivatelské testovani a zpétnovazebni smycky budou zasadni

pro zdokonaleni a zlepseni schopnosti Al generovat efektivni rozhrani.

4. Design pro variabilitu:

« Misto vytvéafeni jediného “perfektniho” rozhrani budou designéfi muset
zvazovat vice moznych variant a zajistit, Ze systém dokaze generovat vhodna

rozhrani pro rizné potieby uzivateld.

Generativni uzivatelské rozhrani 200

« To zahrnuje design pro krajni ptipady a zajisténi, 7e generovana rozhrani
zachovavaji pouzitelnost a pfistupnost napfi¢ riznymi konfiguracemi.

« Diferenciace produktt ziskdva nové dimenze zahrnujici rozdilné pohledy
na uzivatelskou psychologii a vyuzivani jedineénych datovych sad

a znalostnich bazi nedostupnych konkurenci.

Vyzvy a ivahy

Zatimco GenUI nabizi vzrusujici moznosti, pfinasi také nékolik vyzev a aspektl

k zamysleni:
1. Technickd omezeni:

« Soucasna Al technologie, ackoli pokrocila, mé stile omezeni v porozuméni
komplexnim zdmérim uZivateld a generovani skute¢né kontextové
uvédomélych rozhrani.

+ Problémy s vykonem souvisejici s generovanim prvkd rozhrani v realném

Case, zejména na méné vykonnych zatizenich.

2. Pozadavky na data:

« V zavislosti na pfipadu pouziti mohou efektivni systémy GenUI vyzadovat
vyznamné mnozstvi uzivatelskych dat pro generovani personalizovanych
rozhrani.

» Vyzvy v etickém ziskavani autentickych uzivatelskych dat vyvolavaji obavy
ohledné ochrany osobnich udaji a bezpefnosti, stejné jako potencialni

predpojatosti v datech pouZzivanych k trénovani modeli GenUL

3. Pouzitelnost a konzistence:

Generativni uzivatelské rozhrani 201

- Pfinejmensim dokud se tato praxe nestane béZnou, aplikace s neustale
se ménicimi rozhranimi mize vést k problémtim s pouzZitelnosti, protoze
uzivatelé mohou mit potiZze s nalezenim znamych prvkd nebo efektivni
navigaci.

 Klicové bude najit rovnovdhu mezi personalizaci a zachovanim

konzistentniho, nauéitelného rozhrani.
4. Prili$né spoléhani na UL

» Existuje riziko nadmeérného delegovani designovych rozhodnuti na systémy
Ul, coz muiZe potencialné vést k neinspirativnim, problematickym nebo
jednoduse nefunkénim volbam rozhrani.

» Lidsky dohled a moznost pfepsat Al generované navrhy zistanou v dohledné

budoucnosti dulezité.

5. Obavy ohledné pristupnosti:

« Zajisténi, aby dynamicky generovana rozhrani ziistala pfistupna uzivatelim
s hendikepem, predstavuje zcela nové vyzvy, coz je znepokojujici vzhledem
k nizké urovni dodrzovani pfistupnosti u typickych systémi.

+ Na druhou stranu, Al designéfi mohou byt implementovani s vestavenou
péci o pristupnost a schopnostmi vytvaret pfistupna rozhrani za béhu stejné
jako vytvateji Ul pro uzivatele bez hendikept.

« V kazdém pripadé by systémy GenUI mély byt navrzeny s robustnimi

smérnicemi pro pristupnost a testovacimi procesy.

6. Duvéra uzivatela a transparentnost:

« Uzivatelé se mohou citit nepohodlné s rozhranimi, ktera “védi pfilis mnoho”

o nich nebo se méni zptsoby, kterym nerozumi.
+ Pro budovani duvéry uzivateld bude duilezité poskytovat transparentnost

ohledné toho, jak a pro¢ jsou rozhrani personalizovana.

Generativni uzivatelské rozhrani 202

Budouci vyhled a pfileZitosti

Budoucnost Generativniho UI (GenUI) skyta obrovsky pfislib pro revoluci ve zpiisobu,
jakym interagujeme s digitdlnimi produkty a sluzbami. Jak se tato technologie
nadale vyviji, mizeme ocekavat zasadni zménu v tom, jak jsou uzivatelskd rozhrani
navrhovana, implementovana a pouzivana. Myslim, Ze GenUI je fenomén, ktery
kone¢né posune nas software do oblasti toho, co je nyni povazovano za védeckou

fantastiku.

Jednou z nejzajimavéjsich vyhlidek GenUI je jeho potencial zlepsit pristupnost
v méfitku, které jde nad ramec pouhého zajisténi, aby lidé s vaznym hendikepem
nebyli zcela vylouceni z pouzivani vaseho softwaru. Automatickym pfizpiisobovanim
rozhrani individualnim potfebam uzivateld by GenUI mohlo uéinit digitalni zkusenosti
inkluzivnéjsi nez kdy predtim. Predstavte si rozhrani, ktera se plynule ptizpisobuji
tak, aby poskytovala vétsi text pro mladsi nebo zrakové postizené uzivatele nebo
zjednodusena rozloZzeni pro ty s kognitivnimi poruchami, to ve bez nutnosti manuéalni
konfigurace nebo samostatnych “pfistupnych” verzi aplikaci.

Schopnosti personalizace GenUI pravdépodobné povedou ke zvySeni uzivatelské
se rozhrani stavaji vice naladéna na individualni preference a chovani, uzivatelé budou
povazovat digitalni zkuSenosti za intuitivnéjsi a pfijemnéjsi, coz potencialné povede
k hlubsim a smysluplnéjsim interakcim s technologii.

GenUI ma také potencial transformovat proces zaskolovani novych uzivatel.
Vytvafenim intuitivnich, personalizovanych zku$enosti pro nové uzivatele, které se
rychle prizplsobuji trovni odbornosti kazdého uzivatele, by GenUI mohlo vyrazné
snizit kfivku uceni spojenou s novymi aplikacemi. To by mohlo vést k rychlejsim miram

osvojeni a zvySené duvére uzivatel pfi zkoumani novych funkci a funkcionalit.

Dalsi vzrusujici moznosti je schopnost GenUI udrzovat konzistentni uzivatelskou

zkuSenost napfi¢ ruznymi zafizenimi a platformami pfi optimalizaci pro kazdy

Generativni uzivatelské rozhrani 203

specificky kontext pouziti. To by mohlo vyfesit dlouhodobou vyzvu poskytovani
koherentnich zkuSenosti napfi¢ stile vice fragmentovanou krajinou zafizeni, od
chytrych telefond a tabletl po stolni pocitace a vznikajici technologie jako bryle pro

roz§ifenou realitu.

Datové fizenad povaha GenUI otevira piilezitosti pro rychlou iteraci a zlepSovani
v navrhu UL Shromazdovanim dat v realném case o tom, jak uzivatelé interaguji
s generovanymi rozhranimi, mohou designéfi a vyvojari ziskat bezprecedentni vhled
do uZzivatelského chovani a preferenci. Tato zpétna vazba by mohla vést k neustalému
zlepSovani navrhu Ul fizenému skuteénymi vzorci pouzivani spise nez predpoklady

nebo omezenym uzivatelskym testovanim.

Pro pfipravu na tuto zménu budou designéfi muset rozvijet své dovednosti a zptsob
mysleni. Zaméfeni se pfesune od vytvareni fixnich layoutd k vyvoji komplexnich
designovych systémii a smérnic, které mohou informovat generovani rozhrani fizené Al
Designéti budou muset rozvijet hluboké porozumeéni datové analyze, Al technologiim

a systémovému mysleni, aby efektivné vedli systémy GenUL

Navic, jak GenUI stira hranice mezi designem a technologii, designéfi budou muset
uzeji spolupracovat s vyvojari a datovymi védci. Tento interdisciplinarni pfistup bude
klicovy pii vytvareni systémt GenU]I, které jsou nejen vizualné pfitazlivé a uzivatelsky

privétivé, ale také technicky robustni a eticky zodpovédné.

Etické diisledky GenUI se dostanou do popfedi s tim, jak bude technologie dozravat.
Designéti budou hrat klicovou roli pfi vyvoji raimct pro odpovédné vyuziti Al v navrhu
rozhrani, zajistujici, Ze personalizace zlepsi uzivatelské zkusenosti bez kompromitovani
soukromi ¢i neetické manipulace s chovanim uzivateld.

Pfi pohledu do budoucnosti predstavuje GenUI jak vzrusujici piilezitosti, tak vyznamné
pro uzivatele po celém svété. Ackoli to bude vyZadovat, aby si designéfi osvojili
nové dovednosti a ptizptsobili se, nabizi to také bezprecedentni pfilezitost formovat

budoucnost interakce ¢lovéka s pocitatem zasadnim a smysluplnym zptisobem. Cesta

Generativni uzivatelské rozhrani 204

k plné realizovanym systémim GenUI bude bezpochyby slozit4, ale potencialni pfinosy
v podobé vylepsenych uzivatelskych zkuSenosti a digitalni piistupnosti z ni €ini

budoucnost, o kterou stoji za to usilovat.

Inteligentni orchestrace
pracovnich postuput

V oblasti vyvoje aplikaci hraji pracovni postupy klicovou roli pfi definovéni zptsobu

strukturovani a provadéni ukold, procest a uzivatelskych interakei. S rostouci slozitosti
aplikaci a zvySujicimi se ocekavanimi uzivatelll se stava stale zfejméjsi potieba
inteligentni a adaptivni orchestrace pracovnich postup.

Pristup “Inteligentni orchestrace pracovnich postupt” se zaméfuje na vyuziti
komponent umélé inteligence k dynamické orchestraci a optimalizaci komplexnich
pracovnich postupt v aplikacich. Cilem je vytvaret aplikace, které jsou efektivnéjsi,

responzivnéjsi a prizptsobivéjsi vzhledem k datlim a kontextu v readlném case.

V této kapitole prozkouméme kli¢ové principy a vzory, které tvori zaklad pfistupu

inteligentni orchestrace pracovnich postupti. Budeme se zabyvat tim, jak lze vyuzit

Inteligentni orchestrace pracovnich postupt 206

umélou inteligenci k inteligentnim® smérovani tkolt, automatizaci rozhodovani
a dynamickému pfizplisobovani pracovnich postupti na zakladé ruznych faktord, jako
je chovani uzivateld, vykon systému a obchodni pravidla. Prostfednictvim praktickych
prikladii a scénait z realného svéta ukazeme transformacni potencial umélé inteligence

pri zefektiviiovani a optimalizaci pracovnich postupt aplikaci.

At uz vytvarite podnikové aplikace se slozitymi obchodnimi procesy nebo aplikace
zaméfené na spotfebitele s dynamickymi uzivatelskymi cestami, vzory a techniky
diskutované v této kapitole vam poskytnou znalosti a nastroje potfebné k vytvareni
inteligentnich a efektivnich pracovnich postupt, které zlepsuji celkovy uzivatelsky

zéazitek a pfinaseji obchodni hodnotu.

Obchodni potreba

Tradi¢ni pfistupy k fizeni pracovnich postupt ¢asto spoléhaji na predem definovana
pravidla a statické rozhodovaci stromy, které mohou byt rigidni, neflexibilni

a neschopné vyporadat se s dynamickou povahou modernich aplikaci.

Uvazujme scénaf, kdy e-commerce aplikace potfebuje zpracovat komplexni proces
vyfizeni objednavky. Pracovni postup miize zahrnovat nékolik kroki, jako je validace
objednavky, kontrola skladu, zpracovani platby, expedice a oznameni zakaznikim.
Kazdy krok muze mit vlastni sadu pravidel, zavislosti, externi integrace a mechanismy
pro zpracovani vyjimek. Ruéni sprava takového pracovniho postupu nebo jeho fizeni
pomoci pevné nakédované logiky se muze rychle stat tézkopadnou, nachylnou k chybam

a obtizné udrzovatelnou.

