

[image: OSPF for the Initiated]

 OSPF for the Initiated

 Advanced topics for the CCIE Enterprise Infrastructure v1.0 Candidate

 Angelos Vassiliou

 This book is for sale at http://leanpub.com/ospf

 This version was published on 2021-10-03

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2017 - 2021 Angelos Vassiliou

 To my wife Christiana
and my children Anna and Alexander,
for all the time they allowed me
to work on this book.

And to every CCIE candidate,
who inspired me to write a book for them

 Table of Contents

 	

 	
 Acknowledgments

 	
 Introduction

 	
 Acronyms

 	
 1. OSPF Basics

 	
 1.1 Evolution

 	
 1.2 Principles of operation

 	
 1.3 The LSDB

 	
 1.4 OSPF messages

 	
 1.5 Basic configuration

 	
 1.6 OSPF Finite State Machine

 	
 1.7 References

 Guide

 	
 Begin Reading

Acknowledgments

First, I would like to thank my family for giving up time with me so I could work on this book.

I would be amiss to not credit the technical reviewers, Emina Brkanic and Nicholas Russo, for finding several mistakes in the early drafts of this book and for their very useful advice. That being said, even though the information herein is offered as-is without any implied guarantee or fitness, I take responsibility for any errors or omissions in the text.

Last, but not least, I would also like to thank Veronica Bonacini for the astounding artwork that she has done for the book’s cover and Laureen Hudson for her editing work.

Introduction

A great engineer (more than) once said that to become good at your job you must at all times ask the “why” questions. Why are there OSPF areas? Why is there a “Forwarding Address” field in the AS-External LSA? What attacks does the Generic TTL Security Mechanism actually guard against? Why are E2 paths more preferable than N2 paths with the P-bit not set yet less preferable than N2 paths with the P-bit set to the same destination?

I cannot hope to answer even a fraction of your “why” questions in this publication, because after all your questions have been answered, you should have even more. A good book should create more questions than it answers; such is the learning journey. Your relentless pursuit of knowledge is the tool that has the power to transform you into a good, and potentially an expert, internetworking engineer.

This book, much like the CCIE Enterprise Infrastructure exams, is geared towards implementation engineers, but the design decisions affecting the performance, stability, and resilience of a network must be understood by everyone involved in the network’s design, implementation, running and maintenance, and they will at some point be discussed here. Any tradeoffs that have been made and their effects must also be well understood, especially by the implementation engineer and the team operating the network.

In my experience, many engineers know OSPF but few understand it. If this book helps you understand OSPF at a deeper level, even a little bit, then this book has succeeded in its goal.

As an inquisitive kid I once found myself in a cockpit with a pilot, and I remember asking what some knobs and dials were and what they did. After they answered all of my questions, it dawned upon me: He has to know what every single one of those is. A network expert now, also has to know what every single one of the fields of the show command indicates. Debug output on the other hand is closer to what an aircraft engineer would use to troubleshoot an issue with an aircraft.

Parsing CLI output is paramount for an expert, and for the CCIE tests. I like to think of the IOS CLI as the cockpit of an airplane. To fly the plane, a pilot has to know what all the dials and lights in a cockpit measure and indicate, what all the knobs and levers adjust and change, know how to fly the plane, know how to read maps, recognize landmarks land features and potential dangers, and all this rests on the fundamental knowledge of how the plane actually flies and operates. In the same manner, a network engineer should know what all every field of show commands measure and indicate, what all the configuration commands adjust and change, how to configure and troubleshoot the network, and how to read network diagrams and recognize business and technical requirements, all these skills and knowledge can only rest on a solid foundation of network theory and a deep understanding of how network protocols work.

This mentality is pretty much at odds with what more high-level network architects are telling us we should focus on, and they do have a point. These is place and time for every type of knowledge, and at varying depth of understanding. This book tries to delve deep in OSPF theory and into the nitty-gritty of the IOS implementation of OSPF.

Prerequisites

To gain the most from this book, you should know OSPF. You should know how OSPF works, and you must know how to deploy it. You should at least be familiar with:

 	RFC 2328 - OSPF Version 2

 	Jeff Doyle’s venerable Routing TCP/IP, Volume 1, 2nd Ed

 	OSPF: Anatomy of an Internet Routing Protocol

 	OSPF Configuration Guide, Cisco IOS Release 15M&T

These four texts thoroughly explain the core of OSPF’s operation and this book builds upon the knowledge gained from them. Some information from these texts is repeated here, yet this book’s ambition is to complement them to the degree necessary for today’s internetworking engineer and the aspiring CCIE.

Who is this book for?

This book was written for the CCIE Enterprise Infrastructure v1.0 candidate that is ready to take the written exam, or anyone at that level who wants to learn about esoteric OSPF features. You should already know OSPF and expect to be challenged on your deepest understanding of OSPF and its configuration.

This book was initially conceived as a test preparation text, but since it concerns itself with the least common aspects of OSPF and its IOS implementation, it turned into an anthology of advanced OSPF topics.

If you know OSPF very well, then I expect you should be able to leisurely read the whole book, with several “aha” moments. If this is you, you should currently be ready for any OSPF-related questions or tasks on the CCIE exams.

If, on the other hand, you only have a basic understanding of OSPF, then each chapter will feel like a deep-dive into OSPF and IOS esoterica, and you will have to constantly consult the prerequisite resources.

Since you are preparing for both CCIE exams, OSPF theory and trivia are covered here, as well as many implementation details. This book concerns itself almost exclusively with Cisco IOS 15.4M&T and above, with most sections sprinkled with examples and CLI outputs that should help you learn some OSPF implementation and troubleshooting details as well as cement the theoretical concepts.

Errata and feedback

I welcome all and any comments and errata submissions. The best way for this book to improve in the long term is for anyone noticing an error or omission to inform me and I will update the book as soon as possible. I will be grateful for any such comments.

Feedback of any other kind is also welcome. You can submit feedback through the LeanPub contact the author form, or you can email me directly to ospf.for.the.initiated@gmail.com.

This book is my first attempt as writing, so I will appreciate any and all feedback.

CCIE exams

To become a Enterprise Infrastructure CCIE you need to pass two exams, which are somewhat different. There is an overlap of required knowledge, but the attack methodology is quite different. In addition, passing the Enterprise Core Technologies (ENCOR) exam is a prerequisite to booking a date for your lab.

The first exam is called the written, is essentially a bunch of multiple choice questions, and lasts 2 hours. I would expect 10% out of roughly 100 questions to be related to OSPF. Both of these numbers are approximations since the questions are pulled from a question pool randomly and the overall weight of any one topic is not publicly available.

Most people pass the written exam fairly easily but take 3-5 attempts before passing the lab exam, which is the second exam you need to pass to get your CCIE. Each lab attempt costs around $1,600 USD, lasts 8 hours, and you get a break with a free lunch half-way. When they fail, CCIE candidates sometimes say they’ve just had the most expensive burger of their lives.

That being said, a common method of taking the CCIE exams nowadays is to take the ENCOR first and then start studying for the lab exclusively. This became the newer approach due to the divergence of the ENCOR topics from the lab topics and depth.

Back in the day, it used to be very difficult to book a seat for the CCIE lab exam, which made the CCIE even harder to get. With the advert of IOU as the NOS used during the exam, there is no longer a shortage of CCIE lab seats.

Book Organization and features

Since this book is a collection of advanced topics, each topic and chapter is self-contained and assumes a solid understanding of OSPF. Each chapter (or even chapter sections) may be read independently, or the book can be read in any order. That being said, to best prepare for the OSPF part of the CCIE exams, you should read all chapters. Due to the interdependencies of the discussion in each chapter with earlier parts of the chapter, you will get the most out of each chapter when reading each chapter from start to finish.

In each section, OSPF behavior is discussed, then examples where the particular feature affects routing of traffic are presented, and then CLI output from IOS devices is commonly shown.

Keeping with the book’s spirit, I try to present all the less documented fields of show outputs, to cover most configuration commands, as well as explaining the theory of OSPF operation. And lastly, the reasons that drove OSPF to be standardized (or operate) the way it does are also oft discussed.

Software used

The following Cisco Network Operating Systems (NOSs) were used throughout the book to generate CLI output and test behavior:

 	IOU 15.4(2)T

 	IOS-XE

 	NX-OS

 	IOS-XRv

Unless otherwise stated, the default NOS used is IOU v15.4(2)T.

