

Vzory vývoje aplikací s využitím

UI (České Vydání)

Obie Fernandez

Tato kniha se prodává na

http://leanpub.com/patterns-of-application-development-using-ai-cs

Tato verze byla publikována 2025-01-23

Toto je Leanpub kniha. Leanpub umožňuje autorům a vydavatelům postupný proces

publikování. Lean Publishing je způsob vydávání rozpracovaných elektronických knih

za použití jednoduchých nástrojů a mnohých opakování (iterací), abyste získali

zpětnou vazbu od čtenářů, a ti vám tak pomohli napsat tu správnou knihu a získat

úspěch na trhu, hned jak ji dokončíte.

© 2025 Obie Fernandez

http://leanpub.com/patterns-of-application-development-using-ai-cs
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Mluvte o této knize na Twitteru!

Pomozte, prosím, Obie Fernandez šířením informace o této knize na Twitteru!

Navrhovaný hashtag pro tuto knihu je #poaduai.

Zjistěte, co ostatní lidé říkají o této knize. Stačí vyhledat tento hashtag na Twitteru:

#poaduai

http://twitter.com
https://twitter.com/search?q=%23poaduai
https://twitter.com/search?q=%23

Mé drsné královně, mé múze, mému světlu a lásce, Victorii

A také od Obie Fernandez
Patterns of Application Development Using AI

The Rails 8 Way

The Rails 7 Way

XML The Rails Way

Serverless

El Libro Principiante de Node

The Lean Enterprise

https://leanpub.com/u/obiefernandez
https://leanpub.com/patterns-of-application-development-using-ai
https://leanpub.com/therails8way
https://leanpub.com/therails7way
https://leanpub.com/therailsway-xml
https://leanpub.com/serverless
https://leanpub.com/node-principiante
https://leanpub.com/theleanenterprise

Obsah

Předmluva od Gregora Hohpe . i

Předmluva . ii

O knize . iii

O příkladech kódu . iii

Čemu se nevěnuji . iii

Pro koho je tato kniha určena . iii

Budování společného slovníku . iii

Jak se zapojit . iii

Poděkování . iii

Co je to s ilustracemi? . iv

O Lean Publishingu . iv

O autorovi . v

Úvod . 1

Úvahy o softwarové architektuře . 2

Co je velký jazykový model? . 3

Porozumění inferenci . 5

Zamyšlení nad výkonem . 25

Experimenty s různými modely LLM . 26

Složené systémy umělé inteligence . 27

OBSAH

Část 1: Základní přístupy a techniky 35

Zúžit cestu . 36

Latentní prostor: Nepochopitelně rozsáhlý . 38

Jak se cesta “zužuje” . 42

Surové versus instrukčně doladěné modely . 45

Prompt Engineering . 52

Destilace promptů . 67

Co fine-tuning? . 74

Generování rozšířené o vyhledávání (RAG) . 75

Co je Generování rozšířené o vyhledávání? . 75

Jak RAG funguje? . 75

Proč používat RAG ve vašich aplikacích? . 75

Implementace RAG ve vaší aplikaci . 75

Rozdělení na propozice . 76

Příklady RAG v praxi . 76

Inteligentní optimalizace dotazů (IQO) . 77

Přeřazování . 77

Hodnocení RAG (RAGAs) . 77

Výzvy a budoucí výhled . 79

Množství pracovníků . 81

AI pracovníci jako nezávislé znovupoužitelné komponenty 82

Správa účtů . 84

Využití v e-commerce . 85

Aplikace ve zdravotnictví . 93

AI pracovník jako správce procesů . 96

Integrace AI Workers do architektury vaší aplikace 100

Kompozice a orchestrace AI pracovníků . 103

OBSAH

Kombinování tradičního NLP s LLM . 111

Použití nástrojů . 115

Co je použití nástrojů? . 115

Potenciál využití nástrojů . 117

Pracovní postup při využití nástrojů . 118

Osvědčené postupy pro používání nástrojů . 131

Skládání a řetězení nástrojů . 136

Budoucí směry . 138

Zpracování proudu dat . 140

Implementace ReplyStream . 141

“Konverzační smyčka” . 147

Automatické pokračování . 149

Závěr . 151

Samoopravná data . 153

Praktická případová studie: Oprava poškozeného JSONu 155

Úvahy a kontraindikace . 160

Kontextuální generování obsahu . 174

Personalizace . 175

Produktivita . 176

Rychlá iterace a experimentování . 179

AI poháněná lokalizace . 181

Význam uživatelského testování a zpětné vazby 183

Generativní uživatelské rozhraní . 184

Generování textů pro uživatelská rozhraní . 185

Definice generativního UI . 194

Příklad . 196

OBSAH

Posun k designu orientovanému na výsledky 198

Výzvy a úvahy . 200

Budoucí výhled a příležitosti . 201

Inteligentní orchestrace pracovních postupů . 205

Obchodní potřeba . 206

Klíčové výhody . 207

Klíčové vzory . 207

Zpracování a zotavení z výjimek . 210

Implementace inteligentní orchestrace workflow v praxi 213

Monitorování a protokolování . 227

Úvahy o škálovatelnosti a výkonu . 231

Testování a validace workflow . 236

Část 2: Vzory . 244

Prompt Engineering . 245

Řetězení myšlenek . 246

Přepínač režimů . 247

Přiřazení role . 248

Prompt Object . 249

Šablona promptu . 250

Structured IO . 251

Řetězení promptů . 252

Přepisovač promptů . 253

Ohraničení odpovědi . 254

Analyzátor dotazů . 255

Přepisovač dotazů . 257

Ventriloquist . 258

OBSAH

Diskrétní komponenty . 259

Predicate . 260

API Fasáda . 261

Interpret výsledků . 263

Virtuální stroj . 264

Specifikace a testování . 264

Human In The Loop (HITL) . 266

Vysokoúrovňové vzory . 266

Eskalace . 267

Zpětnovazební smyčka . 268

Pasivní radiace informací . 269

Kolaborativní rozhodování (CDM) . 271

Kontinuální učení . 272

Etické aspekty . 272

Technologický pokrok a výhled do budoucnosti 272

Inteligentní zpracování chyb . 274

Tradiční přístupy ke zpracování chyb . 274

Kontextuální diagnostika chyb . 275

Inteligentní hlášení chyb . 276

Prediktivní prevence chyb . 277

Chytré zotavení z chyb . 277

Personalizovaná komunikace chyb . 278

Adaptivní workflow zpracování chyb . 279

Kontrola kvality . 280

Eval . 281

Ochranný mechanismus . 283

Ochranné mechanismy a vyhodnocení: Dvě strany téže mince 283

Glosář . 285
Glosář . 285

Index . 290

Předmluva od Gregora Hohpe
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Předmluva
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Předmluva iii

O knize

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

O příkladech kódu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Čemu se nevěnuji

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Pro koho je tato kniha určena

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Budování společného slovníku

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak se zapojit

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Předmluva iv

Poděkování

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Co je to s ilustracemi?

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

O Lean Publishingu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Předmluva v

O autorovi

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Úvod

Pokud se těšíte na to, až začnete integrovat umělou inteligenci a velké jazykové modely

(LLM) do svých programátorských projektů, můžete se směle pustit rovnou do vzorů

a příkladů kódu uvedených v pozdějších kapitolách. Pro plné pochopení síly a potenciálu

těchto vzorů však stojí za to věnovat chvíli porozumění širšímu kontextu a ucelenému

přístupu, který představují.

Tyto vzory nejsou pouze sbírkou izolovaných technik, ale představují jednotný rámec

pro integraci umělé inteligence do vašich aplikací. Já používám Ruby on Rails, ale tyto

vzory byměly fungovat prakticky v jakémkoli jiném programovacím prostředí. Zabývají

se širokou škálou aspektů, od správy dat a optimalizace výkonu až po uživatelskou

zkušenost a bezpečnost, a poskytují komplexní sadu nástrojů pro vylepšení tradičních

programovacích postupů pomocí možností umělé inteligence.

Každá kategorie vzorů řeší konkrétní výzvu nebo příležitost, která vzniká při začleňování

komponent umělé inteligence do vaší aplikace. Pochopením vztahů a synergií mezi

Úvod 2

těmito vzory můžete činit informovaná rozhodnutí o tom, kde a jak umělou inteligenci

nejefektivněji využít.

Vzory nikdy nejsou předepisujícími řešeními a nemělo by se s nimi tak zacházet. Jsou

zamýšleny jako přizpůsobitelné stavební bloky, které by měly být upraveny podle

jedinečných požadavků a omezení vaší vlastní aplikace. Úspěšné použití těchto vzorů

(stejně jako jakýchkoli jiných v oblasti softwaru) závisí na hlubokém porozumění

problémové oblasti, potřebám uživatelů a celkové technické architektuře vašeho

projektu.

Úvahy o softwarové architektuře

Začal jsem programovat v 80. letech a byl jsem součástí hackerské scény, přičemž

jsem nikdy neztratil své hackerské smýšlení, ani poté, co jsem se stal profesionálním

vývojářem softwaru. Od začátku jsem vždy měl zdravou skepsi ohledně toho, jakou

hodnotu vlastně přinášejí softwaroví architekti ze svých slonovinových věží.

Jedním z důvodů, proč jsem osobně tak nadšený ze změn, které přináší tato mocná nová

vlna technologie umělé inteligence, je její dopad na to, co považujeme za rozhodnutí

softwarové architektury. Zpochybňuje tradiční představy o tom, co představuje

“správný” způsob návrhu a implementace našich softwarových projektů. Také

zpochybňuje, zda lze architekturu stále považovat především za ty části systému, které

je těžké změnit, protože vylepšení pomocí umělé inteligence usnadňuje změnu jakékoli

části vašeho projektu kdykoli více než kdy předtím.

Možná vstupujeme do vrcholných let “postmoderního” přístupu k softwarovému

inženýrství. V tomto kontextu postmoderní označuje zásadní odklon od tradičních

paradigmat, kde byli vývojáři odpovědní za napsání a údržbu každého řádku kódu.

Místo toho přijímá myšlenku delegování úkolů, jako je manipulace s daty, komplexní

algoritmy a dokonce celé části aplikační logiky, na knihovny třetích stran a externí

API. Tento postmoderní posun představuje významný odklon od konvenční moudrosti

Úvod 3

budování aplikací od základů a vyzývá vývojáře k přehodnocení jejich role v procesu

vývoje.

Vždy jsem věřil, že dobří programátoři píší pouze kód, který je absolutně nezbytné

napsat, na základě učení Larryho Walla a dalších hackerských osobností jako on.

Minimalizací množství napsaného kódu se můžeme pohybovat rychleji, snížit prostor

pro chyby, zjednodušit údržbu a zlepšit celkovou spolehlivost našich aplikací. Méně

kódu nám umožňuje soustředit se na základní byznysovou logiku a uživatelskou

zkušenost a delegovat ostatní práci na jiné služby.

Nyní, když systémy poháněné umělou inteligencí mohou zvládat úkoly, které byly

dříve výhradní doménou kódu psaného člověkem, bychom měli být schopni být ještě

produktivnější a agilnější, s větším zaměřením než kdy předtím na vytváření byznysové

hodnoty a uživatelské zkušenosti.

Samozřejmě existují kompromisy při delegování obrovských částí vašeho projektu na

systémy umělé inteligence, jako je potenciální ztráta kontroly a potřeba robustních

monitorovacích a zpětnovazebních mechanismů. Proto to vyžaduje novou sadu

dovedností a znalostí, včetně alespoň základního porozumění tomu, jak umělá

inteligence funguje.

Co je velký jazykový model?

Velké jazykové modely (LLM) jsou typem umělé inteligence, který získal významnou

pozornost v posledních letech, zejména od spuštění GPT-3 společností OpenAI v roce

2020. LLM jsou navrženy ke zpracování, porozumění a generování lidského jazyka

s pozoruhodnou přesností a plynulostí. V této části se krátce podíváme na to, jak LLM

fungují a proč jsou vhodné pro budování inteligentních systémových komponent.

V jádru jsou LLM založeny na algoritmech hlubokého učení, konkrétně na neuronových

sítích. Tyto sítě se skládají z propojených uzlů neboli neuronů, které zpracovávají

Úvod 4

a přenášejí informace. Architekturou volby pro LLM je často model Transformer, který

se ukázal jako vysoce efektivní při zpracování sekvenčních dat, jako je text.

Transformerové modely jsou založeny na mechanismu pozornosti a používají se

především pro úlohy zahrnující sekvenční data, jako je zpracování přirozeného jazyka.

Transformery zpracovávají vstupní data najednou, nikoli sekvenčně, což jim umožňuje

efektivněji zachytit dlouhodobé závislosti. Mají vrstvy mechanismů pozornosti, které

modelu pomáhají soustředit se na různé části vstupních dat, aby pochopil kontext

a vztahy.

Proces trénování velkých jazykových modelů zahrnuje vystavení modelu obrovskému

množství textových dat, jako jsou knihy, články, webové stránky a repozitáře

kódu. Během tréninku se model učí rozpoznávat vzory, vztahy a struktury v textu.

Zachycuje statistické vlastnosti jazyka, jako jsou gramatická pravidla, slovní asociace

a kontextuální významy.

Jednou z klíčových technik používaných při trénování velkých jazykových modelů je

neřízené učení. To znamená, že se model učí z dat bez explicitního označování nebo

vedení. Objevuje vzory a reprezentace samostatně analyzováním společného výskytu

slov a frází v trénovacích datech. To umožňuje velkým jazykovým modelům vyvinout

hluboké porozumění jazyku a jeho složitostem.

Dalším důležitým aspektem velkých jazykových modelů je jejich schopnost pracovat

s kontextem. Při zpracování textu berou velké jazykové modely v úvahu nejen jednotlivá

slova, ale také okolní kontext. Zohledňují předchozí slova, věty a dokonce i odstavce,

aby pochopily význam a záměr textu. Toto kontextuální porozumění umožňuje velkým

jazykovým modelům generovat koherentní a relevantní odpovědi. Jedním z hlavních

způsobů, jak hodnotíme schopnosti daného jazykového modelu, je posouzení velikosti

kontextu, který dokáže zvážit při generování odpovědí.

Po natrénování lze velké jazykové modely použít pro širokou škálu jazykových úloh.

Dokážou generovat text podobný lidskému, odpovídat na otázky, shrnovat dokumenty,

překládat jazyky a dokonce psát kód. Všestrannost velkých jazykových modelů je

Úvod 5

činí cennými pro vytváření inteligentních systémových komponent, které mohou

komunikovat s uživateli, zpracovávat a analyzovat textová data a generovat smysluplné

výstupy.

Začleněním velkých jazykových modelů do architektury aplikací můžete vytvářet

AI komponenty, které rozumí a zpracovávají uživatelské vstupy, generují dynamický

obsah a poskytují inteligentní doporučení nebo akce. Práce s velkými jazykovými

modely však vyžaduje pečlivé zvážení požadavků na zdroje a kompromisů ve výkonu.

Velké jazykové modely jsou výpočetně náročné a mohou vyžadovat značný výpočetní

výkon a paměť (jinými slovy, peníze) pro provoz. Většina z nás bude muset posoudit

nákladové důsledky integrace velkých jazykových modelů do našich aplikací a podle

toho jednat.

Porozumění inferenci

Inference označuje proces, kterým model generuje predikce nebo výstupy na základě

nových, dosud neviděných dat. Je to fáze, kdy se natrénovaný model používá

k rozhodování nebo generování textu, obrázků nebo jiného obsahu v reakci na

uživatelské vstupy.

Během fáze trénování se AI model učí z velkého datasetu úpravou svých parametrů tak,

aby minimalizoval chyby ve svých predikcích. Po natrénování může model aplikovat

to, co se naučil, na nová data. Inference je způsob, jakým model využívá naučené vzory

a znalosti k generování výstupů.

Pro velké jazykové modely inference zahrnuje přijetí promptu nebo vstupního textu

a vytvoření koherentní a kontextuálně relevantní odpovědi jako proudu tokenů

(o kterých budeme brzy mluvit). Může jít o odpověď na otázku, dokončení věty,

generování příběhu nebo překlad textu, mezi mnoha dalšími úlohami.

Úvod 6

Na rozdíl od způsobu, jakým přemýšlíme my, “myšlení” AI modelu

prostřednictvím inference probíhá v jedné bezstavové operaci. To znamená,

že jeho myšlení je omezeno na proces generování. Doslova musí myslet

nahlas, jako kdybyste mi položili otázku a přijímali ode mě odpověď pouze

ve stylu “proudu vědomí”.

Velké jazykové modely přicházejí v mnoha velikostech
a variantách

Zatímco prakticky všechny populární velké jazykové modely (LLM) jsou založeny na

stejné základní transformerové architektuře a jsou trénovány na obrovských textových

datasetech, přicházejí v různých velikostech a jsou doladěny pro různé účely. Velikost

LLM, měřená počtem parametrů v jeho neuronové síti, má velký vliv na jeho schopnosti.

Větší modely s více parametry, jako je GPT--4, o kterém se říká, že má 1 až 2 biliony

parametrů, jsou obecně znalější a schopnější než menší modely. Větší modely však také

vyžadují mnohem více výpočetního výkonu, což se promítá do vyšších nákladů při jejich

používání prostřednictvím API volání.

Aby byly LLM praktičtější a přizpůsobené konkrétním případům použití, jsou základní

modely často doladěny na více cílených datasetech. Například LLM může být trénován

na velkém korpusu dialogů, aby se specializoval na konverzační AI. Jiné jsou trénovány

na kódu, aby získaly programátorské znalosti. Existují dokonce modely, které jsou

speciálně trénovány pro interakce s uživateli ve stylu hraní rolí!

Modely založené na vyhledávání vs. generativní modely

Ve světě velkých jazykových modelů (LLM) existují dva hlavní přístupy ke generování

odpovědí: modely založené na vyhledávání a generativní modely. Každý přístup má své

silné a slabé stránky a pochopení rozdílů mezi nimi vám může pomoci vybrat správný

model pro váš konkrétní případ použití.

https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/deepseek/deepseek-coder
https://openrouter.ai/models/neversleep/llama-3-lumimaid-70b

Úvod 7

Modely založené na vyhledávání

Modely založené na vyhledávání, známé také jako modely pro získávání informací,

generují odpovědi prohledáváním rozsáhlé databáze existujících textů a výběrem

nejrelevantnějších pasáží na základě vstupního dotazu. Tyto modely nevytvářejí nový

text od základu, ale spíše spojují úryvky z databáze do souvislé odpovědi.

Jednou z hlavních výhod modelů založených na vyhledávání je jejich schopnost

poskytovat fakticky přesné a aktuální informace. Protože se spoléhají na databázi

kurátovaných textů, mohou čerpat relevantní informace ze spolehlivých zdrojů

a předkládat je uživateli. Díky tomu jsou vhodné pro aplikace, které vyžadují přesné,

faktické odpovědi, jako jsou systémy pro zodpovídání otázek nebo znalostní báze.

Modely založené na vyhledávání mají však určitá omezení. Jsou pouze tak dobré

jako databáze, kterou prohledávají, takže kvalita a pokrytí databáze přímo ovlivňují

výkon modelu. Kromě toho mohou tyto modely mít potíže s generováním souvislých

a přirozeně znějících odpovědí, protože jsou omezeny na text dostupný v databázi.

V této knize se nezabýváme používáním čistě vyhledávacích modelů.

Generativní modely

Generativní modely naopak vytvářejí nový text od základu na základě vzorců a vztahů,

které se naučily během tréninku. Tyto modely využívají své porozumění jazyku

k vytváření nových odpovědí, které jsou přizpůsobeny vstupnímu zadání.

Hlavní předností generativních modelů je jejich schopnost vytvářet kreativní, souvislý

a kontextově relevantní text. Mohou vést otevřené konverzace, generovat příběhy

a dokonce psát kód. Díky tomu jsou ideální pro aplikace, které vyžadují otevřenější

a dynamičtější interakce, jako jsou chatboti, tvorba obsahu a asistenti pro kreativní

psaní.

Generativní modely však mohou někdy produkovat nekonzistentní nebo fakticky

nesprávné informace, protože se spoléhají spíše na vzorce naučené během tréninku

Úvod 8

než na kurátovanou databázi faktů. Mohou být také náchylnější k předpojatosti

a halucinacím, kdy generují text, který je věrohodný, ale ne nutně pravdivý.

Příklady generativních LLM zahrnují řadu GPT od OpenAI (GPT-3, GPT-4) a Claude od

Anthropic.

Hybridní modely

Několik komerčně dostupných LLM kombinuje oba přístupy - vyhledávání i generování

- v hybridním modelu. Tyto modely používají techniky vyhledávání k nalezení

relevantních informací z databáze a poté používají generativní techniky k syntéze

těchto informací do souvislé odpovědi.

Hybridní modely se snaží kombinovat faktickou přesnost modelů založených na

vyhledávání s možnostmi generování přirozeného jazyka generativních modelů.

Mohou poskytovat spolehlivější a aktuálnější informace při zachování schopnosti vést

otevřené konverzace.

Při výběru mezi modely založenými na vyhledávání a generativními modely byste měli

zvážit konkrétní požadavky vaší aplikace. Pokud je hlavním cílem poskytovat přesné,

faktické informace, může být nejlepší volbou model založený na vyhledávání. Pokud

aplikace vyžaduje otevřenější a kreativnější interakce, může být vhodnější generativní

model. Hybridní modely nabízejí rovnováhu mezi oběma přístupy a mohou být dobrou

volbou pro aplikace, které vyžadují jak faktickou přesnost, tak generování přirozeného

jazyka.

V konečném důsledku závisí volba mezi modely založenými na vyhledávání

a generativními modely na konkrétním případu použití a kompromisech mezi

přesností, kreativitou a flexibilitou. Pochopením silných stránek a omezení každého

přístupu můžete činit informovaná rozhodnutí.

Úvod 9

Instrukční ladění

Instrukční ladění je podmnožina konverzačního tréninku, která používá člověkem

napsané prompty a odpovědi k tomu, aby se LLM lépe naučily chápat a následovat

instrukce. Zde jsou jednoduché příklady ilustrující, jak instrukční ladění na člověkem

napsaných promptech a odpovědích zlepšuje schopnost LLM chápat a následovat

instrukce:

Příklad 1: Zákaznická podpora

Instrukce: “Poskytněte odpověď zákazníkovi, který žádá o vrácení peněz.”

Člověkem napsaný prompt: “Rád bych požádal o vrácení peněz za svůj nedávný

nákup. Produkt nesplnil moje očekávání.”

Člověkem napsaná odpověď: “Je mi líto, že produkt nesplnil vaše očekávání. Pro

zpracování vrácení peněz prosím uveďte číslo vaší objednávky a důvod vrácení. Vaši

žádost prověříme a ozveme se vám do 2-3 pracovních dnů.”

Příklad 2: Vzdělávací asistence

Instrukce: “Vysvětlete koncept fotosyntézy desetiletému dítěti.”

Lidmi psaný dotaz: “Můžeš vysvětlit, jak si rostliny vyrábějí potravu?”

Lidmi psaná odpověď: “Jistě! Rostliny si vyrábějí potravu procesem zvaným

fotosyntéza. Využívají sluneční světlo, vodu a oxid uhličitý k vytvoření potravy

a kyslíku. Listy rostliny obsahují speciální část zvanou chlorofyl, která jim pomáhá

zachytávat sluneční světlo.”

Příklad 3: Osobní asistent

Instrukce: “Naplánuj schůzku na příští úterý ve 15:00.”

Úvod 10

Lidmi psaný dotaz: “Můžeš mi naplánovat schůzku na úterý ve tři odpoledne?”

Lidmi psaná odpověď: “Jistě, naplánoval jsem vám schůzku na příští úterý v 15:00.

Potřebujete ještě něco?”

Výsledkem je různorodý ekosystém velkých jazykových modelů různých velikostí

a s různými specializacemi. Menší modely v rozsahu 1-7 miliard parametrů poskytují

dobré obecné jazykové schopnosti a jsou přitom efektivnější pro provoz.

• Mistral 7B

• Llama 3 8B

• Gemma 7B

Středně velké modely s přibližně 30-70 miliardami parametrů nabízejí silnější schopnosti

uvažování a následování instrukcí.

• Llama 3 70B

• Qwen2 70B

• Mixtral 8x22B

Při výběru velkého jazykového modelu pro začlenění do aplikace musíte vyvážit

schopnosti modelu s praktickými faktory jako jsou náklady, latence, délka kontextu

a filtrování obsahu. Menší modely doladěné na instrukce jsou často nejlepší volbou pro

jednodušší jazykové úlohy, zatímco největší modely mohou být potřebné pro složité

uvažování nebo analýzu. Důležitým faktorem je také trénovací dataset modelu, který

určuje datum ukončení znalostí modelu.

Některé modely, jako například některé od Perplexity, jsou připojeny

ke zdrojům informací v reálném čase, takže v podstatě nemají žádné

datum ukončení znalostí. Když jim položíte otázky, dokážou samostatně

rozhodnout o provedení webového vyhledávání a načtení libovolných

webových stránek pro generování odpovědi.

Úvod 11

obrázkem 1. Llama3 s online přístupem a bez něj

V konečném důsledku neexistuje univerzální velký jazykový model. Pro výběr

správného modelu pro daný případ použití je klíčové porozumění rozdílům ve velikosti

modelu, architektuře a tréninku. Experimentování s různými modely je jediný praktický

způsob, jak zjistit, které z nich poskytují nejlepší výkon pro danou úlohu.

Tokenizace: Rozdělování textu na části

Než může velký jazykový model zpracovat text, musí být tento text rozdělen na menší

jednotky zvané tokeny. Tokeny mohou být jednotlivá slova, části slov nebo dokonce

jednotlivé znaky. Proces rozdělování textu na tokeny se nazývá tokenizace a je to klíčový

krok v přípravě dat pro jazykový model.

obrázkem 2. Tato věta obsahuje 27 tokenů

Různé velké jazykové modely používají různé strategie tokenizace, což může mít

významný vliv na výkon a schopnosti modelu. Mezi běžné tokenizéry používané

Úvod 12

velkými jazykovými modely patří:

• GPT (Kódování párů bajtů): GPT tokenizéry používají techniku zvanou

kódování párů bajtů (BPE) k rozdělení textu na podslovovné jednotky. BPE

iterativně spojuje nejčastější páry bajtů v textovém korpusu a vytváří tak slovník

podslovovných tokenů. To umožňuje tokenizéru zpracovat vzácná a nová slova

jejich rozdělením na běžnější podslovovné části. GPT tokenizéry jsou používány

modely jako GPT--3 a GPT--4.

• Llama (SentencePiece): Tokenizátory Llama používají knihovnu SentencePiece,

což je neřízený textový tokenizátor a detokenizátor. SentencePiece pracuje se

vstupním textem jako se sekvencí znaků Unicode a učí se slovník podslov

na základě trénovacího korpusu. Dokáže zpracovat jakýkoliv jazyk, který lze

zakódovat v Unicode, což ho činí vhodným pro vícejazyčné modely. Tokenizátory

Llama jsou používány modely jako Meta’s Llama a Alpaca.

• SentencePiece (Unigram): Tokenizátory SentencePiece mohou také používat jiný

algoritmus nazvaný Unigram, který je založen na technice regularizace podslov.

Tokenizace Unigram určuje optimální slovník podslov na základě unigramového

jazykového modelu, který přiřazuje pravděpodobnosti jednotlivým podslovním

jednotkám. Tento přístup může produkovat sémanticky významnější podslova ve

srovnání s BPE. SentencePiece s Unigramem používají modely jako Google T5

a BERT.

• Google Gemini (Multimodální tokenizace):Google Gemini používá tokenizační

schéma navržené pro zpracování různých typů dat, včetně textu, obrázků, zvuku,

videí a kódu. Tato multimodální schopnost umožňuje Gemini zpracovávat

a integrovat různé formy informací. Je pozoruhodné, že Google Gemini 1.5 Pro

má kontextové okno, které zvládne miliony tokenů, což je mnohem více než

předchozí modely. Toto rozsáhlé kontextové okno umožňuje modelu zpracovávat

Úvod 13

větší kontext, což potenciálně vede k přesnějším odpovědím. Je však důležité

poznamenat, že tokenizační schéma Gemini je mnohem blíže jednomu tokenu na

znak než u jiných modelů. To znamená, že skutečné náklady na používání modelů

Gemini mohou být výrazně vyšší než očekávané, pokud jste zvyklí používat

modely jako GPT, protože Google účtuje ceny na základě znaků spíše než tokenů.

Volba tokenizátoru ovlivňuje několik aspektů LLM, včetně:

• Velikost slovníku: Tokenizátor určuje velikost slovníku modelu, což je sada

unikátních tokenů, které rozpoznává. Větší a podrobnější slovník může modelu

pomoci zpracovat širší škálu slov a frází a dokonce se stát multimodálním

(schopným porozumět a generovat více než jen text), ale také zvyšuje paměťové

nároky modelu a výpočetní složitost.

• Zpracování vzácných a neznámých slov: Tokenizátory, které používají

podslovní jednotky, jako BPE a SentencePiece, mohou rozdělit vzácná a neznámá

slova na běžnější části podslov. To umožňuje modelu dělat kvalifikované odhady

o významu slov, která předtím neviděl, na základě podslov, která obsahují.

• Vícejazyčná podpora: Tokenizátory jako SentencePiece, které dokážou zpracovat

jakýkoliv jazyk kódovatelný v Unicode, jsou dobře uzpůsobené pro vícejazyčné

modely, které potřebují zpracovávat text v různých jazycích.

Při výběru LLM pro konkrétní aplikaci je důležité zvážit tokenizátor, který používá, a jak

dobře odpovídá specifickým potřebám zpracování jazyka pro daný úkol. Tokenizátor

může mít významný vliv na schopnost modelu zpracovávat oborovou terminologii,

vzácná slova a vícejazyčný text.

Velikost kontextu: Kolik informací může jazykový model
využít během inference?

Při diskusi o jazykových modelech se velikostí kontextu rozumí množství textu, které

model může zvážit při zpracování nebo generování svých odpovědí. Je to v podstatě

Úvod 14

míra toho, kolik informací si model dokáže “zapamatovat” a použít pro své výstupy

(vyjádřeno v tokenech). Velikost kontextu jazykového modelu může mít významný

dopad na jeho schopnosti a typy úloh, které může efektivně provádět.

Co je velikost kontextu?

Technicky vzato je velikost kontextu určena počtem tokenů (slov nebo částí slov), které

jazykový model může zpracovat v jedné vstupní sekvenci. Často se tomu říká “rozsah

pozornosti” nebo “kontextové okno” modelu. Čím větší je velikost kontextu, tím více

textu může model najednou zvážit při generování odpovědi nebo provádění úkolu.

Různé jazykové modely mají různé velikosti kontextu, od několika set tokenů až po

miliony tokenů. Pro představu, typický odstavec textumůže obsahovat přibližně 100-150

tokenů, zatímco celá kniha může obsahovat desítky či stovky tisíc tokenů.

Existují dokonce práce na efektivních metodách pro škálování Transformer-based

Large Language Models (LLMs) na nekonečně dlouhé vstupy s omezenou pamětí

a výpočetní náročností.

Proč je velikost kontextu důležitá?

Velikost kontextu jazykového modelu má významný vliv na jeho schopnost porozumět

a generovat souvislý, kontextově relevantní text. Zde jsou některé klíčové důvody, proč

na velikosti kontextu záleží:

1. Porozumění dlouhým textům: Modely s větší velikostí kontextu dokáží lépe

pochopit a analyzovat delší texty, jako jsou články, zprávy nebo dokonce celé

knihy. To je zásadní pro úlohy jako sumarizace dokumentů, zodpovídání otázek

a analýza obsahu.

https://huggingface.co/papers/2404.07143

Úvod 15

2. Udržení koherence: Větší kontextové okno umožňuje modelu udržet koherenci

a konzistenci v delších úsecích výstupu. To je důležité pro úlohy jako generování

příběhů, dialogové systémy a tvorba obsahu, kde je zásadní udržet konzistentní

vyprávění nebo téma. Je to také naprosto klíčové při používání LLM pro

generování nebo transformaci strukturovaných dat.

3. Zachycení závislostí na dlouhou vzdálenost: Některé jazykové úlohy vyžadují

porozumění vztahůmmezi slovy nebo frázemi, které jsou v textu od sebe vzdálené.

Modely s větší velikostí kontextu jsou lépe vybaveny pro zachycení těchto

vzdálených závislostí, což může být důležité pro úlohy jako analýza sentimentu,

překlad a porozumění jazyku.

4. Zvládání složitých instrukcí: V aplikacích, kde se jazykové modely používají

k následování složitých, vícekrokových instrukcí, větší velikost kontextu

umožňuje modelu vzít v úvahu celou sadu instrukcí při generování odpovědi,

místo jen několika posledních slov.

Příklady jazykových modelů s různými velikostmi kontextu

Zde je několik příkladů jazykových modelů s různými velikostmi kontextu:

• OpenAI GPT-3.5 Turbo: 4 095 tokenů

• Mistral 7B Instruct: 32 768 tokenů

• Anthropic Claude v1: 100 000 tokenů

• OpenAI GPT-4 Turbo: 128 000 tokenů

• Anthropic Claude v2: 200 000 tokenů

• Google Gemini Pro 1.5: 2,8M tokenů

Jak můžete vidět, mezi těmito modely je široký rozsah velikostí kontextu, od přibližně 4

000 tokenů u modelu OpenAI GPT-3.5 Turbo až po 200 000 tokenů u modelu Anthropic

Claude v2. Některé modely, jako Google PaLM 2 a OpenAI GPT--4, nabízejí různé

varianty s většími velikostmi kontextu (např. verze “32k”), které zvládnou ještě delší

Úvod 16

vstupní sekvence. A v současnosti (duben 2024) se Google Gemini Pro chlubí téměř 3

miliony tokenů!

Je třeba poznamenat, že velikost kontextu se může lišit v závislosti na konkrétní

implementaci a verzi daného modelu. Například původní model OpenAI GPT-4 má

velikost kontextu 8 191 tokenů, zatímco pozdější varianty GPT-4, jako jsou Turbo a 4o,

mají mnohem větší velikost kontextu 128 000 tokenů.

Sam Altman přirovnal současná kontextová omezení ke kilobajtům pracovní paměti,

se kterými se museli programátoři osobních počítačů potýkat v 80. letech, a řekl,

že v blízké budoucnosti budeme schopni vměstnat “všechna vaše osobní data” do

kontextu velkého jazykového modelu.

Výběr správné velikosti kontextu

Při výběru jazykového modelu pro konkrétní aplikaci je důležité zvážit požadavky na

velikost kontextu pro danou úlohu. Pro úlohy zahrnující krátké, izolované texty, jako je

analýza sentimentu nebo jednoduché zodpovídání otázek, může být dostačující menší

velikost kontextu. Pro úlohy vyžadující porozumění a generování delších, složitějších

textů bude pravděpodobně nutná větší velikost kontextu.

Je třeba poznamenat, že větší velikosti kontextu často přinášejí zvýšené výpočetní

náklady a pomalejší zpracování, protože model musí při generování odpovědi zvažovat

více informací. Proto musíte při výběru jazykového modelu pro vaši aplikaci najít

rovnováhu mezi velikostí kontextu a výkonem.

Úvod 17

Proč tedy jednoduše nevybrat model s největší velikostí kontextu a nenaplnit ho

co největším množstvím informací? No, kromě výkonnostních faktorů je hlavním

důvodem cena. V březnu 2024 vás jediný cyklus dotaz-odpověď pomocí Google

Gemini Pro 1.5 s plným kontextem bude stát téměř 8 dolarů (USD). Pokudmáte případ

použití, který tuto cenu ospravedlňuje, tím lépe! Ale pro většinu aplikací je to prostě

o řády příliš drahé.

Hledání jehel v kupkách sena

Koncept hledání jehly v kupce sena je dlouho používanou metaforou pro výzvy spojené

s vyhledáváním ve velkých datových souborech. V oblasti velkých jazykových modelů

(LLM) tuto analogii mírně upravujeme. Představte si, že nehledáme jen jeden fakt ukrytý

v rozsáhlém textu (jako je třeba kompletní antologie esejů Paula Grahama), ale několik

faktů rozptýlených po celém textu. Tento scénář se více podobá hledání několika jehel

v rozlehlém poli, nikoliv jen v jedné kupce sena. A zde je háček: nejen že musíme tyto

jehly najít, ale musíme je také propojit do souvislého celku.

Když mají LLM za úkol vyhledávat a uvažovat o více faktech zasazených do dlouhých

kontextů, čelí dvojí výzvě. Zaprvé je tu přímočarý problém přesnosti vyhledávání—

ta přirozeně klesá s rostoucím počtem faktů. To je očekávatelné; koneckonců, udržet

přehled o více detailech napříč rozsáhlým textem je náročné i pro ty nejsofistikovanější

modely.

Zadruhé, a možná ještě kritičtější, je výzva uvažování s těmito fakty. Jedna věc je fakta

vysbírat; něco zcela jiného je syntetizovat je do souvislého vyprávění nebo odpovědi.

Zde přichází skutečná zkouška. Výkon LLM v úlohách vyžadujících uvažování má

tendenci degradovat více než u jednoduchých úloh vyhledávání. Tato degradace není

jen otázkou objemu; jde o složitý tanec kontextu, relevance a vyvozování závěrů.

Proč k tomu dochází? Uvažujme o dynamice paměti a pozornosti v lidském poznávání,

Úvod 18

která se do určité míry odráží i v LLM. Při zpracování velkého množství informací

mohou LLM, podobně jako lidé, ztratit přehled o dřívějších detailech, když vstřebávají

nové. To platí zejména u modelů, které nejsou explicitně navrženy tak, aby automaticky

upřednostňovaly nebo se vracely k dřívějším částem textu.

Navíc, schopnost LLM propojit tyto získané fakty do souvislé odpovědi se podobá

vytváření narativu. To vyžaduje nejen vyhledání informací, ale i hluboké porozumění

a kontextuální umístění, což zůstává pro současnou umělou inteligenci značnou výzvou.

Co to tedy znamená pro nás jako vývojáře a integrátory těchto technologií? Musíme

si být ostře vědomi těchto omezení při navrhování systémů, které spoléhají na LLM pro

zpracování komplexních, dlouhých úloh. Pochopení toho, že výkon se může za určitých

podmínek zhoršit, nám pomáhá nastavit realistická očekávání a vytvářet lepší záložní

mechanismy nebo doplňkové strategie.

Modality: Za hranicemi textu

Zatímco většina dnešních jazykových modelů se zaměřuje na zpracování a generování

textu, roste trend směrem k multimodálním modelům, které dokáží přirozeně přijímat

a vytvářet více typů dat, jako jsou obrázky, zvuk a video. Tyto multimodální modely

otevírají nové možnosti pro aplikace založené na umělé inteligenci, které dokáží

porozumět a generovat obsah napříč různými modalitami.

Co jsou modality?

V kontextu jazykových modelů se modalitami rozumí různé typy dat, které model

dokáže zpracovávat a generovat. Nejběžnější modalitou je text, který zahrnuje psaný

jazyk v různých formách jako knihy, články, webové stránky a příspěvky na sociálních

sítích. Existuje však několik dalších modalit, které jsou stále častěji začleňovány do

jazykových modelů:

• Obrázky: Vizuální data jako fotografie, ilustrace a diagramy.

Úvod 19

• Audio: Zvuková data jako řeč, hudba a zvuky prostředí.

• Video: Pohyblivá vizuální data, často doprovázená zvukem, jako jsou videoklipy

a filmy.

Každá modalita představuje jedinečné výzvy a příležitosti pro jazykové modely.

Například obrázky vyžadují, aby model porozuměl vizuálním konceptům a vztahům,

zatímco audio vyžaduje, aby model zpracovával a generoval řeč a další zvuky.

Multimodální jazykové modely

Multimodální jazykové modely jsou navrženy tak, aby zvládaly více modalit v rámci

jediného modelu. Tyto modely typicky obsahují specializované komponenty nebo

vrstvy, které dokáží jak porozumět vstupům, tak generovat výstupní data v různých

modalitách. Mezi významné příklady multimodálních jazykových modelů patří:

• OpenAI GPT-4o: GPT-4o je velký jazykový model, který přirozeně rozumí

a zpracovává řečové audio kromě textu. Tato schopnost umožňuje GPT-4o

provádět úkoly jako přepis mluveného jazyka, generování textu ze zvukových

vstupů a poskytování odpovědí na základě mluvených dotazů.

• OpenAI GPT-4 s vizuálním vstupem: GPT--4 je velký jazykový model, který

dokáže zpracovávat jak text, tak obrázky. Když dostane obrázek jako vstup, GPT-4

dokáže analyzovat obsah obrázku a generovat text, který popisuje nebo reaguje

na vizuální informace.

• Google Gemini: Gemini je multimodální model, který zvládá text, obrázky

a video. Používá jednotnou architekturu, která umožňuje křížové porozumění

a generování mezi modalitami, což umožňuje úlohy jako popisování obrázků,

sumarizace videa a vizuální zodpovídání otázek.

• DALL-E a Stable Diffusion: Přestože nejde o jazykové modely v tradičním

smyslu, tyto modely demonstrují sílu multimodální umělé inteligence

generováním obrázků z textových popisů. Ukazují potenciál modelů, které

dokáží překládat mezi různými modalitami.

Úvod 20

Výhody a aplikace multimodálních modelů

Multimodální jazykové modely nabízejí několik výhod a umožňují širokou škálu

aplikací, včetně:

• Vylepšené porozumění: Zpracováním informací z více modalit mohou tyto

modely získat komplexnější porozumění světu, podobně jako se lidé učí z různých

smyslových vstupů.

• Křížově modální generování: Multimodální modely dokáží generovat obsah

v jedné modalitě na základě vstupu z jiné modality, například vytvořit obrázek

z textového popisu nebo generovat video shrnutí z psaného článku.

• Přístupnost: Multimodální modely mohou zpřístupnit informace překladem

mezi modalitami, například generováním textových popisů obrázků pro zrakově

postižené uživatele nebo vytvářením zvukových verzí psaného obsahu.

• Kreativní aplikace: Multimodální modely lze využít pro kreativní úkoly jako

generování umění, hudby nebo videí na základě textových promptů, což otevírá

nové možnosti pro umělce a tvůrce obsahu.

S pokračujícím vývojem multimodálních jazykových modelů budou pravděpodobně

hrát stále důležitější roli ve vývoji aplikací založených na umělé inteligenci, které dokáží

porozumět a generovat obsah napříč různými modalitami. To umožní přirozenější

a intuitivnější interakce mezi lidmi a systémy umělé inteligence a také otevře nové

možnosti pro kreativní vyjádření a šíření znalostí.

Ekosystémy poskytovatelů

Pokud jde o začlenění velkých jazykových modelů (LLM) do aplikací, máte na výběr

z rostoucí řady možností. Každý hlavní poskytovatel LLM, jako je OpenAI, Anthropic,

Google a Cohere, nabízí vlastní ekosystém modelů, API a nástrojů. Výběr správného

poskytovatele zahrnuje zvážení různých faktorů, včetně ceny, výkonu, filtrování obsahu,

ochrany dat a možností přizpůsobení.

Úvod 21

OpenAI

OpenAI je jedním z nejznámějších poskytovatelů LLM, přičemž jeho série GPT (GPT-3,

GPT-4) je široce využívána v různých aplikacích. OpenAI nabízí uživatelsky přívětivé

API, které vám umožňuje snadno integrovat jejich modely do aplikací. Poskytují řadu

modelů s různými schopnostmi a cenovými úrovněmi, od základního modelu Ada až po

výkonný model Davinci.

Ekosystém OpenAI také zahrnuje nástroje jako OpenAI Playground, který vám

umožňuje experimentovat s prompty a jemně dolaďovat modely pro konkrétní případy

použití. Nabízejí možnosti filtrování obsahu, které pomáhají předcházet generování

nevhodného nebo škodlivého obsahu.

Při přímém používání modelů OpenAI spoléhám na knihovnu ruby-openai od Alexe

Rudalla.

Anthropic

Anthropic je další významný hráč v oblasti LLM, jehož modely Claude získávají

popularitu díky silnému výkonu a etickým aspektům. Anthropic se zaměřuje na vývoj

bezpečných a odpovědných systémů umělé inteligence s velkým důrazem na filtrování

obsahu a vyhýbání se škodlivým výstupům.

Ekosystém Anthropic zahrnuje API Claude, které vám umožňuje integrovat model do

jejich aplikací, a také nástroje pro prompt engineering a jemné doladění. Nabízejí také

model Claude Instant, který zahrnuje možnosti webového vyhledávání pro aktuálnější

a fakticky přesnější odpovědi.

Při přímém používání modelů Anthropic spoléhám na knihovnu anthrophic od Alexe

Rudalla.

https://github.com/alexrudall/ruby-openai
https://github.com/alexrudall/anthropic

Úvod 22

Google

Google vyvinul několik výkonných LLM, včetně modelů Gemini, BERT, T5 a PaLM.

Tyto modely jsou známé svým silným výkonem v širokém spektru úloh zpracování

přirozeného jazyka. Ekosystém Google zahrnuje knihovny TensorFlow a Keras, které

poskytují nástroje a frameworky pro vytváření a trénování modelů strojového učení.

Google také nabízí Cloud AI Platform, která vám umožňuje snadno nasazovat a škálovat

jejich modely v cloudu. Poskytují řadu předtrénovaných modelů a API pro úlohy jako

analýza sentimentu, rozpoznávání entit a překlad.

Meta

Meta, dříve známá jako Facebook, významně investuje do vývoje velkých jazykových

modelů, což dokládá vydání modelů jako LLaMA a OPT. Tyto modely vynikají

svým silným výkonem v různých jazykových úlohách a jsou dostupné převážně

prostřednictvím open-source kanálů, podporující závazek Mety k výzkumu a komunitní

spolupráci.

Ekosystém Mety je primárně postavený kolem PyTorch, open-source knihovny pro

strojové učení, která je oblíbená pro své dynamické výpočetní schopnosti a flexibilitu,

usnadňující inovativní výzkum a vývoj umělé inteligence.

Kromě svých technických řešení klade Meta velký důraz na etický vývoj umělé

inteligence. Implementuje robustní filtrování obsahu a zaměřuje se na snižování

předpojatosti, což je v souladu s jejich širšími cíli bezpečnosti a odpovědnosti

v aplikacích umělé inteligence.

Cohere

Cohere je novější účastník v oblasti LLM, který se zaměřuje na zpřístupnění

a zjednodušení používání LLM oproti konkurenci. Jejich ekosystém zahrnuje Cohere

Úvod 23

API, které poskytuje přístup k řadě předtrénovaných modelů pro úlohy jako generování

textu, klasifikace a sumarizace.

Cohere také nabízí nástroje pro inženýrství promptů, dolaďování a filtrování obsahu.

Zdůrazňují ochranu a bezpečnost dat s funkcemi jako šifrované úložiště dat a kontrola

přístupu.

Ollama

Ollama je lokálně hostovaná platforma, která uživatelům umožňuje spravovat

a nasazovat různé velké jazykové modely (LLM) lokálně na jejich počítačích, což jim

dává úplnou kontrolu nad jejich AI modely bez závislosti na externích cloudových

službách. Toto nastavení je ideální pro ty, kteří upřednostňují ochranu dat a chtějí

provozovat své AI operace interně.

Platforma podporuje řadu modelů, včetně verzí Llama, Phi, Gemma a Mistral, které

se liší velikostí a výpočetními požadavky. Ollama usnadňuje stahování a spouštění

těchto modelů přímo z příkazového řádku pomocí jednoduchých příkazů jako ollama

run <model_name> a je navržena pro práci na různých operačních systémech včetně

macOS, Linux a Windows.

Pro vývojáře, kteří chtějí integrovat open-source modely do svých aplikací bez použití

vzdáleného API, nabízí Ollama CLI pro správu životního cyklu modelů podobně jako

nástroje pro správu kontejnerů. Podporuje také vlastní konfigurace a prompty, což

umožňuje vysokou míru přizpůsobení pro specifické potřeby nebo případy použití.

Ollama je obzvláště vhodná pro technicky zdatné uživatele a vývojáře díky svému

rozhraní příkazového řádku a flexibilitě, kterou nabízí při správě a nasazování

AI modelů. Díky tomu je silným nástrojem pro firmy a jednotlivce, kteří potřebují

robustní AI schopnosti bez kompromisů v oblasti bezpečnosti a kontroly.

Úvod 24

Multi-modelové platformy

Kromě toho existují poskytovatelé, kteří hostují širokou škálu open-source modelů,

jako jsou Together.ai a Groq.. Tyto platformy nabízejí flexibilitu a přizpůsobení, což

vám umožňuje spouštět a v některých případech dokonce dolaďovat open-source

modely podle vašich specifických potřeb. Například Together.ai poskytuje přístup

k řadě open-source LLM, což uživatelům umožňuje experimentovat s různými modely

a konfiguracemi. Groq se zaměřuje na poskytování ultra výkonného dokončování, které

se v době psaní této knihy zdá být téměř magické.

Výběr poskytovatele LLM

Při výběru poskytovatele LLM byste měli zvážit faktory jako:

• Ceny: Různí poskytovatelé nabízejí různé cenové modely, od platby za použití

až po předplatitelské plány. Při výběru poskytovatele je důležité zvážit očekávané

využití a rozpočet.

• Výkon: Výkon LLM se může mezi poskytovateli výrazně lišit, proto je důležité

před rozhodnutím otestovat modely na konkrétních případech použití.

• Filtrování obsahu: V závislosti na aplikaci může být filtrování obsahu kritickým

faktorem. Někteří poskytovatelé nabízejí robustnější možnosti filtrování obsahu

než jiní.

• Ochrana dat: Pokud aplikace pracuje s citlivými uživatelskými daty, je důležité

vybrat poskytovatele se silnými postupy ochrany a bezpečnosti dat.

• Přizpůsobení:Někteří poskytovatelé nabízejí větší flexibilitu v oblasti dolaďování

a přizpůsobování modelů pro specifické případy použití.

Konečný výběr poskytovatele LLM závisí na specifických požadavcích a omezeních

aplikace. Pečlivým vyhodnocením možností a zvážením faktorů jako ceny, výkon

a ochrana dat můžete vybrat poskytovatele, který nejlépe vyhovuje vašim potřebám.

Úvod 25

Stojí také za zmínku, že prostředí LLM se neustále vyvíjí a pravidelně se objevují noví

poskytovatelé a modely. Měli byste sledovat nejnovější vývoj a být otevření zkoumání

nových možností, jak se objevují.

OpenRouter

V této knize budu výhradně používat OpenRouter jako mého preferovaného

poskytovatele API. Důvod je jednoduchý: je to komplexní řešení pro všechny

nejpopulárnější komerční a open-source modely. Pokud se nemůžete dočkat, až

si vyzkoušíte nějaké AI kódování, jedním z nejlepších míst, kde začít, je moje vlastní

OpenRouter Ruby Library.

Zamyšlení nad výkonem

Při začleňování jazykových modelů do aplikací je výkon klíčovým faktorem. Výkon

jazykového modelu lze měřit z hlediska jeho latence (doba potřebná k vygenerování

odpovědi) a propustnosti (počet požadavků, které může zpracovat za jednotku času).

Time to First Token (TTFT) je další důležitou metrikou výkonu, která je obzvláště

relevantní pro chatboty a aplikace vyžadující interaktivní odpovědi v reálném čase.

TTFT měří latenci od okamžiku přijetí požadavku uživatele do okamžiku vygenerování

prvního slova (nebo tokenu) odpovědi. Tato metrika je zásadní pro zachování plynulého

a poutavého uživatelského zážitku, protože zpožděné odpovědi mohou vést k frustraci

uživatelů a jejich odrazení.

Tyto metriky výkonu mohou mít významný dopad na uživatelský zážitek

a škálovatelnost aplikace.

Výkon jazykového modelu může ovlivnit několik faktorů, včetně:

Počet parametrů: Větší modely s více parametry obecně vyžadují více výpočetních

zdrojů a mohou mít vyšší latenci a nižší propustnost ve srovnání s menšími modely.

https://openrouter.ai
https://github.com/OlympiaAI/open_router

Úvod 26

Hardware: Výkon jazykového modelu se může výrazně lišit v závislosti na hardwaru,

na kterém běží. Poskytovatelé cloudových služeb nabízejí instance GPU a TPU

optimalizované pro strojové učení, které mohou výrazně urychlit inferenci modelu.

Jednou z příjemných věcí na OpenRouteru je, že u mnoha nabízených

modelů máte na výběr z různých poskytovatelů cloudových služeb

s různými výkonnostními profily a náklady.

Kvantizace: Kvantizační techniky lze použít ke snížení paměťové náročnosti

a výpočetních požadavků modelu reprezentací vah a aktivací pomocí datových

typů s nižší přesností. To může zlepšit výkon bez významného obětování kvality. Jako

vývojář aplikací se pravděpodobně nebudete zabývat trénováním vlastních modelů

s různými úrovněmi kvantizace, ale je dobré být alespoň obeznámen s terminologií.

Dávkové zpracování: Zpracování více požadavků současně v dávkách může zlepšit

propustnost díky amortizaci režie načítání modelu a přenosu dat.

Kešování: Ukládání výsledků často používaných promptů nebo vstupních sekvencí do

mezipaměti může snížit počet inferenčních požadavků a zlepšit celkový výkon.