Navic, jak aplikace roste a pocet soucasné pripojenych uzivateld se zvysuje, pracovni
postup se muzZe potfebovat pfizpisobovat a optimalizovat na zékladé dat v redlném
¢ase a vykonu systému. Naptiklad béhem obdobi $pi¢kového provozu muze aplikace
potfebovat dynamicky upravit pracovni postup tak, aby upfednostnila urcité tkoly,

efektivné alokovala zdroje a zajistila plynuly uzivatelsky zazitek.

Inteligentni orchestrace pracovnich postupt 207

Zde ptichazi ke slovu pfistup “Inteligentni orchestrace pracovnich postupt”. Vyuzitim
komponent umélé inteligence mohou vyvojafi vytvaret pracovni postupy, které jsou
inteligentni, adaptivni a samo-optimalizujici. Uméla inteligence muiiZe analyzovat velké
mnozstvi dat, ucit se z minulych zkusenosti a ¢init informovana rozhodnuti v redlném

Case pro efektivni orchestraci pracovniho postupu.

Klicové vyhody

1. Zvysena efektivita: Uméla inteligence mtze optimalizovat pfidélovani dkold,
vyuziti zdroji a provadéni pracovnich postupti, coz vede k rychlejsim dobam
zpracovani a zlepsené celkové efektivité.

2. Adaptabilita: Pracovni postupy fizené umélou inteligenci se mohou dynamicky
ptizptisobovat ménicim se podminkam, jako jsou vykyvy v poptavce uzivateld,
vykonu systému nebo obchodnich pozadavcich, coz zajistuje, ze aplikace zustava
responzivni a odolna.

3. Automatizované rozhodovani: Uméla inteligence mize automatizovat slozité
rozhodovaci procesy v ramci pracovniho postupu, ¢imZ sniZzuje potfebu
manuélnich zasaht a minimalizuje riziko lidskych chyb.

4. Personalizace: Uméla inteligence muize analyzovat chovani uZzivatelt, preference
a kontext pro personalizaci pracovniho postupu a poskytovéni ptizplisobenych
z4zitkl jednotlivym uZivatelim.

5. Skalovatelnost: Pracovni postupy pohdnéné umélou inteligenci se mohou plynule
skalovat pro zvladani rostouciho objemu dat a uzivatelskych interakei, aniz by byl

ohrozen vykon nebo spolehlivost.

V nasledujicich castech prozkouméme klicové vzory a techniky, které umoziuji
implementaci inteligentnich pracovnich postupt, a ukazeme piiklady z realného svéta,

jak uméla inteligence transformuje fizeni pracovnich postupt v modernich aplikacich.

© 0 N O O b W N =

[T ==Y
a s W N r e

Inteligentni orchestrace pracovnich postupt 208

Klicové vzory

Pro implementaci inteligentni orchestrace pracovnich postupii v aplikacich mohou
vyvojati vyuzit nékolik klicovych vzorl, které vyuzivaji silu umélé inteligence.
Tyto vzory poskytuji strukturovany pfistup k navrhu a fizeni pracovnich postupt,
umoznujici aplikacim pfizptiisobovat se, optimalizovat a automatizovat procesy na
zakladé dat a kontextu v realném case. Pojdme prozkoumat nékteré ze zakladnich vzora

v inteligentni orchestraci pracovnich postupt.

Dynamické smérovani uloh

Tento vzor zahrnuje vyuziti umélé inteligence k inteligentnimu smérovani tloh v ramci
pracovniho postupu na zakladé rtznych faktord, jako je priorita tlohy, dostupnost
zdroji a vykon systému. Algoritmy umélé inteligence mohou analyzovat charakteristiky
kazdé ulohy, zvazit aktualni stav systému a ¢init informovana rozhodnuti pro pfifazeni
uloh nejvhodnéjsim zdrojim nebo cestim zpracovani. Dynamické smérovani tloh
zajistuje efektivni distribuci a provadéni loh, optimalizujici celkovy vykon pracovniho

postupu.

class TaskRouter
include Raix::ChatCompletion

include Raix::FunctionDispatch
attr_accessor :task

list of functions that can be called by the AI entirely at its

discretion depending on the task received

function :analyze_task_priority do
TaskPriorityAnalyzer .perform(task)
end

function :check_resource_availability, # ..

function :assess_system_performance, # ..

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Inteligentni orchestrace pracovnich postupt 209

function :assign_task_to_resource, # ...

DIRECTIVE = "You are a task router, responsible for intelligently
assigning tasks to available resources based on priority, resource
availability, and system performance..."

def initialize(task)
self.task = task
transcript << { system: DIRECTIVE }
transcript << { user: task.to_json }
end

def perform
while task.unassigned?
chat_completion

todo: add max loop counter and break
end

capture the transcript for later analysis
task.update(routing_transcript: transcript)
end
end

Vsimnéte si smycky vytvofené vyrazem while na fadku 29, kterd pokracuje
v dotazovani Al, dokud neni tkol pfifazen. Na radku 35 ukladame prepis tkolu pro

pozdéjsi analyzu a ladéni, pokud to bude nutné.

Kontextové rozhodovani

Mizete pouzit velmi podobny kod k vytvareni kontextové uvédomeélych rozhodnuti
v ramci pracovniho postupu. Analyzovanim relevantnich datovych bodu, jako
jsou uzivatelské preference, historické vzory a vstupy v realném case, mohou
Al komponenty urcit nejvhodnéjsi postup v kazdém rozhodovacim bodé pracovniho
postupu. Prizpiisobte chovani vaSeho pracovniho postupu na zakladé specifického
kontextu kazdého uZivatele nebo scénafe, poskytujice personalizované a optimalizované

zkuSenosti.

Inteligentni orchestrace pracovnich postupt 210

Adaptivni kompozice pracovnich postupt

Tento vzor se zaméfuje na dynamické sestavovani a Upravu pracovnich postupil
na zakladé ménicich se pozadavki nebo podminek. Al miZe analyzovat soudasny
stav pracovniho postupu, identifikovat izka mista nebo neefektivity a automaticky
upravit strukturu pracovniho postupu pro optimalizaci vykonu. Adaptivni kompozice
pracovnich postupti umoziiuje aplikacim neustale se vyvijet a zlepsovat své procesy

bez nutnosti manuélniho zasahu.

Zpracovani a zotaveni z vyjimek

Zpracovani a zotaveni z vyjimek jsou kritické aspekty inteligentni orchestrace
pracovnich postupll. Pfi praci s AI komponentami a komplexnimi pracovnimi
postupy je zasadni predvidat a elegantné zpracovavat vyjimky pro zajisténi stability

a spolehlivosti systému.

Zde jsou kli¢ové uvahy a techniky pro zpracovani a zotaveni z vyjimek v inteligentnich

pracovnich postupech:

1. Propagace vyjimek: Implementujte konzistentni pfistup pro propagaci
vyjimek napifi¢ komponentami pracovniho postupu. Kdyz dojde k vyjimce
uvnitt komponenty, méla by byt zachycena, zaznamendna a propagovana do
orchestratoru nebo samostatné komponenty zodpovédné za zpracovani vyjimek.
Myslenkou je centralizovat zpracovani vyjimek a zabranit tichému pohlcovani
vyjimek, stejné jako otevfit moznosti pro Inteligentni zpracovani chyb.

2. Mechanismy opakovani: Mechanismy opakovani pomahaji zlepsit odolnost
pracovniho postupu a elegantné zvladat pfechodna selhani. Rozhodné se snazte
implementovat mechanismy opakovani pro pfechodné nebo obnovitelné vyjimky,
jako je sifové pfipojeni nebo nedostupnost zdrojt, které lze automaticky znovu

zkusit po stanovené prodlevé. Mit Al-fizeny orchestrator nebo zpracovatel

Inteligentni orchestrace pracovnich postupt 211

vyjimek znamena, Ze vaSe strategie opakovani nemusi byt mechanické povahy,
spoléhajici se na pevné algoritmy jako exponencialni odstup. Muzete ponechat
zpracovéani opakovani na “uvazeni” Al komponenty zodpovédné za rozhodovani
o tom, jak vyjimku zpracovat.

3. Zalozni strategie: Pokud Al komponenta selZe v poskytnuti platné odpovédi
nebo narazi na chybu—bézny jev vzhledem k jeji prikopnické povaze—méjte
ptipraven zalozni mechanismus, ktery zajisti pokra¢ovani pracovniho postupu. To
miize zahrnovat pouziti vychozich hodnot, alternativnich algoritm nebo Clovéka
v procesu pro rozhodovani a udrzeni pracovniho postupu v chodu.

4. Kompenzaéni akce: Pokyny orchestratoru by mély zahrnovat instrukee
o kompenzacnich akcich pro zpracovani vyjimek, které nelze vyresit automaticky.
Kompenzaéni akce jsou kroky podniknuté k vraceni nebo zmirnéni ucinka
neuspésné operace. Naptiklad pokud selze krok zpracovani platby, kompenzaéni
akce by mohla byt vraceni transakce a upozornéni uzivatele. Kompenzaé¢ni akce
pomahaji udrzovat konzistenci dat a integritu v pfipadé vyjimek.

5. Monitorovania upozoriiovani na vyjimky: Nastavte mechanismy monitorovani
a upozornovani pro detekci a oznameni relevantnim zainteresovanym stranam
o kritickych vyjimkach. Orchestrator muze byt informovan o prahovych
hodnotach a pravidlech pro spousténi upozornéni, kdyz vyjimky prekro¢i urcité
limity nebo kdyz dojde ke specifickym typim vyjimek. To umoziiuje proaktivni

identifikaci a feSeni problému pfedtim, nez ovlivni celkovy systém.

Zde je priklad zpracovani a zotaveni z vyjimek v komponenté pracovniho postupu

v Ruby:

© 0 N O O b W N e

NN DN NN NN N S R R S s s
© ©® 9 O O & W N =~ 0 © W 9 O U b w N =~ O

Inteligentni orchestrace pracovnich postupt 212

class InventoryManager
def check_availability(order)
begin
Perform inventory check logic
inventory = Inventory.find_by(product_id: order.product_id)
if inventory.available_quantity >= order.quantity
return true
else
raise InsufficientInventoryError,
"Insufficient inventory for product #{order.product_id}"
end
rescue InsufficientInventoryError => e
Log the exception

logger .error("Inventory check failed: #{e.message}")

Retry the operation after a delay

retry_count |[|= 0

if retry_count < MAX_RETRIES
retry_count += 1
sleep(RETRY_DELAY)
retry

else
Fallback to manual intervention
NotificationService.admin("Inventory check failed: Order #{order.id}")
return false

end

end
end
end

V tomto ptikladu komponenta InventoryManager kontroluje dostupnost
produktu pro danou objednavku. Pokud je dostupné mnozstvi nedostatecné,
vyvold InsufficientInventoryError. Vyjimka je zachycena, zaznamenana
a je implementovan mechanismus opakovani. Pokud je prekrocen limit opakovani,

komponenta piejde k manualnimu zasahu tim, Ze upozorni administratora.

Implementaci robustniho zpracovani vyjimek a mechanismi obnovy muZete zajistit,

ze va$e inteligentni workflow budou odolné, udrzovatelné a schopné elegantné zvladat

Inteligentni orchestrace pracovnich postupt 213

neocekavané situace.

Tyto vzory tvofi zaklad inteligentni orchestrace workflow a lze je kombinovat
a prizpusobovat specifickym pozadavkim riznych aplikaci. Vyuzitim téchto vzort
mohou vyvojafi vytvaret workflow, které jsou flexibilni, odolné a optimalizované pro

vykon a uzivatelskou zkusenost.

V dalsi ¢asti prozkoumame, jak lze tyto vzory implementovat v praxi, s vyuZzitim
ptikladd z redlného svéta a ukazek kodu pro ilustraci integrace Al komponent do fizeni

workflow.

Implementace inteligentni orchestrace

workflow v praxi

Nyni, kdyZ jsme prozkoumali klicové vzory v inteligentni orchestraci workflow, pojdme
se ponofit do toho, jak lze tyto vzory implementovat v realnych aplikacich. Poskytneme
praktické piiklady a ukazky kodu pro ilustraci integrace Al komponent do fizeni

workflow.