The NOSs besides IOU were used only to illustrate any differences with IOS, and to discuss OSPF features and functions that are not implemented in IOU. Configuration commands for NX-OS and IOS-XR are not discussed due to their similarity to vanilla IOS.

IOS-XE is generally closer to IOS, and therefore there is no discernible difference with IOS or IOU, apart from the feature set.

Acronyms

 	ABR
 	Area Border Router

 	ACL
 	Access Control List

 	AD
 	Administrative Distance

 	AH
 	Authentication Header

 	AS
 	Autonomous System

 	ASBR
 	Autonomous System Border Router

 	AT
 	Authentication Trailer

 	BDR
 	Backup Designated Router

 	BFD
 	Bidirectional Forwarding Detection

 	BGP
 	Border Gateway Protocol

 	bps
 	bits per second

 	CLI
 	Command Line Interface

 	DD
 	Database Description

 	DMVPN
 	Dynamic Multipoint Virtual private network

 	DV
 	Distance Vector

 	eBGP
 	external Border Gateway Protocol

 	EIGRP
 	Enhanced Interior Gateway Routing Protocol

 	ESP
 	IP Encapsulating Security Payload

 	FIB
 	Forwarding Information Base

 	GRE
 	Generic Routing Encapsulation

 	IETF
 	Internet Engineering Task Force

 	IOS
 	Internetwork Operating System

 	IP
 	Internet Protocol

 	IPsec
 	Internet Protocol Security

 	ISP
 	Internet Service Provider

 	LFA
 	Loop-Free Alternate

 	LS
 	Link State (routing protocol)

 	LSA
 	Link State Advertisement

 	LSAck
 	Link State Acknowledgment

 	LSDB
 	Link State Database

 	LSU
 	Link State Update

 	LLS
 	Link-Local Signaling

 	MD5
 	Message Digest 5

 	mGRE
 	Multipoint Generic Routing Encapsulation

 	MTR
 	Multi-Topology Routing

 	NBMA
 	Non-Broadcast Multi-Access

 	NLRI
 	Network Layer Reachability Information

 	NOS
 	Network Operating System

 	NSSA
 	Not-So-Stubby Area

 	OSPF
 	Open Shortest Path Protocol

 	RIB
 	Routing Information Base

 	RFC
 	Request for Comments

 	SPF
 	Shortest Path First

 	SPI
 	Security Parameter Index

 	SPT
 	Shortest-Path Tree

 	TCP
 	Transmission Control Protocol

 	TLV
 	Type-Length-Value

 	TOS
 	Type Of Service

 	VPN
 	Virtual private network

 	VSS
 	Virtual Switching System

1. OSPF Basics

1.1 Evolution

OSPFv1 was first standardized with RFC 1131 in October 1989. In July 1991 the first attempt to standardize OSPFv2 was made with RFC 1247, followed by RFC 1583 (March 1994), then by RFC 2178 (July 1997), and finally by the current Internet Standard, RFC 2328 (April 1998). Below, you can see the timeline with several important RFCs over OSPF’s lifetime:

 [image: OSPF evolution over time]
 OSPF evolution over time

The key takeaway from the above time-line is that OSPF is the evolution of a 30-year old protocol (OSPFv1), and has at this time already been a standard for over 20 years. Maybe not as old as BGP or DNS, OSPFv2 is an old protocol. You must keep in mind that no single IGP will be able to cover all of today’s network’s requirements, nor was any currently available IGP designed with today’s actual requirements in mind. Being one such example, OSPFv2 is not the perfect routing protocol for every network deployed today. The fact that noone could anticipate today’s needs, scale, and demands, only serves as a testament that a protocol that was designed more than 20 years before these networks were even conceived or deployed and is still holding its ground, is a protocol well designed. In reality, there is no consensus among the most prominent network engineers as to which IGP is the best for particular corner cases, let alone a blanket endorsement. So the next time you are frustrated with a feature (or lack thereof) in OSPF, try to remember the history of OSPF, what it was designed to solve initially, and all the trade-offs the designers were called to make without having the benefit of hindsight. The appreciation of OSPF’s history and the monumental effort put in by its creators ought to initially diffuse any frustration about its efficacy, and in turn create in its place amazement at how our Internet is actually even holding together, so many years after the original assumption of technical debt.

 Corner cases

 A corner case involves a situation that manifests itself when multiple variables or conditions are simultaneously at extreme levels, even though each parameter is within the specified range for that parameter.

 An edge case is where a system meets a boundary condition, meaning that one of its parameters reaches an extreme value, typically close to its limit. A corner case, then, can be refined as a condition where the system meets more than one boundary condition at once. Corollary: A corner case contains at least two edge cases.

Another characteristic of corner cases is that they are expected to rarely arise. The expected frequency with which corner cases appear changes over time. Whatever expectations there were with OSPF, they have been updated over the protocol’s long life.

Further reading: Corner case

 Technical debt

 Technical debt is a concept that originated in software development but (arguably to a greater degree) applies to computer network engineering as well. In network engineering, technical debt can be defined as the costs that were averted in the past (due to compromises) but are bound to be incurred in the future.

 A common example of “interest” paid on technical debt is the added cost of a new solution that needs to accommodate badly designed legacy applications.

 A simple example of technical debt created by OSPFv2 is the fact that it was so tightly coupled with the IPv4 addresses of interfaces and networks that it forced the IETF to design a wholly new protocol that at last is extensible to new address families. The interest paid on the technical debt created by OSPFv2 is the cost of designing, implementing, and deploying OSPFv3.

 It is generally accepted that all systems create technical debt. It’s just that better-designed systems generate less of it. The silver lining of technical debt is that paying the interest is a prerequisite to gaining lessons learned.

 Further reading: Technical debt

1.2 Principles of operation

OSPF is a Link State routing protocol. The protocol’s end goal is to populate a router’s routing table with destination prefixes and next hop information for every such prefix. Furthermore, this information has to (most of the time) meet some quality criteria such as:

 	The information has to be valid, ie next hop should really exist and the prefix should truly be reachable via the next hop.

 	The information should be such that a routing loop will not be established in the network.

 	The information should be optimal (ie the next hop should be the best of any possible next hops, based on a predetermined best path criteria).

 	If multiple paths exist toward a destination of equal preference, add several next hops to the routing table.

The above list is by no means exhaustive. The manner by which routing protocols provide this information to a router can be distinguished in the following three:

 	Distance Vector

 	Link State

 	Vector Path

There are other ways by which a routing table can be built besides by using a classical routing protocol. Static routes are one simple and non-scalable manner and SDN is another up and coming way. This book will focus on a rather classical Link State routing protocol, OSPF.

A Link State protocol behaves akin to a distributed eventually-consistent data store, where the data maintained in the datastore is data about the state of the links and routers across the network. Once all this data is disseminated to all OSPF routers, each local OSPF process processes the data and derives routing information, which the OSPF process feeds to the router’s global Routing Information Base (RIB).

OSPF functions can broadly be divided into the following:

 	Build and maintain the distributed datastore.

 	Use the data in the datastore to build a routing table locally.

The datastore in OSPF is called the Link State Database (LSDB). The individual pieces of data in the LSDB are called Link State Advertisement (LSA). Each OSPF router originates several LSAs which then feed into the LSDB. No single entity is responsible for verifying that all OSPF routers in an OSPF routing domain have the same LSAs, or that the latest LSA has been disseminated to all routers. The distribution of LSAs and the synchronization of the LSDB is a decentralized function.

At a minimum, every router will originate a single LSA describing itself and any OSPF neighbors it may have discovered. The same LSA that describes the router (the Router LSA as it is aptly named) also describes any stub networks attached to the router. Such stub networks are directly connected networks over which there is no OSPF neighborship.

Beyond the minimally mandated Router LSA, a router may originate a number of different LSAs, each describing a different aspect of the OSPF network, and beyond.

To synchronize the LSDB, OSPF routers setup neighborships with neighboring OSPF routers. These neighborships allow each OSPF router to keep track of any neighbor’s availability, basic configuration, and LSDB state. The OSPF protocol dictates that every OSPF router must inform all of its neighbors whenever it receives a new LSA. If any neighbor does not acknowledge that it has received the latest update to the LSDB (a new LSA) the OSPF neighbor has to tear down the neighbosrship, or risk have an inconsistent LSDB throughout the OSPF routing domain.

