A Quick Reference Guide to Pyspark DataFrame
API for Experienced Pandas User

by DataPsycho

Release 2022.2.1

Contents

1

Introduction 3
1.1 About The Book. 3
1.2 Target Audience 4
1.3 Content Summary 4
1.4 DataSet 6
1.5 Hardwareand OS 8
1.6 Setting Up Pandas and PySpark 9
17 SourceCode 9
Data 10 10
21 Summary 10
2.2 Setup. 11
2.3 Read Data into DataFrame 12
2.4 Rename Attributeso 14
2.5 Select a Subset of Attributes 16
26 SaveaSnapshot 17
2.7 Reading Parquet Data Source 20
2.8 Pandas and Spark Behind The Seen 23
2.9 Writing Production Code 26

3 Data Transformation
31 Summary
32 Setup.
3.3 Handling Date-Time: Timestamp
3.4 Imputing Unavailable Data Points: Fill NA
3.5 Average Review per Product: Count & Distinct
3.6 Total Number of Review for Each Product: Group By
3.7 Distribution of Review Text Length: Statistics
3.8 Yearly Median Review: Aggregation
3.9 Top reviews of 2017: Filter
3.10 Compare Total Review of 2016 and 2017: Joins
3.11 Conversion between Wide and Long Format: Melt & Pivot . .
3.12 Save a Snapshot
3.13 Good Practice: Avoiding Global Scope

4 User Defined Function (UDF)
4.1 Summary
4.2 Object Conversion between Python and Scala
43 Writing UDF
44 UDFinAction
45 Saving a Snapshot

5 Conclusion
5.1 What Next?: Advanced Topics
5.2 Test Your Might: Exercise.

32
32
33
35
36
37
39
40
42
44
45
48
51
51

55
55
56
58
60
65

Preface

Back in mid 2021 after publishing a post about my small PySpark project in
LinkedIn, one of my former colleague from McKinsey & Co. suggested me
that | should convert my project into a book. Immediately | start planning
to write this book. During the summer of 2021, | remember of taking some
holiday and start writing the book. Though the book is quite small, but it
took whole 2021 to make a primary draft version. That makes me realize, it
is quite difficult to manage a side project while working full-time. | also spent
quite a lot of time on rewriting and rearranging some sections and chapters
of the book, may be due to not having any experience on writing books.

Throughout the book, | have tried my best to showcase most of my un-
derstanding and experience of using PySpark during my work at Socialbak-
ers (Emplifi), where | started using PySpark with Databricks as my daily
data analysis tool. Since 2018 | have been using PySpark almost every day.
Though, I have not discussed more advanced topics on PySpark in the current
version of the book, as | wanted this version of the book to be more beginner-
friendly. But in the future, | could add more chapters covering advance topics
on PySpark like machine learning and query optimization.

| will appreciate if readers can share their thoughts and ideas for further
improvement of the book. Readers can contact with me via Twitter handle

@MrDataPsycho, share their thoughts with hashtag, #pandastopyspark or
send me emails at mr.data.psycho@gmail.com.

— DataPsycho; May 7, 2022

Cover lllustration

The background cover is created by Dave Hoefler, published in the Unsplash
platform. The cover is published under Free to use Unsplash Licence. A
slightly modified version or original graphics is used as background cover.

Platform Compatibility

The current version of the book is tested and published only in PDF friendly
format. Converting the book into EPUB or Kindle friendly format or trying
to read the book in Kindle like platform may break the format of the book. It
is suggested that, readers should only use PDF friendly platform or software
to read the book.

https://unsplash.com/license

Chapter 1

Introduction

The ultimate reason to use any Apache Spark based API is being able to
manipulate large amount of data distributed across multiple files (preferably)
or in a single file which won't fit in the memory or even if it fits in the memory,
It will take a while to transform the data using framework like Pandas. As
you may know, Pandas always utilize a single core (or physical thread) of your
computer, whereas Spark can take advantages of all or some of the available
cores of your computer while processing the data. You can interact with
Spark APl using Python which is called PySpark, but it is possible to use few
other languages too. In simple words, there are many flavours of Spark, and
PySpark is one of them.