Inteligentni zpracovani objednavek

Pojdme se ponofit do praktického pifikladu implementace inteligentni orchestrace
workflow pomoci Al komponenty OrderProcessor v e-commerce aplikaci Ruby on
Rails. OrderProcessor realizuje koncept Process Manager Enterprise Integration,
se kterym jsme se poprvé setkali v Kapitole 3 pfi diskuzi o Mnozstvi pracovniku.
Komponenta bude zodpovédna za fizeni workflow vyfizovani objednavek, rozhodovani
o smérovani na zakladé pribéznych vysledk a orchestraci provadéni riznych kroka

zpracovani.

© W N O U B W N =

11
12
13
14
15

Inteligentni orchestrace pracovnich postupt 214

Proces vyfizovani objednavek zahrnuje nékolik krokd, jako je validace objednavky,
kontrola zésob, zpracovani platby a expedice. Kazdy krok je implementovan jako
samostatny pracovni proces, ktery provadi specificky kol a vraci vysledek zpét do
OrderProcessor. Kroky nejsou povinné a dokonce nemusi byt nutné provedeny

v pfesném poradi.

Zde je priklad implementace OrderProcessor. Obsahuje dva mixiny z Raix.
Prvni (ChatCompletion) mu dava schopnost dokoncovani chatu, coz z néj déla
Al komponentu. Druhy (FunctionDispatch) umoziiuje volani funkci umélou

inteligenci, coz ji dovoluje reagovat na prompt volanim funkce misto textové zpravy.

Pracovni funkce (validate_order, check_inventory, atd.) deleguji na své pfislusné
pracovni tfidy, které mohou byt Al nebo ne-AI komponenty, s jedinym pozadavkem, Ze

musi vracet vysledky své prace ve formatu, ktery lze reprezentovat jako fetézec.

’ Stejné jako u vsSech ostatnich piikladd v této ¢asti knihy je tento

kéd prakticky pseudokdédem a ma pouze zprostfedkovat vyznam vzoru
a inspirovat vase vlastni vytvory. Uplné popisy vzort a kompletni ptiklady

kédu jsou zahrnuty v Césti 2.

class OrderProcessor
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

def initialize(order)
self.order = order
transcript << { system: SYSTEM_DIRECTIVE }
transcript << { user: order.to_json }

end

def perform
will continue looping until “stop_looping!" is called
chat_completion(loop: true)

https://github.com/OlympiaAI/raix-rails

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Inteligentni orchestrace pracovnich postuptt

end

]list of functions available to be called by the AI
truncated for brevity

def functions

[

name: "validate_order",
description: "Invoke to check validity of order",
parameters: {

}I

]

end

implementation of functions that can be called by the AI
entirely at its discretion, depending on the needs of the order

def validate_order
OrderValidationWorker . per form(@order)
end

def check_inventory
InventoryCheckWorker . per form(@order)
end

def process_payment
PaymentProcessingWorker . per form(@order)
end

def schedule_shipping
ShippingSchedulerWorker . per form(@order)
end

def send_confirmation
OrderConfirmationWorker . per form(@order)
end

def finished_processing
@order .update! (transcript:, processed_at: Time.current)

215

58
59
60

Inteligentni orchestrace pracovnich postupt 216

stop_looping!
end

end

V uvedeném prikladu je OrderProcessor inicializovan s objektem objednavky a udrzuje
prepis prubéhu pracovniho postupu ve formatu konverzaéniho pfepisu, ktery je
pfirozeny pro velké jazykové modely. AI dostava plnou kontrolu nad orchestraci
provadéni riznych krokl zpracovani, jako je validace objednéavky, kontrola zasob,

zpracovani plateb a expedice.

Pokazdé, kdyz je volana metoda chat_completion, je piepis odeslan Al aby poskytla
dokonceni ve formé volani funkce. Je zcela na Al, aby analyzovala vysledek pfedchoziho
kroku a ur¢ila vhodnou akcei. Naptiklad pokud kontrola zasob odhali nizky stav zéasob,
muze OrderProcessor naplanovat tikol doplnéni. Pokud selZe zpracovani platby, mize

iniciovat opakovany pokus nebo upozornit zakaznickou podporu.

Vy$e uvedeny piiklad nemé definované funkce pro dopliiovani zasob nebo

upozortiovani zdkaznické podpory, ale rozhodné by je mit mohl.

Prepis roste s kazdym volanim funkce a slouZzi jako zadznam o pribéhu pracovniho
postupu, vcetné vysledkt kazdého kroku a Al generovanych instrukei pro dalsi kroky.
Tento prepis lze pouzit pro ladéni, audit a poskytovani pfehledu o procesu vyftizovani

objednéavek.

Vyuzitim Al v OrderProcessor se mize e-commerce aplikace dynamicky
pfizplisobovat pracovnimu postupu na zakladé dat v realném case a inteligentné
zvladat vyjimky. Al komponenta mize ¢init informovana rozhodnuti, optimalizovat

pracovni postup a zajistit plynulé zpracovani objednavek i ve slozitych scénarich.

Skutecnost, ze jedinym pozadavkem na pracovni procesy je vratit néjaky srozumitelny

vystup, ktery Al zvazi pfi rozhodovani o dalsim postupu, vam muze zacit naznacovat,

© 0 N O O b W N =

[T N T e = S = S SR S & SR S
, O O 00 N O O b W N~ o

Inteligentni orchestrace pracovnich postupt 217

jak tento pfistup muzZe sniZit praci spojenou s mapovanim vstupt a vystupd, ktera je

typicky nutna pfi integraci riznorodych systémd.

Inteligentni moderator obsahu

Aplikace socialnich médii obecné vyzaduji alesponi minimalni moderovani obsahu pro
zajisténi bezpecné a zdravé komunity. Tento pfiklad komponenty ContentModerator
vyuziva Al k inteligentni orchestraci modera¢niho workflow, pficemz rozhodnuti jsou

zaloZena na charakteristikich obsahu a vysledcich ruznych modera¢nich krokda.

Moderaé¢ni proces zahrnuje vice kroki, jako je analyza textu, rozpoznavani obrazkd,
hodnoceni reputace uzivatele a manualni kontrola. Kazdy krok je implementovan
jako samostatny pracovni proces, ktery provadi specificky tkol a vraci vysledek do

ContentModerator.

Zde je priklad implementace ContentModerator:

class ContentModerator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a content moderator process manager,

tasked with the workflow involved in moderating user-generated content..."

def initialize(content)
@content = content
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: content.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Inteligentni orchestrace pracovnich postuptt

end

]list of functions available to be called by the AI
truncated for brevity

def functions

[

name: "analyze_text",
#

}I

name: "recognize_image",
description: "Invoke to describe images...",

name: "assess_user_reputation”,

name: "escalate_to_manual_review",

name: "approve_content",

name: "reject_content”,

end

implementation of functions that can be called by the AI
entirely at its discretion, depending on the needs of the order

def analyze_text
result = TextAnalysisWorker.perform(@content)
continue_with(result)

end

218

64
65
66
67
68
69
70
71
72
73
74
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94

Inteligentni orchestrace pracovnich postupt 219

def recognize_image
result = ImageRecognitionWorker .perform(@content)
continue_with(result)

end

def assess_user_reputation
result = UserReputationWorker .per form(@content.user)
continue_with(result)

end

def escalate_to_manual_review
ManualReviewWorker . per form(@content)
@content.update! (status: 'pending', transcript: @transcript)
end

def approve_content
@content.update! (status: 'approved', transcript: @transcript)
end

def reject_content
@content.update! (status: 'rejected', transcript: @transcript)
end

private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

V tomto ptfikladu je ContentModerator inicializovan s objektem obsahu a udrzuje
moderacni zdznam v konverzaénim formatu. Al komponenta ma plnou kontrolu nad
modera¢nim postupem a rozhoduje, které kroky provést na zakladé charakteristik

obsahu a vysledki kazdého kroku.

Dostupné pracovni funkce, které muze Al vyvolat, zahrnuji analyze_text,
recognize_image, assess_user_reputation a escalate_to_manual_review.

Kazda funkce deleguje ukol na odpovidajici pracovni proces (TextAnalysisWorker,

Inteligentni orchestrace pracovnich postupt 220

ImageRecognitionWorker, atd.) a pfipojuje vysledek do modera¢niho zdznamu,
s vyjimkou funkce eskalace, ktera pusobi jako koncovy stav. Nakonec funkce

approve_content areject_content také pusobi jako koncové stavy.

Al komponenta analyzuje obsah a ur¢uje vhodnou akci. Pokud obsah obsahuje odkazy
na obrazky, miiZe pro pomoc s vizualni kontrolou zavolat pracovni funkcirecognize_-
image. Pokud néktery pracovni proces upozorni na potencialné skodlivy obsah, Al se
muze rozhodnout eskalovat obsah k manualni kontrole nebo jej rovnou zamitnout. Ale
v zavislosti na zavaznosti varovani se Al mtze rozhodnout vyuzit vysledky hodnoceni
reputace uzivatele pfi rozhodovani, jak nalozit s obsahem, u kterého si neni jinak jista.
V zavislosti na pfipadu pouziti mohou mit naptiklad diivéryhodni uzivatelé vétsi volnost

v tom, co mohou zvefejnit. A tak dale a tak podobné...

Stejné jako v predchozim piikladu spravce procest slouzi moderaéni zaznam jako
evidence provedeni pracovniho postupu, v¢etné vysledkt kazdého kroku a rozhodnuti
generovanych Al Tento zaznam lze vyuZit pro audit, transparentnost a zlepSovani

moderacniho procesu v prabéhu ¢asu.

Vyuzitim Al v ContentModerator muzZe aplikace socidlnich médii dynamicky
prizptisobovat modera¢ni postup na zakladé charakteristik obsahu a inteligentné
zvladat komplexni moderacni scénare. Al komponenta muZe ¢init informovana
rozhodnuti, optimalizovat pracovni postup a zajistit bezpe¢nou a zdravou komunitni

zkuSenost.

Prozkoumejme dal$i dva ptriklady, které demonstruji prediktivni planovani tloh
a zpracovani vyjimek a zotaveni v kontextu inteligentni orchestrace pracovniho

postupu.

Prediktivni planovani aloh v systému zakaznické podpory

V aplikaci zakaznické podpory vytvorené pomoci Ruby on Rails je efektivni sprava

a prioritizace pozadavkii podpory kli¢ova pro poskytovani vcasné pomoci zakaznikiim.

© 0 N O O b W N =

W W W W W W W W N NDNDDNDDNDNDIDNDNDNIDN®=S 2 2 2 2 s s
=N O O b WN P, O 0N 0 WwN 20 O 00N 0N,

Inteligentni orchestrace pracovnich postuptt 221

Komponenta SupportTicketScheduler vyuzivd Al k prediktivnimu planovani
a pfifazovani pozadavka podpory dostupnym agentim na zakladé riznych faktord,

jako je naléhavost pozadavku, odbornost agenta a pracovni vytiZeni.

class SupportTicketScheduler
include Raix::ChatCompletion

include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a support ticket scheduler,
tasked with intelligently assigning tickets to available agents..."

def initialize(ticket)
@ticket = ticket
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: ticket.to_json }

]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"
end

def functions

[

{
name: "analyze_ticket_urgency",
}I
{
name: "list_available_agents"”,
description: "Includes expertise of available agents",
}/
{

name: "predict_agent_workload",
description: "Uses historical data to predict upcoming workloads",

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79

Inteligentni orchestrace pracovnich postuptt

}/
{
name: "assign_ticket_to_agent",
}I
name: "reschedule_ticket",
PR
}
]
end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def analyze_ticket_urgency
result = TicketUrgencyAnalyzer.perform(@ticket)
continue_with(result)

end

def list_available_agents
result = ListAvailableAgents.perform
continue_with(result)

end

def predict_agent_workload
result = AgentWorkloadPredictor.perform
continue_with(result)

end

def assign_ticket_to_agent
TicketAssigner.perform(@ticket, @transcript)
end

def delay_assignment(until)
until = DateTimeStandardizer.process(until)
SupportTicketScheduler.delay(@ticket, @transcript, until)
end

private

222

80
81
82
83
84

Inteligentni orchestrace pracovnich postupt 223

def continue_with(result)
@transcript << { function: result }
complete(@transcript)
end
end

V tomto ptikladu je SupportTicketScheduler inicializovan s objektem pozadavku
podpory a udrzuje zaznam planovani. Komponenta Al analyzuje detaily pozadavku
a prediktivné planuje jeho pfifazeni na zakladé faktori jako je naléhavost pozadavku,

odbornost agenta a predpokladané pracovni zatizeni agenta.