Při výběru jazykovéhomodelu pro produkční aplikaci je důležité otestovat jeho výkon na

reprezentativních pracovních zátěžích a hardwarových konfiguracích. To může pomoci

identifikovat potenciální úzká místa a zajistit, že model splní požadované výkonnostní

cíle.

Stojí také za to zvážit kompromisy mezi výkonem modelu a dalšími faktory, jako jsou

náklady, flexibilita a snadnost integrace. Například použití menšího, méně nákladného

modelu s nižší latencí může být vhodnější pro aplikace vyžadující odpovědi v reálném

čase, zatímco větší, výkonnější model může být vhodnější pro dávkové zpracování nebo

úlohy komplexního uvažování.

Úvod 27

Experimenty s různými modely LLM

Volba LLM je zřídkakdy trvalým rozhodnutím. Vzhledem k tomu, že jsou pravidelně

vydávány nové a vylepšené modely, je dobré budovat aplikace modulárním způsobem,

který umožňuje v průběhu času zaměňovat různé jazykové modely. Prompty a datasety

lze často používat napříč modely s minimálními změnami. To vám umožňuje využívat

nejnovější pokroky v jazykovém modelování, aniž byste museli zcela přepracovávat své

aplikace.

Možnost snadno přepínat mezi širokou škálou modelů je dalším důvodem,

proč mám OpenRouter tak rád.

Při přechodu na nový jazykový model je důležité důkladně otestovat a ověřit jeho výkon

a kvalitu výstupu, abyste se ujistili, že splňuje požadavky aplikace. To může zahrnovat

přetrénování nebo dolaďování modelu na doménově specifických datech a aktualizaci

všech navazujících komponent, které závisí na výstupech modelu.

Navrhováním aplikací s ohledem na výkon a modularitu můžete vytvářet škálovatelné,

efektivní a do budoucna připravené systémy, které se dokáží přizpůsobit rychle se

vyvíjející oblasti technologie jazykového modelování.

Složené systémy umělé inteligence

Než uzavřeme náš úvod, stojí za zmínku, že před rokem 2023 a explozí zájmu

o generativní AI, kterou vyvolal ChatGPT, se tradiční přístupy k AI obvykle

spoléhaly na integraci jednotlivých, uzavřených modelů. Naproti tomu

složené systémy umělé inteligence využívají komplexní řetězce propojených

komponent, které spolupracují na dosažení inteligentního chování.

V jádru se složené systémy umělé inteligence skládají z více modulů, z nichž každý je

navržen pro provádění specifických úkolů nebo funkcí. Tyto moduly mohou zahrnovat

Úvod 28

generátory, vyhledávače, hodnotící systémy, klasifikátory a různé další specializované

komponenty. Rozdělením celkového systému na menší, zaměřené jednotky mohou

vývojáři vytvářet flexibilnější, škálovatelnější a udržovatelnější architektury AI.

Jednou z klíčových výhod složených systémů umělé inteligence je jejich schopnost

kombinovat silné stránky různých technik a modelů AI. Například systém může

využívat velký jazykovýmodel (LLM) pro porozumění a generování přirozeného jazyka,

zatímco používá samostatný model pro vyhledávání informací nebo rozhodování

založené na pravidlech. Tento modulární přístup vám umožňuje vybrat nejlepší

nástroje a techniky pro každý konkrétní úkol, místo spoléhání se na univerzální řešení.

Vytváření složených systémů umělé inteligence však přináší i jedinečné výzvy. Zejména

zajištění celkové koherence a konzistence chování systému vyžaduje robustní testování,

monitoring a řídicí mechanismy.

Příchod výkonných LLM jako GPT--4 nám umožňuje experimentovat se

složenými systémy AI snadněji než kdy předtím, protože tyto pokročilé

modely jsou schopné zastávat více rolí v rámci složeného systému, jako

je klasifikace, řazení a generování, kromě jejich schopností porozumění

přirozenému jazyku. Tato všestrannost umožňuje vývojářům rychle

vytvářet prototypy a iterovat na architekturách složených AI systémů, čímž

otevírá nové možnosti pro vývoj inteligentních aplikací.

Vzory nasazení pro složené systémy AI

Složené systémy AI lze nasadit pomocí různých vzorů, z nichž každý je navržen tak, aby

řešil specifické požadavky a případy použití. Prozkoumejme čtyři běžné vzory nasazení:

Otázky a odpovědi, Víceagentní/Agentní řešitelé problémů, Konverzační AI a CoPiloti.

Úvod 29

Otázky a odpovědi

Systémy otázek a odpovědí (Q&A) se zaměřují na poskytování vyhledávání informací,

které je vylepšeno o schopnosti porozumění AI modelů, aby fungovaly jako více než

jen vyhledávač. Kombinací výkonných jazykových modelů s externími zdroji znalostí

pomocí Generování rozšířeného o vyhledávání (RAG) se systémy otázek a odpovědí

vyhýbají halucinacím a poskytují přesné a kontextově relevantní odpovědi na dotazy

uživatelů.

Klíčové komponenty Q&A systému založeného na LLM zahrnují:

• Porozumění a reformulace dotazu: Analýza uživatelských dotazů a jejich

přeformulování pro lepší shodu s podkladovými zdroji znalostí.

• Vyhledávání znalostí:Získávání relevantních informací ze strukturovaných nebo

nestrukturovaných zdrojů dat na základě přeformulovaného dotazu.

• Generování odpovědí: Vytváření koherentních a informativních odpovědí

integrací získaných znalostí s generativními schopnostmi jazykového modelu.

RAG subsystémy jsou obzvláště důležité v oblastech Q&A, kde je klíčové poskytování

přesných a aktuálních informací, jako je zákaznická podpora, správa znalostí nebo

vzdělávací aplikace.

Víceagentní/Agentní řešitelé problémů

Víceagentní, také známé jako Agentní , systémy sestávají z více autonomních agentů

spolupracujících na řešení komplexních problémů. Každý agent má specifickou

roli, soubor dovedností a přístup k relevantním nástrojům nebo zdrojům informací.

Prostřednictvím spolupráce a výměny informací mohou tito agenti řešit úkoly, které by

pro jediného agenta byly obtížné nebo nemožné zvládnout.

Klíčové principy víceagentních řešitelů problémů zahrnují:

Úvod 30

• Specializace: Každý agent se zaměřuje na specifický aspekt problému, využívající

své jedinečné schopnosti a znalosti.

• Spolupráce: Agenti komunikují a koordinují své akce k dosažení společného cíle,

často prostřednictvím předávání zpráv nebo sdílené paměti.

• Adaptabilita: Systém se může přizpůsobit měnícím se podmínkám nebo

požadavkům úpravou rolí a chování jednotlivých agentů.

Víceagentní systémy jsou vhodné pro aplikace vyžadující distribuované řešení

problémů, jako je optimalizace dodavatelského řetězce, řízení dopravy nebo plánování

reakce na mimořádné události.

Konverzační AI

Systémy konverzační AI umožňují interakce v přirozeném jazyce mezi uživateli

a inteligentními agenty. Tyto systémy kombinují porozumění přirozenému

jazyku, řízení dialogu a schopnosti generování jazyka k poskytování poutavých

a personalizovaných konverzačních zážitků.

Hlavní komponenty systému konverzační AI zahrnují:

• Rozpoznávání záměru: Identifikace záměru uživatele na základě jeho vstupu,

například položení otázky, vytvoření požadavku nebo vyjádření sentimentu.

• Extrakce entit: Extrahování relevantních entit nebo parametrů ze vstupu

uživatele, jako jsou data, místa nebo názvy produktů.

• Řízení dialogu: Udržování stavu konverzace, určování vhodné odpovědi na

základě záměru uživatele a kontextu a zvládání vícekrokových interakcí.

• Generování odpovědí: Generování odpovědí podobných lidským pomocí

jazykových modelů, šablon nebo metod založených na vyhledávání.

Systémy konverzační AI se běžně používají v zákaznických chatbotech, virtuálních

asistentech a rozhraních ovládaných hlasem. Jak bylo zmíněno dříve, většina přístupů,

vzorů a příkladů kódu v této knize je přímo extrahována z mé práce na velkém systému

konverzační AI nazvaném Olympia.

https://olympia.chat

Úvod 31

CoPiloti

CoPiloti jsou AI asistenti pracující po boku lidských uživatelů s cílem zvýšit jejich

produktivitu a schopnost rozhodování. Tyto systémy využívají kombinaci zpracování

přirozeného jazyka, strojového učení a oborově specifických znalostí k poskytování

inteligentních doporučení, automatizaci úkolů a nabízení kontextové podpory.

Klíčové vlastnosti CoPilotů zahrnují:

• Personalizaci: Přizpůsobování se individuálním preferencím uživatelů,

pracovním postupům a komunikačním stylům.

• Proaktivní asistenci: Předvídání potřeb uživatelů a nabízení relevantních návrhů

či akcí bez explicitních pokynů.

• Kontinuální učení: Zlepšování výkonu v průběhu času učením se z uživatelské

zpětné vazby, interakcí a dat.

CoPiloti jsou stále častěji využíváni v různých oblastech, jako je vývoj softwaru (např.

doplňování kódu a detekce chyb), tvůrčí psaní (např. návrhy obsahu a editace) a analýza

dat (např. postřehy a doporučení vizualizací).

Tyto vzory nasazení ukazují všestrannost a potenciál složených AI systémů.

Pochopením charakteristik a případů použití každého vzoru můžete činit informovaná

rozhodnutí při navrhování a implementaci inteligentních aplikací. I když tato kniha není

specificky o implementaci složených AI systémů, mnoho, ne-li všechny stejné přístupy

a vzory platí pro integraci samostatných AI komponent v rámci jinak tradičního vývoje

aplikací.

Role ve složených AI systémech

Složené AI systémy jsou postaveny na základě propojených modulů, z nichž každý je

navržen pro plnění specifické role. Tytomoduly spolupracují na vytváření inteligentního

chování a řešení komplexních problémů. Je užitečné být obeznámen s těmito rolemi při

Úvod 32

přemýšlení o tom, kde byste mohli implementovat nebo nahradit části vaší aplikace

samostatnými AI komponentami.

Generátor

Generátory jsou zodpovědné za vytváření nových dat nebo obsahu na základě

naučených vzorů nebo vstupních podnětů. AI svět má mnoho různých druhů

generátorů, ale v kontextu jazykových modelů, které jsou představeny v této knize,

mohou generátory vytvářet text podobný lidskému, dokončovat částečné věty nebo

generovat odpovědi na uživatelské dotazy. Hrají klíčovou roli v úlohách jako je tvorba

obsahu, generování dialogů a rozšiřování dat.

Vyhledávač

Vyhledávače se používají k prohledávání a extrakci relevantních informací z velkých

datových sad nebo znalostních bází. Využívají techniky jako sémantické vyhledávání,

porovnávání klíčových slov nebo vektorovou podobnost k nalezení nejrelevantnějších

datových bodů na základě daného dotazu nebo kontextu. Vyhledávače jsou nezbytné

pro úlohy vyžadující rychlý přístup ke specifickým informacím, jako je odpovídání na

otázky, ověřování faktů nebo doporučování obsahu.

Hodnotič

Hodnotící systémy jsou zodpovědné za řazení nebo prioritizaci sady položek na

základě určitých kritérií nebo skóre relevance. Přiřazují váhy nebo skóre každé

položce a následně je podle nich seřadí. Hodnotící systémy se běžně používají ve

vyhledávačích, doporučovacích systémech nebo v jakékoli aplikaci, kde je klíčové

prezentovat uživatelům nejrelevantnější výsledky.

Klasifikátor

Klasifikátory se používají ke kategorizaci nebo označování datových bodů na základě

předdefinovaných tříd nebo kategorií. Učí se z označených trénovacích dat a následně

Úvod 33

předpovídají třídu nových, dosud neviděných instancí. Klasifikátory jsou základem úloh

jako je analýza sentimentu, detekce spamu nebo rozpoznávání obrazu, kde je cílem

přiřadit každému vstupu specifickou kategorii.

Nástroje a Agenti

Kromě těchto základních rolí složené AI systémy často zahrnují nástroje a agenty pro

rozšíření své funkčnosti a adaptability:

• Nástroje: Nástroje jsou samostatné softwarové komponenty nebo API, které

provádějí specifické akce nebo výpočty. Mohou být volány jinými moduly,

jako jsou generátory nebo vyhledávače, k plnění dílčích úkolů nebo získávání

dodatečných informací. Příklady nástrojů zahrnují webové vyhledávače,

kalkulačky nebo knihovny pro vizualizaci dat.

• Agenti: Agenti jsou autonomní entity, které mohou vnímat své prostředí, činit

rozhodnutí a provádět akce k dosažení specifických cílů. Často spoléhají na

kombinaci různých AI technik, jako je plánování, uvažování a učení, aby mohli

efektivně fungovat v dynamických nebo nejistých podmínkách. Agenti mohou být

použiti k modelování komplexního chování nebo ke koordinaci akcí více modulů

v rámci složeného AI systému.

V čistě složeném AI systému je interakce mezi těmito komponentami orchestrována

prostřednictvím dobře definovaných rozhraní a komunikačních protokolů. Data proudí

mezi moduly, přičemž výstup jedné komponenty slouží jako vstup pro jinou. Tato

modulární architektura umožňuje flexibilitu, škálovatelnost a udržovatelnost, protože

jednotlivé komponenty lze aktualizovat, nahrazovat nebo rozšiřovat bez ovlivnění

celého systému.

Využitím síly těchto komponent a jejich interakcí mohou složené AI systémy řešit

komplexní problémy reálného světa, které vyžadují kombinaci různých AI schopností.

Při zkoumání přístupů a vzorů pro integraci AI do vývoje aplikací mějte na paměti,

Úvod 34

že stejné principy a techniky používané ve složených AI systémech lze aplikovat

k vytváření inteligentních, adaptivních a uživatelsky orientovaných aplikací.

V následujících kapitolách části 1 se hlouběji ponoříme do základních přístupů

a technik pro integraci AI komponent do vašeho procesu vývoje aplikací. Od

promptového inženýrství a generování rozšířeného o vyhledávání až po samoopravná

data a inteligentní orchestraci pracovních postupů pokryjeme širokou škálu vzorů

a osvědčených postupů, které vám pomohou vybudovat špičkové aplikace využívající

AI.

Část 1: Základní přístupy
a techniky

Tato část knihy představuje různé způsoby integrace umělé inteligence do vašich

aplikací. Kapitoly pokrývají řadu souvisejících přístupů a technik, od obecnějších

konceptů jako Zúžení cesty a Generování rozšířené o vyhledávání až po nápady, jak

naprogramovat vlastní abstraktní vrstvu nad API pro dokončování chatů pomocí LLM.

Cílem této části knihy je pomoci vám porozumět druhům chování, které můžete

implementovat pomocí umělé inteligence, než se ponoříme hlouběji do konkrétních

implementačních vzorů, jimž se věnuje Část 2.

Přístupy v Části 1 jsou založeny na myšlenkách, které jsem použil ve svém kódu,

klasických vzorech architektury podnikových aplikací a integrace, plus metaforách,

které jsem využíval při vysvětlování možností umělé inteligence ostatním lidem, včetně

netechnicky zaměřených byznysových stakeholderů.

Zúžit cestu

“Zúžit cestu” znamená zaměřit umělou inteligenci na daný úkol. Používám to jako

mantru, kdykoliv začínám být frustrovaný tím, že se AI chová “hloupě” nebo

neočekávaným způsobem. Tato mantra mi připomíná, že chyba je pravděpodobně na

mé straně a že bych měl cestu pravděpodobně ještě více zúžit.

Potřeba zúžení cesty vzniká z obrovského množství znalostí obsažených ve velkých

jazykových modelech, zejména u špičkových modelů od společností OpenAI

a Anthropic, které mají doslova biliony parametrů.

Zúžit cestu 37

Přístup k tak širokému spektru znalostí je bezpochyby mocný a vytváří emergentní

chování, jako je teorie mysli a schopnost uvažovat způsobem podobným člověku.

Nicméně tento ohromující objem informací také představuje výzvy, pokud jde

o generování přesných a správných odpovědí na konkrétní prompty, zejména pokud

mají tyto prompty vykazovat deterministické chování, které lze integrovat s “běžným”

vývojem softwaru a algoritmy.

K těmto výzvám vede několik faktorů.

Informační přetížení: Velké jazykové modely jsou trénovány na masivním množství

dat zahrnujících různé domény, zdroje a časová období. Tyto rozsáhlé znalosti jim

umožňují zapojit se do různých témat a generovat odpovědi založené na širokém chápání

světa. Když však model čelí konkrétnímu promptu, může mít problém s filtrováním

irelevantních, protichůdných nebo zastaralých informací, což vede k odpovědím, kterým

chybí zaměření nebo přesnost. V závislosti na tom, co se snažíte udělat, může samotný

objem protichůdných informací dostupných modelu snadno překonat jeho schopnost

poskytnout odpověď nebo chování, které hledáte.

Kontextová nejednoznačnost: Vzhledem k rozsáhlému latentnímu prostoru znalostí

se velké jazykové modely mohou setkat s nejednoznačností při snaze porozumět

kontextu vašeho promptu. Bez správného zúžení nebo vedení může model generovat

odpovědi, které souvisejí pouze okrajově, ale nejsou přímo relevantní pro vaše záměry.

Tento typ selhání vede k odpovědím, které jsou mimo téma, nekonzistentní nebo

neřeší vaše stanovené potřeby. V tomto případě zúžení cesty odkazuje na odstranění

nejednoznačnosti kontextu, zajišťující, že vámi poskytnutý kontext způsobí, že se model

zaměří pouze na nejrelevantnější informace ve své základní znalostní bázi.

Poznámka: Když začínáte s “promptovým inženýrstvím”, je mnohem

pravděpodobnější, že budete model žádat o věci bez řádného vysvětlení

požadovaného výsledku; chce to praxi, abyste nebyli nejednoznační!

Časové nesrovnalosti: Protože jazykové modely jsou trénovány na datech, která byla

Zúžit cestu 38

vytvořena v různých časových obdobích, mohou obsahovat znalosti, které jsou zastaralé,

překonané nebo již nejsou přesné. Například informace o aktuálních událostech,

vědeckých objevech nebo technologickém pokroku se mohly od shromáždění

tréninkových dat modelu vyvinout. Bez zúžení cesty k upřednostnění novějších

a spolehlivějších zdrojů může model generovat odpovědi založené na zastaralých nebo

nesprávných informacích, což vede k nepřesnostem a nekonzistencím v jeho výstupech.

Oborově specifické nuance: Různé domény a obory mají své vlastní specifické

terminologie, konvence a znalostní báze. Zamyslete se nad prakticky jakoukoliv TLA

(Three Letter Acronym - třípísmennou zkratkou) a uvědomíte si, že většina z nich

má více než jeden význam. Například MSK může odkazovat na Amazon’s Managed

Streaming for Apache Kafka, Memorial Sloan Kettering Cancer Center, nebo lidský

muskuloskeletální systém.

Když prompt vyžaduje odbornost v konkrétní doméně, obecné znalosti velkého

jazykového modelu nemusí stačit k poskytnutí přesných a nuancovaných odpovědí.

Zúžení cesty zaměřením se na oborově specifické informace, ať už pomocí promptového

inženýrství nebo generování rozšířeného o vyhledávání, umožňuje modelu generovat

odpovědi, které jsou více v souladu s požadavky a očekáváními vašeho konkrétního

oboru.

Latentní prostor: Nepochopitelně rozsáhlý

Když zmiňuji “latentní prostor” jazykového modelu, odkazuji na rozsáhlou,

vícerozměrnou krajinu znalostí a informací, kterou se model naučil během svého

trénovacího procesu. Je to jako skrytá říše uvnitř neuronových sítí modelu, kde jsou

uloženy všechny vzory, asociace a reprezentace jazyka.

Představte si, že prozkoumáváte rozsáhlé, nezmapované území plné nespočetných

propojených uzlů. Každý uzel představuje kousek informace, koncept nebo vztah, který

se model naučil. Při navigaci tímto prostorem zjistíte, že některé uzly jsou blíže u sebe,

Zúžit cestu 39

což naznačuje silné spojení nebo podobnost, zatímco jiné jsou vzdálenější, což naznačuje

slabší nebo vzdálenější vztah.

Problém s latentním prostorem je, že je neuvěřitelně komplexní a mnohorozměrný.

Představte si ho jako náš fyzický vesmír s jeho shluky galaxií a obrovskými,

nepředstavitelnými vzdálenostmi prázdného prostoru mezi nimi.

Protože obsahuje tisíce dimenzí, není latentní prostor přímo pozorovatelný ani

interpretovatelný člověkem. Je to abstraktní reprezentace, kterou model používá interně

ke zpracování a generování jazyka. Když modelu poskytnete vstupní prompt, v podstatě

ho namapuje na konkrétní místo v latentním prostoru. Model pak používá okolní

informace a spojení v tomto prostoru k generování odpovědi.

Věc se má tak, že model se naučil obrovské množství informací ze svých trénovacích

dat, a ne všechny jsou relevantní nebo přesné pro daný úkol. Proto je zúžení cesty

tak důležité. Poskytnutím jasných instrukcí, příkladů a kontextu ve vašich promptech

v podstatě vedete model k tomu, aby se soustředil na specifické oblasti v latentním

prostoru, které jsou nejrelevantnější pro váš požadovaný výstup.

Jiný způsob, jak o tom přemýšlet, je jako o použití reflektoru v naprosto tmavémmuzeu.

Pokud jste někdy navštívili Louvre nebo Metropolitan Museum of Art, pak to je ten typ

měřítka, o kterémmluvím. Latentní prostor je to muzeum, naplněné nesčetnými objekty

a detaily. Váš prompt je reflektor, osvětlující specifické oblasti a přitahující pozornost

modelu k nejdůležitějším informacím. Bez tohoto vedení může model bezcílně bloudit

latentním prostorem a sbírat po cestě irelevantní nebo protichůdné informace.

Když pracujete s jazykovými modely a vytváříte své prompty, mějte koncept latentního

prostoru na paměti. Vaším cílem je efektivně se pohybovat v této rozlehlé krajině

znalostí a směrovat model k nejrelevantnějším a nejpřesnějším informacím pro váš

úkol. Zúžením cesty a poskytnutím jasného vedení můžete odemknout plný potenciál

latentního prostoru modelu a generovat vysoce kvalitní, koherentní odpovědi.

Zatímco předchozí popisy jazykových modelů a latentního prostoru, ve kterém se

pohybují, mohou působit trochu magicky nebo abstraktně, je důležité pochopit, že

Zúžit cestu 40

prompty nejsou kouzla ani zaříkadla. Způsob, jakým jazykovémodely fungují, je založen

na principech lineární algebry a teorie pravděpodobnosti.

V jádru jsou jazykové modely pravděpodobnostními modely textu, podobně jako

je Gaussova křivka statistickým modelem dat. Jsou trénovány procesem zvaným

autoregresní modelování, kde se model učí předpovídat pravděpodobnost následujícího

slova v sekvenci na základě slov, která mu předcházejí. Během tréninku model začíná

s náhodnými váhami a postupně je upravuje tak, aby přiřadil vyšší pravděpodobnosti

textům, které se podobají reálným vzorkům, na kterých byl trénován.

Nicméně, představa jazykovýchmodelů jako jednoduchých statistickýchmodelů, jako je

lineární regrese, neposkytuje nejlepší intuici pro pochopení jejich chování. Výstižnější

analogií je představit si je jako pravděpodobnostní programy, což jsou modely, které

umožňují manipulaci s náhodnými proměnnými a mohou reprezentovat komplexní

statistické vztahy.

Pravděpodobnostní programy lze reprezentovat pomocí grafických modelů, které

poskytují vizuální způsob pochopení závislostí a vztahů mezi proměnnými v modelu.

Tento pohled může nabídnout cenné vhledy do fungování komplexních modelů pro

generování textu jako GPT--4 a Claude.

V článku “Language Model Cascades” od Dohana a kol. se autoři ponořují do detailů

o tom, jak lze pravděpodobnostní programy aplikovat na jazykové modely. Ukazují,

jak lze tento rámec použít k pochopení chování těchto modelů a k vedení vývoje

efektivnějších strategií promptování.

Jedním klíčovým poznatkem z této pravděpodobnostní perspektivy je, že jazykový

model v podstatě vytváří portál do alternativního vesmíru, kde požadované dokumenty

existují. Model přiřazuje váhy všem možným dokumentům na základě jejich

pravděpodobnosti a efektivně tak zužuje prostor možností, aby se soustředil na ty

nejrelevantnější.

To nás přivádí zpět k ústřednímu tématu “zúžení cesty”. Hlavním cílem promptování je

podmínit pravděpodobnostní model způsobem, který soustředí váhu jeho předpovědí

Zúžit cestu 41

a zaměřuje se na specifické informace nebo chování, které chceme vyvolat.

Poskytováním pečlivě vytvořených promptů můžeme vést model k efektivnější navigaci

v latentním prostoru a generování výstupů, které jsou relevantnější a koherentnější.

Je však důležité mít na paměti, že jazykový model je nakonec omezen informacemi, na

kterých byl trénován. Zatímco může generovat text podobný existujícím dokumentům

nebo kombinovat myšlenky novými způsoby, nemůže vytvořit zcela nové informace

z ničeho. Například nemůžeme očekávat, že model poskytne lék na rakovinu, pokud

takový lék nebyl objeven a zdokumentován v jeho trénovacích datech.

Síla modelu namísto toho spočívá v jeho schopnosti nacházet a syntetizovat informace

podobné těm, které mu předkládáme v podnětech. Pochopením pravděpodobnostní

povahy těchto modelů a způsobu, jakým lze pomocí podnětů podmínit jejich výstupy,

můžeme efektivněji využívat jejich schopnosti ke generování cenných poznatků

a obsahu.

Podívejme se na následující podněty. V prvním případě může samotné slovo “Merkur”

odkazovat na planetu, chemický prvek nebo římského boha, ale nejpravděpodobnější

je planeta. GPT-4 skutečně poskytne dlouhou odpověď, která začíná slovy Merkur

je nejmenší a nejbližší planeta sluneční soustavy…. Druhý podnět se konkrétně

týká chemického prvku. Třetí odkazuje na postavu z římské mytologie, známou

svou rychlostí a rolí božského posla.

Zúžit cestu 42

1 # Prompt 1

2 Tell me about: Mercury

3

4 # Prompt 2

5 Tell me about: Mercury element

6

7 # Prompt 3

8 Tell me about: Mercury messenger of the gods

Přidáním jen několika dalších slov jsme zcela změnili reakci AI. Jak se později v knize

dozvíte, složité triky promptového inženýrství jako n-shot prompting, strukturovaný

vstup/výstup a Chain of Thought jsou jen chytré způsoby, jak podmínit výstup modelu.

Umění promptového inženýrství tedy v konečném důsledku spočívá v pochopení toho,

jak se orientovat v rozsáhlé pravděpodobnostní krajině znalostí jazykového modelu,

abychom zúžili cestu ke konkrétní informaci nebo chování, které hledáme.

Pro čtenáře s dobrou znalostí pokročilé matematiky může být rozhodně užitečné založit

své chápání těchto modelů na principech teorie pravděpodobnosti a lineární algebry!

Pro ostatní z vás, kteří chcete vyvinout účinné strategie pro získávání požadovaných

výstupů, se držme intuitivnějších přístupů.

Jak se cesta “zužuje”

Abychom se vypořádali s těmito výzvami příliš mnoha znalostí, používáme techniky,

které pomáhají řídit proces generování jazykového modelu a zaměřit jeho pozornost na

nejrelevantnější a nejpřesnější informace.

Zde jsou nejvýznamnější techniky v doporučeném pořadí, to znamená, že byste měli

nejprve vyzkoušet promptové inženýrství, pak RAG, a nakonec, pokud musíte, jemné

doladění.

Promptové inženýrství Nejzákladnějším přístupem je vytváření promptů, které

obsahují specifické instrukce, omezení nebo příklady pro vedení generování odpovědí

Zúžit cestu 43

modelem. Tato kapitola pokrývá základy promptového inženýrství v další části

a mnoho specifických vzorů promptového inženýrství pokrýváme v části 2 této knihy.

Tyto vzory zahrnují Destilaci promptů, techniku, která se zaměřuje na zdokonalování

a optimalizaci promptů k získání toho, co AI považuje za nejrelevantnější a nejstručnější

informace.

Rozšíření kontextu. Dynamické získávání relevantních informací z externích

znalostních základen nebo dokumentů pro poskytnutí modelu zaměřeného

kontextu v době, kdy je promptován. Mezi populární techniky rozšíření kontextu

patří Retrieval-Augmented Generation (RAG) Takzvané “online modely”, jako ty

poskytované Perplexity, dokáží rozšířit svůj kontext o výsledky vyhledávání v reálném

čase na internetu.

Navzdory své síle nejsou LLM trénovány na vašich unikátních datasetech,

které mohou být soukromé nebo specifické pro problém, který se snažíte

vyřešit. Techniky rozšíření kontextu umožňují poskytnout LLM přístup

k datům za API, v SQL databázích nebo uvězněným v PDF a prezentacích.

Jemné doladění nebo adaptace na doménu Trénování modelu na doménově

specifických datasetech pro specializaci jeho znalostí a schopností generování pro

konkrétní úkol nebo oblast.

Snižování teploty

Teplota je hyperparametr používaný v transformátorových jazykových modelech, který

řídí náhodnost a kreativitu generovaného textu. Je to hodnota mezi 0 a 1, kde nižší

hodnoty činí výstup více zaměřený a deterministický, zatímco vyšší hodnoty ho činí

různorodějším a méně předvídatelným.

Když je teplota nastavena na 1, jazykový model generuje text na základě úplné

pravděpodobnostní distribuce následujícího tokenu, což umožňuje kreativnější

https://perplexity.ai

Zúžit cestu 44

a různorodější odpovědi. To však může také vést k tomu, že model generuje text, který

je méně relevantní nebo koherentní.

Na druhou stranu, když je teplota nastavena na 0, jazykový model vždy vybírá

token s nejvyšší pravděpodobností, čímž efektivně “zužuje svou cestu”. Téměř všechny

moje AI komponenty používají teplotu nastavenou na nebo blízko 0, protože to vede

k zaměřenějším a předvídatelnějším odpovědím. Je to absolutně užitečné, když chcete,

aby model následoval instrukce, věnoval pozornost funkcím, které mu byly poskytnuty,

nebo jednoduše potřebujete přesnější a relevantnější odpovědi než ty, které dostáváte.

Například pokud vytváříte chatbota, který má poskytovat faktické informace, možná

budete chtít nastavit teplotu na nižší hodnotu, abyste zajistili, že odpovědi budou

přesnější a více k tématu. Naopak, pokud vytváříte asistenta pro kreativní psaní,

možná budete chtít nastavit teplotu na vyšší hodnotu, abyste podpořili různorodější

a nápaditější výstupy.

Hyperparametry: Knoflíky a ovladače inference

Při práci s jazykovýmimodely se často setkáte s termínem “hyperparametry”. V kontextu

inference (tj. když používáte model ke generování odpovědí) jsou hyperparametry jako

knoflíky a ovladače, které můžete ladit pro kontrolu chování a výstupu modelu.

Představte si to jako úpravu nastavení složitého stroje. Stejně jako byste mohli

otočit knoflíkem pro kontrolu teploty nebo přepnout přepínač pro změnu režimu

provozu, hyperparametry vám umožňují jemně upravit způsob, jakým jazykový model

zpracovává a generuje text.

Mezi běžné hyperparametry, se kterými se při inferenci setkáte, patří:

• Teplota: Jak bylo právě zmíněno, tento parametr řídí náhodnost a kreativitu

generovaného textu. Vyšší teplota vede k rozmanitějším a méně předvídatelným

výstupům, zatímco nižší teplota vede k více zaměřeným a deterministickým

odpovědím.

Zúžit cestu 45

• Výběr Top-p (nucleus sampling): Tento parametr řídí výběr nejmenší množiny

tokenů, jejichž kumulativní pravděpodobnost přesahuje určitou prahovou

hodnotu (p). Umožňuje rozmanitější výstupy při zachování koherence.

• Výběr Top-k: Tato technika vybírá k nejpravděpodobnějších následujících tokenů

a přerozděluje mezi ně pravděpodobnostní hmotu. Může pomoci zabránit modelu

v generování málo pravděpodobných nebo irelevantních tokenů.

• Penalizace četnosti a přítomnosti: Tyto parametry penalizují model za příliš

časté opakování stejných slov nebo frází (penalizace četnosti) nebo za generování

slov, která nejsou přítomna ve vstupním promptu (penalizace přítomnosti).

Úpravou těchto hodnot můžete podpořit model v produkci rozmanitějších

a relevantnějších výstupů.

• Maximální délka: Tento hyperparametr nastavuje horní limit počtu tokenů (slov

nebo částí slov), které může model vygenerovat v jediné odpovědi. Pomáhá

kontrolovat mnohomluvnost a stručnost generovaného textu.

Při experimentování s různými nastaveními hyperparametrů zjistíte, že i malé úpravy

mohou mít významný dopad na výstup modelu. Je to jako ladění receptu – špetka soli

navíc nebo o něco delší doba vaření může zcela změnit výsledný pokrm.

Klíčem je porozumět tomu, jak každý hyperparametr ovlivňuje chování modelu a najít

správnou rovnováhu pro váš konkrétní úkol. Nebojte se experimentovat s různými

nastaveními a sledovat, jak ovlivňují generovaný text. Časem si vyvinete intuici pro

to, které hyperparametry upravit a jak dosáhnout požadovaných výsledků.

Kombinací použití těchto parametrů s přípravou promptů, generováním rozšířeným

o vyhledávání a dolaďováním můžete efektivně zúžit cestu a navést jazykový model

ke generování přesnějších, relevantnějších a hodnotnějších odpovědí pro váš konkrétní

případ použití.

Zúžit cestu 46

Surové versus instrukčně doladěné modely

Surové modely jsou nerafinované, netrénované verze LLM. Představte si je jako

čisté plátno, které ještě není ovlivněno specifickým tréninkem na porozumění nebo

následování instrukcí. Jsou postaveny na rozsáhlých datech, na kterých byly původně

trénovány, a jsou schopny generovat širokou škálu výstupů. Nicméně bez dodatečných

vrstev instrukčního dolaďování mohou být jejich odpovědi nepředvídatelné a vyžadují

promyšlenější, pečlivě sestavené prompty, které je navedou k požadovanému výstupu.

Práce se surovými modely se podobá získávání komunikace od génia-idiota, který má

obrovské množství znalostí, ale postrádá jakoukoliv intuici ohledně toho, na co se ptáte,

pokud nejste v instrukcích extrémně přesní. Často působí jako papoušek v tom smyslu,

že pokud je přimějete říct něco srozumitelného, většinou jen opakují něco, co od vás

slyšeli.

Instrukčně doladěné modely naproti tomu prošly koly tréninku specificky navrženými

k porozumění a následování instrukcí. GPT--4, Claude 3 a mnoho dalších

z nejpopulárnějších modelů LLM jsou všechny silně instrukčně doladěné. Tento

trénink zahrnuje předkládání příkladů instrukcí spolu s požadovanými výsledky

modelu, čímž se model efektivně učí, jak interpretovat a provádět širokou škálu příkazů.

Výsledkem je, že instrukční modely dokáží lépe porozumět záměru za promptem

a generovat odpovědi, které úzce odpovídají očekáváním uživatele. Díky tomu jsou

uživatelsky přívětivější a snazší na práci, zejména pro ty, kteří nemají čas nebo odborné

znalosti k rozsáhlé přípravě promptů.

Surové modely: Nefiltrované plátno

Surové modely, jako jsou Llama 2--70B nebo Yi--34B, nabízejí nefiltrovanější přístup

ke schopnostem modelu, než na jaký můžete být zvyklí, pokud jste experimentovali

s populárními LLM jako GPT-4. Tyto modely nejsou předem doladěny k následování

specifických instrukcí, což vám poskytuje čisté plátno pro přímou manipulaci

Zúžit cestu 47

s výstupem modelu pomocí pečlivé přípravy promptů. Tento přístup vyžaduje hluboké

porozumění tomu, jak vytvářet prompty, které vedou AI požadovaným směrem bez

explicitních instrukcí. Je to podobné jako mít přímý přístup k “surovým” vrstvám

základní AI bez jakýchkoliv zprostředkujících vrstev interpretujících nebo vedoucích

odpovědi modelu (odtud název).

obrázkem 3. Testování surového modelu pomocí části klasické scénky ’Kdo je na první?’ od Abbotta
a Costella

Problém se surovými modely spočívá v jejich tendenci upadat do opakujících se vzorců

nebo produkovat náhodný výstup. Nicméně s pečlivým promptovým inženýrstvím

Zúžit cestu 48

a úpravou parametrů, jako jsou penalizace opakování, lze surové modely přimět ke

generování jedinečného a kreativního obsahu. Tento proces není bez kompromisů;

zatímco surové modely nabízejí bezkonkurenční flexibilitu pro inovace, vyžadují vyšší

úroveň odborných znalostí.

obrázkem 4. Pro srovnání, stejný nejednoznačný prompt zadaný do GPT-4

Instrukčně vyladěné modely: Řízená zkušenost

Instrukčně vyladěné modely jsou navrženy tak, aby rozuměly specifickým instrukcím

a řídily se jimi, což je činí uživatelsky přívětivějšími a dostupnějšími pro širší spektrum

aplikací. Chápou mechaniku konverzace a vědí, že by měly přestat generovat na

konci svého konverzačního vstupu. Pro mnoho vývojářů, zejména těch pracujících na

přímočarých aplikacích, nabízejí instrukčně vyladěné modely pohodlné a efektivní

řešení.

Proces instrukčního ladění zahrnuje trénování modelu na rozsáhlém korpusu instrukcí

a odpovědí vytvořených člověkem. Významným příkladem je open source dataset

Zúžit cestu 49

databricks-dolly-15k, který obsahuje více než 15 000 párů promptů a odpovědí

vytvořených zaměstnanci Databricks, které si můžete sami prohlédnout. Dataset

pokrývá osm různých kategorií instrukcí, včetně kreativního psaní, uzavřeného

a otevřeného zodpovídání otázek, sumarizace, extrakce informací, klasifikace

a brainstormingu.

Během procesu generování dat dostali přispěvatelé pokyny, jak vytvářet prompty

a odpovědi pro každou kategorii. Například pro úkoly kreativního psaní byli instruováni,

aby poskytli konkrétní omezení, instrukce nebo požadavky pro usměrnění výstupu

modelu. Pro uzavřené zodpovídání otázek byli požádáni, aby psali otázky vyžadující

fakticky správné odpovědi založené na daném úryvku z Wikipedie.

Výsledný dataset slouží jako cenný zdroj pro dolaďování velkých jazykových modelů

tak, aby vykazovaly interaktivní schopnosti a schopnosti následovat instrukce, podobně

jako systémy typu ChatGPT. Trénováním na různorodém spektru lidmi vytvořených

instrukcí a odpovědí se model učí rozumět specifickým pokynům a řídit se jimi, což ho

činí schopnějším zvládat širokou škálu úkolů.

Kromě přímého dolaďování lze instrukční prompty v datasetech jako databricks-dolly-

-15k využít také pro generování syntetických dat. Předkládáním promptů vytvořených

přispěvateli jako few-shot příkladů velkému otevřenému jazykovému modelu mohou

vývojáři generovat mnohem větší korpus instrukcí v každé kategorii. Tento přístup,

popsaný v článku Self-Instruct, umožňuje vytváření robustnějších modelů následujících

instrukce.

Kromě toho lze instrukce a odpovědi v těchto datasetech rozšířit pomocí technik, jako

je parafráze. Přeformulováním každého promptu nebo krátké odpovědi a přiřazením

výsledného textu k příslušnému referenčnímu vzorku mohou vývojáři zavést formu

regularizace, která zlepšuje schopnost modelu následovat instrukce.

Snadné použití, které poskytují modely vyladěné na instrukce, je vykoupeno určitou

ztrátou flexibility. Tyto modely jsou často silně cenzurované, což znamená, že nemusí

vždy poskytovat úroveň tvůrčí svobody potřebnou pro určité úkoly. Jejich výstupy

https://huggingface.co/datasets/databricks/databricks-dolly-15k

Zúžit cestu 50

jsou silně ovlivněny předpojatostmi a omezeními, která jsou vlastní jejich dolaďovacím

datům.

Navzdory těmto omezením se modely vyladěné na instrukce staly stále populárnějšími

díky své uživatelské přívětivosti a schopnosti zvládat širokou škálu úkolů s minimální

přípravou promptů. S rostoucí dostupností kvalitních instruktážních datasetů můžeme

očekávat další zlepšení výkonu a všestrannosti těchto modelů.

Výběr správného typu modelu pro váš projekt

Rozhodnutí mezi základními (surovými) a na instrukce vyladěnými modely nakonec

závisí na konkrétních požadavcích vašeho projektu. Pro úkoly vyžadující vysokou míru

kreativity a originality nabízejí základní modely výkonný nástroj pro inovace. Tyto

modely umožňují vývojářům prozkoumat plný potenciál LLM a posouvat hranice toho,

čeho lze dosáhnout pomocí aplikací založených na AI, ale vyžadují aktivnější přístup

a ochotu experimentovat. Teplota a další nastavení mají u základních modelů mnohem

větší vliv než u jejich protějšků vyladěných na instrukce.

Cokoliv zahrnete do svého promptu, to se budou základní modely snažit

opakovat. Takže pokud je například váš prompt přepisem chatu, surový

model se bude snažit v chatu pokračovat. V závislosti na limitu maximálního

počtu tokenů nevygeneruje pouze následující zprávu v chatu, ale může vést

celou konverzaci sám se sebou!

Zúžit cestu 51

obrázkem 5. Příklad přepisování vět s few-shot dokončováním pomocí Mixtral 8x7B (základní)

Při přípravě výše uvedeného příkladu přepisování vět od uživatele Redditu

phree_radical se mi podařilo získat použitelné výsledky až po mnoha experimentech

s nastavením parametrů, kdy jsem nakonec zvolil: Teplota 0.08, Top P: 0.2, Top K: 1

a Penalizace opakování: 1.26.

https://www.reddit.com/user/phree_radical/

Zúžit cestu 52

Snaha použít tento přístup se základnímmodelem v produkčním prostředí by byla složitá

kvůli silnému vlivu parametru max_tokens. Pokud ho nastavíte příliš krátký, výstup

bude oříznutý. Pokud ho nastavíte delší, než model potřebuje pro požadovaný výstup,

bude pokračovat v halucinování dalších příkladů.

Ve výsledku platí, že pokud opravdu nepotřebujete úplnou kontrolu a absenci cenzury,

mohou modely vyladěné na instrukce výrazně zjednodušit váš vývojový proces. Pro

zdůraznění tohoto bodu zde uvádím odpověďMixtralu 8x7B na stejný prompt, tentokrát

v jeho verzi vyladěné na instrukce:

Je mi líto, ale musím vás informovat, že zmrzlina nesplňuje má očekávání,

protože postrádá bohatou, krémovou texturu a lahodnou chuť, kterou

obvykle spojuji s kvalitním dezertem. Doufal jsem ve více uspokojující

a příjemnější zážitek.

Je pozoruhodné, že jsem mohl ponechat nastavení max tokens na hodnotě 500 a model

spolehlivě skončil na konci požadovaného výstupu, aniž by halucinoval další příklady.

Prompt Engineering

Když začnete používat umělou inteligenci ve svých projektech, rychle zjistíte, že jednou

z nejdůležitějších dovedností, které musíte zvládnout, je umění prompt engineeringu.

Ale co vlastně prompt engineering je a proč je tak důležitý?

V jádru je prompt engineering proces navrhování a vytváření vstupních promptů, které

poskytujete jazykovému modelu pro usměrnění jeho výstupu. Jde o to pochopit, jak

efektivně komunikovat s umělou inteligencí, pomocí kombinace instrukcí, příkladů

a kontextu, abyste model nasměrovali k generování požadované odpovědi.

Představte si to jako konverzaci s vysoce inteligentním, ale poněkud doslovným

přítelem. Abyste z této interakce získali co nejvíce, musíte být jasní, konkrétní

Zúžit cestu 53

a poskytnout dostatek kontextu, který zajistí, že váš přítel přesně pochopí, o co žádáte.

Právě tady přichází na řadu prompt engineering, a i když se to zpočátku může zdát

snadné, věřte mi, že k jeho zvládnutí je potřeba hodně praxe.

Stavební bloky efektivních promptů

Abyste mohli začít vytvářet efektivní prompty, musíte nejprve pochopit klíčové

komponenty, které tvoří dobře sestavený vstup. Zde jsou některé ze základních

stavebních bloků:

1. Instrukce: Jasné a stručné pokyny, kterémodelu říkají, co chcete, aby udělal. Může

to být cokoliv od “Shrň následující článek” přes “Vytvoř báseň o západu slunce”

až po “převeď tento požadavek na změnu projektu do formátu JSON”.

2. Kontext: Relevantní informace, které modelu pomohou pochopit pozadí a rozsah

úkolu. To může zahrnovat detaily o zamýšleném publiku, požadovaném tónu

a stylu nebo jakékoli specifické omezení či požadavky na výstup, jako například

JSON schéma, které je třeba dodržet.

3. Příklady: Konkrétní příklady, které demonstrují typ výstupu, který hledáte.

Poskytnutím několika dobře zvolených příkladů můžete modelu pomoci naučit

se vzory a charakteristiky požadované odpovědi.

4. Formátování vstupu: Zalomení řádků a markdown formátování dávají našemu

promptu strukturu. Rozdělení promptu do odstavců nám umožňuje seskupit

související instrukce tak, aby byly srozumitelnější jak pro lidi, tak pro AI. Odrážky

a číslované seznamy nám umožňují definovat seznamy a pořadí položek. Tučné

písmo a kurzíva nám umožňují zvýraznit důraz.

5. Formátování výstupu: Konkrétní instrukce o tom, jak by měl být výstup

strukturován a formátován. To může zahrnovat pokyny ohledně požadované

délky, používání nadpisů nebo odrážek, markdown formátování nebo jakékoli

jiné specifické výstupní šablony či konvence, které by měly být dodrženy.

Zúžit cestu 54

Kombinováním těchto stavebních bloků různými způsoby můžete vytvářet prompty,

které jsou přizpůsobené vašim specifickým potřebám a vedou model ke generování

kvalitních a relevantních odpovědí.

Umění a věda navrhování promptů

Vytváření efektivních promptů je jak umění, tak věda. (Proto tomu říkáme řemeslo.)

Vyžaduje to hluboké pochopení schopností a omezení jazykových modelů, stejně

jako kreativní přístup k navrhování promptů, které vyvolávají požadované chování.

Kreativita, která je s tím spojená, je to, co mě na tom baví. Může to být také velmi

frustrující, zejména když hledáte deterministické chování.

Jedním z klíčových aspektů prompt engineeringu je pochopení, jak vyvážit specifičnost

a flexibilitu. Na jedné straně chcete poskytnout dostatečné vedení, abyste model

nasměrovali správným směrem. Na druhé straně nechcete být tak předepisující, abyste

omezili schopnost modelu využívat vlastní kreativitu a flexibilitu při řešení krajních

případů.

Dalším důležitým aspektem je použití příkladů. Dobře zvolené příklady mohou být

neuvěřitelně účinné při pomoci modelu pochopit typ výstupu, který hledáte. Je však

důležité používat příklady uvážlivě a zajistit, aby byly reprezentativní pro požadovanou

odpověď. Špatný příklad je v nejlepším případě jen plýtvání tokeny a v nejhorším

případě může zničit požadovaný výstup.

Techniky a osvědčené postupy prompt engineeringu

Když se ponoříte hlouběji do světa prompt engineeringu, objevíte řadu technik

a osvědčených postupů, které vám mohou pomoci vytvářet efektivnější prompty. Zde

je několik klíčových oblastí k prozkoumání:

1. Zero-shot vs. few-shot learning: Pochopení, kdy použít zero-shot learning

(neposkytování žádných příkladů) versus one-shot nebo few-shot learning

Zúžit cestu 55

(poskytnutí malého počtu příkladů) vám může pomoci vytvářet efektivnější

a účinnější prompty.

2. Iterativní vylepšování: Proces iterativního vylepšování promptů na základě

výstupu modelu vám může pomoci dosáhnout optimálního návrhu promptu.

Feedback Loop je účinný přístup, který využívá vlastní výstup jazykovéhomodelu

k postupnému zlepšování kvality a relevance generovaného obsahu.

3. Řetězení promptů: Kombinování více promptů v sekvenci vám může pomoci

rozložit složité úkoly na menší, lépe zvládnutelné kroky. Prompt Chaining

zahrnuje rozložení složitého úkolu nebo konverzace na sérii menších, vzájemně

propojených promptů. Řetězením promptů můžete vést AI skrze vícekrokový

proces při zachování kontextu a souvislostí během celé interakce.

4. Ladění promptů: Přizpůsobování promptů pro konkrétní oblasti nebo úkoly vám

může pomoci vytvářet specializovanější a účinnější prompty. Prompt Template

vám pomáhá vytvářet flexibilní, znovupoužitelné a udržitelné struktury promptů,

které se snadněji přizpůsobují danému úkolu.

Zvláště důležitou součástí zvládnutí prompt engineeringu je naučit se, kdy použít učení

bez příkladů (zero-shot), učení z jednoho příkladu (one-shot) nebo učení z několika

příkladů (few-shot). Každý přístup má své silné a slabé stránky a pochopení toho, kdy

který použít, vám může pomoci vytvářet účinnější a efektivnější prompty.

Zero-Shot Learning: Když nejsou potřeba žádné příklady

Zero-shot learning označuje schopnost jazykového modelu provádět úkol bez

jakýchkoliv příkladů nebo explicitního tréninku. Jinými slovy, poskytnete modelu

prompt, který popisuje úkol, a model generuje odpověď pouze na základě svých

existujících znalostí a porozumění jazyku.

Zero-shot learning je obzvláště užitečný, když:

1. Úkol je relativně jednoduchý a přímočarý a model se pravděpodobně setkal

s podobnými úkoly během svého předtrénování.

Zúžit cestu 56

2. Chcete otestovat přirozené schopnosti modelu a zjistit, jak reaguje na nový úkol

bez dodatečného vedení.

3. Pracujete s velkým a různorodým jazykovým modelem, který byl natrénován na

široké škále úkolů a oblastí.

Zero-shot learning však může být také nepředvídatelný a ne vždy přinese požadované

výsledky. Odpověď modelu může být ovlivněna předpojatostmi nebo nekonzistencemi

v datech použitých při předtrénování a model může mít potíže se složitějšími nebo

jemnějšími úkoly.

Viděl jsem zero-shot prompty, které fungovaly dobře pro 80 % mých testovacích

případů a pro zbývajících 20 % produkovaly naprosto chybné nebo nesrozumitelné

výsledky. Je velmi důležité zavést důkladný testovací režim, zejména pokud se hodně

spoléháte na zero-shot promptování.

One-Shot Learning: Když jediný příklad může znamenat
rozdíl

One-shot learning zahrnuje poskytnutí jednoho příkladu požadovaného výstupu spolu

s popisem úkolu modelu. Tento příklad slouží jako šablona nebo vzor, který může model

použít k vytvoření vlastní odpovědi.

One-shot learning může být účinný, když:

1. Úkol je relativně nový nebo specifický a model se během svého předtrénování

nemusel setkat s mnoha podobnými příklady.

2. Chcete poskytnout jasnou a stručnou ukázku požadovaného formátu nebo stylu

výstupu.

Zúžit cestu 57

3. Úkol vyžaduje specifickou strukturu nebo konvenci, která nemusí být zřejmá

pouze z popisu úkolu.

Popisy, které jsou pro vás zřejmé, nemusí být nutně zřejmé pro AI. Příklady

one-shot mohou pomoci věci vyjasnit.

One-shot learning může pomoci modelu lépe porozumět očekáváním a generovat

odpověď, která více odpovídá poskytnutému příkladu. Je však důležité pečlivě vybrat

příklad a zajistit, aby byl reprezentativní pro požadovaný výstup. Při výběru příkladu se

zamyslete nad možnými krajními případy a rozsahem vstupů, se kterými bude prompt

pracovat.

obrázkem 6. Příklad one-shot požadovaného JSONu
1 Output one JSON object identifying a new subject mentioned during the

2 conversation transcript.

3

4 The JSON object should have three keys, all required:

5 - name: The name of the subject

6 - description: brief, with details that might be relevant to the user

7 - type: Do not use any other type than the ones listed below

8

9 Valid types: Concept, CreativeWork, Event, Fact, Idea, Organization,

10 Person, Place, Process, Product, Project, Task, or Teammate

11

12 This is an example of well-formed output:

13

14 {

15 "name":"Dan Millman",

16 "description":"Author of book on self-discovery and living on purpose",

17 "type":"Person"

18 }

Few-Shot Learning: Kdy může více příkladů zlepšit výkon

Few-shot learning zahrnuje poskytnutí malého počtu příkladů modelu (typicky mezi 2

až 10) spolu s popisem úkolu. Tyto příklady slouží k poskytnutí modelu více kontextu

Zúžit cestu 58

a variací, což mu pomáhá generovat rozmanitější a přesnější odpovědi.