After the OSPF router synchronizes its LSDB with all its neighbors, it uses the SPF algorithm to extract routing information from the data in the LSDB.

The purpose of the SPF algorithm is to find the shortest path to each node within an area. In the OSPF graph, routers and networks are nodes (vertices), while links are always represented as edges. OSPF builds a directed graph describing the network at large, and then runs the SPF algorithm to determine the best path between any two nodes.

Network nodes are IP subnets attached to at least one other router node.

OSPF builds a graph describing the actual physical network. A graph is a mathematical model of a network, and in OSPF it only exists in the router’s memory as a data structure. A graph consists of nodes and links. OSPF uses nodes to describe the following objects:

 	Routers

 	Transit networks

 	Destination networks

Destination network nodes are also called stub network nodes.

In reality, a multi-access segment over which two OSPF routers establish an adjacency is modeled as both a transit network and as a destination network. This translates into the following:

 	If you need to find the path between two routers on the common segment you have to go through the transit network node.

 	If you need to reach a destination attached to the multi-access segment, you need to route to the destination network. It just so happens though that the destination network node is attached to the transit network node.

OSPF optimizes its operation by not extending the SPF to each stub network node. Instead, OSPF only builds a shortest-path tree from the current node (OSPF only runs on router nodes) to each router node and transit network nodes. After the Shortest Path Tree (SPT) is built, OSPF cross-references the attached stub networks with each of the nodes in the SPT, and thus determines the shortest path to each IP subnet.

To clarify how such an optimization works, we now need to differentiate between transit networks and stub networks. Each type of network gets its own node in the OSPF area graph. Transit networks are by definition networks between two or more router nodes and are used for traffic that is transiting between two of those attached routers. Stub networks are networks attached to routers but cannot be used to carry transit traffic.

RFC 2328 considers stub networks, that are connected to OSPF routers, as nodes as well. For example, consider the following network:

 [image: Small network with a multihomed subnet]
 Small network with a multihomed subnet

Assuming that R2 and R3 do not form an adjacency over the 10.1.0.0/24 network, the OSPF graph will look like the following:

 [image: Small OSPF graph]
 Small OSPF graph

The goal of OSPF is to find the shortest path from a router (say R1) to a destination network (N1 for example). Assuming all links in the above network have an equal cost, R1 will load balance between R2 and R3. Strictly speaking, R1 is routing to reach node N1, but for the purposes of this chapter we will ignore the network nodes and only consider routers as nodes, and any attached networks as properties of these nodes. So, from now on, the OSPF graph of our small network will look like the following:

 [image: Small OSPF graph, simplified]
 Small OSPF graph, simplified

Transit networks (networks over which two or more OSPF routers establish an adjacency) are still represented as nodes in the OSPF graph, despite the above simplification.

While trying to not get bogged down in details in this first chapter, keep in mind that the above representation is a simplified version of the various nodes that would be used to describe the example network in OSPF. In reality, the IPv4 networks (subnets) that are configured between routers R1, R2, and R3 will be modeled in OSPF either as stub networks attached to both ends of a link (like N1 is attached to both R2 and R3), or as a separate transit network node; unless prefix suppression is configured on the involved routers.

1.3 The LSDB

The LSDB as OSPF’s data store shouldn’t be thought of as a local database of LSAs but rather as a global database. The process that builds and maintains the database is quite independent from the process that reads the database and uses the LSDB’s data and writes changes to local conditions to the LSDB. The figure below shows a conceptual view of how a local OSPF process sees the LSDB.

 [image: The LSDB is a distributed, not a local, database]
 The LSDB is a distributed, not a local, database

The fact that the LSDB is read from the router’s local memory (instead of from somewhere else) is simply a design choice of OSPF designers. They could just as well have put the LSDB to a central location, and the functionality and behavior of OSPF would have been the same. Actually, a central database would allow for the database to be way more consistent than the OSPF LSDB ever is. The designers of OSPF sacrificed consistency to guarantee availability, since a remote centralized data store cannot guarantee availability at all times, just like how a local copy of the LSDB cannot guarantee consistency all the time.

Like mentioned in the earlier section, the LSDB stores topology and network reachability information. This differentiation of data stored in the LSDB is depicted in the following diagram.

 [image: Each router adds a type 1 LSA, and potentially more LSAs, into the LSDB]
 Each router adds a type 1 LSA, and potentially more LSAs, into the LSDB

The table above represents an area’s LSDB and the columns represent the set of LSAs generated by each router. For example, R2 only originates one type 1 LSA, whereas R1 originates type 1, 2, 3, and 5 LSAs.

The type 1 and type 2 LSAs describe the network topology as a set of interconnected routers and their links. Some information in type 1 LSAs and the information stored in other LSAs describes each router’s ability to reach specific destinations.

You can compare the LSDB to another well known distributed datastore, DNS. The model in DNS is that a remote DNS server stores the data and whenever a process needs to pull a record from the database, it contacts the remote server over an unreliable network to retrieve it. This way, DNS is largely consistent but not at all times available.

The LSDB describes portions of the OSPF network called areas. It is possible to have several areas in a large OSPF internetwork, meaning that there will be several distinct LSDBs overall.

Like mentioned above, type 1 and type 2 LSAs describe the topology of routers within an area, whereas other LSAs describe various destinations that area border routers can reach. To illustrate this, consider the following OSPF internetwork:

 [image: Each OSPF area is modeled by its own separate LSDB]
 Each OSPF area is modeled by its own separate LSDB

The LSDB of area 0 will only contain LSAs describing the area 0 topology and the destinations reachable through R3 and R4. In this section, we will ignore routers connected to an external domain.

The LSDB for area 0 will describe the following graph:

 [image: The area 0 graph]
 The area 0 graph

As we can see in the graph above, the border routers (R3 and R4) abstract away (hide) information about other areas.

And for the sake of completeness, the LSDB for area 1 will describe the following graph, again, abstracting details from area 0.

 [image: The area 1 graph]
 The area 1 graph

1.4 OSPF messages

OSPF uses constructs called messages, which are directly equivalent to IP packets. Each OSPFv2 message is carried within a single IP packet, so the phrase OSPF message is synonymous to, and interchangeable with, OSPFv2 packet. RFC 2328 defines the following OSPF messages:

 	Hello

 	Database Descriptors (DD)

 	Link State Request

 	Link State Update

 	Link State Acknowledgment

Each message is encapsulated within an IP packet with IP protocol number of 89 and has a 24-byte-long OSPF header. Following the OSPF header, each message’s body is different.

 [image: The OSPFv2 packet]
 The OSPFv2 packet

Upon reception of an IPv4 packet destined to the OSPF process, IOS checks the following fields to determine if the IP packet should be passed to the OSPF process (as defined in RFC 2328, section 8.2):

 	The IP checksum must be correct.

 	The packet’s IP destination address must be the IP address of the receiving interface or an OSPF multicast address to which the interface is subscribed. If the destination address is the AllDRouters mulicast address (224.0.0.5), only accept the packet if the receiving interface is in the DR or Backup state.

 	The IP protocol must be 89.

 	The source address must not be a local IP address. This check verifies that the local OSPF process does not receive back a packet itself has originated.

If any of the above check fails, IOS does not pass the IP packet’s contents to the OSPF process.

The OSPF packet header

Every one of the five OSPF messages introduced above always consists of two parts: The OSPF packet header, and the message body.

The OSPFv2 packet header functions as a very basic header, as found in most other protocols. Its main functions include:

 	Describe the OSPF message at a high level

 	Protect the packet with a checksum and authentication data

 	Describe the sender

The format of the OSPFv2 packet header is shown below:

 [image: The OSPFv2 packet header]
 The OSPFv2 packet header

The OSPF packet header and its fields are described in Appendix A, section A.3.1 of RFC 2328.

The version field only takes a value of 2 or 3, for OSPFv2 and OSPFv3 respectively. The packet type field identifies which one of the five packet types the payload is. The packet length defines which part of the payload is actually protected by the checksum and authentication data, and is in bytes.

The checksum calculation algorithm is the same as the one used for the IPv4 header checksum. The IPv4 checksum algorithm has purposefully been designed to be fast, and most importantly simple to implement in hardware. The packet checksum’s design goal was to catch single-bit errors, which is typical of errors caused during transmission. The packet header’s checksum simplicity might seem like the reason why a second per-LSA checksum was added. Granted, the LSA header’s checksum uses the Fletcher algorithm and is more robust than the IP checksum, but the reason for the LSA header’s strong checksum was the in-memory corruption possibility, not the in-flight corruption.