Dostupné funkce, které mize Al vyvolat, zahrnuji analyze_ticket_urgency,
list_available_agents, predict_agent_workload a assign_ticket_-
to_agent. Kazda funkce deleguje ukol na pfislusnou analyzaéni nebo predikéni
komponentu a pfipojuje vysledek k zdznamu planovani. Al méa také moznost odlozit

pfifazeni pomoci funkce delay_assignment.

Komponenta Al zkouma zaznam planovani a ¢ini informovana rozhodnuti o pfifazeni
pozadavki. Bere v uvahu naléhavost pozadavku, odbornost dostupnych agentd
a pfedpokladané pracovni zatizeni kazdého agenta, aby uréila nejvhodnéjsiho agenta

pro zpracovani pozadavku.

Vyuzitim prediktivniho planovani ukold muze aplikace zékaznické podpory
optimalizovat pfifazovani pozadavkd, zkratit dobu odezvy a zlepsit celkovou
spokojenost zakaznikil. Proaktivni a efektivni sprava pozadavkid podpory zajistuje, Ze

spravné pozadavky jsou pfifazeny spravnym agentiim ve spravny ¢as.

Zpracovani vyjimek a obnova v pipeline zpracovani dat

Zpracovani vyjimek a obnova po selhanich jsou nezbytné pro zajisténi integrity
dat a prevenci jejich ztraty. Komponenta DataProcessingOrchestrator vyuziva
Al k inteligentnimu zpracovani vyjimek a orchestraci procesu obnovy v pipeline

zpracovani dat

© 0 N O O b W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Inteligentni orchestrace pracovnich postuptt

class DataProcessingOrchestrator
include Raix::ChatCompletion
include Raix::FunctionDispatch

SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

def initialize(data_batch)
@data_batch = data_batch
@transcript = |
{ system: SYSTEM_DIRECTIVE },
{ user: data_batch.to_json }
]

end

def perform
complete(@transcript)
end

def model
"openai/gpt-4"

end

def functions

{
name: "validate_data",
#

}I

{
name: "process_data",
#

}l

{
name: "request_fix",
#

}I

{
name: "retry_processing",
#

}I

{

name: "mark_data_as_failed",

224

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Inteligentni orchestrace pracovnich postuptt 225

b
{

name: "finished",

]

end

implementation of functions that can be called by the AI

entirely at its discretion, depending on the needs of the order

def validate_data
result = DataValidator.perform(@data_batch)
continue_with(result)

rescue ValidationException => e
handle_validation_exception(e)

end

def process_data
result = DataProcessor .perform(@data_batch)
continue_with(result)

rescue ProcessingException => e
handle_processing_exception(e)

end

def request_fix(description_of_fix)
result = SmartDataFixer.new(description_of_fix, @data_batch)
continue_with(result)

end

def retry_processing(timeout_in_seconds)
wait(timeout_in_seconds)
process_data

end

def mark_data_as_failed
@data_batch.update! (status: 'failed', transcript: @transcript)
end

def finished
@data_batch.update! (status: 'finished', transcript: @transcript)

85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103

Inteligentni orchestrace pracovnich postupt 226

end
private

def continue_with(result)
@transcript << { function: result }
complete(@transcript)

end

def handle_validation_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)

end

def handle_processing_exception(exception)
@transcript << { exception: exception.message }
complete(@transcript)
end
end

V tomto piikladu je DataProcessingOrchestrator inicializovan s objektem davky
dat a udrZuje zdznam o zpracovani. Al komponenta orchestruje pipeline zpracovani dat,

fesi vyjimky a zotavuje se z chyb podle potieby.

Dostupné funkce, které muze Al volat, zahrnuji validate_data, process_data,
request_fix,retry_processing amark_data_as_failed. Kazda funkce deleguje
ukol na odpovidajici komponentu zpracovani dat a pfipojuje vysledek nebo podrobnosti

o vyjimce do zaznamu o zpracovani.

Pokud béhem kroku validate_data dojde k vyjimce pii validaci, funkce handle_-
validation_exception pfipoji data o vyjimce do zdznamu a preda fizeni zpét AL
Podobné, pokud béhem kroku process_data dojde k vyjimce pfi zpracovani, Al mtize

rozhodnout o strategii zotaveni.

V zavislosti na povaze vzniklé vyjimky muZze Al podle svého uvazeni rozhodnout
o volani request_fix, které deleguje na Al komponentu SmartDataFixer

(viz kapitola Samouzdravujici se data). Opravny néastroj dat dostane v bézné angli¢tiné

Inteligentni orchestrace pracovnich postupt 227

popis toho, jak by mél upravit @data_batch, aby bylo mozné zpracovani opakovat.
Mozné by tspésné opakovani znamenalo odstranéni zaznamu z davky dat, které
neprosly validaci, a/nebo jejich zkopirovani do jiné pipeline zpracovani pro lidskou

kontrolu? MozZnosti jsou téméf nekonecné.

Zaclenénim zpracovani vyjimek a zotaveni fizeného Al se aplikace pro zpracovani dat
stava odolnéjsi a tolerantnéjsi k chybam. DataProcessingOrchestrator inteligentné
spravuje vyjimky, minimalizuje ztratu dat a zajisfuje plynulé provedeni workflow

zpracovani dat.

Monitorovani a protokolovani

Monitorovani a protokolovani poskytuji prehled o prabéhu, vykonu a stavu komponent
workflow fizenych Al, coZ vyvojafim umoziiuje sledovat a analyzovat chovani
systému. Implementace efektivnich mechanismti monitorovani a protokolovani je

nezbytna pro ladéni, audit a neustalé zlepsSovani inteligentnich workflow.

Monitorovani prabéhu a vykonu workflow

Pro zajisténi plynulého provadéni inteligentnich workflow je dulezité sledovat prubéh
a vykon kazdé komponenty workflow. To zahrnuje sledovani klicovych metrik a udalosti

béhem Zivotniho cyklu workflow.
Dtlezité aspekty ke sledovani zahrnuji:

1. Doba provadéni workflow: Méfeni Casu, ktery kazda komponenta workflow
potfebuje k dokonceni svého tkolu. To pomahé identifikovat vykonnostni izka mista

a optimalizovat celkovou efektivitu workflow.
2. Vyuiziti zdroju: Sledovani vyuziti systémovych zdroji, jako jsou CPU, pamét
a ulozisté, kazdou komponentou workflow. To pomaha zajistit, Zze systém pracuje

v ramci své kapacity a mtze efektivné zvladat pracovni zatéz.

Inteligentni orchestrace pracovnich postupt 228

3. Miry chyb a vyjimky: Sledovani vyskytu chyb a vyjimek v komponentich
workflow. To pomaha identifikovat potencialni problémy a umoziiuje proaktivni

zpracovani a zotaveni z chyb.

4. Rozhodovaci body a vysledky: Sledovani rozhodovacich bod v ramci workflow
a vysledkdl rozhodnuti fizenych AI. To poskytuje vhled do chovéani a efektivity
Al komponent.

Data zachycend monitorovacimi procesy mohou byt zobrazena v dashboardech nebo

pouzita jako vstupy pro planované zpravy, které informuji spravce systému o jeho stavu.

Monitorovaci data mohou byt pfedana procesu spravce systému fizenému
AT ke kontrole a piipadné akei!

Protokolovani klicovych udalosti a rozhodnuti

Protokolovani je zasadni praxe, ktera zahrnuje zachycovani a ukladani relevantnich
informaci o klicovych udalostech, rozhodnutich a vyjimkach, ke kterym dochazi béhem

provadéni workflow.
Dtlezité aspekty k protokolovani zahrnuji:

1. Zahajeni a dokoncéeni workflow: Zaznamenavani ¢asu zaCatku a konce kazdé
instance workflow, spolu s relevantnimi metadaty, jako jsou vstupni data a uzivatelsky

kontext.

2. Provadéni komponent: Zaznamenavani podrobnosti o provadéni kazdé
komponenty workflow, véetné vstupnich parametrti, vystupnich vysledkt a veskerych

vygenerovanych mezilehlych dat.

3. Rozhodnuti AI a zdivodnéni: Zaznamenavani rozhodnuti ucinénych
Al komponentami, spolu s podkladovym zdivodnénim nebo skdre spolehlivosti.

To poskytuje transparentnost a umoziuje audit rozhodnuti fizenych AL

© 0 N O O b W N o~

I = =N
B W N~

Inteligentni orchestrace pracovnich postupt 229

4. Vyjimky a chybové zpravy: Zaznamenavani vsech vyjimek nebo chybovych zprav,
se kterymi se béhem provadéni workflow setkdme, vCetné zasobnikového vypisu

a relevantnich kontextovych informaci.

Protokolovani lze implementovat pomoci raznych technik, jako je zapis do soubort
protokolu, ukladani protokolti v databazi nebo odesilani protokolii do centralizované
sluzby protokolovani. Je dilezité zvolit framework pro protokolovani, ktery poskytuje

flexibilitu, skalovatelnost a snadnou integraci s architekturou aplikace.

Zde je piiklad, jak lze implementovat protokolovani v aplikaci Ruby on Rails pomoci

ttidy ActiveSupport: :Logger:

class WorkflowlLogger

def self.log(message, severity = :info)
@logger ||= ActiveSupport::Logger.new('workflow.log')
@logger . formatter ||= proc do |severity, datetime, progname, msg]|

"#{datetime} [#{severity}] #{msg}\n"
end
@logger .send(severity, message)
end
end

Usage example
Work flowLogger . log("Workflow initiated for order ##{@order.id}")
Work flowLogger . log("Payment processing completed successfully")

Work flowLogger . log("Inventory check failed for item ##{item.id}", :error)

Strategickym umisténim protokolovacich zaznamd v ramci komponent pracovnich
postupii a rozhodovacich bodi umélé inteligence mohou vyvojafi ziskat cenné

informace pro ladéni, audit a analyzu.

Vyhody monitorovani a protokolovani

Implementace monitorovani a protokolovani v inteligentni orchestraci pracovnich

postupt prinasi nékolik vyhod:

Inteligentni orchestrace pracovnich postupt 230

1. Ladéni a feSeni problému: Podrobné protokoly a monitorovaci data pomahaji
vyvojarum rychle identifikovat a diagnostikovat problémy. Poskytuji prehled o priabéhu
vykonavani pracovniho postupu, interakcich mezi komponenty a pfipadnych chybach
¢i vyjimkach.

2. Optimalizace vykonu: Monitorovani vykonnostnich metrik umoziuje vyvojarim
identifikovat uzk4 mista a optimalizovat komponenty pracovniho postupu pro lepsi
efektivitu. Analyzou doby vykonavani, vyuziti zdroji a dal$ich metrik mohou vyvojafi

¢init informovana rozhodnuti pro zlep$eni celkového vykonu systému.

3. Audit a dodrzovani piedpisi: Protokolovani klicovych udélosti a rozhodnuti
poskytuje auditni stopu pro regulac¢ni shodu a odpovédnost. Umoziiuje organizacim
sledovat a ovéfovat ¢innosti provadéné komponenty umélé inteligence a zajistit

dodrzovani obchodnich pravidel a pravnich pozadavkda.

4. Neustalé zlepsovani: Data z monitorovani a protokolovani slouzi jako cenné vstupy
pro neustalé zlepSovani inteligentnich pracovnich postupii. Analyzou historickych dat,
identifikaci vzorct a méfenim efektivity rozhodnuti umélé inteligence mohou vyvojafi

iterativné zdokonalovat a vylepSovat logiku orchestrace pracovnich postupi.

Uvahy a osvédéené postupy

Pfi implementaci monitorovani a protokolovani v inteligentni orchestraci pracovnich

postupt zvazte nasledujici osvédcené postupy:

1. Definujte jasné monitorovaci metriky: Identifikujte klicové metriky a udalosti,
které je tfeba monitorovat na zakladé specifickych pozadavkt pracovniho postupu.
Zameéfte se na metriky, které poskytuji smysluplné informace o vykonu, zdravi a chovani

systému.