1.1 About The Book

The main focus of this book is to introduce basic PySpark to the audience who
already have good experience of using Pandas. | had never been able to finish
a programming book with more than five hundred pages. So, throughout the
book | have tried my best to keep the contents as short as possible but at
the same time informative and easy to understand. From that point of view,
this book is all about how to use PySpark DataFrame APl with respect to
another popular DataFrame APl Pandas.

In the book, | did not distinguish between Spark and PySpark. But in reality,
the two word does not mean the same thing. Spark being the main technology

and PySpark being one of the way to use the technology. So use your own
judgement when you find one of the term in the book. You will find some place
where Spark would be more appropriate, but | have used PySpark instead may
be and vice versa.

1.2 Target Audience

This book is intended toward data enthusiastic (scientist, analyst or engineers)
who already have working experience with Pandas at least for one year and
also started learning PySpark or wish to learn PySpark.

It is very easy to forget the code you have written yesterday for a particular
project to solve some use case. But when you encounter similar use case in
other projects, what you do? Either you write the code again in case it is easy
to write or google the solution again if it is something you have borrowed
from places such as StackOverflow or search through your git commit to find
the solution. | have faced this kind of situations many times in my 5+ years
of data science and analytics career.

At first, | was thinking about writing some sort of PySpark reference for
myself, which | can put on my office desk and search through quickly whenever
needed. But later | though why not publishing a more organized version as a
book which might help other fellow data analytics and data science developers.

“If you do not have any experience on Pandas, it will be difficult
to follow the book and | would suggest you to be comfortable
with Pandas’ syntax first.”

1.3 Content Summary

| tried my best to not have interconnection in between the chapters. So that
| can make code snippets as independent as possible and easy to follow at
any part of the book. But sometimes it was not just possible to avoid inter-
dependency among chapters. Though the data sets are constant throughout
the book, inside a chapter any arbitrary section might depend on the previous
section, but they should be less dependent from chapter to chapter. The main

focus of the book is to show how to use Pyspark instead of Pandas where
ever possible.

| am going to use a subset of Amazon Review data set to demonstrate the
Modules of PySpark DataFrame API. But in each part | will first show you
the solution in Pandas and then try to accomplish the same task in PySpark.

There always will be multiple ways to accomplish a particular use case, but
most of the time | will show you one possible way. When you will gain more
experience, you will be able to choose the way you think best, | believe.

The content flow of the book is followed by a short analytics project life-cycle,
where you follow an almost predetermined set of actions to get some valuable
information out of the data, as follows:

1. Load/Read the data (Ex. CSV, JSON, parquet) in the tabular form
with Pandas or PySpark

Select fields only needed based on project requirements (sub setting)
Explore a bit, if the data is new to you

Filter or Impute the invalid data

o~ P

Introduce new Calculated Columns based on existing columns by ag-
gregating the data with framework (Pandas or PySpark) provided meth-
ods (group by, order by, limit etc.)

6. Finally, calculate some Metrics or produce Visualization which can
easily be reviewed by business partners as a support document when
taking some data driven decision

| suggest you to do one more step, which you will also see throughout the book,
always make a snapshot of your working DataFrame when ever it makes sense
to you, which will reduce extra overhead of querying the whole DataFrame
and will make your query much faster. Also, you will be able to get rid of
redundant fields from the data which you are not going to use. If you use
Pandas then it does not help much but In case of PySpark use of Cache to
create a subset of data in the memory or save a subset of the data locally and
use the subset for further task will increase query speed significantly.

There is no Machine Learning content in the book, though PySpark is
good enough for ML task as well. But | have considered it a more advanced

use case and might add a separate chapter later on it. One very important
note:

“When reading through the book you should never focus on why
I am doing something but rather focus on What | am doing (Se-
lecting, Grouping, Pivoting the data etc.) and How | am doing
it using Pandas and PySpark DataFrame API. This book is not
meant for teaching about data analysis but to show you, how to
translate your Pandas code into PySpark code”.

