


2



Contents

Introduction 5

Chapter 1 — Productivity 9

Bibliography 19

3



Contents

4



Introduction

A while ago I started reading nonfiction books, mostly about
self-improvement. And I read a lot of them. Some talked about
productivity, others were about finance, entrepreneurship, creativ-
ity, communication. . . And each time I finished a book, I thought
about how I could apply what I found in my day to day life.

I adopted new habits, made some adjustments to the way I worked,
always to find a new way to improve productivity, learn new things,
be a better colleague, or a better team leader. Sometimes the
changes I made didn’t produce the expected result, but most of
the time they did.

Now I can say that these books (and a lot of articles or blog
posts) helped me to improve as a developer. Not that I was
a bad developer (at least I hope not), but in a developer job
I strongly think that you hit a plateau if you’re not careful to
improve regularly, and not only technically.

Of course, keeping up to date in your technical fields is more than
recommended: what you know today about your favorite language
or framework may be obsolete in a couple of years. But there
is some space for improvement in soft skills too: become more
productive, learn new things more easily, or communicate in a
more efficient way.

These soft skills are what I wanted to talk about when I decided

5



Introduction

to write this book. I took the challenge not only to put on paper
what I learned, but also to dig deeper, exploring what other books
and articles could bring, what research studies concluded, and
how I could make the link with our developer job.

Who is this book for?

Although this book is written for developers, you might find
interesting content if you work in IT in general: if you’re a QA
analyst, a UX designer, a project manager, etc.

The advice you’ll find will apply whether you work for a big
company, for a start-up, or if you’re self-employed, and whether
you’re a senior developer or you just graduated.

Finally, I suppose in this book that you work as a developer,
but everything can apply if programming is not your professional
activity: if you’re contributing to open-source projects, if you
program as a hobby, etc.

What this book is not

This book is focused on improving your soft skills in your developer
job. Some other aspects of improvement could have fulfilled other
books written by someone better at it than me. Therefore, this
book is not:

A guide on how to code better: a lot of books exist on that
subject, most of them depending on the language you use, or at
least the “type” of development you do: web, software, games,
embedded. . . Here you won’t find any technical advice, nor any
line of code.

6



BECOME AN OUTSTANDING DEVELOPER

A career guide: advising on someone’s career is a full-time job,
requiring a lot of expertise. Although you may find here some clues
about my career and the way I decided to evolve as a developer,
this shouldn’t be considered as advice for your career. However,
I’m confident that with the advice found in this book, it’s going
to be easier for you to reach your career goals.

A guide on how to create your start-up: creating a business
as a developer (a start-up or a freelance activity) is a very exciting
goal, but it’s not the only one. And since it hasn’t been mine,
and still isn’t at least for the near future, I wouldn’t be a good
person to tell you how to do it. But again, the advice found here
can make things easier for you if you pursue this goal.

What to expect from this book?

In this book, I try to give an overview of the challenges that
developers are facing today. I identified four big axes to group these
challenges: productivity, learning, creativity, and communication.
For each of these axes, we’ll explore what problems they relate to
in our developer job and try to find advice on how to overcome
these problems. Sometimes there won’t be any actual problem;
just a space to become even better.

As much as possible, all the content of this book is based on two
things: what I found in the literature (books, research articles,
blog posts, etc.), and personal experiences (mine or not). Linking
these is the most interesting, since most of the time what you find
in books or articles is not specific to a developer job.

7



Introduction

A note about this preliminary version:

You are currently reading a non-final and incomplete version of
the book. I’m releasing each chapter as soon as it is finished, to
get feedback as quickly as possible. So please keep in mind that
some content may change in the final version, or even in the next
preliminary version.

Especially, this introduction is very temporary, and will probably
be completely rewritten for the final version.

If you have any feedback about the book, I’d be more than happy
to hear about it. Send me an e-mail at sebastien@castiel.me1.

I wish you a pleasant read,

—Sebastien

1mailto:sebastien@castiel.me

8

mailto:sebastien@castiel.me


Chapter 1 — Productivity

Thinking about how to improve at a developer job, it’s very likely
you think instantly about improving your productivity. It may
even be true for most of the jobs.

Let’s say you’re good at coding (and I’ll assume you are in the rest
of this book). If you happen to just code for five minutes a day, or
if you write a great piece of code that will never go to production
for any reason, you may not feel very productive, therefore there
might be space for improvement.

