

Outside-In React Development
A TDD Primer

Josh Justice

This book is for sale at http://leanpub.com/outside-in-react-development

This version was published on 2022-10-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2020-2022 Josh Justice

http://leanpub.com/outside-in-react-development
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Go Beyond the Book . i

Introduction . ii

Part One: Concepts . 1

1. Why Agile? . 2

2. Testing Concepts . 7

3. Why Test-Driven Development? . 12

4. Overview of Outside-In TDD . 21

Part Two: Exercise . 29

5. About This Exercise . 30

6. Project Setup . 35

7. Vertical Slice . 37

8. Refactoring Styles . 39

9. Edge Cases . 40

10. Writing Data . 42

11. Exercise Wrap-Up . 44

CONTENTS

Part Three: Going Further . 45

12. Integration Testing the API Client . 46

13. Asynchrony in React Testing Library . 47

14. Next Steps . 49

Go Beyond the Book
Thank you for reading this book! This is Josh Justice, the author, and I hope it will be a big
help to you. But the help doesn’t stop here.

I’d love to invite you to connect with me and other readers online to:

• Let me know if the book is helpful to you
• Ask questions and provide feedback about the book
• Share your own approach to React testing and TDD and get input
• Get help with React testing challenges on your own projects
• Hear about updates about this book and other resources from me, including pre-
releases and discounts

Visit https://outsidein.dev/connect to see the latest ways to connect, including email, social
media, and online discussion. We hope to see you soon!

https://outsidein.dev/connect

Introduction

Testing on the Front-end

The World Wide Web started out as a platform for displaying only static documents, but
now it hosts fully-featured interactive applications. The JavaScript language and browser
APIs allow building user interfaces that are as rich as conventional desktop and mobile
applications in many respects. Front-end JavaScript frameworks like React abstract away
many of the low-level details of managing rich user interfaces, allowing developers to focus
on delivering business functionality.

Back when JavaScript was only used to provide a little enhancement on top of server-
rendered web pages, testing JavaScript code was both difficult and, in many cases, unnec-
essary. But with many web applications now implementing their entire user interface in
JavaScript, testing that JavaScript code has become essential. Responding to this need, in
the past few years the open-source community has heavily invested in JavaScript testing
tools—test runners, framework-specific testing libraries, and browser automation tools.

But good testing tools aren’t the only thing needed for developers to achieve a positive testing
experience. Many developers loathe writing tests, and JavaScript developers are no exception.
Maybe the tests take much longer to write than the corresponding production code. Maybe
one change to production code breaks many tests, necessitating lots of effort to fix them.
Maybe the tests fail sporadically for no obvious reason. Maybe the tests don’t actually seem
to be confirming anything that matters. Whatever the reason, many JavaScript developers
feel like testing isn’t delivering on its promise to make their apps better.

There’s a good reason that testing is so challenging. After many years of practicing, studying,
and having conversations about software testing, I’ve become convinced that testing is an
irreducibly complex topic. There might be only one obvious way to implement a given
feature, but there are usually several ways to test it, each with pros and cons that make
it difficult to know which to choose. Judgment is necessary. And you can’t learn judgment
from a quick read of a testing tool’s documentation: judgment only comes after time and
experience.

But there is one hack we can use to develop our judgment more quickly. We can listen to
others’ experiences and learn from them—not only the experience of front-end JavaScript

Introduction iii

developers, but also developers on other platforms who have struggled with the same
testing challenges. This book examines testing principles that emerged in other programming
environments and applies them to front-end development. These principles center around the
practice of test-driven development—specifically, a variety known as outside-in test-driven
development. This practice helps you write tests that thoroughly cover your app but are
loosely-coupled so they don’t hinder you from making changes.

Who Is This Book For

You’re likely to benefit from reading this book if you would describe yourself as:

• A front-end developer new to testing. If you haven’t written unit or end-to-end tests
before, this book will teach you how to write both. You’ll get experience with excellent
testing tools and with techniques that will help you maximize the value of these tests
and minimize their cost.

• A front-end developer new to test-driven development. If you write your front-end
tests after you write your production code, this book will show you why you might
consider writing your tests first. You’ll learn how test-driven development makes it
easier to fully cover the functionality of your app with tests, and you’ll see how it
prevents test fragility by keeping your tests focused on the interface rather than the
implementation.

• An experienced TDDer new to the front-end. This was me when I moved into front-
end development. I didn’t want to leave behind the TDD practices that had helped
me so much in server-side apps, but there weren’t many resources on how to do TDD
effectively in modern front-end frameworks. This book will help you apply the TDD
techniques you love to React, and it will show how the different constraints of the
front-end environment might lead to small adjustments to your TDD approach.

• A front-end TDDer who only writes component tests, or writes them before end-
to-end tests. This is sometimes referred to as “classic TDD” or “middle-out TDD”
because you start with the inside of your app—in the case of front-end apps, your
components. You’ll see how end-to-end tests complement your unit tests by adding
a different kind of coverage, and how they can help your code become even more
focused by steering you away from TDDing unneeded functionality. You’ll also see
how Cypress overcomes some of the pain points you may have experienced with end-
to-end testing tools in the past.

Introduction iv

Chapters

This book consists of three parts.

Part One, Concepts, lays out big-picture ideas related to outside-in TDD:

• Why Agile? describes some problems that commonly occur in software development,
and it shows how addressing those problems is the goal of agile development practices.
These practices include small stories, evolutionary design, test-driven development,
refactoring, and others.

• Testing Concepts introduces some important terms related to software testing and
clarifies how they will be used in this book.

• Why TDD? goes into detail about the agile development practice that this book focuses
on: test-driven development. It will explain the surprising benefits of writing tests
before you write production code, including regression safety, test robustness, and
speed of development.

• Outside-In TDD describes the variant of TDD this book will follow, known as outside-
in TDD. It explains how, in this approach, end-to-end tests and unit tests work together
to confirm both the external and internal quality of your software.

Part Two, Exercise, walks you through putting outside-in TDD into practice by building the
first few features of a real application in React.This part consists of the following chapters:

• About This Exercise describes the exercise in general and introduces the tech stack
we’ll be using.

• Project Setup sets up both the codebase and process we’ll use throughout the exercise.
We’ll list out the stories we’ll work on, create the project, and configure it. Before we
even write the first feature we’ll get tests running on a CI service and get the code
automatically deploying to a hosting service.

• Vertical Slice puts outside-in TDD into practice with our first feature: reading data from
an API server. We’ll stay focused on a minimal feature slice that touches all layers of
the app so that each will begin to be built out.

• Refactoring Styles shows how thorough test coverage allows us to implement function-
ality and styling in two separate steps. We’ll take our plain-looking app and apply a
nice look-and-feel to it, relying on the tests to confirm we haven’t broken anything.

• Edge Cases adds polish to our first feature: visual feedback for loading and error states.
Testing these edge cases at the unit level will keep our end-to-end tests simple and fast,
and TDD will ensure that all the edge cases are covered by tests.

Introduction v

• Writing Data brings everything we’ve learned together as we build out a second
feature: writing data to the API server. We see how to test HTML forms and verify data
posted to the server. First we’ll build out the core functionality in an outside-in TDD
loop with end-to-end and unit tests, then we’ll test-drive edge cases with additional
unit tests.

• Exercise Wrap-Up reflects back on how the outside-in TDD process went over the
course of the exercise and summarizes the benefits we gained by following that process.

Part Three,Going Further, provides supplemental material that builds on the first two parts:

• Integration Testing the API Client walks you through how you can directly test your
API layer by testing your wrapper in integration with the third party code. We didn’t
do this in the main exercise because it doesn’t provide a lot of value in this case, but
it’s a good tool to have in your tool belt if you find it would increase your confidence.

• Asynchrony in React Testing Library dives deeper into some challenges that can come
up around asynchronous behavior in component tests. We’ll look at the good reason
React might give us warnings, try alternate ways to address the root cause, and
examine the outcome of those changes on our tests.

• Next Steps wraps up the book by pointing to additional resources you can use to learn
more about test patterns, testing tools, TDD, refactoring, and other agile practices.