1.4 Data Set

| am using Amazon's review data set on Toys & Games [1]. The data set is
quite larger. If you do not have enough memory to load the data, then you
can use Home & Kitchen Appliance sample data set as a proxy for the Toys
& Games data set. You can download the data from an unofficial website[1].

So if you can not load 4-6 GB of data in your machine with Pandas try with
the smaller sample of Home & Kitchen Appliance. For Toys & Games data
set, | could not find metadata of the reviews. The both data is provided in a
single JSON file, where each review is a JSON object. Later | will distribute
the data into multiple files for better performance while using PySpark.

You can download the data directly from the website. But | prefer to download
the data using wget CLI tool. The CLI tool is available for all major platforms,
at least for Mac, Windows and Linux.

wget http://deepyeti.ucsd.edu/jianmo/amazon/
— categoryFilesSmall/Toys_and_Games_5. json.gz
wget http://deepyeti.ucsd.edu/jianmo/amazon/sample/
— sample_meta_Home_and_Kitchen. json
wget http://deepyeti.ucsd.edu/jianmo/amazon/
— categoryFilesSmall/Home_and_Kitchen_5.json.gz

Be aware of the line break when copying the code to the terminal. After you
unzip the data by using bash: gzip -d Home_and_Kitchen_5.json.gz it
will produce a JSON file where you will have all the data. The smaller files
are not zipped (Home & Kitchen sample), so you will get them as JSON
directly. Metadata includes descriptions, price, sales-rank, brand info, and

https://nijianmo.github.io/amazon/index.html

1 {

2 "image": ["https://..."1,

3 "overall": 5.0,

4 "vote": "2",

5 "verified": True,

6 "reviewTime": "01 1, 2018",

7 "reviewerID": "AUIGWTTTOQZYS",

8 "asin": "5120053084",

9 "style": {

10 "Size:": "Large",

11 "Color:": "Charcoal"

12 },

13 "reviewerName": "Abbey",

14 "reviewText": "I now have 4 ... ",
15 "summary": "Comfy, flattering, ...!'",
16 "unixReviewTime": 1514764800

17 }

Listing 1: A single sample of a review

co-purchasing links. You will find an exercise at the final chapter where you
will have to use the Home & Kitchen data sets and answer a set of analytical
question.

You might not be able to download the data under enterprise
VPN service as the URL is http but not https, which most of
the company/enterprise computer will consider as unsecure. So
you should be disconnecting from VPN for some moment while
downloading the data.

The interpretation of the field names are explained more detailed on the web-
site. Feel free to check out the website if you wish to know more details about
the data and metadata. But do not worry for now. By following the examples
in the book, you will be more familiar with the data.

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html

1 {

2 "asin": "0000031852",

3 "title": "Girls Ballet Tutu Zebra Hot Pink",

4 "feature": ["Botiquecutie Trademark exclusive Brand",
5 "Hot Pink Layered Zebra Print Tutu"
6 1,

7 "description": "This tutu is great ...",

8 "price": 3.17,

9 "imageURL": "http://...",

10 "imageURLHighRes": "http://...",

11 "also_buy": ["BOOJHONN1S", "B0OO2BZX8Z6", "..."],
12 "salesRank": {"Toys & Games": 211836},

13 "brand": "Coxlures",

14 "categories": [

15 [

16 "Sports & Outdoors",

17 "Other Sports",

18 "Dance"

19]

20]

21 }

Listing 2: A single sample of metadata

1.5 Hardware and OS

All the codes of this book are executed on a workstation with Intel Core i7
8" Gen Processor with 8 cores and 16 GB of RAM. | use Linux-Mint as my
primary OS, and | am using Linux-Mint 20, Uliana at the time of writing the
book.