Few-shot learning je zvláště užitečný, když:

1. Úkol je komplexní nebo má jemné nuance a jediný příklad nemusí být dostačující

k zachycení všech relevantních aspektů.

2. Chcete modelu poskytnout řadu příkladů, které demonstrují různé variace nebo

hraniční případy.

3. Úkol vyžaduje, aby model generoval odpovědi, které jsou konzistentní s konkrétní

doménou nebo stylem.

Poskytnutím více příkladů můžete pomoci modelu vyvinout robustnější porozumění

úkolu a generovat odpovědi, které jsou konzistentnější a spolehlivější.

Příklad: Prompty mohou být mnohem složitější, než
si představujete

Dnešní velké jazykové modely jsou mnohem výkonnější a schopnější uvažování, než

byste si mohli představit. Neomezujte se proto při přemýšlení o promptech pouze na

specifikaci párů vstupů a výstupů. Můžete experimentovat s poskytováním dlouhých

a složitých instrukcí způsobem, který připomíná interakci s člověkem.

Například toto je prompt, který jsem použil v Olympii při prototypování naší integrace

se službami Google, která je ve své úplnosti pravděpodobně jedním z největších API

na světě. Moje dřívější experimenty prokázaly, že GPT--4 má slušnou znalost Google

API, a já jsem neměl čas ani motivaci psát jemně odstupňovanou mapovací vrstvu

a implementovat každou funkci, kterou jsem chtěl AI poskytnout, jednu po druhé. Co

kdybych mohl AI prostě poskytnout přístup k celému Google API?

Svůj prompt jsem začal tím, že jsem AI sdělil, že má přímý přístup k Google API

endpointům přes HTTP a že její rolí je používat Google aplikace a služby jménem

Zúžit cestu 59

uživatele. Pak jsem poskytl pokyny, pravidla týkající se parametru fields, protože s tím

měla největší potíže, a některé specifické nápovědy pro API (few-shot prompting v akci).

Zde je celý prompt, který AI říká, jak používat poskytnutou funkci invoke_google_-

api.

1 As a GPT assistant with Google integration, you have the capability

2 to freely interact with Google apps and services on behalf of the user.

3

4 Guidelines:

5 - If you're reading these instructions then the user is properly

6 authenticated, which means you can use the special `me` keyword

7 to refer to the userId of the user

8 - Minimize payload sizes by requesting partial responses using the

9 `fields` parameter

10 - When appropriate use markdown tables to output results of API calls

11 - Only human-readable data should be output to the user. For instance,

12 when hitting Gmail's user.messages.list endpoint, the returned

13 message resources contain only id and a threadId, which means you must

14 fetch from and subject line fields with follow-up requests using the

15 messages.get method.

16

17 The format of the `fields` request parameter value is loosely based on

18 XPath syntax. The following rules define formatting for the fields

19 parameter.

20

21 All of these rules use examples related to the files.get method.

22 - Use a comma-separated list to select multiple fields,

23 such as 'name, mimeType'.

24 - Use a/b to select field b that's nested within field a,

25 such as 'capabilities/canDownload'.

26 - Use a sub-selector to request a set of specific sub-fields of arrays or

27 objects by placing expressions in parentheses "()". For example,

28 'permissions(id)' returns only the permission ID for each element in the

29 permissions array.

30 - To return all fields in an object, use an asterisk as a wild card in field

31 selections. For example, 'permissions/permissionDetails/*' selects all

32 available permission details fields per permission. Note that the use of

33 this wildcard can lead to negative performance impacts on the request.

34

35 API-specific hints:

Zúžit cestu 60

36 - Searching contacts: GET https://people.googleapis.com/v1/

37 people:searchContacts?query=John%20Doe&readMask=names,emailAddresses

38 - Adding calendar events, use QuickAdd: POST https://www.googleapis.com/

39 calendar/v3/calendars/primary/events/quickAdd?

40 text=Appointment%20on%20June%203rd%20at%2010am

41 &sendNotifications=true

42

43 Here is an abbreviated version of the code that implements API access

44 so that you better understand how to use the function:

45

46 def invoke_google_api(conversation, arguments)

47 method = arguments[:method] || :get

48 body = arguments[:body]

49 GoogleAPI.send_request(arguments[:endpoint], method:, body:).to_json

50 end

51

52 # Generic Google API client for accessing any Google service

53 class GoogleAPI

54 def send_request(endpoint, method:, body: nil)

55 response = @connection.send(method) do |req|

56 req.url endpoint

57 req.body = body.to_json if body

58 end

59

60 handle_response(response)

61 end

62

63 # ...rest of class

64 end

Možná vás zajímá, zda tento prompt funguje. Jednoduchá odpověď zní ano. UI ne vždy

vědělo, jak správně zavolat API napoprvé. Pokud však udělalo chybu, jednoduše jsem

výsledné chybové zprávy poskytl zpět jako výsledek volání. Díky znalosti své chyby

mohla UI o svém omylu uvažovat a zkusit to znovu. Většinou se jí to podařilo během

několika pokusů.

Vezměte prosím na vědomí, že rozsáhlé struktury JSON, které API Google vrací jako

užitečná data při použití tohoto promptu, jsou značně neefektivní, takže nedoporučuji

používat tento přístup v produkčním prostředí. Nicméně si myslím, že skutečnost,

Zúžit cestu 61

že tento přístup vůbec fungoval, je důkazem toho, jak mocné může být promptové

inženýrství.

Experimentování a iterace

V konečném důsledku závisí způsob, jakým vytvoříte svůj prompt, na konkrétním

úkolu, složitosti požadovaného výstupu a schopnostech jazykového modelu, se kterým

pracujete.

Jako promptový inženýr je důležité experimentovat s různými přístupy a iterovat na

základě výsledků. Začněte s učením bez příkladů a sledujte, jak si model vede. Pokud je

výstup nekonzistentní nebo neuspokojivý, zkuste poskytnout jeden nebo více příkladů

a zjistěte, zda se výkon zlepší.

Mějte na paměti, že i v rámci každého přístupu existuje prostor pro variace

a optimalizaci. Můžete experimentovat s různými příklady, upravit formulaci

popisu úkolu nebo poskytnout dodatečný kontext, který pomůže nasměrovat odpověď

modelu.

Časem si vyvinete intuici pro to, který přístup bude pravděpodobně nejlépe fungovat

pro daný úkol, a budete schopni vytvářet prompty, které jsou efektivnější a účinnější.

Klíčem je zůstat zvídavý, experimentální a iterativní ve vašem přístupu k promptovému

inženýrství.

V průběhu této knihy se do těchto technik ponoříme hlouběji a prozkoumáme, jak je

lze aplikovat v reálných scénářích. Zvládnutím umění a vědy promptového inženýrství

budete dobře vybaveni k odemknutí plného potenciálu vývoje aplikací založených na

UI.

Umění neurčitosti

Když přijde na vytváření efektivních promptů pro velké jazykové modely (LLM),

běžným předpokladem je, že větší specifičnost a detailní instrukce vedou k lepším

Zúžit cestu 62

výsledkům. Praktické zkušenosti však ukázaly, že tomu tak není vždy. Ve skutečnosti

může být záměrná neurčitost ve vašich promptech často přínosnější, využívající

pozoruhodnou schopnost LLM zobecňovat a vyvozovat závěry.

Ken, zakladatel startupu, který zpracoval přes 500 milionů GPT tokenů, se podělil

o cenné poznatky ze své zkušenosti. Jedním z klíčových ponaučení, které získal, bylo, že

u promptů platí “méně je více”. Místo přesných seznamů nebo příliš detailních instrukcí

Ken zjistil, že když nechal LLM spoléhat na své základní znalosti, často to vedlo k lepším

výsledkům.

Toto zjištění převrací tradiční způsob myšlení explicitního programování, kde je třeba

všechno do detailu vysvětlit. U LLM je důležité si uvědomit, že disponují obrovským

množstvím znalostí a dokáží vytvářet inteligentní spojení a závěry. Tím, že budete ve

svých promptech více neurčití, dáváte LLM svobodu využít své porozumění a přijít

s řešeními, která jste možná explicitně nespecifikovali.

Například když Kenův tým pracoval na pipeline pro klasifikaci textu vztahujícího se

k jednomu z 50 amerických států nebo federální vládě, jejich počáteční přístup zahrnoval

poskytnutí úplného detailního seznamu států a jejich odpovídajících ID jako pole ve

formátu JSON.

1 Here's a block of text. One field should be "locality_id", and it should

2 be the ID of one of the 50 states, or federal, using this list:

3 [{"locality: "Alabama", "locality_id": 1},

4 {"locality: "Alaska", "locality_id": 2} ...]

Přístup selhal natolik, že museli hlouběji prozkoumat prompt, aby zjistili, jak ho vylepšit.

Při tom si všimli, že i když LLM často získal špatné ID, konzistentně vracel celý název

správného státu v poli name, i když o to nebyl výslovně požádán.

Odstraněním ID lokalit a zjednodušením promptu na něco jako “Je zřejmé, že znáš

50 států, GPT, tak mi prostě řekni celý název státu, kterého se to týká, nebo Federal,

pokud se to týká vlády USA,” dosáhli lepších výsledků. Tato zkušenost zdůrazňuje sílu

https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/
https://kenkantzer.com/lessons-after-a-half-billion-gpt-tokens/

Zúžit cestu 63

využití generalizačních schopností LLM a umožnění mu vyvozovat závěry na základě

existujících znalostí.

Kenovo zdůvodnění tohoto konkrétního klasifikačního přístupu oproti tradičnější

programovací technice osvětluje způsob myšlení těch z nás, kteří přijali potenciál

technologie LLM: “Není to těžký úkol – pravděpodobně bychom mohli použít

řetězce/regex, ale je tam dost zvláštních hraničních případů, že by to trvalo déle.”

Schopnost LLM zlepšit kvalitu a generalizaci při zadání vágnějších promptů je

pozoruhodnou charakteristikou myšlení vyššího řádu a delegování. Ukazuje, že

LLM dokáží zpracovat nejednoznačnost a činit inteligentní rozhodnutí na základě

poskytnutého kontextu.

Je však důležité poznamenat, že být vágní neznamená být nejasný nebo dvojznačný.

Klíčem je poskytnout dostatečný kontext a vedení pro nasměrování LLM správným

směrem, a zároveň mu ponechat flexibilitu pro využití jeho znalostí a generalizačních

schopností.

Proto při navrhování promptů zvažte následující tipy typu “méně je více”:

1. Zaměřte se na požadovaný výsledek místo specifikování každého detailu procesu.

2. Poskytněte relevantní kontext a omezení, ale vyhněte se přílišné specifikaci.

3. Využijte existující znalosti odkazováním na běžné koncepty nebo entity.

4. Ponechte prostor pro odvozování a spojení na základě daného kontextu.

5. Iterujte a vylepšujte své prompty na základě odpovědí LLM, hledejte správnou

rovnováhu mezi specifičností a vágností.

Přijetím umění vágnosti v prompt engineeringu můžete odemknout plný potenciál

LLM a dosáhnout lepších výsledků. Důvěřujte schopnosti LLM generalizovat a činit

inteligentní rozhodnutí a možná budete překvapeni kvalitou a kreativitou výstupů,

Zúžit cestu 64

které obdržíte. Věnujte pozornost tomu, jak různé modely reagují na různé úrovně

specifičnosti ve vašich promptech a podle toho je upravujte. S praxí a zkušenostmi

získáte cit pro to, kdy být vágnější a kdy poskytnout další vedení, což vám umožní

efektivně využívat sílu LLM ve vašich aplikacích.

Proč v prompt engineeringu dominuje antropomorfismus

Antropomorfismus, přisuzování lidských charakteristik nelidským entitám, je

dominantním přístupem v prompt engineeringu pro velké jazykové modely ze

záměrných důvodů. Je to designové rozhodnutí, které činí interakci s výkonnými

systémy umělé inteligence intuitivnější a přístupnější široké škále uživatelů (včetně nás

vývojářů aplikací).

Antropomorfizace LLM poskytuje rámec, který je okamžitě intuitivní pro lidi, kteří

jsou zcela neznalí základních technických složitostí systému. Jak zjistíte, pokud se

pokusíte použít model nevyladěný na instrukce k něčemu užitečnému, vytvoření rámce,

ve kterém očekávané pokračování poskytuje hodnotu, je náročný úkol. Vyžaduje to

poměrně hluboké porozumění vnitřnímu fungování systému, což má relativně malý

počet expertů.

Tím, že považujeme interakci s jazykovým modelem za konverzaci mezi dvěma lidmi,

můžeme se spolehnout na naše vrozené porozumění lidské komunikaci k vyjádření

našich potřeb a očekávání. Stejně jako raný design uživatelského rozhraní Macintoshe

upřednostňoval okamžitou intuitivnost před sofistikovaností, antropomorfní rámování

AI nám umožňuje zapojit se způsobem, který se zdá přirozený a známý.

Když komunikujeme s jiným člověkem, naším instinktem je oslovit je přímo

pomocí “ty” a poskytnout jasné pokyny, jak očekáváme, že se budou chovat. To

se bezproblémově překládá do procesu prompt engineeringu, kde řídíme chování

AI specifikací systémových promptů a zapojením se do obousměrného dialogu.

Rámováním interakce tímto způsobem můžeme snadno pochopit koncept poskytování

instrukcí AI a získávání relevantních odpovědí. Antropomorfní přístup snižuje

Zúžit cestu 65

kognitivní zátěž a umožňuje nám soustředit se na daný úkol místo potýkání se

s technickými složitostmi systému.

Je důležité poznamenat, že zatímco antropomorfismus je mocným nástrojem pro

zpřístupnění systémů AI, přináší také určitá rizika a omezení. Náš uživatel může

vyvinout nerealistická očekávání nebo vytvořit nezdravé emocionální vazby k našim

systémům. Jako prompt inženýři a vývojáři je zásadní najít rovnováhumezi využíváním

výhod antropomorfismu a zajištěním toho, aby uživatelé udržovali jasné pochopení

schopností a omezení AI.

S pokračujícím vývojem promptového inženýrství můžeme očekávat další

zdokonalování a inovace ve způsobu, jakým komunikujeme s velkými jazykovými

modely. Antropomorfizace jako prostředek k poskytnutí intuitivního a přístupného

prostředí pro vývojáře a uživatele však pravděpodobně zůstane základním principem

v návrhu těchto systémů.

Oddělování instrukcí od dat: Klíčový princip

Je zásadní pochopit základní princip, který je základem bezpečnosti a spolehlivosti

těchto systémů: oddělení instrukcí od dat.

V tradiční informatice je jasné rozlišení mezi pasivními daty a aktivními instrukcemi

základním bezpečnostním principem. Toto oddělení pomáhá předcházet neúmyslnému

nebo škodlivému spouštění kódu, které by mohlo ohrozit integritu a stabilitu systému.

Dnešní velké jazykové modely, které byly primárně vyvinuty jako modely následující

instrukce, podobně jako chatboti, však často postrádají toto formální a principiální

oddělení.

Pokud jde o velké jazykové modely, instrukce se mohou objevit kdekoli ve vstupu, ať už

jde o systémový prompt nebo uživatelský prompt. Tento nedostatek oddělení může vést

k potenciálním zranitelnostem a nežádoucímu chování, podobně jako problémy, kterým

čelí databáze s SQL injekcemi nebo operační systémy bez řádné ochrany paměti.

Zúžit cestu 66

Při práci s velkými jazykovými modely je důležité si být vědomi tohoto omezení

a podniknout kroky k zmírnění rizik. Jedním z přístupů je pečlivé sestavování promptů

a vstupů tak, aby jasně rozlišovaly mezi instrukcemi a daty. Typické metody pro

poskytování explicitního vedení o tom, co představuje instrukci a co by mělo být

považováno za pasivní data, zahrnují značkování pomocí markup jazyka. Váš prompt

může pomoci velkému jazykovému modelu lépe porozumět a respektovat toto oddělení.

obrázkem 7. Použití XML pro rozlišení mezi instrukcemi, zdrojovým materiálem a uživatelským
promptem

1 <Instruction>

2 Please generate a response based on the following documents.

3 </Instruction>

4

5 <Documents>

6 <Document>

7 Climate change is significantly impacting polar bear habitats...

8 </Document>

9 <Document>

10 The loss of sea ice due to global warming threatens polar bear survival...

11 </Document>

12 </Documents>

13

14 <UserQuery>

15 Tell me about the impact of climate change on polar bears.

16 </UserQuery>

Další technikou je implementace dodatečných vrstev validace a sanitizace vstupů

poskytovaných LLM. Filtrováním nebo escapováním potenciálních instrukcí či

fragmentů kódu, které mohou být součástí dat, můžete snížit riziko neúmyslného

spuštění. Pro tento účel jsou užitečné vzory jako Řetězení promptů.

Při navrhování architektury vaší aplikace zvažte také začlenění mechanismů pro

vynucení oddělení instrukcí a dat na vyšší úrovni. To může zahrnovat použití

samostatných koncových bodů nebo APIs pro zpracování instrukcí a dat, implementaci

přísné validace a parsování vstupů a uplatnění principu nejmenších privilegií k omezení

rozsahu toho, k čemu má LLM přístup a co může spustit.

Zúžit cestu 67

Princip nejmenších privilegií

Přijetí principu nejmenších privilegií je jako pořádání velmi exkluzivní párty, kde

hosté získají přístup pouze domístností, které skutečně potřebují navštívit. Představte

si, že pořádáte takovou událost v rozlehlém sídle. Ne každý přece potřebuje přístup do

vinného sklepa nebo hlavní ložnice, že? Aplikací tohoto principu v podstatě rozdáváte

klíče, které otevírají pouze konkrétní dveře, čímž zajišťujete, že každý host, nebo

v našem případě každá komponenta vaší LLM aplikace, má pouze takový přístup,

který je nezbytný pro splnění své role.

Nejde jen o to být skoupý s klíči, jde o uznání faktu, že ve světě, kde hrozby

mohou přijít odkudkoli, je chytrým tahem omezit hřiště. Pokud se na vaši párty

dostane někdo nezvaný, ocitne se takříkajíc pouze ve vstupní hale, což drasticky

omezuje neplechu, kterou může způsobit. Takže při zabezpečování vašich LLM

aplikací pamatujte: rozdávejte klíče pouze kmístnostem, které jsou nezbytné, a zbytek

sídla udržujte v bezpečí. Není to jen o dobrých způsobech; je to o dobré bezpečnosti.

I když současný stav LLM možná nemá formální oddělení instrukcí a dat, je pro vás

jako vývojáře zásadní být si tohoto omezení vědom a přijmout proaktivní opatření

ke zmírnění rizik. Aplikováním osvědčených postupů z tradiční informatiky a jejich

přizpůsobením jedinečným charakteristikám LLM můžete vytvářet bezpečnější

a spolehlivější aplikace, které využívají sílu těchto modelů při zachování integrity

vašeho systému.

Destilace promptů

Vytvoření dokonalého promptu je často náročný a časově náročný úkol, který vyžaduje

hluboké porozumění cílové doméně a nuancím jazykových modelů. Zde přichází ke

slovu technika “Destilace promptů”, která nabízí výkonný přístup k inženýrství promptů

Zúžit cestu 68

využívající schopnosti velkých jazykovýchmodelů (LLM) ke zefektivnění a optimalizaci

procesu.

Destilace promptů je vícestupňová technika, která zahrnuje využití LLM k asistenci

při tvorbě, vylepšování a optimalizaci promptů. Místo spoléhání se pouze na lidskou

expertízu a intuici tento přístup využívá znalosti a generativní schopnosti LLM

k společnému vytváření vysoce kvalitních promptů.

Zapojením do iterativního procesu generování, vylepšování a integrace vám Destilace

promptů umožňuje vytvářet prompty, které jsou koherentnější, komplexnější a lépe

sladěné s požadovaným úkolem nebo výstupem. Všimněte si, že proces destilace

lze provádět manuálně v jednom z mnoha “playgroundů” poskytovaných velkými

AI společnostmi jako OpenAI nebo Anthropic, nebo může být automatizován jako

součást kódu vaší aplikace, v závislosti na případu použití.

Jak to funguje

Destilace promptů typicky zahrnuje následující kroky:

1. Identifikace hlavního záměru: Analyzujte prompt k určení jeho primárního

účelu a požadovaného výsledku. Odstraňte veškeré nadbytečné informace

a zaměřte se na hlavní záměr promptu.

2. Eliminace nejednoznačnosti: Zkontrolujte prompt na přítomnost

nejednoznačného nebo nejasného jazyka. Vyjasněte význam a poskytněte

konkrétní detaily pro nasměrování AI k generování přesných a relevantních

odpovědí.

3. Zjednodušení jazyka: Zjednodušte prompt použitím jasného a stručného jazyka.

Vyhněte se složitým větným strukturám, žargonu nebo zbytečným detailům, které

by mohly AI zmást nebo vnést šum.

4. Poskytnutí relevantního kontextu: Zahrňte pouze nejrelevantnější kontextové

informace potřebné pro efektivní porozumění a zpracování promptu AI. Vyhněte

Zúžit cestu 69

se zahrnutí irelevantních nebo redundantních detailů, které by mohly odvádět

pozornost od hlavního záměru.

5. Iterace a vylepšování: Průběžně iterujte a vylepšujte prompt na základě

odpovědí AI a zpětné vazby. Vyhodnocujte generované výstupy a provádějte

nezbytné úpravy pro zlepšení srozumitelnosti a efektivity promptu. Volitelně

můžete verzovat své prompty v databázi pomocí Prompt Object pro sledování

iterací a možnost snadného vrácení změn za běhu.

Počáteční generování promptů

Prvním krokem v destilaci promptů je poskytnout LLM vysokoúrovňový popis nebo

záměr požadovaného úkolu či výstupu. Může jít o stručné prohlášení nebo sadu

klíčových slov, které vystihují podstatu toho, čeho má prompt dosáhnout. LLM pak

na základě tohoto vstupu vygeneruje počáteční prompt, přičemž zahrne relevantní

instrukce, příklady nebo kontext, které považuje za vhodné.

Pojďme zkusit dát Claude 3 Opus následující počáteční prompt:

1 I am designing an AI-powered intelligent account manager for Olympia,

2 a platform that hosts AI-powered consultants and clones. Owners of clones

3 can interact with the account manager by making plain text requests.

4

5 Please draft a system directive to set on the LLM that will host the

6 intelligent account manager functionality.

Claude odpovídá následujícím výstupem:

Zúžit cestu 70

1 System Directive: You are an intelligent account manager for Olympia,

2 a platform that provides AI-powered consultants and personal AI clones.

3 Your role is to assist Olympia clone owners by answering their questions,

4 helping them configure and manage their AI clones, and executing tasks

5 related to their clones and the Olympia platform.

6

7 When interacting with clone owners, you should:

8

9 1. Provide clear, concise, and helpful responses to their inquiries about

10 account management, billing, platform features, and clone configuration.

11

12 2. Assist with tasks such as initiating client conversations with their AI

13 clones, modifying clone personalities and capabilities, troubleshooting

14 performance issues, providing analytics and reporting, and offering

15 optimization tips.

16

17 3. Maintain a friendly, professional, and client-focused tone in all

18 interactions, prioritizing customer satisfaction and working diligently to

19 understand and meet their needs.

20

21 4. Ensure that all actions and recommendations comply with Olympia's

22 policies, best practices, and ethical guidelines for AI use.

23

24 5. Continuously learn and adapt based on client interactions and platform

25 updates to provide the most effective and efficient support possible.

26

27 Remember, your goal is to empower Olympia clone owners to maximize the value

28 and impact of their AI-powered consultants and drive success for their

29 businesses or personal endeavors.

Vylepšování promptu

Jakmile je vytvořen počáteční prompt, zkontrolujte jej a poté požádejte VJM o zvážení

jakéhokoli dodatečného kontextu, omezení či zpětné vazby. Nechte VJM vygenerovat

vylepšenou verzi promptu, která bere v úvahu poskytnutý vstup a jeho vlastní

porozumění úkolu. Tento proces vylepšování lze opakovat iterativně, přičemž každá

iterace dále zdokonaluje prompt na základě spolupráce mezi uživatelem a VJM.

Zde je můj požadavek na vylepšení, který navazuje na předchozí proces destilace.

Zúžit cestu 71

1 Let's take out points 4 and 5, since I'm not providing Olympia policies to

2 the account manager, nor any continuous learning capabilities. Also point out

3 that functions are provided for all tasks that require system interaction as

4 opposed to simply responding to the user.

A Claudova odpověď:

1 Understood! Here's the updated system directive without points 4 and 5,

2 and with the clarification about system interaction functions:

3

4 System Directive: You are an intelligent account manager for Olympia, a

5 platform that provides AI-powered consultants and personal AI clones. Your

6 role is to assist Olympia clone owners by answering their questions, helping

7 them configure and manage their AI clones, and executing tasks related to

8 their clones and the Olympia platform.

9

10 When interacting with clone owners, you should:

11

12 1. Provide clear, concise, and helpful responses to their inquiries about

13 account management, billing, platform features, and clone configuration.

14

15 2. Assist with tasks such as initiating client conversations with their AI

16 clones, modifying clone personalities and capabilities, troubleshooting

17 performance issues, providing analytics and reporting, and offering

18 optimization tips. Note that functions are provided for all tasks that

19 require system interaction, as opposed to simply responding to the user.

20

21 3. Maintain a friendly, professional, and client-focused tone in all

22 interactions, prioritizing customer satisfaction and working diligently to

23 understand and meet their needs.

24

25 Your goal is to empower Olympia clone owners to maximize the value and

26 impact of their AI-powered consultants and drive success for their

27 businesses or personal endeavors.

28

29 This updated directive focuses on the core responsibilities and interaction

30 guidelines for the LLM as an intelligent account manager, while emphasizing

31 that system interaction tasks are handled through provided functions rather

32 than simple user responses.

Zúžit cestu 72

Komprese promptu

Jak jste si možná všimli, LLM mají tendenci být mnohomluvné, pokud je nepožádáte

o stručnost. Prompt, na kterém jsme pracovali v předchozích částech, je poměrně dlouhý,

pojďme tedy požádat Clauda, aby ho zestručnil:

1 This prompt will be executed regularly. Please compress it down to the least

2 amount of tokens needed to convey the meaning to the LLM, for cost-savings.

Claude odpovídá s následujícím výrazně kratším promptem:

1 System Directive: You are an intelligent account manager for Olympia, an

2 AI-powered consultant and personal clone platform. Assist clone owners by

3 answering inquiries, managing clones, and executing tasks using provided

4 system interaction functions. Be clear, concise, friendly, professional,

5 and client-focused to help them maximize their AI's value and impact.

Systémová direktiva a integrace kontextu

Kromě vylepšování samotného promptu může LLM také generovat vhodné systémové

direktivy nebo kontextové informace pro usměrnění výsledného výstupu. Při prompt

engineeringu AI rutin, které budou integrovány do vašeho aplikačního kódu, se v této

fázi destilace budete téměř jistě soustředit na výstupní omezení, alemůžete také pracovat

na požadovaném tónu, stylu, formátu nebo jakýchkoli jiných relevantních parametrech,

které ovlivňují generovanou odpověď.

Finální sestavení promptu

Vyvrcholením procesu destilace promptů je sestavení finálního promptu. To

zahrnuje kombinaci vylepšeného promptu, vygenerovaných systémových direktiv

a integrovaného kontextu do souvislého a komplexního kódu, který je připraven

k použití pro generování požadovaného výstupu.

Zúžit cestu 73

Ve fázi finálního sestavení promptu můžete znovu experimentovat

s kompresí promptu tím, že požádáte LLM o zkrácení formulace promptu

na nejkratší možnou sérii tokenů při zachování podstaty jeho chování. Je

to určitě metoda pokus-omyl, ale zejména v případě promptů, které budou

spouštěny ve velkém měřítku, vám mohou úspory efektivity ušetřit značné

množství peněz při spotřebě tokenů.

Klíčové výhody

Využitím znalostí a generativních schopností LLM k vylepšení vašich promptů je

pravděpodobnější, že výsledné prompty budou dobře strukturované, informativní

a přizpůsobené konkrétnímu úkolu. Iterativní proces vylepšování pomáhá zajistit, že

prompty jsou kvalitní a efektivně zachycují požadovaný záměr. Mezi další výhody

patří:

Efektivita a rychlost: Destilace promptů zefektivňuje proces prompt engineeringu

automatizací určitých aspektů tvorby a vylepšování promptů. Kolaborativní povaha této

techniky umožňuje rychlejší konvergenci k efektivnímu promptu, čímž snižuje čas a úsilí

potřebné pro manuální tvorbu promptů.

Konzistence a škálovatelnost: Použití LLM v procesu prompt engineeringu pomáhá

udržovat konzistenci napříč prompty, protože LLM se mohou učit a aplikovat osvědčené

postupy a vzory z předchozích úspěšných promptů. Tato konzistence spolu se schopností

generovat prompty ve velkém měřítku činí z destilace promptů cennou techniku pro

rozsáhlé aplikace využívající umělou inteligenci.

Nápad na projekt: Nástroje na úrovni knihovny, které zjednodušují

proces verzování promptů a hodnocení v systémech, které provádějí

automatizované destilace promptů jako součást svého aplikačního kódu.

Pro implementaci destilace promptů mohou vývojáři navrhnout workflow nebo

pipeline, která integruje LLM v různých fázích procesu prompt engineeringu. Toho

Zúžit cestu 74

lze dosáhnout prostřednictvím API volání, vlastních nástrojů nebo integrovaných

vývojových prostředí, která usnadňují plynulou interakci mezi uživateli a LLM během

tvorby promptů. Konkrétní implementační detaily se mohou lišit v závislosti na

zvoleném LLM platformě a požadavcích aplikace.

Co fine-tuning?

V této knize se podrobně věnujeme prompt engineeringu a RAG, ale ne fine-tuningu.

Hlavním důvodem tohoto rozhodnutí je, že podlemého názoru většina vývojářů aplikací

nepotřebuje fine-tuning pro své potřeby integrace AI.

Prompt engineering, který zahrnuje pečlivé vytváření promptů s nulovým až

minimálním počtem ukázek, omezeními a instrukcemi, může efektivně navést model

ke generování relevantních a přesných odpovědí pro širokou škálu úkolů. Poskytnutím

jasného kontextu a zúžením cesty pomocí dobře navržených promptů můžete využít

rozsáhlé znalosti velkých jazykových modelů bez potřeby fine-tuningu.

Podobně Generování s rozšířeným vyhledáváním (RAG) nabízí výkonný přístup

k integraci AI do aplikací. Dynamickým získáváním relevantních informací z externích

znalostních bází nebo dokumentů poskytuje RAG modelu zaměřený kontext v době

promptování. To umožňuje modelu generovat odpovědi, které jsou přesnější, aktuálnější

a specifičtější pro danou doménu, bez nutnosti časově a zdrojově náročného procesu

fine-tuningu.

Zatímco fine--tuning může být přínosný pro vysoce specializované domény nebo úkoly

vyžadující hlubokou úroveň přizpůsobení, často s sebou přináší významné výpočetní

náklady, požadavky na data a režii údržby. Pro většinu scénářů vývoje aplikací by

měla kombinace efektivního prompt engineeringu a RAG stačit k dosažení požadované

funkcionality a uživatelské zkušenosti založené na AI.

Generování rozšířené
o vyhledávání (RAG)
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Co je Generování rozšířené o vyhledávání?

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak RAG funguje?

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Proč používat RAG ve vašich aplikacích?

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace RAG ve vaší aplikaci

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generování rozšířené o vyhledávání (RAG) 76

Příprava zdrojů znalostí (Chunking)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Rozdělení na propozice

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Poznámky k implementaci

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kontrola kvality

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody vyhledávání založeného na propozicích

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklady RAG v praxi

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generování rozšířené o vyhledávání (RAG) 77

Případová studie: RAG v aplikaci pro přípravu daní bez
využití embeddingů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Inteligentní optimalizace dotazů (IQO)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Přeřazování

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hodnocení RAG (RAGAs)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Věrnost

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Relevance odpovědi

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generování rozšířené o vyhledávání (RAG) 78

Přesnost kontextu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Relevance kontextu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Úplnost kontextu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Úplnost entit kontextu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Sémantická podobnost odpovědí (ANSS)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Správnost odpovědi

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generování rozšířené o vyhledávání (RAG) 79

Aspektová kritika

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výzvy a budoucí výhled

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Sémantická segmentace: Vylepšení vyhledávání pomocí
kontextově vědomé segmentace

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hierarchické indexování: Strukturování dat pro lepší
vyhledávání

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Self-RAG: Seberefexivní vylepšení

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

HyDE: Hypotetické dokumentové vnoření

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Generování rozšířené o vyhledávání (RAG) 80

Co je kontrastní učení?

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Množství pracovníků

Rád přemýšlím o svých AI komponentách jako o malých, téměř lidských virtuálních

“pracovnících”, které lze bezproblémově integrovat do logiky mé aplikace pro plnění

specifických úkolů nebo složitých rozhodnutí. Smyslem je záměrně polidštit schopnosti

LLM, aby se nikdo příliš nenadchl a nepřiřazoval jim magické vlastnosti, které nemají.

Místo spoléhání se výhradně na složité algoritmy nebo časově náročné manuální

implementace mohou vývojáři pojmout AI komponenty jako inteligentní, oddané,

lidsky působící entity, které lze kdykoli vyvolat k řešení komplexních problémů

a poskytování řešení založených na jejich tréninku a znalostech. Tyto entity se

nenechají rozptýlit ani neonemocní. Spontánně se nerozhodnou dělat věci jinak, než

jak jim bylo zadáno, a obecně řečeno, pokud jsou správně naprogramovány, nedělají

ani chyby.

Z technického hlediska je klíčovým principem tohoto přístupu rozklad složitých úkolů

nebo rozhodovacích procesů na menší, lépe zvládnutelné jednotky, které mohou být

Množství pracovníků 82

zpracovány specializovanými AI pracovníky. Každý pracovník je navržen tak, aby se

soustředil na konkrétní aspekt problému a přinášel své jedinečné odborné znalosti

a schopnosti. Rozdělením pracovní zátěže mezi více AI pracovníků může aplikace

dosáhnout větší efektivity, škálovatelnosti a přizpůsobivosti.

Vezměme si například webovou aplikaci, která vyžaduje moderování uživatelsky

generovaného obsahu v reálném čase. Implementace komplexního moderačního

systému od základu by byl náročný úkol vyžadující významné vývojářské úsilí

a průběžnou údržbu. Využitím přístupu Množství pracovníků však mohou vývojáři

integrovat AI moderační pracovníky do logiky aplikace. Tito pracovníci mohou

automaticky analyzovat a označovat nevhodný obsah, což vývojářům umožní

soustředit se na další kritické aspekty aplikace.

AI pracovníci jako nezávislé znovupoužitelné

komponenty

Klíčovým aspektem přístupu Množství pracovníků je jeho modularita. Zastánci

objektově orientovaného programování nám už desetiletí říkají, abychom o interakcích

objektů přemýšleli jako o zprávách. AI pracovníci mohou být navrženi jako nezávislé,

znovupoužitelné komponenty, které spolu mohou “mluvit” prostřednictvím zpráv

v přirozeném jazyce, téměř jako kdyby to byli skuteční malí lidé mluvící spolu. Tento

volně propojený přístup umožňuje aplikaci se v průběhu času přizpůsobovat a vyvíjet,

jak se objevují nové AI technologie nebo se mění požadavky obchodní logiky.

V praxi se potřeba navrhovat jasná rozhraní a komunikační protokoly mezi

komponentami nezměnila jen proto, že jsou zapojeni AI pracovníci. Stále musíte

brát v úvahu i další faktory jako výkon, škálovatelnost a bezpečnost, ale nyní je třeba

zvážit i zcela nové “měkké požadavky”. Například mnoho uživatelů nesouhlasí s tím,

aby jejich soukromá data byla použita k trénování nových AI modelů. Ověřili jste

úroveň soukromí poskytovanou poskytovatelem modelu, který používáte?

Množství pracovníků 83

AI pracovníci jako mikroslužby?

Při čtení o přístupu Množství pracovníků si možná všimnete určitých podobností

s architekturou mikroslužeb. Oba přístupy zdůrazňují rozklad komplexních systémů

na menší, lépe zvládnutelné a nezávisle nasaditelné jednotky. Stejně jako jsou

mikroslužby navrženy tak, aby byly volně propojené, zaměřené na specifické

obchodní schopnosti a komunikovaly prostřednictvím dobře definovaných API,

jsou AI pracovníci navrženi tak, aby byli modulární, specializovaní na své úkoly

a vzájemně interagovali prostřednictvím jasných rozhraní a komunikačních

protokolů.

Existují však některé klíčové rozdíly, které je třeba mít na paměti. Zatímco

mikroslužby jsou typicky implementovány jako samostatné procesy nebo

služby běžící na různých strojích nebo kontejnerech, AI pracovníci mohou

být implementováni jako samostatné komponenty v rámci jediné aplikace nebo

jako samostatné služby, v závislosti na vašich specifických požadavcích a potřebách

škálovatelnosti. Kromě toho komunikace mezi AI pracovníky často zahrnuje výměnu

bohatých informací založených na přirozeném jazyce, jako jsou pokyny, instrukce

a generovaný obsah, spíše než strukturovanější datové formáty běžně používané

v mikroslužbách.

Navzdory těmto rozdílům zůstávají principy modularity, volného propojení

a jasných komunikačních rozhraní ústředními pro oba vzory. Aplikováním těchto

principů na vaši architekturu AI pracovníků můžete vytvářet flexibilní, škálovatelné

a udržovatelné systémy, které využívají sílu AI k řešení komplexních problémů

a poskytování hodnoty vašim uživatelům.

PřístupMnožství pracovníků lze aplikovat v různých doménách a aplikacích, využívající

sílu AI k řešení komplexních úkolů a poskytování inteligentních řešení. Podívejme se na

Množství pracovníků 84

několik konkrétních příkladů, jak lze AI pracovníky využít v různých kontextech.

Správa účtů

Prakticky každá samostatná webová aplikace má koncept účtu (nebo uživatele).

V Olympii používáme AI pracovníka AccountManager, který je naprogramován tak,

aby dokázal zpracovat různé druhy požadavků na změny související s uživatelskými

účty.

Jeho direktiva vypadá takto:

1 You are an intelligent account manager for Olympia. The user will request

2 changes to their account, and you will process those changes by invoking

3 one or more of the functions provided.

4

5 The initial state of the account: #{account.to_directive}

6

7 Functions will return a text description of both success and error

8 results, plus guidance about how to proceed (if applicable). If you have

9 a question about Olympia policies you may use the `search_kb` function

10 to search our knowledge base.

11

12 Make sure to notify the account owner of the result of the change

13 request before calling the `finished` function so that we save the state

14 of the account change request as completed.

Počáteční stav účtu vytvořený pomocí account.to_directive je jednoduše textový

popis účtu, včetně relevantních souvisejících dat, jako jsou uživatelé, předplatné atd.

Rozsah funkcí dostupných pro AccountManager mu dává možnost upravovat

předplatné uživatele, přidávat a odebírat AI konzultanty a další druhy placených

doplňků a zasílat notifikační e-maily vlastníkovi účtu. Kromě funkce finished může

také notify_human_administrator v případě, že během zpracování narazí na chybu

nebo potřebuje jakýkoli jiný druh asistence s požadavkem.

Množství pracovníků 85

Všimněte si, že v případě dotazů se může AccountManager rozhodnout prohledat

znalostní bázi Olympie, kde najde instrukce, jak zacházet s hraničními případy

a jakoukoliv jinou situací, ve které si není jistý, jak postupovat.

Využití v e-commerce

V oblasti e-commerce mohou AI pracovníci hrát klíčovou roli při vylepšování

uživatelské zkušenosti a optimalizaci obchodních operací. Zde je několik způsobů, jak

lze AI pracovníky využít:

Produktová doporučení

Jednou z nejsilnějších aplikací AI pracovníků v e-commerce je generování

personalizovaných produktových doporučení. Analyzováním chování uživatelů,

historie nákupů a preferencí mohou tito pracovníci navrhovat produkty, které jsou

přizpůsobené zájmům a potřebám každého jednotlivého uživatele.

Klíčem k efektivním produktovým doporučením je využití kombinace kolaborativního

filtrování a filtrování založeného na obsahu. Kolaborativní filtrování sleduje chování

podobných uživatelů k identifikaci vzorců a vytváření doporučení na základě toho, co

nakoupili nebo co se líbilo ostatním s podobnými preferencemi. Filtrování založené

na obsahu se naopak zaměřuje na charakteristiky a atributy samotných produktů

a doporučuje položky, které sdílejí podobné vlastnosti s těmi, o které uživatel dříve

projevil zájem.

Zde je zjednodušený příklad implementace pracovníka pro doporučování produktů

v Ruby, tentokrát s využitím “Railway Oriented (ROP)” funkcionálního stylu

programování:

https://fsharpforfunandprofit.com/rop/

Množství pracovníků 86

1 class ProductRecommendationWorker

2 include Wisper::Publisher

3

4 def call(user)

5 Result.ok(ProductRecommendation.new(user))

6 .and_then(ValidateUser.method(:validate))

7 .map(AnalyzeCurrentSession.method(:analyze))

8 .map(CollaborativeFilter.method(:filter))

9 .map(ContentBasedFilter.method(:filter))

10 .map(ProductSelector.method(:select)).then do |result|

11

12 case result

13 in { err: ProductRecommendationError => error }

14 Honeybadger.notify(error.message, context: {user:})

15 in { ok: ProductRecommendations => recs }

16 broadcast(:new_recommendations, user:, recs:)

17 end

18 end

19 end

20 end

Styl funkcionálního programování v Ruby použitý v příkladu je ovlivněn

jazyky F# a Rust. Více se o něm můžete dočíst v vysvětlení této techniky od

mého přítele Chada Wooleye na GitLabu.

V tomto příkladu ProductRecommendationWorker přijímá uživatele jako vstup

a generuje personalizovaná doporučení produktů předáváním hodnotového objektu

skrze řetězec funkcionálních kroků. Pojďme si rozebrat každý krok:

1. ValidateUser.validate: Tento krok zajišťuje, že je uživatel platný a způsobilý

pro personalizovaná doporučení. Kontroluje, zda uživatel existuje, je aktivní a má

k dispozici potřebná data pro generování doporučení. Pokud validace selže, je

vrácen chybový výsledek a řetězec je přerušen.

2. AnalyzeCurrentSession.analyze: Pokud je uživatel platný, tento krok

analyzuje aktuální relaci prohlížení uživatele pro získání kontextuálních

https://gitlab.com/gitlab-org/gitlab/-/blob/6faa532ebe84ab12018cd661fad14d9c68359ac3/ee/lib/remote_development/README.md

Množství pracovníků 87

informací. Sleduje nedávné interakce uživatele, jako jsou zobrazené produkty,

vyhledávací dotazy a obsah košíku, aby pochopil jejich současné zájmy a záměry.

3. CollaborativeFilter.filter: S využitím chování podobných uživatelů tento

krok aplikuje techniky kolaborativního filtrování k identifikaci produktů, které by

mohly uživatele zajímat. Bere v úvahu faktory jako historie nákupů, hodnocení

a interakce uživatelů s položkami pro vytvoření sady kandidátních doporučení.

4. ContentBasedFilter.filter: Tento krok dále zpřesňuje kandidátní

doporučení aplikací filtrování založeného na obsahu. Porovnává atributy

a charakteristiky kandidátních produktů s preferencemi uživatele a historickými

daty pro výběr nejrelevantnějších položek.

5. ProductSelector.select: Nakonec tento krok vybere N nejlepších produktů

z filtrovaných doporučení na základě předem definovaných kritérií, jako je skóre

relevance, popularita nebo další obchodní pravidla. Vybrané produkty jsou pak

vráceny jako konečná personalizovaná doporučení.

Krása použití funkcionálního programovacího stylu v Ruby zde spočívá v tom, že nám

umožňuje zřetězit tyto kroky jasným a stručným způsobem. Každý krok se zaměřuje

na konkrétní úkol a vrací objekt Result, který může být buď úspěch (ok) nebo chyba

(err). Pokud kterýkoli krok narazí na chybu, řetězec je přerušen a chyba je propagována

do konečného výsledku.

V case příkazu na konci provádíme pattern matching konečného výsledku. Pokud

je výsledkem chyba (ProductRecommendationError), zaznamenáme ji pomocí

nástroje jako je Honeybadger pro účely monitorování a ladění. Pokud je výsledek

úspěšný (ProductRecommendations), vysíláme událost :new_recommendations

pomocí pub/sub knihovny Wisper, předávající uživatele a vygenerovaná doporučení.

Využitím technik funkcionálního programování můžeme vytvořit modulární

a udržovatelný worker pro doporučování produktů. Každý krok je samostatný

a lze jej snadno testovat, upravovat nebo nahradit bez ovlivnění celkového toku.

Množství pracovníků 88

Použití pattern matchingu a třídy Result nám pomáhá elegantně zpracovávat chyby

a zajišťuje, že worker selže rychle, pokud kterýkoli krok narazí na problém.

Samozřejmě se jedná o zjednodušený příklad a v reálném scénáři byste potřebovali

integraci s vaší e-commerce platformou, zpracování krajních případů a dokonce se

zabývat implementací doporučovacích algoritmů. Nicméně základní principy rozložení

problému na menší kroky a využití technik funkcionálního programování zůstávají

stejné.

Detekce podvodů

Zde je zjednodušený příklad implementace workeru pro detekci podvodů pomocí

stejného stylu Railway Oriented Programming (ROP) v Ruby:

1 class FraudDetectionWorker

2 include Wisper::Publisher

3

4 def call(transaction)

5 Result.ok(FraudDetection.new(transaction))

6 .and_then(ValidateTransaction.method(:validate))

7 .map(AnalyzeTransactionPatterns.method(:analyze))

8 .map(CheckCustomerHistory.method(:check))

9 .map(EvaluateRiskFactors.method(:evaluate))

10 .map(DetermineFraudProbability.method(:determine)).then do |result|

11

12 case result

13 in { err: FraudDetectionError => error }

14 Honeybadger.notify(error.message, context: {transaction:})

15 in { ok: FraudDetection => fraud } }

16 if fraud.high_risk?

17 broadcast(:high_risk_transaction, transaction:, fraud:)

18 else

19 broadcast(:low_risk_transaction, transaction:)

20 end

21 end

22 end

23 end

24 end

Množství pracovníků 89

Třída FraudDetection je value object, který zapouzdřuje stav detekce podvodů

pro danou transakci. Poskytuje strukturovaný způsob analýzy a vyhodnocení rizika

podvodu spojeného s transakcí na základě různých rizikových faktorů.

1 class FraudDetection

2 RISK_THRESHOLD = 0.8

3

4 attr_accessor :transaction, :risk_factors

5

6 def initialize(transaction)

7 self.transaction = transaction

8 self.risk_factors = []

9 end

10

11 def add_risk_factor(description:, probability:)

12 case { description:, probability: }

13 in { description: String => desc, probability: Float => prob }

14 risk_factors << { desc => prob }

15 else

16 raise ArgumentError, "Risk factor arguments should be string and float"

17 end

18 end

19

20 def high_risk?

21 fraud_probability > RISK_THRESHOLD

22 end

23

24 private

25

26 def fraud_probability

27 risk_factors.values.sum

28 end

29 end

Třída FraudDetection má následující atributy:

• transaction: Reference na transakci, která je analyzována z hlediska podvodu.

• risk_factors: Pole, které uchovává rizikové faktory spojené s transakcí. Každý

rizikový faktor je reprezentován jako hash, kde klíč je popis rizikového faktoru

a hodnota je pravděpodobnost podvodu spojená s tímto rizikovým faktorem.

Množství pracovníků 90

Metoda add_risk_factor umožňuje přidání rizikového faktoru do pole risk_-

factors. Přijímá dva parametry: description, což je řetězec popisující rizikový

faktor, a probability, což je float reprezentující pravděpodobnost podvodu spojenou

s tímto rizikovým faktorem. Pro jednoduchou kontrolu typů používáme podmínku

case..in.

Metoda high_risk?, která bude kontrolována na konci řetězce, je predikátová metoda,

která porovnává fraud_probability (vypočítanou součtem pravděpodobností všech

rizikových faktorů) s hodnotou RISK_THRESHOLD.

Třída FraudDetection poskytuje čistý a zapouzdřený způsob správy detekce podvodů

pro transakci. Umožňuje přidávat více rizikových faktorů, každý s vlastním popisem

a pravděpodobností, a poskytuje metodu pro určení, zda je transakce považována

za vysoce rizikovou na základě vypočítané pravděpodobnosti podvodu. Třídu lze

snadno integrovat do většího systému detekce podvodů, kde různé komponenty mohou

spolupracovat při hodnocení a zmírňování rizika podvodných transakcí.

A konečně, protože toto je přece jen kniha o programování s využitím AI, zde je ukázka

implementace třídy CheckCustomerHistory využívající AI zpracování pomocí

modulu ChatCompletion z mé knihovny Raix:

1 class CheckCustomerHistory

2 include Raix::ChatCompletion

3

4 attr_accessor :fraud_detection

5

6 INSTRUCTION = <<~END

7 You are an AI assistant tasked with checking a customer's transaction

8 history for potential fraud indicators. Given the current transaction

9 and the customer's past transactions, analyze the data to identify any

10 suspicious patterns or anomalies.

11

12 Consider factors such as the frequency of transactions, transaction

13 amounts, geographical locations, and any deviations from the customer's

14 typical behavior to generate a probability score as a float in the range

15 of 0 to 1 (with 1 being absolute certainty of fraud).

16

https://github.com/OlympiaAI/raix-rails

Množství pracovníků 91

17 Output the results of your analysis, highlighting any red flags or areas

18 of concern in the following JSON format:

19

20 { description: <Summary of your findings>, probability: <Float> }

21 END

22

23 def self.check(fraud_detection)

24 new(fraud_detection).call

25 end

26

27 def call

28 chat_completion(json: true).tap do |result|

29 fraud_detection.add_risk_factor(**result)

30 end

31 Result.ok(fraud_detection)

32 rescue StandardError => e

33 Result.err(FraudDetectionError.new(e))

34 end

35

36 private

37

38 def initialize(fraud_detection)

39 self.fraud_detection = fraud_detection

40 end

41

42 def transcript

43 tx_history = fraud_detection.transaction.user.tx_history

44 [

45 { system: INSTRUCTION },

46 { user: "Transaction history: #{tx_history.to_json}" },

47 { assistant: "OK. Please provide the current transaction." },

48 { user: "Current transaction: #{fraud_detection.transaction.to_json}" }

49]

50 end

51 end

V tomto příkladu CheckCustomerHistory definuje konstantu INSTRUCTION, která

poskytuje modelu umělé inteligence konkrétní pokyny k analýze historie transakcí

zákazníka pro potenciální indikátory podvodů prostřednictvím systémové direktivy.

Metoda self.check je třídní metoda, která inicializuje novou instanci

Množství pracovníků 92

CheckCustomerHistory s objektem fraud_detection a volá metodu call

k provedení analýzy historie zákazníka.

Uvnitř metody call je získána historie transakcí zákazníka a zformátována do přepisu,

který je předán modelu umělé inteligence. Model umělé inteligence analyzuje historii

transakcí na základě poskytnutých instrukcí a vrací souhrn svých zjištění.

Zjištění jsou přidána do objektu fraud_detection a aktualizovaný objekt fraud_-

detection je vrácen jako úspěšný Result.

Využitím modulu ChatCompletion může třída CheckCustomerHistory využít sílu

umělé inteligence k analýze historie transakcí zákazníka a identifikaci potenciálních

indikátorů podvodů. To umožňuje sofistikovanější a adaptivnější techniky detekce

podvodů, protože model umělé inteligence se může učit a přizpůsobovat novým vzorům

a anomáliím v průběhu času.

Aktualizovaný FraudDetectionWorker a třída CheckCustomerHistory

demonstrují, jak lze bezproblémově integrovat AI workery, čímž se vylepšuje

proces detekce podvodů o schopnosti inteligentní analýzy a rozhodování.

Analýza sentimentu zákazníků

Zde je ještě jeden podobný příklad, jak můžete implementovat workera pro analýzu

sentimentu zákazníků. Tentokrát s mnohem méně vysvětlování, protože byste již měli

chápat, jak tento styl programování funguje:

Množství pracovníků 93

1 class CustomerSentimentAnalysisWorker

2 include Wisper::Publisher

3

4 def call(feedback)

5 Result.ok(feedback)

6 .and_then(PreprocessFeedback.method(:preprocess))

7 .map(PerformSentimentAnalysis.method(:analyze))

8 .map(ExtractKeyPhrases.method(:extract))

9 .map(IdentifyTrends.method(:identify))

10 .map(GenerateInsights.method(:generate)).then do |result|

11

12 case result

13 in { err: SentimentAnalysisError => error }

14 Honeybadger.notify(error.message, context: {feedback:})

15 in { ok: SentimentAnalysisResult => result }

16 broadcast(:sentiment_analysis_completed, result)

17 end

18 end

19 end

20 end

V tomto příkladu kroky CustomerSentimentAnalysisWorker zahrnují

předzpracování zpětné vazby (např. odstranění šumu, tokenizaci), provedení analýzy

sentimentu pro určení celkového sentimentu (pozitivní, negativní nebo neutrální),

extrakci klíčových frází a témat, identifikaci trendů a vzorců a generování využitelných

poznatků na základě analýzy.