Prerequisites

You’ll find this book easiest to follow if you already have the following:

Familiarity with React and Redux

The second part of this book is an exercise building a front-end application in React and
Redux. It’s helpful if you already have some familiarity with the stack you choose. We won’t
be using any features that are too advanced, and we’ll explain what’s happening as we go.
But we won’t explain everything about how these libraries work or why. Because of this, if
the stack you choose isn’t already familiar to you, it’s recommended that you go through an
introductory tutorial about that stack first. The React and Redux web sites include excellent
documentation and are a great place to start:

• React web site¹
• Redux web site²
¹https://reactjs.org
²https://redux.js.org

https://reactjs.org/
https://redux.js.org/
https://reactjs.org/
https://redux.js.org/

Introduction vi

Familiarity with Jest or Mocha

Jest and Mocha are two popular JavaScript testing libraries that are fairly similar. Jest is the
main unit testing library we’ll use in this book. But if you only know Mocha, don’t worry:
we won’t be using any features of Jest that are too advanced, so you should be able to follow
along easily enough. But if you haven’t used either Jest or Morcha before, it’s recommended
that you look through the introductory parts of the Jest docs to get familiar.

• Jest web site³

Our end-to-end test framework, Cypress, uses Mocha under the hood instead of Jest. But in
our Cypress tests we won’t use many Mocha APIs; we’ll mostly be using Cypress-specific
ones. So don’t worry about getting familiar with Mocha if you haven’t used it before.

Code Formatting

When we are displaying whole new blocks of code, they’ll be formatted like this:

export default function App() {

return <div>Hello, world.</div>;

}

Because we’ll be using test-driven development, we’ll be spending less time writing large
chunks of code and more time making tiny changes to existing code. When that happens,
we’ll strike through the lines to remove and bold the lines to add:

import RestaurantScreen from

'./components/RestaurantScreen';

export default function App() {

return <div>Hello, world.</div>;

return (

<div>

<RestaurantScreen />

</div>

);

}

³https://jestjs.io

https://jestjs.io/
https://jestjs.io/

Introduction vii

About the Author

Josh Justice

I’m Josh Justice, and I’ve worked as a pro-
fessional software developer since 2004.
For the first 10 years I worked in server-
rendered web applications (the only kind
of web applications most of us had back
then). I wasn’t writing any automated
tests; every change I made required man-
ually retesting in the browser. As you
might imagine, that resulted in a lot of
builds sent back fromQA, a lot of delayed
releases, and a lot of bugs that made it
to production anyway. I was fortunate
enough not to have to work too many
nights or weekends, but there was always
the very real threat of an evening phone
call about a production issue I needed
to fix urgently. I tried different program-

ming languages and frameworks to see if they would help make my apps more reliable, but
none made much of a difference.

Eventually I was introduced to unit testing and browser automation testing, and I saw a
glimmer of hope. Unfortunately, the language ecosystem and teams I was working on at the
time didn’t have much experience with automated testing; we tried to learn it but didn’t
have much success. That all changed when I started working in Ruby on Rails. In Ruby, the
testing paths are well-trodden. I was able to learn from experienced testers and see the way
they approached writing tests. They shipped code to production as soon as the pull request
was merged, confident it would work because the tests passed—and then they made me do
the same! I saw security patches applied in a matter of minutes instead of weeks; as soon as
the tests were green we knew it was safe to release.

Testing wasn’t the only thing I learned from the Ruby community. With the safety that
test coverage gave us, we had the confidence to make tiny improvements to the code
constantly. We renamed variables, methods, and classes to more clearly describe what they
were intended to do. We split long, complex methods into smaller ones so that each was a
short, easily-understood series of steps at a single level of abstraction. We rearranged code
so that new features fit in cleanly instead of being hacked in with increasingly-complex

Introduction viii

conditionals. When improvements like these are consistently applied to a codebase, I found
that I could jump into that codebase for the first time and understand it quickly. This not
only made my development more productive; it also made it a lot more fun. I spent a lot less
time worried and stressed, and a lot more time interested and excited—and that made me
more productive, too.

A few years after my professional focus shifted to Ruby, it shifted again, this time to front-
end development. Because of all the benefits I’d seen from testing, one of the first things I
looked for was how to test front-endweb applications. The answer at the timewas effectively
“we’re working on it.” The community was still working through fundamental questions
about how to build front-end apps that were consistent, performant, and simple—and with
those fundamentals in flux, testing approaches were necessarily in flux as well. I tracked
with community conversations about testing practices as they evolved over the years, and I
became increasingly convinced that the testing principles I’d learned on the backend applied
just as much to front-end apps. Those practices weren’t widely applied on the front-end, but
it wasn’t usually because of inherent differences between the platforms: usually, it was due
to a lack of information flow from one programming ecosystem to another.

That lack of testing information flow into the front-end community is the problem I’ve tried
to address over the years by creating a variety of front-end testing resources. This book is
the culmination of that process so far. It encompasses the practices I’m most convinced lead
to applications that are reliable, maintainable, and evolvable. These are the practices I reach
for on the front-end, and that I would reach for on any platform, language, or framework.
This book contains the advice I most commonly give in code reviews and pairing sessions.
These practices were passed along to me having stood the test of time, and I believe they’ll
continue to do so for you.

Thanks

It’s no exaggeration to say that this book has no original content and is only an arrangement
of the good ideas of others. I’d like to thank the following people for playing a role in the
ideas or the process of writing it.

• Kent Beck for creating and writing about TDD, Extreme Programming, and other
practices that help geeks feel safe in the world.

• Nat Pryce and Steve Freeman for evolving TDD by creating and writing about mock
objects and outside-in TDD.

• Jeffrey Way for introducing me to TDD and object-oriented design.

Introduction ix

• Toran Billups for helping me see the possibilities of outside-in TDD on the front end.
• The Big Nerd Ranch web team, past and present, for teaching and exemplifying agile
development.

• Myron Marston and Erin Dees for making outside-in TDD so practical in Ruby.
• Kent C. Dodds, Edd Yerburgh, and the Cypress team for creating great front-end test
tooling.

• Atlanta tech meetup organizers, connect.tech, and Chain React for opportunities to
speak and teach about testing.

• Jack Franklin and Justin Searls for informing and challenging my thoughts on front-
end testing.

• James Shore for consistently championing the relevance of TDD to JavaScript.
• Matthew Strickland and Jonathan Martin for encouraging and inspiring me to write
and create other content.

• The creators of Docusaurus and VuePress for creating great platforms for publishing
online content.

• Graham Lee, Brian Marick, Ron Jeffries, Noel Rappin, and Elisabeth Hendrickson for
being generous enough to field my out-of-the-blue questions.

• Zac Brooks for designing the cover of the book.
• My wife Jennifer and my three children, Emily, Katherine, and James, for supporting
me in my passion for programming, and for making me look forward to finishing work
for the day.

What’s Next

With that, we’re ready to get started learning about the concepts behind outside-in front-
end development. We begin by looking at the problems that agile development practices are
intended to solve.

Part One: Concepts

1. Why Agile?

The Problem

Software projects rarely go as smoothly as we would like. We make project plans, but how
often does the reality end up matching those plans? Nobody says it better than Sandi Metz:

Unfortunately, somethingwill change. It always does. The customers didn’t know
what they wanted, they didn’t say what they meant. You didn’t understand their
needs, you’ve learned how to do something better. Even applications that are
perfect in every way are not stable. The application was a huge success, now
everyone wants more. Change is unavoidable. It is ubiquitous, omnipresent, and
inevitable.

— Sandi Metz, Practical Object-Oriented Design

When you first start building a new software system, things go smoothly and it’s easy for
you to add new functionality. You feel so productive! But as time goes on, that sense of
productivity wanes. When you change a bit of code, something seemingly-unrelated breaks.
To add just one new feature, you need to make dozens of changes throughout the codebase.

To make sure your app continues to work as you change it, you need some kind of testing.
Maybe you don’t have any automated tests, so you have to rely entirely on manual testing.
But as your feature set grows, the effort required to manually test it grows at the same
rate. With each release you either need to allow more time for manual testing, hire more
testers, or retest less of your codebase and increase the risk of breakage. Or maybe you do
have automated tests, but changing one feature causes lots of tests to break, so the majority
of your development time goes toward maintaining tests. Worse, maybe those tests don’t
actually catch the kinds of bugs your app tends to have, so you have to do just as much
manual testing in addition to maintaining the test suite!