1.6 Setting Up Pandas and PySpark

Installing PySpark in local machine is rather complex. | suggest you to use a
free online platform such as Databricks community. | was never able to set up
PySpark successfully in Windows machine, so can not suggest any solution
for Windows user. May be look for some solution on the internet. But if you
decide to set up PySpark in your Linux or Mac, there is numerous tutorial
available online. | am using PySpark with PyCharm community in my local
machine. You also will need to install Open JDK 8 as Spark is based on JVM
means any process written using Spark API runs through JVM. | have added
an environtment.yml file into the GitHub repository of the project (see the
Source Code section) which you can use to regenerate the same environment.

| am using 1.2.4 version of Pandas and 3.1.1 version of Spark (with PySpark)
throughout this book. If certain code does not work for you, please check if
you are trying with the exact same version or not.

1.7 Source Code

The source code of the book is available in GitHub. You can have a look
or download the source code from the pandas-to-pyspark-ed2022 repository.
The main codes for each chapter can be found in dev directory. As only
chapter 2 has a section on writing production code, the corresponding code
can be found on prod directory.

https://github.com/DataPsycho/pandas-to-pyspark-ed2022

Chapter 2

Data 10

The most common task you will encounter in any of your data analysis project
is reading the data and writing back a new form of the same data, either as
final format or an updated version of the raw data. | assume you already have
a good knowledge of writing Python code and also have hands-on experience
on Pandas DataFrame API.

2.1 Summary

By the end of this chapter you should be able to:

e Read data into PySpark DataFrame

e Rename the columns of the DataFrame using withColumnRenamed
method

e Select a subset of columns only relevant to your analysis

e Write the data back into disk as distributed dataset across multiple
files using Partition and Sorting for better performance

Reading a dataset depends on the data source is given to you. You might
need some pre-processing before you read the data into PySpark DataFrame.
You might get CSV, JSON or Parquet format as an input source. The data
set | am using is in JSON format, So | will elaborate more on reading JSON

10

data, but | will share some references to look for other formats. You can
also read data from databases to PySpark DataFrame using database specific
JDBC/ODBC drivers, try to look for that solution too.

2.2 Setup

If you are not using a commercial third party managed service such as Databricks
or Sagemaker then you need to start with some configuration code to set up
the PySpark cluster. For this project, | have created a project folder Called
ExperiMind in my local machine and then created a .env file in the folder and
added an Environment variable called SPARK_HOME as follows:

mkdir PycharmProjects/ExperiMind

cd PycharmProjects/ExperiMind/

touch .env

echo "SPARK_HOME=/home/datapsycho/spark" >> .env

Listing 2.1: Setup a Spark Session

1 |from pyspark.sql import SparkSession
2 |from dotenv import load_dotenv
3

4 |def create_spark_session():

5 """Create a Spark Session"""
6 _ = load_dotenv()

7 return (

8 SparkSession

9 .builder

10 .appName ("ExperiMind")
11 .master("local[5]")

12 .getOrCreate ()

13)

14 | spark = create_spark_session()

Due to a bug in the Debian version of PyCharm, if you use PyCharm launcher
icon to start PyCharm then it will not load the environment variable by default
from .bashrc file. So | am using load_dotenv package to load the environment
variable from env file as SparkSession look for that variable, otherwise it will
fail to create a session. If you are using managed services you do not need
to use that create_spark_session function, there will always be a default spark

11

session available for you with the same keyword spark. Which means, you
should never use spark when assigning some variable or function, otherwise
it will override the default SparkSession which is a common source of bug for
beginners (my spark is not working | do not know why?).

In short, this function creates a Spark executor with five follower nodes and
one leader node (no master or slave please), which will most probably be
using 5 thread of my computer to accomplish any spark task (please do some
research on your own to validate my claim). For Pandas, you just need to
pip install pandas.

2.3 Read Data into DataFrame

Let's first set up a directory to save the data locally. Running the following
code will first create a directory and then download the data in it. | assumed
that, you have followed the previous setup to create a Project directory.

cd PycharmProjects/ExperiMind
mkdir -p data/raw
cd data/raw
wget http://deepyeti.ucsd.edu/jianmo/amazon/
— categoryFilesSmall/Toys_and_Games_5. json.gz
gzip -d Toys_and_Games_5.json.gz
cd ..