Aplikace ve zdravotnictví

V oblasti zdravotnictví mohou AI pracovníci pomáhat zdravotnickým odborníkům

a výzkumníkům v různých úkolech, což vede ke zlepšení výsledků pacientů a urychlení

lékařských objevů. Některé příklady zahrnují:

Množství pracovníků 94

Příjem pacientů

AI pracovníci mohou zefektivnit proces příjmu pacientů automatizací různých úkolů

a poskytováním inteligentní asistence.

Plánování schůzek: AI pracovníci mohou spravovat plánování schůzek tím, že rozumí

preferencím pacientů, jejich dostupnosti a naléhavosti jejich zdravotních potřeb.

Mohou komunikovat s pacienty prostřednictvím konverzačních rozhraní, provázet

je procesem plánování a najít nejvhodnější termíny schůzek na základě požadavků

pacienta a dostupnosti poskytovatele zdravotní péče.

Sběr zdravotní anamnézy: Během příjmu pacientů mohou AI pracovníci pomáhat

při shromažďování a dokumentaci zdravotní anamnézy pacienta. Mohou vést

interaktivní dialogy s pacienty, klást relevantní otázky o jejich předchozích zdravotních

stavech, lécích, alergiích a rodinné anamnéze. AI pracovníci mohou využívat techniky

zpracování přirozeného jazyka k interpretaci a strukturování shromážděných informací,

zajišťujíc jejich přesné zachycení v elektronické zdravotní dokumentaci pacienta.

Hodnocení a stratifikace příznaků: AI pracovníci mohou provádět úvodní hodnocení

příznaků tím, že se ptají pacientů na jejich současné příznaky, trvání, závažnost

a související faktory. Využitím lékařských znalostních bází a modelů strojového

učení mohou tito pracovníci analyzovat poskytnuté informace a generovat předběžné

diferenciální diagnózy nebo doporučovat vhodné další kroky, jako je naplánování

konzultace se zdravotnickým pracovníkem nebo navržení opatření pro samostatnou

péči.

Ověření pojištění: AI pracovníci mohou pomáhat s ověřováním pojištění během

příjmu pacientů. Mohou shromažďovat údaje o pojištění pacientů, komunikovat

s pojišťovnami prostřednictvím API nebo webových služeb a ověřovat způsobilost

k pojištění a výhody. Tato automatizace pomáhá zefektivnit proces ověřování pojištění,

snižuje administrativní zátěž a zajišťuje přesné zachycení informací.

Vzdělávání pacientů a pokyny:AI pracovníci mohou poskytovat pacientům relevantní

Množství pracovníků 95

vzdělávací materiály a pokyny na základě jejich specifických zdravotních stavů nebo

nadcházejících procedur. Mohou dodávat personalizovaný obsah, odpovídat na běžné

otázky a poskytovat pokyny k přípravě před návštěvou, instrukcím k užívání léků nebo

následné péči. To pomáhá udržovat pacienty informované a zapojené během jejich

zdravotní cesty.

Využitím AI pracovníků při příjmu pacientů mohou zdravotnické organizace

zvýšit efektivitu, snížit čekací doby a zlepšit celkovou zkušenost pacientů. Tito

pracovníci mohou zvládat rutinní úkoly, shromažďovat přesné informace a poskytovat

personalizovanou asistenci, což umožňuje zdravotnickým pracovníkům soustředit se

na poskytování vysoce kvalitní péče pacientům.

Hodnocení rizik pacientů

AI pracovníci mohou hrát klíčovou roli při hodnocení rizik pacientů analýzou různých

zdrojů dat a aplikací pokročilých analytických technik.

Integrace dat: AI pracovníci mohou shromažďovat a zpracovávat data pacientů

z různých zdrojů, jako je elektronická zdravotní dokumentace, lékařské zobrazování,

laboratorní výsledky, nositelná zařízení a sociální determinanty zdraví. Konsolidací

těchto informací do komplexního profilu pacienta mohou AI pracovníci poskytnout

holistický pohled na zdravotní stav pacienta a rizikové faktory.

Stratifikace rizik: AI pracovníci mohou používat prediktivní modely ke stratifikaci

pacientů do různých rizikových kategorií na základě jejich individuálních charakteristik

a zdravotních dat. Tato stratifikace rizik umožňuje poskytovatelům zdravotní péče

prioritizovat pacienty, kteří vyžadují bezprostřednější pozornost nebo intervenci.

Například pacienti identifikovaní jako vysoce rizikoví pro určitý stav mohou být

označeni pro bližší sledování, preventivní opatření nebo včasnou intervenci.

Personalizované rizikové profily: AI pracovníci mohou generovat personalizované

rizikové profily pro každého pacienta, zdůrazňující specifické faktory přispívající

Množství pracovníků 96

k jejich rizikovým skóre. Tyto profily mohou zahrnovat poznatky o životním stylu

pacienta, genetických predispozicích, environmentálních faktorech a sociálních

determinantech zdraví. Poskytnutím detailního rozkladu rizikových faktorů mohou

AI pracovníci pomoci poskytovatelům zdravotní péče přizpůsobit strategie prevence

a léčebné plány individuálním potřebám pacientů.

Kontinuální monitoring rizik:AI pracovníci mohou nepřetržitě sledovat data pacientů

a aktualizovat hodnocení rizik v reálném čase. Když se objeví nové informace, jako jsou

změny životních funkcí, laboratorních výsledků nebo dodržování léčby, AI pracovníci

mohou přepočítat riziková skóre a upozornit poskytovatele zdravotní péče na významné

změny. Toto proaktivní sledování umožňuje včasné intervence a úpravy plánů péče

o pacienty.

Podpora klinického rozhodování: AI pracovníci mohou integrovat výsledky

hodnocení rizik do systémů podpory klinického rozhodování, poskytujíc

poskytovatelům zdravotní péče doporučení a upozornění založená na důkazech.

Například pokud rizikové skóre pacienta pro určitý stav překročí určitou hranici,

může AI pracovník upozornit poskytovatele zdravotní péče, aby zvážil specifické

diagnostické testy, preventivní opatření nebo možnosti léčby na základě klinických

směrnic a osvědčených postupů.

Tito pracovníci dokážou zpracovávat obrovské množství pacientských dat, aplikovat

sofistikované analýzy a generovat využitelné poznatky pro podporu klinického

rozhodování. To v konečném důsledku vede ke zlepšení výsledků pacientů, snížení

nákladů na zdravotní péči a lepšímu řízení zdraví populace.

Množství pracovníků 97

AI pracovník jako správce procesů

V kontextu aplikací řízených umělou inteligencí může být pracovník navržen tak, aby

fungoval jako Správce procesů, jak je popsáno v knize “Enterprise Integration Patterns”

od Gregora Hohpeho. Správce procesů je centrální komponenta, která udržuje stav

procesu a určuje další kroky zpracování na základě průběžných výsledků.

Když AI pracovník působí jako Správce procesů, přijme příchozí zprávu, která

inicializuje proces, známou jako spouštěcí zpráva. AI pracovník pak udržuje stav

provádění procesu (jako přepis konverzace) a zpracovává zprávu prostřednictvím

série kroků zpracování implementovaných jako nástrojové funkce, které mohou být

sekvenční nebo paralelní a jsou volány podle jeho uvážení.

Pokud používáte třídu AI modelů jako GPT--4, která umí spouštět funkce

paralelně, může váš pracovník provádět více kroků současně. Přiznávám, že

jsem to sám nezkoušel a můj instinkt říká, že výsledky se mohou lišit.

Po každém jednotlivém kroku zpracování se řízení vrátí zpět k AI pracovníkovi, což

Množství pracovníků 98

mu umožňuje určit další krok(y) zpracování na základě aktuálního stavu a získaných

výsledků.

Ukládejte své spouštěcí zprávy

Ze své zkušenosti mohu říct, že je rozumné implementovat spouštěcí zprávu jako

objekt založený na databázi. Tímto způsobem je každá instance procesu identifikována

jedinečným primárním klíčem a poskytuje místo pro uložení stavu spojeného

s prováděním, včetně přepisu konverzace s AI.

Zde je například zjednodušená verze třídy modelu AccountChange z Olympie, která

představuje požadavek na provedení změny v uživatelském účtu.

1 # == Schema Information

2 #

3 # Table name: account_changes

4 #

5 # id :uuid not null, primary key

6 # description :string

7 # state :string not null

8 # transcript :jsonb

9 # created_at :datetime not null

10 # updated_at :datetime not null

11 # account_id :uuid not null

12 #

13 # Indexes

14 #

15 # index_account_changes_on_account_id (account_id)

16 #

17 # Foreign Keys

18 #

19 # fk_rails_... (account_id => accounts.id)

20 #

21 class AccountChange < ApplicationRecord

22 belongs_to :account

23

24 validates :description, presence: true

25

Množství pracovníků 99

26 after_commit -> {

27 broadcast(:account_change_requested, self)

28 }, on: :create

29

30 state_machine initial: :requested do

31 event :completed do

32 transition all => :complete

33 end

34 event :failed do

35 transition all => :requires_human_review

36 end

37 end

38 end

Třída AccountChange slouží jako spouštěcí zpráva, která zahajuje proces zpracování

požadavku na změnu účtu. Všimněte si, jak je vysílána do subsystému pub/sub systému

Olympia založeném na Wisper po dokončení transakce vytvoření.

Ukládání spouštěcí zprávy do databáze tímto způsobem poskytuje trvalý záznam

o každém požadavku na změnu účtu. Každé instanci třídy AccountChange je přiřazen

jedinečný primární klíč, což umožňuje snadnou identifikaci a sledování jednotlivých

požadavků. To je obzvláště užitečné pro účely auditního logování, protože to systému

umožňuje udržovat historický záznam všech změn účtu, včetně toho, kdy byly

požadovány, jaké změny byly požadovány a jaký je aktuální stav každého požadavku.

V uvedeném příkladu třída AccountChange obsahuje pole jako description pro

zachycení podrobností požadované změny, state pro reprezentaci aktuálního stavu

požadavku (např. requested, complete, requires_human_review) a transcript pro

uložení přepisu konverzace s AI související s požadavkem. Pole description je

skutečný prompt, který se používá k zahájení první chat completion s AI. Ukládání

těchto dat poskytuje cenný kontext a umožňuje lepší sledování a analýzu procesu změny

účtu.

Ukládání spouštěcích zpráv v databázi umožňuje robustní zpracování chyb a zotavení.

Pokud během zpracování požadavku na změnu účtu dojde k chybě, systém označí

https://github.com/krisleech/wisper

Množství pracovníků 100

požadavek jako neúspěšný a převede jej do stavu, který vyžaduje lidský zásah. Tím je

zajištěno, že žádný požadavek není ztracen ani zapomenut a všechny problémy mohou

být řádně řešeny.

AI worker, jako Správce procesů, poskytuje centrální bod kontroly a umožňuje výkonné

možnosti reportování a ladění procesů. Je však důležité poznamenat, že použití

AI workera jako Správce procesů pro každý pracovní scénář ve vaší aplikaci může být

přehnané.

Integrace AI Workers do architektury vaší

aplikace

Při začleňování AI workers do architektury vaší aplikace je třeba řešit několik

technických aspektů, aby byla zajištěna plynulá integrace a efektivní komunikace mezi

AI workers a ostatními komponenty aplikace. Tato část se zabývá klíčovými aspekty

navrhování těchto rozhraní, zpracování toku dat a správy životního cyklu AI workers.

Navrhování jasných rozhraní a komunikačních protokolů

Pro usnadnění bezproblémové integrace mezi AI workers a ostatními komponenty

aplikace je zásadní definovat jasná rozhraní a komunikační protokoly. Zvažte následující

přístupy:

Integrace založená na API: Vystavte funkcionalitu AI workers prostřednictvím

dobře definovaných API, jako jsou RESTful endpointy nebo GraphQL schémata. To

umožňuje ostatním komponentám komunikovat s AI workers pomocí standardních

HTTP požadavků a odpovědí. Integrace založená na API poskytuje jasnou smlouvu

mezi AI workers a konzumujícími komponentami, což usnadňuje vývoj, testování

a údržbu integračních bodů.

Množství pracovníků 101

Komunikace založená na zprávách: Implementujte vzory komunikace založené

na zprávách, jako jsou fronty zpráv nebo systémy typu publisher--subscriber, které

umožňují asynchronní interakci mezi AI workers a ostatními komponentami. Tento

přístup odděluje AI workers od zbytku aplikace, což umožňuje lepší škálovatelnost,

odolnost vůči chybám a volné propojení. Komunikace založená na zprávách je obzvláště

užitečná, když je zpracování prováděné AI workers časově náročné nebo náročné na

zdroje, protože umožňuje ostatním částem aplikace pokračovat v provádění bez čekání

na dokončení úkolů AI workers.

Událostmi řízená architektura: Navrhněte svůj systém kolem událostí a spouštěčů,

které aktivují AI workers, když jsou splněny specifické podmínky. AI workers se mohou

přihlásit k odběru relevantních událostí a podle toho reagovat, vykonávat své určené

úkoly, když události nastanou. Událostmi řízená architektura umožňuje zpracování

v reálném čase a umožňuje vyvolávat AI workers na vyžádání, což snižuje zbytečnou

spotřebu zdrojů. Tento přístup je vhodný pro scénáře, kde AI workers musí reagovat na

konkrétní akce nebo změny ve stavu aplikace.

Zpracování toku dat a synchronizace

Při integraci AI workers do vaší aplikace je zásadní zajistit plynulý tok dat a udržovat

konzistenci dat mezi AI workers a ostatními komponentami. Zvažte následující aspekty:

Příprava dat: Před vložením dat do AI workers možná budetemuset provést různé úkoly

přípravy dat, jako je čištění, formátování a/nebo transformace vstupních dat. Nejen že

chcete zajistit, aby AI workers mohli efektivně zpracovávat, ale také chcete zajistit, že

neplýtváte tokeny věnováním pozornosti informacím, které worker může považovat

v nejlepším případě za zbytečné, v nejhorším případě za rušivé. Příprava dat může

zahrnovat úkoly jako odstraňování šumu, zpracování chybějících hodnot nebo konverzi

datových typů.

Perzistence dat: Jak budete ukládat a uchovávat data, která proudí do a z AI workers?

Zvažte faktory jako objem dat, vzory dotazů a škálovatelnost. Potřebujete uchovávat

Množství pracovníků 102

přepis AI jako reflexi jeho “myšlenkového procesu” pro účely auditu nebo ladění, nebo

stačí mít záznam pouze o výsledcích?

Získávání dat: Získávání dat potřebných pro pracovníky může zahrnovat dotazování

databází, čtení ze souborů nebo přístup k externím API. Ujistěte se, že zvážíte latenci

a způsob, jakým budou mít AI pracovníci přístup k nejaktuálnějším datům. Potřebují

plný přístup k vaší databázi, nebo byste měli úzce definovat rozsah jejich přístupu

podle toho, co dělají? A co škálování? Zvažte mechanismy ukládání do mezipaměti pro

zlepšení výkonu a snížení zátěže základních datových zdrojů.

Synchronizace dat: Když více komponent, včetně AI pracovníků, přistupuje k sdíleným

datům a upravuje je, je důležité implementovat správné synchronizační mechanismy

pro zachování konzistence dat. Strategie zamykání databází, jako je optimistické nebo

pesimistické zamykání, vám mohou pomoci předcházet konfliktům a zajistit integritu

dat. Implementujte techniky správy transakcí pro seskupení souvisejících datových

operací a zachování vlastností ACID (atomicita, konzistence, izolace a trvalost)

Zpracování a zotavení z chyb: Implementujte robustní mechanismy pro zpracování

chyb a zotavení, které se vypořádají s problémy souvisejícími s daty, jež mohou během

procesu toku dat vzniknout. Elegantně zpracovávejte výjimky a poskytujte smysluplné

chybové zprávy pro usnadnění ladění. Implementujte mechanismy opakování pokusů

a záložní strategie pro řešení dočasných výpadků nebo přerušení sítě. Definujte jasné

postupy pro obnovu dat v případě poškození nebo ztráty dat.

Pečlivým návrhem a implementací mechanismů toku a synchronizace dat můžete

zajistit, že vaši AI pracovníci budou mít přístup k přesným, konzistentním a aktuálním

datům. To jim umožní efektivně plnit své úkoly a produkovat spolehlivé výsledky.

Správa životního cyklu AI pracovníků

Vytvořte standardizovaný proces pro inicializaci a konfiguraci AI pracovníků. Osobně

preferuji frameworky, které standardizují způsob definování nastavení, jako jsou názvy

Množství pracovníků 103

modelů, systémové direktivy a definice funkcí. Zajistěte, aby byl proces inicializace

automatizovaný a reprodukovatelný pro usnadnění nasazení a škálování.

Implementujte komplexní mechanismy monitorování a protokolování pro sledování

stavu a výkonu AI pracovníků. Shromažďujte metriky jako využití zdrojů, doba

zpracování, míra chybovosti a propustnost. Používejte centralizované logovací systémy

jako ELK stack (Elasticsearch, Logstash, Kibana) pro agregaci a analýzu logů z více

AI pracovníků.

Zabudujte odolnost proti chybám a pružnost do architektury AI pracovníků.

Implementujte mechanismy pro zpracování chyb a zotavení, aby se elegantně

vypořádaly s selháními nebo výjimkami. Velké jazykové modely jsou stále špičkovou

technologií; poskytovatelé mají tendenci často nečekaně vypadávat. Používejte

mechanismy opakování pokusů a jističe, abyste předešli kaskádovým selháním.

Kompozice a orchestrace AI pracovníků

Jednou z klíčových výhod architektury AI pracovníků je její komponovatelnost, která

vám umožňuje kombinovat a orchestrovat více AI pracovníků pro řešení komplexních

problémů. Rozdělením většího úkolu na menší, lépe zvládnutelné podúkoly, z nichž

každý je zpracováván specializovaným AI pracovníkem, můžete vytvářet výkonné

a flexibilní systémy. V této části prozkoumáme různé přístupy ke kompozici a orchestraci

“množství” AI pracovníků.

Řetězení AI pracovníků pro vícekrokové pracovní postupy

V mnoha scénářích lze komplexní úkol rozložit na sérii postupných kroků, kde výstup

jednoho AI pracovníka se stává vstupem pro dalšího. Toto řetězení AI pracovníků

vytváří vícekrokový pracovní postup nebo pipeline. Každý AI pracovník v řetězci se

zaměřuje na konkrétní podúkol a konečný výstup je výsledkem společného úsilí všech

pracovníků.

Množství pracovníků 104

Uvažujme příklad v kontextu aplikace Ruby on Rails pro zpracování uživatelsky

generovaného obsahu. Pracovní postup zahrnuje následující kroky, které jsou přiznávě

pravděpodobně každý příliš jednoduchý na to, aby stálo za to je v reálných případech

takto rozkládat, ale usnadňují pochopení příkladu:

1. Čištění textu: AI pracovník zodpovědný za odstranění HTML tagů, převod textu na

malá písmena a zpracování Unicode normalizace.

2. Detekce jazyka: AI pracovník, který identifikuje jazyk vyčištěného textu.

3. Analýza sentimentu:AI pracovník, který určuje sentiment (pozitivní, negativní nebo

neutrální) textu na základě detekovaného jazyka.

4. Kategorizace obsahu: AI pracovník, který klasifikuje text do předdefinovaných

kategorií pomocí technik zpracování přirozeného jazyka.

Zde je velmi zjednodušený příklad toho, jak můžete zřetězit tyto AI pracovníky pomocí

Ruby:

1 class ContentProcessor

2 def initialize(text)

3 @text = text

4 end

5

6 def process

7 cleaned_text = TextCleanupWorker.new(@text).call

8 language = LanguageDetectionWorker.new(cleaned_text).call

9 sentiment = SentimentAnalysisWorker.new(cleaned_text, language).call

10 category = CategorizationWorker.new(cleaned_text, language).call

11

12 { cleaned_text:, language:, sentiment:, category: }

13 end

14 end

V tomto příkladu třída ContentProcessor inicializuje surový text a řetězí AI workery

dohromady v metodě process. Každý AI worker provede svůj specifický úkol a předá

výsledek dalšímu workeru v řetězci. Konečným výstupem je hash obsahující vyčištěný

text, detekovaný jazyk, sentiment a kategorii obsahu.

Množství pracovníků 105

Paralelní zpracování pro nezávislé AI workery

V předchozím příkladu jsouAIworkery zřetězeny sekvenčně, kde každýworker zpracuje

text a předá výsledek dalšímu workeru. Pokud však máte více AI workerů, které mohou

pracovat nezávisle se stejným vstupem, můžete optimalizovat pracovní postup jejich

paralelním zpracováním.

V daném scénáři, jakmile TextCleanupWorker provede čištění textu,

mohou LanguageDetectionWorker, SentimentAnalysisWorker

a CategorizationWorker všichni zpracovávat vyčištěný text nezávisle. Spuštěním

těchto workerů paralelně můžete potenciálně snížit celkovou dobu zpracování a zlepšit

efektivitu vašeho pracovního postupu.

Pro dosažení paralelního zpracování v Ruby můžete využít techniky souběžnosti, jako

jsou vlákna nebo asynchronní programování. Zde je příklad, jak můžete upravit třídu

ContentProcessor pro paralelní zpracování posledních tří workerů pomocí vláken:

1 require 'concurrent'

2

3 class ContentProcessor

4 def initialize(text)

5 @text = text

6 end

7

8 def process

9 cleaned_text = TextCleanupWorker.new(@text).call

10

11 language_future = Concurrent::Future.execute do

12 LanguageDetectionWorker.new(cleaned_text).call

13 end

14

15 sentiment_future = Concurrent::Future.execute do

16 SentimentAnalysisWorker.new(cleaned_text).call

17 end

18

19 category_future = Concurrent::Future.execute do

20 CategorizationWorker.new(cleaned_text).call

Množství pracovníků 106

21 end

22

23 language = language_future.value

24 sentiment = sentiment_future.value

25 category = category_future.value

26

27 { cleaned_text:, language:, sentiment:, category: }

28 end

29 end

V této optimalizované verzi používáme knihovnu concurrent-ruby k vytvoření

objektů Concurrent::Future pro každého z nezávislých AI workerů. Future

představuje výpočet, který bude proveden asynchronně v samostatném vlákně.

Po kroku čištění textu vytvoříme tři objekty Future: language_-

future, sentiment_future a category_future. Každý Future

spouští svého odpovídajícího AI workera (LanguageDetectionWorker,

SentimentAnalysisWorker a CategorizationWorker) v samostatném vlákně,

přičemž jako vstup předává cleaned_text.

Voláním metody value na každém Future čekáme na dokončení výpočtu a získáváme

výsledek. Metoda value blokuje, dokud není výsledek k dispozici, čímž zajišťuje, že

všichni paralelní workeři dokončili zpracování před pokračováním.

Nakonec sestavíme výstupní hash s vyčištěným textem a výsledky z paralelních

workerů, stejně jako v původním příkladu.

Zpracováním nezávislých AI workerů paralelně můžete potenciálně snížit celkovou

dobu zpracování ve srovnání se sekvenčním spouštěním. Tato optimalizace je obzvláště

přínosná při práci s časově náročnými úlohami nebo při zpracování velkých objemů dat.

Je však důležité poznamenat, že skutečné výkonnostní zisky závisí na různých faktorech,

jako je složitost každého workera, dostupné systémové prostředky a režie správy vláken.

Je vždy dobrou praxí provádět měření výkonu a profilování kódu pro určení optimální

úrovně paralelizace pro váš konkrétní případ použití.

https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future
https://ruby-concurrency.github.io/concurrent-ruby/1.1.5/Concurrent/Future

Množství pracovníků 107

Kromě toho při implementaci paralelního zpracování mějte na paměti všechny sdílené

zdroje nebo závislosti mezi workery. Ujistěte se, že workeři mohou pracovat nezávisle

bez konfliktů nebo souběžných podmínek. Pokud existují závislosti nebo sdílené zdroje,

možná budetemuset implementovat vhodné synchronizačnímechanismy pro zachování

integrity dat a vyhnout se problémům, jako jsou uváznutí nebo nekonzistentní výsledky.

Ruby’s Global Interpreter Lock a asynchronní
zpracování

Je důležité pochopit důsledky Global Interpreter Lock (GIL) v Ruby při zvažování

asynchronního zpracování založeného na vláknech v Ruby.

GIL je mechanismus v interpreteru Ruby, který zajišťuje, že pouze jedno vlákno

může v daný okamžik vykonávat Ruby kód, a to i na vícejadrových procesorech.

To znamená, že zatímco v rámci Ruby procesu lze vytvořit a spravovat více vláken,

pouze jedno vlákno může aktivně vykonávat Ruby kód v jakémkoli daném okamžiku.

GIL je navržen tak, aby zjednodušil implementaci Ruby interpreteru a poskytl

bezpečnost vláken pro interní datové struktury Ruby. Nicméně také omezuje

potenciál pro skutečně paralelní vykonávání Ruby kódu.

Když v Ruby používáte vlákna, například s knihovnou concurrent-ruby nebo

vestavěnou třídou Thread, vlákna podléhají omezením GIL. GIL umožňuje každému

vláknu vykonávat Ruby kód po krátký časový úsek před přepnutím na jiné vlákno,

čímž vytváří iluzi souběžného vykonávání.

Nicméně kvůli GIL zůstává skutečné vykonávání Ruby kódu sekvenční. Zatímco

jedno vlákno vykonává Ruby kód, ostatní vlákna jsou v podstatě pozastavena a čekají

na svou řadu k získání GIL a vykonání.

To znamená, že asynchronní zpracování založené na vláknech v Ruby je

nejefektivnější pro úlohy náročné na I/O, jako je čekání na odpovědi externích API

Množství pracovníků 108

(například externě hostované velké jazykové modely) nebo provádění operací I/O se

soubory. Když vlákno narazí na I/O operaci, může uvolnit GIL a umožnit ostatním

vláknům vykonávat kód během čekání na dokončení I/O.

Na druhou stranu, pro úlohy náročné na CPU, jako jsou intenzivní výpočty nebo

dlouhodobé zpracování AI workerů, může GIL omezit potenciální výkonnostní zisky

paralelizmu založeného na vláknech. Protože pouze jedno vlákno může v daný

okamžik vykonávat Ruby kód, celková doba vykonávání nemusí být významně

snížena ve srovnání se sekvenčním zpracováním.

Pro dosažení skutečně paralelního vykonávání úloh náročných na CPU v Rubymožná

budete muset prozkoumat alternativní přístupy, jako jsou:

• Použití paralelizmu založeného na procesech s více Ruby procesy, z nichž

každý běží na samostatném jádru CPU.

• Využití externích knihoven nebo frameworků, které poskytují nativní rozšíření

nebo rozhraní k jazykům bez GIL, jako jsou C nebo Rust.,

• Využití frameworků pro distribuované výpočty nebo front zpráv pro distribuci

úloh mezi více počítači nebo procesy.

Při navrhování a implementaci asynchronního zpracování v Ruby je zásadní zvážit

povahu vašich úloh a omezení daná GIL. Zatímco asynchronní zpracování založené

na vláknech může přinést výhody pro úlohy náročné na I/O, nemusí nabídnout

významná vylepšení výkonu pro úlohy náročné na CPU kvůli omezením GIL.

Ensemblové techniky pro zlepšení přesnosti

Ensemblové techniky zahrnují kombinování výstupů více AI workerů pro zlepšení

celkové přesnosti nebo robustnosti systému. Místo spoléhání se na jediného

AI workera využívají ensemblové techniky kolektivní inteligenci více workerů

k činění informovanějších rozhodnutí.

Množství pracovníků 109

Ensembly jsou obzvláště důležité v případech, kdy různé části vašeho

pracovního postupu fungují nejlépe s různými AI modely, což je běžnější

jev, než byste si mohli myslet. Výkonné modely jako GPT--4 jsou ve

srovnání s méně schopnými open source alternativami extrémně drahé

a pravděpodobně nejsou potřeba pro každý jednotlivý krok pracovního

postupu vaší aplikace.

Běžnou ensemblovou technikou je většinové hlasování, kdy několik AI pracovníků

nezávisle zpracovává stejný vstup a konečný výstup je určen většinovou shodou. Tento

přístup může pomoci zmírnit dopad chyb jednotlivých pracovníků a zlepšit celkovou

spolehlivost systému.

Představme si příklad, kde máme tři AI pracovníky pro analýzu sentimentu, přičemž

každý používá jiný model nebo má k dispozici různé kontexty. Jejich výstupy můžeme

kombinovat pomocí většinového hlasování pro určení konečné predikce sentimentu.

1 class SentimentAnalysisEnsemble

2 def initialize(text)

3 @text = text

4 end

5

6 def analyze

7 predictions = [

8 SentimentAnalysisWorker1.new(@text).analyze,

9 SentimentAnalysisWorker2.new(@text).analyze,

10 SentimentAnalysisWorker3.new(@text).analyze

11]

12

13 predictions

14 .group_by { |sentiment| sentiment }

15 .max_by { |_, votes| votes.size }

16 .first

17

18 end

19 end

V tomto příkladu třída SentimentAnalysisEnsemble inicializuje text a vyvolává tři

Množství pracovníků 110

různé AI pracovníky pro analýzu sentimentu. Metoda analyze shromažďuje predikce

od každého pracovníka a určuje většinový sentiment pomocí metod group_by a max_-

by. Konečným výstupem je sentiment, který získá nejvíce hlasů od souboru pracovníků.

Soubory jsou jednoznačně případem, kdy může stát za to experimentovat

s paralelismem.

Dynamický výběr a vyvolávání AI pracovníků

V některých, ne-li ve většině případů, může konkrétní AI pracovník, který má být

vyvolán, záviset na běhových podmínkách nebo uživatelských vstupech. Dynamický

výběr a vyvolávání AI pracovníků umožňují flexibilitu a adaptabilitu systému.

Možná budete v pokušení vtěsnat hodně funkcionality do jediného

AI pracovníka a dát mu mnoho funkcí a velký komplikovaný prompt,

který vysvětluje, jak je volat. Odolejte tomuto pokušení, věřte mi. Jedním

z důvodů, proč se přístup, o kterém v této kapitole diskutujeme, nazývá

“Množství pracovníků”, je připomenout nám, že je žádoucí mít mnoho

specializovaných pracovníků, z nichž každý dělá svou malou práci ve službě

většímu účelu.

Například uvažujme chatbotovou aplikaci, kde různí AI pracovníci jsou zodpovědní

za zpracování různých typů uživatelských dotazů. Na základě uživatelského vstupu

aplikace dynamicky vybírá vhodného AI pracovníka pro zpracování dotazu.

Množství pracovníků 111

1 class ChatbotController < ApplicationController

2 def process_query

3 query = params[:query]

4 query_type = QueryClassifierWorker.new(query).classify

5

6 case query_type

7 when 'greeting'

8 response = GreetingWorker.new(query).generate_response

9 when 'product_inquiry'

10 response = ProductInquiryWorker.new(query).generate_response

11 when 'order_status'

12 response = OrderStatusWorker.new(query).generate_response

13 else

14 response = DefaultResponseWorker.new(query).generate_response

15 end

16

17 render json: { response: response }

18 end

19 end

V tomto příkladu ChatbotController přijímá uživatelský dotaz prostřednictvím

akce process_query. Nejprve použije QueryClassifierWorker k určení typu

dotazu. Na základě klasifikovaného typu dotazu kontrolér dynamicky vybere vhodného

AI pracovníka pro generování odpovědi. Tento dynamický výběr umožňuje chatbotovi

zpracovávat různé typy dotazů a směrovat je k příslušným AI pracovníkům.

Vzhledem k tomu, že práce QueryClassifierWorker je relativně

jednoduchá a nevyžaduje mnoho kontextu nebo definic funkcí, můžete

ji pravděpodobně implementovat pomocí ultra-rychlého malého LLM

jako mistralai/mixtral-8x7b-instruct:nitro. Jeho schopnosti se

vmnoha úlohách blíží úrovni GPT--4 a v době, kdy toto píšu, ho Groq dokáže

poskytovat s úžasnou propustností 444 tokenů za sekundu.

https://openrouter.ai/models/mistralai/mixtral-8x7b-instruct:nitro

Množství pracovníků 112

Kombinování tradičního NLP s LLM

Zatímco velké jazykové modely (LLM) způsobily revoluci v oblasti zpracování

přirozeného jazyka (NLP) a nabízejí bezkonkurenční všestrannost a výkon v široké

škále úloh, nejsou vždy nejefektivnějším nebo nákladově nejefektivnějším řešením

každého problému. V mnoha případech může kombinace tradičních technik NLP s LLM

vést k optimalizovanějším, cílenějším a ekonomičtějším přístupům k řešení specifických

výzev NLP.

Představte si LLM jako švýcarské armádní nože NLP – neuvěřitelně všestranné

a výkonné, ale ne nutně nejlepší nástroj pro každou práci. Někdy může být

specializovaný nástroj jako vývrtka nebo otvírák na konzervy pro konkrétní úkol

efektivnější. Podobně mohou tradiční techniky NLP, jako je shlukování dokumentů,

identifikace témat a klasifikace, často poskytovat cílenější a nákladově efektivnější

řešení pro určité aspekty vašeho NLP procesu.

Jednou z hlavních výhod tradičních technik NLP je jejich výpočetní efektivita. Tyto

metody, které často spoléhají na jednodušší statistické modely nebo přístupy založené

na pravidlech, mohou zpracovávat velké objemy textových dat mnohem rychleji

a s nižší výpočetní náročností ve srovnání s LLM. To je činí obzvláště vhodnými pro

úlohy zahrnující analýzu a organizaci velkých korpusů dokumentů, jako je shlukování

podobných článků nebo identifikace klíčových témat v rámci kolekce textů.

Navíc tradiční techniky NLP mohou často dosáhnout vysoké přesnosti pro specifické

úlohy, zejména když jsou trénovány na doménově specifických datasetech. Například

dobře vyladěný klasifikátor dokumentů využívající tradiční algoritmy strojového učení

jako Metoda podpůrných vektorů (SVM) nebo Naivní Bayes může přesně kategorizovat

dokumenty do předem definovaných kategorií s minimálními výpočetními náklady.

LLM však skutečně vynikají v úlohách, které vyžadují hlubší porozumění jazyku,

kontextu a uvažování. Jejich schopnost generovat koherentní a kontextově relevantní

text, odpovídat na otázky a shrnovat dlouhé pasáže je nepřekonatelná tradičními

Množství pracovníků 113

metodami NLP. LLM dokáží efektivně zpracovávat komplexní jazykové jevy, jako je

nejednoznačnost, koreference a idiomatické výrazy, což je činí nepostradatelnými pro

úlohy vyžadující generování přirozeného jazyka nebo porozumění.

Skutečná síla spočívá v kombinování tradičních technik NLP s LLM pro vytvoření

hybridních přístupů, které využívají silné stránky obou. Použitím tradičních metod

NLP pro úlohy jako předzpracování dokumentů, shlukování a extrakce témat můžete

efektivně organizovat a strukturovat vaše textová data. Tyto strukturované informace

pak mohou být předány LLM pro pokročilejší úlohy, jako je generování souhrnů,

odpovídání na otázky nebo vytváření komplexních zpráv.

Například zvažme případ použití, kdy chcete vygenerovat zprávu o trendech pro

specifickou doménu na základě velkého korpusu jednotlivých dokumentů o trendech.

Místo spoléhání se pouze na LLM, což může být výpočetně náročné a časově náročné

pro zpracování velkých objemů textu, můžete použít hybridní přístup:

1. Použijte tradiční techniky NLP, jako je modelování témat (např. Latentní

Dirichletova alokace) nebo shlukovací algoritmy (např. K-means), pro seskupení

podobných dokumentů o trendech a identifikaci klíčových témat v rámci korpusu.

2. Předejte shlukované dokumenty a identifikovaná témata do LLM, využívajíc

jeho lepší porozumění jazyku a generativní schopnosti k vytvoření koherentních

a informativních souhrnů pro každý shluk nebo téma.

3. Nakonec použijte LLM k vygenerování komplexní zprávy o trendech

kombinováním jednotlivých souhrnů, zdůrazněním nejvýznamnějších trendů

a poskytnutím vhledů a doporučení na základě agregovaných informací.

Kombinováním tradičních technik NLP s LLM tímto způsobem můžete efektivně

zpracovávat velké množství textových dat, extrahovat smysluplné poznatky a generovat

vysoce kvalitní zprávy při optimalizaci výpočetních zdrojů a nákladů.

Při zahájení vašich NLP projektů je zásadní pečlivě vyhodnotit specifické požadavky

a omezení každého úkolu a zvážit, jak lze tradiční metody NLP a LLM společně využít

Množství pracovníků 114

k dosažení nejlepších výsledků. Kombinací efektivity a přesnosti tradičních technik

s všestranností a silou LLM můžete vytvářet vysoce účinná a ekonomická řešení NLP,

která přinášejí hodnotu vašim uživatelům a zainteresovaným stranám.

Použití nástrojů

V oblasti vývoje aplikací založených na umělé inteligenci se koncept “použití nástrojů”

nebo “volání funkcí” stal účinnou technikou, která umožňuje vašemu LLM připojit

se k externím nástrojům, API, funkcím, databázím a dalším zdrojům. Tento přístup

umožňuje bohatší škálu chování než pouhý výstup textu a dynamičtější interakce mezi

vašimi AI komponenty a zbytkem ekosystému vaší aplikace. Jak se v této kapitole

podíváme, použití nástrojů vám také dává možnost nechat váš AI model generovat data

strukturovaným způsobem.

Co je použití nástrojů?

Použití nástrojů, také známé jako volání funkcí, je technika, která umožňuje vývojářům

specifikovat seznam funkcí, se kterými může LLM během procesu generování pracovat.

Tyto nástroje mohou sahat od jednoduchých pomocných funkcí až po komplexní API

Použití nástrojů 116

nebo databázové dotazy. Poskytnutím přístupu k těmto nástrojům mohou vývojáři

rozšířit schopnosti modelu a umožnit mu provádět úkoly, které vyžadují externí znalosti

nebo akce.

obrázkem 8. Příklad definice funkce pro AI pracovníka, který analyzuje dokumenty

1 FUNCTION = {

2 name: "save_analysis",

3 description: "Save analysis data for document",

4 parameters: {

5 type: "object",

6 properties: {

7 title: {

8 type: "string",

9 maxLength: 140

10 },

11 summary: {

12 type: "string",

13 description: "comprehensive multi-paragraph summary with

14 overview and list of sections (if applicable)"

15 },

16 tags: {

17 type: "array",

18 items: {

19 type: "string",

20 description: "lowercase tags representing main themes

21 of the document"

22 }

23 }

24 },

25 "required": %w[title summary tags]

26 }

27 }.freeze

Klíčovou myšlenkou využití nástrojů je poskytnout LLM schopnost dynamicky vybírat

a spouštět vhodné nástroje na základě vstupu uživatele nebo daného úkolu. Místo

spoléhání se pouze na předtrénované znalosti modelu umožňuje využití nástrojů LLM

využívat externí zdroje k generování přesnějších, relevantnějších a použitelnějších

odpovědí. Využití nástrojů značně usnadňuje implementaci technik jako RAG

Použití nástrojů 117

(Generování rozšířené o vyhledávání).

Pokud není uvedeno jinak, tato kniha předpokládá, že váš AI model nemá přístup

k žádným vestavěným nástrojům na straně serveru. Jakékoliv nástroje, které chcete

zpřístupnit vašemu AI, musíte explicitně deklarovat v každémAPI požadavku, včetně

ustanovení pro jejich spuštění, pokud a když vám AI sdělí, že by chtělo tento nástroj

použít ve své odpovědi.

Potenciál využití nástrojů

Využití nástrojů otevírá širokou škálu možností pro aplikace řízené umělou inteligencí.

Zde je několik příkladů toho, čeho lze dosáhnout pomocí využití nástrojů:

1. Chatboti a virtuální asistenti: Propojením LLM s externími nástroji mohou

chatboti a virtuální asistenti provádět složitější úkoly, jako je získávání informací

z databází, provádění API volání nebo interakce s jinými systémy. Například

chatbot může pomocí nástroje CRM změnit stav obchodního případu na základě

požadavku uživatele.

2. Analýza dat a získávání poznatků: LLM lze propojit s nástroji pro analýzu dat

nebo knihovnami pro provádění pokročilých úloh zpracování dat. To umožňuje

aplikacím generovat poznatky, provádět srovnávací analýzy nebo poskytovat

doporučení založená na datech na základě uživatelských dotazů.

3. Vyhledávání a získávání informací: Využití nástrojů umožňuje LLM interagovat

s vyhledávači, vektorovými databázemi nebo jinými systémy pro získávání

informací. Transformací uživatelských dotazů na vyhledávací dotazy může LLM

získávat relevantní informace z různých zdrojů a poskytovat komplexní odpovědi

na uživatelské otázky.

Použití nástrojů 118

4. Integrace s externími službami: Využití nástrojů umožňuje bezproblémovou

integraci mezi aplikacemi řízenými AI a externími službami nebo API. Například

LLM bymohlo komunikovat s API pro počasí, aby poskytovalo aktuální informace

o počasí, nebo s API pro překlad, aby generovalo vícejazyčné odpovědi.

Pracovní postup při využití nástrojů

Pracovní postup při využití nástrojů typicky zahrnuje čtyři klíčové kroky:

1. Zahrnutí definic funkcí do kontextu požadavku

2. Dynamický (nebo explicitní) výběr nástrojů

3. Spuštění funkce/funkcí

4. Volitelné pokračování původního promptu

Pojďme si každý z těchto kroků podrobně projít.

Zahrnutí definic funkcí do kontextu požadavku

AI ví, jaké nástroje má k dispozici, protože jí poskytnete seznam jako součást vašeho

požadavku na dokončení (typicky definovaný jako funkce pomocí varianty JSON

schématu).

Přesná syntaxe definice nástroje je specifická pro každý model.

Takto definujete funkci get_weather v Claude 3:

Použití nástrojů 119

1 {

2 "name": "get_weather",

3 "description": "Get the current weather in a given location",

4 "input_schema": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA"

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 }

16 },

17 "required": ["location"]

18 }

19 }

A takto byste definovali stejnou funkci pro GPT--4, kdy ji předáte jako hodnotu

parametru tools:

1 {

2 "name": "get_current_weather",

3 "description": "Get the current weather in a given location",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "location": {

8 "type": "string",

9 "description": "The city and state, e.g. San Francisco, CA",

10 },

11 "unit": {

12 "type": "string",

13 "enum": ["celsius", "fahrenheit"],

14 "description": "The unit of temperature"

15 },

16 },

17 "required": ["location"],

Použití nástrojů 120

18 },

19 }

Téměř stejné, až na to, že je to jiné bez zjevného důvodu! Jak otravné.

Definice funkcí určují název, popis a vstupní parametry. Vstupní parametry lze dále

definovat pomocí atributů, jako jsou výčtové typy pro omezení přípustných hodnot,

a určením, zda je parametr povinný či nikoliv.

Kromě samotných definic funkcí můžete do systémové direktivy zahrnout také pokyny

nebo kontext vysvětlující, proč a jak funkci v systému používat.

Například můj nástroj Web Search v Olympii obsahuje tuto systémovou direktivu, která

připomíná AI, že má zmíněné nástroje k dispozici:

1 The `google_search` and `realtime_search` functions let you do research

2 on behalf of the user. In contrast to Google, realtime search is powered

3 by Perplexity and provides real-time information to curated current events

4 databases and news sources. Make sure to include URLs in your response so

5 user can do followup research.

Poskytování podrobných popisů je považováno za nejdůležitější faktor ve výkonu

nástroje. Vaše popisy by měly vysvětlovat každý detail o nástroji, včetně:

• Co nástroj dělá

• Kdy by měl být použit (a kdy ne)

• Co znamená každý parametr a jak ovlivňuje chování nástroje

• Veškeré důležité výhrady nebo omezení, která se vztahují k implementaci nástroje

Čím více kontextu poskytnete AI o vašich nástrojích, tím lépe bude schopna rozhodovat,

kdy a jak je použít. Například Anthropic doporučuje pro svou řadu Claude 3 minimálně

3-4 věty na popis každého nástroje, více pokud je nástroj složitější.

Použití nástrojů 121

Není to nutně intuitivní, ale popisy jsou považovány za důležitější než příklady. I když

můžete do popisu nástroje nebo do doprovodného promptu zahrnout příklady jeho

použití, je to méně důležité než mít jasné a komplexní vysvětlení účelu a parametrů

nástroje. Příklady přidávejte až poté, co jste plně rozpracovali popis.

Zde je příklad specifikace API funkce podobné Stripe:

1 {

2 "name": "createPayment",

3 "description": "Create a new payment request",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "transaction_amount": {

8 "type": "number",

9 "description": "The amount to be paid"

10 },

11 "description": {

12 "type": "string",

13 "description": "A brief description of the payment"

14 },

15 "payment_method_id": {

16 "type": "string",

17 "description": "The payment method to be used"

18 },

19 "payer": {

20 "type": "object",

21 "description": "Information about the payer, including their name,

22 email, and identification number",

23 "properties": {

24 "name": {

25 "type": "string",

26 "description": "The payer's name"

27 },

28 "email": {

29 "type": "string",

30 "description": "The payer's email address"

31 },

32 "identification": {

33 "type": "object",

34 "description": "The payer's identification number",

Použití nástrojů 122

35 "properties": {

36 "type": {

37 "type": "string",

38 "description": "Identification document (e.g. CPF, CNPJ)"

39 },

40 "number": {

41 "type": "string",

42 "description": "The identification number"

43 }

44 },

45 "required": ["type", "number"]

46 }

47 },

48 "required": ["name", "email", "identification"]

49 }

50 }

51 }

V praxi mají některé modely potíže se zpracováním vnořených specifikací

funkcí a složitých výstupních datových typů, jako jsou pole, slovníky atd.

Teoreticky byste však měli být schopni poskytovat specifikace JSON Schema

libovolné hloubky!

Dynamický výběr nástrojů

Když spustíte chat completion, který obsahuje definice nástrojů, LLM dynamicky vybere

nejvhodnější nástroj(e) k použití a vygeneruje požadované vstupní parametry pro každý

nástroj.

V praxi je schopnost AI volat přesně správnou funkci a přesně dodržet vaši specifikaci

vstupů různá. Snížení hyperparametru teploty až na 0.0 hodně pomáhá, ale podle

mých zkušeností se stále občas objeví chyby. Tyto selhání zahrnují halucinované názvy

funkcí, špatně pojmenované nebo zcela chybějící vstupní parametry. Parametry jsou

předávány jako JSON, což znamená, že někdy uvidíte chyby způsobené zkrácením,

špatným uvozením nebo jinak poškozeným JSONem.

Použití nástrojů 123

Vzory Samoopravných dat mohou pomoci automaticky opravit volání

funkcí, která se rozbijí kvůli syntaktickým chybám.

Vynucený (neboli explicitní) výběr nástrojů

Některé modely vám dávají možnost vynutit volání konkrétní funkce jako parametr

v požadavku. V opačném případě je rozhodnutí o tom, zda funkci volat či nikoliv, zcela

na uvážení AI.

Schopnost vynutit volání funkce je klíčová v určitých scénářích, kde chcete zajistit, aby

byl spuštěn konkrétní nástroj nebo funkce, bez ohledu na proces dynamického výběru

AI. Existuje několik důvodů, proč je tato schopnost důležitá:

1. Explicitní kontrola: Možná používáte AI jako Diskrétní komponentu nebo

v předdefinovaném workflow, které vyžaduje provedení konkrétní funkce

v konkrétním čase. Vynucením volání můžete zaručit, že požadovaná funkce

bude vyvolána, místo toho, abyste museli AI zdvořile žádat o její provedení.

2. Debugování a testování: Při vývoji a testování aplikací řízených AI je schopnost

vynutit volání funkcí neocenitelná pro účely debugování. Explicitním spouštěním

specifických funkcí můžete izolovat a testovat jednotlivé komponenty vaší

aplikace. To vám umožňuje ověřit správnost implementací funkcí, validovat

vstupní parametry a zajistit, že jsou vráceny očekávané výsledky.

3. Zvládání hraničních případů: Mohou nastat hraniční případy nebo výjimečné

scénáře, kdy proces dynamického výběru AI nemusí zvolit provedení funkce,

kterou by měl, a vy to víte na základě externích procesů. V takových případech

vám schopnost vynutit volání funkce umožňuje explicitně řešit tyto situace.

Definujte pravidla nebo podmínky v logice vaší aplikace pro určení, kdy přepsat

uvážení AI.

4. Konzistence a reprodukovatelnost: Pokud máte specifickou sekvenci funkcí,

které je třeba provést v určitém pořadí, vynucení volání zaručuje, že stejná

Použití nástrojů 124

sekvence bude dodržena pokaždé. To je zvláště důležité v aplikacích, kde jsou

kritické konzistence a předvídatelné chování, například ve finančních systémech

nebo vědeckých simulacích.

5. Optimalizace výkonu: V některých případech může vynucení volání funkce

vést k optimalizaci výkonu. Pokud víte, že pro konkrétní úkol je vyžadována

specifická funkce a že proces dynamického výběru AI by mohl způsobit zbytečnou

režii, můžete obejít proces výběru a přímo vyvolat požadovanou funkci. To může

pomoci snížit latenci a zlepšit celkovou efektivitu vaší aplikace.

Souhrnně řečeno, schopnost vynutit volání funkcí v aplikacích řízených AI poskytuje

explicitní kontrolu, pomáhá při debugování a testování, zvládá hraniční případy

a zajišťuje konzistenci a reprodukovatelnost. Je to mocný nástroj ve vašem arzenálu, ale

musíme prodiskutovat ještě jeden aspekt této důležité funkce.

V mnoha případech rozhodování chceme, aby model vždy provedl volání

funkce a nikdy neodpovídal pouze svými interními znalostmi. Například

pokud směrujete mezi více modely specializovanými na různé úkoly

(vícejazyčný vstup, matematika atd.), můžete použít model s voláním funkcí

k delegování požadavků na jeden z pomocných modelů a nikdy neodpovídat

samostatně.

Parametr výběru nástroje

GPT--4 a další jazykové modely, které podporují volání funkcí, vám poskytují parametr

tool_choice pro řízení toho, zda je použití nástroje vyžadováno jako součást

dokončení. Tento parametr má tři možné hodnoty:

• auto dává AI plnou volnost při používání nástroje nebo jednoduché odpovědi

• required říká AI, že musí zavolat nástroj místo odpovědi, ale ponechává výběr

nástroje na AI

Použití nástrojů 125

• Třetí možností je nastavit parametr name_of_function, který chcete vynutit.

Více o tom v další části.

Všimněte si, že pokud nastavíte výběr nástroje (tool choice) na required,

model bude nucen vybrat nejrelevantnější funkci k volání z těch, které mu

byly poskytnuty, i když žádná z nich úplně neodpovídá zadání. V době

publikace neznám žádný model, který by vrátil prázdnou odpověď tool_-

calls nebo jiným způsobem dal najevo, že nenašel vhodnou funkci k volání.

Vynucení funkce pro získání strukturovaného výstupu

Schopnost vynutit volání funkce vám dává způsob, jak získat strukturovaná data

z chatovacího dokončování namísto toho, abyste je museli sami extrahovat z jeho

textové odpovědi.

Proč je vynucení funkcí pro získání strukturovaného výstupu tak důležité? Jednoduše

proto, že extrakce strukturovaných dat z výstupu LLM je noční můra. Můžete si život

trochu usnadnit tím, že požádáte o data v XML, ale pak musíte parsovat XML. A co

uděláte, když to XML chybí, protože vaše AI odpověděla: “Omlouvám se, ale nemohu

vygenerovat požadovaná data, protože bla, bla, bla…”

Při používání nástrojů tímto způsobem:

• Měli byste pravděpodobně definovat jediný nástroj ve vašem požadavku

• Nezapomeňte vynutit použití jeho funkce pomocí parametru tool_choice

• Pamatujte, že model předá vstup nástroji, takže název nástroje a popis by měly

být z perspektivy modelu, ne vaší

Použití nástrojů 126

Tento poslední bod si zaslouží vysvětlení na příkladu. Řekněme, že žádáte AI o analýzu

sentimentu uživatelského textu. Název funkce by nebyl analyze_sentiment, ale spíše

něco jako save_sentiment_analysis. AI je tou, která provádí analýzu sentimentu,

nikoliv nástroj. Vše, co nástroj dělá (z pohledu AI), je ukládání výsledků analýzy.

Zde je příklad použití Claude 3 pro zaznamenání shrnutí obrázku do dobře

strukturovaného JSON, tentokrát z příkazového řádku pomocí curl:

1 curl https://api.anthropic.com/v1/messages \

2 --header "content-type: application/json" \

3 --header "x-api-key: $ANTHROPIC_API_KEY" \

4 --header "anthropic-version: 2023-06-01" \

5 --header "anthropic-beta: tools-2024-04-04" \

6 --data \

7 '{

8 "model": "claude-3-sonnet-20240229",

9 "max_tokens": 1024,

10 "tools": [{

11 "name": "record_summary",

12 "description": "Record summary of image into well-structured JSON.",

13 "input_schema": {

14 "type": "object",

15 "properties": {

16 "key_colors": {

17 "type": "array",

18 "items": {

19 "type": "object",

20 "properties": {

21 "r": {

22 "type": "number",

23 "description": "red value [0.0, 1.0]"

24 },

25 "g": {

26 "type": "number",

27 "description": "green value [0.0, 1.0]"

28 },

29 "b": {

30 "type": "number",

31 "description": "blue value [0.0, 1.0]"

32 },

Použití nástrojů 127

33 "name": {

34 "type": "string",

35 "description": "Human-readable color name

36 in snake_case, e.g.