2. Implementujte podrobné protokolovani: Zajistéte, aby byly protokolovaci
zdznamy umistény na vhodnych mistech v rdmci komponent pracovniho postupu

a rozhodovacich bodi umélé inteligence. Zachytte relevantni kontextové informace,

Inteligentni orchestrace pracovnich postupt 231

jako jsou vstupni parametry, vystupni vysledky a veskerd vygenerovana mezilehla

data.

3. Pouzivejte strukturované protokolovani: Pouzivejte strukturovany format
protokolovani pro usnadnéni snadného parsovani a analyzy protokolovanych dat.
Strukturované protokolovani umoznuje lepsi vyhledavani, filtrovani a agregaci

protokolovych zaznamu.

4. Spravujte uchovavani a rotaci protokola: Implementujte zasady pro uchovavani
a rotaci protokolil pro spravu dlozisté a zivotniho cyklu protokolovych soubori. Urcete
vhodnou dobu uchovavani na zakladé pravnich pozadavki, omezeni ulozisté a potfeb
analyzy. Pokud je to mozné, presurite protokolovani na sluzbu tfeti strany, jako je

Papertrail.

5. Zabezpecte citlivé informace: Budte opatrni pfi protokolovani citlivych informaci,
jako jsou osobni udaje (PII) nebo divérné obchodni ddaje. Implementujte vhodna
bezpeénostni opatfeni, jako je maskovani dat nebo Sifrovani, pro ochranu citlivych

informaci v protokolovych souborech.

6. Integrujte s monitorovacimi a vystraZnymi nastroji: VyuZijte monitorovaci
a vystrazné nastroje pro centralizaci sbéru, analyzy a vizualizace monitorovacich
a protokolovacich dat. Tyto nastroje mohou poskytovat informace v realném case,
generovat upozornéni na zékladé predem definovanych prahovych hodnot a usnadnit

proaktivni detekei a feSeni problémt. Mym oblibenym z téchto nastrojt je Datadog.

Implementaci komplexnich mechanism monitorovani a protokolovani mohou vyvojari
ziskat cenné informace o chovani a vykonu inteligentnich pracovnich postupii. Tyto
poznatky umoznuji efektivni ladéni, optimalizaci a neustalé zlepSovani systémi

orchestrace pracovnich postupt zaloZenych na umélé inteligenci.

https://papertrailapp.com
https://www.datadoghq.com

Inteligentni orchestrace pracovnich postupt 232

Uvahy o 3kalovatelnosti a vykonu

Skalovatelnost a vykon jsou kritické aspekty, které je tieba zvazit pti navrhu
a implementaci systémi inteligentni orchestrace pracovnich postupii. S rostoucim
objemem soubéznych pracovnich postupti a slozitosti komponent zalozenych na umélé
inteligenci je nezbytné zajistit, aby systém dokazal efektivné zvladat pracovni zatéz

a bezproblémoveé se skalovat podle rostoucich pozadavkd.
Zvladani velkych objemi soubéZnych pracovnich postupt

Systémy inteligentni orchestrace pracovnich postupt ¢asto musi zvladat velké mnozstvi
soubéznych pracovnich postupt. Pro zajisténi Skalovatelnosti zvazte néasledujici

strategie:

1. Asynchronni zpracovani: Implementujte mechanismy asynchronniho zpracovani
pro oddéleni vykonavani komponent pracovniho postupu. To umoziuje systému
zpracovavat vice pracovnich postupti soucasné bez blokovani nebo ¢ekani na dokonceni
kazdé komponenty. Asynchronniho zpracovani lze dosdhnout pomoci front zprav,
architektur fizenych udéalostmi nebo frameworkt pro zpracovani dloh na pozadi, jako
je Sidekiq.

2. Distribuovana architektura: Navrhnéte architekturu systému tak, aby vyuzivala
bezserverové komponenty (jako je AWS Lambda) nebo jednoduse distribuovala pracovni
z4téz mezi vice uzll ¢i servert spolu s vasim hlavnim aplikaénim serverem. To umoziiuje
horizontalni skalovatelnost, kdy lze pfidat dalsi uzly pro zvladnuti zvysenych objemt

pracovnich postupt.

3. Paralelni vykonavani: Identifikujte pfileZitosti pro paralelni vykonavani v ramci
pracovnich postupii. Nékteré komponenty pracovniho postupu mohou byt na sobé
nezavislé a lze je vykonavat soucasné. Vyuzitim technik paralelniho zpracovani, jako
je vicevlaknové zpracovani nebo distribuované fronty uloh, mize systém optimalizovat

vyuziti zdroju a zkréatit celkovou dobu vykonavani pracovniho postupu.

Inteligentni orchestrace pracovnich postupt 233

Optimalizace vykonu komponent zaloZenych na umélé
inteligenci

Komponenty zaloZené na umélé inteligenci, jako jsou modely strojového uceni nebo
systémy pro zpracovani pfirozeného jazyka, mohou byt vypocetné naro¢né a ovlivnit
celkovy vykon systému pro orchestraci pracovnich postupl. Pro optimalizaci vykonu

Al komponent zvazte nasledujici techniky:

1. Ukladani do mezipaméti: Pokud je vase Al zpracovani ¢isté generativni a nezahrnuje
vyhledavani informaci v redlném ¢ase nebo externi integrace pro generovani chatovych
odpovédi, muzete se zaméfit na mechanismy ukladani do mezipaméti pro ukladani

a opétovné pouziti vysledkil ¢asto piistupovanych nebo vypocéetné naroénych operaci.

2. Optimalizace modelu: Pribéiné optimalizujte zptsob, jakym pouzivate
Al modely v komponentach pracovniho postupu. To mize zahrnovat techniky
jako Destilace promptii nebo to muze byt jednoduse otazka testovani novych modeli,

kdyz se stanou dostupnymi.

3. Davkové zpracovani: Pokud pracujete s modely tfidy GPT--4, muzZete vyuzit
techniky davkového zpracovani pro zpracovani vice datovych bodi nebo pozadavka
v jedné davce, namisto jejich individualniho zpracovani. Zpracovanim dat v davkach
mize systém optimalizovat vyuziti zdroji a snizit rezii opakovanych pozadavki na

model.

Monitorovani a profilovani vykonu

Pro identifikaci vykonnostnich tzkych mist a optimalizaci Skalovatelnosti systému
inteligentni orchestrace pracovnich postupl je kli¢ové implementovat mechanismy

monitorovani a profilovani. Zvazte nasledujici pfistupy:

1. Metriky vykonu: Definujte a sledujte klicové metriky vykonu, jako je doba odezvy,
propustnost, vyuziti zdroju a latence. Tyto metriky poskytuji prehled o vykonu systému

a pomahaji identifikovat oblasti pro optimalizaci. Popularni agregator Al modelt

Inteligentni orchestrace pracovnich postupt 234

OpenRouter zahrnuje metriky Host' a Speed? v kazdé API odpovédi, coz usnadriuje

sledovani téchto klicovych metrik.

2. Profilovaci nastroje: Vyuzivejte profilovaci nastroje k analyze vykonu jednotlivych
komponent pracovniho postupu a Al operaci. Profilovaci nastroje mohou pomoci
identifikovat vykonnostni hotspoty, neefektivni cesty v kédu nebo operace naroc¢né
na zdroje. Mezi popularni profilovaci nastroje patii New Relic, Scout nebo vestavéné

profilery poskytované programovacim jazykem nebo frameworkem.

3. Zatézové testovani: Provadéjte zatézové testovani pro vyhodnoceni vykonu systému
pfi ruznych drovnich soubézného zatizeni. Zatézové testovani pomaha identifikovat
limity skalovatelnosti systému, detekovat degradaci vykonu a zajistit, Ze systém zvladne

oc¢ekavany provoz bez kompromist ve vykonu.

4. Kontinualni monitoring: Implementujte mechanismy kontinualniho monitorovani
a upozornovani pro proaktivni detekci problémut s vykonem a Uzkych mist. Nastavte
monitorovaci dashboardy a upozornéni pro sledovani klicovych ukazateltt vykonu
(KPI) a ptijiméani ozndmeni pfi prekroceni pfedem definovanych prahovych hodnot. To

umoziuje rychlou identifikaci a feSeni problému s vykonem.

Strategie Skalovani

Pro zvladnuti rostouciho zatiZzeni a zajisténi Skalovatelnosti systému inteligentni

orchestrace pracovnich postupl zvazte nasledujici strategie skalovani:

1. Vertikalni skalovani: Vertikalni skalovani zahrnuje zvySovani zdroji (napt. CPU,
paméti) jednotlivych uzl nebo servera pro zvladnuti vyssiho zatiZeni. Tento pfistup je
vhodny, kdyz systém vyzaduje vice vypocetniho vykonu nebo paméti pro zpracovani

komplexnich pracovnich postupt nebo Al operaci.

'Host je ¢as, ktery byl potieba k pfijeti prvniho bajtu streamovaného generovani od hostitele modelu,
také znamy jako “Cas do prvniho bajtu”

2Speed se vypoéitiava jako pocet dokonovacich tokent déleny celkovym ¢asem generovéni. Pro
nestreamované pozadavky se latence povazuje za soucast ¢asu generovani.

https://openrouter.ai

Inteligentni orchestrace pracovnich postupt 235

2. Horizontalni $kalovani: Horizontalni skalovani zahrnuje ptridavani vice uzla nebo
serveri do systému pro distribuci zatéze. Tento pfistup je efektivni, kdyZ systém
potiebuje zvladnout velky pocet soubéznych pracovnich postupti nebo kdyz lze zatéz
snadno distribuovat mezi vice uzlii. Horizontalni skalovani vyzaduje distribuovanou
architekturu a mechanismy vyvazovani zatéZe pro zajisténi rovnomérné distribuce

provozu.

3. Automatické $kalovani: Implementujte mechanismy automatického skalovani
pro automatické upravovani po¢tu uzli nebo zdroji na zakladé pozadavki na zatéz.
Automatické $kalovani umoziluje systému dynamicky skalovat nahoru nebo dold
v zavislosti na pfichozim provozu, zajistujici optimalni vyuziti zdroji a nakladovou
efektivitu. Cloudové platformy jako Amazon Web Services (AWS) nebo Google Cloud
Platform (GCP) poskytuji moznosti automatického skalovani, které lze vyuZzit pro

systémy inteligentni orchestrace pracovnich postupa.

Techniky optimalizace vykonu

Kromé strategii skalovani zvazte nasledujici techniky optimalizace vykonu pro zvyseni

efektivity systému inteligentni orchestrace pracovnich postupu:

1. Efektivni ukladani a naéitani dat: Optimalizujte mechanismy ukladani a naéitani
dat pouzivané komponentami pracovniho postupu. Pouzivejte efektivni indexovani
databaze, techniky optimalizace dotazli a ukladani dat do mezipaméti pro minimalizaci

latence a zlepSeni vykonu operaci naro¢nych na data.

2. Asynchronni I/O: VyuZijte asynchronni I/O operace k zabranéni blokovani a zlepseni
odezvy systému. Asynchronni I/O umoziiuje systému zpracovavat vice pozadavki

soucasné bez ¢ekani na dokonceni I/O operaci, ¢imz maximalizuje vyuziti zdroja.

3. Efektivni serializace a deserializace: Optimalizujte procesy serializace
a deserializace pouzivané pro vyménu dat mezi komponenty workflow. Pouzivejte
efektivni serializa¢ni formaéty, jako jsou Protocol Buffers nebo MessagePack, ke snizeni

rezie datové serializace a zlepSeni vykonu komunikace mezi komponenty.

Inteligentni orchestrace pracovnich postupt 236

Pro aplikace zaloZené na Ruby zvaite pouziti Universal ID. Universal
’ ID vyuziva MessagePack i Brotli (kombinaci vytvofenou pro rychlost
a $pic¢kovou kompresi dat). Pfi spole¢ném pouziti jsou tyto knihovny az o 30
% rychlejsi a dosahuji kompresnich poméra v rozmezi 2-5 % ve srovnani

s Protocol Buffers.