The authentication types and data fields are discussed in the OSPF Security chapter (coming soon).

Upon reception of an OSPF message, the OSPF process first verifies the OSPF header before processing the encapsulated message. The checks performed on the OSPF header are described in section 8.2 of RFC 2328:

 	Version must be 2

 	The area ID must be either the area associated with the receiving interface, or area 0.

 	In case the area is the same as the receiving interface’s area and the interface does not have a point-to-point network type, additionally verify that the sender’s IP address is on the same subnet as the receiving interface.

 	In case the OSPF header’s Area ID is different than the receiving interface’s area, then the only acceptable OSPF message would be a virtual link OSPF message. In this case, check the following three items: The receiving router must be an ABR, the Router ID in the OSPF header must be the Router ID of a configured virtual link neighbor, and the receiving interface’s area must be a Transit area.

 	The Authentication type must be the same as the authentication of the receiving interface. In case of configured authentication, the authentication checks must also pass.

If any of the above checks fail, the OSPF message is discarded. Else, the message is processed.

Apart from the checks listed above, checking the Router ID and the checksum in the OSPF header is not explicitly stated in RFC 2328, but IOS performs both of these checks.

The Router ID is verified during reception of an OSPF header to be different than the local router’s Router ID. Cisco IOS discards any OSPF messages that have the same Router ID in their OSPF header as the local router.

The OSPF header checksum is also calculated upon reception to catch any transmission errors that the IP checksum did not catch.

The structure and use of OSPF messages will be discussed in the upcoming sections.

The OSPF Hello packet

The OSPF Hello packet is used by OSPF for four purposes:

 	To automatically discover directly connected, compatibly configured neighbors

 	For each one of the several neighbors, verify that there is bidirectional visibility per neighbor

 	As a mechanism to detect loss of connectivity from/to a neighbor

 	To facilitate the establishment of adjacencies

The format of the Hello packet is shown below:

 [image: OSPF Hello packet structure]
 OSPF Hello packet structure

Once a Hello packet is successfully received on an interface, it is examined to verify that the sending router’s configuration is compatible with the recipient’s configuration.

RFC 2328, section 10.5, explains the detailed processing of a received Hello packet.
After checking the validity of the packet’s two headers (the IPv4 and OSPF headers, as described in the two previous sections), the OSPF process verifies that three fields in the received Hello message match the configured values on the receiving interface. The three fields are:

 	Subnet Mask

 	Hello Interval

 	Dead Interval

Any mismatch of the received values with the configured values is sufficient cause for dropping the packet, except in point-to-point links or virtual links, where the subnet mask field need not match. The following excerpt is taken from RFC 2328:

 However, there is one exception to the above rule: on point-to-point networks and on virtual links, the Network Mask in the received Hello Packet should be ignored.

Cisco IOS does not verify the subnet mask on IP numbered point-to-point interfaces, nor on IP unnumbered interfaces. This is in compliance with RFC 2328. The rationale for the exception of this verification, is that unnumbered point-to-point links typically do not have an IP network number, and that the interfaces on each side may possibly not even have an IP address assigned.

From RFC 2328, section 9 (and section C.3):

 On point-to-point networks and virtual links, the IP interface mask is not defined. On these networks, the link itself is not assigned an IP network number, and so the addresses of each side of the link are assigned independently, if they are assigned at all.

The only configuration that is necessary to turn an interface into a point-to-point interface is the following:

 Configuring an Ethernet interface with the point-to-point network type
interface Ethernet0/0
 ip ospf network point-to-point

After the above configuration is applied, the subnet mask is no longer checked on the interface; only that the neighbor’s IP address is reachable. This behavior has been verified with IOU 15.4(2)T.

A deep dive into network types and their default settings per interface type can be found in the Network Types chapter.

The list of neighbors contains the Router IDs of any neighbor the router heard of on the current segment, not all the neighbors (on any other segment the router is attached to).

Unicast vs. Multicast Hellos

OSPF has the ability to send Hello messages to either the OSPF multicast IP address 224.0.0.5 (IPv4) and FF02::5 (IPv6) for all SPF/link state routers (AllSPFRouters), or directly to a neighbor’s IP address. The unicast Hello capability allows OSPF to operate over links that do not support multicast or in situations where multicast is not desirable, even when the underlying link supports it. A modern use of unicast hellos is in DMVPN deployments where a network designer may wish to use unicast hellos instead of maintaining a large multicast mapping table at the hub, even though the infrastructure somewhat supports multicast.

So yes, in DMVPN, NHRP would need more state for maintaining the multicast mappings, when compared to OSPF just sending out unicasts. But on the other hand, when you disable multicasts at the OSPF level, you have now added a “neighbor-to-IP address to use” mapping within OSPF. Granted, this information is already stored in the neighbor data structure of OSPF, so it barely adds to the memory requirements of a DMPVN deployment, but the state does not disappear. It is only shifted from “multicast mapping in NHRP” to “ip-neighbor mapping in OSPF”.

Generating unicast packets is more processor-intensive task when compared to generating multicast packets, so sending multicast packets will lower the burden at the sender. Multicast has to be configured at the layer 2 network and adds one more to the moving parts in the routing protocol implementation. The added complexity often results in multicast being ignored and not configured at the data link layer. When multicast is not configured properly, the network treats multicast traffic as broadcast, exposing OSPF packets to unintended receivers, as well as causing other inefficiencies. In addition, some networks do not support and do not forward multicast traffic at all. In those cases, OSPF has the capability to revert to unicast packets. The behavior and effects of unicast and multicast packets in OSPF is further discussed of the LSA flooding section in the LSA Types chapter.

To force OSPF to use the unicast Hellos instead of the multicast Hellos, the interface’s OSPF network type should be configured to non-broadcast, either NBMA or point-to-multipoint non-broadcast.

When configuring a non-broadcast network type, OSPF neighbors should also be manually configured using the ip ospf neighbor commands under interface configuration mode. Another way for the router to dynamically learn about a neighbor over a non-multicast type of network is if the router receives a Hello sourced from the router (unicast or multicast). For example, a router configured as point-to-multipoint and a neighbor configured as point-to-multipoint non-broadcast will actually form an adjacency without configuring any neighbor commands on any one of them. At any rate, the router configured as point-to-multipoint non-broadcast will only send unicast Hellos directly to the other neighbor’s IP address.

 Mixing network types in real-life deployments

 In an interesting real-world deployment using a mixture of OSPF network types, a DMVPN deployment may be configured with regular point-to-multipoint interface on the hub and point-to-point or point-to-multipoint non-broadcast on the spokes. This way, the hub auto-discovers the spoke routers with only the hub configured as a neighbor on the spokes.

OSPF will accept Hellos destined either to AllSPFRouters or to its IP address, and will process such packets as usual.
As we saw, the network type configured on an interface determines whether a unicast or multicast destination IP address will be used in OSPF Hellos. Yet, a mismatch of this setting amongst routers will not prevent them from becoming adjacent.

Database Description (DD) message

DD packets carry the description of an area’s Link State Database (LSDB). The LSDB consists of the area’s Link State Advertisements (LSAs). Each LSA is described by the LSA’s header. This way, the LSDB can be described by the LSA headers. During LSDB synchronization, each router describes to its new neighbor its own view of the area’s LSDB. The most efficient way to do this is to exchange their respective LSA headers. The DD messages are the messages that facilitate this exchange:

 [image: DD message, including OSPF packet header]
 DD message, including OSPF packet header

As you can see from the message outline shown above, the DD message is essentially just a thin shim between the OSPF packet header and any LSA headers that are the message’s payload.

The I, M, M/S and sequence number fields act similarly to TCP’s own flags and sequence numbers.

RFC 5243 compatibility

RFC 5243 compatibility optimizes the exchange of Database Description messages during the initial database synchronization between two neighbors. According to the database exchange process as modified by RFC 5243, a neighbor keeps track of the LSAs that its neighbor is advertising in its DD messages. When it only has the same (or an older) version of the LSA, it will not advertise it back to its neighbor. The use of the RFC 5243 technique does not depend on support from the neighbor.