Before exploring how to be more productive, I suggest we first ask
ourselves what we hear when talking about productivity. It may
be obvious, it’s a very common word. Yet in the specific context
of a developer job, you may get different answers depending on
who you ask.

Defining and measuring productivity

Imagine yourself in the following situation: you are in an office, in
the IT department of a company, or a start-up. It’s the middle of
the morning, everybody seems to be working, it’s quiet and you
can just hear some people talking about last weekend at the coffee
machine behind you.

9



Chapter 1 — Productivity

In front of you, two people are working at their desk. You guess
by looking at their screen that both of them are developers. Let’s
call them Alice and Bob.

A third developer comes to ask a question to Bob. Still typing
code on his keyboard, Bob tells him that he’s very sorry, but he
has an urgent task to finish before the end of the day, and since he
has his afternoon full of scheduled meetings, he needs to advance
as much as possible in the morning.

The developer then comes to Alice, who takes off her earphones
and stops typing. She tells him that she’s in a middle of an intense
problem-solving session and prefers staying focused for now, but
if it can wait twenty minutes, she’ll just grab a cup of coffee then
she’ll be glad to come to him afterward.

With so little information, if you were asked which one of Alice or
Bob is more productive, what would you answer?

For most people, Bob would be considered more productive. He
seems to be working a lot; he doesn’t even take time to answer
a question and has a full agenda. Alice, on the other hand, can
stop working almost instantly, has time to help other people, and
even for a cup of coffee.

In the chapter Answering an easier question of his famous book
Thinking, Fast and Slow,2 Daniel Kahneman details how sometimes
our brain tricks us when trying to answer a question without having
all the information we need. This mechanism is called a heuristic,
and you probably heard of it in the context of algorithmics and
optimization.

Think of heuristics as optimizations that your fast-thinking brain
(System 1, as Kahneman calls it) does to save you of the painful
task of gathering all the data, analyzing them, and interpreting
them. Is the president doing a good job? Just ask yourself if he’s

2Kahneman (2011)

10



BECOME AN OUTSTANDING DEVELOPER

popular. Are you living a happy life? Ask yourself if you’re in a
good mood right now. Is this developer productive? Well, do they
look busy? Am I productive at my job?

This heuristic, consisting of estimating your productivity by look-
ing at how busy you are, has been described by Cal Newport in
his book Deep Work3. He talks about Busyness as a Proxy for
Productivity: since it may be difficult to measure how productive
you are, it’s tempting to rely on how busy you look, meaning how
busy people around you think you are.

A research team studied in 20174 how software developers perceived
their productivity. 400 developers at Microsoft answered a survey
asking them about what made them feel productive or not, and
what indicators they used to estimate their productivity.

This study used the answers to categorize the developers into six
groups: the social developers, the lone developers, the focused de-
velopers, the balanced developers, the leading developers, and the
goal-oriented developers. In each category, developers perceived
their productivity differently.

For instance, lone developers feel productive when they spend
most of the day coding, with as fewer interruptions and social
interactions as possible. Social developers, on the other hand, feel
more productive in helping and interacting with others or doing
code review, but still, find focus time by coming early to work
or working late. On the opposite side, leading developers prefer
spending time designing things, and are not afraid of meetings or
emails.

This study also brings us very interesting indicators to measure
productivity, from a developer’s point of view. They change
depending on which developer category you observe, but the two
most important ones according to developers seem to be:

3Newport (2016)
4André N Meyer, Zimmermann, and Fritz (2017)

11



Chapter 1 — Productivity

• The time spent on coding, and
• The longest period focused on a task without interruption.

In the end, maybe the productivity of a developer would be best
estimated not by how busy they are, but by looking at how
much time they spend developing things, whether it is coding or
contributing with others, with as few distractions as possible.

Having this idea of how productivity may be estimated, the next
step is finding how to improve it. Of course, my goal here is not
to help you to estimate your coworkers’ productivity, even less to
improve it, but to improve your own.

In the next section, we’ll see some blockers for productivity in
most of today’s workplaces and how to overcome them. Then
we’ll explore how setting goals for yourself can help you to become
better in your job.

Obstacles to productivity

Think about a normal day of work. You arrive at the office, take
a coffee, start coding, do some code review, have lunch, some
meetings, code again, and that’s it. But is it really?