4. Komprese a kédovani: Aplikujte techniky komprese a kdédovani ke snizeni velikosti
dat prenasenych mezi komponenty workflow. Kompresni algoritmy jako gzip nebo

Brotli mohou vyrazné snizit vyuziti sitové sifky pasma a zlepsit celkovy vykon systému.

Zohlednénim aspektt $kalovatelnosti a vykonu béhem navrhu a implementace systému
inteligentni orchestrace workflow muzZete zajistit, Ze vas systém zvladne vysoké objemy
soubéznych workflow, optimalizuje vykon komponent zalozenych na umélé inteligenci
a bezproblémové se pfizptisobi rostoucim pozadavkiim. Pro udrzeni vykonu a odezvy
systému pfi zvySujici se zatézi a slozitosti v pribéhu cCasu je nezbytné prubézné

monitorovani, profilovani a optimalizace.

Testovani a validace workflow

Testovani a validace jsou klicové aspekty vyvoje a uUdrzby systému inteligentni
orchestrace workflow. Vzhledem ke komplexni povaze workflow zalozenych na umélé
inteligenci je nezbytné zajistit, aby kazd4 komponenta fungovala podle ocekavani,
celkové workflow se chovalo spravné a rozhodnuti Al byla pfesna a spolehliva. V této
¢asti prozkoumame rtzné techniky a aspekty testovani a validace inteligentnich

workflow.

Jednotkové testovani komponent workflow

Jednotkové testovani zahrnuje testovani jednotlivych komponent workflow izolované
pro ovéfeni jejich spravnosti a robustnosti. Pfi jednotkovém testovani komponent

zaloZenych na Al zvazte nasledujici:

https://github.com/hopsoft/universalid

O© 0 N O O b W N =

[= ==Y
—~4 0 O W N,

Inteligentni orchestrace pracovnich postupt 237

1. Validace vstupu: Otestujte schopnost komponenty zpracovat rizné typy vstupu,
véetné platnych a neplatnych dat. Ovéite, Ze komponenta elegantné zvlada krajni

ptipady a poskytuje odpovidajici chybové zpravy nebo vyjimky.

2. Ovéfeni vystupu: Potvrdte, Ze komponenta produkuje ocekavany vystup pro
danou sadu vstupti. Porovnejte skute¢ny vystup s oéekavanymi vysledky pro zajisténi

spravnosti.

3. Zpracovani chyb: Otestujte mechanismy zpracovani chyb komponenty simulaci
raznych chybovych scénaft, jako je neplatny vstup, nedostupnost zdroji nebo

neocekavané vyjimky. Ovéfte, ze komponenta zachyti a spravné zpracuje chyby.

4. Hrani¢ni podminky: Otestujte chovani komponenty pfi hrani¢nich podminkach,
jako je prazdny vstup, maximalni velikost vstupu nebo extrémni hodnoty. Zajistéte, Ze
komponenta zvlada tyto podminky elegantné bez padu nebo produkovani nespravnych

vysledka.

Zde je priklad jednotkového testu pro komponentu workflow v Ruby pomoci testovaciho

frameworku RSpec:

RSpec.describe OrderValidator do
describe '#validate' do
context 'when order is valid' do
let(:order) { build(:order) }

it 'returns true' do
expect(subject.validate(order)).to be true
end

end

context 'when order is invalid' do
let(:order) { build(:order, total_amount: -100) }

it 'returns false' do
expect(subject.validate(order)).to be false
end

end

18
19

Inteligentni orchestrace pracovnich postupt 238

end

end

V tomto ptfikladu je komponenta OrderValidator testovana pomoci dvou testovacich
pfipadt: jednoho pro platnou objednavku a druhého pro neplatnou objednavku.
Testovaci piipady ovéfuji, Ze metoda validate vraci ocekavanou booleovskou

hodnotu na zakladé platnosti objednavky.

Integracni testovani interakci pracovniho postupu

Integracni testovani se zaméfuje na oveéfovani interakci a toku dat mezi riznymi
komponentami pracovniho postupu. Zajisfuje, Ze komponenty spolupracuji
bezproblémové a produkuji oéekavané vysledky. Pri integraénim testovani

inteligentnich pracovnich postupi zvazte nasledujici:

1. Interakce komponent: Testujte komunikaci a vyménu dat mezi komponentami
pracovniho postupu. Ovéfte, Ze vystup jedné komponenty je spravné predan jako vstup

dalsi komponenté v pracovnim postupu.

2. Konzistence dat: Zajistéte, ze data zistavaji konzistentni a pfesna béhem prichodu
pracovnim postupem. Ovéfte, Ze transformace dat, vypocty a agregace jsou provadény

spravne.

3. Propagace vyjimek: Testujte, jak jsou vyjimky a chyby propagovany a zpracovavany
napii¢ komponentami pracovniho postupu. Ovéite, Ze vyjimky jsou zachyceny,
zaznamenany a spravné zpracovany, aby nedoslo k naruseni pracovniho postupu.

4. Asynchronni chovani: Pokud pracovni postup zahrnuje asynchronni komponenty

nebo paralelni vykonavani, testujte mechanismy koordinace a synchronizace. Zajistéte,

ze pracovni postup se chova spravné v soubéZnych a asynchronnich scénafich.

Zde je priklad integra¢niho testu pro pracovni postup v Ruby s vyuzitim testovaciho

frameworku RSpec:

© 0 N O O b W N e

11
12
13
14
15
16
17
18

Inteligentni orchestrace pracovnich postupt 239

RSpec.describe OrderProcessingWorkflow do
let(:order) { build(:order) }

it 'processes the order successfully' do
expect(OrderValidator).to receive(:validate).and_return(true)
expect(InventoryManager).to receive(:check_availability).and_return(true)
expect(PaymentProcessor).to receive(:process_payment).and_return(true)

expect(ShippingService).to receive(:schedule_shipping).and_return(true)

workflow = OrderProcessingWorkflow.new(order)
result = workflow.process

expect(result).to be true
expect(order.status).to eq('processed')
end

end

V tomto piikladu je OrderProcessingWorkflow testovan ovéfenim interakei
mezi ruznymi komponenty workflow. Testovaci pfipad nastavuje ocekavani pro
chovani kazdé komponenty a zajistuje, Ze workflow Uspésné zpracuje objednavku

a odpovidajicim zpisobem aktualizuje jeji stav.

Testovani rozhodovacich bodu Al

Testovani rozhodovacich bodi Al je klicové pro zajisténi presnosti a spolehlivosti
workflows pohanénych umélou inteligenci. Pfi testovani rozhodovacich boda Al zvazte
nasledujici:

1. Pfesnost rozhodovani: Ovéfte, Ze komponenta Al ¢ini pfesna rozhodnuti na zakladé
vstupnich dat a natrénovaného modelu. Porovnejte rozhodnuti Al s ocekavanymi

vysledky nebo referen¢nimi daty.
2. Krajni pripady: Otestujte chovani komponenty AI v krajnich pfipadech
a neobvyklych scénarich. Ovéfte, Zze komponenta Al zvlada tyto pfipady elegantné

a ¢ini rozumna rozhodnuti.

© 0 N O O b W N o~

NN N N R R R S s L s L s
W N A0 O N0 O Bk W NN - o

Inteligentni orchestrace pracovnich postupt 240

3. Predpojatost a spravedlivost: Vyhodnotte komponentu Al z hlediska potencialni
predpojatosti a zajistéte, Zze ¢ini spravedlivd a nezaujatd rozhodnuti. Otestujte
komponentu s rtznorodymi vstupnimi daty a analyzujte vysledky na pfitomnost

jakychkoliv diskriminacnich vzorct.

4. Vysvétlitelnost: Pokud komponenta Al poskytuje vysvétleni nebo zdiivodnéni svych
rozhodnuti, ovéfte spravnost a srozumitelnost téchto vysvétleni. Zajistéte, ze vysvétleni

odpovidaji zakladnimu rozhodovacimu procesu.

Zde je ptiklad testovani rozhodovaciho bodu AI v Ruby s pouzitim testovaciho

frameworku RSpec:

RSpec.describe FraudDetector do
describe '#detect_fraud' do
context 'when transaction is fraudulent' do
let(:tx) do
build(:transaction, amount: 10_000, location: 'High-Risk Country')
end

it 'returns true' do
expect(subject.detect_fraud(tx)).to be true
end
end

context 'when transaction is legitimate' do
let(:tx) do
build(:transaction, amount: 100, location: 'Low-Risk Country')
end

it 'returns false' do
expect(subject.detect_fraud(tx)).to be false
end
end
end
end

V tomto ptfikladu je AI komponenta FraudDetector testovana dvéma testovacimi

pfipady: jednim pro podvodnou transakei a druhym pro legitimni transakei. Testovaci

Inteligentni orchestrace pracovnich postupt 241

pripady ovéfuji, Ze metoda detect_fraud vraci oéekavanou booleovskou hodnotu na

zakladé charakteristik transakce.

End-to-End testovani

End-to-end testovani zahrnuje testovani celého pracovniho postupu od zacatku do
konce, simuluje realné scénare a uzivatelské interakce. Zajistuje, Ze pracovni postup
se chova spravné a produkuje pozadované vysledky. Pfi provadéni end-to-end testovani

pro inteligentni pracovni postupy zvazte nasledujici:

1. Uzivatelské scénafre: Identifikujte bézné uzivatelské scénafe a otestujte chovani
pracovniho postupu v téchto scénafich. Ovéite, Ze pracovni postup spravné zpracovava

uzivatelské vstupy, ¢ini vhodna rozhodnuti a produkuje ocekavané vystupy.

2. Validace dat: Zajistéte, Ze pracovni postup validuje a Cisti uzivatelské vstupy, aby
se predeslo nekonzistencim v datech nebo bezpe¢nostnim zranitelnostem. Otestujte

pracovni postup s riznymi typy vstupnich dat, véetné platnych i neplatnych dat.

3. Zotaveni z chyb: Otestujte schopnost pracovniho postupu zotavit se z chyb
a vyjimek. Simulujte chybové scénare a ovéfte, Ze pracovni postup je zvlada elegantné,

zaznamenava chyby a provadi pfislusné kroky k zotaveni.

4. Vykon a skalovatelnost: Vyhodnotte vykon a skalovatelnost pracovniho postupu pfi
ruznych podminkach zatizeni. Otestujte pracovni postup s velkym objemem soubéznych

pozadavki a zméfte doby odezvy, vyuziti zdroju a celkovou stabilitu systému.

Zde je priklad end-to-end testu pro pracovni postup v Ruby s vyuzitim testovaciho

frameworku RSpec a knihovny Capybara pro simulaci uZzivatelskych interakei:

© 0 N O O b W N e

11
12
13

Inteligentni orchestrace pracovnich postupt 242

RSpec.describe 'Order Processing Workflow' do
scenario 'User places an order successfully' do
visit '/orders/new'
fill_in 'Product', with: 'Sample Product'’
fill_in 'Quantity', with: "2’
fill_in 'Shipping Address', with: '1283 Main St'
click_button 'Place Order'

expect(page).to have_content('Order Placed Successfully')
expect(Order.count).to eq(1)
expect(Order.last.status).to eq('processed")
end
end

V tomto prikladu end-to-end test simuluje uzivatele, ktery zadava objednavku pres
webové rozhrani. Vypliiuje pozadovana pole formulafe, odesila objednavku a ovéfuje, ze
objednavka je uspésné zpracovana, zobrazuje ptislusnou potvrzujici zpravu a aktualizuje

stav objednavky v databazi.

Y&

PribéZna integrace a nasazeni

Pro zajisténi spolehlivosti a udrzovatelnosti inteligentnich workflow se doporucuje
integrovat testovani a validaci do pipeline pribézné integrace a nasazeni (CI/CD). To
umozinuje automatizované testovani a validaci zmén workflow pred jejich nasazenim

do produkce. Zvazte nasledujici postupy:

1. Automatizované spousténi testi: Nakonfigurujte CI/CD pipeline tak, aby
automaticky spoustéla sadu testl pti kazdé zméné v kodové zakladné workflow. Tim
zajistite, Ze pripadné regrese nebo selhani budou odhaleny jiz v pocate¢nich fazich
vyvoje.