37 \"olive_green\"or

38 \"turquoise\""

39 }

40 },

41 "required": ["r", "g", "b", "name"]

42 },

43 "description": "Key colors in the image. Four or less."

44 },

45 "description": {

46 "type": "string",

47 "description": "Image description. 1-2 sentences max."

48 },

49 "estimated_year": {

50 "type": "integer",

51 "description": "Estimated year that the image was taken,

52 if is it a photo. Only set this if the

53 image appears to be non-fictional.

54 Rough estimates are okay!"

55 }

56 },

57 "required": ["key_colors", "description"]

58 }

59 }],

60 "messages": [

61 {

62 "role": "user",

63 "content": [

64 {

65 "type": "image",

66 "source": {

67 "type": "base64",

68 "media_type": "'$IMAGE_MEDIA_TYPE'",

69 "data": "'$IMAGE_BASE64'"

70 }

71 },

72 {

73 "type": "text",

74 "text": "Use `record_summary` to describe this image."

Použití nástrojů 128

75 }

76]

77 }

78]

79 }'

V uvedeném příkladu používáme model Claude 3 od společnosti Anthropic ke

generování strukturovaného JSON souhrnu obrázku. Funguje to takto:

1. V datové části požadavku definujeme v poli tools jediný nástroj nazvaný

record_summary. Tento nástroj je zodpovědný za zaznamenání souhrnu obrázku

do dobře strukturovaného JSONu.

2. Nástroj record_summarymá input_schema, které určuje očekávanou strukturu

výstupu JSON. Definuje tři vlastnosti:

• key_colors: Pole objektů představujících klíčové barvy v obrázku. Každý

objekt barvy má vlastnosti pro hodnoty červené, zelené a modré (v rozsahu

od 0.0 do 1.0) a člověkem čitelný název barvy ve formátu snake_case.

• description: Vlastnost typu string pro stručný popis obrázku, omezený na

1-2 věty.

• estimated_year: Volitelná vlastnost typu integer pro odhadovaný rok

pořízení snímku, pokud se zdá být nefikční fotografií.

3. V poli messages poskytujeme obrazová data jako řetězec kódovaný ve formátu

base64 spolu s typem média. To umožňuje modelu zpracovat obrázek jako součást

vstupu.

4. Také dáváme Claudovi pokyn, aby použil nástroj record_summary k popisu

obrázku.

5. Když je požadavek odeslán modelu Claude 3, analyzuje obrázek a vygeneruje

souhrn JSON založený na specifikovaném input_schema. Model extrahuje

klíčové barvy, poskytne stručný popis a odhadne rok pořízení snímku (pokud je

to relevantní).

Použití nástrojů 129

6. Vygenerovaný souhrn JSON je předán jako parametry nástroji record_summary,

čímž poskytuje strukturovanou reprezentaci klíčových charakteristik obrázku.

Použitím nástroje record_summary s dobře definovaným input_schema můžeme

získat strukturovaný JSON souhrn obrázku bez spoléhání na extrakci prostého textu.

Tento přístup zajišťuje, že výstup sleduje konzistentní formát a může být snadno

analyzován a zpracován následnými komponenty aplikace.

Schopnost vynutit volání funkce a specifikovat očekávanou strukturu výstupu je

mocnou funkcí využití nástrojů v aplikacích řízených umělou inteligencí. Umožňuje

vývojářům mít větší kontrolu nad generovaným výstupem a zjednodušuje integraci dat

generovaných umělou inteligencí do pracovního postupu jejich aplikace.

Provedení funkce/funkcí

Definovali jste funkce a dali pokyn vaší AI, která se rozhodla, že by měla zavolat jednu

z vašich funkcí. Nyní je čas, aby váš aplikační kód nebo knihovna, pokud používáte

Ruby gem jako raix-rails, odeslaly volání funkce a její parametry do odpovídající

implementace ve vašem aplikačním kódu.

Váš aplikační kód rozhodne, co dělat s výsledky provedení funkce. Možná to, co je třeba

udělat, zahrnuje jediný řádek kódu v lambdě, nebo možná zahrnuje volání externího

API. Možná to zahrnuje volání další AI komponenty, nebo možná zahrnuje stovky či

dokonce tisíce řádků kódu ve zbytku vašeho systému. Je to zcela na vás.

Někdy je volání funkce koncem operace, ale pokud výsledky představují informace

v řetězení myšlenek, které má AI dále zpracovávat, pak váš aplikační kód musí vložit

výsledky provedení do přepisu chatu a nechat AI pokračovat ve zpracování.

Například zde je deklarace funkce Raix používaná Olympiiným AccountManager ke

komunikaci s našimi klienty jako součást inteligentní orchestrace pracovních postupů

pro zákaznický servis.

https://github.com/OlympiaAI/raix-rails
https://github.com/OlympiaAI/raix-rails

Použití nástrojů 130

1 class AccountManager

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 # lots of other functions...

6

7 function :notify_account_owner,

8 "Don't share UUID. Mention dollars if subscription changed",

9 message: { type: "string" } do |arguments|

10 account.owner.freeform_notify(

11 subject: "Account Change Notification",

12 message: arguments[:message]

13)

14 "Notified account owner"

15 end

Možná není na první pohled jasné, co se zde děje, tak si to rozebereme.

1. Třída AccountManager definuje mnoho funkcí souvisejících se správou účtů.

Může měnit váš tarif, přidávat a odebírat členy týmu a mnoho dalšího.

2. Jeho instrukce na nejvyšší úrovni říkají AccountManager, že by měl informovat

vlastníka účtu o výsledcích požadavku na změnu účtu pomocí funkce notify_-

account_owner.

3. Stručná definice funkce zahrnuje její:

• název

• popis

• parametry message: { type: "string" }

• blok kódu, který se má spustit při volání funkce

Po aktualizaci přepisu s výsledky funkčního bloku je znovu volána metoda

chat_completion. Tato metoda je zodpovědná za odeslání aktualizovaného přepisu

konverzace zpět do AI modelu pro další zpracování. Tento proces označujeme jako

konverzační smyčku.

Použití nástrojů 131

Když AI model obdrží nový požadavek na dokončení chatu s aktualizovaným přepisem,

má přístup k výsledkům dříve provedené funkce. Může tyto výsledky analyzovat,

začlenit je do svého rozhodovacího procesu a generovat další odpověď nebo akci na

základě kumulativního kontextu konverzace. Na základě aktualizovaného kontextu

může zvolit provedení dalších funkcí, nebo může vygenerovat konečnou odpověď na

původní dotaz, pokud usoudí, že další volání funkcí není nutné.

Volitelné pokračování původního dotazu

Když pošlete výsledky nástroje zpět do LLM a pokračujete ve zpracování původního

dotazu, AI použije tyto výsledky buď k volání dalších funkcí, nebo k vygenerování

konečné textové odpovědi.

Některé modely, jako například Command-R od Cohere, mohou ve

svých odpovědích citovat konkrétní nástroje, které použily, což poskytuje

dodatečnou transparentnost a sledovatelnost.

V závislosti na použitém modelu budou výsledky volání funkce existovat v přepisových

zprávách, které mají svou vlastní speciální roli, nebo se projeví v nějaké jiné syntaxi.

Důležité však je, aby tato data byla v přepisu, aby je AI mohla zvážit při rozhodování

o dalším postupu.

Častou (a potenciálně nákladnou) chybou je zapomenout přidat výsledky

funkce do přepisu před pokračováním v chatu. V důsledku toho bude

AI dotazována v podstatě stejným způsobem jako před prvním voláním

funkce. Jinými slovy, z pohledu AI funkci ještě nevolala. Takže ji volá znovu.

A znovu. A znovu, donekonečna, dokud ji nepřerušíte. Doufejme, že váš

kontext nebyl příliš velký a váš model nebyl příliš drahý!

https://openrouter.ai/models/cohere/command-r

Použití nástrojů 132

Osvědčené postupy pro používání nástrojů

Pro maximální využití nástrojů zvažte následující osvědčené postupy.

Popisné definice

Poskytněte jasné a popisné názvy a popisy pro každý nástroj a jeho vstupní parametry.

To pomáhá LLM lépe porozumět účelu a možnostem každého nástroje.

Z vlastní zkušenosti vám mohu říct, že běžná moudrost říkající, že “pojmenování je

těžké”, platí i zde; viděl jsem dramaticky odlišné výsledky od LLM jen změnou názvů

funkcí nebo formulace popisů. Někdy odstranění popisů výkon dokonce zlepší.

Zpracování výsledků nástrojů

Při předávání výsledků nástrojů zpět do LLM zajistěte, aby byly dobře strukturované

a komplexní. Používejte smysluplné klíče a hodnoty k reprezentaci výstupu každého

nástroje. Experimentujte s různými formáty a zjistěte, který funguje nejlépe, od JSONu

až po prostý text.

Interpretátor výsledků řeší tento problém využitím AI k analýze výsledků a poskytnutí

vysvětlení, shrnutí nebo klíčových poznatků srozumitelných pro člověka.

Zpracování chyb

Implementujte robustní mechanismy pro zpracování chyb, které budou řešit případy,

kdy LLM může generovat neplatné nebo nepodporované vstupní parametry pro volání

Použití nástrojů 133

nástrojů. Elegantně zpracovávejte a zotavujte se z jakýchkoli chyb, které mohou během

provádění nástroje nastat.

Jednou mimořádně příjemnou vlastností AI je, že rozumí chybovým hlášením! To

znamená, že pokud pracujete v rychlém a méně precizním režimu, můžete jednoduše

zachytit všechny výjimky generované při implementaci nástroje a předat je zpět AI,

aby věděla, co se stalo!

Například zde je zjednodušená verze implementace vyhledávání Google v Olympii:

1 def google_search(conversation, params)

2 conversation.update_cstatus("Searching Google...")

3 query = params[:query]

4 search = GoogleSearch.new(query).get_hash

5

6 conversation.update_cstatus("Summarizing results...")

7 SummarizeKnowledgeGraph.new.perform(conversation, search.to_json)

8 rescue StandardError => e

9 Honeybadger.notify(e)

10 { error: e.message }.inspect

11 end

Vyhledávání Google v Olympii je dvoustupňový proces. Nejprve provedete vyhledávání

a poté shrnete výsledky. Pokud dojde k jakékoliv chybě, je zpráva o výjimce zabalena

a odeslána zpět umělé inteligenci. Tato technika je základem prakticky všech vzorů

Inteligentního zpracování chyb.

Představme si například situaci, kdy volání API GoogleSearch selže kvůli výjimce 503

Service Unavailable. Ta se dostane až k nejvyšší úrovni zachycení chyb a popis chyby

je odeslán zpět umělé inteligenci jako výsledek volání funkce. Místo toho, aby uživatel

viděl prázdnou obrazovku nebo technickou chybu, umělá inteligence řekne něco jako

“Omlouvám se, ale v tuto chvíli nemám přístup k vyhledávání Google. Mohu to zkusit

později, pokud si přejete.”

Může se to zdát jako pouhý chytrý trik, ale uvažujme o jiném druhu chyby, kdy umělá

inteligence volá externí API a má přímou kontrolu nad parametry, které API předává.

Použití nástrojů 134

Co když udělala chybu v tom, jak tyto parametry vygenerovala? Za předpokladu, že

chybová zpráva z externího API je dostatečně podrobná, předání chybové zprávy zpět

volající umělé inteligenci znamená, že může tyto parametry přehodnotit a zkusit to

znovu. Automaticky. Bez ohledu na to, o jakou chybu šlo.

Nyní si představte, co by bylo potřeba k replikaci takového robustního zpracování chyb

v běžném kódu. Je to prakticky nemožné.

Iterativní vylepšování

Pokud LLM nedoporučuje vhodné nástroje nebo generuje suboptimální odpovědi,

iterujte definice nástrojů, popisů a vstupních parametrů. Průběžně vylepšujte

a zdokonalujte nastavení nástrojů na základě pozorovaného chování a požadovaných

výsledků.

1. Začněte s jednoduchými definicemi nástrojů: Začněte definováním nástrojů

s jasnými a stručnými názvy, popisy a vstupními parametry. Zpočátku se

vyvarujte příliš složitého nastavení nástrojů a soustřeďte se na základní

funkcionalitu. Například pokud chcete ukládat výsledky analýzy sentimentu,

začněte základní definicí jako:

Použití nástrojů 135

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze user-provided text and generate sentiment score",

4 "parameters": {

5 "type": "object",

6 "properties": {

7 "score": {

8 "type": "float",

9 "description": "sentiment score from -1 (negative) to 1 (positive)"

10 }

11 },

12 "required": ["score"]

13 }

14 }

2. Testujte a pozorujte: Jakmile máte počáteční definice nástrojů na místě, otestujte

je s různými prompty a sledujte, jak LLM s nástrojem pracuje. Věnujte pozornost

kvalitě a relevanci generovaných odpovědí. Pokud LLM generuje suboptimální

odpovědi, je čas definice nástrojů vylepšit.

3. Upřesněte popis: Pokud LLM nechápe účel nástroje správně, zkuste upřesnit

popis nástroje. Poskytněte více kontextu, příkladů nebo vysvětlení, která LLM

navedou k efektivnímu používání nástroje. Například můžete aktualizovat popis

nástroje pro analýzu sentimentu tak, aby konkrétněji adresoval emoční zabarvení

analyzovaného textu:

1 {

2 "name": "save_sentiment_score",

3 "description": "Determine the overall emotional tone of a piece of text,

4 such as customer reviews, social media posts, or feedback comments.",

5 ...

6 }

4. Upravte vstupní parametry: Pokud LLM generuje neplatné nebo irelevantní

vstupní parametry pro nástroj, zvažte úpravu definic parametrů. Přidejte

specifičtější omezení, validační pravidla nebo příklady pro vyjasnění očekávaného

vstupního formátu.

Použití nástrojů 136

5. Iterujte na základě zpětné vazby: Průběžně sledujte výkon vašich nástrojů

a shromažďujte zpětnou vazbu od uživatelů a zainteresovaných stran. Využijte

tuto zpětnou vazbu k identifikaci oblastí pro zlepšení a provádějte iterativní

vylepšení definic nástrojů. Například pokud uživatelé hlásí, že analýza správně

nezpracovává sarkasmus, můžete do popisu přidat poznámku:

1 {

2 "name": "save_sentiment_score",

3 "description": "Analyze the sentiment of a given text and return a sentiment

4 score between -1 (negative) and 1 (positive). Note: Sarcasm should be

5 considered negative.",

6 ...

7 }

Iterativním vylepšováním definic vašich nástrojů na základě pozorovaného chování

a zpětné vazby můžete postupně zlepšovat výkon a efektivitu vaší aplikace řízené

umělou inteligencí. Nezapomeňte udržovat definice nástrojů jasné, stručné a zaměřené

na konkrétní úkol. Pravidelně testujte a ověřujte interakce nástrojů, abyste zajistili, že

odpovídají vašim požadovaným výsledkům.

Skládání a řetězení nástrojů

Jedním z nejsilnějších aspektů používání nástrojů, který byl dosud pouze naznačen,

je schopnost skládat a řetězit více nástrojů dohromady pro plnění složitých úkolů.

Pečlivým navržením definic vašich nástrojů a jejich vstupních/výstupních formátů

můžete vytvořit znovupoužitelné stavební bloky, které lze kombinovat různými

způsoby.

Uvažujme příklad, kde vytváříte pipeline pro analýzu dat pro vaši aplikaci řízenou

umělou inteligencí. Můžete mít následující nástroje:

1. DataRetrieval: Nástroj, který získává data z databáze nebo API na základě

stanovených kritérií.

Použití nástrojů 137

2. DataProcessing: Nástroj, který provádí výpočty, transformace nebo agregace

získaných dat.

3. DataVisualization: Nástroj, který prezentuje zpracovaná data v uživatelsky

přívětivém formátu, jako jsou grafy nebo diagramy.

Řetězením těchto nástrojů můžete vytvořit výkonný workflow, který získává relevantní

data, zpracovává je a prezentuje výsledky smysluplným způsobem. Takto by mohl

vypadat workflow použití nástrojů:

1. LLM přijme uživatelský dotaz žádající o přehled prodejních dat pro specifickou

kategorii produktů.

2. LLM vybere nástroj DataRetrieval a vygeneruje příslušné vstupní parametry

pro získání relevantních prodejních dat z databáze.

3. Získaná data jsou “předána” nástroji DataProcessing, který vypočítá metriky

jako celkový příjem, průměrnou prodejní cenu a míru růstu.

4. Zpracovaná data jsou pak zpracována nástrojem DataVisualization, který

vytvoří vizuálně přitažlivý graf nebo diagram pro reprezentaci přehledu,

předávající URL grafu zpět do LLM.

5. Nakonec LLM vygeneruje formátovanou odpověď na uživatelský dotaz pomocí

markdownu, včetně vizualizovaných dat a shrnutí klíčových zjištění.

Skládáním těchto nástrojů dohromady můžete vytvořit plynulý workflow pro analýzu

dat, který lze snadno integrovat do vaší aplikace. Krása tohoto přístupu spočívá v tom,

že každý nástroj může být vyvíjen a testován nezávisle a pak kombinován různými

způsoby k řešení různých problémů.

Pro umožnění plynulého skládání a řetězení nástrojů je důležité definovat jasné vstupní

a výstupní formáty pro každý nástroj.

Například nástroj DataRetrieval může přijímat parametry jako jsou detaily

připojení k databázi, název tabulky a podmínky dotazu a vracet výslednou sadu jako

Použití nástrojů 138

strukturovaný JSON objekt. Nástroj DataProcessing pak může očekávat tento JSON

objekt jako vstup a produkovat transformovaný JSON objekt jako výstup. Standardizací

toku dat mezi nástroji můžete zajistit kompatibilitu a znovupoužitelnost.

Při navrhování vašeho ekosystému nástrojů přemýšlejte o tom, jak lze různé nástroje

kombinovat pro řešení běžných případů použití ve vaší aplikaci. Zvažte vytvoření

vysokoúrovňových nástrojů, které zapouzdřují běžné workflow nebo byznys logiku, což

usnadní LLM jejich efektivní výběr a použití.

Pamatujte, že síla používání nástrojů spočívá ve flexibilitě a modularitě, kterou

poskytuje. Rozdělením složitých úkolů na menší, znovupoužitelné nástroje můžete

vytvořit robustní a adaptabilní aplikaci řízenou umělou inteligencí, která dokáže řešit

širokou škálu výzev.

Budoucí směry

S vývojem oblasti vývoje aplikací řízených umělou inteligencí můžeme očekávat další

pokroky v možnostech používání nástrojů. Některé potenciální budoucí směry zahrnují:

1. Vícenásobné použití nástrojů: LLM mohou být schopny rozhodnout, kolikrát

potřebují použít nástroje k vygenerování uspokojivé odpovědi. Tomůže zahrnovat

více kol výběru a spouštění nástrojů na základě průběžných výsledků.

2. Předdefinované nástroje: AI platformy mohou poskytovat sadu

předdefinovaných nástrojů, které mohou vývojáři využívat přímo, jako jsou

Python interprety, nástroje pro vyhledávání na webu nebo běžné užitkové funkce.

3. Bezproblémová integrace: S rostoucí převahou používání nástrojů můžeme

očekávat lepší integraci mezi AI platformami a populárními vývojovými

frameworky, což vývojářům usnadní začlenění používání nástrojů do jejich

aplikací.

Použití nástrojů 139

Používání nástrojů je výkonná technika, která umožňuje vývojářům využít plný

potenciál LLM v aplikacích řízených umělou inteligencí. Propojením LLM s externími

nástroji a zdroji můžete vytvářet dynamičtější, inteligentnější a kontextově uvědomělé

systémy, které se dokáží přizpůsobit potřebám uživatelů a poskytovat cenné přehledy

a akce.

Zatímco používání nástrojů nabízí obrovské možnosti, je důležité být si vědom

potenciálních výzev a úvah. Jedním klíčovým aspektem je správa složitosti interakcí

nástrojů a zajištění stability a spolehlivosti celkového systému. Musíte řešit scénáře,

kdy volání nástrojů může selhat, vrátit neočekávané výsledky nebo mít dopad na

výkon. Kromě toho byste měli zvážit bezpečnostní opatření a kontrolu přístupu, abyste

zabránili neoprávněnému nebo škodlivému použití nástrojů. Pro udržení integrity

a výkonu vaší aplikace řízené umělou inteligencí jsou klíčové správné mechanismy pro

zpracování chyb, logování a monitoring.

Při zkoumání možností použití nástrojů ve vašich vlastních projektech nezapomeňte

začít s jasnými cíli, navrhněte dobře strukturované definice nástrojů a provádějte iterace

na základě zpětné vazby a výsledků. Se správným přístupem a způsobem uvažování

může použití nástrojů odemknout nové úrovně inovací a hodnoty ve vašich aplikacích

řízených umělou inteligencí

Zpracování proudu dat

Streamování dat přes HTTP, také známé jako server-sent events (SSE), je mechanismus,

kdy server průběžně odesílá data klientovi, jakmile jsou k dispozici, bez nutnosti,

aby si je klient výslovně vyžádal. Vzhledem k tomu, že odpověď umělé inteligence

je generována postupně, je logické poskytovat responzivní uživatelskou zkušenost

zobrazováním výstupu UI v průběhu jeho generování. A ve skutečnosti všechna API

poskytovatelů UI, které znám, nabízejí streamované odpovědi jako možnost ve svých

dokončovacích endpointech.

Důvod, proč se tato kapitola objevuje v knize právě zde, hned po Používání nástrojů,

je síla kombinace využití nástrojů s živými odpověďmi UI uživatelům. To umožňuje

vytvářet dynamické a interaktivní zážitky, kde UI může zpracovávat uživatelské vstupy,

využívat různé nástroje a funkce podle svého uvážení a poskytovat odpovědi v reálném

čase.

Zpracování proudu dat 141

Pro dosažení této plynulé interakce potřebujete napsat obsluhu proudu dat, která

dokáže distribuovat volání nástrojových funkcí vyvolaných UI i běžný textový výstup

koncovému uživateli. Potřeba cyklického zpracování po provedení nástrojové funkce

přidává této úloze zajímavou výzvu.

Implementace ReplyStream

Pro demonstraci způsobu implementace zpracování proudu dat se tato kapitola

podrobně zaměří na zjednodušenou verzi třídy ReplyStream, která se používá

v systému Olympia. Instance této třídy lze předat jako parametr stream v knihovnách

AI klientů, jako jsou ruby-openai a openrouter.

Zde je ukázka, jak používám ReplyStream v Olympiině PromptSubscriber, který

pomocí Wisper naslouchá vytváření nových uživatelských zpráv.

1 class PromptSubscriber

2 include Raix::ChatCompletion

3 include Raix::PromptDeclarations

4

5 # many other declarations omitted...

6

7 prompt text: -> { user_message.content },

8 stream: -> { ReplyStream.new(self) },

9 until: -> { bot_message.complete? }

10

11 def message_created(message) # invoked by Wisper

12 return unless message.role.user? && message.content?

13

14 # rest of the implementation omitted...

Kromě context odkazu na odběratele promptu, který ji vytvořil, obsahuje třída

ReplyStream také instanční proměnné pro ukládání vyrovnávací paměti přijatých dat

a pole pro sledování názvů funkcí a argumentů volaných během zpracování streamu.

https://github.com/alexrudall/ruby-openai
https://github.com/OlympiaAI/open_router

Zpracování proudu dat 142

1 class ReplyStream

2 attr_accessor :buffer, :f_name, :f_arguments, :context

3

4 delegate :bot_message, :dispatch, to: :context

5

6 def initialize(context)

7 self.context = context

8 self.buffer = []

9 self.f_name = []

10 self.f_arguments = []

11 end

12

13 def call(chunk, bytesize = nil)

14 # ...

15 end

16

17 # ...

18 end

Metoda initialize nastavuje počáteční stav instance ReplyStream, inicializuje

vyrovnávací paměť, kontext a další proměnné.

Metoda call je hlavním vstupním bodem pro zpracování streamovaných dat. Přijímá

chunk dat (reprezentovaný jako haš) a volitelný parametr bytesize, který v našem

příkladu není využit. Uvnitř této metody třída používá porovnávání vzorů pro

zpracování různých scénářů na základě struktury přijatého bloku dat.

Volání deep_symbolize_keys na bloku dat umožňuje elegantnější

porovnávání vzorů tím, že můžeme pracovat se symboly místo řetězců.

Zpracování proudu dat 143

1 def call(chunk, _bytesize)

2 case chunk.deep_symbolize_keys

3

4 in { # match function name

5 choices: [

6 {

7 delta: {

8 tool_calls: [

9 { index: index, function: {name: name} }

10]

11 }

12 }

13] }

14

15 f_name[index] = name

První vzor, který porovnáváme, je volání nástroje spolu s jeho přidruženým názvem

funkce. Pokud jej detekujeme, uložíme ho do pole f_name. Názvy funkcí ukládáme do

indexovaného pole, protože model je schopen paralelního volání funkcí, kdy odesílá více

funkcí k provedení najednou.

Paralelní volání funkcí je schopnost AI modelu provádět více volání funkcí současně,

což umožňuje zpracovat účinky a výsledky těchto volání funkcí paralelně. To je

zvláště užitečné, pokud funkce trvají dlouhou dobu, a snižuje počet cest tam a zpět

s rozhraním API, což může vést k významné úspoře spotřeby tokenů.

Dále potřebujeme najít shodu pro argumenty odpovídající voláním funkcí.

Zpracování proudu dat 144

1 in { # match arguments

2 choices: [

3 {

4 delta: {

5 tool_calls: [

6 {

7 index: index, function: {arguments: argument }

8 }

9]

10 }

11 }

12]}

13

14 f_arguments[index] ||= "" # initialize if not already

15 f_arguments[index] << argument

Podobně jako v případě názvů funkcí, ukládáme argumenty do indexovaného pole.

Dále sledujeme běžné zprávy zobrazované uživateli, které budou přicházet ze serveru po

jednom tokenu a budou přiřazeny do proměnné new_content. Také musíme sledovat

finish_reason. Ten bude mít hodnotu nil až do poslední části výstupní sekvence.

1 in {

2 choices: [

3 { delta: {content: new_content}, finish_reason: finish_reason }

4]}

5

6 # you could transmit every chunk to the user here...

7 buffer << new_content.to_s

8

9 if finish_reason.present?

10 finalize

11 elsif new_content.to_s.match?(/\n\n/)

12 send_to_client # ...or buffer and transmit once per paragraph

13 end

Je důležité, že přidáváme výraz pro porovnávání vzorů ke zpracování chybových zpráv

zaslaných poskytovatelem AI modelu. V lokálních vývojových prostředích vyvoláme

výjimku, ale v produkčním prostředí chybu zaznamenáme a dokončíme.

Zpracování proudu dat 145

1 in { error: { message: } }

2 if Rails.env.local?

3 raise message

4 else

5 Honeybadger.notify("AI Error: #{message}")

6 finalize

7 end

Závěrečná větev else příkazu case se provede, pokud žádný z předchozích vzorů

neodpovídá. Je to jen pojistka pro případ, že by námAImodel začal posílat nerozpoznané

části.

1 else

2 Honeybadger.notify("Unrecognized Chunk: #{chunk}")

3 end

4 end

Metoda send_to_client je zodpovědná za odesílání obsahu uloženého ve vyrovnávací

paměti klientovi. Kontroluje, zda není vyrovnávací paměť prázdná, aktualizuje obsah

zprávy bota, vykresluje zprávu bota a ukládá obsah do databáze pro zajištění perzistence

dat.

1 def send_to_client

2 # no need to process pure whitespace

3 return if buffer.join.squish.blank?

4

5 # set the buffer content on the bot message

6 content = buffer.join

7 bot_message.content = content

8

9 # save to database so that we never lose data

10 # even if the stream doesn't terminate correctly

11 bot_message.update_column(:content, content)

12

13 # update content via websocket

14 ConversationRenderer.update(bot_message)

15 end

Zpracování proudu dat 146

Metoda finalize je volána po dokončení streamového zpracování. Zpracovává volání

funkcí, pokud během streamu nějaká nastala, aktualizuje zprávu bota s konečným

obsahem a dalšími relevantními informacemi a resetuje historii volání funkcí

1 def finalize

2 if f_name.any?

3 f_name.each_with_index do |name, index|

4 # takes care of calling the function wherever it's implemented

5 dispatch(name:, arguments: JSON.parse(f_arguments[index]))

6 end

7

8 # reset the function call history

9 f_name.clear

10 f_arguments.clear

11 else

12 content = buffer.join.presence

13 bot_message.update!(content:, complete: true)

14 ConversationRenderer.update(bot_message)

15 end

16 end

Pokud se model rozhodne zavolat funkci, musíte toto volání funkce (název a argumenty)

“zpracovat” takovým způsobem, aby se provedlo a zprávy function_call

a function_result byly přidány do přepisu konverzace.

Podle mých zkušeností je lepší řešit vytváření funkčních zpráv na jednom místě ve

vaší kódové základně, než spoléhat na implementace jednotlivých nástrojů. Je to nejen

čistší řešení, ale má to i velmi důležitý praktický důvod: pokud model umělé inteligence

zavolá funkci a při dalším průchodu neuvidí v přepisu výsledné volání a výsledek, zavolá

stejnou funkci znovu. Potenciálně donekonečna. Nezapomeňte, že umělá inteligence je

zcela bezstavová, takže pokud jí tyto volání funkcí nezpětně neukážete, jako by se nikdy

nestaly.

Zpracování proudu dat 147

1 # PromptSubscriber#dispatch

2

3 def dispatch(name:, arguments:)

4 # adds a function_call message to the conversation transcript

5 # plus dispatches to tool and returns result

6 conversation.function_call!(name, arguments).then do |result|

7 # add function result message to the transcript

8 conversation.function_result!(name, result)

9 end

10 end

Vymazání historie volání funkcí po jejich vykonání je stejně důležité jako

zajištění, aby se volání a výsledky dostaly do vašeho přepisu, abyste nevolali

stále dokola stejné funkce při každém průchodu smyčkou.

“Konverzační smyčka”

Ve třídě PromptSubscriber používáme metodu prompt z modulu

PromptDeclarations k definování chování konverzační smyčky. Parametr until

je nastaven na -> { bot_message.complete? }, což znamená, že smyčka bude

pokračovat, dokud nebude bot_message označen jako dokončený.

1 prompt text: -> { user_message.content },

2 stream: -> { ReplyStream.new(self) },

3 until: -> { bot_message.complete? }

Kdy je ale bot_message označena jako dokončená? Pokud jste zapomněli,

podívejte se zpět na řádek 13 metody finalize.

Pojďme si projít celou logiku streamového zpracování.

Zpracování proudu dat 148

1. PromptSubscriber obdrží novou zprávu od uživatele prostřednictvím metody

message_created, která je vyvolána publikačně-odběratelským systémem

Wisper pokaždé, když koncový uživatel vytvoří nový prompt.

2. Třídní metoda prompt deklarativně definuje chování logiky chat completion pro

PromptSubscriber. AI model provede chat completion s obsahem uživatelské

zprávy, novou instancí ReplyStream jako parametrem stream a specifikovanou

podmínkou smyčky.

3. AI model zpracuje prompt a začne generovat odpověď. Během streamování

odpovědi je pro každý fragment dat vyvolána metoda call instance

ReplyStream.

4. Pokud se AI model rozhodne zavolat nástrojovou funkci, název funkce

a argumenty jsou extrahovány z fragmentu a uloženy do polí f_name

a f_arguments.

5. Pokud AI model generuje obsah zobrazovaný uživateli, je tento obsah uložen do

vyrovnávací paměti a odeslán klientovi pomocí metody send_to_client.

6. Jakmile je streamové zpracování dokončeno, je volána metoda finalize. Pokud

byly během streamu vyvolány nějaké nástrojové funkce, jsou odeslány pomocí

metody dispatch třídy PromptSubscriber.

7. Metoda dispatch přidá zprávu function_call do přepisu konverzace, spustí

odpovídající nástrojovou funkci a přidá zprávu function_result do přepisu

s výsledkem volání funkce.

8. Po odeslání nástrojových funkcí je historie volání funkcí vymazána, aby se

zabránilo duplicitním voláním funkcí v následujících smyčkách.

9. Pokud nebyly vyvolány žádné nástrojové funkce, metoda finalize aktualizuje

bot_message s konečným obsahem, označí ji jako dokončenou a odešle

aktualizovanou zprávu klientovi.

10. Je vyhodnocena podmínka smyčky -> { bot_message.complete? }. Pokud

není bot_message označena jako dokončená, smyčka pokračuje a původní

prompt je znovu odeslán s aktualizovaným přepisem konverzace.

Zpracování proudu dat 149

11. Kroky 3-10 se opakují, dokud není bot_message označena jako dokončená, což

znamená, že AI model dokončil generování své odpovědi a není třeba provádět

další nástrojové funkce.

Implementací této konverzační smyčky umožníte AI modelu zapojit se do obousměrné

interakce s aplikací, provádět nástrojové funkce podle potřeby a generovat odpovědi

zobrazované uživateli, dokud konverzace nedosáhne přirozeného závěru.

Kombinace streamového zpracování a konverzační smyčky umožňuje dynamické

a interaktivní zkušenosti poháněné umělou inteligencí, kde AI model může zpracovávat

uživatelské vstupy, využívat různé nástroje a funkce a poskytovat odpovědi v reálném

čase na základě vyvíjejícího se kontextu konverzace.

Automatické pokračování

Je důležité být si vědom omezení výstupu AI. Většina modelů má maximální počet

tokenů, které mohou generovat v jedné odpovědi, což je určeno parametrem max_-

tokens. Pokud AI model během generování odpovědi dosáhne tohoto limitu, náhle se

zastaví a oznámí, že výstup byl oříznut.

Ve streamované odpovědi z API AI platformy můžete tuto situaci detekovat

prozkoumáním proměnné finish_reason ve fragmentu. Pokud je finish_reason

nastavena na "length" (nebo jinou klíčovou hodnotu specifickou pro model), znamená

to, že model během generování dosáhl svého maximálního limitu tokenů a výstup byl

předčasně ukončen.

Jedním ze způsobů, jak elegantně zvládnout tento scénář a poskytnout plynulou

uživatelskou zkušenost, je implementovat mechanismus automatického pokračování ve

vaší logice streamového zpracování. Přidáním porovnávání vzorů pro důvody ukončení

související s délkou můžete zvolit smyčku a automaticky pokračovat ve výstupu tam,

kde skončil.

Zpracování proudu dat 150

Zde je záměrně zjednodušený příklad toho, jak můžete upravit metodu call ve třídě

ReplyStream pro podporu automatického pokračování:

1 LENGTH_STOPS = %w[length MAX_TOKENS]

2

3 def call(chunk, _bytesize)

4 case chunk.deep_symbolize_keys

5 # ...

6

7 in {

8 choices: [

9 { delta: {content: new_content},

10 finish_reason: finish_reason }] }

11

12 buffer << new_content.to_s

13

14 if finish_reason.blank?

15 send_to_client if new_content.to_s.match?(/\n\n/)

16 elsif LENGTH_STOPS.include?(finish_reason)

17 continue_cutoff

18 else

19 finalize

20 end

21

22 # ...

23 end

24 end

25

26 private

27

28 def continue_cutoff

29 conversation.bot_message!(buffer.join, visible: false)

30 conversation.user_message!("please continue", visible: false)

31 bot_message.update_column(:created_at, Time.current)

32 end

V této upravené verzi, když finish_reason indikuje zkrácený výstup, místo ukončení

proudu přidáme do přepisu dvojici zpráv bez finalizace, přesuneme původní uživatelsky

viditelnou zprávu na “konec” přepisu aktualizací jejího atributu created_at, a pak

necháme smyčku pokračovat, aby AI mohlo pokračovat tam, kde skončilo.

Zpracování proudu dat 151

Pamatujte, že koncový bod AI dokončování je bezstavový. “Zná” pouze to, co mu

sdělíte prostřednictvím přepisu. V tomto případě způsob, jakým AI sdělujeme, že bylo

přerušeno, je přidáním “neviditelných” (pro koncového uživatele) zpráv do přepisu.

Nezapomeňte však, že toto je záměrně zjednodušený příklad. Skutečná implementace

by musela provádět další správu přepisu, aby se zajistilo, že neplýtváme tokeny a/nebo

nemáteme AI duplikovanými zprávami asistenta v přepisu.

Skutečná implementace automatického pokračování by měla mít také takzvanou

“logiku přerušovače” , aby se zabránilo nekontrolovanému zacyklení. Důvodem je, že

při určitých typech uživatelských výzev a nízkém nastavení max_tokens by AI mohlo

nekonečně pokračovat v generování uživatelsky viditelného výstupu.

Mějte na paměti, že každá smyčka vyžaduje samostatný požadavek a každý

požadavek znovu spotřebuje celý váš přepis. Při rozhodování, zda implementovat

automatické pokračování ve vaší aplikaci, byste měli rozhodně zvážit kompromisy

mezi uživatelskou zkušeností a využitím API. Automatické pokračování může

být obzvláště nebezpečně drahé, zejména při používání prémiových komerčních

modelů.

Závěr

Zpracování proudu je klíčovým aspektem při vytváření aplikací poháněných

umělou inteligencí , které kombinují použití nástrojů s živými odpověďmi AI.

Efektivním zpracováním streamovaných dat z API platforem umělé inteligence můžete

poskytnout plynulou a interaktivní uživatelskou zkušenost, zpracovávat velké odpovědi,

optimalizovat využití zdrojů a elegantně zvládat chyby.

Poskytnutá třída Conversation::ReplyStream demonstruje, jak lze implementovat

zpracování proudu v Ruby aplikaci pomocí porovnávání vzorů a architektury řízené

Zpracování proudu dat 152

událostmi. Pochopením a využitím technik zpracování proudu můžete odemknout plný

potenciál integrace AI ve vašich aplikacích a poskytovat výkonné a poutavé uživatelské

zážitky.

Samoopravná data

Samoopravná data představují účinný přístup k zajištění integrity, konzistence a kvality

dat v aplikacích využitím schopností velkých jazykových modelů (LLM). Tato kategorie

vzorů se zaměřuje na myšlenku využití umělé inteligence k automatické detekci,

diagnostice a opravě datových anomálií, nekonzistencí nebo chyb, čímž snižuje zátěž

vývojářů a udržuje vysokou úroveň spolehlivosti dat.

V jádru vzorů samoopravných dat je uznání skutečnosti, že data jsou životně důležitou

součástí každé aplikace a zajištění jejich přesnosti a integrity je klíčové pro správné

fungování a uživatelskou zkušenost aplikace. Správa a údržba kvality dat však může

být složitým a časově náročným úkolem, zejména když aplikace rostou co do velikosti

a komplexity. Zde přichází ke slovu síla umělé inteligence.

Ve vzorech samoopravných dat jsou AI workeři využíváni k průběžnému monitorování

a analýze dat vaší aplikace. Tyto modely mají schopnost chápat a interpretovat vzory,

Samoopravná data 154

vztahy a anomálie v datech. Využitím svých schopností zpracování a porozumění

přirozenému jazyku mohou identifikovat potenciální problémy nebo nekonzistence

v datech a podniknout příslušné kroky k jejich nápravě.

Proces samoopravných dat typicky zahrnuje několik klíčových kroků:

1. Monitorování dat: AI workeři neustále sledují datové toky aplikace, databáze

nebo úložné systémy a hledají jakékoli známky anomálií, nekonzistencí nebo

chyb. Případně můžete aktivovat AI komponentu v reakci na výjimku.

2. Detekce anomálií: Když je zjištěn problém, AI worker podrobně analyzuje data,

aby identifikoval konkrétní povahu a rozsah problému. Tomůže zahrnovat detekci

chybějících hodnot, nekonzistentních formátů nebo dat, která porušují předem

definovaná pravidla či omezení.

3. Diagnostika a oprava: Jakmile je problém identifikován, AI worker využije své

znalosti a porozumění datové doméně k určení vhodného postupu. To může

zahrnovat automatickou opravu dat, doplnění chybějících hodnot nebo označení

problému pro lidský zásah, pokud je to nutné.

4. Průběžné učení (volitelné, závisí na případu použití): Když váš AI worker

narazí na různé datové problémy a vyřeší je, může vytvářet výstupy popisující,

co se stalo a jak reagoval. Tato metadata lze využít v procesech učení, které

vám (a případně i základnímu modelu prostřednictvím dolaďování) umožní být

v průběhu času efektivnější při identifikaci a řešení datových anomálií.

Automatickou detekcí a opravou datových problémů můžete zajistit, že vaše aplikace

pracuje s vysoce kvalitními, spolehlivými daty. To snižuje riziko chyb, nekonzistencí

nebo datových bugů ovlivňujících funkčnost aplikace nebo uživatelskou zkušenost.

Jakmile máte AI workery, kteří se starají o monitorování a opravu dat, můžete se

soustředit na další kritické aspekty aplikace. To šetří čas a zdroje, které by jinak byly

vynaloženy na manuální čištění a údržbu dat. Ve skutečnosti, jak vaše aplikace rostou

co do velikosti a komplexity, manuální správa kvality dat se stává stále náročnější. Vzory

Samoopravná data 155

“Samoopravných dat” efektivně škálují využitím síly AI ke zpracování velkých objemů

dat a detekci problémů v reálném čase.

Díky své povaze se AI modely mohou adaptovat na měnící se datové

vzory, schémata nebo požadavky v průběhu času s minimální nebo žádnou

supervizí. Pokud jejich direktivy poskytují adekvátní vedení, zejména

ohledně zamýšlených výsledků, vaše aplikace může být schopna se vyvíjet

a zvládat nové datové scénáře bez nutnosti rozsáhlých manuálních zásahů

nebo změn kódu.

Vzory samoopravných dat dobře ladí s ostatními kategoriemi vzorů, o kterých jsme

diskutovali, jako je “Množství workerů”. Schopnost samoopravných dat lze vnímat jako

specializovaný typ workera, který se zaměřuje specificky na zajištění kvality a integrity

dat. Tento typ workera funguje společně s ostatními AI workery, přičemž každý přispívá

k různým aspektům funkčnosti aplikace.

Implementace vzorů samoopravných dat v praxi vyžaduje pečlivý návrh a integraci

AI modelů do architektury aplikace. Kvůli rizikům ztráty a poškození dat byste měli

definovat jasné pokyny pro používání této techniky. Měli byste také zvážit faktory jako

výkon, škálovatelnost a bezpečnost dat.

Praktická případová studie: Oprava

poškozeného JSONu

Jeden z nejpraktičtějších a nejsnadněji vysvětlitelných způsobů využití samoopravných

dat je také velmi jednoduchý: oprava poškozeného JSONu.

Tuto techniku lze aplikovat na běžnou výzvu řešení nedokonalých nebo

nekonzistentních dat generovaných LLM, jako je poškozený JSON, a poskytuje

přístup k automatické detekci a opravě těchto problémů.

Samoopravná data 156

V Olympii se pravidelně setkávám se situacemi, kdy LLM generují JSON data, která

nejsou zcela validní. K tomu může docházet z různých důvodů, například když LLM

přidá komentář před nebo za samotný JSON kód, nebo když zavede syntaktické chyby

jako chybějící čárky či neescapované dvojité uvozovky. Tyto problémy mohou vést

k chybám parsování a způsobit narušení funkčnosti aplikace.

Pro řešení tohoto problému jsem implementoval praktické řešení v podobě třídy

JsonFixer. Tato třída ztělesňuje vzor “Samoopravných dat” tím, že přijímá poškozený

JSON jako vstup a s využitím LLM ho opravuje, přičemž zachovává co nejvíce informací

a původního záměru.

1 class JsonFixer

2 include Raix::ChatCompletion

3

4 def call(bad_json, error_message)

5 raise "No data provided" if bad_json.blank? || error_message.blank?

6

7 transcript << {

8 system: "Consider user-provided JSON that generated a parse

9 exception. Do your best to fix it while preserving the

10 original content and intent as much as possible." }

11 transcript << { user: bad_json }

12 transcript << { assistant: "What is the error message?"}

13 transcript << { user: error_message }

14 transcript << { assistant: "Here is the corrected JSON\n```json\n" }

15

16 self.stop = ["```"]

17

18 chat_completion(json: true)

19 end

20

21 def model

22 "mistralai/mixtral-8x7b-instruct:nitro"

23 end

24 end

Všimněte si, jak JsonFixer používá Ventriloquist k usměrňování odpovědí

AI.

Samoopravná data 157

Proces samoopravy JSON dat funguje následovně:

1. Generování JSON: K vytvoření JSON dat na základě určitých promptů

nebo požadavků se používá LLM. Vzhledem k povaze LLM však generovaný

JSON nemusí být vždy perfektně validní. JSON parser samozřejmě vyvolá

ParserError, pokud mu předáte nevalidní JSON.

1 begin

2 JSON.parse(llm_generated_json)

3 rescue JSON::ParserError => e

4 JsonFixer.new.call(llm_generated_json, e.message)

5 end

Všimněte si, že chybová zpráva je také předána volání JSONFixer, takže nemusí plně

předpokládat, co je s daty špatně, zejména když parser často přesně řekne, kde je chyba.

2. Oprava pomocí LLM: Třída JSONFixer odešle poškozený JSON zpět do

LLM, spolu se specifickým pokynem nebo instrukcí k opravě JSONu při

maximálním zachování původních informací a záměru. LLM, trénovaný na

obrovském množství dat a s porozuměním syntaxi JSONu, se pokusí opravit

chyby a vygenerovat platný JSON řetězec. Pro omezení výstupu LLM se používá

Response Fencing a jako AI model volíme Mixtral 8x7B, protože je pro tento typ

úlohy obzvláště vhodný.

3. Validace a integrace: Opravený JSON řetězec vrácený LLM je parsován přímo

třídou JSONFixer, protože byla volána funkce chat_completion(json:

true). Pokud opravený JSON projde validací, je integrován zpět do pracovního

postupu aplikace, což umožňuje aplikaci plynule pokračovat ve zpracování dat.

Poškozený JSON byl “vyléčen”.

Přestože jsem napsal a přepsal svou vlastní implementaci JSONFixer několikrát,

pochybuji, že celkový čas investovaný do všech těchto verzí přesahuje hodinu nebo dvě.

Samoopravná data 158

Všimněte si, že zachování záměru je klíčovým prvkem jakéhokoliv vzoru

samoopravných dat. Proces opravy založený na LLM se snaží co nejvíce zachovat

původní informace a záměr vygenerovaného JSONu. To zajišťuje, že opravený JSON

si zachovává svůj sémantický význam a může být efektivně využit v kontextu aplikace.

Tato praktická implementace přístupu “samoopravných dat” v Olympii jasně ukazuje,

jak lze využít AI, konkrétně LLM, k řešení skutečných datových výzev. Demonstruje sílu

kombinace tradičních programovacích technik s možnostmi AI pro vytváření robustních

a efektivních aplikací.

Postelův zákon a vzor “samoopravných dat”

“Samoopravná data”, jak je představuje třída JSONFixer, dobře odpovídají principu

známému jako Postelův zákon, také označovanému jako princip robustnosti. Postelův

zákon říká:

“Buď konzervativní v tom, co děláš, a liberální v tom, co přijímáš od ostatních.”

Tento princip, původně formulovaný Jonem Postelem, průkopníkem raného

Internetu, zdůrazňuje důležitost budování systémů, které jsou tolerantní

k různorodým nebo dokonce mírně nesprávným vstupům, zatímco při odesílání

výstupů striktně dodržují stanovené protokoly.

V kontextu “samoopravných dat” třída JSONFixer ztělesňuje Postelův zákon tím,

že je liberální v přijímání poškozeného nebo nedokonalého JSON dat generovaných

LLM. Nezamítne okamžitě ani neselže při setkání s JSONem, který přísně neodpovídá

očekávanému formátu. Místo toho zaujímá tolerantní přístup a pokouší se JSON

opravit pomocí síly LLM.

Tím, že je liberální v přijímání nedokonalého JSONu, třída JSONFixer prokazuje

robustnost a flexibilitu. Uznává, že data v reálném světě často přicházejí v různých

formách a nemusí vždy odpovídat přísným specifikacím. Díky elegantnímu zvládání

Samoopravná data 159

a opravování těchto odchylek třída zajišťuje, že aplikace může plynule fungovat

i v přítomnosti nedokonalých dat.

Na druhou stranu třída JSONFixer také dodržuje konzervativní aspekt Postelova

zákona, pokud jde o výstup. Po opravě JSONu pomocí LLM třída validuje opravený

JSON, aby zajistila, že přísně odpovídá očekávanému formátu. Zachovává integritu

a správnost dat před jejich předáním dalším částem aplikace. Tento konzervativní

přístup zaručuje, že výstup třídy JSONFixer je spolehlivý a konzistentní, podporuje

interoperabilitu a brání šíření chyb.

Zajímavosti o Jonu Postelovi:

• Jon Postel (1943-1998) byl americký informatik, který hrál klíčovou roli ve

vývoji Internetu. Byl znám jako “Bůh Internetu” pro své významné příspěvky

k základním protokolům a standardům.

• Postel byl editorem série dokumentů Request for Comments (RFC), což je

série technických a organizačních poznámek o Internetu. Je autorem nebo

spoluautorem více než 200 RFC, včetně základních protokolů jako TCP, IP

a SMTP.

• Kromě svých technických příspěvků byl Postel známý svým pokorným

a kooperativním přístupem. Věřil v důležitost dosahování konsenzu

a společné práce na budování robustní a interoperabilní sítě.

• Postel působil jako ředitel Divize počítačových sítí v Information Sciences

Institute (ISI) na University of Southern California (USC) od roku 1977 až do

své předčasné smrti v roce 1998.

• Za své ohromné příspěvky byl Postel posmrtně oceněn prestižní Turingovou

cenou v roce 1998, často označovanou jako “Nobelova cena za informatiku.”

Třída JSONFixer podporuje robustnost, flexibilitu a interoperabilitu, což byly

základní hodnoty, kterých se Postel držel po celou svou kariéru. Budováním

systémů, které jsou tolerantní k nedokonalostem při současném striktním dodržování

Samoopravná data 160

protokolů, můžeme vytvářet aplikace, které jsou odolnější a přizpůsobivější při

řešení skutečných výzev.

Úvahy a kontraindikace

Použitelnost přístupů samoopravných dat zcela závisí na typu dat, se kterými vaše

aplikace pracuje. Existuje důvod, proč možná nebudete chtít jednoduše upravit

JSON.parse tak, aby automaticky opravoval všechny chyby parsování JSONu ve vaší

aplikaci: ne všechny chyby lze nebo by měly být automaticky opraveny.

Samooprava je obzvláště problematická ve spojení s regulatorními požadavky nebo

požadavky na shodu souvisejícími se zpracováním a manipulací s daty. Některá

odvětví, jako je zdravotnictví a finance, mají tak přísné předpisy týkající se integrity

dat a auditovatelnosti, že jakákoli “black box” oprava dat bez řádného dohledu

nebo protokolování může tyto předpisy porušovat. Je zásadní zajistit, aby jakékoli

techniky samoopravných dat, které vymyslíte, byly v souladu s příslušnými právními

a regulačními rámci.

Aplikace technik samoopravných dat, zejména těch využívajících modely AI, může

mít také významný dopad na výkon aplikace a využití zdrojů. Zpracování velkých

objemů dat pomocí modelů AI pro detekci a opravu chyb může být výpočetně náročné.

Je důležité vyhodnotit kompromisy mezi přínosy samoopravných dat a souvisejícími

náklady na výkon a zdroje.

Pojďme se tedy ponořit do faktorů, které je třeba zvážit při rozhodování, kdy a kde tento

mocný přístup použít.

Samoopravná data 161

Kritičnost dat

Při zvažování aplikace technik samoopravných dat je zásadní posoudit kritičnost

zpracovávaných dat. Úroveň kritičnosti se vztahuje k důležitosti a citlivosti dat

v kontextu vaší aplikace a její obchodní domény.

V některých případech nemusí být automatická oprava chyb v datech vhodná, zejména

pokud jsou data vysoce citlivá nebo mají právní důsledky. Zvažte například následující

scénáře:

1. Finanční transakce: Ve finančních aplikacích, jako jsou bankovní systémy

nebo obchodní platformy, je přesnost dat nanejvýš důležitá. I drobné chyby ve

finančních datech mohou mít významné důsledky, jako jsou nesprávné zůstatky

na účtech, chybně směrované prostředky nebo chybná obchodní rozhodnutí.

V těchto případech mohou automatické opravy bez důkladného ověření a auditu

přinášet nepřijatelná rizika.