RFC 5243 has been implemented in IOS since Cisco IOS 15.5(2)T. RFC 5243 compatibility is enabled by default, but can be disabled with the R1(config-router-af)# no compatible rfc5243 The show ip ospf command verifies whether it is enabled. There is no downside to enabling RFC 5243 compatibility, which is why it is recommended and enabled by default in Cisco IOS.

RFC 5243 is just five pages long and it is well worth reading.

Acknowledgments

Three messages in OSPF require acknowledgment, either implied or explicit:

 OSPF messages that require acknowledgement

 	OSPF message
 	Type of Acknowledgment

 	Database Description
 	Implied

 	Link State Request
 	Implied

 	Link State Update
 	Explicit or Implied

The LS Update packet is normally multicast on an interface that supports broadcast. When an OSPF router does not receive an LS Acknowledgment message from any one of its neighbors, the router will then send the LSU as a unicast to the neighbor(s) that presumably did not receive the LSU. In case the neighbor does not reply promptly with an LS Acknowledgment, the router that started sending the LSU will keep sending the unicast LSU to its neighbors every RxmtInterval seconds. The RxmtInterval default value in IOS is 5 seconds on all types of interfaces, but the value is configurable per interface with the ip ospf retransmit-interval command. The procedure of Retransmitting LSAs is described in RFC 2328, Section 13.6, and a sample value for the RxmtInterval variable is given in RFC 2328 as 5 seconds.

 Configuring and verifying the Retransmit Interval on an OSPF interface
R1(config)#interface Ethernet 0/0
R1(config-if)#ip ospf network point-to-point
*Oct 30 11:45:48.169: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Ethernet0/0 \
 from LOADING to FULL, Loading Done
R1(config-if)#do show ip ospf interface eth0/0 | include Timer
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
R1(config-if)#ip ospf retransmit-interval 10
R1(config-if)#do show ip ospf interface eth0/0 | include Timer
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 10

Note that a router’s RxmtInterval value does not affect whether it will become adjacent with other routers.

The Options Field

The following OSPF messages and structures contain an Options field:

 	Hello packet

 	The header of Database Description (DD) packets

 	LSA header

The bits in the Options field were initially designed to have the same meaning regardless of their occurrence. So the bits would mean the same both in the Options field of the Hello message, as well as in the LSA header of a router-LSA. The Options field is 8 bits long, and is mostly used to signal additional capabilities that the router has, or particular settings of a router. These settings are also commonly used to determine if two neighboring routers are compatibly configured. Such configuration incompatibility may result in an adjacency to fail to come up.

The option bits mean the same thing irrespective of which header they are used in, with the noteworthy exception of the N/P bit. The N/P bit takes the meaning of the P-bit when within the LSA header of a Type-7 NSSA-external LSA and the meaning of the N-bit in all other use cases. A mismatch of the N bit (NSSA) within exchanged Hello messages will prevent an OSPF adjacency with a neighbor from forming. The implication of the N/P bit are numerous and are discussed in detail in both the Stub Areas and Path Selection chapters. Type-7 LSAs are discussed in detail in both the LSA Types and Stub Areas chapters.

The OSPF Options field (within a Hello message) is shown below:

 [image: The options field within the OSPF Hello packet]
 The options field within the OSPF Hello packet

 Option field bits, and a short mnemonic for the functionality they were named after

 	Bit
 	Short meaning

 	DN
 	Do Not flood

 	O
 	Opaque LSAs

 	DC
 	Demand circuit

 	L
 	Link Local Signaling

 	N
 	NSSA

 	P
 	Propagate

 	MC
 	Multicast extension

 	E
 	External routing capability

 	MT
 	Multi-Topology

The paragraphs below describe how OSPF uses the bits in the Options field:

DN: The DN bit is used to prevent looping in MPLS IP L3 VPNs. For example, assume Site A redistributing an OSPF route into MP-BGP as part or normal L3 VPN operation. Next, assume that the advertisement reaches a dual-homed Site B, and is redistributed into OSPF at Site B. A router in Site B could redistribute the same prefix back into the provider’s MP-BGP, potentially causing a routing loop. The DN bit is set on all LSAs that are redistributed by an MPLS provider’s MP-BGP into a site’s OSPF LSDB. And when redistributing local information into an MPLS provider’s BGP, an OSPF router will always ignore LSAs that have their DN bit set. Discussions on MPLS, MP-BGP and OSPF as a PE-CE routing protocol are beyond the scope of this book. To better appreciate the problem that the DN bit solves and how it actually goes about solving it, you can read the three RFCs listed in the table below:

 A gentle introduction to MPLS L3 VPNs and the role of the DN bit

 	RFC #
 	Title

 	4364
 	BGP/MPLS IP L3 VPNs

 	4576
 	LSA Options Bit to Prevent Looping in BGP/MPLS IP VPNs

 	4577
 	OSPF as PE-CE protocol for BGP/MPLS IP VPNs

O: The O-bit is used only in Database Description packets, and describes the sending router’s capability and willingness to accept and re-flood Opaque LSAs. Opaque LSAs are Type 9, 10, and 11 LSAs, and are defined (along with the O-bit) in RFC 5250 - The OSPF Opaque LSA Option. This bit is only used in the DD header and is not set in Hellos, nor in any LSA header. Since the O-bit is only set in DD packets, it has no effect on any potential adjacency (whether an adjacency comes up depends only on the contents of Hello messages). Opaque LSAs are used in IOS for the Graceful Restart and MPLS-TE features. The O-bit is further discussed in the Graceful Restart section of the Convergence Optimization and Scalability chapter (coming soon).

DC: The DC-bit is set by a router in all of the LSAs generated by the router when the router supports the demand circuit (DC) extension of OSPF. The same bit is used in Hello and Database Description packets to negotiate Hello suppression over a link, between two neighbors (which is part of DC operation). The demand circuit options bit was introduced for OSPF in Cisco IOS 11.2 in response to the publication of RFC 1793. A mismatch in the DC bit will not prevent adjacency. What can be configured is for one side to attempt to negotiate a link to be treated as an on-demand circuit, whereas the other side can be configured to explicitly ignore such a request (with the ip ospf demand-circuit ignore command). This feature is discussed in the Demand Circuit section of the Convergence Optimization and Scalability chapter.

L: The L-bit is set in Hello and Database Description packets when a Link-Local Signaling (LLS) data block is attached to the OSPF message. RFC 5613 - OSPF Link-Local Signaling defines LLS and defines how you can append a block to a regular Hello or Database Description packet. In case the regular packet is authenticated, then the LLS payload is also authenticated, and the authentication data for the LLS data is placed in a separate TLV within the LLS data block. The LLS authentication TLV has a Type value of 2. This bit had originally been defined as the EA bit in RFC 2328, but has since been deprecated. For more information see the LLS section of the OSPF Convergence Optimization & Scalability chapter.

N: The N-bit is defined only for Hello packets and its sole purpose is to guarantee that all routers in an area agree whether the area is an NSSA area or not. The N-bit must match between neighbors or else they will drop each other’s Hello messages and thus never become neighbors. When a router does not support NSSA functionality, it will not be able to join the NSSA area since it will always keep the N-bit cleared in Hello messages. The N-bit is repurposed as the P bit (discussed next) in Type-7 LSAs within NSSA areas. Since NSSA routers cannot accept and process AS-external-LSAs, the E-bit must be cleared on all Hello messages that have their N-bit enabled. This makes the E and N bits mutually exclusive. RFC 3101 does not define how the N-it should be set in LSA headers or in Database Description headers besides the statement that The N-bit is used only in Hello packets. IOS (in violation of RFC 3101) always sets the N-bit for all LSAs generated within an NSSA (with the exception of Type-7 LSAs that do not have this bit), and in DD packets.

P: The P-bit is only defined for the Type-7 LSA header. In the NSSA-external-LSA header, it flags whether the external information carried within the LSA should be propagated beyond the NSSA, into the rest of the OSPF routing domain. When set, an NSSA translator is to translate the Type-7 LSA into an AS-external LSA and flood it into the backbone. The P-bit is allocated the same position as the N-bit discussed earlier, but since the two bits are defined for different uses, and in different messages, there is no conflict or ambiguity. Only NSSA translators use the N-bit to make a decision about whether to translate the LSA. The exact algorithm of how OSPF determines when to assign the P-bit and how the P-bit affects various aspects of OSPF design is discussed at great length in the Stub areas chapter.