I could bet that looking more precisely at your day, it looks more
like: start coding, answer a question on Slack, help a colleague,
have a short meeting, code again, ask a question to a colleague,
fix the build pipeline, answer an e-mail, fill your timesheet. . . and
it’s not even noon.

When twenty developers from the US, Canada, and Switzerland
were asked to keep a precise diary of what tasks they worked on
during the day minute by minute5, the results were surprising.

5Andre N Meyer et al. (2017)

12



BECOME AN OUTSTANDING DEVELOPER

First, code-related tasks (coding, debugging, code review, etc.)
take only two hours a day. This is 25% of the classic day of work.
You can add almost one hour of “work-related browsing” (I would
consider this as part of the coding activity, as long as it’s not to
procrastinate), then it’s e-mail (one hour), planning (30 minutes),
documentation (30 minutes), planned or informal meetings (1.5
hours), etc.

Maybe you’ll tell me that you spend more than two hours a day
coding, but I can’t recommend you enough to try during a day or
two to keep a diary of everything you do. And I mean everything:
when you leave your computer for a minute to get a glass of water,
when you stop coding for thirty seconds to answer a question on
Slack, or when you open your inbox to get some information you
need.

If you do this, you may realize another interesting and disturbing
thing: the average time you spend on coding before switching to
something else: an interruption, a meeting. . .

The same study highlighted that on average, a developer writes
code for 36 seconds before switching. Not even a minute! Of course,
sometimes you code during much more time, but it’s compensated
by the several other times you code for just a few seconds before
being interrupted.

The other tasks follow the same pattern, except the planned
meetings (it’s more difficult to leave a meeting after one minute
I guess). So, looking at the global picture, a developer’s day is
composed of a lot of small periods of a couple of minutes, when
they can either code, answer e-mails, write documentation, or
participate in an informal meeting.

But I can imagine that if you try to plan your day, you don’t
expect such a fragmentation of work. This is a big obstacle to
productivity. So, what causes this fragmentation and how can we
overcome it?

13



Chapter 1 — Productivity

A study made in 20116 found that most interruptions encountered
by developers during a day are in-person interruptions. On average,
there can be between 12 of them for an entry-level developer, and
up to 40 for a senior developer or technical lead. Other kinds of
interruptions are provoked by instant messaging (4 to 9), e-mail
(8 to 52), and phone (0 to 20).

Let’s focus on colleague interruptions. Most of them are legitimate:
it’s part of a developer job to ask questions to colleagues, and
you rely on your coworkers to answer yours, especially for junior
developers. Therefore, removing these interactions is out of the
question.

Still, there must be a way to keep a reasonable level of interaction
with coworkers without causing that many interruptions.

In 2017, a team7 developed a tool to help other teams in several IT
companies (developers, testers, project managers, etc.), reducing
in-person interruptions. It was composed of a LED light above
each desk and an application installed on developers’ computers
to automatically update the LED color. The LED was green if the
developer was considered available, red for busy, and blinking red
for do not disturb. The software used indicators such as keyboard
typing during a given time to determine the developer’s status.

This tool showed good improvement in the teams where it was
tested. The number of interruptions was divided by two, and
around 60% of participants estimated they had been less inter-
rupted when busy (20% disagreed with that statement).

More importantly, almost 60% of participants felt that their pro-
ductivity increased during the study. Not all interruptions were
removed, but they tend to happen less when the developer was
deeply focused on a task. Plus, the LED helped people being
aware of the cost of disturbing someone.

6Sykes (2011)
7Züger et al. (2017)

14



BECOME AN OUTSTANDING DEVELOPER

This system may not be a revolution to improve developers’ produc-
tivity, but we can draw inspiration from it. What it demonstrates
is that people tend to disturb people less often when aware of how
busy they are.

In the different teams I worked with, we almost always had a
system to indicate others that we were busy and preferred not to
be disturbed. Sometimes, it was having headphones on. Other
times, we used the status of our instant messaging application,
setting it to busy.

But one of the most efficient systems we found was not a specific
sign to indicate we were busy. I still try to initiate it with the
teams I work in today. We simply consider everyone as busy. It
means that if you ask a question to someone on instant messaging,
you shouldn’t expect an immediate answer. More importantly, if
you need to ask a question in person, first send a message on IM,
such as: “I need your help, tell me when you have a moment”. Or
just: “Got a second?”