Over the lifetime of a software system, more and more effort is needed to get a smaller and
smaller result. What causes these diminishing returns? Ron Jeffries explains in The Nature
of Software Development :

1. Why Agile? 3

The time needed to build a feature comes from twomain components: its inherent
difficulty, and the accidental difficulty of putting it into whatever code already
exists. Teams are good at estimating the inherent difficulty. What makes us
erratic, what makes us slow down, is the accidental difficulty. We call this
difficulty “bad code.”

If we allow code quality to decline, some features go in easily, sailing right
through. Others that seem similar get entangled in twisty little passages of bad
code. Similar work starts taking radically different amounts of time.

How can you prevent the accumulation of “bad,” messy code as the project changes? Often
the first thing that comes to mind is tominimize change by putting more effort into up-front
design. If changing the system leads to messy code, then making and sticking to a plan for
how to structure the code should help, right? The problem is that, despite our best efforts,
up-front designs rarely fit the requirements perfectly—and if the requirements change, all
bets are off. Any code that doesn’t fit with the design will be messy, causing development
slowdown.

A common response to this problem is to design for flexibility. For example, we don’t know
for sure what data store we’ll use or what communication mechanisms the user will want,
so we make those parts of our system configurable and pluggable. We think of everything
in the system that could vary and we isolate each of those pieces so they can be replaced.
But just because the system could change in a certain way, that doesn’t mean it will. And
every bit of flexibility and pluggability we build into the system has a cost: it’s indirection
that makes the code harder to understand and work with. When the system doesn’t end up
changing along the lines of a given configuration point, that configuration point adds cost
without providing any benefit. And if a change is needed that wasn’t one of the ones we
built a configuration point for, we’ll have to write messy code to add it in after all.

Whether from a lack of flexibility or from unnecessary indirection, it seems inevitable that
development slows down as systems grow. How can we escape this dilemma?

How Agile Helps

Keeping the pace of development fast as systems grow is one of the main goals of agile
software development. Rather than trying to resist or anticipate change, an agile team
embraces change and adopts practices that help them effectively respond to that change.
Here are some of the most central agile development practices:

1. Why Agile? 4

Small Stories

We break the work up into minimum units of user-visible functionality. For example, an
agile team doesn’t build out an application’s entire data layer at once. Instead, we build one
user-facing feature, including just enough of the data later, business logic, and user interface
to get it working. When that work is finished, we start the next story and add another slice
of data layer, business logic, and user interface.

Evolutionary Design

As we’re adding this functionality story-by-story, we don’t try to predict everything our
application will need and design an architecture that will satisfy all of it…because we know
we’ll be wrong. Instead, we strive to make the system’s design the best fit for its functionality
today, for the story we’re currently working on. When we start the next story, then we adjust
the design of the system to match that story’s functionality. With a design that is constantly
being custom-fit to the present reality, we should never have a system that is either under-
designed with hacked-in changes or over-designed with unused flexibility.

Test-Driven Development

Aswe build our stories, we write the test first, and we only write production code in response
to a failing test. This ensures that every bit of our logic is covered by test, so that as we
rearrange the design of our system we know that we haven’t broken anything. This level of
test coverage significantly reduces the need for manual testing, which means our application
can growwithout the manual testing time increasing indefinitely. TDD also helps us identify
and fix design issues in our code that could cause future development slowdown.

Refactoring

At several different moments during the agile process, we refactor: that is, we improve the
arrangement of the code without changing its functionality. Refactoring is the third step of
the TDD cycle, where after the test is passing we refactor to better code that keeps the test
passing. Another time we refactor is while we’re preparing to add new functionality: we
consider if we can rearrange the code so that the new functionality fits in more naturally.

1. Why Agile? 5

Code Review

We ensure that the person who wrote a bit of code isn’t the only one who is familiar with
it. We want another set of eyes on the code to find bugs and improvements, and we want to
make the code easy to understand by any teammemberwhowill work on it in the future. Pull
requests are a common way to do code review, and they can work well as long as reviewers
are focusing on thoroughly understanding the code and not just giving a cursory glance.

Continuous Integration (CI)

When the term “continuous integration” was coined it referred to integrating teammembers’
work together at least daily instead of using long-running branches. One key aspect of CI is
having an integration machine that will automatically build and test the app to ensure that
integrated code is always working. Today we have cloud services referred to as “continuous
integration” services that handle that building and testing on both main branches and pull
request branches. But just using one of those services doesn’t mean you’re practicing CI: you
also need to merge in your branches frequently.

Continuous Delivery (CD)

Agile teams have the ability to release their system at any moment. To accomplish this, they
ensure the main source control branch runs successfully and doesn’t include incomplete
work. In the rare case that one of these problems does happen, fixing it is the team’s highest
priority. CD also involves automating the steps to release the system. This doesn’t mean that
the team necessarily does release to production every time a new feature is completed, but
they have the ability to do so.

Abstractions

Agile teams order their work to deliver the most important user-facing functionality first.
One strategy they use is to reach for shared solutions and libraries rather than writing all
their functionality from scratch. Shared solutions include community standard build systems,
UI libraries, back-end frameworks, and hosting solutions like Netlify and Heroku. Every day
you spend custom-building an implementation detail of your tech stack is a day you aren’t
delivering features to the user. When the team discovers that an abstraction is slowing down
their delivery of business functionality, then and only then do they write lower-level code
themselves.

1. Why Agile? 6

Agile Team Practices

Most of the practices above are technical practices involving how individuals work with
their code. There are also agile practices that are less technical and more focused on how
individuals within a team work together. These practices aren’t addressed in this book, but
they are equally important. An effective agile team will be intentional about their approach
to:

• Deciding what roles should be included on the team and how they should collaborate
• Eliciting needs and feedback from business users
• Writing and organizing stories
• Deciding whether or not estimation would provide value, and deciding how to do that
estimation

• Coordinating work for a bit of user-facing functionality across multiple disciplines
such as design, front-end, back-end, infrastructure

• Measuring their progress in terms of velocity or other metrics

To learn more about this broader scope of agile practices, check out Agile Methodology
Resources.

What’s Next

In this book we’ll examine and try out most of the agile technical practices described above,
with a particular emphasis on test-driven development. But before we can get to test-driven
development, the next thing we need to do is lay a foundation of core testing concepts and
define the testing terms we’ll use in this book.

2. Testing Concepts
Gaining experience in any area of programming requires learning a variety of technical
terms—and the area of testing is no different. Testing terms present a particular challenge:
they have a tendency to be given many different definitions, often contradictory ones. To
begin talking about testing more in depth, then, we need to lay out the terms we’ll be using.
We’ll look at the variety of ways the terms are used in the industry, and we’ll define how
they will be used in this book.

Assertions and Expectations

One of the most foundational concepts of automated testing is an assertion: a check that
something that should be the case really is the case. Many test frameworks have one or
more assert…() functions that do just that:

assert.equal(sum, 42);

The test runner we’ll be using for unit tests, Jest, has a slightly different terminology. Jest uses
an expect() function, which allows you to chain function calls together to check a condition,
resulting in test code that (arguably, to some people) reads more like natural language:

expect(sum).toEqual(42);

Checks that use an expect() function are often referred to as “expectations”. In this book
you’ll see the terms “assertion” and “expectation” used interchangeably. There’s no practical
difference, other than that it reads a bit more naturally in a sentence to say that “In this test
we assert that X is true”.

The end-to-end testing tool we’ll be using, Cypress, offers the ability to make a variety of
assertions with the .should() method. But our Cypress tests are so simple that we won’t
end up needing any explicit .should() calls. Instead, we will call a method to look for an
element on the page that .contains() a certain string. If that string is found on the page, the
test will proceed, but if it isn’t found, the test will fail. This is effectively an assertion even
though the method isn’t named “assert, “expect,” or “should.”

2. Testing Concepts 8

Unit Tests

The term “unit test” refers to an automated test of a portion, or unit, of your code. The
differences in how people use the term “unit test” involve what they consider a “unit” to be.

The narrowest definition of a “unit” is a single function, object, or class. If a given unit
depends on any other functions or objects, they will be replaced by a test double in the test.
Of course, all code needs to depend on built-in language primitives, functions, and classes,
so those are allowed in even the narrowest unit tests. And an exception is sometimes made
for low-level utility libraries that effectively extend the language’s standard library, such as
Lodash for working with arrays and objects or date-fns for working with dates. But no other
real dependencies are used in the test.