MC: The MC-bit is defined in RFC 1584 - Multicast Extensions to OSPF, which is now in Historic Status. The Multicast Extensions to OSPF never saw much vendor support, and Cisco never implemented RFC 1584.

E: The E-bit is the only bit in the Options field that is defined in RFC 2328, and it describes how AS-external-LSAs are handled. In general, it indicates a router’s capability and willingness to process AS-external-LSAs. All Hello messages exchanged within a regular area should have their E-bit set. Hello messages exchanged within a stubby or NSSA area should have their E-bit cleared. A mismatched E-bit in Hellos will prevent the adjacency from coming up, thus enforcing that all routers are consistently configured as either part of a stub area or not. The E-bit is also set in all LSAs associated with non-stub areas, and cleared in all LSAs in a stub or NSSA area. Since AS-external-LSAs do not exist within stub areas, the E-bit is always set in AS-external-LSAs. The other uses of E-bit are discussed in the The many faces of the E-bit section of the LSA Types chapter.

MT: The MT-bit is used to indicate a setting of Multi-Topology Routing in OSPF (MTR). A router may support MTR, yet have the MT-bit cleared due to being configured this way. In Cisco IOS-XE, the MT-bit is set as a result of explicit configuration. The first two OSPFv2 RFCs (RFC 1247 and RFC 1583) actually defined the bit as the T-bit. The T-bit indicated the router’s capability to route using the OSPFv1 concept of TOS-based routing which, although similar to MTR, never saw widespread adoption. Therefore, RFC 2178 deprecated (deleted) the TOS routing option (section G.10).

MT-OSPF is defined in RFC 4915 - Multi-Topology (MT) Routing in OSPF (June 2007). When the MT-bit in the Options field is set, the router may advertise the links attached to it as belonging to several TOS (topologies), without advertising the link belonging to the default (base) topology.

Router ID

The Router ID in OSPF is a 32-bit identifier, uniquely identifying an OSPF router as a node within an area’s graph, and in the case of Autonomous System Border Routers (ASBRs) even beyond the area boundary. If several nodes use the same Router ID to identify themselves within an area, the SPF algorithm will produce wrong results at most instances and a flooding war will ensue.

Every router originates several LSAs within an OSPF domain. Of those LSAs, some describe the router itself and its directly attached networks, and some describe networks the router can reach.

Every LSA has the Advertising Router field, populated with the Router ID of the router generating the LSA.

 [image: LSDB partition will lead to stale information]
 LSDB partition will lead to stale information

In the scenario shown above we can see how a partition of the network creates two not-synchronized versions of the same LSDB. Each LSDB holds its share of stale LSAs. Stale LSAs are not used for SPF calculations but are still stored within the LSDB until they age out.

R4’s LSA on the left partition of the LSDB is not necessarily inaccurate. If, while the network is partitioned, R4 does not modify or retract any of its LSAs, then both LSAs will actually hold valid information.

Now consider what will happen if the state of any of R4’s links changes while the LSDB is partitioned. The right-hand-side of the LSDB will contain the fresh and valid R4’s LSA, while the stale LSA will contain the old, no-longer-valid information.

When the network is reunited, the LSDB has to be synchronized across all routers.

The way to do this will be for each router to verify that all LSAs originated by itself contain valid information.

 [image: LSDB is synchronized after connectivity is reestablished throughout an area]
 LSDB is synchronized after connectivity is reestablished throughout an area

Once R4 detects the stale LSA in the LSDB, it will poison it. R4 will do this by inserting a record into the LSDB with an age of MaxAge. This way the record (LSA) will be deleted from the LSDB due to the aging mechanism.

Due to the manner by which the LSDB is synchronized across an OSPF area (as described in the above example), a router may sometimes receive an LSA that is no longer valid but the router has itself generated some time earlier. The router will receive such a stale LSA during the LSDB synchronization process.

When a router detects an LSA sourced by itself (with its own Router ID in the Advertising Router field) in the LSDB that it feels to be invalid, it designates such an LSA as stale. The router will then generate a new LSA to replace and correct the stale information in the area’s LSDB. This behavior is called OSPF’s fight-back mechanism and serves a twofold purpose:

 	It is a a reliable way to flush out any LSAs a router has originated earlier with the newest possible information.

 	It also functions as a robust security mechanism.

A visualization of the events and LSAs sent out in an effort to synchronize the LSDB after a partition event is shown below:

 [image: LSAs and events during synchronization in the presence of stale LSAs]
 LSAs and events during synchronization in the presence of stale LSAs

In the timeline above, R4 starts by sending out LSA1 to all its neighbors, essentially inserting a record into the LSDB. At some point, R1 gets disconnected from R4 and R3 and retains LSA1 until it expires in its local copy of the LSDB. During this time, something changes at R4 and so R4 issues a new LSA (LSA2) to replace LSA1, and as a result it withdraws LSA1. As usual, to withdraw an LSA a router generates the LSA with MaxAge.

Later, connectivity is reestablished from R4 to R1. During the initial LSDB synchronization R1 sends LSA1 to R4 (which was still in R1’s copy of the LSDB). This triggers R4 to poison the stale LSA1 from the LSDB. To this effect, R4 will send out LSA1 with a MaxAge to all its neighbors. The poisoned LSA1 is also sent out to R3 because R1 cannot be certain that the stale LSA1 did not reach R3 through some other R1-R3 path. To guarantee that the stale LSA is flushed throughout the entire LSDB, OSPF dictates that each LSA (poisoned or otherwise) is flooded into all directions.

A router verifies whether the received LSA is an LSA that it has indeed originated by checking only two fields:

 	The LSA’s sequence number must be equal to the latest sequence number that was issued by the router for the particular LSA.

 	The LSA’s checksum must match the checksum of the local copy of the LSA generated by the router.

The router will not check or verify the remaining contents of the LSA if the two above fields are correct. Since the OSPF security fight-back mechanism relies heavily on the results of these checks, the design choice to not verify the LSA contents (beyond the sequence number and checksum), combined with the computational simplicity of the checksum algorithm, have led to successful attacks against OSPF infrastructure. The easiest mitigation technique against these attacks is to deploy TTL security and authentication. Attacks on OSPF and TTL security are discussed in further detail in the Security chapter (coming soon).

The designers of OSPF cannot be rightfully blamed for this design choice because at design time, the OSPF packet checksum would protect the packet’s payload from in-flight data corruption and the LSA checksum protects against in-memory corruption. Neither of the two checksums was ever meant to be used as a security mechanism to detect malicious LSA generation and injection. Furthermore, the computational complexity of the checksum algorithms was intentionally selected to be the lowest possible in order to accommodate the underpowered processors that OSPF was designed to run on, at the time.

A bigger problem that will arise from duplicate Router IDs is when the router originates an LSA describing a network. These can be type 2, 3, 5, or Type-7 LSAs. Assume for the sake of our discussion an ABR, having a duplicate Router ID as another router in an area it is attached to, and the Border router generates a network summary-LSA. The LSA will be propagated normally throughout the area, and it will reach the router that did not generate the LSA, and has no knowledge of how to reach the advertised network. Once the router receives an LSA which it believes has been originated by itself, it will examine whether the LSA is valid and accurate. When the router realizes that it cannot reach the advertised network, it will assume that the particular LSA is a leftover LSA from a previous life, a life where the router could reach the network. Since this is not the case anymore, the router has an obligation to let everyone know that the LSA is no longer valid, by prematurely flushing the LSA. Premature flushing of an LSA from the routing domain is achieved by setting its LS age to MaxAge, while leaving its LS sequence number alone, and then reflooding the LSA. If any LSA’s LS age reaches MaxAge (either naturally within a process’s local LSDB or after receiving the LSA), it is removed from the local copy of the LSDB. The same behavior holds true for an ASBR generating a type 5 or 7 LSA into an area with another internal router that has a duplicate Router ID.

 	MaxAge

 	The maximum age an LSA can attain within the LSDB (in seconds) before being flushed. Defined in RFC 2328 - OSPF v2, Appendix B as 1 hour (3600 seconds).

As soon as the other router (the true originator) notices its LSA MaxAged, it will regenerate the LSA, endlessly. This vicious cycle is called a flooding war, and the IOS routers that participate in this flooding war will generate the SYSLOG message FLOOD_WAR. Flooding wars are further discussed in the Troubleshoting chapter (coming soon).