2. Sledovani testovaciho pokryti: Méfte a sledujte testovaci pokryti komponent

workflow a bodi Al rozhodovani. Usilujte o vysoké testovaci pokryti, abyste zajistili

dikladné otestovani kritickych cest a scénaru.

Inteligentni orchestrace pracovnich postupt 243

3. Prabézna zpétni vazba: Integrujte vysledky testd a metriky kvality kodu do
vyvojového workflow. Poskytujte vyvojarum prubéznou zpétnou vazbu o stavu testi,

kvalité kodu a jakychkoli problémech zjisténych béhem CI/CD procesu.

4. Staging prostiedi: Nasadte workflow do staging prostiedi, kterd vérné kopiruji
produkéni prostredi. Provedte dodate¢né testovani a validaci ve staging prostfedi, abyste

odhalili pripadné problémy souvisejici s infrastrukturou, konfiguraci nebo integraci dat.

5. Mechanismy rollbacku: Implementujte mechanismy rollbacku pro pfipad selhani
nasazeni nebo zjisténi kritickych problémut v produkci. Zajistéte, aby workflow mohlo
byt rychle vraceno na predchozi stabilni verzi, ¢im7 se minimalizuje vypadek a dopad

na uzivatele.

Zaclenénim testovani a validace do celého vyvojového cyklu inteligentnich workflow
mohou organizace zajistit spolehlivost, pfesnost a udrZovatelnost svych systéma
zaloZenych na Al Pravidelné testovani a validace pomahaji odhalit chyby, pfedchézet

regresim a budovat divéru v chovani a vysledky workflow.

Cast 2: Vzory

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 246

Ret&zeni myslenek

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Priklady

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Generovani obsahu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Vytvareni strukturovanych entit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Vedeni LLM agenta

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Ve

Vyhody a aspekty k zvazeni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 247

PFepinac rezim(

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to pouZit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 248

Prirazeni role

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to pouZit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklady

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 249

Prompt Object

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 250

Sablona promptu

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyhody a avahy

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy ji pouzit:

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 251

Structured 10

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Skalovani Structured 10

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyhody a avahy

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 252

Ret&zeni promptu

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to pouZit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad: Onboarding v Olympii

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 253

PFepisovac prompti

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 254

Ohraniceni odpovédi

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyhody a avahy

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Osetfeni chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 255

Analyzator dotazl

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Oznacovani slovnich druht (POS) a rozpoznavani pojmenovanych
entit (NER)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klasifikace zaméru

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Extrakce kli€ovych slov

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 256

Vyhody

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 257

PFepisovac dotazu

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyhody

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 258

Ventriloquist

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to pouZit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 260

Predicate

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej pouzit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 261

APl Fasada

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klicové vyhody

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy ji pouzit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Autentizace a autorizace

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 262

Zpracovani poZadavku

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Formatovani odpovédi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Zpracovani chyb a krajnich pFipadt

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Uvahy o $kalovatelnosti a vykonu

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Porovnani s jinymi navrhovymi vzory

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 263

Interpret vysledkt

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej pouzit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 264

Virtualni stroj

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej pouzit

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Za oponou magie

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Specifikace a testovani

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétni komponenty 265

Specifikace chovani

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Psani testovacich pFipadi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad: Testovani komponenty prekladace

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Prehravani HTTP interakci

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vysokourovinové vzory

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hybridni inteligence

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Adaptivni odezva

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Prepinani roli mezi ¢lovékem a Ul

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 267

Eskalace

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klicové vyhody

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Prakticka aplikace: Zdravotnictvi

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 268

Zpétnovazebni smycka

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a priklady

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Pokrocilé techniky integrace lidské zpétné vazby

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 269

Pasivni radiace informaci

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kontextové zobrazeni informaci

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Proaktivni upozornéni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vysvétlujici poznatky

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Interaktivni prazkum

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 270
Klicové vyhody

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a priklady

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 271

Kolaborativni rozhodovani (CDM)

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 272

Kontinualni uceni

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a priklady

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Etické aspekty

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Role HITL pfFi zmirfiovani rizik Al

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 273

Technologicky pokrok a vyhled do budoucnosti

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vyzvy a omezeni systému HITL

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tradicni pristupy ke zpracovani chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb 275

Kontextualni diagnostika chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:
//leanpub.com/patterns-of-application-development-using-ai-cs.
Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Promptové inZenyrstvi pro kontextualni diagnostiku chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Generovani rozSifrené o vyhledavani pro kontextovou diagnostiku
chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb 276

Inteligentni hlaseni chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb 277

Prediktivni prevence chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Chytré zotaveni z chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb 278

Personalizovana komunikace chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentni zpracovani chyb 279

Adaptivni workflow zpracovani chyb

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 281

Eval

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Problém

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Reseni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

DuleZité aspekty

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 282

Porozuméni zlatym referencim

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak funguiji evaluace bez referenci

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 283

Ochranny mechanismus

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Problém

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Reseni

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Priklad

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

DuleZité aspekty

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 284

Ochranné mechanismy a vyhodnoceni: Dvé

strany téZe mince

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.
Zaménitelnost ochrannych mechanismu a evaluaci bez
reference

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace dualnich ochrannych mechanismi
a evaluaci

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Glosar

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Glosar

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

A

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

C

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

286

D

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

G

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

H

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

287

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

K

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

M

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

N

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

(o)

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

288

P

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Q

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

R

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

S

Tento obsah neni k dispozici v ukazkové knize. Kniha Ize zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

T

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

U

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

289

\'

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

w

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

yA

Tento obsah neni k dispozici v ukazkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Index

adaptivni pracovni postup
Adaptivni kompozice pracovnich
postupt, 210
adaptivni UL, 193
Agentni, 29
Al 68, 92, 120, 125, 133, 188, 195
aplikace, 117, 129, 151
konverzacni, 6, 28, 196
model, 82, 91, 92, 145, 148, 195
rozhodovaci body, 239
slozené systémy, 27, 28, 31
Alpaca, 12
Altman, Sam, 16
Amazon Web Services, 235
analyza sentimentu, 15, 93, 104-106, 109,
110, 126, 135
Anthropic, 20, 36, 68, 120, 128
antropomorfismus, 64
AP, 115, 143
APIs, 66
architektura podnikovych aplikaci, 35
asynchronni zpracovani, 232
audit a dodrzovani predpist, 230
auditni logovani, 99
Automatické pokracovani, 149

automatické skalovani, 235

autoregresni modelovani, 40

BERT, 12, 22

bezstavovy, 146

Brotli, 236

bryle pro rozsifenou realitu, 203

Byte Pair Encoding (BPE), 13

C (Programovaci jazyk), 108
Chain of Thought (CoT), 42, 129
chatbotova aplikace, 110
ChatGPT, 27, 49
chyby

zotaveni, 241

zpracovani, 99, 133, 237
chytré telefony, 203
Claude, 8, 40, 72
Claude 3, 46, 118, 120, 126, 128
Claude 3 Opus, 69
Claude v1, 15
Claude v2, 15
Cohere (poskytovatel LLM), 20, 23
collaborative filtering, 85
content-based filtering, 85

Customer Sentiment Analysis, 92

data

Index

analyza, 31, 137

integrita, 223

ochrana, 24

ochrana osobnich udaju, 200

perzistence, 101

pipeline zpracovani, 223

piiprava, 101

Synchronizace dat, 102

tok, 102

Validace dat, 241

Ziskavani dat, 102

ulohy zpracovani, 117
databases

locking strategies, 102
databaze, 115

objekt zaloZeny na databazi, 98
Datadog, 231
debugovani

a testovani, 123
decision

-making capabilities, 92
detekce podvodu

systém, 90
deterministické chovani, 54
digitalni krajina, 180
distribuovan architektura, 232
doba zpracovani, 103
dodavatelsky retézec

optimalizace, 30
Dohan, et al., 40
dynamické generovani UI, 175

Dynamické smérovani uloh, 208

Dynamicky vybér nastroja, 122
davkové zpracovani, 233

duvéra uzivateld, 201

e-commerce, 178, 206
E-commerce Applications, 85
efektivita, 207
ekosystém, 138
ELK stack, 103
emocni zabarveni, 135
end-to-end testovani, 241, 242
ensembly, 109
errors
handling, 102
Inteligentni zpracovani chyb, 133
miry, 103
etika
dasledky, 185
experimentovani
ramec, 180

externi sluzby nebo API, 118

F#, 86
Facebook, 22
few-shot
promptovani, 59
uceni, 57
finalize metoda, 147, 148
fine-tuning, 74
FitAl, 196
flexibilita a kreativita, 182
funkce

historie volani, 146

291

Index 292

nazvy, 144 Graham, Paul, 17
volani, 115 gramaticka pravidla, 4
funkcionalni programovani, 85 GraphQL, 100
Grogq, 24, 111
Gemma 7B, 10 gzip, 236

Generative Pre-trained Transformer (GPT),

g hardware, 26

. . . . has i tabulka, 142
Generativni pfedtrénovany transformator asovact tabutia
(GPT), 62

Generativni UI (GenUI), 191, 194, 198, 202

historické vzory, 209
Hodnoceni a stratifikace pfiznaki, 94
hodnotici systémy, 32

Generativni uZivatelské rozhrani (GenUI),

184 Hohpe, Gregor, 97

Honeybadger, 87
Generovani rozsifené o vyhledavani ybadg

(RAG), 29, 35, 117 hrani¢ni podminky, 237

[i A HTTP, 140
Generovani s rozsitenym vyhledavanim
hyperparametr, 43

(RAG), 74
generovani syntetickych dat, 49 identifikace témat, 112
GitLab, 86 Inference, 5
Global Interpreter Lock (GIL), 107 informace
Google, 20 extrakce, 49
API, 58, 60 ziskavani, 7, 117
Cloud AI Platform, 22 informatika, 65, 67
Cloud Platform, 235 inkluzivni rozhrani, 185
Gemini, 19 instrukéni doladovani
Gemini 1.5 Pro, 12, 15, 17 instrukéné doladéné modely, 46
PaLM (Pathways Language Model), instrukéni ladéni, 9
15, 22 instrukéné vyladéné modely, 48
T5, 12 integrace LLM, 175
GPT-3, 12, 15 integracni testovani, 238
GPT-4, 6, 12, 15, 19, 28, 40, 46, 58, 97, 109, Inteligentni moderator obsahu, 217
111, 119, 124, 189, 190, 233 inteligentni orchestrace pracovnich

grafické modely, 40 postupu, 205, 233

Index

inteligentni orchestrace workflow, 213, 236
interakce ve stylu hrani roli, 6
internacionalizace, 181

internetovi prodejci, 190

Interpretator vysledkd, 132

iterativni vylepSovani, 70, 134

jazyk
Detekcee jazyka, 104
modely, 39, 67
souvisejici ulohy, 4
jazyk kddovatelny v Unicode, 13
jazykové
modely, 61
JSON (JavaScript Object Notation), 118,
122, 126, 138, 155

K-means, 113

klasifikace, 49, 112

klicové vzory, 208

knihovna Capybara, 241

koncepéni a praktické vyzvy, 185

kontext
Kontextova generace obsahu, 185, 186
Kontextové navrhy poli, 186
kontextové rozhodovani, 209
Kontextualni generovani obsahu, 174,

178-180

nekonecné dlouhé vstupy, 14
okno, 14, 209
Rozsifeni, 43

Kontinualni monitoring rizik, 96

konverzace

293

prepis, 146, 148
smycka, 149
konzistence
a reprodukovatelnost, 124
krajni ptipady, 54
kreativni psani, 49
Kvantizace, 26
Kédovani para bajta (BPE), 12

ktizové modalni generovani, 20

ladéni, 209
a feSeni problémt, 230
Large Language Model (LLM), 134, 189
latence, 25
Latentni Dirichletova alokace, 113
latentni prostor, 37, 39
linearni algebra, 40
linearni regrese, 40
Llama, 12
Llama 2-70B, 46
Llama 3 70B, 10
Llama 3 8B, 10
logika prerusovace, 151
lokalni vyvojova prostredi, 144
Louvre, 39

lékatské objevy, 93

Managed Streaming for Apache Kafka, 38
manuéalni zasah, 212

Markdown, 137

mechanismy opakovani, 102

mechanismy rollbacku, 243

Index

Memorial Sloan Kettering Cancer Center,
38
Merkur (planeta), 41
Merkur (fimsky buh), 41
MessagePack, 235
Meta, 22
metoda finalize, 146
Metoda podptrnych vektor (SVM), 112
Metropolitan Museum of Art, 39
MikrosluZzebni architektura, 83
Mistral, 23
7B, 10