Another definition of a “unit” allows the code under test to interact with the framework
it’s built with but not other classes or functions in your application’s code. When you have
a React component function that uses React functionality for state and life cycle events,
testing that component requires running it through React so that necessary functionality
works. But that test can still isolate that component from data store dependencies and even
child components.

Finally, a “unit” can be scoped to the function or object under test along with all of
its real dependencies within the application. This is the approach generally taken by
the inventors of the modern unit testing and test-driven development. With front-end
application components, using a component’s real dependencies includes rendering all of
its child components. Some would refer to this kind of test as an “integration” test because
of the potentially large amount of first-party and third-party code you are “integrating with”
in the test. Whichever term is used, the most important thing is that everyone on your team
is using a consistent approach and terminology for their tests.

In this book, we’ll refer to the tests for our components as “unit tests.” Because they will
involve rendering the components, they will integrate with React. The tests will render all
of the component’s children, including third-party UI library components. However, our
components under test will be isolated from our data store: instead of connecting to the real
store, we’ll make assertions on the messages our components attempt to send to the store.

Our unit tests of data layer code will run that code in integration with our data layer library,
Redux. Functions in our data layer code that cooperate togetherwill be tested together aswell.
For example, our data layer’s architecture separates out functions that make asynchronous
calls from functions that persist the returned data. Rather than testing these two types of
function in separate tests, we’ll test them in integration with one another in a single test. But

2. Testing Concepts 9

we’ll isolate our data layer from our API client, so that our data layer tests aren’t dependent
on the API client.

End-to-End Tests

Whereas unit tests run against portions of your application’s code, another type of test runs
against the entire application and simulates a user interacting with it. There are a variety of
terms for this kind of test, with meanings that are similar but not quite identical.

The terms “UI automation test” and “browser automation test” focus on the mechanics of the
test: it automates interactions with the user interface. The term “browser automation test”
is limited to tests of web applications, but “UI automation test” can apply to tests of either
web applications or native mobile and desktop applications. These terms can be used to refer
either to tests written by developers for features they built themselves (as we’ll be doing in
this book) or to tests written by test automation engineers for features built by others.

The terms “acceptance test”, “feature test”, and “functional test” focus on the scope of a test
in this category: it covers a single feature, a user-facing bit of functionality. When this is
your mental model for a test, you will tend to write the test to make it closely match the
way a user thinks about the interaction, so that once it passes the user can feel confident
accepting the feature as working correctly. Interestingly, although these types of tests are
usually written to simulate user interactions, there is an alternative: a feature can also be
tested by making a sequence of requests directly to your business logic code and verifying
the resulting data. But in this book, as is typical in front-end development, we will run our
feature tests through the UI of our app.

The terms “end-to-end test” and “system test” refer to testing an entire system together, not
just part of it. But if you were hoping that programmers would at least be able to agree
on what “the whole system” means, your hopes will be dashed: even these terms are used
in different ways. You can test a front-end application and allow it to access the real back-
end system, or you can isolate the front-end from the back-end and only test the front-end
“system” “end-to-end.” In the latter case, instead of referring to the test as “end-to-end” you
might choose to refer to it as an “integration” test because you’re testing all of the front-end
code integrated together but not testing “end-to-end” from the standpoint of the running
production system. But remember that some developers would use the term “integration test”
to refer to the type of unit test we’ll be writing. Whatever terms you choose, you probably
shouldn’t use the same term for two things at the same time, or things will get confusing:
“the two kinds of test we have are integration tests and integration tests!”

2. Testing Concepts 10

In this book we’ll write tests that drive the UI of our application, organized by feature. We
will isolate our front-end from the back-end API to focus on testing our front-end application
on its own. We’ll use the term “end-to-end test” for these tests because it’s commonly used
in the front-end development world.

Stubbing and Mocking

The terms “stubbing” and “mocking” refer to replacing real production dependencies with
simpler dependencies that makes testing easier. These terms can be used at both the unit and
end-to-end testing level.

In unit tests, the general term for this type of testing dependency is a “test double.” The
term is analogous to a “stunt double” in a movie: a dependency that stands in for another
dependency. In programming languages that are purely object-oriented, test double libraries
are designed to create doubles for an entire object, but in JavaScript test double libraries are
usually designed to create doubles for one function at a time.

Two of the more commonly used types of test double are “stubs” and “mocks.” The two terms
are often used interchangeably, but their original definitions had a difference of meaning.

A stub function is one that returns hard-coded data needed for the current test. For example,
consider a component that calls a function that retrieves data from a web service. In one test
you might stub that function to return a promise that resolves with web service response
data and confirm that the component displays that data correctly. In another test you might
stub the same function to return a promise that rejects with an error message, and test that
the component correctly handles that error. In both cases, stubbing made it straightforward
for you to configure the scenario you wanted to test.

A mock function is one that allows you to make assertions about whether and how it was
called. A mock function can also optionally be configured to return data if the calling code
requires it, just like a stub function. But mocks are particularly useful for cases where no
return value is used by the calling code. For example, consider a form component that calls
a function when it is submitted, passing it the form data. When testing that component, you
could mock the function, fill out and submit the form, then check that the function was
called with the data you filled out. The form might or might not use a return value from
that function, but either way you want to make sure the function was called with the right
arguments.

End-to-end tests don’t often involve using test doubles to replace portions of your front-end
application code, because you’re usually testing your whole front-end application together.

2. Testing Concepts 11

Instead, when you replace a dependency in an end-to-end test it’s generally something
external to your front-end application. Cypress, the end-to-end test frameworkwe’ll be using,
allows controlling a number of browser APIs, but in this book the only dependency we’ll be
controlling is the back-end web service. “Stubbing” the back-end involves setting up hard-
coded HTTP responses to give the front-end app the data it needs for different scenarios.
“Mocking” the back-end involves making assertions about what HTTP requests were sent
to the back-end, which is especially useful when writing data. For example, if you create a
new record, it’s not enough to confirm that that record is shown in the UI: you also need
to ensure it’s properly sent to the back-end. Mocked requests allow you to check that the
request was made with the correct data.

In the exercise we work through in this book, we’ll take advantage of stubbing and mocking
in both our unit and end-to-end tests.

What’s Next

Now that we’ve gotten our testing terms straight, let’s look at the way our agile development
approach recommends going about testing: test-driven development. In the next chapter
we’ll describe what TDD means in detail, and we’ll explain how the unintuitive practice of
writing your tests first leads to a number of benefits.

3. Why Test-Driven Development?
This book will walk you through a number of agile development practices, but it has a
particular focus on one such practice: test-driven development. Test-driven development is
the practice of writing a test for application functionality before you write the functionality
itself. It follows a three-step process, “Red-Green-Refactor”:

1. Red: write a test for a small bit functionality that does not yet exist, and watch it fail.
2. Green: write only enough production code to pass the test.
3. Refactor: rearrange the test and production code to improve it without changing its

functionality.

Then the cycle repeats: you write a test for the next bit of functionality and watch it fail, etc.
This repeating sequence of three steps can be visualized as a loop:

The TDD Loop

Why would you want to follow test-driven development? There are a number of common
problems in programming that test-driven development helps to solve. Let’s take a look at
some of them.

Regression Safety

As you add new features and make changes to existing features, you need a way to
make sure you don’t introduce any regressions—unintended changes to the application’s

3. Why Test-Driven Development? 13

functionality. Full manual retesting isn’t a scalable solution because it becomes impractical as
the application grows larger, so an automated test suite is needed. Most developers whowrite
tests do so after the corresponding production code is complete, an approach called “test-after
development.” But there are several things that make it difficult to achieve regression safety
with test-after development.

First, with test-after development, you may find that some of the production code you wrote
is difficult to write a test for. This can happen if your production code has a complex interface
or many dependencies on the rest of your application. When a bit of code is designed in a
way that is hard to test, developers will often adopt complex testing approaches that attempt
to work around the problem. These approaches can be a lot of work and tend to make tests
fragile—problems that can lead to giving up on testing the code altogether. Instead, when
you find that a bit of code is hard to test, it’s better to rearrange the code to make it more
testable. (Some would say you shouldn’t “design your code for the sake of the tests,” but this
is really designing the code to make it usable in new contexts, and a test is just one such
context.) Rearranging the code can make it more testable, but it can be demotivating to do
so because it risks breaking the code before tests can be put in place.