When an OSPF process starts up, it needs a Router ID. If no IP address is configured on an active interface, and no Router ID is otherwise explicitly configured, the OSPF process fails to start. The following CLI output shows the SYSLOG message when OSPF fails to start because it cannot find a Router ID.

 OSPF fails to start when no configured IP address can be found
R6#show ip interface brief | exclude unassigned
Interface IP-Address OK? Method Status Protocol
Ethernet0/3 6.6.66.66 YES manual administratively down down
R6#configure terminal
R6(config)#router ospf 1
R6(config-router)#
*Nov 28 08:34:33.088: %OSPF-4-NORTRID: OSPF process 1 failed to \
 allocate unique Router ID and cannot start
R6(config-router)#router-id 6.6.6.6
R6(config-router)#^Z
R6#
R6#show ip ospf | include ID|time
 Routing Process "ospf 1" with ID 6.6.6.6
 Start time: 00:00:21.432, Time elapsed: 00:00:21.165

Even though an IP address is configured for interface Ethernet0/3, since the interface is administrative down, OSPF cannot pick it up and thus fails to initiate.

Router ID name-lookup

The Router ID is a 32-bit number identifying OSPF routers. In the outputs of show commands on the CLI, the Router ID is usually displayed in a dotted decimal notation, e.g. 192.1.1.1.

When managing a larger network with many OSPF routers, remembering each Router ID becomes cumbersome. To alleviate some of the administrator’s burden, Cisco implemented the Router ID name-lookup feature to replace Router IDs in the output of show commands with router hostnames.

To configure Router ID to router hostname resolution for use within show command output, use the ip ospf name-lookup global configuration mode command:

 Resolve OSPF Router IDs to DNS names
ip ospf name-lookup

The ip ospf name-lookup command forces IOS to resolve Router IDs to names, and it can be utilized using one of two deployment methods:

 	Locally defined Router-ID-to-name association

 	Centralized DNS

Each deployment method has its trade-offs:

 	When using a locally defined Router ID/name association:

 	The Router ID lookup will be faster than querying a remote DNS server

 	The association will always be available, even if the DNS server is not

 	The Router ID can be any arbitrary 32-bit number (0.0.0.1 or 127.255.255.0 for example)

 	Using a centralized DNS service to resolve a Router ID to the router’s hostname:

 	Allows for easier Router-ID-to-hostname changes, at a centralized location. Once the change is in effect at the DNS server, all routers resolving Router IDs using DNS will be able to resolve to the new hostname, without the need for any changes in local configuration. A single change at a central location will thus have global effect.

 	Makes additions of new associations easier (this is especially significant in larger networks)

 	Lowers the configuration burden per router, and requires lower configuration management burden than using manual Router ID-to-name associations.

 	Requires that the Router ID of each router be a reachable IP address within the network, since other services might also need to resolve the router’s name to an IP address (Ansible or a monitoring system for example).

To define local Router-ID-to-hostname associations, use the ip host R2 2.2.2.2 command, where R2 is the router’s hostname, and 2.2.2.2 is the Router ID.

To use a centralized DNS server to resolve the OSPF neighbor’s hostname, a DNS server must be configured on the router, and name lookup should also be globally enabled:

 Configuring for OSPF Router ID lookup using a DNS server
R1(config)#ip name-server 10.1.1.1
R1(config)#ip domain lookup
R1(config)#ip ospf name-lookup

If there is no local route to the configured DNS server, the configuration will essentially be ignored. If, on the other hand, a DNS server is configured and a route to the server exists but the server either does not respond, or has no entry for the Router ID, the show ip ospf commands will appear to hang. IOS will be waiting for a response (in the order of 10-20 seconds) before displaying the output of the commands without having resolved the Router IDs.

Once Router ID name-lookup is enabled, the CLI output will then become easier to parse visually, as can be seen in the CLI output below.

 OSPF command output before and after Router ID name-lookup is enabled
R2#show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface
3.3.3.3 0 FULL/ - 00:00:37 192.168.23.3 Ethernet0/1
1.1.1.1 0 FULL/ - 00:00:32 192.168.12.1 Ethernet0/0
! After Router ID name-lookup is enabled:
R2#show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface
R3 0 FULL/ - 00:00:36 192.168.23.3 Ethernet0/1
R1 0 FULL/ - 00:00:38 192.168.12.1 Ethernet0/0
R2#show ip ospf database | begin ^Link
Link ID ADV Router Age Seq# Checksum Link count
1.1.1.1 R1 378 0x80000004 0x0061B0 2
2.2.2.2 R2 377 0x80000006 0x009336 4
3.3.3.3 R3 414 0x80000004 0x005C8D 2
R2#show ip ospf database router 1.1.1.1 | inc Advert
 Advertising Router: R1

As we can see, the name-lookup function is not absolutely necessarily in a small environment but becomes a real time saver in larger deployments.

For reference purposes, below you can find the commands to configure an IOS router to act as a DNS server.

 Configure an IOS server as a DNS server
ip dns server
ip host R1 1.1.1.1
ip host R2 2.2.2.2
ip host R3 3.3.3.3
ip dns primary lab.example soa R1.lab.example mb1.lab.example
ip host lab.example ns R1.lab.example

More information on what each of the above commands does and on how to configure IOS for DNS services can be found at DNS Configuration Guide, Cisco IOS Release 15M&T.

1.5 Basic configuration

Using the network statement

The network statement is the classic way to enable OSPF on a set of interfaces.

The network ip-address wildcard-mask area area-id OSPF router subcommand works using the following algorithm:

 	The router applies the ip-address wildcard-mask arguments as an ACL, in order to figure out which interfaces match. The next steps are applied only for the matching interfaces.

 	The router adds the networks connected to the matching interfaces to its OSPF LSDB for area area-id

 	As a consequence of this second step, the router generates a new router-LSA advertising the networks connected on/to the interfaces to all of its current OSPF neighbors in area area-id

 	The router sends OSPF Hello messages out of the matched interfaces trying to find neighbors belonging in area-id

Using the following topology as a reference:

 [image: OSPF Reference network]
 OSPF Reference network

Let us assume for example’s sake that an administrator configures the following command on R1:

 Example usage of the network command
R1(config)#router ospf 1
R1(config-router)#network 10.0.0.0 0.1.255.255 area 0

Then applying the logic described above, IOS on R1 will perform the following steps:

 	R1 will apply 10.0.0.0 0.1.255.255 as an ACL on all of the IP addresses configured on its interfaces. These are:

 	10.2.2.1

 	10.1.1.1

 	10.0.12.6

 	10.0.13.17

 	10.0.14.2

 	After applying the ACL, IOS knows which interfaces match, so it will apply the actions of the next steps. In R1’s case, interfaces G0/1, G0/2, G0/3, and G0/4 match.

 	R1 adds the networks attached to the matched interfaces to its Area 0 LSDB:

 	10.1.1.0/24

 	10.0.12.4/30

 	10.0.12.16/30

 	10.0.13.0/30

 	R1 will send out an updated router-LSA for R1, (now containing the networks added in the previous step) as networks directly attached to R1.

 	R1 sends OSPF Hello messages out of the matched interfaces (G0/1, G0/2, G0/3 and G0/4) looking for neighbors belonging to Area 0.

Note that in older versions of IOS, the network commands are processed in sequential order, and later commands do not override earlier ones. Consider the following configuration:

 Network commands were applied sequentially in older IOSs
network 192.168.0.0 0.0.255.255 area 0
network 192.168.1.0 0.0.0.255 area 1

The above configuration would (in some very old IOSs) actually add interface 192.168.1.2 to area 0, event though the second network command is more specific than the first one. Whichever network command got an interface first got it forever, even if subsequent network commands would assign the interface to another area. Since at least IOS 12.1, the same general rule is applied, only with a (quite sane) twist. When entering the various network command in newer IOS versions, the CLI sorts them by wildcard mask length, in ascending order, enters them into the running config in that order, and then applies the network commands sequentially.

This sorting and then applying of network commands is more intuitive than the earlier behavior. Furthermore, to ease the transition of this behavior from older versions, IOS now generates a SYSLOG message whenever a newly entered network command overrides an already existing network command that has already assigned an interface to an area.