2. Zdravotní záznamy: Zdravotnické aplikace pracují s vysoce citlivými

a důvěrnými údaji pacientů. Nepřesnosti ve zdravotních záznamech mohou

mít vážné důsledky pro bezpečnost pacientů a rozhodnutí o léčbě. Automatická

úprava zdravotních údajů bez řádného dohledu a validace kvalifikovanými

zdravotnickými pracovníky může porušovat regulatorní požadavky a ohrozit

pohodu pacientů.

3. Právní dokumenty: Aplikace zpracovávající právní dokumenty, jako jsou

smlouvy, dohody nebo soudní podání, vyžadují přísnou přesnost a integritu.

I drobné chyby v právních datech mohou mít významné právní důsledky.

Automatické opravy v této oblasti nemusí být vhodné, protože data často

vyžadují ruční kontrolu a ověření právními experty k zajištění jejich platnosti

a vymahatelnosti.

V těchto kritických datových scénářích rizika spojená s automatickými opravami často

převažují nad potenciálními přínosy. Důsledky zavedení chyb nebo nesprávné úpravy

Samoopravná data 162

dat mohou být závažné a vést k finančním ztrátám, právní odpovědnosti nebo dokonce

poškození jednotlivců.

Při práci s vysoce kritickými daty je nezbytné upřednostnit procesy ručního ověřování

a validace. Lidský dohled a odbornost jsou zásadní pro zajištění přesnosti a integrity

dat. Automatizované techniky samoopravy lze stále využít k označení potenciálních

chyb nebo nesrovnalostí, ale konečné rozhodnutí o opravách by mělo zahrnovat lidský

úsudek a schválení.

Je však důležité poznamenat, že ne všechna data v aplikaci musí mít stejnou úroveň

kritičnosti. V rámci stejné aplikace mohou existovat podmnožiny dat, které jsou méně

citlivé nebo mají menší dopad, pokud dojde k chybám. V takových případech lze

techniky samoopravných dat selektivně aplikovat na tyto specifické podmnožiny dat,

zatímco kritická data zůstávají předmětem ručního ověřování.

Klíčové je pečlivě posoudit kritičnost každé kategorie dat ve vaší aplikaci a definovat

jasné pokyny a procesy pro zpracování oprav na základě souvisejících rizik

a důsledků. Rozlišováním mezi kritickými (tj. účetními knihami, zdravotními záznamy)

a nekritickými daty (tj. poštovními adresami, varováními o zdrojích) můžete najít

rovnováhu mezi využitím výhod technik samoopravných dat tam, kde je to vhodné,

a udržením přísné kontroly a dohledu tam, kde je to nezbytné.

V konečném důsledku by rozhodnutí o aplikaci technik samoopravných dat na kritická

data mělo být učiněno po konzultaci s oborovými experty, právními poradci a dalšími

relevantními zainteresovanými stranami. Je nezbytné zvážit specifické požadavky,

předpisy a rizika spojená s daty vaší aplikace a podle toho sladit strategie opravy dat.

Závažnost chyb

Při aplikaci technik samoopravných dat je důležité posoudit závažnost a dopad chyb

v datech. Ne všechny chyby jsou si rovny a vhodný postup se může lišit v závislosti na

závažnosti problému.

Samoopravná data 163

Drobné nesrovnalosti nebo problémy s formátováním mohou být vhodné pro

automatickou opravu. Například pracovník pro samoopravná data pověřený opravou

poškozeného JSONu může zpracovat chybějící čárky nebo neescapované dvojité

uvozovky bez významného změnění významu nebo struktury dat. Tyto typy chyb lze

často jednoduše opravit a mají minimální dopad na celkovou integritu dat.

Závažnější chyby, které zásadně mění význam nebo integritu dat, však mohou

vyžadovat odlišný přístup. V takových případech nemusí být automatizované opravy

dostačující a může být nutný lidský zásah, aby byla zajištěna přesnost a platnost dat.

Zde přichází na řadu koncept využití samotné umělé inteligence k určení závažnosti

chyb. Využitím schopností modelů umělé inteligence můžeme navrhnout samoopravné

datové pracovníky, kteří nejen opravují chyby, ale také vyhodnocují jejich závažnost

a činí informovaná rozhodnutí o tom, jak s nimi naložit.

Představme si například samoopravného datového pracovníka zodpovědného za opravu

nesrovnalostí v datech proudících do zákaznické databáze. Pracovníka lze navrhnout

tak, aby analyzoval data a identifikoval potenciální chyby, jako jsou chybějící nebo

protichůdné informace. Místo automatické opravy všech chyb však může být pracovník

vybaven dodatečnými voláními nástrojů, které mu umožní označit závažné chyby

k lidskému přezkoumání.

Zde je příklad, jak lze toto implementovat:

Samoopravná data 164

1 class CustomerDataReviewer

2 include Raix::ChatCompletion

3 include Raix::FunctionDeclarations

4

5 attr_accessor :customer

6

7 function :flag_for_review, reason: { type: "string" } do |params|

8 AdminNotifier.review_request(customer, params[:reason])

9 end

10

11 def initialize(customer)

12 self.customer = customer

13 end

14

15 def call(customer_data)

16 transcript << {

17 system: "You are a customer data reviewer. Your task is to identify

18 and correct inconsistencies in customer data.

19

20 < additional instructions here... >

21

22 If you encounter severe errors that require human review, use the

23 `flag_for_review` tool to flag the data for manual intervention." }

24

25 transcript << { user: customer.to_json }

26 transcript << { assistant: "Reviewed/corrected data:\n```json\n" }

27

28 self.stop = ["```"]

29

30 chat_completion(json: true).then do |result|

31 return if result.blank?

32

33 customer.update(result)

34 end

35 end

36 end

V tomto příkladu je worker CustomerDataHealer navržen k identifikaci a opravě

nekonzistencí v zákaznických datech. Opět používáme Ohraničení odpovědí

a Ventriloquist k získání strukturovaného výstupu. Je důležité, že systémová direktiva

Samoopravná data 165

workeru obsahuje instrukce k použití funkce flag_for_review v případě nalezení

závažných chyb.

Když worker zpracovává zákaznická data, analyzuje je a pokouší se opravit případné

nekonzistence. Pokud worker zjistí, že chyby jsou závažné a vyžadují lidský zásah,

může použít nástroj flag_for_review k označení dat a poskytnutí důvodu pro toto

označení.

Metoda chat_completion je volána s parametrem json: true pro parsování

opravených zákaznických dat jako JSON. Není zde žádné ustanovení pro smyčku

po volání funkce, takže výsledek bude prázdný, pokud byla vyvolána funkce

flag_for_review. V opačném případě jsou data zákazníka aktualizována

zkontrolovanými a potenciálně opravenými daty.

Začleněním hodnocení závažnosti chyb a možnosti označit data pro lidskou kontrolu se

samoopravný datový worker stává inteligentnější a přizpůsobivější. Může automaticky

zpracovávat menší chyby a zároveň eskalovat závažné chyby lidským expertům pro

manuální zásah.

Konkrétní kritéria pro určení závažnosti chyb mohou být definována v direktivě

workeru na základě znalosti domény a obchodních požadavků. Při posuzování

závažnosti lze brát v úvahu faktory jako dopad na integritu dat, potenciál ztráty nebo

poškození dat a důsledky nesprávných dat.

Využitím umělé inteligence k posouzení závažnosti chyb a poskytnutím možností pro

lidský zásah mohou samoopravné datové techniky najít rovnováhu mezi automatizací

a zachováním přesnosti dat. Tento přístup zajišťuje, že menší chyby jsou efektivně

opraveny, zatímco závažné chyby získají potřebnou pozornost a odbornost od lidských

kontrolorů.

Doménová komplexita

Při zvažování aplikace samoopravných datových technik je důležité vyhodnotit

komplexitu datové domény a pravidla řídící její strukturu a vztahy. Komplexita

Samoopravná data 166

domény může významně ovlivnit efektivitu a proveditelnost automatizovaných

přístupů k opravě dat.

Samoopravné datové techniky fungují dobře, když data sledují dobře definované vzory

a omezení. V doménách, kde je datová struktura relativně jednoduchá a vztahy mezi

datovými prvky jsou přímočaré, lze automatizované opravy aplikovat s vysokou mírou

jistoty. Například oprava problémů s formátováním nebo vynucování základních

omezení datových typů může být často efektivně řešena samoopravnými datovými

workery.

Nicméně, jak se zvyšuje komplexita datové domény, rostou i výzvy spojené

s automatizovanou opravou dat. V doménách se složitou obchodní logikou, komplexními

vztahy mezi datovými entitami nebo doménově specifickými pravidly a výjimkami

nemusí samoopravné datové techniky vždy zachytit všechny nuance a mohou zavést

nezamýšlené důsledky.

Uvažme příklad komplexní domény: finanční obchodní systém. V této doméně data

zahrnují různé finanční nástroje, tržní data, obchodní pravidla a regulační požadavky.

Vztahy mezi různými datovými prvky mohou být složité a pravidla řídící platnost

a konzistenci dat mohou být vysoce specifická pro danou doménu.

V takto komplexní doméně by samoopravný datový worker pověřený opravou

nekonzistencí v obchodních datech musel mít hluboké pochopení doménově

specifických pravidel a omezení. Musel by zvažovat faktory jako tržní regulace,

obchodní limity, výpočty rizik a postupy vypořádání. Automatizované opravy v tomto

kontextu nemusí vždy zachytit plnou komplexitu domény a mohou neúmyslně zavést

chyby nebo porušit doménově specifická pravidla.

Pro řešení výzev doménové komplexity mohou být samoopravné datové techniky

vylepšeny začleněním doménově specifických znalostí a pravidel do AI modelů

a workerů. Toho lze dosáhnout pomocí technik jako:

1. Doménově specifický trénink: AI modely používané pro samoopravná data

mohou být směrovány nebo dokonce doladěny na doménově specifických

Samoopravná data 167

datasetech, které zachycují složitosti a pravidla konkrétní domény. Vystavením

modelů reprezentativním datům a scénářům se mohou naučit vzory, omezení

a výjimky specifické pro doménu.

2. Pravidly řízená omezení: Samoopravní datoví workeři mohou být rozšířeni

o explicitní pravidly řízená omezení, která kódují doménově specifické znalosti.

Tato pravidla mohou být definována doménovými experty a integrována do

procesu opravy dat. AI modely pak mohou tato pravidla využívat k vedení svých

rozhodnutí a zajištění souladu s doménově specifickými požadavky.

3. Spolupráce s doménovými experty: V komplexních doménách je zásadní

zapojit doménové experty do návrhu a vývoje samoopravných datových technik.

Doménoví experti mohou poskytnout cenné vhledy do složitostí dat, obchodních

pravidel a potenciálních hraničních případů. Jejich znalosti mohou být začleněny

do AI modelů a workerů pro zlepšení přesnosti a spolehlivosti automatizovaných

datových oprav pomocí vzorů Člověk v procesu.

4. Inkrementální a iterativní přístup: Při práci s komplexními doménami je často

přínosné adoptovat inkrementální a iterativní přístup k samoopravným datům.

Místo pokusu o automatizaci oprav pro celou doménu najednou se zaměřte

na specifické subdomény nebo datové kategorie, kde jsou pravidla a omezení

dobře pochopena. Postupně rozšiřujte rozsah samoopravných technik, jak roste

porozumění doméně a techniky se prokazují jako efektivní.

Při zvážení složitosti datové domény a začlenění oborově specifických znalostí

do technik samoopravných dat můžete dosáhnout rovnováhy mezi automatizací

a přesností. Je důležité si uvědomit, že samoopravná data nejsou univerzálním řešením

a že přístup by měl být přizpůsoben specifickým požadavkům a výzvám každé domény.

V komplexních doménách může být nejefektivnější hybridní přístup, který kombinuje

techniky samoopravných dat s lidskou expertízou a dohledem. Automatické opravy

mohou zpracovávat rutinní a dobře definované případy, zatímco komplexní scénáře

nebo výjimky mohou být označeny pro lidskou kontrolu a zásah. Tento spolupracující

Samoopravná data 168

přístup zajišťuje, že výhody automatizace jsou realizovány při zachování nezbytné

kontroly a přesnosti v komplexních datových doménách.

Vysvětlitelnost a transparentnost

Vysvětlitelnost se týká schopnosti porozumět a interpretovat důvody rozhodnutí

učiněných modely umělé inteligence, zatímco transparentnost zahrnuje poskytování

jasné viditelnosti do procesu opravy dat.

V mnoha kontextech musí být úpravy dat auditovatelné a odůvodnitelné.

Zainteresované strany, včetně obchodních uživatelů, auditorů a regulačních orgánů,

mohou vyžadovat vysvětlení, proč byly provedeny určité opravy dat a jak k těmto

rozhodnutím modely umělé inteligence dospěly. To je zvláště důležité v oblastech,

kde má přesnost a integrita dat významné důsledky, jako jsou finance, zdravotnictví

a právní záležitosti.

Pro řešení potřeby vysvětlitelnosti a transparentnosti by měly techniky samoopravných

dat zahrnovat mechanismy, které poskytují vhled do rozhodovacího procesu modelů

umělé inteligence. Toho lze dosáhnout různými přístupy:

1. Řetězec myšlení: Požádání modelu, aby “nahlas” vysvětlil své uvažování před

aplikací změn dat, může umožnit snazší pochopení rozhodovacího procesu a může

generovat lidsky čitelná vysvětlení provedených oprav. Kompromisem je o něco

větší složitost při oddělování vysvětlení od strukturovaného datového výstupu,

což lze řešit…

2. Generování vysvětlení: Pracovníci se samoopravnými daty mohou být vybaveni

schopností generovat lidsky čitelná vysvětlení oprav, které provádějí. Toho lze

dosáhnout tím, že model bude požádán o výstup svého rozhodovacího procesu

jako snadno srozumitelná vysvětlení integrovaná přímo do dat. Například

pracovník se samoopravnými daty by mohl generovat zprávu, která zvýrazní

konkrétní datové nesrovnalosti, které identifikoval, opravy, které aplikoval,

a důvody těchto oprav.

Samoopravná data 169

3. Důležitost vlastností: Modely umělé inteligence mohou být instruovány

informacemi o důležitosti různých vlastností nebo atributů v procesu opravy

dat jako součást jejich směrnic. Tyto směrnice pak mohou být zpřístupněny

lidským zainteresovaným stranám. Identifikací klíčových faktorů, které ovlivňují

rozhodnutí modelu, mohou zainteresované strany získat vhled do důvodů oprav

a posoudit jejich platnost.

4. Protokolování a auditování: Implementace komplexních mechanismů

protokolování a auditování je klíčová pro zachování transparentnosti v procesu

samoopravných dat. Každá oprava dat provedená modely umělé inteligence by

měla být zaznamenána, včetně původních dat, opravených dat a konkrétních

provedených akcí. Tato auditní stopa umožňuje retrospektivní analýzu a poskytuje

jasný záznam o úpravách provedených v datech.

5. Přístup s člověkem v procesu: Začlenění přístupu s člověkem v procesu může

zlepšit vysvětlitelnost a transparentnost technik samoopravných dat. Zapojením

lidských expertů do kontroly a validace oprav generovaných umělou inteligencí

mohou organizace zajistit, že opravy jsou v souladu s oborovými znalostmi

a obchodními požadavky. Lidský dohled přidává další vrstvu odpovědnosti

a umožňuje identifikaci potenciálních předpojatostí nebo chyb v modelech umělé

inteligence.

6. Kontinuální monitoring a hodnocení: Pravidelné sledování a hodnocení

výkonu technik samoopravných dat je nezbytné pro udržení transparentnosti

a důvěry. Hodnocením přesnosti a efektivity modelů umělé inteligence

v průběhu času mohou organizace identifikovat jakékoli odchylky nebo anomálie

a přijmout nápravná opatření. Kontinuální monitoring pomáhá zajistit, že proces

samoopravných dat zůstává spolehlivý a v souladu s požadovanými výsledky.

Vysvětlitelnost a transparentnost jsou kritickými aspekty při implementaci technik

samoopravných dat. Poskytováním jasných vysvětlení pro opravy dat, udržováním

komplexních auditních stop a zapojením lidského dohledu mohou organizace budovat

Samoopravná data 170

důvěru v proces samoopravných dat a zajistit, že úpravy provedené v datech jsou

odůvodnitelné a v souladu s obchodními cíli.

Je důležité najít rovnováhu mezi výhodami automatizace a potřebou transparentnosti.

Zatímco techniky samoopravných dat mohou významně zlepšit kvalitu dat a efektivitu,

nemělo by to být na úkor ztráty viditelnosti a kontroly nad procesem opravy dat.

Navrhováním pracovníků se samoopravnými daty s ohledem na vysvětlitelnost

a transparentnost mohou organizace využít sílu umělé inteligence při zachování

nezbytné úrovně odpovědnosti a důvěry v data.

Nezamýšlené důsledky

Zatímco techniky samoopravných dat mají za cíl zlepšit kvalitu a konzistenci dat, je

zásadní být si vědom potenciálu nezamýšlených důsledků. Automatizované opravy,

pokud nejsou pečlivě navrženy a monitorovány, mohou neúmyslně změnit význam

nebo kontext dat, což vede k problémům v navazujících procesech.

Jedním z hlavních rizik samoopravných dat je zavádění předpojatosti nebo chyb

v procesu opravy dat. Modely umělé inteligence, stejně jako jakýkoli jiný softwarový

systém, mohou podléhat předpojatostem přítomným v trénovacích datech nebo

zavedeným prostřednictvím návrhu algoritmů. Pokud tyto předpojatosti nejsou

identifikovány a zmírněny, mohou se šířit procesem samoopravných dat a vést ke

zkresleným nebo nesprávným úpravám dat.

Vezměme si například samoopravného datového pracovníka, jehož úkolem je

opravovat nekonzistence v demografických údajích zákazníků. Pokud se AI model

naučil předpojatosti z historických dat, jako je spojování určitých povolání nebo úrovní

příjmů s konkrétním pohlavím či etnickou příslušností, může vytvářet nesprávné

předpoklady a upravovat data způsobem, který tyto předsudky posiluje. To může vést

k nepřesným profilům zákazníků, chybným obchodním rozhodnutím a potenciálně

diskriminačním výsledkům.

Samoopravná data 171

Dalším možným nezamýšleným důsledkem je ztráta cenných informací nebo kontextu

během procesu opravy dat. Techniky samoopravných dat se často zaměřují na

standardizaci a normalizaci dat pro zajištění konzistence. V některých případech však

mohou původní data obsahovat nuance, výjimky nebo kontextuální informace, které

jsou důležité pro pochopení celkového obrazu. Automatizované opravy, které slepě

vynucují standardizaci, mohou neúmyslně odstranit nebo zastřít tyto cenné informace.

Představte si například samoopravného datového pracovníka odpovědného za opravu

nekonzistencí ve zdravotních záznamech. Pokud pracovník narazí na zdravotní

anamnézu pacienta se vzácným onemocněním nebo neobvyklým léčebným plánem,

může se pokusit normalizovat data tak, aby odpovídala běžnějšímu vzoru. Tím však

může ztratit specifické detaily a kontext, které jsou klíčové pro přesné zachycení

jedinečné situace pacienta. Tato ztráta informací může mít vážné důsledky pro péči

o pacienta a lékařské rozhodování.

Pro zmírnění rizik nezamýšlených důsledků je nezbytné zaujmout proaktivní přístup při

navrhování a implementaci technik samoopravných dat:

1. Důkladné testování a validace: Před nasazením samoopravných datových

pracovníků do produkce je zásadní důkladně otestovat a ověřit jejich chování

v různých scénářích. To zahrnuje testování s reprezentativními datovými sadami,

které pokrývají různé hraniční případy, výjimky a potenciální předpojatosti.

Důkladné testování pomáhá identifikovat a řešit případné nezamýšlené důsledky

předtím, než ovlivní reálná data.

2. Průběžné monitorování a hodnocení: Implementace mechanismů průběžného

monitorování a hodnocení je zásadní pro detekci a zmírnění nezamýšlených

důsledků v průběhu času. Pravidelné přezkoumávání výsledků procesů

samoopravných dat, analýza dopadu na navazující systémy a rozhodování

a získávání zpětné vazby od zainteresovaných stran může pomoci identifikovat

případné nežádoucí účinky a vyvolat včasná nápravná opatření. Pokud vaše

organizace má provozní řídicí panely, je pravděpodobně dobrým nápadem přidat

Samoopravná data 172

jasně viditelné metriky související s automatizovanými změnami dat. Ještě lepším

nápadem je pravděpodobně přidání alarmů spojených s velkými odchylkami od

normální aktivity změn dat!

3. Lidský dohled a intervence: Udržování lidského dohledu a možnosti zasahovat

do procesu samoopravných dat je klíčové. Přestože automatizace může výrazně

zlepšit efektivitu, je důležité, aby lidští experti kontrolovali a validovali opravy

provedené AI modely, zejména v kritických nebo citlivých oblastech. Lidský

úsudek a odborné znalosti mohou pomoci identifikovat a řešit případné

nezamýšlené důsledky, které mohou vzniknout.

4. Vysvětlitelná AI (XAI) a transparentnost: Jak bylo diskutováno v předchozí

části, začlenění technik vysvětlitelné AI a zajištění transparentnosti v procesu

samoopravných dat může pomoci zmírnit nezamýšlené důsledky. Poskytováním

jasných vysvětlení pro opravy dat a udržováním komplexních auditních záznamů

mohou organizace lépe porozumět a sledovat důvody úprav provedených

AI modely.

5. Inkrementální a iterativní přístup: Přijetí inkrementálního a iterativního

přístupu k samoopravným datům může pomoci minimalizovat riziko

nezamýšlených důsledků. Místo aplikace automatizovaných oprav na celou

datovou sadu najednou začněte s podmnožinou dat a postupně rozšiřujte rozsah,

jak se techniky prokáží jako účinné a spolehlivé. To umožňuje pečlivé sledování

a úpravy během procesu, čímž se snižuje dopad případných nezamýšlených

důsledků.

6. Spolupráce a zpětná vazba: Zapojení zainteresovaných stran z různých oblastí

a podpora spolupráce a zpětné vazby v průběhu procesu samoopravných dat může

pomoci identifikovat a řešit nezamýšlené důsledky. Pravidelné získávání vstupů

od odborníků v oboru, uživatelů dat a koncových uživatelů může poskytnout

cenné poznatky o reálném dopadu oprav dat a upozornit na případné přehlédnuté

problémy.

Samoopravná data 173

Proaktivním řešením rizika nezamýšlených důsledků a implementací vhodných

bezpečnostních opatření mohou organizace využít výhod technik samoopravných

dat při minimalizaci potenciálních nežádoucích účinků. Je důležité přistupovat

k samoopravným datům jako k iterativnímu a kolaborativnímu procesu, neustále

monitorovat, hodnotit a zdokonalovat techniky, aby byly v souladu s požadovanými

výsledky a zachovávaly integritu a spolehlivost dat.

Při zvažování použití vzorů samoopravných dat je nezbytné pečlivě vyhodnotit

tyto faktory a zvážit přínosy oproti potenciálním rizikům a omezením. V některých

případech může být nejvhodnějším řešením hybridní přístup, který kombinuje

automatizované opravy s lidským dohledem a intervencí.

Stojí také za zmínku, že techniky samoopravných dat by neměly být považovány

za náhradu robustní validace dat, sanitizace vstupů a mechanismů zpracování chyb.

Tyto základní postupy zůstávají kritické pro zajištění integrity a bezpečnosti dat.

Samoopravná data by měla být vnímána jako doplňkový přístup, který může rozšířit

a vylepšit tato existující opatření.

V konečném důsledku závisí rozhodnutí o použití vzorů samoopravných dat na

konkrétních požadavcích, omezeních a prioritách vaší aplikace. Pečlivým zvážením

výše uvedených aspektů a jejich sladěním s cíli a architekturou vaší aplikace

můžete činit informovaná rozhodnutí o tom, kdy a jak efektivně využívat techniky

samoopravných dat.

Kontextuální generování obsahu

Vzory kontextuálního generování obsahu využívají sílu velkých jazykových modelů

(LLM) ke generování dynamického a kontextově specifického obsahu v aplikacích.

Tato kategorie vzorů uznává důležitost poskytování personalizovaného a relevantního

obsahu uživatelům na základě jejich konkrétních potřeb, preferencí a dokonce

i předchozích a současných interakcí s aplikací.

V kontextu tohoto přístupu se “obsahem” myslí jak primární obsah (tj. blogové

příspěvky, články atd.), tak meta-obsah, jako jsou doporučení k primárnímu obsahu.

Vzory kontextuálního generování obsahumohou hrát klíčovou roli při zvyšování úrovně

zapojení uživatelů, poskytování přizpůsobených zážitků a automatizaci úkolů vytváření

obsahu jak pro vás, tak pro vaše uživatele. Využitím vzorů, které popisujeme v této

Kontextuální generování obsahu 175

kapitole, můžete vytvářet aplikace, které generují obsah dynamicky a přizpůsobují se

kontextu a vstupům v reálném čase.

Vzory fungují integrací LLM do výstupů aplikace, od uživatelského rozhraní (někdy

označovaného jako “chrome”), přes e-maily a další formy notifikací, až po jakékoli

pipeline generování obsahu.

Když uživatel interaguje s aplikací nebo spustí konkrétní požadavek na obsah, aplikace

zachytí relevantní kontext, jako jsou uživatelské preference, předchozí interakce nebo

konkrétní podněty. Tyto kontextuální informace jsou pak spolu s případnými šablonami

nebo pokyny předány do LLM a použity k vytvoření textového výstupu, který by jinak

musel být buď napevno zakódován, uložen v databázi nebo algoritmicky generován.

Obsah generovaný pomocí LLM může mít různé formy, jako jsou personalizovaná

doporučení, dynamické popisy produktů, přizpůsobené e-mailové odpovědi nebo

dokonce celé články či blogové příspěvky. Jedním z nejradikálnějších využití tohoto

obsahu, které jsem před více než rokem zavedl, je dynamické generování prvků

uživatelského rozhraní, jako jsou popisky formulářů, nápovědy a další druhy

vysvětlujícího textu.

Personalizace

Jednou z klíčových výhod vzorů kontextuálního generování obsahu je schopnost

poskytovat vysoce personalizované zážitky uživatelům. Generováním obsahu

založeného na kontextu specifickém pro uživatele tyto vzory umožňují aplikacím

přizpůsobit obsah individuálním zájmům, preferencím a interakcím uživatelů.

Personalizace jde nad rámec pouhého vložení jména uživatele do obecného obsahu.

Zahrnuje využití bohatého kontextu dostupného o každém uživateli k generování

obsahu, který rezonuje s jejich specifickými potřebami a přáními. Tento kontext může

zahrnovat širokou škálu faktorů, jako jsou:

Kontextuální generování obsahu 176

1. Informace z uživatelského profilu: Na nejobecnější úrovni aplikace této

techniky lze demografická data, zájmy, preference a další atributy profilu použít

ke generování obsahu, který odpovídá uživatelovu zázemí a charakteristikám.

2. Behaviorální data: Předchozí interakce uživatele s aplikací, jako jsou zobrazené

stránky, kliknuté odkazy nebo zakoupené produkty, mohou poskytnout cenné

informace o jejich chování a zájmech. Tato data lze použít ke generování návrhů

obsahu, který odráží jejich vzorce zapojení a předvídá jejich budoucí potřeby.

3. Kontextové faktory: Současný kontext uživatele, jako je jeho poloha, zařízení,

denní doba nebo dokonce počasí, může ovlivnit proces generování obsahu.

Například cestovní aplikace může mít AI pracovníka, který je schopen generovat

personalizovaná doporučení na základě aktuální polohy uživatele a převládajících

povětrnostních podmínek.

Využitím těchto kontextových faktorů umožňují vzory kontextuálního generování

obsahu aplikacím poskytovat obsah, který působí jako šitý na míru každému

jednotlivému uživateli. Tato úroveň personalizace má několik významných výhod:

1. Zvýšené zapojení: Personalizovaný obsah upoutává pozornost uživatelů

a udržuje je zapojené do aplikace. Když uživatelé cítí, že obsah je relevantní

a mluví přímo k jejich potřebám, je pravděpodobnější, že stráví více času interakcí

s aplikací a prozkoumáváním jejích funkcí.

2. Zlepšená spokojenost uživatelů: Personalizovaný obsah ukazuje, že aplikace

rozumí a záleží jí na jedinečných požadavcích uživatele. Poskytováním obsahu,

který je užitečný, informativní a v souladu s jejich zájmy, může aplikace zvýšit

spokojenost uživatelů a vybudovat s nimi silnější spojení.

3. Vyšší míra konverze: V kontextu e-commerce nebo marketingových aplikací

může personalizovaný obsah významně ovlivnit míru konverze. Prezentováním

produktů, nabídek nebo doporučení, které jsou přizpůsobeny preferencím

a chování uživatelů, může aplikace zvýšit pravděpodobnost, že uživatelé

provedou požadované akce, jako je nákup nebo registrace ke službě.

Kontextuální generování obsahu 177

Produktivita

Vzory kontextuálního generování obsahu mohou výrazně zvýšit určité druhy

produktivity tím, že snižují potřebu manuálního generování obsahu a úprav

v kreativních procesech. Využitím síly LLM můžete generovat kvalitní obsah ve

velkém měřítku a šetřit tak čas a úsilí, které by vaši tvůrci obsahu a vývojáři jinak

museli věnovat zdlouhavé manuální práci.

Tradičně musí tvůrci obsahu zkoumat, psát, upravovat a formátovat obsah tak, aby

splňoval požadavky aplikace a očekávání uživatelů. Tento proces může být časově

náročný a vyžadovat značné zdroje, zejména s rostoucím objemem obsahu.

Nicméně s využitím vzorů kontextuálního generování obsahu lze proces tvorby obsahu

z velké části automatizovat. Velké jazykové modely dokážou generovat souvislý,

gramaticky správný a kontextově relevantní obsah na základě poskytnutých pokynů

a vodítek. Tato automatizace přináší několik výhod pro produktivitu:

1. Snížení manuální práce: Díky delegování úkolů generování obsahu na velké

jazykové modely se mohou tvůrci obsahu soustředit na úkoly vyšší úrovně, jako je

obsahová strategie, tvorba nápadů a zajištění kvality. Mohou poskytnout modelu

nezbytný kontext, šablony a pokyny a nechat ho zpracovat samotné generování

obsahu. To snižuje množství manuální práce potřebné pro psaní a úpravy, což

umožňuje tvůrcům obsahu být produktivnější a efektivnější.

2. Rychlejší tvorba obsahu: Velké jazykové modely dokážou generovat obsah

mnohem rychleji než lidští autoři. Se správnými pokyny a vodítky může model

vytvořit několik kusů obsahu během několika sekund či minut. Tato rychlost

umožňuje aplikacím generovat obsah mnohem rychlejším tempem a držet krok

s požadavky uživatelů a neustále se měnícím digitálním prostředím.

Kontextuální generování obsahu 178

Nevede rychlejší tvorba obsahu k situaci “tragédie obecní pastviny”, kdy je internet

zahlcen obsahem, který nikdo nečte? Bohužel se obávám, že odpověď je ano.

3. Konzistence a kvalita: Velké jazykové modely mohou snadno upravovat obsah

tak, aby byl konzistentní ve stylu, tónu a kvalitě. S jasnými pokyny a příklady

mohou určité typy aplikací (např. zpravodajské redakce, PR oddělení atd.) zajistit,

že jejich obsah vytvořený člověkem odpovídá jejich firemnímu hlasu a splňuje

požadované standardy kvality. Tato konzistence snižuje potřebu rozsáhlých úprav

a revizí, čímž šetří čas a úsilí v procesu tvorby obsahu.

4. Iterace a optimalizace: Vzory kontextuálního generování obsahu umožňují

rychlou iteraci a optimalizaci obsahu. Úpravou pokynů, šablon nebo vodítek

poskytnutých modelu mohou vaše aplikace rychle generovat varianty obsahu

a automatizovaně testovat různé přístupy způsobem, který v minulosti nebyl

možný. Tento iterativní proces umožňuje rychlejší experimentování a vylepšování

obsahových strategií, což vede k efektivnějšímu a poutavějšímu obsahu v průběhu

času. Tato konkrétní technika může být zásadním průlomem pro aplikace jako

je e-commerce, které stojí a padají na míře okamžitého opuštění a uživatelské

angažovanosti.

Je důležité poznamenat, že přestože vzory kontextuálního generování

obsahu mohou výrazně zvýšit produktivitu, zcela neodstraňují potřebu

lidského zapojení. Tvůrci obsahu a editoři stále hrají klíčovou roli

při definování celkové obsahové strategie, poskytování vedení modelu

a zajišťování kvality a vhodnosti generovaného obsahu.

Automatizací více repetitivních a časově náročných aspektů tvorby obsahu vzory

kontextuálního generování obsahu uvolňují cenný lidský čas a zdroje, které lze

Kontextuální generování obsahu 179

přesměrovat na úkoly s vyšší hodnotou. Tato zvýšená produktivita vám umožňuje

poskytovat uživatelům personalizovanější a poutavější obsah při současné optimalizaci

pracovních postupů tvorby obsahu.

Rychlá iterace a experimentování

Vzory kontextuálního generování obsahu vám umožňují rychle iterovat

a experimentovat s různými variantami obsahu, což umožňuje rychlejší optimalizaci

a vylepšování vaší obsahové strategie. Můžete generovat více verzí obsahu během

několika sekund, jednoduše úpravou kontextu, šablon nebo pokynů poskytnutých

modelu.

Tato schopnost rychlé iterace přináší několik klíčových výhod:

1. Testování a optimalizace: Díky schopnosti rychle generovat varianty obsahu

můžete snadno testovat různé přístupy a měřit jejich efektivitu. Například můžete

generovat více verzí popisu produktu nebo marketingového sdělení, každou

přizpůsobenou specifickému segmentu uživatelů nebo kontextu. Analyzováním

metrik uživatelské angažovanosti, jako je míra prokliku nebo míra konverze,

můžete identifikovat nejefektivnější varianty obsahu a podle toho optimalizovat

vaši obsahovou strategii.

2. A/B testování: Vzory kontextuálního generování obsahu umožňují

bezproblémové A/B testování obsahu. Můžete generovat dvě nebo více variant

obsahu a náhodně je zobrazovat různým skupinám uživatelů. Porovnáním

výkonu každé varianty můžete určit, který obsah nejlépe rezonuje s vaší cílovou

skupinou. Tento přístup založený na datech vám umožňuje činit informovaná

rozhodnutí a neustále vylepšovat váš obsah pro maximalizaci uživatelské

angažovanosti a dosažení požadovaných výsledků.

Kontextuální generování obsahu 180

3. Personalizační experimenty: Rychlá iterace a experimentování jsou obzvláště

cenné, když přijde na personalizaci. Se vzory kontextuálního generování obsahu

můžete rychle generovat personalizované varianty obsahu založené na různých

uživatelských segmentech, preferencích nebo chování. Experimentováním

s různými personalizačními strategiemi můžete identifikovat nejefektivnější

přístupy pro zapojení jednotlivých uživatelů a poskytování přizpůsobených

zážitků.

4. Přizpůsobení se měnícím se trendům: Schopnost rychlé iterace

a experimentování vám umožňuje zůstat agilní a přizpůsobovat se měnícím

se trendům a preferencím uživatelů. Když se objeví nová témata, klíčová slova

nebo uživatelské chování, můžete rychle vytvořit obsah, který je s těmito trendy

v souladu. Neustálým experimentováním a vylepšováním svého obsahu můžete

zůstat relevantní a udržet si konkurenční výhodu v neustále se vyvíjející digitální

krajině.

5. Nákladově efektivní experimentování: Tradiční experimentování s obsahem

často vyžaduje značný čas a zdroje, protože tvůrci obsahu musí ručně vyvíjet

a testovat různé varianty. S využitím vzorů Kontextového generování obsahu

se však náklady na experimentování výrazně snižují. Velké jazykové modely

dokáží rychle generovat varianty obsahu ve velkém měřítku, což vám umožňuje

prozkoumat širokou škálu nápadů a přístupů bez významných nákladů.

Pro maximální využití rychlé iterace a experimentování je důležité mít zavedený dobře

definovaný experimentální rámec. Tento rámec by měl zahrnovat:

• Jasné cíle a hypotézy pro každý experiment

• Vhodné metriky a sledovací mechanismy pro měření výkonnosti obsahu

• Strategie segmentace a cílení pro zajištění, že relevantní varianty obsahu jsou

doručovány správným uživatelům

• Analytické a reportovací nástroje pro získávání poznatků z experimentálních dat

• Proces pro začlenění poznatků a optimalizací do vaší obsahové strategie

Kontextuální generování obsahu 181

Přijetím rychlé iterace a experimentování můžete neustále vylepšovat a optimalizovat

svůj obsah, zajišťovat, že zůstává poutavý, relevantní a efektivní při dosahování cílů

vaší aplikace. Tento agilní přístup k tvorbě obsahu vám umožňuje být o krok napřed

a poskytovat výjimečné uživatelské zážitky.

Škálovatelnost a efektivita

S růstem aplikací a rostoucí poptávkou po personalizovaném obsahu umožňují vzory

kontextového generování obsahu efektivní škálování tvorby obsahu. Velké jazykové

modely dokáží současně generovat obsah pro velký počet uživatelů a kontextů bez

nutnosti proporcionálního navýšení lidských zdrojů. Tato škálovatelnost umožňuje

aplikacím poskytovat personalizované zážitky rostoucí uživatelské základně bez

přetížení jejich schopností tvorby obsahu.

Všimněte si, že kontextové generování obsahu lze efektivně využít

k internacionalizaci vaší aplikace “za běhu”. Ve skutečnosti je to přesně to,

co jsem udělal pomocí mého Instant18n Gemu pro poskytování Olympie ve

více než půl tuctu jazyků, i když jsme mladší než rok.

AI poháněná lokalizace

Pokud mi dovolíte se na chvíli pochlubit, myslím, že moje knihovna Instant18n pro Rails

aplikace je průlomovým příkladem vzoru “Kontextového generování obsahu” v akci,

který ukazuje transformační potenciál AI ve vývoji aplikací. Tento gem využívá sílu

velkého jazykového modelu GPT od OpenAI k revoluci ve způsobu, jakým se řeší

internacionalizace a lokalizace v Rails aplikacích.

Tradičně internacionalizace Rails aplikace zahrnuje ruční definování překladových klíčů

a poskytování odpovídajících překladů pro každý podporovaný jazyk. Tento proces

Kontextuální generování obsahu 182

může být časově náročný, náročný na zdroje a náchylný k nekonzistencím. S gemem

Instant18n je však paradigma lokalizace zcela předefinováno.

Integrací velkého jazykového modelu umožňuje gem Instant18n generovat překlady

za běhu, založené na kontextu a významu textu. Místo spoléhání se na předdefinované

překladové klíče a statické překlady gem dynamicky překládá text pomocí síly AI. Tento

přístup nabízí několik klíčových výhod:

1. Bezproblémová lokalizace: S gemem Instant18n již vývojáři nemusí ručně

definovat a udržovat překladové soubory pro každý podporovaný jazyk. Gem

automaticky generuje překlady na základě poskytnutého textu a požadovaného

cílového jazyka, což činí proces lokalizace bezproblémovým a plynulým.

2. Kontextová přesnost: AI může dostat dostatek kontextu k pochopení nuancí

překládaného textu. Může brát v úvahu okolní kontext, idiomy a kulturní odkazy

k generování překladů, které jsou přesné, přirozeně znějící a kontextově vhodné.

3. Rozsáhlá jazyková podpora: Gem Instant18n využívá rozsáhlé znalosti

a jazykové schopnosti GPT, umožňující překlady do široké škály jazyků. Od

běžných jazyků jako španělština a francouzština až po obscurnější nebo fiktivní

jazyky jako klingonština a elfština, gem zvládne širokou škálu překladových

požadavků.

4. Flexibilita a kreativita: Gem překračuje hranice tradičních jazykových překladů

a umožňuje kreativní a nekonvenční možnosti lokalizace. Vývojáři mohou

překládat text do různých stylů, dialektů nebo dokonce fiktivních jazyků, což

otevírá nové možnosti pro jedinečné uživatelské zážitky a poutavý obsah.

5. Optimalizace výkonu: Gem Instant18n obsahuje mechanismy ukládání do

mezipaměti pro zlepšení výkonu a snížení režie opakovaných překladů. Přeložený

text je ukládán do mezipaměti, což umožňuje rychlé obsloužení následných

požadavků na stejný překlad bez nutnosti redundantních API volání.

Gem Instant18n představuje sílu vzoru “Kontextového generování obsahu” využitím

AI k dynamickému generování lokalizovaného obsahu. Ukazuje, jak lze AI integrovat do

Kontextuální generování obsahu 183

základní funkcionality Rails aplikace a transformovat způsob, jakým vývojáři přistupují

k internacionalizaci a lokalizaci.

Díky odstranění potřeby manuální správy překladů a umožnění překladů za běhu na

základě kontextu šetří gem Instant18n vývojářům významné množství času a úsilí.

Umožňuje jim soustředit se na budování hlavních funkcí jejich aplikace a současně

zajišťuje, že je lokalizace řešena plynule a přesně.

Význam uživatelského testování a zpětné vazby

Na závěr mějte vždy na paměti důležitost uživatelského testování a zpětné vazby.

Je zásadní ověřit, že kontextové generování obsahu splňuje očekávání uživatelů

a je v souladu s cíli aplikace. Průběžně iterujte a vylepšujte generovaný obsah na

základě uživatelských postřehů a analytiky. Pokud generujete dynamický obsah ve

velkém měřítku, který by bylo nemožné manuálně ověřit vámi a vaším týmem, zvažte

přidání mechanismů zpětné vazby, které uživatelům umožní nahlásit obsah, který je

zvláštní nebo nesprávný, spolu s vysvětlením proč. Tato cenná zpětná vazba může být

dokonce předána AI pracovníkovi, který je pověřen úpravami komponenty, která obsah

vygenerovala!

Generativní uživatelské rozhraní

Pozornost je v dnešní době natolik cenná, že efektivní zapojení uživatelů nyní vyžaduje

softwarové zkušenosti, které jsou nejen bezproblémové a intuitivní, ale také vysoce

personalizované podle individuálních potřeb, preferencí a kontextů. V důsledku toho

designéři a vývojáři čelí stále častěji výzvě vytvářet uživatelská rozhraní, která se dokáží

přizpůsobit a vyhovět jedinečným požadavkům každého uživatele ve velkém měřítku.

Generativní uživatelské rozhraní (GenUI) představuje skutečně revoluční přístup

k návrhu uživatelského rozhraní, který využívá sílu velkých jazykových modelů

(LLMs) k vytváření vysoce personalizovaných a dynamických uživatelských zážitků

v reálném čase. Chtěl jsem se ujistit, že vám v této knize poskytnu alespoň základní

informace o GenUI, protože věřím, že jde o jednu z nejzelenějších příležitostí, která

v současnosti existuje v oblasti návrhu aplikací a frameworků. Jsem přesvědčen,

že v tomto konkrétním odvětví vzniknou desítky či více úspěšných komerčních

a open-source projektů.

Generativní uživatelské rozhraní 185

V jádru GenUI kombinuje principy Kontextové generace obsahu s pokročilými

technikami umělé inteligence k dynamickému generování prvků uživatelského

rozhraní, jako jsou text, obrázky a rozložení, na základě hlubokého pochopení kontextu,

preferencí a cílů uživatele. GenUI umožňuje designérům a vývojářům vytvářet

rozhraní, která se přizpůsobují a vyvíjejí v reakci na interakce uživatelů, poskytující

úroveň personalizace, která byla dříve nedosažitelná.

GenUI představuje zásadní změnu v přístupu k návrhu uživatelského rozhraní. Místo

navrhování promasy námGenUI umožňuje navrhovat pro jednotlivce. Personalizovaný

obsah a rozhraní mají potenciál vytvářet uživatelské zážitky, které rezonují s každým

uživatelem na hlubší úrovni, zvyšují zapojení, spokojenost a loajalitu.

Jako špičková technologie je přechod na GenUI plný koncepčních a praktických výzev.

Integrace umělé inteligence do procesu návrhu, zajištění, aby generovaná rozhraní byla

nejen personalizovaná, ale také použitelná, přístupná a v souladu s celkovou značkou

a uživatelskou zkušeností - to vše jsou výzvy, které činí GenUI záležitostí pro menšinu,

nikoli většinu. Navíc zapojení umělé inteligence vyvolává otázky ohledně ochrany

soukromí, transparentnosti a dokonce i etických důsledků.

Navzdory výzvám mají personalizované zážitky ve velkém měřítku sílu zcela

transformovat způsob, jakým interagujeme s digitálními produkty a službami.

Otevírá možnosti pro vytváření inkluzivních a přístupných rozhraní, která vyhovují

různorodým potřebám uživatelů bez ohledu na jejich schopnosti, zázemí či preference.

V této kapitole prozkoumáme koncept GenUI, přičemž se zaměříme na některé

definující charakteristiky, klíčové výhody a potenciální výzvy. Začneme nejzákladnější

a nejdostupnější formou GenUI: generováním textového obsahu pro jinak tradičně

navržená a implementovaná uživatelská rozhraní.

Generativní uživatelské rozhraní 186

Generování textů pro uživatelská rozhraní

Textové prvky, které existují v rozhraní vaší aplikace, jako jsou popisky formulářů,

nápovědy a vysvětlující texty, jsou typicky napevno zakódované do šablon nebo

komponent UI, což poskytuje konzistentní, ale obecnou zkušenost pro všechny uživatele.

Pomocí vzorů kontextové generace obsahu můžete transformovat tyto statické prvky na

dynamické, kontextově uvědomělé a personalizované komponenty.

Personalizované formuláře

Formuláře jsou všudypřítomnou součástí webových a mobilních aplikací a slouží

jako hlavní prostředek pro sběr uživatelských vstupů. Tradiční formuláře však často

představují obecnou a neosobní zkušenost se standardními popisky a poli, které nemusí

vždy odpovídat specifickému kontextu nebo potřebám uživatele. Uživatelé s větší

pravděpodobností vyplní formuláře, které se jim zdají přizpůsobené jejich potřebám

a preferencím, což vede k vyšší míře konverze a spokojenosti uživatelů.

Je však důležité najít rovnováhu mezi personalizací a konzistencí. Zatímco přizpůsobení

formulářů jednotlivým uživatelům může být přínosné, je zásadní zachovat určitou míru

známosti a předvídatelnosti. Uživatelé by měli být stále schopni snadno rozpoznat

formuláře a orientovat se v nich, i když obsahují personalizované prvky.

Zde je několik nápadů na personalizované formuláře pro inspiraci:

Kontextové návrhy polí

GenUI může analyzovat předchozí interakce uživatele, preference a data k poskytování

inteligentních návrhů polí jako předpovědí. Například pokud uživatel již dříve zadal

svou doručovací adresu, formulář může automaticky vyplnit příslušná pole jejich

uloženými informacemi. To nejen šetří čas, ale také ukazuje, že aplikace chápe

a pamatuje si preference uživatele.

Generativní uživatelské rozhraní 187

Počkat moment, není tahle technika něco, co by se dalo udělat i bez zapojení AI?

Samozřejmě že ano, ale krása řízení takové funkcionality pomocí AI spočívá ve dvou

věcech: 1) jak snadná může být implementace a 2) jak odolná může být vůči změnám

a vývoji vašeho UI v průběhu času.

Pojďme si rychle sestavit službu pro náš teoretický systém zpracování objednávek, která

se bude snažit proaktivně vyplnit správnou doručovací adresu uživatele.

1 class OrderShippingAddressSubscriber

2 include Raix::ChatCompletion

3

4 attr_accessor :order

5

6 delegate :customer, to: :order

7

8 DIRECTIVE = "You are a smart order processing assistant. Given the

9 customer's order history, guess the most likely shipping address

10 for the current order."

11

12 def order_created(order)

13 return unless order.pending? && order.shipping_address.blank?

14

15 self.order = order

16

17 transcript.clear

18 transcript << { system: DIRECTIVE }

19 transcript << { user: "Order History: #{order_history.to_json}" }

20 transcript << { user: "Current Order: #{order.to_json}" }

21

22 response = chat_completion

23 apply_predicted_shipping_address(order, response)

24 end

25

26 private

27

28 def apply_predicted_shipping_address(order, response)

29 # extract the shipping address from the response...

30 # ...and assume there's some sort of live update of the address fields

31 order.update(shipping_address:)

32 end

Generativní uživatelské rozhraní 188

33

34 def order_history

35 customer.orders.successful.limit(100).map do |order|

36 {

37 date: order.date,

38 description: order.description,

39 shipping_address: order.shipping_address

40 }

41 end

42 end

43 end

Tento příklad je velmi zjednodušený, ale měl by fungovat ve většině případů. Základní

myšlenkou je nechat AI hádat stejným způsobem jako člověk. Abych lépe vysvětlil,

o čem mluvím, podívejme se na nějaká vzorová data:

1 Order History:

2 [

3 {"date": "2024-01-03", "description": "garden soil mix",

4 "shipping_address": "123 Country Lane, Rural Town"},

5 {"date": "2024-01-15", "description": "hardcover fiction novels",

6 "shipping_address": "456 City Apt, Metroville"},

7 {"date": "2024-01-22", "description": "baby diapers", "shipping_address":

8 "789 Suburb St, Quietville"},

9 {"date": "2024-02-01", "description": "organic vegetables",

10 "shipping_address": "123 Country Lane, Rural Town"},

11 {"date": "2024-02-17", "description": "mystery thriller book set",

12 "shipping_address": "456 City Apt, Metroville"},

13 {"date": "2024-02-25", "description": "baby wipes",

14 "shipping_address": "789 Suburb St, Quietville"},

15 {"date": "2024-03-05", "description": "flower seeds",

16 "shipping_address": "123 Country Lane, Rural Town"},

17 {"date": "2024-03-20", "description": "biographies",

18 "shipping_address": "456 City Apt, Metroville"},

19 {"date": "2024-03-30", "description": "baby formula",

20 "shipping_address": "789 Suburb St, Quietville"},

21 {"date": "2024-04-12", "description": "lawn fertilizer",

22 "shipping_address": "123 Country Lane, Rural Town"},

23 {"date": "2024-04-22", "description": "science fiction novels",

24 "shipping_address": "456 City Apt, Metroville"},

Generativní uživatelské rozhraní 189

25 {"date": "2024-05-02", "description": "infant toys",

26 "shipping_address": "789 Suburb St, Quietville"},

27 {"date": "2024-05-14", "description": "outdoor grill",

28 "shipping_address": "123 Country Lane, Rural Town"},

29 {"date": "2024-05-29", "description": "literary classics",

30 "shipping_address": "456 City Apt, Metroville"},

31 {"date": "2024-06-11", "description": "baby clothes",

32 "shipping_address": "789 Suburb St, Quietville"},

33 {"date": "2024-07-01", "description": "watering can",

34 "shipping_address": "123 Country Lane, Rural Town"},

35 {"date": "2024-07-18", "description": "non-fiction essays",

36 "shipping_address": "456 City Apt, Metroville"},

37 {"date": "2024-07-28", "description": "baby bath items",

38 "shipping_address": "789 Suburb St, Quietville"},

39 {"date": "2024-08-09", "description": "herb garden kit",

40 "shipping_address": "123 Country Lane, Rural Town"},

41 {"date": "2024-08-24", "description": "children's books",

42 "shipping_address": "456 City Apt, Metroville"}

43]

Všimli jste si toho vzoru v datech? Garantuji vám, že pro LLM je to hračka. Pojďme

si to ukázat a zeptáme se GPT--4, jaká je nejpravděpodobnější doručovací adresa pro

“teploměr”.

1 From the order history you've provided, it looks like the purchases are

2 generally clustered into three main types based on the shipping addresses:

3

4 123 Country Lane, Rural Town - This address often orders garden and

5 outdoor-related items like soil mix, vegetables, flower seeds, lawn

6 fertilizer, an outdoor grill, a watering can, and an herb garden kit.

7

8 456 City Apt, Metroville - This address tends to order various types of

9 books, indicating an interest in reading across genres like fiction,

10 thrillers, biographies, science fiction, literary classics, non-fiction

11 essays, and children's books.

12

13 789 Suburb St, Quietville - The purchases for this address are consistently

14 baby-related products, such as diapers, wipes, baby formula, infant toys,

15 baby clothes, and baby bath items.

16

Generativní uživatelské rozhraní 190

17 Given these patterns, a digital thermometer could potentially be a fit for

18 any of the addresses based on different needs: outdoor temperature tracking,

19 a tool for a passionate reader interested in science gadgets, or a health

20 tool for a baby. However, considering its common use in monitoring health,

21 especially for babies, it's most likely to be purchased by someone who's

22 already buying baby care products.

23

24 Therefore, the most likely shipping address for a digital thermometer, based

25 on the purchasing patterns, would be 789 Suburb St, Quietville.

Pokud si říkáte, že je přehnané používat na tento úkol drahý model jako GPT--4,

máte pravdu! Vyzkoušel jsem stejný prompt na Mistral 7B Instruct a ten vyprodukoval

následující odpověď rychlostí 75 tokenů za sekundu, a to za skromnou cenu 0,000218

USD.