There’s a second obstacle to achieving regression safety using test-after development: it
makes it difficult to fully specify the functionality of your app. Fully specified means your
tests cover every important behavior of your app: if the tests are passing, you can be sure
the app is working. But how can you tell if you have enough tests to fully specify the
app’s functionality? You could try test coverage metrics, which indicate for each function,
statement, and branch whether or not it is executed during a test. But metrics can’t tell you
if you are making assertions about every important result; in fact, you can max out the test
coveragemetrics withoutmaking any assertions at all! Also, when you have complex boolean
expressions, metrics don’t generally check if you are testing every possible combination of
boolean values. Testing every boolean combination is often too many possibilities. Not every
boolean combination is important for your application, but some are, and a tool can’t make
the call which is which: you need to make it yourself. Because of all this, code coverage tools
can’t guarantee that your application’s functionality is fully specified, which can allow bugs
to make it to production.

In contrast to these problems with test-after development, test-driven development results
in a test suite that provides thorough regression safety for your application. You won’t
end up with code that can’t be tested, because the test is what resulted in that code being
written. And by definition TDD results in tests that fully specify your functionality: every
bit of logic you’ve written is the result of a failing test that drove you to write it. Because of
this, you can have high confidence that your test suite will catch unintentional changes.

3. Why Test-Driven Development? 14

Robust Tests

Even if you see the theoretical value of testing, in practice it may feel like your unit tests
have a cost that outweighs their benefit. Sometimes it can seem like whenever you make the
smallest change to production code, you need to change the tests as well, and the test changes
take more time than the production code changes. Tests are supposed to ensure our changes
don’t break anything, but if the test fails when we make a change, how much assurance are
we really getting?

When a test needs to change every time its production code changes, this is a sign of an over-
specified test. Usually what is happening is that the test is specifying details of the production
code’s implementation. Instead, what we want is a test of the interface or contract of the
production code: given a certain set of inputs, what are the outputs and effects visible to the
rest of the application? Our test shouldn’t care about what’s happening inside the module
as long as what’s happening outside of it stays consistent. When you’re testing the interface
in this way, you can rearrange a module’s implementation code to make it easier to add in
a new requirement while the existing tests for that module continue to pass, confirming no
existing requirements are broken.

Test-driven development guides you toward testing the interface rather than the
implementation, because there is no implementation yet at the time you’re writing the
test. At that time, it’s easy to visualize the inputs and outputs of the production code you
want to write, and it’s harder to visualize implementation details such as internal state and
helper function calls. Because you can’t visualize the implementation, you can’t write a test
that’s coupled to it; instead, your test specifies only the interface of the code. This helps you
build up a test suite that is less fragile, that doesn’t need to change every time production
code changes. As a result, the value of your test suite for regression safety goes up and the
cost of maintaining it goes down.

Speed of Development

As we discussed in Why Agile?, as applications grow over time, the speed of development
tends to get slower and slower. There is more code, so when you need to make a change,
more existing code is affected. There is an increasing (sometimes exponentially-increasing)
amount of effort needed to add functionality. It’s even possible to reach a point where it takes
all the developers’ effort just to keep the system working, and adding new functionality is
impossible.

3. Why Test-Driven Development? 15

Why does this slowdown happen? Because when you wrote the code in the first place you
couldn’t foresee all future requirements. Some new features you add will fit easily into
the existing code, but many will not. To get those new features in you have to resort to
workarounds that are complex and inelegant but get the job done. As these workarounds
multiply, you end up with code that is very difficult to understand and change. Some of
your functions end up as massive sequences of unrelated branching logic, and the amount
of effort to follow what one of them is doing can be overwhelming.

Oneway test-driven development speeds up development is by guiding you toward the
simplest implementation.We programmers can tend to jump to conclusions by coming up
with sophisticated ways to implement a module, but often the needs of an application are
simpler than that. TDD leads you to start with a simple implementation and only refactor
to a complex one when there are enough tests to force you to do so. If you don’t need those
tests yet, you don’t need that costly complexity that isn’t adding value.

Test-driven development also guides you to write the simplest interface. Before you
write the implementation of a module, you write the interface presented to the rest of your
application for using it. When you write the function call first, you’re a lot less likely to end
up with a function that takes eight positional arguments and a lot more likely to think of
a simpler interface for that function. Interface thinking helps ensure your code presents a
clean abstraction to the rest of the application. This reduces the effort required for future
developers to understand the calling code, lowering the cost of maintenance.

When you need to add additional functionality, you want to avoid workarounds that will
slow you down over time. Instead, you need to adjust the code as you go so that it’s easy to
add in the new requirement. An ideal regression test suite would give you the confidence
to make these changes. But if you have even a little bit of doubt in your test suite, you’ll
hesitate because you don’t want to risk breaking something. Using a workaround will be
safer than reorganizing the code. But after an accumulation of many such workarounds you
can end up with a codebase that is a mess of giant functions with deeply-nested conditional
logic that continues to get slower and more fragile to work with.

With test-driven development, you have a regression test suite you know you can trust,
so you can clean up the code any timewith very little friction.You canmake the code just
a bit clearer or simpler, and if the tests are green you will have a high degree of confidence
that you haven’t broken anything. Over time these tiny improvements add up to a codebase
that looks like it was designed from the start knowing what you know now. The simple, clear
code helps your development speed stay fast.

Another cause of development slowdown is dependencies. If each part of your code talks to
many others then changes are likely to have a ripple effect throughout your codebase: each

3. Why Test-Driven Development? 16

small change will cascade into many more necessary changes. Code that is easy to change is
loosely-coupled, with few dependencies on other bits of code. Why does code end up with
many dependencies? One reason is that it’s difficult to visualize your code’s dependencies in
production use. Your application is arranged just so, and all the bits are ready and available
for your code to use them—which is not so great when things need to change.

Unit testing reveals the dependencies in your application because they are an instance of
reusing your code in a second context. If the code has few dependencies, it will be easy to use
on its own and therefore relatively easy to write a test for. But if the code depends on the rest
of your application being available, it will be difficult to write a test for it. This difficulty can
help you identify a dependency problem, but it won’t help you solve that problem. Breaking
those dependencies will require changing your code, and you don’t yet have the code under
test to be able to change it safely.

Test-driven development helps you avoid writing code with too many dependencies
in the first place. Because you’re writing the test first, you’ll quickly see if too many
dependencies are required to set up the test, and you can change your strategy before
you even write the production code. As a result, you’ll end up with code with minimal
dependencies. This means that changes you make in one bit of code will be less likely to
require changes in many other places in your app, allowing you to deliver features more
quickly and smoothly.

When Not to TDD?

Test-driven development provides many benefits, and the argument of this book is that far
more projects would benefit from it than are using it today. That said, this doesn’t mean
TDD is a fit for every software project. Let’s look at the cases where TDD might not be such
a good fit, but also warnings for each about why you shouldn’t make that decision lightly.

Throwaway Code

If your code will be used only a few times and then discarded, there is little need for
robustness or evolving the code. This is true if you know for sure the code won’t be used on
an ongoing basis.

However, many programmers have worked on a project that everyone agreed was “only a
proof-of-concept” but nonetheless ends up shipped to production. The risk you take by not
TDDing in this case is that if it does end up shipped to production, you will already be started
down the path of having code that isn’t well-specified by tests.

3. Why Test-Driven Development? 17

Rapidly-Changing Organizations

If the business is undergoing frequent fundamental changes, code is more likely to be
discarded than evolved, so it isn’t valuable to prepare to change that code. An example would
be a startup that is pivoting frequently. In systems built for an organization like this, it can
be better to limit your test suite to end-to-end tests of the most business-critical flows in the
application.

But what about when the business settles down and needs to start evolving on a stable
codebase? At this point the code will already be written and it will be difficult to add
thorough test coverage you can have confidence in.

Systems That Won’t Change

For domains where the needs are well-understood, the system may not evolve much over
time. It’s a system with a known end state, and once that state is reached further feature
changes will be minimal. So if you put effort into getting the initial design right and don’t
make many mistakes, you won’t need to make a lot of changes. I’ve worked in domains like
this.