In the previous bash instructions, | have created a folder to store the raw
data, then | have used wget to download the large compressed JSON file and
extract the compressed file in to the following same directory. Finally, | have
moved one step back to our project root, where | have my Python files. It
is possible to read JSON data directly into Pandas if the format is known to
Pandas. Let's read the data into Pandas first:

Listing 2.2: Read Json Data into Pandas with Built-In Method
import pandas as pd
PATH_BIGDATA = 'data/raw/Toys_and_Games_5.json'

This code fails with run time error
raw_pdf = pd.read_json(PATH_BIGDATA, orient='records')

A NN =

12

But using the following code, | was not able to read the data. | also

tried without orient argument, but no luck with that. Then | checked docu-
mentation and by following the document here is one of the way to read the
data:

© 00 ~N O G b WN =

el e el el
g W NN = O

Listing 2.3: Read Json Data into Pandas with Custom Method

import pandas as pd
from tqdm import tqdm
import json

PATH_BIGDATA = 'data/raw/Toys_and_Games_5.json'

def read_json_to_pdf(path: str) -> pd.DataFrame:
data = []
with open(path, 'r') as f:
for line in tqdm(f):
data.append(json.loads(line))
df = pd.DataFrame(data)
return df

raw_pdf = read_json_to_pdf (PATH_BIGDATA)

As each line in the file is a JSON object of review, we can iterate through

each line and convert it to dictionary and append the result into a python list.
Then we can use DataFrame class to convert the list of python dictionaries
into a DataFrame. Here tqdm package is used just to show the progress of
the task, nothing special. It will take quite a while to load the data. The
code is partially taken from the maintainer's documentation.

To load the data into Spark DataFrame | tried to use spark.read.json().
But It failed to load the data. Then | found a stack overflow suggestion which
works fine as follows:

0O ~NOoO A WN =

Listing 2.4: Read Json Data into PySpark

from pyspark.sql import SparkSession
from dotenv import load_dotenv

def create_spark_session():
"""Create a Spark Session
code from listing 2.1
...
return

nnn

13

9
10 | spark = create_spark_session()
11
12 | spark.conf.set("spark.sql.caseSensitive", "true")
13 |PATH_BIGDATA = 'data/raw/Toys_and_Games_5.json'
14 |raw_sdf = spark.read.json(PATH_BIGDATA)

| had to change the default setting of Case Sensitivity of Column Naming to
be able to read the data. Here, the spark object is the SparkSession | have
created in the previous section.

So what is the Difference between the two Framework when reading data
files? As you can see, PySpark and Pandas can read a JSON file directly
into the DataFrame if each of the records is a JSON object in the file. But
behind the scene, Spark does not read the whole content of the file in the
memory. But Pandas does. PySpark just created a query plan and metadata
schema to identify the column type (I am explaining in general, it is much
more complex than that actually). | will show you a proof of that at the end
of this chapter.

Reading data of course depends on the structure of the data and the file
type. But whether it is a CSV or JSON if the format inside the file is known
to PySpark, it will be able to read the data much easily like Pandas. Spark
by Example is a fantastic resource about Spark, and they have a chapter on
reading data into Spark, please check it here.

“As Spark does not load all the data in to memory, there is a
caveat in case of distributed data. You might encounter with
run time error when PySpark try to manipulate certain part of
the data and find a miss match. It happens mostly when data is
distributed across multiple file and one of the file is corrupted or
malformed, which Spark did not know about when inferring the
Schema.”

2.4 Rename Attributes

In an Organization, data is generated from different sources, systems and
processes before it reaches to you. So the column naming might surprise
you. You will encounter different way of column naming such as camelCase,

14

https://sparkbyexamples.com/pyspark/pyspark-read-csv-file-into-dataframe/

	Introduction
	About The Book
	Target Audience
	Content Summary
	Data Set
	Hardware and OS
	Setting Up Pandas and PySpark
	Source Code

	Data IO
	Summary
	Setup
	Read Data into DataFrame
	Rename Attributes