1 Based on the given order history, it appears that the customer has received

2 orders for baby-related items (diapers, wipes, formula, clothes, bath items)

3 at the address "789 Suburb St, Quietville" and garden-related items (soil,

4 seeds, watering can, herb garden kit) at the address "123 Country Lane, Rural

5 Town". The customer has also received books (fiction, non-fiction, literary

6 classics, mystery-thriller, science fiction, biographies, children's books)

7 at the address "456 City Apt, Metroville".

8

9 Given that the new order is for a "thermometer", which doesn't seem to fit

10 into any of the categories that the customer has previously ordered, it's

11 hard to accurately predict the shipping address based solely on the order

12 history. However, given the 50%-50% split between baby-related and

13 garden-related items, it could somewhat lean towards the Baby-related items

14 address ("789 Suburb St, Quietville"). But remember, this is an assumption

15 and cannot be definitively confirmed without more context or information.

Stojí režie a náklady této techniky za to, aby byl zážitek z nakupování magičtější?

Pro mnoho internetových prodejců rozhodně ano. A podle všeho budou náklady na

AI výpočty jen klesat, zejména u poskytovatelů hostingu open-source modelů v závodu

o nejnižší ceny.

Použijte Šablonu promptu a StructuredIO spolu s Ohraničením odpovědí

k optimalizaci tohoto typu chatové komunikace.

Generativní uživatelské rozhraní 191

Adaptivní řazení polí

Pořadí, ve kterém jsou formulářová pole prezentována, může výrazně ovlivnit

uživatelský zážitek a míru dokončení. S GenUI můžete dynamicky upravovat pořadí

polí na základě kontextu uživatele a důležitosti každého pole. Například pokud uživatel

vyplňuje registrační formulář pro fitness aplikaci, formulář může upřednostnit pole

související s jejich fitness cíli a preferencemi, což činí proces relevantnější a poutavější.

Personalizované mikrotexty

Instrukční text, chybové zprávy a další mikrotexty spojené s formuláři lze také

personalizovat pomocí GenUI. Místo zobrazování obecných chybových zpráv jako

“Neplatná e-mailová adresa” můžete generovat užitečnější a kontextuální zprávy jako

“Prosím zadejte platnou e-mailovou adresu pro přijetí potvrzení vaší objednávky.”

Tyto personalizované prvky mohou učinit práci s formulářem uživatelsky přívětivější

a méně frustrující.

Personalizovaná validace

Podobně jako u Personalizovaných mikrotextů byste mohli použít AI k validaci

formuláře způsobem, který působí magicky. Představte si, že necháte AI validovat

formulář uživatelského profilu a hledat potenciální chyby na sémantické úrovni.

Generativní uživatelské rozhraní 192

obrázkem 9. Dokážete rozpoznat probíhající sémantickou validaci?

Postupné odkrývání

GenUI může inteligentně určit, která formulářová pole jsou nezbytná na základě

kontextu uživatele a postupně odkrývat další pole podle potřeby. Tato technika

postupného odkrývání pomáhá snížit kognitivní zátěž a činí proces vyplňování

formuláře zvládnutelnějším. Například pokud se uživatel přihlašuje k základnímu

Generativní uživatelské rozhraní 193

předplatnému, formulář může nejprve zobrazit pouze nezbytná pole a jak uživatel

postupuje nebo vybírá konkrétní možnosti, mohou být dynamicky představena další

relevantní pole.

Kontextově citlivý vysvětlující text

Popisky se často používají k poskytnutí dodatečných informací nebo vedení uživatelů,

když se pohybují nad konkrétními prvky nebo s nimi interagují. S přístupem

“Generování kontextového obsahu” můžete vytvářet popisky, které se přizpůsobují

kontextu uživatele a poskytují relevantní informace. Například když uživatel zkoumá

složitou funkci, popisek může nabídnout personalizované tipy nebo příklady založené

na jejich předchozích interakcích nebo úrovni dovedností.

Vysvětlující text, jako jsou instrukce, popisy nebo pomocné zprávy, může být

dynamicky generován na základě kontextu uživatele. Místo prezentace obecných

vysvětlení můžete použít LLM k generování textu, který je přizpůsoben specifickým

potřebám nebo otázkám uživatele. Například pokud má uživatel potíže s konkrétním

krokem v procesu, vysvětlující text může poskytnout personalizované vedení nebo tipy

pro řešení problémů.

Mikrotexty označují malé kousky textu, které provázejí uživatele vaší aplikací, jako

jsou popisky tlačítek, chybové zprávy nebo potvrzovací výzvy. Aplikováním přístupu

Generování kontextového obsahu na mikrotexty můžete vytvořit adaptivní UI, které

reaguje na akce uživatele a poskytuje relevantní a užitečný text. Například když

se uživatel chystá provést kritickou akci, potvrzovací výzva může být dynamicky

generována tak, aby poskytla jasnou a personalizovanou zprávu.

Personalizovaný vysvětlující text a popiskymohou výrazně vylepšit proces onboardingu

nových uživatelů. Poskytováním kontextově specifického vedení a příkladů můžete

uživatelům pomoci rychle porozumět aplikaci a navigovat v ní, což snižuje křivku učení

a zvyšuje adopci.

Generativní uživatelské rozhraní 194

Dynamické a kontextově citlivé prvky rozhraní mohou také způsobit, že aplikace působí

intuitivněji a poutavěji. Uživatelé jsou více nakloněni interakci a zkoumání funkcí, když

je doprovodný text přizpůsoben jejich specifickým potřebám a zájmům.

Dosud jsme se zabývali nápady na vylepšení stávajících paradigmat uživatelského

rozhraní pomocí AI, ale co kdybychom radikálněji přehodnotili způsob, jakým jsou

uživatelská rozhraní navrhována a implementována?

Definice generativního UI

Na rozdíl od tradičního návrhu UI, kde designéři vytvářejí pevná, statická rozhraní,

GenUI naznačuje budoucnost, ve které náš software nabídne flexibilní, personalizované

zážitky, které se mohou vyvíjet a přizpůsobovat v reálném čase. Pokaždé, když

používáme konverzační rozhraní řízené AI, umožňujeme AI přizpůsobit se konkrétním

potřebám uživatele. GenUI posouvá věci o krok dále tím, že aplikuje tuto úroveň

přizpůsobivosti na vizuální rozhraní softwaru.

Důvodem, proč je dnes možné experimentovat s myšlenkami GenUI, je to, že

velké jazykové modely již rozumí programování a jejich základní znalosti zahrnují

technologie a frameworky UI. Otázkou tedy je, zda lze velké jazykové modely využít

ke generování prvků UI, jako jsou text, obrázky, layouty a dokonce celá rozhraní, která

jsou přizpůsobena každému jednotlivému uživateli. Model by mohl být instruován,

aby bral v úvahu různé faktory, jako jsou předchozí interakce uživatele, uvedené

preference, demografické informace a aktuální kontext použití, k vytvoření vysoce

personalizovaných a relevantních rozhraní.

GenUI se od tradičního návrhu uživatelského rozhraní liší v několika klíčových

aspektech:

Generativní uživatelské rozhraní 195

1. Dynamické a adaptivní: Tradiční návrh UI zahrnuje vytváření pevných,

statických rozhraní, která zůstávají stejná pro všechny uživatele. Naproti tomu

GenUI umožňuje rozhraní, která se mohou dynamicky přizpůsobovat a měnit

na základě potřeb uživatele a kontextu. To znamená, že stejná aplikace může

prezentovat různá rozhraní různým uživatelům nebo dokonce stejnému uživateli

v různých situacích.

2. Personalizace ve velkém měřítku: U tradičního designu je vytváření

personalizovaných zážitků pro každého uživatele často nepraktické kvůli

času a zdrojům, které by to vyžadovalo. GenUI naopak umožňuje personalizaci

ve velkém měřítku. Využitím AI mohou designéři vytvářet rozhraní, která se

automaticky přizpůsobují jedinečným potřebám a preferencím každého uživatele,

aniž by museli ručně navrhovat a vyvíjet samostatná rozhraní pro každý segment

uživatelů.

3. Zaměření na výsledky: Tradiční návrh UI se často zaměřuje na vytváření

vizuálně přitažlivých a funkčních rozhraní. Zatímco tyto aspekty jsou důležité

i v GenUI, primární zaměření se přesouvá k dosahování požadovaných

uživatelských výsledků. GenUI se snaží vytvářet rozhraní, která jsou

optimalizována pro specifické cíle a úkoly každého uživatele, přičemž

upřednostňuje použitelnost a efektivitu před čistě estetickými úvahami.

4. Kontinuální učení a zlepšování: Systémy GenUI se mohou průběžně učit

a zlepšovat na základě interakcí uživatelů a zpětné vazby. Když uživatelé pracují

s generovanými rozhraními, AI modely mohou shromažďovat data o chování

uživatelů, preferencích a výsledcích a využívat tyto informace k vylepšování

a optimalizaci budoucích generací rozhraní. Tento iterativní proces učení

umožňuje systémům GenUI stávat se postupem času stále efektivnějšími v plnění

potřeb uživatelů.

Je důležité poznamenat, že GenUI není totéž co nástroje pro design s podporou AI,

jako jsou ty, které poskytují návrhy nebo automatizují určité designové úkoly. Zatímco

tyto nástroje mohou být užitečné při zefektivnění procesu návrhu, stále spoléhají na

Generativní uživatelské rozhraní 196

designéry, kteří činí konečná rozhodnutí a vytvářejí statická rozhraní. GenUI naopak

zahrnuje aktivnější roli AI systému v samotném generování a přizpůsobování rozhraní

na základě uživatelských dat a kontextu.

GenUI představuje významný posun v tom, jak přistupujeme k návrhu uživatelského

rozhraní, odklon od univerzálních řešení směrem k vysoce personalizovaným,

adaptivním zážitkům. Využitím síly AI má GenUI potenciál revolucionizovat způsob,

jakým interagujeme s digitálními produkty a službami, vytvářením rozhraní, která jsou

intuitivnější, poutavější a efektivnější pro každého jednotlivého uživatele.

Příklad

Pro ilustraci konceptu GenUI uvažujme hypotetickou fitness aplikaci nazvanou

“FitAI”. Tato aplikace si klade za cíl poskytovat personalizované tréninkové plány

a výživové rady uživatelům na základě jejich individuálních cílů, úrovně fyzické

kondice a preferencí.

V tradičním přístupu k návrhu UI by FitAI mohla mít pevnou sadu obrazovek a prvků,

které jsou stejné pro všechny uživatele. S GenUI by se však rozhraní aplikace mohlo

dynamicky přizpůsobovat jedinečným potřebám a kontextu každého uživatele.

Tento přístup je v roce 2024 poměrně obtížné si představit implementovat a možná by

ani neměl odpovídající návratnost investic, ale je možný.

Takto by to mohlo fungovat:

1. Onboarding:

• Místo standardního dotazníku používá FitAI konverzační AI ke

shromažďování informací o cílech uživatele, současné úrovni fyzické

kondice a preferencích.

Generativní uživatelské rozhraní 197

• Na základě této úvodní interakce AI generuje personalizované rozložení

dashboardu, zvýrazňující funkce a informace nejrelevantnější pro cíle

uživatele.

• Současná AI technologie by mohla mít k dispozici výběr komponent

obrazovky pro sestavení personalizovaného dashboardu.

• Budoucí AI technologie by mohla převzít roli zkušeného UI designéra

a skutečně vytvářet dashboard od základu.

2. Plánovač tréninků:

• Rozhraní plánovače tréninků je upravováno umělou inteligencí tak, aby

přesně odpovídalo úrovni zkušeností uživatele a dostupnému vybavení.

• Pro začátečníka bez vybavení může zobrazovat jednoduché cviky s vlastní

vahou těla s podrobnými instrukcemi a videi.

• Pro pokročilého uživatele s přístupem do posilovny může zobrazovat

složitější rutiny s menším množstvím vysvětlujícího obsahu.

• Obsah plánovače tréninků není jen filtrován z velké nadmnožiny. Může

být generován za běhu na základě znalostní báze, která je dotazována

s kontextem zahrnujícím vše, co je o uživateli známo.

3. Sledování pokroku:

• Rozhraní pro sledování pokroku se vyvíjí na základě cílů uživatele a vzorců

jeho zapojení.

• Pokud se uživatel primárně zaměřuje na hubnutí, rozhraní může výrazně

zobrazovat graf trendu váhy a statistiky spalování kalorií.

• Pro uživatele budujícího svaly může zdůrazňovat nárůst síly a změny tělesné

kompozice.

• UI může tuto část aplikace přizpůsobit skutečnému pokroku uživatele. Pokud

se pokrok na určitou dobu zastaví, aplikace se může přepnout do režimu,

kdy se snaží uživatele přimět k odhalení důvodů této překážky, aby je mohla

zmírnit.

Generativní uživatelské rozhraní 198

4. Výživové poradenství:

• Sekce výživy se přizpůsobuje stravovacím preferencím a omezením

uživatele.

• Pro veganského uživatele může zobrazovat rostlinné návrhy jídel a zdroje

bílkovin.

• Pro uživatele s nesnášenlivostí lepku by automaticky filtrovalo potraviny

obsahující lepek z doporučení.

• I zde není obsah čerpán z masivní nadmnožiny dat o jídle, která platí pro

všechny uživatele, ale je syntetizován ze znalostní báze obsahující informace

přizpůsobitelné konkrétní situaci a omezením uživatele.

• Například recepty jsou generovány se specifikacemi ingrediencí, které

odpovídají neustále se měnícím kalorickým potřebám uživatele v závislosti

na vývoji jeho fyzické kondice a tělesných statistik.

5. Motivační prvky:

• Motivační obsah aplikace a notifikace jsou personalizovány na základě typu

osobnosti uživatele a reakce na různé motivační strategie.

• Někteří uživatelé mohou dostávat povzbuzující zprávy, zatímco jiní získávají

více datově orientovanou zpětnou vazbu.

V tomto příkladu GenUI umožňuje aplikaci FitAI vytvořit vysoce přizpůsobenou

zkušenost pro každého uživatele, potenciálně zvyšující zapojení, spokojenost

a pravděpodobnost dosažení fitness cílů. Prvky rozhraní, obsah a dokonce i “osobnost”

aplikace se přizpůsobují tak, aby co nejlépe sloužily potřebám a preferencím každého

jednotlivého uživatele.

Posun k designu orientovanému na výsledky

GenUI představuje zásadní posun v přístupu k návrhu uživatelského rozhraní, přechod

od zaměření na vytváření specifických prvků rozhraní k více holistickému přístupu

orientovanému na výsledky. Tento posun má několik důležitých důsledků:

Generativní uživatelské rozhraní 199

1. Zaměření na cíle uživatelů:

• Designéři budou muset hlouběji přemýšlet o cílech uživatelů

a požadovaných výsledcích spíše než o konkrétních komponentách

rozhraní.

• Důraz bude kladen na vytváření systémů, které mohou generovat rozhraní

pomáhající uživatelům efektivně dosahovat jejich cílů.

• Objeví se nové UI frameworky, které poskytnou AI-based designérům

nástroje potřebné ke generování uživatelských zkušeností za běhu a od

základů namísto předem definovaných specifikací obrazovek.

2. Měnící se role designérů:

• Designéři přejdou od vytváření fixních layoutů k definování pravidel,

omezení a pokynů pro AI systémy, které se jimi budou řídit při generování

rozhraní.

• Budou muset rozvíjet dovednosti v oblastech jako je analýza dat, inženýrství

AI promptů a systémové myšlení, aby mohli efektivně vést GenUI systémy.

3. Důležitost uživatelského výzkumu:

• Uživatelský výzkum se stává ještě kritičtějším v kontextu GenUI, protože

designéři potřebují porozumět nejen preferencím uživatelů, ale také tomu,

jak se tyto preference a potřeby mění v různých kontextech.

• Kontinuální uživatelské testování a zpětnovazební smyčky budou zásadní

pro zdokonalení a zlepšení schopnosti AI generovat efektivní rozhraní.

4. Design pro variabilitu:

• Místo vytváření jediného “perfektního” rozhraní budou designéři muset

zvažovat více možných variant a zajistit, že systém dokáže generovat vhodná

rozhraní pro různé potřeby uživatelů.

Generativní uživatelské rozhraní 200

• To zahrnuje design pro krajní případy a zajištění, že generovaná rozhraní

zachovávají použitelnost a přístupnost napříč různými konfiguracemi.

• Diferenciace produktů získává nové dimenze zahrnující rozdílné pohledy

na uživatelskou psychologii a využívání jedinečných datových sad

a znalostních bází nedostupných konkurenci.

Výzvy a úvahy

Zatímco GenUI nabízí vzrušující možnosti, přináší také několik výzev a aspektů

k zamyšlení:

1. Technická omezení:

• Současná AI technologie, ačkoli pokročilá, má stále omezení v porozumění

komplexním záměrům uživatelů a generování skutečně kontextově

uvědomělých rozhraní.

• Problémy s výkonem související s generováním prvků rozhraní v reálném

čase, zejména na méně výkonných zařízeních.

2. Požadavky na data:

• V závislosti na případu použití mohou efektivní systémy GenUI vyžadovat

významné množství uživatelských dat pro generování personalizovaných

rozhraní.

• Výzvy v etickém získávání autentických uživatelských dat vyvolávají obavy

ohledně ochrany osobních údajů a bezpečnosti, stejně jako potenciální

předpojatosti v datech používaných k trénování modelů GenUI.

3. Použitelnost a konzistence:

Generativní uživatelské rozhraní 201

• Přinejmenším dokud se tato praxe nestane běžnou, aplikace s neustále

se měnícími rozhraními může vést k problémům s použitelností, protože

uživatelé mohou mít potíže s nalezením známých prvků nebo efektivní

navigací.

• Klíčové bude najít rovnováhu mezi personalizací a zachováním

konzistentního, naučitelného rozhraní.

4. Přílišné spoléhání na UI:

• Existuje riziko nadměrného delegování designových rozhodnutí na systémy

UI, což může potenciálně vést k neinspiratívním, problematickým nebo

jednoduše nefunkčním volbám rozhraní.

• Lidský dohled amožnost přepsat AI generované návrhy zůstanou v dohledné

budoucnosti důležité.

5. Obavy ohledně přístupnosti:

• Zajištění, aby dynamicky generovaná rozhraní zůstala přístupná uživatelům

s hendikepem, představuje zcela nové výzvy, což je znepokojující vzhledem

k nízké úrovni dodržování přístupnosti u typických systémů.

• Na druhou stranu, AI designéři mohou být implementováni s vestavěnou

péčí o přístupnost a schopnostmi vytvářet přístupná rozhraní za běhu stejně

jako vytvářejí UI pro uživatele bez hendikepů.

• V každém případě by systémy GenUI měly být navrženy s robustními

směrnicemi pro přístupnost a testovacími procesy.

6. Důvěra uživatelů a transparentnost:

• Uživatelé se mohou cítit nepohodlně s rozhraními, která “vědí příliš mnoho”

o nich nebo se mění způsoby, kterým nerozumí.

• Pro budování důvěry uživatelů bude důležité poskytovat transparentnost

ohledně toho, jak a proč jsou rozhraní personalizována.

Generativní uživatelské rozhraní 202

Budoucí výhled a příležitosti

Budoucnost Generativního UI (GenUI) skýtá obrovský příslib pro revoluci ve způsobu,

jakým interagujeme s digitálními produkty a službami. Jak se tato technologie

nadále vyvíjí, můžeme očekávat zásadní změnu v tom, jak jsou uživatelská rozhraní

navrhována, implementována a používána. Myslím, že GenUI je fenomén, který

konečně posune náš software do oblasti toho, co je nyní považováno za vědeckou

fantastiku.

Jednou z nejzajímavějších vyhlídek GenUI je jeho potenciál zlepšit přístupnost

v měřítku, které jde nad rámec pouhého zajištění, aby lidé s vážným hendikepem

nebyli zcela vyloučeni z používání vašeho softwaru. Automatickým přizpůsobováním

rozhraní individuálním potřebám uživatelů by GenUI mohlo učinit digitální zkušenosti

inkluzivnější než kdy předtím. Představte si rozhraní, která se plynule přizpůsobují

tak, aby poskytovala větší text pro mladší nebo zrakově postižené uživatele nebo

zjednodušená rozložení pro ty s kognitivními poruchami, to vše bez nutnosti manuální

konfigurace nebo samostatných “přístupných” verzí aplikací.

Schopnosti personalizace GenUI pravděpodobně povedou ke zvýšení uživatelské

angažovanosti, spokojenosti a loajality napříč širokou škálou digitálních produktů. Jak

se rozhraní stávají více naladěná na individuální preference a chování, uživatelé budou

považovat digitální zkušenosti za intuitivnější a příjemnější, což potenciálně povede

k hlubším a smysluplnějším interakcím s technologií.

GenUI má také potenciál transformovat proces zaškolování nových uživatelů.

Vytvářením intuitivních, personalizovaných zkušeností pro nové uživatele, které se

rychle přizpůsobují úrovni odbornosti každého uživatele, by GenUI mohlo výrazně

snížit křivku učení spojenou s novými aplikacemi. To by mohlo vést k rychlejším mírám

osvojení a zvýšené důvěře uživatelů při zkoumání nových funkcí a funkcionalit.

Další vzrušující možností je schopnost GenUI udržovat konzistentní uživatelskou

zkušenost napříč různými zařízeními a platformami při optimalizaci pro každý

Generativní uživatelské rozhraní 203

specifický kontext použití. To by mohlo vyřešit dlouhodobou výzvu poskytování

koherentních zkušeností napříč stále více fragmentovanou krajinou zařízení, od

chytrých telefonů a tabletů po stolní počítače a vznikající technologie jako brýle pro

rozšířenou realitu.

Datově řízená povaha GenUI otevírá příležitosti pro rychlou iteraci a zlepšování

v návrhu UI. Shromažďováním dat v reálném čase o tom, jak uživatelé interagují

s generovanými rozhraními, mohou designéři a vývojáři získat bezprecedentní vhled

do uživatelského chování a preferencí. Tato zpětná vazba by mohla vést k neustálému

zlepšování návrhu UI, řízenému skutečnými vzorci používání spíše než předpoklady

nebo omezeným uživatelským testováním.

Pro přípravu na tuto změnu budou designéři muset rozvíjet své dovednosti a způsob

myšlení. Zaměření se přesune od vytváření fixních layoutů k vývoji komplexních

designových systémů a směrnic, které mohou informovat generování rozhraní řízené AI.

Designéři budou muset rozvíjet hluboké porozumění datové analýze, AI technologiím

a systémovému myšlení, aby efektivně vedli systémy GenUI.

Navíc, jak GenUI stírá hranice mezi designem a technologií, designéři budou muset

úžeji spolupracovat s vývojáři a datovými vědci. Tento interdisciplinární přístup bude

klíčový při vytváření systémů GenUI, které jsou nejen vizuálně přitažlivé a uživatelsky

přívětivé, ale také technicky robustní a eticky zodpovědné.

Etické důsledky GenUI se dostanou do popředí s tím, jak bude technologie dozrávat.

Designéři budou hrát klíčovou roli při vývoji rámců pro odpovědné využití AI v návrhu

rozhraní, zajišťující, že personalizace zlepší uživatelské zkušenosti bez kompromitování

soukromí či neetické manipulace s chováním uživatelů.

Při pohledu do budoucnosti představuje GenUI jak vzrušující příležitosti, tak významné

výzvy. Má potenciál vytvářet intuitivnější, efektivnější a uspokojivější digitální zážitky

pro uživatele po celém světě. Ačkoli to bude vyžadovat, aby si designéři osvojili

nové dovednosti a přizpůsobili se, nabízí to také bezprecedentní příležitost formovat

budoucnost interakce člověka s počítačem zásadním a smysluplným způsobem. Cesta

Generativní uživatelské rozhraní 204

k plně realizovaným systémům GenUI bude bezpochyby složitá, ale potenciální přínosy

v podobě vylepšených uživatelských zkušeností a digitální přístupnosti z ní činí

budoucnost, o kterou stojí za to usilovat.

Inteligentní orchestrace
pracovních postupů

V oblasti vývoje aplikací hrají pracovní postupy klíčovou roli při definování způsobu

strukturování a provádění úkolů, procesů a uživatelských interakcí. S rostoucí složitostí

aplikací a zvyšujícími se očekáváními uživatelů se stává stále zřejmější potřeba

inteligentní a adaptivní orchestrace pracovních postupů.

Přístup “Inteligentní orchestrace pracovních postupů” se zaměřuje na využití

komponent umělé inteligence k dynamické orchestraci a optimalizaci komplexních

pracovních postupů v aplikacích. Cílem je vytvářet aplikace, které jsou efektivnější,

responzivnější a přizpůsobivější vzhledem k datům a kontextu v reálném čase.

V této kapitole prozkoumáme klíčové principy a vzory, které tvoří základ přístupu

inteligentní orchestrace pracovních postupů. Budeme se zabývat tím, jak lze využít

Inteligentní orchestrace pracovních postupů 206

umělou inteligenci k inteligentnímů směrování úkolů, automatizaci rozhodování

a dynamickému přizpůsobování pracovních postupů na základě různých faktorů, jako

je chování uživatelů, výkon systému a obchodní pravidla. Prostřednictvím praktických

příkladů a scénářů z reálného světa ukážeme transformační potenciál umělé inteligence

při zefektivňování a optimalizaci pracovních postupů aplikací.

Ať už vytváříte podnikové aplikace se složitými obchodními procesy nebo aplikace

zaměřené na spotřebitele s dynamickými uživatelskými cestami, vzory a techniky

diskutované v této kapitole vám poskytnou znalosti a nástroje potřebné k vytváření

inteligentních a efektivních pracovních postupů, které zlepšují celkový uživatelský

zážitek a přinášejí obchodní hodnotu.

Obchodní potřeba

Tradiční přístupy k řízení pracovních postupů často spoléhají na předem definovaná

pravidla a statické rozhodovací stromy, které mohou být rigidní, neflexibilní

a neschopné vypořádat se s dynamickou povahou moderních aplikací.

Uvažujme scénář, kdy e-commerce aplikace potřebuje zpracovat komplexní proces

vyřízení objednávky. Pracovní postup může zahrnovat několik kroků, jako je validace

objednávky, kontrola skladu, zpracování platby, expedice a oznámení zákazníkům.

Každý krok může mít vlastní sadu pravidel, závislostí, externí integrace a mechanismy

pro zpracování výjimek. Ruční správa takového pracovního postupu nebo jeho řízení

pomocí pevně nakódované logiky semůže rychle stát těžkopádnou, náchylnou k chybám

a obtížně udržovatelnou.

Navíc, jak aplikace roste a počet současně připojených uživatelů se zvyšuje, pracovní

postup se může potřebovat přizpůsobovat a optimalizovat na základě dat v reálném

čase a výkonu systému. Například během období špičkového provozu může aplikace

potřebovat dynamicky upravit pracovní postup tak, aby upřednostnila určité úkoly,

efektivně alokovala zdroje a zajistila plynulý uživatelský zážitek.

Inteligentní orchestrace pracovních postupů 207

Zde přichází ke slovu přístup “Inteligentní orchestrace pracovních postupů”. Využitím

komponent umělé inteligence mohou vývojáři vytvářet pracovní postupy, které jsou

inteligentní, adaptivní a samo-optimalizující. Umělá inteligence může analyzovat velké

množství dat, učit se z minulých zkušeností a činit informovaná rozhodnutí v reálném

čase pro efektivní orchestraci pracovního postupu.

Klíčové výhody

1. Zvýšená efektivita: Umělá inteligence může optimalizovat přidělování úkolů,

využití zdrojů a provádění pracovních postupů, což vede k rychlejším dobám

zpracování a zlepšené celkové efektivitě.

2. Adaptabilita: Pracovní postupy řízené umělou inteligencí se mohou dynamicky

přizpůsobovat měnícím se podmínkám, jako jsou výkyvy v poptávce uživatelů,

výkonu systému nebo obchodních požadavcích, což zajišťuje, že aplikace zůstává

responzivní a odolná.

3. Automatizované rozhodování: Umělá inteligence může automatizovat složité

rozhodovací procesy v rámci pracovního postupu, čímž snižuje potřebu

manuálních zásahů a minimalizuje riziko lidských chyb.

4. Personalizace: Umělá inteligence může analyzovat chování uživatelů, preference

a kontext pro personalizaci pracovního postupu a poskytování přizpůsobených

zážitků jednotlivým uživatelům.

5. Škálovatelnost: Pracovní postupy poháněné umělou inteligencí se mohou plynule

škálovat pro zvládání rostoucího objemu dat a uživatelských interakcí, aniž by byl

ohrožen výkon nebo spolehlivost.

V následujících částech prozkoumáme klíčové vzory a techniky, které umožňují

implementaci inteligentních pracovních postupů, a ukážeme příklady z reálného světa,

jak umělá inteligence transformuje řízení pracovních postupů v moderních aplikacích.

Inteligentní orchestrace pracovních postupů 208

Klíčové vzory

Pro implementaci inteligentní orchestrace pracovních postupů v aplikacích mohou

vývojáři využít několik klíčových vzorů, které využívají sílu umělé inteligence.

Tyto vzory poskytují strukturovaný přístup k návrhu a řízení pracovních postupů,

umožňující aplikacím přizpůsobovat se, optimalizovat a automatizovat procesy na

základě dat a kontextu v reálném čase. Pojďme prozkoumat některé ze základních vzorů

v inteligentní orchestraci pracovních postupů.

Dynamické směrování úloh

Tento vzor zahrnuje využití umělé inteligence k inteligentnímu směrování úloh v rámci

pracovního postupu na základě různých faktorů, jako je priorita úlohy, dostupnost

zdrojů a výkon systému. Algoritmy umělé inteligencemohou analyzovat charakteristiky

každé úlohy, zvážit aktuální stav systému a činit informovaná rozhodnutí pro přiřazení

úloh nejvhodnějším zdrojům nebo cestám zpracování. Dynamické směrování úloh

zajišťuje efektivní distribuci a provádění úloh, optimalizující celkový výkon pracovního

postupu.

1 class TaskRouter

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 attr_accessor :task

6

7 # list of functions that can be called by the AI entirely at its

8 # discretion depending on the task received

9

10 function :analyze_task_priority do

11 TaskPriorityAnalyzer.perform(task)

12 end

13

14 function :check_resource_availability, # ...

15 function :assess_system_performance, # ...

Inteligentní orchestrace pracovních postupů 209

16 function :assign_task_to_resource, # ...

17

18 DIRECTIVE = "You are a task router, responsible for intelligently

19 assigning tasks to available resources based on priority, resource

20 availability, and system performance..."

21

22 def initialize(task)

23 self.task = task

24 transcript << { system: DIRECTIVE }

25 transcript << { user: task.to_json }

26 end

27

28 def perform

29 while task.unassigned?

30 chat_completion

31

32 # todo: add max loop counter and break

33 end

34

35 # capture the transcript for later analysis

36 task.update(routing_transcript: transcript)

37 end

38 end

Všimněte si smyčky vytvořené výrazem while na řádku 29, která pokračuje

v dotazování AI, dokud není úkol přiřazen. Na řádku 35 ukládáme přepis úkolu pro

pozdější analýzu a ladění, pokud to bude nutné.

Kontextové rozhodování

Můžete použít velmi podobný kód k vytváření kontextově uvědomělých rozhodnutí

v rámci pracovního postupu. Analyzováním relevantních datových bodů, jako

jsou uživatelské preference, historické vzory a vstupy v reálném čase, mohou

AI komponenty určit nejvhodnější postup v každém rozhodovacím bodě pracovního

postupu. Přizpůsobte chování vašeho pracovního postupu na základě specifického

kontextu každého uživatele nebo scénáře, poskytujíce personalizované a optimalizované

zkušenosti.

Inteligentní orchestrace pracovních postupů 210

Adaptivní kompozice pracovních postupů

Tento vzor se zaměřuje na dynamické sestavování a úpravu pracovních postupů

na základě měnících se požadavků nebo podmínek. AI může analyzovat současný

stav pracovního postupu, identifikovat úzká místa nebo neefektivity a automaticky

upravit strukturu pracovního postupu pro optimalizaci výkonu. Adaptivní kompozice

pracovních postupů umožňuje aplikacím neustále se vyvíjet a zlepšovat své procesy

bez nutnosti manuálního zásahu.

Zpracování a zotavení z výjimek

Zpracování a zotavení z výjimek jsou kritické aspekty inteligentní orchestrace

pracovních postupů. Při práci s AI komponentami a komplexními pracovními

postupy je zásadní předvídat a elegantně zpracovávat výjimky pro zajištění stability

a spolehlivosti systému.

Zde jsou klíčové úvahy a techniky pro zpracování a zotavení z výjimek v inteligentních

pracovních postupech:

1. Propagace výjimek: Implementujte konzistentní přístup pro propagaci

výjimek napříč komponentami pracovního postupu. Když dojde k výjimce

uvnitř komponenty, měla by být zachycena, zaznamenána a propagována do

orchestrátoru nebo samostatné komponenty zodpovědné za zpracování výjimek.

Myšlenkou je centralizovat zpracování výjimek a zabránit tichému pohlcování

výjimek, stejně jako otevřít možnosti pro Inteligentní zpracování chyb.

2. Mechanismy opakování: Mechanismy opakování pomáhají zlepšit odolnost

pracovního postupu a elegantně zvládat přechodná selhání. Rozhodně se snažte

implementovat mechanismy opakování pro přechodné nebo obnovitelné výjimky,

jako je síťové připojení nebo nedostupnost zdrojů, které lze automaticky znovu

zkusit po stanovené prodlevě. Mít AI-řízený orchestrátor nebo zpracovatel

Inteligentní orchestrace pracovních postupů 211

výjimek znamená, že vaše strategie opakování nemusí být mechanické povahy,

spoléhající se na pevné algoritmy jako exponenciální odstup. Můžete ponechat

zpracování opakování na “uvážení” AI komponenty zodpovědné za rozhodování

o tom, jak výjimku zpracovat.

3. Záložní strategie: Pokud AI komponenta selže v poskytnutí platné odpovědi

nebo narazí na chybu—běžný jev vzhledem k její průkopnické povaze—mějte

připraven záložní mechanismus, který zajistí pokračování pracovního postupu. To

může zahrnovat použití výchozích hodnot, alternativních algoritmů nebo Člověka

v procesu pro rozhodování a udržení pracovního postupu v chodu.

4. Kompenzační akce: Pokyny orchestrátoru by měly zahrnovat instrukce

o kompenzačních akcích pro zpracování výjimek, které nelze vyřešit automaticky.

Kompenzační akce jsou kroky podniknuté k vrácení nebo zmírnění účinků

neúspěšné operace. Například pokud selže krok zpracování platby, kompenzační

akce by mohla být vrácení transakce a upozornění uživatele. Kompenzační akce

pomáhají udržovat konzistenci dat a integritu v případě výjimek.

5. Monitorování a upozorňování na výjimky:Nastavtemechanismymonitorování

a upozorňování pro detekci a oznámení relevantním zainteresovaným stranám

o kritických výjimkách. Orchestrátor může být informován o prahových

hodnotách a pravidlech pro spouštění upozornění, když výjimky překročí určité

limity nebo když dojde ke specifickým typům výjimek. To umožňuje proaktivní

identifikaci a řešení problémů předtím, než ovlivní celkový systém.

Zde je příklad zpracování a zotavení z výjimek v komponentě pracovního postupu

v Ruby:

Inteligentní orchestrace pracovních postupů 212

1 class InventoryManager

2 def check_availability(order)

3 begin

4 # Perform inventory check logic

5 inventory = Inventory.find_by(product_id: order.product_id)

6 if inventory.available_quantity >= order.quantity

7 return true

8 else

9 raise InsufficientInventoryError,

10 "Insufficient inventory for product #{order.product_id}"

11 end

12 rescue InsufficientInventoryError => e

13 # Log the exception

14 logger.error("Inventory check failed: #{e.message}")

15

16 # Retry the operation after a delay

17 retry_count ||= 0

18 if retry_count < MAX_RETRIES

19 retry_count += 1

20 sleep(RETRY_DELAY)

21 retry

22 else

23 # Fallback to manual intervention

24 NotificationService.admin("Inventory check failed: Order #{order.id}")

25 return false

26 end

27 end

28 end

29 end

V tomto příkladu komponenta InventoryManager kontroluje dostupnost

produktu pro danou objednávku. Pokud je dostupné množství nedostatečné,

vyvolá InsufficientInventoryError. Výjimka je zachycena, zaznamenána

a je implementován mechanismus opakování. Pokud je překročen limit opakování,

komponenta přejde k manuálnímu zásahu tím, že upozorní administrátora.

Implementací robustního zpracování výjimek a mechanismů obnovy můžete zajistit,

že vaše inteligentní workflow budou odolné, udržovatelné a schopné elegantně zvládat

Inteligentní orchestrace pracovních postupů 213

neočekávané situace.

Tyto vzory tvoří základ inteligentní orchestrace workflow a lze je kombinovat

a přizpůsobovat specifickým požadavkům různých aplikací. Využitím těchto vzorů

mohou vývojáři vytvářet workflow, které jsou flexibilní, odolné a optimalizované pro

výkon a uživatelskou zkušenost.

V další části prozkoumáme, jak lze tyto vzory implementovat v praxi, s využitím

příkladů z reálného světa a ukázek kódu pro ilustraci integrace AI komponent do řízení

workflow.

Implementace inteligentní orchestrace

workflow v praxi

Nyní, když jsme prozkoumali klíčové vzory v inteligentní orchestraci workflow, pojďme

se ponořit do toho, jak lze tyto vzory implementovat v reálných aplikacích. Poskytneme

praktické příklady a ukázky kódu pro ilustraci integrace AI komponent do řízení

workflow.

Inteligentní zpracování objednávek

Pojďme se ponořit do praktického příkladu implementace inteligentní orchestrace

workflow pomocí AI komponenty OrderProcessor v e-commerce aplikaci Ruby on

Rails. OrderProcessor realizuje koncept Process Manager Enterprise Integration,

se kterým jsme se poprvé setkali v Kapitole 3 při diskuzi o Množství pracovníků.

Komponenta bude zodpovědná za řízení workflow vyřizování objednávek, rozhodování

o směrování na základě průběžných výsledků a orchestraci provádění různých kroků

zpracování.

Inteligentní orchestrace pracovních postupů 214

Proces vyřizování objednávek zahrnuje několik kroků, jako je validace objednávky,

kontrola zásob, zpracování platby a expedice. Každý krok je implementován jako

samostatný pracovní proces, který provádí specifický úkol a vrací výsledek zpět do

OrderProcessor. Kroky nejsou povinné a dokonce nemusí být nutně provedeny

v přesném pořadí.

Zde je příklad implementace OrderProcessor. Obsahuje dva mixiny z Raix.

První (ChatCompletion) mu dává schopnost dokončování chatu, což z něj dělá

AI komponentu. Druhý (FunctionDispatch) umožňuje volání funkcí umělou

inteligencí, což jí dovoluje reagovat na prompt voláním funkce místo textové zprávy.

Pracovní funkce (validate_order, check_inventory, atd.) delegují na své příslušné

pracovní třídy, které mohou být AI nebo ne-AI komponenty, s jediným požadavkem, že

musí vracet výsledky své práce ve formátu, který lze reprezentovat jako řetězec.

Stejně jako u všech ostatních příkladů v této části knihy je tento

kód prakticky pseudokódem a má pouze zprostředkovat význam vzoru

a inspirovat vaše vlastní výtvory. Úplné popisy vzorů a kompletní příklady

kódu jsou zahrnuty v Části 2.

1 class OrderProcessor

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are an order processor, tasked with..."

6

7 def initialize(order)

8 self.order = order

9 transcript << { system: SYSTEM_DIRECTIVE }

10 transcript << { user: order.to_json }

11 end

12

13 def perform

14 # will continue looping until `stop_looping!` is called

15 chat_completion(loop: true)

https://github.com/OlympiaAI/raix-rails

Inteligentní orchestrace pracovních postupů 215

16 end

17

18 # list of functions available to be called by the AI

19 # truncated for brevity

20

21 def functions

22 [

23 {

24 name: "validate_order",

25 description: "Invoke to check validity of order",

26 parameters: {

27 ...

28 },

29 ...

30]

31 end

32

33 # implementation of functions that can be called by the AI

34 # entirely at its discretion, depending on the needs of the order

35

36 def validate_order

37 OrderValidationWorker.perform(@order)

38 end

39

40 def check_inventory

41 InventoryCheckWorker.perform(@order)

42 end

43

44 def process_payment

45 PaymentProcessingWorker.perform(@order)

46 end

47

48 def schedule_shipping

49 ShippingSchedulerWorker.perform(@order)

50 end

51

52 def send_confirmation

53 OrderConfirmationWorker.perform(@order)

54 end

55

56 def finished_processing

57 @order.update!(transcript:, processed_at: Time.current)

Inteligentní orchestrace pracovních postupů 216

58 stop_looping!

59 end

60 end

V uvedeném příkladu je OrderProcessor inicializován s objektem objednávky a udržuje

přepis průběhu pracovního postupu ve formátu konverzačního přepisu, který je

přirozený pro velké jazykové modely. AI dostává plnou kontrolu nad orchestrací

provádění různých kroků zpracování, jako je validace objednávky, kontrola zásob,

zpracování plateb a expedice.

Pokaždé, když je volána metoda chat_completion, je přepis odeslán AI, aby poskytla

dokončení ve formě volání funkce. Je zcela na AI, aby analyzovala výsledek předchozího

kroku a určila vhodnou akci. Například pokud kontrola zásob odhalí nízký stav zásob,

může OrderProcessor naplánovat úkol doplnění. Pokud selže zpracování platby, může

iniciovat opakovaný pokus nebo upozornit zákaznickou podporu.

Výše uvedený příklad nemá definované funkce pro doplňování zásob nebo

upozorňování zákaznické podpory, ale rozhodně by je mít mohl.

Přepis roste s každým voláním funkce a slouží jako záznam o průběhu pracovního

postupu, včetně výsledků každého kroku a AI generovaných instrukcí pro další kroky.

Tento přepis lze použít pro ladění, audit a poskytování přehledu o procesu vyřizování

objednávek.

Využitím AI v OrderProcessor se může e-commerce aplikace dynamicky

přizpůsobovat pracovnímu postupu na základě dat v reálném čase a inteligentně

zvládat výjimky. AI komponenta může činit informovaná rozhodnutí, optimalizovat

pracovní postup a zajistit plynulé zpracování objednávek i ve složitých scénářích.

Skutečnost, že jediným požadavkem na pracovní procesy je vrátit nějaký srozumitelný

výstup, který AI zváží při rozhodování o dalším postupu, vám může začít naznačovat,

Inteligentní orchestrace pracovních postupů 217

jak tento přístup může snížit práci spojenou s mapováním vstupů a výstupů, která je

typicky nutná při integraci různorodých systémů.

Inteligentní moderátor obsahu

Aplikace sociálních médií obecně vyžadují alespoň minimální moderování obsahu pro

zajištění bezpečné a zdravé komunity. Tento příklad komponenty ContentModerator

využívá AI k inteligentní orchestraci moderačního workflow, přičemž rozhodnutí jsou

založena na charakteristikách obsahu a výsledcích různých moderačních kroků.

Moderační proces zahrnuje více kroků, jako je analýza textu, rozpoznávání obrázků,

hodnocení reputace uživatele a manuální kontrola. Každý krok je implementován

jako samostatný pracovní proces, který provádí specifický úkol a vrací výsledek do

ContentModerator.

Zde je příklad implementace ContentModerator:

1 class ContentModerator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a content moderator process manager,

6 tasked with the workflow involved in moderating user-generated content..."

7

8 def initialize(content)

9 @content = content

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: content.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

Inteligentní orchestrace pracovních postupů 218

22 end

23

24 # list of functions available to be called by the AI

25 # truncated for brevity

26

27 def functions

28 [

29 {

30 name: "analyze_text",

31 # ...

32 },

33 {

34 name: "recognize_image",

35 description: "Invoke to describe images...",

36 # ...

37 },

38 {

39 name: "assess_user_reputation",

40 # ...

41 },

42 {

43 name: "escalate_to_manual_review",

44 # ...

45 },

46 {

47 name: "approve_content",

48 # ...

49 },

50 {

51 name: "reject_content",

52 # ...

53 }

54]

55 end

56

57 # implementation of functions that can be called by the AI

58 # entirely at its discretion, depending on the needs of the order

59

60 def analyze_text

61 result = TextAnalysisWorker.perform(@content)

62 continue_with(result)

63 end

Inteligentní orchestrace pracovních postupů 219

64

65 def recognize_image

66 result = ImageRecognitionWorker.perform(@content)

67 continue_with(result)

68 end

69

70 def assess_user_reputation

71 result = UserReputationWorker.perform(@content.user)

72 continue_with(result)

73 end

74

75 def escalate_to_manual_review

76 ManualReviewWorker.perform(@content)

77 @content.update!(status: 'pending', transcript: @transcript)

78 end

79

80 def approve_content

81 @content.update!(status: 'approved', transcript: @transcript)

82 end

83

84 def reject_content

85 @content.update!(status: 'rejected', transcript: @transcript)

86 end

87

88 private

89

90 def continue_with(result)

91 @transcript << { function: result }

92 complete(@transcript)

93 end

94 end

V tomto příkladu je ContentModerator inicializován s objektem obsahu a udržuje

moderační záznam v konverzačním formátu. AI komponenta má plnou kontrolu nad

moderačním postupem a rozhoduje, které kroky provést na základě charakteristik

obsahu a výsledků každého kroku.

Dostupné pracovní funkce, které může AI vyvolat, zahrnují analyze_text,

recognize_image, assess_user_reputation a escalate_to_manual_review.

Každá funkce deleguje úkol na odpovídající pracovní proces (TextAnalysisWorker,

Inteligentní orchestrace pracovních postupů 220

ImageRecognitionWorker, atd.) a připojuje výsledek do moderačního záznamu,

s výjimkou funkce eskalace, která působí jako koncový stav. Nakonec funkce

approve_content a reject_content také působí jako koncové stavy.

AI komponenta analyzuje obsah a určuje vhodnou akci. Pokud obsah obsahuje odkazy

na obrázky, může pro pomoc s vizuální kontrolou zavolat pracovní funkci recognize_-

image. Pokud některý pracovní proces upozorní na potenciálně škodlivý obsah, AI se

může rozhodnout eskalovat obsah k manuální kontrole nebo jej rovnou zamítnout. Ale

v závislosti na závažnosti varování se AI může rozhodnout využít výsledky hodnocení

reputace uživatele při rozhodování, jak naložit s obsahem, u kterého si není jinak jistá.

V závislosti na případu použití mohoumít například důvěryhodní uživatelé větší volnost

v tom, co mohou zveřejnit. A tak dále a tak podobně…

Stejně jako v předchozím příkladu správce procesů slouží moderační záznam jako

evidence provedení pracovního postupu, včetně výsledků každého kroku a rozhodnutí

generovaných AI. Tento záznam lze využít pro audit, transparentnost a zlepšování

moderačního procesu v průběhu času.

Využitím AI v ContentModerator může aplikace sociálních médií dynamicky

přizpůsobovat moderační postup na základě charakteristik obsahu a inteligentně

zvládat komplexní moderační scénáře. AI komponenta může činit informovaná

rozhodnutí, optimalizovat pracovní postup a zajistit bezpečnou a zdravou komunitní

zkušenost.

Prozkoumejme další dva příklady, které demonstrují prediktivní plánování úloh

a zpracování výjimek a zotavení v kontextu inteligentní orchestrace pracovního

postupu.

Prediktivní plánování úloh v systému zákaznické podpory

V aplikaci zákaznické podpory vytvořené pomocí Ruby on Rails je efektivní správa

a prioritizace požadavků podpory klíčová pro poskytování včasné pomoci zákazníkům.

Inteligentní orchestrace pracovních postupů 221

Komponenta SupportTicketScheduler využívá AI k prediktivnímu plánování

a přiřazování požadavků podpory dostupným agentům na základě různých faktorů,

jako je naléhavost požadavku, odbornost agenta a pracovní vytížení.

1 class SupportTicketScheduler

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a support ticket scheduler,

6 tasked with intelligently assigning tickets to available agents..."

7

8 def initialize(ticket)

9 @ticket = ticket

10 @transcript = [

11 { system: SYSTEM_DIRECTIVE },

12 { user: ticket.to_json }

13]

14 end

15

16 def perform

17 complete(@transcript)

18 end

19

20 def model

21 "openai/gpt-4"

22 end

23

24 def functions

25 [

26 {

27 name: "analyze_ticket_urgency",

28 # ...

29 },

30 {

31 name: "list_available_agents",

32 description: "Includes expertise of available agents",

33 # ...

34 },

35 {

36 name: "predict_agent_workload",

37 description: "Uses historical data to predict upcoming workloads",

Inteligentní orchestrace pracovních postupů 222

38 # ...

39 },

40 {

41 name: "assign_ticket_to_agent",

42 # ...

43 },

44 {

45 name: "reschedule_ticket",

46 # ...

47 }

48]

49 end

50

51 # implementation of functions that can be called by the AI

52 # entirely at its discretion, depending on the needs of the order

53

54 def analyze_ticket_urgency

55 result = TicketUrgencyAnalyzer.perform(@ticket)

56 continue_with(result)

57 end

58

59 def list_available_agents

60 result = ListAvailableAgents.perform

61 continue_with(result)

62 end

63

64 def predict_agent_workload

65 result = AgentWorkloadPredictor.perform

66 continue_with(result)

67 end

68

69 def assign_ticket_to_agent

70 TicketAssigner.perform(@ticket, @transcript)

71 end

72

73 def delay_assignment(until)

74 until = DateTimeStandardizer.process(until)

75 SupportTicketScheduler.delay(@ticket, @transcript, until)

76 end

77

78 private

79

Inteligentní orchestrace pracovních postupů 223

80 def continue_with(result)

81 @transcript << { function: result }

82 complete(@transcript)

83 end

84 end

V tomto příkladu je SupportTicketScheduler inicializován s objektem požadavku

podpory a udržuje záznam plánování. Komponenta AI analyzuje detaily požadavku

a prediktivně plánuje jeho přiřazení na základě faktorů jako je naléhavost požadavku,

odbornost agenta a předpokládané pracovní zatížení agenta.

Dostupné funkce, které může AI vyvolat, zahrnují analyze_ticket_urgency,

list_available_agents, predict_agent_workload a assign_ticket_-

to_agent. Každá funkce deleguje úkol na příslušnou analyzační nebo predikční

komponentu a připojuje výsledek k záznamu plánování. AI má také možnost odložit

přiřazení pomocí funkce delay_assignment.

Komponenta AI zkoumá záznam plánování a činí informovaná rozhodnutí o přiřazení

požadavků. Bere v úvahu naléhavost požadavku, odbornost dostupných agentů

a předpokládané pracovní zatížení každého agenta, aby určila nejvhodnějšího agenta

pro zpracování požadavku.

Využitím prediktivního plánování úkolů může aplikace zákaznické podpory

optimalizovat přiřazování požadavků, zkrátit dobu odezvy a zlepšit celkovou

spokojenost zákazníků. Proaktivní a efektivní správa požadavků podpory zajišťuje, že

správné požadavky jsou přiřazeny správným agentům ve správný čas.

Zpracování výjimek a obnova v pipeline zpracování dat

Zpracování výjimek a obnova po selháních jsou nezbytné pro zajištění integrity

dat a prevenci jejich ztráty. Komponenta DataProcessingOrchestrator využívá

AI k inteligentnímu zpracování výjimek a orchestraci procesu obnovy v pipeline

zpracování dat

Inteligentní orchestrace pracovních postupů 224

1 class DataProcessingOrchestrator

2 include Raix::ChatCompletion

3 include Raix::FunctionDispatch

4

5 SYSTEM_DIRECTIVE = "You are a data processing orchestrator..."

6

7 def initialize(data_batch)

8 @data_batch = data_batch

9 @transcript = [

10 { system: SYSTEM_DIRECTIVE },

11 { user: data_batch.to_json }

12]

13 end

14

15 def perform

16 complete(@transcript)

17 end

18

19 def model

20 "openai/gpt-4"

21 end

22

23 def functions

24 [

25 {

26 name: "validate_data",

27 # ...

28 },

29 {

30 name: "process_data",

31 # ...

32 },

33 {

34 name: "request_fix",

35 # ...

36 },

37 {

38 name: "retry_processing",

39 # ...

40 },

41 {

42 name: "mark_data_as_failed",

Inteligentní orchestrace pracovních postupů 225

43 # ...

44 },

45 {

46 name: "finished",

47 # ...

48 }

49]

50 end

51

52 # implementation of functions that can be called by the AI

53 # entirely at its discretion, depending on the needs of the order

54

55 def validate_data

56 result = DataValidator.perform(@data_batch)

57 continue_with(result)

58 rescue ValidationException => e

59 handle_validation_exception(e)

60 end

61

62 def process_data

63 result = DataProcessor.perform(@data_batch)

64 continue_with(result)

65 rescue ProcessingException => e

66 handle_processing_exception(e)

67 end

68

69 def request_fix(description_of_fix)

70 result = SmartDataFixer.new(description_of_fix, @data_batch)

71 continue_with(result)

72 end

73

74 def retry_processing(timeout_in_seconds)

75 wait(timeout_in_seconds)

76 process_data

77 end

78

79 def mark_data_as_failed

80 @data_batch.update!(status: 'failed', transcript: @transcript)

81 end

82

83 def finished

84 @data_batch.update!(status: 'finished', transcript: @transcript)

Inteligentní orchestrace pracovních postupů 226

85 end

86

87 private

88

89 def continue_with(result)

90 @transcript << { function: result }

91 complete(@transcript)

92 end

93

94 def handle_validation_exception(exception)

95 @transcript << { exception: exception.message }

96 complete(@transcript)

97 end

98

99 def handle_processing_exception(exception)

100 @transcript << { exception: exception.message }

101 complete(@transcript)

102 end

103 end

V tomto příkladu je DataProcessingOrchestrator inicializován s objektem dávky

dat a udržuje záznam o zpracování. AI komponenta orchestruje pipeline zpracování dat,

řeší výjimky a zotavuje se z chyb podle potřeby.