Why sending a message on IM instead of just asking directly, you
may ask? It turns out that just asking “do you have a minute?”
in person is often enough to make the person lose focus on what
they were doing and ruin the whole strategy.

A past colleague of mine, when someone (sometimes it was me)
asked him “can I disturb you for a minute?”, used to answer, “you
just did”. Always in a humorous way, but it was enough to make
people realize that asking a question as short and easy-to-answer
it is (“do you have a moment?”), is enough to make the person
lose a precious focus.

When I’m working on a task requiring a lot of focus, I usually turn
off IM notifications. My coworkers know that I won’t answer them
immediately, but that I’ll find time to answer them eventually and
spend the necessary amount of time to help them. And when I’m
the one having a question, as much as possible I use IM to ask

15



Chapter 1 — Productivity

them to ping me when they have a moment.

These good practices revealed themselves to be very efficient to
improve developers’ focus and limit interruptions. A lot of articles
or blog posts describe similar practices in different teams. Yet,
it’s not perfect. Another source of interruptions is nowadays very
common.

The open-plan office hell

Imagine a big warehouse. From where you stand you can barely
see the opposite wall. Steel beams go from the carpet floor to the
ceiling’s vent pipes —maybe fifty feet high. People are working at
desks; some sitting, others standing. The desks are aligned, and
between two desk rows, barely the necessary space for someone to
walk without touching any chair.

No visible conference room, but you can observe some groups of
two to four people talking to each other at one’s desk. For some
of these meetings, they’re using one of the whiteboards available
in the alleys.

In total, you can estimate that at least one or two hundred people
are working here, maybe more since you can’t see far enough.

You may be familiar with this open plan office situation. The
one I just described is at Facebook headquarters, in what Mark
Zuckerberg described as “the largest open floor plan in the world”,
as Cal Newport reports in Deep Work8. Your office may be smaller,
but if it is like most of today’s companie’ offices, it should be a
little bit like the one I just described.

Most developers today work very close to their coworkers. Close
enough to talk or show something on the screen without requiring

8Newport (2016)

16



BECOME AN OUTSTANDING DEVELOPER

moving. If different teams are working in the same office, they are
usually separated virtually only, sitting on different desk rows.

Why this tendency in office planning? As Cal Newport points out,
Square and Twitter CEO Jack Dorsey declared “We encourage
people to stay out in the open because we believe in serendipity
—and people walking by each other teaching new things”.

I can understand this point of view, and it seems difficult to argue
against open-plan offices when trying to improve collaboration.
Yet, we established that interruptions are a big obstacle to pro-
ductivity. Aren’t these offices encouraging interruptions instead
of preventing them?

Did you like this preview? Discover more about productivity
in the second part of this chapter by purchasing the book at
https://leanpub.com/outstanding-developer/

17



Chapter 1 — Productivity

18



Bibliography

Kahneman, Daniel. 2011. Thinking, Fast and Slow. Macmillan.

Meyer, Andre N, Laura E Barton, Gail C Murphy, Thomas Zim-
mermann, and Thomas Fritz. 2017. “The Work Life of Devel-
opers: Activities, Switches and Perceived Productivity.” IEEE
Transactions on Software Engineering 43 (12): 1178–93.

Meyer, André N, Thomas Zimmermann, and Thomas Fritz. 2017.
“Characterizing Software Developers by Perceptions of Produc-
tivity.” In 2017 Acm/Ieee International Symposium on Empir-
ical Software Engineering and Measurement (Esem), 105–10.
IEEE.

Newport, Cal. 2016. Deep Work: Rules for Focused Success in a
Distracted World. Hachette UK.

Sykes, Edward R. 2011. “Interruptions in the Workplace: A
Case Study to Reduce Their Effects.” International Journal of
Information Management 31 (4): 385–94.

Züger, Manuela, Christopher Corley, André N Meyer, Boyang
Li, Thomas Fritz, David Shepherd, Vinay Augustine, Patrick
Francis, Nicholas Kraft, and Will Snipes. 2017. “Reducing
Interruptions at Work: A Large-Scale Field Study of Flowlight.”
In Proceedings of the 2017 Chi Conference on Human Factors
in Computing Systems, 61–72.

19



Bibliography

20


	Introduction
	Chapter 1 — Productivity
	Bibliography