It’s easy to think that things are certain and will never change, because we humans find
comfort in certainty. Nonetheless, many programmers’ experience is that software often
requires more changes than you think it will. And if nothing else, the environment your
code runs in will need to change, as operating systems and web browsers are upgraded. And
you will at least need to update your underlying libraries for security patches. After any
of these changes your application needs to be regression tested, and you will have backed
yourself into a corner where you don’t have the test coverage ready.

Spikes

Say you have a general idea for a feature, but you don’t know exactly how you want it to
work. You want to play around with different alternatives to see how they feel before you
commit to one. In this approach, you don’t know what to specify in a test, and if you did
specify something it would likely be thrown out 15 minutes later. So instead, you just write
the feature code and see how it works out. This approach is called a “spike,”” and it’s looked
upon favorably in TDD circles. The question is, once you settle on a final approach, do you
keep your untested code as-is, or do you try to retrofit tests around it? TDD advocates would
recommend a third option: treat the spike as a learning process, and take those lessons with
you as you start over to TDD the code. This takes some extra effort, but when you’re familiar

3. Why Test-Driven Development? 18

with a technology most applications won’t require too many spikes: most features are more
boring than that!

Human Limitations

One objection to test-driven development is that you can theoretically get all the same
benefits just by knowing the above software design principles and being disciplined to apply
them. Think carefully about the dependencies of every piece of code. Don’t give in to the
temptation to code workarounds. In each test you write be sure that every edge case is
covered. That seems like it should give you a codebase and test suite that are as good as
the ones TDD would give you.

But is this approach practical? I would ask, have you ever worked with a developer who isn’t
that careful all the time? If not, I’d like to know what League of Extraordinary Programmers
you work for! Most of us would agree that most developers aren’t that careful all the time.
Do you want to write your code in such a way that only the most consistently careful
developers are qualified to work on your codebase? That approach leads to an industry that
is so demanding that junior developers can’t get a job and senior developers are stressed by
unrealistic expectations.

Let me ask a more personal question: are you always that careful? Always? Even when
management is demanding three number-one priorities before the end of the day? Even
when you’re sick? Even in the middle of stressful life events or world events?

Programming allows us to create incredibly powerful software with relative ease, and as
a result, programmers can be tempted to subconsciously think that they have unlimited
abilities. But programmers are still human, and we have limited energy, attention, and
patience (especially patience). We can’t perform at our peak capacity 100% of the time. But
if we accept and embrace our limited capacities, we will look for and rely on techniques that
support those limitations.

Test-driven development is one such technique. Instead of thinking about the abstract
question “does my code have too many dependencies?”, we can just see if it feels difficult to
write the test. Instead of asking the abstract “am I testing all the edge cases of the code?”, we
can focus on the more concrete “what is the next bit of functionality I need to test-drive?”
And when we’re low on energy and tempted to take shortcuts, our conscience won’t remind
us about all the big-picture design principles, but it might remind us “right now I would
usually be writing the test first.”

So can you get all the same benefits of TDD by being disciplined about software design

3. Why Test-Driven Development? 19

principles? Maybe on your best day. But TDD helps you consistently get those benefits, even
on the not-so-good days.

Personal Wiring

In addition to project reasons you might not want to use TDD, there is also a personal reason.
The minute-by-minute process of test-driven development is more inherently enjoyable for
some people than others. Some developers will enjoy it even on projects where it doesn’t
provide a lot of benefit, and to other developers it feels like a slog even when they agree it’s
important for their project. If you fall into the latter group, you might choose to use TDD
only on some portions of your codebase where the value is higher and the cost is lower.

As you can probably guess, I fall into the “enjoys TDD” category, so it would be easy for me
to say “use TDD for everything.” But if you don’t enjoy it, I understand choosing to reach for
it less frequently. But you’re still responsible for themaintainability of your system. You need
to be able to make changes without breaking key business functionality, and you probably
want to be able to do so without having to do emergency fixes during nights and weekends.
You need to be able to keep up the pace of development, and you probably want code that’s
easy to understand and a joy to work in rather than a tedious chore.

If you aren’t using TDD to accomplish those goals, you need to find another way to
accomplish them. As we saw in the previous section, “just try harder” isn’t an effective
strategy because it requires every team member to be operating at peak levels of discipline
all the time. And unfortunately I don’t have good suggestions for other ways to accomplish
those goals. I’m not saying there aren’t any; I just don’t know them.

It’s not fair that TDD and its benefits come more easily to some than others, but it’s true.
If you’re in the latter group, that doesn’t make you a worse developer: every developer has
different strengths they bring to their team, and TDD isn’t the only skill that matters. My
encouragement would be this: if you’ve tried TDD and you feel like it isn’t very enjoyable
for you, don’t assume it will always be that way. Give it a try in the exercise in this book.
Practice it on your own. Maybe at some point a switch will flip and you’ll find it more
motivating. Maybe you’ll find a few more parts of your codebase that TDD seems like a fit
for.

What’s Next

We’ve just seen how test-driven development works and the benefits it provides. This
book will follow a particular kind of TDD approach called outside-in TDD. In the next

3. Why Test-Driven Development? 20

chapter, we’ll see how outside-in TDD builds on the practices we’ve just examined, providing
additional benefits and giving you additional confidence.

4. Overview of Outside-In TDD

Beyond Traditional TDD

Traditional test-driven development is a process that is specifically about unit tests: you
create objects and call functions and methods. It’s sometimes referred to as “middle-out
TDD”, because you start in the middle of your application building domain logic. This
exclusive focus on unit tests comes with a few trade-offs.

First, because middle-out TDD works at the level of objects and functions, it doesn’t address
testing your UI. When TDD was created, UI testing technology was immature, unreliable,
and difficult to use, so it wasn’t incorporated into the process. Today we have better
technologies for UI testing, especially on the web—ones that are more reliable, stable, and
feasible for developers to write. But because these kinds of tests didn’t exist at the inception
of traditional TDD, it doesn’t provide any guidance on how to incorporate end-to-end tests
into your TDD workflow.

Another downside of middle-out TDD is the risk of building functionality that is unused or
difficult to use. Say you put a lot of effort TDDing a module for handling data, and then you
prepare to integrate it with the rest of your application. Maybe it turns out your data needs
to be stored elsewhere, so you don’t actually need the module you put so much effort into.
Or maybe you discover that in order for your application to use the module it needs to have
a different interface than the one you built it with, and you have to rework it.

Finally, a trade-off of the middle-out approach is that it usually (but not necessarily) involves
testing code in integration with its dependencies—the other code it works with in production.
The upside of this approach is that it can catch bugs in how modules integrate with one
another. But it also means that a bug in one lower-level module can cause failures in the
tests of many higher-level modules. There can also be a lack of defect localization: the tests
aren’t able to pinpoint where the problem originates in a lower-level module because they
only see the result that comes out of the higher-level module.

To see if we can overcome these downsides to traditional TDD, let’s consider an alternate way
to approach test-driven development. Referred to as outside-in TDD, it provides a structure
for using end-to-end and unit tests together in a complementary way, solving the above
problems and providing additional benefits. Let’s see how.

4. Overview of Outside-In TDD 22

The Two-Level TDD Loop

Remember the concept of the TDD loop: red, green, refactor? The first thing outside-in TDD
adds is a second TDD loop outside the first one:

1. Write an E2E test and watch it fail.
2. Step down to a unit test and use the Red-Green-Refactor loop to implement just enough

functionality to get past the current E2E test failure.
3. Step back up and rerun the E2E test to see if it passes. As long as it still fails, repeat the

unit-level loop to address each E2E failure in turn.

These steps can be visualized as a two-level loop:

The outside-in TDD loop

This style of TDD is called “outside-in” because you start from the outside of your application:
the user interface, as tested by the E2E test. Then you step inward to implement the low-level
functionality needed to implement the desired outwardly-visible behavior.

Now that we’ve seen what outside-in TDD entails at a high level, let’s look at its component
parts to see how they work to address the TDD problems we saw above and provide
additional benefits.

The Role of End-to-End Tests

In outside-in TDD, end-to-end tests work together with unit tests, providing test coverage
of the same application functionality in a complementary way. Each type of test provides a
different value. First let’s look at the role of end-to-end tests.

4. Overview of Outside-In TDD 23

End-to-end tests confirm that your application does what the user wants it to do. At the
most basic level, they ensure that the logic you built is actually reachable through the user
interface. They also ensure that all the code works together correctly in the context of the
running app—the maximum level of test realism. This is sometimes referred to as “external
quality:” from the outside, the app works.