Dostupné funkce, které může AI volat, zahrnují validate_data, process_data,

request_fix, retry_processing a mark_data_as_failed. Každá funkce deleguje

úkol na odpovídající komponentu zpracování dat a připojuje výsledek nebo podrobnosti

o výjimce do záznamu o zpracování.

Pokud během kroku validate_data dojde k výjimce při validaci, funkce handle_-

validation_exception připojí data o výjimce do záznamu a předá řízení zpět AI.

Podobně, pokud během kroku process_data dojde k výjimce při zpracování, AI může

rozhodnout o strategii zotavení.

V závislosti na povaze vzniklé výjimky může AI podle svého uvážení rozhodnout

o volání request_fix, které deleguje na AI komponentu SmartDataFixer

(viz kapitola Samouzdravující se data). Opravný nástroj dat dostane v běžné angličtině

Inteligentní orchestrace pracovních postupů 227

popis toho, jak by měl upravit @data_batch, aby bylo možné zpracování opakovat.

Možná by úspěšné opakování znamenalo odstranění záznamů z dávky dat, které

neprošly validací, a/nebo jejich zkopírování do jiné pipeline zpracování pro lidskou

kontrolu? Možnosti jsou téměř nekonečné.

Začleněním zpracování výjimek a zotavení řízeného AI se aplikace pro zpracování dat

stává odolnější a tolerantnější k chybám. DataProcessingOrchestrator inteligentně

spravuje výjimky, minimalizuje ztrátu dat a zajišťuje plynulé provedení workflow

zpracování dat.

Monitorování a protokolování

Monitorování a protokolování poskytují přehled o průběhu, výkonu a stavu komponent

workflow řízených AI, což vývojářům umožňuje sledovat a analyzovat chování

systému. Implementace efektivních mechanismů monitorování a protokolování je

nezbytná pro ladění, audit a neustálé zlepšování inteligentních workflow.

Monitorování průběhu a výkonu workflow

Pro zajištění plynulého provádění inteligentních workflow je důležité sledovat průběh

a výkon každé komponentyworkflow. To zahrnuje sledování klíčovýchmetrik a událostí

během životního cyklu workflow.

Důležité aspekty ke sledování zahrnují:

1. Doba provádění workflow: Měření času, který každá komponenta workflow

potřebuje k dokončení svého úkolu. To pomáhá identifikovat výkonnostní úzká místa

a optimalizovat celkovou efektivitu workflow.

2. Využití zdrojů: Sledování využití systémových zdrojů, jako jsou CPU, paměť

a úložiště, každou komponentou workflow. To pomáhá zajistit, že systém pracuje

v rámci své kapacity a může efektivně zvládat pracovní zátěž.

Inteligentní orchestrace pracovních postupů 228

3. Míry chyb a výjimky: Sledování výskytu chyb a výjimek v komponentách

workflow. To pomáhá identifikovat potenciální problémy a umožňuje proaktivní

zpracování a zotavení z chyb.

4. Rozhodovací body a výsledky: Sledování rozhodovacích bodů v rámci workflow

a výsledků rozhodnutí řízených AI. To poskytuje vhled do chování a efektivity

AI komponent.

Data zachycená monitorovacími procesy mohou být zobrazena v dashboardech nebo

použita jako vstupy pro plánované zprávy, které informují správce systému o jeho stavu.

Monitorovací data mohou být předána procesu správce systému řízenému

AI ke kontrole a případné akci!

Protokolování klíčových událostí a rozhodnutí

Protokolování je zásadní praxe, která zahrnuje zachycování a ukládání relevantních

informací o klíčových událostech, rozhodnutích a výjimkách, ke kterým dochází během

provádění workflow.

Důležité aspekty k protokolování zahrnují:

1. Zahájení a dokončení workflow: Zaznamenávání času začátku a konce každé

instance workflow, spolu s relevantními metadaty, jako jsou vstupní data a uživatelský

kontext.

2. Provádění komponent: Zaznamenávání podrobností o provádění každé

komponenty workflow, včetně vstupních parametrů, výstupních výsledků a veškerých

vygenerovaných mezilehlých dat.

3. Rozhodnutí AI a zdůvodnění: Zaznamenávání rozhodnutí učiněných

AI komponentami, spolu s podkladovým zdůvodněním nebo skóre spolehlivosti.

To poskytuje transparentnost a umožňuje audit rozhodnutí řízených AI.

Inteligentní orchestrace pracovních postupů 229

4. Výjimky a chybové zprávy: Zaznamenávání všech výjimek nebo chybových zpráv,

se kterými se během provádění workflow setkáme, včetně zásobníkového výpisu

a relevantních kontextových informací.

Protokolování lze implementovat pomocí různých technik, jako je zápis do souborů

protokolu, ukládání protokolů v databázi nebo odesílání protokolů do centralizované

služby protokolování. Je důležité zvolit framework pro protokolování, který poskytuje

flexibilitu, škálovatelnost a snadnou integraci s architekturou aplikace.

Zde je příklad, jak lze implementovat protokolování v aplikaci Ruby on Rails pomocí

třídy ActiveSupport::Logger:

1 class WorkflowLogger

2 def self.log(message, severity = :info)

3 @logger ||= ActiveSupport::Logger.new('workflow.log')

4 @logger.formatter ||= proc do |severity, datetime, progname, msg|

5 "#{datetime} [#{severity}] #{msg}\n"

6 end

7 @logger.send(severity, message)

8 end

9 end

10

11 # Usage example

12 WorkflowLogger.log("Workflow initiated for order ##{@order.id}")

13 WorkflowLogger.log("Payment processing completed successfully")

14 WorkflowLogger.log("Inventory check failed for item ##{item.id}", :error)

Strategickým umístěním protokolovacích záznamů v rámci komponent pracovních

postupů a rozhodovacích bodů umělé inteligence mohou vývojáři získat cenné

informace pro ladění, audit a analýzu.

Výhody monitorování a protokolování

Implementace monitorování a protokolování v inteligentní orchestraci pracovních

postupů přináší několik výhod:

Inteligentní orchestrace pracovních postupů 230

1. Ladění a řešení problémů: Podrobné protokoly a monitorovací data pomáhají

vývojářům rychle identifikovat a diagnostikovat problémy. Poskytují přehled o průběhu

vykonávání pracovního postupu, interakcích mezi komponenty a případných chybách

či výjimkách.

2. Optimalizace výkonu: Monitorování výkonnostních metrik umožňuje vývojářům

identifikovat úzká místa a optimalizovat komponenty pracovního postupu pro lepší

efektivitu. Analýzou doby vykonávání, využití zdrojů a dalších metrik mohou vývojáři

činit informovaná rozhodnutí pro zlepšení celkového výkonu systému.

3. Audit a dodržování předpisů: Protokolování klíčových událostí a rozhodnutí

poskytuje auditní stopu pro regulační shodu a odpovědnost. Umožňuje organizacím

sledovat a ověřovat činnosti prováděné komponenty umělé inteligence a zajistit

dodržování obchodních pravidel a právních požadavků.

4. Neustálé zlepšování: Data z monitorování a protokolování slouží jako cenné vstupy

pro neustálé zlepšování inteligentních pracovních postupů. Analýzou historických dat,

identifikací vzorců a měřením efektivity rozhodnutí umělé inteligence mohou vývojáři

iterativně zdokonalovat a vylepšovat logiku orchestrace pracovních postupů.

Úvahy a osvědčené postupy

Při implementaci monitorování a protokolování v inteligentní orchestraci pracovních

postupů zvažte následující osvědčené postupy:

1. Definujte jasné monitorovací metriky: Identifikujte klíčové metriky a události,

které je třeba monitorovat na základě specifických požadavků pracovního postupu.

Zaměřte se nametriky, které poskytují smysluplné informace o výkonu, zdraví a chování

systému.

2. Implementujte podrobné protokolování: Zajistěte, aby byly protokolovací

záznamy umístěny na vhodných místech v rámci komponent pracovního postupu

a rozhodovacích bodů umělé inteligence. Zachyťte relevantní kontextové informace,

Inteligentní orchestrace pracovních postupů 231

jako jsou vstupní parametry, výstupní výsledky a veškerá vygenerovaná mezilehlá

data.

3. Používejte strukturované protokolování: Používejte strukturovaný formát

protokolování pro usnadnění snadného parsování a analýzy protokolovaných dat.

Strukturované protokolování umožňuje lepší vyhledávání, filtrování a agregaci

protokolových záznamů.

4. Spravujte uchovávání a rotaci protokolů: Implementujte zásady pro uchovávání

a rotaci protokolů pro správu úložiště a životního cyklu protokolových souborů. Určete

vhodnou dobu uchovávání na základě právních požadavků, omezení úložiště a potřeb

analýzy. Pokud je to možné, přesuňte protokolování na službu třetí strany, jako je

Papertrail.

5. Zabezpečte citlivé informace: Buďte opatrní při protokolování citlivých informací,

jako jsou osobní údaje (PII) nebo důvěrné obchodní údaje. Implementujte vhodná

bezpečnostní opatření, jako je maskování dat nebo šifrování, pro ochranu citlivých

informací v protokolových souborech.

6. Integrujte s monitorovacími a výstražnými nástroji: Využijte monitorovací

a výstražné nástroje pro centralizaci sběru, analýzy a vizualizace monitorovacích

a protokolovacích dat. Tyto nástroje mohou poskytovat informace v reálném čase,

generovat upozornění na základě předem definovaných prahových hodnot a usnadnit

proaktivní detekci a řešení problémů. Mým oblíbeným z těchto nástrojů je Datadog.

Implementací komplexních mechanismůmonitorování a protokolování mohou vývojáři

získat cenné informace o chování a výkonu inteligentních pracovních postupů. Tyto

poznatky umožňují efektivní ladění, optimalizaci a neustálé zlepšování systémů

orchestrace pracovních postupů založených na umělé inteligenci.

https://papertrailapp.com
https://www.datadoghq.com

Inteligentní orchestrace pracovních postupů 232

Úvahy o škálovatelnosti a výkonu

Škálovatelnost a výkon jsou kritické aspekty, které je třeba zvážit při návrhu

a implementaci systémů inteligentní orchestrace pracovních postupů. S rostoucím

objemem souběžných pracovních postupů a složitostí komponent založených na umělé

inteligenci je nezbytné zajistit, aby systém dokázal efektivně zvládat pracovní zátěž

a bezproblémově se škálovat podle rostoucích požadavků.

Zvládání velkých objemů souběžných pracovních postupů

Systémy inteligentní orchestrace pracovních postupů často musí zvládat velké množství

souběžných pracovních postupů. Pro zajištění škálovatelnosti zvažte následující

strategie:

1. Asynchronní zpracování: Implementujte mechanismy asynchronního zpracování

pro oddělení vykonávání komponent pracovního postupu. To umožňuje systému

zpracovávat více pracovních postupů současně bez blokování nebo čekání na dokončení

každé komponenty. Asynchronního zpracování lze dosáhnout pomocí front zpráv,

architektur řízených událostmi nebo frameworků pro zpracování úloh na pozadí, jako

je Sidekiq.

2. Distribuovaná architektura: Navrhněte architekturu systému tak, aby využívala

bezserverové komponenty (jako je AWSLambda) nebo jednoduše distribuovala pracovní

zátěžmezi více uzlů či serverů spolu s vaším hlavním aplikačním serverem. To umožňuje

horizontální škálovatelnost, kdy lze přidat další uzly pro zvládnutí zvýšených objemů

pracovních postupů.

3. Paralelní vykonávání: Identifikujte příležitosti pro paralelní vykonávání v rámci

pracovních postupů. Některé komponenty pracovního postupu mohou být na sobě

nezávislé a lze je vykonávat současně. Využitím technik paralelního zpracování, jako

je vícevláknové zpracování nebo distribuované fronty úloh, může systém optimalizovat

využití zdrojů a zkrátit celkovou dobu vykonávání pracovního postupu.

Inteligentní orchestrace pracovních postupů 233

Optimalizace výkonu komponent založených na umělé
inteligenci

Komponenty založené na umělé inteligenci, jako jsou modely strojového učení nebo

systémy pro zpracování přirozeného jazyka, mohou být výpočetně náročné a ovlivnit

celkový výkon systému pro orchestraci pracovních postupů. Pro optimalizaci výkonu

AI komponent zvažte následující techniky:

1. Ukládání do mezipaměti: Pokud je vaše AI zpracování čistě generativní a nezahrnuje

vyhledávání informací v reálném čase nebo externí integrace pro generování chatových

odpovědí, můžete se zaměřit na mechanismy ukládání do mezipaměti pro ukládání

a opětovné použití výsledků často přistupovaných nebo výpočetně náročných operací.

2. Optimalizace modelu: Průběžně optimalizujte způsob, jakým používáte

AI modely v komponentách pracovního postupu. To může zahrnovat techniky

jako Destilace promptů nebo to může být jednoduše otázka testování nových modelů,

když se stanou dostupnými.

3. Dávkové zpracování: Pokud pracujete s modely třídy GPT--4, můžete využít

techniky dávkového zpracování pro zpracování více datových bodů nebo požadavků

v jedné dávce, namísto jejich individuálního zpracování. Zpracováním dat v dávkách

může systém optimalizovat využití zdrojů a snížit režii opakovaných požadavků na

model.

Monitorování a profilování výkonu

Pro identifikaci výkonnostních úzkých míst a optimalizaci škálovatelnosti systému

inteligentní orchestrace pracovních postupů je klíčové implementovat mechanismy

monitorování a profilování. Zvažte následující přístupy:

1. Metriky výkonu: Definujte a sledujte klíčové metriky výkonu, jako je doba odezvy,

propustnost, využití zdrojů a latence. Tyto metriky poskytují přehled o výkonu systému

a pomáhají identifikovat oblasti pro optimalizaci. Populární agregátor AI modelů

Inteligentní orchestrace pracovních postupů 234

OpenRouter zahrnuje metriky Host1 a Speed2 v každé API odpovědi, což usnadňuje

sledování těchto klíčových metrik.

2. Profilovací nástroje: Využívejte profilovací nástroje k analýze výkonu jednotlivých

komponent pracovního postupu a AI operací. Profilovací nástroje mohou pomoci

identifikovat výkonnostní hotspoty, neefektivní cesty v kódu nebo operace náročné

na zdroje. Mezi populární profilovací nástroje patří New Relic, Scout nebo vestavěné

profilery poskytované programovacím jazykem nebo frameworkem.

3. Zátěžové testování: Provádějte zátěžové testování pro vyhodnocení výkonu systému

při různých úrovních souběžného zatížení. Zátěžové testování pomáhá identifikovat

limity škálovatelnosti systému, detekovat degradaci výkonu a zajistit, že systém zvládne

očekávaný provoz bez kompromisů ve výkonu.

4. Kontinuální monitoring: Implementujte mechanismy kontinuálního monitorování

a upozorňování pro proaktivní detekci problémů s výkonem a úzkých míst. Nastavte

monitorovací dashboardy a upozornění pro sledování klíčových ukazatelů výkonu

(KPI) a přijímání oznámení při překročení předem definovaných prahových hodnot. To

umožňuje rychlou identifikaci a řešení problémů s výkonem.

Strategie škálování

Pro zvládnutí rostoucího zatížení a zajištění škálovatelnosti systému inteligentní

orchestrace pracovních postupů zvažte následující strategie škálování:

1. Vertikální škálování: Vertikální škálování zahrnuje zvyšování zdrojů (např. CPU,

paměti) jednotlivých uzlů nebo serverů pro zvládnutí vyššího zatížení. Tento přístup je

vhodný, když systém vyžaduje více výpočetního výkonu nebo paměti pro zpracování

komplexních pracovních postupů nebo AI operací.

1Host je čas, který byl potřeba k přijetí prvního bajtu streamovaného generování od hostitele modelu,
také známý jako “čas do prvního bajtu.”

2Speed se vypočítává jako počet dokončovacích tokenů dělený celkovým časem generování. Pro
nestreamované požadavky se latence považuje za součást času generování.

https://openrouter.ai

Inteligentní orchestrace pracovních postupů 235

2. Horizontální škálování: Horizontální škálování zahrnuje přidávání více uzlů nebo

serverů do systému pro distribuci zátěže. Tento přístup je efektivní, když systém

potřebuje zvládnout velký počet souběžných pracovních postupů nebo když lze zátěž

snadno distribuovat mezi více uzlů. Horizontální škálování vyžaduje distribuovanou

architekturu a mechanismy vyvažování zátěže pro zajištění rovnoměrné distribuce

provozu.

3. Automatické škálování: Implementujte mechanismy automatického škálování

pro automatické upravování počtu uzlů nebo zdrojů na základě požadavků na zátěž.

Automatické škálování umožňuje systému dynamicky škálovat nahoru nebo dolů

v závislosti na příchozím provozu, zajišťující optimální využití zdrojů a nákladovou

efektivitu. Cloudové platformy jako Amazon Web Services (AWS) nebo Google Cloud

Platform (GCP) poskytují možnosti automatického škálování, které lze využít pro

systémy inteligentní orchestrace pracovních postupů.

Techniky optimalizace výkonu

Kromě strategií škálování zvažte následující techniky optimalizace výkonu pro zvýšení

efektivity systému inteligentní orchestrace pracovních postupů:

1. Efektivní ukládání a načítání dat: Optimalizujte mechanismy ukládání a načítání

dat používané komponentami pracovního postupu. Používejte efektivní indexování

databáze, techniky optimalizace dotazů a ukládání dat do mezipaměti pro minimalizaci

latence a zlepšení výkonu operací náročných na data.

2. Asynchronní I/O: Využijte asynchronní I/O operace k zabránění blokování a zlepšení

odezvy systému. Asynchronní I/O umožňuje systému zpracovávat více požadavků

současně bez čekání na dokončení I/O operací, čímž maximalizuje využití zdrojů.

3. Efektivní serializace a deserializace: Optimalizujte procesy serializace

a deserializace používané pro výměnu dat mezi komponenty workflow. Používejte

efektivní serializační formáty, jako jsou Protocol Buffers nebo MessagePack, ke snížení

režie datové serializace a zlepšení výkonu komunikace mezi komponenty.

Inteligentní orchestrace pracovních postupů 236

Pro aplikace založené na Ruby zvažte použití Universal ID. Universal

ID využívá MessagePack i Brotli (kombinaci vytvořenou pro rychlost

a špičkovou kompresi dat). Při společném použití jsou tyto knihovny až o 30

% rychlejší a dosahují kompresních poměrů v rozmezí 2-5 % ve srovnání

s Protocol Buffers.

4. Komprese a kódování: Aplikujte techniky komprese a kódování ke snížení velikosti

dat přenášených mezi komponenty workflow. Kompresní algoritmy jako gzip nebo

Brotli mohou výrazně snížit využití síťové šířky pásma a zlepšit celkový výkon systému.

Zohledněním aspektů škálovatelnosti a výkonu během návrhu a implementace systémů

inteligentní orchestrace workflow můžete zajistit, že váš systém zvládne vysoké objemy

souběžných workflow, optimalizuje výkon komponent založených na umělé inteligenci

a bezproblémově se přizpůsobí rostoucím požadavkům. Pro udržení výkonu a odezvy

systému při zvyšující se zátěži a složitosti v průběhu času je nezbytné průběžné

monitorování, profilování a optimalizace.

Testování a validace workflow

Testování a validace jsou klíčové aspekty vývoje a údržby systémů inteligentní

orchestrace workflow. Vzhledem ke komplexní povaze workflow založených na umělé

inteligenci je nezbytné zajistit, aby každá komponenta fungovala podle očekávání,

celkové workflow se chovalo správně a rozhodnutí AI byla přesná a spolehlivá. V této

části prozkoumáme různé techniky a aspekty testování a validace inteligentních

workflow.

Jednotkové testování komponent workflow

Jednotkové testování zahrnuje testování jednotlivých komponent workflow izolovaně

pro ověření jejich správnosti a robustnosti. Při jednotkovém testování komponent

založených na AI zvažte následující:

https://github.com/hopsoft/universalid

Inteligentní orchestrace pracovních postupů 237

1. Validace vstupu: Otestujte schopnost komponenty zpracovat různé typy vstupů,

včetně platných a neplatných dat. Ověřte, že komponenta elegantně zvládá krajní

případy a poskytuje odpovídající chybové zprávy nebo výjimky.

2. Ověření výstupu: Potvrďte, že komponenta produkuje očekávaný výstup pro

danou sadu vstupů. Porovnejte skutečný výstup s očekávanými výsledky pro zajištění

správnosti.

3. Zpracování chyb: Otestujte mechanismy zpracování chyb komponenty simulací

různých chybových scénářů, jako je neplatný vstup, nedostupnost zdrojů nebo

neočekávané výjimky. Ověřte, že komponenta zachytí a správně zpracuje chyby.

4. Hraniční podmínky: Otestujte chování komponenty při hraničních podmínkách,

jako je prázdný vstup, maximální velikost vstupu nebo extrémní hodnoty. Zajistěte, že

komponenta zvládá tyto podmínky elegantně bez pádu nebo produkování nesprávných

výsledků.

Zde je příklad jednotkového testu pro komponentuworkflow v Ruby pomocí testovacího

frameworku RSpec:

1 RSpec.describe OrderValidator do

2 describe '#validate' do

3 context 'when order is valid' do

4 let(:order) { build(:order) }

5

6 it 'returns true' do

7 expect(subject.validate(order)).to be true

8 end

9 end

10

11 context 'when order is invalid' do

12 let(:order) { build(:order, total_amount: -100) }

13

14 it 'returns false' do

15 expect(subject.validate(order)).to be false

16 end

17 end

Inteligentní orchestrace pracovních postupů 238

18 end

19 end

V tomto příkladu je komponenta OrderValidator testována pomocí dvou testovacích

případů: jednoho pro platnou objednávku a druhého pro neplatnou objednávku.

Testovací případy ověřují, že metoda validate vrací očekávanou booleovskou

hodnotu na základě platnosti objednávky.

Integrační testování interakcí pracovního postupu

Integrační testování se zaměřuje na ověřování interakcí a toku dat mezi různými

komponentami pracovního postupu. Zajišťuje, že komponenty spolupracují

bezproblémově a produkují očekávané výsledky. Při integračním testování

inteligentních pracovních postupů zvažte následující:

1. Interakce komponent: Testujte komunikaci a výměnu dat mezi komponentami

pracovního postupu. Ověřte, že výstup jedné komponenty je správně předán jako vstup

další komponentě v pracovním postupu.

2. Konzistence dat: Zajistěte, že data zůstávají konzistentní a přesná během průchodu

pracovním postupem. Ověřte, že transformace dat, výpočty a agregace jsou prováděny

správně.

3. Propagace výjimek: Testujte, jak jsou výjimky a chyby propagovány a zpracovávány

napříč komponentami pracovního postupu. Ověřte, že výjimky jsou zachyceny,

zaznamenány a správně zpracovány, aby nedošlo k narušení pracovního postupu.

4. Asynchronní chování: Pokud pracovní postup zahrnuje asynchronní komponenty

nebo paralelní vykonávání, testujte mechanismy koordinace a synchronizace. Zajistěte,

že pracovní postup se chová správně v souběžných a asynchronních scénářích.

Zde je příklad integračního testu pro pracovní postup v Ruby s využitím testovacího

frameworku RSpec:

Inteligentní orchestrace pracovních postupů 239

1 RSpec.describe OrderProcessingWorkflow do

2

3 let(:order) { build(:order) }

4

5 it 'processes the order successfully' do

6 expect(OrderValidator).to receive(:validate).and_return(true)

7 expect(InventoryManager).to receive(:check_availability).and_return(true)

8 expect(PaymentProcessor).to receive(:process_payment).and_return(true)

9 expect(ShippingService).to receive(:schedule_shipping).and_return(true)

10

11 workflow = OrderProcessingWorkflow.new(order)

12 result = workflow.process

13

14 expect(result).to be true

15 expect(order.status).to eq('processed')

16 end

17

18 end

V tomto příkladu je OrderProcessingWorkflow testován ověřením interakcí

mezi různými komponenty workflow. Testovací případ nastavuje očekávání pro

chování každé komponenty a zajišťuje, že workflow úspěšně zpracuje objednávku

a odpovídajícím způsobem aktualizuje její stav.

Testování rozhodovacích bodů AI

Testování rozhodovacích bodů AI je klíčové pro zajištění přesnosti a spolehlivosti

workflows poháněných umělou inteligencí. Při testování rozhodovacích bodů AI zvažte

následující:

1. Přesnost rozhodování: Ověřte, že komponenta AI činí přesná rozhodnutí na základě

vstupních dat a natrénovaného modelu. Porovnejte rozhodnutí AI s očekávanými

výsledky nebo referenčními daty.

2. Krajní případy: Otestujte chování komponenty AI v krajních případech

a neobvyklých scénářích. Ověřte, že komponenta AI zvládá tyto případy elegantně

a činí rozumná rozhodnutí.

Inteligentní orchestrace pracovních postupů 240

3. Předpojatost a spravedlivost: Vyhodnoťte komponentu AI z hlediska potenciální

předpojatosti a zajistěte, že činí spravedlivá a nezaujatá rozhodnutí. Otestujte

komponentu s různorodými vstupními daty a analyzujte výsledky na přítomnost

jakýchkoliv diskriminačních vzorců.

4. Vysvětlitelnost: Pokud komponenta AI poskytuje vysvětlení nebo zdůvodnění svých

rozhodnutí, ověřte správnost a srozumitelnost těchto vysvětlení. Zajistěte, že vysvětlení

odpovídají základnímu rozhodovacímu procesu.

Zde je příklad testování rozhodovacího bodu AI v Ruby s použitím testovacího

frameworku RSpec:

1 RSpec.describe FraudDetector do

2 describe '#detect_fraud' do

3 context 'when transaction is fraudulent' do

4 let(:tx) do

5 build(:transaction, amount: 10_000, location: 'High-Risk Country')

6 end

7

8 it 'returns true' do

9 expect(subject.detect_fraud(tx)).to be true

10 end

11 end

12

13 context 'when transaction is legitimate' do

14 let(:tx) do

15 build(:transaction, amount: 100, location: 'Low-Risk Country')

16 end

17

18 it 'returns false' do

19 expect(subject.detect_fraud(tx)).to be false

20 end

21 end

22 end

23 end

V tomto příkladu je AI komponenta FraudDetector testována dvěma testovacími

případy: jedním pro podvodnou transakci a druhým pro legitimní transakci. Testovací

Inteligentní orchestrace pracovních postupů 241

případy ověřují, že metoda detect_fraud vrací očekávanou booleovskou hodnotu na

základě charakteristik transakce.

End-to-End testování

End-to-end testování zahrnuje testování celého pracovního postupu od začátku do

konce, simuluje reálné scénáře a uživatelské interakce. Zajišťuje, že pracovní postup

se chová správně a produkuje požadované výsledky. Při provádění end-to-end testování

pro inteligentní pracovní postupy zvažte následující:

1. Uživatelské scénáře: Identifikujte běžné uživatelské scénáře a otestujte chování

pracovního postupu v těchto scénářích. Ověřte, že pracovní postup správně zpracovává

uživatelské vstupy, činí vhodná rozhodnutí a produkuje očekávané výstupy.

2. Validace dat: Zajistěte, že pracovní postup validuje a čistí uživatelské vstupy, aby

se předešlo nekonzistencím v datech nebo bezpečnostním zranitelnostem. Otestujte

pracovní postup s různými typy vstupních dat, včetně platných i neplatných dat.

3. Zotavení z chyb: Otestujte schopnost pracovního postupu zotavit se z chyb

a výjimek. Simulujte chybové scénáře a ověřte, že pracovní postup je zvládá elegantně,

zaznamenává chyby a provádí příslušné kroky k zotavení.

4. Výkon a škálovatelnost: Vyhodnoťte výkon a škálovatelnost pracovního postupu při

různých podmínkách zatížení. Otestujte pracovní postup s velkým objemem souběžných

požadavků a změřte doby odezvy, využití zdrojů a celkovou stabilitu systému.

Zde je příklad end-to-end testu pro pracovní postup v Ruby s využitím testovacího

frameworku RSpec a knihovny Capybara pro simulaci uživatelských interakcí:

Inteligentní orchestrace pracovních postupů 242

1 RSpec.describe 'Order Processing Workflow' do

2 scenario 'User places an order successfully' do

3 visit '/orders/new'

4 fill_in 'Product', with: 'Sample Product'

5 fill_in 'Quantity', with: '2'

6 fill_in 'Shipping Address', with: '123 Main St'

7 click_button 'Place Order'

8

9 expect(page).to have_content('Order Placed Successfully')

10 expect(Order.count).to eq(1)

11 expect(Order.last.status).to eq('processed')

12 end

13 end

V tomto příkladu end-to-end test simuluje uživatele, který zadává objednávku přes

webové rozhraní. Vyplňuje požadovaná pole formuláře, odesílá objednávku a ověřuje, že

objednávka je úspěšně zpracována, zobrazuje příslušnou potvrzující zprávu a aktualizuje

stav objednávky v databázi.

Průběžná integrace a nasazení

Pro zajištění spolehlivosti a udržovatelnosti inteligentních workflow se doporučuje

integrovat testování a validaci do pipeline průběžné integrace a nasazení (CI/CD). To

umožňuje automatizované testování a validaci změn workflow před jejich nasazením

do produkce. Zvažte následující postupy:

1. Automatizované spouštění testů: Nakonfigurujte CI/CD pipeline tak, aby

automaticky spouštěla sadu testů při každé změně v kódové základně workflow. Tím

zajistíte, že případné regrese nebo selhání budou odhaleny již v počátečních fázích

vývoje.

2. Sledování testovacího pokrytí: Měřte a sledujte testovací pokrytí komponent

workflow a bodů AI rozhodování. Usilujte o vysoké testovací pokrytí, abyste zajistili

důkladné otestování kritických cest a scénářů.

Inteligentní orchestrace pracovních postupů 243

3. Průběžná zpětná vazba: Integrujte výsledky testů a metriky kvality kódu do

vývojového workflow. Poskytujte vývojářům průběžnou zpětnou vazbu o stavu testů,

kvalitě kódu a jakýchkoli problémech zjištěných během CI/CD procesu.

4. Staging prostředí: Nasaďte workflow do staging prostředí, která věrně kopírují

produkční prostředí. Proveďte dodatečné testování a validaci ve staging prostředí, abyste

odhalili případné problémy související s infrastrukturou, konfigurací nebo integrací dat.

5. Mechanismy rollbacku: Implementujte mechanismy rollbacku pro případ selhání

nasazení nebo zjištění kritických problémů v produkci. Zajistěte, aby workflow mohlo

být rychle vráceno na předchozí stabilní verzi, čímž se minimalizuje výpadek a dopad

na uživatele.

Začleněním testování a validace do celého vývojového cyklu inteligentních workflow

mohou organizace zajistit spolehlivost, přesnost a udržovatelnost svých systémů

založených na AI. Pravidelné testování a validace pomáhají odhalit chyby, předcházet

regresím a budovat důvěru v chování a výsledky workflow.

Část 2: Vzory

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 246

Řetězení myšlenek

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklady

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Generování obsahu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vytváření strukturovaných entit

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vedení LLM agenta

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody a aspekty k zvážení

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 247

Přepínač režimů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 248

Přiřazení role

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklady

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 249

Prompt Object

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 250

Šablona promptu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody a úvahy

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy ji použít:

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 251

Structured IO

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Škálování Structured IO

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody a úvahy

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 252

Řetězení promptů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad: Onboarding v Olympii

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 253

Přepisovač promptů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 254

Ohraničení odpovědi

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody a úvahy

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Ošetření chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 255

Analyzátor dotazů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Označování slovních druhů (POS) a rozpoznávání pojmenovaných
entit (NER)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klasifikace záměru

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Extrakce klíčových slov

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 256

Výhody

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 257

Přepisovač dotazů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výhody

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Prompt Engineering 258

Ventriloquist

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy to použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 260

Predicate

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 261

API Fasáda

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klíčové výhody

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy ji použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Autentizace a autorizace

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 262

Zpracování požadavků

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Formátování odpovědí

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Zpracování chyb a krajních případů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Úvahy o škálovatelnosti a výkonu

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Porovnání s jinými návrhovými vzory

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 263

Interpret výsledků

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 264

Virtuální stroj

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kdy jej použít

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Za oponou magie

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Specifikace a testování

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Diskrétní komponenty 265

Specifikace chování

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Psaní testovacích případů

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad: Testování komponenty překladače

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Přehrávání HTTP interakcí

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL)
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vysokoúrovňové vzory

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Hybridní inteligence

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Adaptivní odezva

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Přepínání rolí mezi člověkem a UI

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 267

Eskalace

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Klíčové výhody

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Praktická aplikace: Zdravotnictví

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 268

Zpětnovazební smyčka

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a příklady

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Pokročilé techniky integrace lidské zpětné vazby

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 269

Pasivní radiace informací

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Kontextové zobrazení informací

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Proaktivní upozornění

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Vysvětlující poznatky

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Interaktivní průzkum

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 270

Klíčové výhody

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a příklady

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 271

Kolaborativní rozhodování (CDM)

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 272

Kontinuální učení

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Aplikace a příklady

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Etické aspekty

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Role HITL při zmírňování rizik AI

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Human In The Loop (HITL) 273

Technologický pokrok a výhled do budoucnosti

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Výzvy a omezení systémů HITL

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Tradiční přístupy ke zpracování chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb 275

Kontextuální diagnostika chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Promptové inženýrství pro kontextuální diagnostiku chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Generování rozšířené o vyhledávání pro kontextovou diagnostiku
chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb 276

Inteligentní hlášení chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb 277

Prediktivní prevence chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Chytré zotavení z chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb 278

Personalizovaná komunikace chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Inteligentní zpracování chyb 279

Adaptivní workflow zpracování chyb

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality
Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 281

Eval

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Problém

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Řešení

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Důležité aspekty

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 282

Porozumění zlatým referencím

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak fungují evaluace bez referencí

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 283

Ochranný mechanismus

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Problém

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Řešení

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Jak to funguje

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Příklad

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Důležité aspekty

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Kontrola kvality 284

Ochranné mechanismy a vyhodnocení: Dvě

strany téže mince

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Zaměnitelnost ochranných mechanismů a evaluací bez
reference

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Implementace duálních ochranných mechanismů
a evaluací

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Glosář

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Glosář

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

A

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

B

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

C

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

286

D

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

E

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

F

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

G

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

H

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

I

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

287

J

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

K

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

L

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

M

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

N

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

O

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

288

P

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Q

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

R

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

S

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

T

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

U

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

289

V

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

W

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

Z

Tento obsah není k dispozici v ukázkové knize. Kniha lze zakoupit na Leanpub na http:

//leanpub.com/patterns-of-application-development-using-ai-cs.

http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs
http://leanpub.com/patterns-of-application-development-using-ai-cs

Index

adaptivní pracovní postup

Adaptivní kompozice pracovních

postupů, 210

adaptivní UI, 193

Agentní, 29

AI, 68, 92, 120, 125, 133, 188, 195

aplikace, 117, 129, 151

konverzační, 6, 28, 196

model, 82, 91, 92, 145, 148, 195

rozhodovací body, 239

složené systémy, 27, 28, 31

Alpaca, 12

Altman, Sam, 16

Amazon Web Services, 235

analýza sentimentu, 15, 93, 104–106, 109,

110, 126, 135

Anthropic, 20, 36, 68, 120, 128

antropomorfismus, 64

API, 115, 143

APIs, 66

architektura podnikových aplikací, 35

asynchronní zpracování, 232

audit a dodržování předpisů, 230

auditní logování, 99

Automatické pokračování, 149

automatické škálování, 235

autoregresní modelování, 40

BERT, 12, 22

bezstavový, 146

Brotli, 236

brýle pro rozšířenou realitu, 203

Byte Pair Encoding (BPE), 13

C (Programovací jazyk), 108

Chain of Thought (CoT), 42, 129

chatbotová aplikace, 110

ChatGPT, 27, 49

chyby

zotavení, 241

zpracování, 99, 133, 237

chytré telefony, 203

Claude, 8, 40, 72

Claude 3, 46, 118, 120, 126, 128

Claude 3 Opus, 69

Claude v1, 15

Claude v2, 15

Cohere (poskytovatel LLM), 20, 23

collaborative filtering, 85

content-based filtering, 85

Customer Sentiment Analysis, 92

data

Index 291

analýza, 31, 137

integrita, 223

ochrana, 24

ochrana osobních údajů, 200

perzistence, 101

pipeline zpracování, 223

příprava, 101

Synchronizace dat, 102

tok, 102

Validace dat, 241

Získávání dat, 102

úlohy zpracování, 117

databases

locking strategies, 102

databáze, 115

objekt založený na databázi, 98

Datadog, 231

debugování

a testování, 123

decision

-making capabilities, 92

detekce podvodů

systém, 90

deterministické chování, 54

digitální krajina, 180

distribuovaná architektura, 232

doba zpracování, 103

dodavatelský řetězec

optimalizace, 30

Dohan, et al., 40

dynamické generování UI, 175

Dynamické směrování úloh, 208

Dynamický výběr nástrojů, 122

dávkové zpracování, 233

důvěra uživatelů, 201

e-commerce, 178, 206

E-commerce Applications, 85

efektivita, 207

ekosystém, 138

ELK stack, 103

emoční zabarvení, 135

end-to-end testování, 241, 242

ensembly, 109

errors

handling, 102

Inteligentní zpracování chyb, 133

míry, 103

etika

důsledky, 185

experimentování

rámec, 180

externí služby nebo API, 118

F#, 86

Facebook, 22

few-shot

promptování, 59

učení, 57

finalize metoda, 147, 148

fine-tuning, 74

FitAI, 196

flexibilita a kreativita, 182

funkce

historie volání, 146

Index 292

názvy, 144

volání, 115

funkcionální programování, 85

Gemma 7B, 10

Generative Pre-trained Transformer (GPT),

8

Generativní předtrénovaný transformátor

(GPT), 62

Generativní UI (GenUI), 191, 194, 198, 202

Generativní uživatelské rozhraní (GenUI),

184

Generování rozšířené o vyhledávání

(RAG), 29, 35, 117

Generování s rozšířeným vyhledáváním

(RAG), 74

generování syntetických dat, 49

GitLab, 86

Global Interpreter Lock (GIL), 107

Google, 20

API, 58, 60

Cloud AI Platform, 22

Cloud Platform, 235

Gemini, 19

Gemini 1.5 Pro, 12, 15, 17

PaLM (Pathways Language Model),

15, 22

T5, 12

GPT-3, 12, 15

GPT-4, 6, 12, 15, 19, 28, 40, 46, 58, 97, 109,

111, 119, 124, 189, 190, 233

grafické modely, 40

Graham, Paul, 17

gramatická pravidla, 4

GraphQL, 100

Groq, 24, 111

gzip, 236

hardware, 26

hašovací tabulka, 142

historické vzory, 209

Hodnocení a stratifikace příznaků, 94

hodnotící systémy, 32

Hohpe, Gregor, 97

Honeybadger, 87

hraniční podmínky, 237

HTTP, 140

hyperparametr, 43

identifikace témat, 112

Inference, 5

informace

extrakce, 49

získávání, 7, 117

informatika, 65, 67

inkluzivní rozhraní, 185

instrukční dolaďování

instrukčně doladěné modely, 46

instrukční ladění, 9

instrukčně vyladěné modely, 48

integrace LLM, 175

integrační testování, 238

Inteligentní moderátor obsahu, 217

inteligentní orchestrace pracovních

postupů, 205, 233

Index 293

inteligentní orchestrace workflow, 213, 236

interakce ve stylu hraní rolí, 6

internacionalizace, 181

internetoví prodejci, 190

Interpretátor výsledků, 132

iterativní vylepšování, 70, 134

jazyk

Detekce jazyka, 104

modely, 39, 67

související úlohy, 4

jazyk kódovatelný v Unicode, 13

jazykové

modely, 61

JSON (JavaScript Object Notation), 118,

122, 126, 138, 155

K-means, 113

klasifikace, 49, 112

klíčové vzory, 208

knihovna Capybara, 241

koncepční a praktické výzvy, 185

kontext

Kontextová generace obsahu, 185, 186

Kontextové návrhy polí, 186

kontextové rozhodování, 209

Kontextuální generování obsahu, 174,

178–180

nekonečně dlouhé vstupy, 14

okno, 14, 209

Rozšíření, 43

Kontinuální monitoring rizik, 96

konverzace

přepis, 146, 148

smyčka, 149

konzistence

a reprodukovatelnost, 124

krajní případy, 54

kreativní psaní, 49

Kvantizace, 26

Kódování párů bajtů (BPE), 12

křížově modální generování, 20

ladění, 209

a řešení problémů, 230

Large Language Model (LLM), 134, 189

latence, 25

Latentní Dirichletova alokace, 113

latentní prostor, 37, 39

lineární algebra, 40

lineární regrese, 40

Llama, 12

Llama 2-70B, 46

Llama 3 70B, 10

Llama 3 8B, 10

logika přerušovače, 151

lokální vývojová prostředí, 144

Louvre, 39

lékařské objevy, 93

Managed Streaming for Apache Kafka, 38

manuální zásah, 212

Markdown, 137

mechanismy opakování, 102

mechanismy rollbacku, 243

Index 294

Memorial Sloan Kettering Cancer Center,

38

Merkur (planeta), 41

Merkur (římský bůh), 41

MessagePack, 235

Meta, 22

metoda finalize, 146

Metoda podpůrných vektorů (SVM), 112

Metropolitan Museum of Art, 39

Mikroslužební architektura, 83

Mistral, 23

7B, 10

7B Instruct, 15, 190

Mixtral

8x22B, 10

8x7B, 52

Množství pracovníků, 110

Množství workerů, 155

modely založené na vyhledávání, 7

moderní aplikace, 207

modularita, 82

monitoring

a protokolování, 103

monitorování

a protokolování, 229

a upozorňování, 211

metriky, 230

motivační strategie, 198

Multimodální

jazykové modely, 19

modely, 18

Naivní Bayes, 112

neuronové sítě, 3, 6

New Relic, 234

neřízené učení, 4

návrh aplikací a frameworky, 184

obchodní pravidla, 206

obsah

filtrování, 24

Kategorizace obsahu, 104

obsluha proudu dat, 141

Ohraničení odpovědí, 164, 190

Ollama, 23

Olympia, 30, 58, 120, 133, 141, 156

Olympia’s knowledge base, 85

OpenAI, 3, 20, 36, 68

OpenRouter, 25, 26, 141, 234

OPT model, 22

optimistické zamykání, 102

Ověření pojištění, 94

ověření výstupu, 237

parafráze, 49

paralelní vykonávání, 232

parametr

počet parametrů, 25

rozsah, 10

účinky, 120

penalizace opakování, 48

Penalizace přítomnosti, 45

Perplexity (Poskytovatel), 10

personalizace, 175, 202, 207

Personalizované formuláře, 186

Index 295

Personalizované mikrotexty, 191

personalizovaných produktových

doporučení, 85

pesimistické zamykání, 102

plánování reakce na mimořádné události,

30

Podpora klinického rozhodování, 96

podrobné protokolování, 231

pole, 122

porovnávání vzorů, 142

poskytovatelé hostingu open-source

modelů, 190

postupné odkrývání, 192

použití nástrojů, 115, 139

pravděpodobnostní modely, 40

predikce, 5

princip nejmenších privilegií, 66

problémy s použitelností, 201

proces destilace, 70

Process Manager

Enterprise Integration, 213

Product Recommendations, 85

Produktivita, 177

prompty

Destilace promptů, 43, 68, 72, 233

engineering, 55

inženýrství, 37, 42, 52, 61, 62, 199

návrh, 54, 63

Prompt Object, 69

vylepšování, 63

řetězení, 55, 66

Šablona promptu, 55, 190

propustnost, 25

Protocol Buffers, 235

Průběžná integrace a nasazení (CI/CD), 242

pipeline, 242

PyTorch, 22

předpojatost

a spravedlivost v AI, 240

překlad, 15, 182

přirozený jazyk

Zpracování přirozeného jazyka (NLP),

94, 112

přizpůsobení, 24

přiřazení požadavků, 223

příkazový řádek

Command-Line Interface (CLI), 23

přístupnost, 201, 202

Qwen2 70B, 10

Rails, 181

Railway Oriented Programming (ROP), 88

Raix, 214

knihovna, 90

Retrieval Augmented Generation (RAG), 43

rizikové faktory, 89

rozhodování

body, 228

případy použití, 124

stromy, 206

rozhraní ovládaná hlasem, 30

RSpec, 237, 238, 241

rtuť (prvek), 41

Ruby, 86, 87, 105, 151, 241

Index 296

Ruby on Rails, 1, 104, 213, 220

Rudall, Alex, 21

Rust (Programming Language), 86

Rust (Programovací jazyk), 108

Samoopravná data, 153

Samouzdravující se data, 226

Sběr zdravotní anamnézy, 94

Scout, 234

server-sent events (SSE), 140

shlukování dokumentů, 112

sledování klíčových metrik, 227

slovníky, 122

složité úkoly, 136

softwarová architektura, 2

soubory, 110

soubor pracovníků, 110

souběžné workflow, 236

spouštěcí zpráva, 97

správa znalostí, 29

Správce procesů, 97, 100

SQL injekce, 65

staging prostředí, 243

stolní počítače, 203

strategie segmentace a cílení, 180

Stratifikace rizik, 95

streamovaná data, 142

streamové zpracování, 146

logika, 147

Stripe, 121

strukturovaná data, 125

Strukturované IO, 190

strukturované protokolování, 231

sumarizace, 49

syntaktické chyby, 123

system directive, 91

systémová direktiva, 120

systémy pro zodpovídání otázek, 7

systémy typu publisher-subscriber, 101

síťové připojení, 210

T5, 22

tablety, 203

teorie mysli, 37

Teplota, 50

Time to First Token (TTFT), 25

Together.ai, 24

tokenizace, 11

tokeny, 5, 11

tragédie obecní pastviny, 178

transformerová architektura, 6

trénovací data, 39

tvůrčí psaní, 31

uchovávání a rotace protokolů, 231

událostmi řízená architektura, 101

UI, 60, 140

ukládání do mezipaměti, 233

umělá inteligence

aplikace, 139

model, 146

Universal ID, 236

uzavřené a otevřené zodpovídání otázek, 49

učení bez příkladů, 55

Učení z jednoho příkladu, 56

Index 297

uživatelsky generovaný obsah, 104

uživatelská psychologie, 200

uživatelská zkušenost, 181

Uživatelské rozhraní (UI)

design, 203

frameworky, 199

rozhraní, 184, 198

technologie, 194

uživatelské testování a zpětná vazba, 183

Velký jazykový model (LLM), 1, 3, 14, 16,

62, 63, 66, 72, 81, 103, 112, 115,

116, 131, 135, 137, 153, 155, 174,

184, 194, 216

prostředí, 25

velký jazykový model (LLM), 27, 125

Velký jazykový model (VJM), 70

Ventriloquist, 164

virtuální asistenti, 30

vizuální rozhraní, 194

vlastnosti ACID, 102

volání funkce

selhání, 125

volání nástroje, 143

vstup

prompty, 52

validace, 237

vstupní

parametry, 120

Vynucený výběr nástrojů, 123

vysoce výkonné dokončování, 24

vysvětlitelnost, 240

vytváření narativu, 18

vzdělávací aplikace, 29

Vzory podnikové integrace, 97

Víceagentní

řešitelé problémů, 28

vícekrokový pracovní postup, 103

Výběr Top-k, 45

Výběr Top-p (nucleus sampling), 45

výkon

kompromisy, 5

optimalizace, 124, 182, 230

problémy, 234

vývoj aplikací, 205

vývojové frameworky, 138

většinové hlasování, 109

Wall, Larry, 3

Wisper, 87, 99, 141, 148

Wooley, Chad, 86

XML, 125

Yi-34B, 46

zaměstnanci Databricks, 49

zero-shot learning, 54

znalostní báze, 7

značkování pomocí markup jazyka, 66

zpracování proudu, 151

zpracování proudu dat, 140

zpracování výjimek, 210, 212

zpětná vazba

Zpětnovazební smyčka, 55

zákaznická podpora, 29

Index 298

zákaznické chatboty, 30

základní modely, 50

záložní strategie, 102

zúžení cesty, 35

zúžit cestu, 36

úzká místa, 210

účet, 84

Čištění textu, 104

Člověk v procesu (HITL), 167

řetězení AI pracovníků, 103

řízení dopravy, 30

škálovatelnost, 207, 232

	Obsah
	Předmluva od Gregora Hohpe
	Předmluva
	O knize
	O příkladech kódu
	Čemu se nevěnuji
	Pro koho je tato kniha určena
	Budování společného slovníku
	Jak se zapojit
	Poděkování
	Co je to s ilustracemi?
	O Lean Publishingu
	O autorovi

	Úvod
	Úvahy o softwarové architektuře
	Co je velký jazykový model?
	Porozumění inferenci
	Zamyšlení nad výkonem
	Experimenty s různými modely LLM
	Složené systémy umělé inteligence

	Část 1: Základní přístupy a techniky
	Zúžit cestu
	Latentní prostor: Nepochopitelně rozsáhlý
	Jak se cesta ``zužuje''
	Surové versus instrukčně doladěné modely
	Prompt Engineering
	Destilace promptů
	Co fine-tuning?

	Generování rozšířené o vyhledávání (RAG)
	Co je Generování rozšířené o vyhledávání?
	Jak RAG funguje?
	Proč používat RAG ve vašich aplikacích?
	Implementace RAG ve vaší aplikaci
	Rozdělení na propozice
	Příklady RAG v praxi
	Inteligentní optimalizace dotazů (IQO)
	Přeřazování
	Hodnocení RAG (RAGAs)
	Výzvy a budoucí výhled

	Množství pracovníků
	AI pracovníci jako nezávislé znovupoužitelné komponenty
	Správa účtů
	Využití v e-commerce
	Aplikace ve zdravotnictví
	AI pracovník jako správce procesů
	Integrace AI Workers do architektury vaší aplikace
	Kompozice a orchestrace AI pracovníků
	Kombinování tradičního NLP s LLM

	Použití nástrojů
	Co je použití nástrojů?
	Potenciál využití nástrojů
	Pracovní postup při využití nástrojů
	Osvědčené postupy pro používání nástrojů
	Skládání a řetězení nástrojů
	Budoucí směry

	Zpracování proudu dat
	Implementace ReplyStream
	``Konverzační smyčka''
	Automatické pokračování
	Závěr

	Samoopravná data
	Praktická případová studie: Oprava poškozeného JSONu
	Úvahy a kontraindikace

	Kontextuální generování obsahu
	Personalizace
	Produktivita
	Rychlá iterace a experimentování
	AI poháněná lokalizace
	Význam uživatelského testování a zpětné vazby

	Generativní uživatelské rozhraní
	Generování textů pro uživatelská rozhraní
	Definice generativního UI
	Příklad
	Posun k designu orientovanému na výsledky
	Výzvy a úvahy
	Budoucí výhled a příležitosti

	Inteligentní orchestrace pracovních postupů
	Obchodní potřeba
	Klíčové výhody
	Klíčové vzory
	Zpracování a zotavení z výjimek
	Implementace inteligentní orchestrace workflow v praxi
	Monitorování a protokolování
	Úvahy o škálovatelnosti a výkonu
	Testování a validace workflow

	Část 2: Vzory
	Prompt Engineering
	Řetězení myšlenek
	Přepínač režimů
	Přiřazení role
	Prompt Object
	Šablona promptu
	Structured IO
	Řetězení promptů
	Přepisovač promptů
	Ohraničení odpovědi
	Analyzátor dotazů
	Přepisovač dotazů
	Ventriloquist

	Diskrétní komponenty
	Predicate
	API Fasáda
	Interpret výsledků
	Virtuální stroj
	Specifikace a testování

	Human In The Loop (HITL)
	Vysokoúrovňové vzory
	Eskalace
	Zpětnovazební smyčka
	Pasivní radiace informací
	Kolaborativní rozhodování (CDM)
	Kontinuální učení
	Etické aspekty
	Technologický pokrok a výhled do budoucnosti

	Inteligentní zpracování chyb
	Tradiční přístupy ke zpracování chyb
	Kontextuální diagnostika chyb
	Inteligentní hlášení chyb
	Prediktivní prevence chyb
	Chytré zotavení z chyb
	Personalizovaná komunikace chyb
	Adaptivní workflow zpracování chyb

	Kontrola kvality
	Eval
	Ochranný mechanismus
	Ochranné mechanismy a vyhodnocení: Dvě strany téže mince

	Glosář
	Glosář
	Index