7B Instruct, 15, 190

Mixtral
8x22B, 10
8x7B, 52

Mnozstvi pracovnikd, 110
Mnozstvi workert, 155
modely zalozené na vyhledavani, 7
moderni aplikace, 207
modularita, 82
monitoring

a protokolovani, 103
monitorovani

a protokolovani, 229

a upozorinovani, 211

metriky, 230
motivacni strategie, 198
Multimodalni

jazykové modely, 19

modely, 18

Naivni Bayes, 112
neuronové sité, 3, 6
New Relic, 234

nefizené uceni, 4

néavrh aplikaci a frameworky, 184

obchodni pravidla, 206
obsah
filtrovani, 24
Kategorizace obsahu, 104
obsluha proudu dat, 141
Ohranic¢eni odpovédi, 164, 190
Ollama, 23

Olympia, 30, 58, 120, 133, 141, 156

Olympia’s knowledge base, 85
OpenAl, 3, 20, 36, 68
OpenRouter, 25, 26, 141, 234
OPT model, 22

optimistické zamykani, 102
Ovéfeni pojisténi, 94

ovéreni vystupu, 237

parafraze, 49
paralelni vykonavani, 232
parametr
pocet parametrd, 25
rozsah, 10
ucinky, 120
penalizace opakovani, 48
Penalizace ptitomnosti, 45
Perplexity (Poskytovatel), 10
personalizace, 175, 202, 207

Personalizované formuléfe, 186

Index

Personalizované mikrotexty, 191
personalizovanych produktovych
doporuceni, 85
pesimistické zamykani, 102
planovani reakce na mimoradné udalosti,
30
Podpora klinického rozhodovani, 96
podrobné protokolovani, 231
pole, 122
porovnavani vzord, 142
poskytovatelé hostingu open-source
modeld, 190
postupné odkryvani, 192
pouziti nastroja, 115, 139
pravdépodobnostni modely, 40
predikee, 5
princip nejmensich privilegii, 66
problémy s pouzitelnosti, 201
proces destilace, 70
Process Manager
Enterprise Integration, 213
Product Recommendations, 85
Produktivita, 177
prompty
Destilace promptd, 43, 68, 72, 233
engineering, 55
inzenyrstvi, 37, 42, 52, 61, 62, 199
névrh, 54, 63
Prompt Object, 69
vylepSovani, 63
fetézeni, 55, 66

Sablona promptu, 55, 190

295

propustnost, 25
Protocol Buffers, 235
Pribézna integrace a nasazeni (CI/CD), 242
pipeline, 242
PyTorch, 22
pfedpojatost
a spravedlivost v Al 240
preklad, 15, 182
prirozeny jazyk
Zpracovani pfirozeného jazyka (NLP),
94, 112
prizptsobeni, 24
pfifazeni pozadavkd, 223
ptikazovy fadek
Command-Line Interface (CLI), 23

pristupnost, 201, 202
Qwen2 70B, 10

Rails, 181
Railway Oriented Programming (ROP), 88
Raix, 214
knihovna, 90
Retrieval Augmented Generation (RAG), 43
rizikové faktory, 89
rozhodovani
body, 228
ptipady pouziti, 124
stromy, 206
rozhrani ovladana hlasem, 30
RSpec, 237, 238, 241
rtut (prvek), 41
Ruby, 86, 87, 105, 151, 241

Index

Ruby on Rails, 1, 104, 213, 220
Rudall, Alex, 21
Rust (Programming Language), 86

Rust (Programovaci jazyk), 108

Samoopravna data, 153
Samouzdravujici se data, 226
Sbér zdravotni anamnézy, 94
Scout, 234
server-sent events (SSE), 140
shlukovani dokumentu, 112
sledovani klicovych metrik, 227
slovniky, 122
slozité ukoly, 136
softwarové architektura, 2
soubory, 110

soubor pracovniki, 110
soubézné workflow, 236
spoustéci zprava, 97
sprava znalosti, 29
Spravce procest, 97, 100
SQL injekce, 65
staging prostredi, 243
stolni pocitace, 203
strategie segmentace a cileni, 180
Stratifikace rizik, 95
streamovana data, 142
streamové zpracovani, 146

logika, 147
Stripe, 121
strukturovana data, 125

Strukturované IO, 190

strukturované protokolovani, 231
sumarizace, 49

syntaktické chyby, 123

system directive, 91

systémova direktiva, 120

systémy pro zodpovidani otazek, 7

systémy typu publisher-subscriber, 101

sifové pfipojeni, 210

T5, 22

tablety, 203

teorie mysli, 37

Teplota, 50

Time to First Token (TTFT), 25
Together.ai, 24

tokenizace, 11

tokeny, 5, 11

tragédie obecni pastviny, 178
transformerova architektura, 6
trénovaci data, 39

tvurdi psani, 31

uchovavani a rotace protokold, 231
udalostmi fizena architektura, 101
Ul, 60, 140
ukladani do mezipaméti, 233
uméla inteligence

aplikace, 139

model, 146
Universal ID, 236

296

uzavrené a oteviené zodpovidani otazek, 49

uceni bez piikladd, 55

Uceni z jednoho ptikladu, 56

Index

uzivatelsky generovany obsah, 104
uzivatelska psychologie, 200
uzivatelska zkuSenost, 181
Uzivatelské rozhrani (UT)

design, 203

frameworky, 199

rozhrani, 184, 198

technologie, 194

uzivatelské testovani a zpétna vazba, 183

Velky jazykovy model (LLM), 1, 3, 14, 16,
62, 63, 66, 72, 81, 103, 112, 115,
116, 131, 135, 137, 153, 155, 174,

184, 194, 216

prostredi, 25

velky jazykovy model (LLM), 27, 125

Velky jazykovy model (VJM), 70
Ventriloquist, 164
virtualni asistenti, 30
vizualni rozhrani, 194
vlastnosti ACID, 102
volani funkce
selhani, 125
volani nastroje, 143
vstup
prompty, 52
validace, 237
vstupni
parametry, 120
Vynuceny vybér nastroji, 123
vysoce vykonné dokoncovani, 24

vysvétlitelnost, 240

vytvareni narativu, 18
vzdélavaci aplikace, 29
Vzory podnikové integrace, 97
Viceagentni

fesitelé problému, 28
vicekrokovy pracovni postup, 103
Vybér Top-k, 45

Vybér Top-p (nucleus sampling), 45

vykon
kompromisy, 5
optimalizace, 124, 182, 230
problémy, 234

vyvoj aplikaci, 205

vyvojové frameworky, 138

vétsSinové hlasovani, 109

Wall, Larry, 3
Wisper, 87, 99, 141, 148
Wooley, Chad, 86

XML, 125
Yi-34B, 46

zaméstnanci Databricks, 49
zero-shot learning, 54

znalostni baze, 7

znackovani pomoci markup jazyka, 66

zpracovani proudu, 151
zpracovani proudu dat, 140
zpracovani vyjimek, 210, 212
zpétna vazba

Zpétnovazebni smycka, 55

zékaznicka podpora, 29

297

Index

zékaznické chatboty, 30
zakladni modely, 50
zalozni strategie, 102
zuzeni cesty, 35

z0zit cestu, 36

uzk4 mista, 210

298

ucet, 84

Cisténi textu, 104

Clovék v procesu (HITL), 167

fetézeni Al pracovnikd, 103
fizeni dopravy, 30

skalovatelnost, 207, 232

	Obsah
	Předmluva od Gregora Hohpe
	Předmluva
	O knize
	O příkladech kódu
	Čemu se nevěnuji
	Pro koho je tato kniha určena
	Budování společného slovníku
	Jak se zapojit
	Poděkování
	Co je to s ilustracemi?
	O Lean Publishingu
	O autorovi

	Úvod
	Úvahy o softwarové architektuře
	Co je velký jazykový model?
	Porozumění inferenci
	Zamyšlení nad výkonem
	Experimenty s různými modely LLM
	Složené systémy umělé inteligence

	Část 1: Základní přístupy a techniky
	Zúžit cestu
	Latentní prostor: Nepochopitelně rozsáhlý
	Jak se cesta ``zužuje''
	Surové versus instrukčně doladěné modely
	Prompt Engineering
	Destilace promptů
	Co fine-tuning?

	Generování rozšířené o vyhledávání (RAG)
	Co je Generování rozšířené o vyhledávání?
	Jak RAG funguje?
	Proč používat RAG ve vašich aplikacích?
	Implementace RAG ve vaší aplikaci
	Rozdělení na propozice
	Příklady RAG v praxi
	Inteligentní optimalizace dotazů (IQO)
	Přeřazování
	Hodnocení RAG (RAGAs)
	Výzvy a budoucí výhled

	Množství pracovníků
	AI pracovníci jako nezávislé znovupoužitelné komponenty
	Správa účtů
	Využití v e-commerce
	Aplikace ve zdravotnictví
	AI pracovník jako správce procesů
	Integrace AI Workers do architektury vaší aplikace
	Kompozice a orchestrace AI pracovníků
	Kombinování tradičního NLP s LLM

	Použití nástrojů
	Co je použití nástrojů?
	Potenciál využití nástrojů
	Pracovní postup při využití nástrojů
	Osvědčené postupy pro používání nástrojů
	Skládání a řetězení nástrojů
	Budoucí směry

	Zpracování proudu dat
	Implementace ReplyStream
	``Konverzační smyčka''
	Automatické pokračování
	Závěr

	Samoopravná data
	Praktická případová studie: Oprava poškozeného JSONu
	Úvahy a kontraindikace

	Kontextuální generování obsahu
	Personalizace
	Produktivita
	Rychlá iterace a experimentování
	AI poháněná lokalizace
	Význam uživatelského testování a zpětné vazby

	Generativní uživatelské rozhraní
	Generování textů pro uživatelská rozhraní
	Definice generativního UI
	Příklad
	Posun k designu orientovanému na výsledky
	Výzvy a úvahy
	Budoucí výhled a příležitosti

	Inteligentní orchestrace pracovních postupů
	Obchodní potřeba
	Klíčové výhody
	Klíčové vzory
	Zpracování a zotavení z výjimek
	Implementace inteligentní orchestrace workflow v praxi
	Monitorování a protokolování
	Úvahy o škálovatelnosti a výkonu
	Testování a validace workflow

	Část 2: Vzory
	Prompt Engineering
	Řetězení myšlenek
	Přepínač režimů
	Přiřazení role
	Prompt Object
	Šablona promptu
	Structured IO
	Řetězení promptů
	Přepisovač promptů
	Ohraničení odpovědi
	Analyzátor dotazů
	Přepisovač dotazů
	Ventriloquist

	Diskrétní komponenty
	Predicate
	API Fasáda
	Interpret výsledků
	Virtuální stroj
	Specifikace a testování

	Human In The Loop (HITL)
	Vysokoúrovňové vzory
	Eskalace
	Zpětnovazební smyčka
	Pasivní radiace informací
	Kolaborativní rozhodování (CDM)
	Kontinuální učení
	Etické aspekty
	Technologický pokrok a výhled do budoucnosti

	Inteligentní zpracování chyb
	Tradiční přístupy ke zpracování chyb
	Kontextuální diagnostika chyb
	Inteligentní hlášení chyb
	Prediktivní prevence chyb
	Chytré zotavení z chyb
	Personalizovaná komunikace chyb
	Adaptivní workflow zpracování chyb

	Kontrola kvality
	Eval
	Ochranný mechanismus
	Ochranné mechanismy a vyhodnocení: Dvě strany téže mince

	Glosář
	Glosář
	Index