End-to-end tests provide a safe way for you make major changes to your app without
breaking anything. They’re able to do this because as long as the test can still find UI elements
that match what it’s looking for, everything about the implementation of the app can change.
You can replace entire function or object hierarchies, for example if you want to change the
technology used for your data layer. You can even reuse the same Cypress tests if you rewrite
your application in another framework. Our React exercise demonstrates this: it has almost
identical Cypress tests to an older version of the exercise written in Vue.js! For large changes
like these, unit tests don’t provide a lot of safety because they will fail when units and the
ways they interact are replaced.

Another benefit of the end-to-end tests produced by outside-in TDD is that they help you
build only what you need. In outside-in TDD, each end-to-end test focuses on one user-
facing feature. When you start working on the feature, you write an end-to-end test for it,
then you build out the minimum code necessary to get the end-to-end test passing. When it
passes, you’re done with that feature. This ensures that you only build what is immediately
useful to provide functionality to a user. It also prevents code from being written with an
interface the app can’t use, because you write the code that calls into the module before you
write the module itself.

The Role of Unit Tests

With all these benefits of end-to-end tests, is there any need to write unit tests too? Why not
stop with the end-to-end tests?

Whereas end-to-end tests confirm the external quality of your app, unit tests expose its
“internal quality” by showing how your units are used. The attributes of your code we
discussed in “Speed of Development” are all aspects of internal quality. Do your units have
clear and simple interfaces? Are they easy to instantiate for tests, or are there a lot of required
dependencies that are going to make them harder to change? As your application grows,
these factors affect how easy it is to make changes to it—but these factors are invisible to
end-to-end tests. You can have an app that works reliably from the outside, but is a mess
of spaghetti code on the inside, and that means you’ll have trouble handling future change.
Unit tests help steer you towards good design attributes that pay off in the long run.

4. Overview of Outside-In TDD 24

Unit tests also run much more quickly than end-to-end tests, which provides a number of
benefits. This speed means you can keep the tests for the module you’re working on running
continually, so that when you introduce a bug you find out right away. This speeds also
makes it feasible to cover every edge case with unit tests, something that isn’t realistic with
end-to-end tests for a system of any substantial size. This full coverage is what gives you the
safety to refactor your code so you can make it better and better over time.

Because of the complementary value of end-to-end and unit tests, outside-in TDDers write
both without thinking of it as duplicating effort. Instead, they see that each type of test covers
the limitations of the other.

Write the Code You Wish You Had

Since the outside-in TDD process starts from the outside, how can you TDD code that
depend on other code that hasn’t been written yet? The solution is a practice called “writing
the code you wish you had.” When you are test-driving one unit of code, think about
what functionality belongs in the unit itself and what functionality should be delegated to
collaborators (other functions or objects). If that collaborator doesn’t already exist, write the
code you wish you had: pretend it does exist, and call it the way you’d like to be able to call
it. In the test, use test doubles to take the place of that collaborator so you can verify how
the unit you’re testing interacts with this collaborator.

When you finish test-driving the current unit, your next step is to build any new collaborators
that you scaffolded with test doubles. Test-drive the collaborators to match the interface
you designed for them in the test of the first unit. Remember, only build the functionality
necessary for that collaborator to satisfy the current feature—which might be less than all
the functionality you could imagine it to have.

Using test doubles to isolate your units from one another has the benefit of providing good
defect localization: when a bug is introduced, your tests will pinpoint which unit has the bug
and what exactly is going wrong.

To see how this works, let’s first consider the case where you aren’t using test doubles. Say
you have amodule A that depends onmodule B, and in your test ofmodule A you’re allowing
it to use the real module B. When there is a bug in module B, module A’s test will fail even
though the problem isn’t in module A.

4. Overview of Outside-In TDD 25

A test of module A integrated with module B. B has a bug so the test of A fails.

Now, what happens if in the test of module A we replace module B with a test double? This
changes the meaning of module A’s test to “if module B returns the correct result, module
A behaves correctly,” and because it passes you know that there is no bug in module A itself.
Only the test of module B would fail, making it obvious that the problem is in module B.

A test of module A integrated with a test double, and a test of buggy module B separately. Only the test of
B fails.

This kind of test isolation provides even more benefit when a lower-level module is used
by many higher-level ones. Say you have five modules that all depend on module B, and
they are tested in integration with module B. If module B has a bug, the tests of all five
higher-level modules would fail, making it hard to identify the underlying cause.

4. Overview of Outside-In TDD 26

Five modules integrated with buggy module B. The tests of all five modules fail.

Using test doubles, the five tests for those modules would pass, and only the test for module
B would fail—the ideal outcome to help you pinpoint bugs.

4. Overview of Outside-In TDD 27

Five modules tested against a test double, and a test of buggy module B separately. The five modules’ tests
pass and only B’s test fails.

It’s common to hear criticisms of “mocking” in tests, and in fact those criticisms often apply
equally to any kind of test double. Outside-in TDD provides a response to these criticisms
by serving as an illustration of how mocks are intended to be used. (In fact, the creators of
outside-in TDD are also the creators of mock objects!)

Criticisms of mocks that you might hear include:

• “Mocks make your tests less realistic.” Considering the example above, does replacing
module B with a test double make the test of module A unrealistic? No, it makes it
more focused, testing module A in isolation from other code. True, it doesn’t ensure
all your units work together—but that’s a job best suited to end-to-end tests, not unit
tests. By relying on end-to-end tests for integration, you’re free to test your units in
isolation so you can get the benefits of isolated testing we’ve discussed.

• “Mocks make your tests more complex because you end up creating mocks that return

4. Overview of Outside-In TDD 28

mocks that return mocks.” If that happens, the problem is not with mocks but with the
design of the code under test. It reveals that the code has deep coupling to other code.
This is a sign that the production code should be changed to have simpler dependencies:
specifically, to only call dependencies passed directly to it, so that only one level of
mock is needed. Deep coupling is a problem that can be easy to miss when writing the
code, but mocks help you see the problem so you can fix it. This is a point in mocks’
favor.

What’s Next

In this chapter we saw that outside-in test-driven development involves a nested loop where
you test-drive a feature with an end-to-end test and build out each necessary piece with a
series of unit tests. We saw that end-to-end tests and unit tests work together, the former
ensuring the external quality of your app and the latter ensuring the internal quality.

With this, we’ve completed our survey of agile development practices. The next part of this
book is an exercise where we’ll put these practices into use to build an app using React.

Part Two: Exercise

5. About This Exercise
To see outside-in test-driven development in action, let’s walk through creating a few
features in a simple front-end application. We’ll build an app for rating dishes at restaurants,
called Opinion Ate. We’ll get to experience all parts of the outside-in TDD process, but note
that we’ll only get the app started and won’t get anywhere near finishing it.

If you’d like to download the completed project, you can do so from the Opinion Ate React
repo⁴. But I would highly encourage you to work through the exercise yourself. Even more
so than programming in general, test-driven development requires practice to get into the
habit and to really experience the benefits.

Connect and Get Help!
As you go through this exercise, if you get stuck or just want to talk about what
you’re learning, feel free to join the book’s online chat at https://link.outsidein.
dev/chat. It’s a great way to connect with the author (me, Josh!) and other readers.

A Note on Learning

If you aren’t used to test-driven development, the process can feel slow at first, and it can be
tempting to give up. Stick with it through this guide! The value of TDD usually doesn’t click
until you’ve gotten a bit of practice. Anything new you learn is going to be slower while
you’re learning it. Once you’ve gotten some practice with TDD it’ll be a tool in your tool
belt, and then you’ll be in a better position to decide whether and how often to use it.

As is the case with most TDD tutorials, the functionality we’ll be writing here is so simple
that it would probably be quicker to write it without tests. In real applications, the time
TDD takes is offset by the time you save troubleshooting, tracking down production bugs,
restructuring your code, manually testing, and struggling to write tests for code that wasn’t
written to be testable. It’s difficult to demonstrate that kind of time savings in an exercise,
but consider this: how much time do you spend on all those problems? How much more
enjoyable would your development process be if you could significantly reduce them? Once
you’ve learned TDD you can try it out on your real projects and see if you see improvements.

⁴https://link.outsidein.dev/repo

https://link.outsidein.dev/repo
https://link.outsidein.dev/repo
https://link.outsidein.dev/chat
https://link.outsidein.dev/chat
https://link.outsidein.dev/repo

5. About This Exercise 31

Tech Stack

Our application is going to follow a common architectural pattern for front-end apps
involving three layers:

1. User interface: the components that make up the screens. Implemented in React.
2. State management: stores application data and provides operations to work with it.

Implemented in Redux.
3. API client: provides access to a web service. Implemented using Axios.

If you use a different front-end library or any other libraries, don’t worry: the testing
principles and practices in this book apply to any front-end application. Go through the
exercise, and afterward you’ll be able to apply what you learn to your stack of choice.

Here’s the full stack of libraries we’ll use for our React application:

Build Tooling: Create React App

Create React App⁵ allows running our application locally and building it for production.
Depending on your production needs you might or might not want a more flexible build
tool, like a customwebpack config or Parcel. This tutorial doesn’t get into build configuration,
though, so Create React App will work fine, and should be familiar to many readers.

State Management: Redux

Redux⁶ is a state management library that’s widely used in the React ecosystem. It used to be
the go-to state management library for real-world React applications, but with the release of
React’s Context API and the useReducer() hook it isn’t used quite as widely. Redux is now
more likely to be used only in cases where you have fairly complex data structures that need
to be widely shared throughout the application—which some would argue was the intended
use in the first place.

The reason we’re using Redux for this exercise is because it provides a strong boundary
between the UI layer and the data layer. If you use React’s built-in state APIs for your data
layer it tends to be coupled to components and harder to test in isolation; doing so takes work,
creativity, and discipline. By contrast, when you use Redux with React in the idiomatic way

⁵https://create-react-app.dev
⁶https://redux.js.org

https://create-react-app.dev/
https://redux.js.org/
https://create-react-app.dev/
https://redux.js.org/

5. About This Exercise 32

you get an unmistakable separation between the UI layer and the data layer for free. Redux-
Thunk actions aren’t impacted by the React render cycle with its challenges to asynchronous
testing; they are normal JavaScript async functions and can be easily tested as such.

Once you’ve seen the benefits of keeping your data layer separate from React, you’ll have a
goal to shoot for with any data layer approach you use.

State Management Asynchrony: Redux Thunk

Redux Thunk⁷ is the recommended way to add asynchrony to a Redux data layer for most
projects. It works directly with JavaScript’s built-in promises, so this makes it a natural fit
for most JavaScript developers.

HTTP Client: Axios

Axios⁸ provides a nice simple interface for making web service requests. The browser’s built-
in fetch() function is close, but Axios removes some repetitive parts and improves on the
API.

UI Components: MUI

Agile development is all about minimizing unnecessary work. For side projects, internally-
facing systems, and MVPs, unless visual design is your passion you may be better off using
an off-the-shelf component library. Plus, with a thorough test suite like the one we’ll write,
you can always refactor to a new visual design with confidence that you haven’t broken
any functionality. For this tutorial we’ll go with MUI⁹, a popular React implementation of
Google’s Material Design.

Test Runner: Jest

Jest¹⁰ has one of the most popular JavaScript test runners for a number of years, especially
in the React ecosystem. It includes everything you need out of the box for testing plain
JavaScript code, including the ability to create test doubles.

⁷https://github.com/reduxjs/redux-thunk
⁸https://axios-http.com
⁹https://mui.com
¹⁰https://jestjs.io

https://github.com/reduxjs/redux-thunk
https://axios-http.com/
https://mui.com/
https://jestjs.io/
https://github.com/reduxjs/redux-thunk
https://axios-http.com/
https://mui.com/
https://jestjs.io/

5. About This Exercise 33

Component Tests: React Testing Library

React Testing Library¹¹ (RTL) will help us write component tests. It’s designed around testing
the interface instead of the implementation, which aligns with the testing philosophy we’ll
take in this book: that way our tests are less likely to break as the application changes.

End-to-End Tests: Cypress

Cypress¹² is an end-to-end testing tool that was written with test-driven development in
mind. Because it runs in the same browser context as your front-end app, it has insight into
the event loop and network requests, reducing flake and allowing easy request stubbing. If
you’ve had a bad experience with other browser automation tools in the past, Cypress will
convince you that E2E tests can be valuable and enjoyable.

In addition to E2E tests, Cypress has been building component testing functionality, to meet
some of the same needs as RTL. We haven’t used it for this book because it’s in beta as of
the time of this writing and has less broad adoption than RTL. But its approach has some
interesting benefits, and we’ll be keeping an eye on it as it develops.

Continuous Integration: GitHub Actions

GitHub is extremely popular for source control, and it has a CI service built in as well: GitHub
Actions¹³. There are other great CI options too, but the GitHub integration means that all we
need to do is add an Actions config file and we’re set to run our tests on every pull request.

Deployment: Netlify

For deploying front-end applications there’s no service simpler than Netlify¹⁴. Just choose
your repo and Netlify will automatically configure your build process, build your app, and
deploy it. We’ll only use the most basic Netlify features in this tutorial, but it also has
features you’ll need to take your app to production, such as adding a custom domain with
an automatically-provisioned SSL certificate.

¹¹https://testing-library.com/react
¹²https://www.cypress.io
¹³https://github.com/features/actions
¹⁴https://www.netlify.com

https://testing-library.com/react
https://www.cypress.io/
https://github.com/features/actions
https://github.com/features/actions
https://www.netlify.com/
https://testing-library.com/react
https://www.cypress.io/
https://github.com/features/actions
https://www.netlify.com/

5. About This Exercise 34

What’s Next

Now that we’ve reviewed the tech stack we’ll be using, it’s time to get our app set up. In the
next chapter we’ll create our application and the environment it runs in, and we’ll do some
setup for our development process.

There’s More!

You’ve reached the end of the free sample of Outside-In React Development.

To read the rest of this exercise, buy the full book here:

https://leanpub.com/outside-in-react-development

https://leanpub.com/outside-in-react-development

6. Project Setup
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Making a List of Stories

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Setting Up Development Environment

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Git

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Node

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Yarn

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

6. Project Setup 36

An Editor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Creating the App

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Setting Up Auto-Formatting

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Running Tests on CI

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Setting Up Automatic Deployment

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Filling In the Readme

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

7. Vertical Slice
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Setup

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Reviewing the Back-End

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

End-to-End Test

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Stepping Down to a Unit Test

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Stepping Back Up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

7. Vertical Slice 38

Unit Testing the Store

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Creating the API Client

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Pull Request Workflow

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

8. Refactoring Styles
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

9. Edge Cases
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Loading Indicator

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Component Layer

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Data Layer

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Error Flag

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Component Layer

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

9. Edge Cases 41

Store Layer

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

10. Writing Data
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Main Functionality

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

End-to-End Test

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Unit Testing the Component

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Stepping Back Up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Unit Testing the Store

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Creating the API Method

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

10. Writing Data 43

Edge Cases

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Clearing the Text Field

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Validation Error

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Server Error

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

11. Exercise Wrap-Up
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

What’s Next

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

Part Three: Going Further

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development

12. Integration Testing the API
Client
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development

13. Asynchrony in React Testing
Library
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Downgrading to User Event 13

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Understanding act() Warnings

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Waiting on Text Input Changes With waitFor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Waiting on Elements to Appear With findBy*

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Removing Duplication

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

13. Asynchrony in React Testing Library 48

Assessment

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development

14. Next Steps
This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

A Community of Practice

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Testing Tool Documentation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Books

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Outside-In TDD

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Test Patterns

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

14. Next Steps 50

Refactoring

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Agile Methodology

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

Epilogue

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/outside-in-react-development.

http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development
http://leanpub.com/outside-in-react-development

	Table of Contents
	Go Beyond the Book
	Introduction
	Part One: Concepts
	1. Why Agile?
	2. Testing Concepts
	3. Why Test-Driven Development?
	4. Overview of Outside-In TDD

	Part Two: Exercise
	5. About This Exercise
	6. Project Setup
	7. Vertical Slice
	8. Refactoring Styles
	9. Edge Cases
	10. Writing Data
	11. Exercise Wrap-Up

	Part Three: Going Further
	12. Integration Testing the API Client
	13. Asynchrony in React Testing Library
	14. Next Steps