 CLI sorts network commands before applying them, and warns you whenever the older behavior is overridden
R2(config-if)#router ospf 1
R2(config-router)#network 192.168.0.0 0.0.255.255 area 0
R2(config-router)#network 192.168.12.0 0.0.0.255 area 1
%OSPF-6-AREACHG: 192.168.12.0/24 changed from area 0 to area 1
R2(config-router)#network 192.168.24.0 0.0.0.255 area 1
%OSPF-6-AREACHG: 192.168.24.0/24 changed from area 0 to area 1
R2(config-router)#^Z
R2#show runn | section router ospf 1
router ospf 1
 network 192.168.12.0 0.0.0.255 area 1
 network 192.168.24.0 0.0.0.255 area 1
 network 192.168.0.0 0.0.255.255 area 0

To verify that an interface has OSPF enabled on it use the show ip ospf interface command, and look for the Attached via Network Statement phrase.

 Verification of how an interface was added to the OSPF process
R1#sh ip ospf interface | incl ^[A-Z]|Attached
Loopback0 is up, line protocol is up
 Internet Address 11.0.0.1/32, Area 0, Attached via Interface Enable
GigabitEthernet0/2 is up, line protocol is up
 Internet Address 10.0.12.6/30, Area 0, Attached via Network Statement
GigabitEthernet0/1 is up, line protocol is up
 Internet Address 10.1.1.1/24, Area 0, Attached via Network Statement

In Routing TCP/IP, Volume 1, 2nd Edition by Jeff Doyle and Jennifer Carroll, the following passage appears:

 When the OSPF process first becomes active, it will “run” the IP addresses of all active interfaces against the (address, inverse mask) pair of the first network statement. All interfaces that match will be assigned to the area specified by the area portion of the command. The process will then run the addresses of any interfaces that did not match the first network statement against the second network statement. The process of running IP addresses against network statements continues until all interfaces have been matched or until all network statements have been used. It is important to note that this process is consecutive, beginning with the first network statement. As a result, the order of the statements can be important, as is shown in the troubleshooting section.

I did not manage to confirm the described behavior with any IOS version from 12.0(5)T1 upward, so be wary.

The earliest IOS that I am aware of that does not re-sort network commands before adding them to the running-config is IOS 12.0, which instead rejects any more specific network commands than any commands already configured.

 IOS 12.0 rejects a more specific network command if a less specific command is already in the running-config
R1#show ver | inc IOS
IOS (tm) 3600 Software (C3620-IS-M), Version 12.0(5)T1, RELEASE SOFTWARE (fc1)
R1(config)#router ospf 1
R1(config-router)#network 192.168.0.0 0.0.255.255 area 0
R1(config-router)#network 192.168.12.0 0.0.0.255 area 1
R1(config-router)#
% OSPF: "network 192.168.12.0 0.0.0.255 area 1" is ignored. It is a subset of a \
 previous entry.

R1(config-router)#^Z
R1#
R1#show ip ospf interface Fast0/0 | inc rea
 Internet Address 192.168.12.1/24, Area 0
R1#show running-config | include ospf|netw
router ospf 1
network 192.168.0.0 0.0.255.255 area 0
R1#

Secondary addresses

If a network command matches a secondary address, but the interface’s primary IP address is not matched by any network command, then the match on the secondary address is not acted upon. So, if an interface has a secondary address of 192.168.0.2/24, but the interface’s primary IP address of 10.0.23.2/24 is not matched by the network 192.168.0.2 0.0.0.255 area 0 command, no IP subnet off the interface will have OSPF enabled on it.

 The network command should match both an interface’s primary and secondary addresses
R2(config-router)#interface Ethernet 0/1
R2(config-if)#ip address 10.0.23.2 255.255.255.0
R2(config-if)#ip address 192.168.0.2 255.255.255.0 secondary
R2(config-if)#no shutdown
R2(config-if)#
R2(config-if)#router ospf 1
R2(config-router)#network 192.168.0.2 0.0.0.255 area 0

The above configuration steps will not configure OSPF to send any Hello messages out of interface Eth0/1, nor will network 192.168.0.0/24 be advertised into the OSPF domain. Only after the primary IP address is matched by a network command (network 10.0.23.0 0.0.0.255 area 0 for example), will OSPF start sending Hellos from the Eth0/1 interface, sourcing all of its communication from the primary IP address, and advertising any secondary IP networks into the OSPF domain, so long as the secondary address is also covered by a network statement.

If, on the other hand, only the network 10.0.23.2 0.0.0.0 area 0 command were present (and network 192.168.0.2 0.0.0.255 area 0 was missing), IOS would not advertise the secondary subnet into OSPF.

As far the source IP address of OSPF packets is concerned, IOS will not under any circumstances source an OSPF packet using a secondary IP address, and will not process any packets destined to a secondary address.

Secondary subnets are always advertised as stub networks attached to Router LSAs.

 Secondary subnets are advertised as stub networks, just like primary subnets
R2#show ip ospf database router 2.2.2.2
<output omitted>
 Link connected to: a Stub Network
 (Link ID) Network/subnet number: 10.0.23.0
 (Link Data) Network Mask: 255.255.255.0
 Number of MTID metrics: 0
 TOS 0 Metrics: 10

 Link connected to: a Stub Network
 (Link ID) Network/subnet number: 192.168.0.0
 (Link Data) Network Mask: 255.255.255.0
 Number of MTID metrics: 0
 TOS 0 Metrics: 10
<output omitted>
R2#

In the IOS output above, 10.0.23.0/24 is the primary IP network on the Ethernet 0/1 interface and 192.168.0.0/24 is the secondary IP network on the same interface.

To advertise a secondary subnet into OSPF using the network command, issue a network command to cover both the primary and secondary IP addresses configured on an interface, or two separate network commands that should match both the primary and secondary IP addresses. OSPF has to be enabled for the primary IP address (using either the network or the ip ospf area commands), otherwise the secondary IP address will not be advertised into OSPF, regardless of any network commands that might cover it.

Interface Statement

Another way to enable OSPF on an interface is to use the ip ospf <PID> area <area-ID> interface configuration command. Issuing this command will advertise the IPv4 network(s) (subnet(s)) attached to an interface into OSPF, and will also start sending OSPF Hello messages looking for OSPF neighbors off that interface.

By default, once OSPF is enabled on an interface by the ip ospf area command, OSPF is enabled for all networks attached to the interface, primary and secondary as well. This can be verified by the output of the show ip ospf interface command:

R1#sh ip ospf interface Ethernet 0/0 | inc ^[A-Z]|via|by
Ethernet0/0 is up, line protocol is up
 Internet Address 10.0.0.1/24, Area 0, Attached via Interface Enable
 Enabled by interface config, including secondary ip addresses

If you don’t need to advertise the secondary networks into OSPF, a variation of the ip ospf area command can be used:

ip ospf 1 area 0 secondaries none

There is no way to only advertise a subset of the secondary addresses using the ip ospf area command. If such granularity is useful, the network command is more flexible in this sense. An example of enabling OSPF only for the primary IP address of an interface:

 Enabling OSPF per interface, but not for secondary IP addresses
R1(config)#interface Ethernet 0/0
R1(config-if)#ip ospf 1 area 0 secondaries none ?
 <cr>

R1(config-if)#ip ospf 1 area 0 secondaries none
R1(config-if)#^Z
R1#
R1#show ip ospf interface Ethernet 0/0 | inc ^[E]|by
Ethernet0/0 is up, line protocol is up
 Enabled by interface config, excluding secondary ip addresses

The secondaries none wording was used instead of potentially no-secondaries because the IOS designers were keeping in mind the possibility of adding something like an ACL filter (in future IOS releases) as an alternative to the blanket none.

OSPF Configuration in IOS-XR

IOS-XR seems to be the direction in which Cisco is moving to create a unified and consistent CLI and configuration method. In particular, IOS-XR keeps all of the routing protocol’s configuration within a single section. The trend to contain all of a specific routing protocol’s configuration within a configuration section in IOS appears in the newer Address-Family configuration methods for EIGRP and OSPFv3.

An example of configuring OSPF on IOS-XR, along with the various configuration modes and sub-modes, is shown below:

 OSPFv2 configuration on IOS-XR
router ospf 1
 router-id 1.1.1.1
 area 0
 interface Loopback0
 interface GigabitEthernet0/0/0
 authentication message-digest
 message-digest-key 1 md5 cisco123
RP/0/RP0/CPU0:router(config-ospf)# area 1
RP/0/RP0/CPU0:router(config-ospf-ar)# interface GigabitEthernet0/0/1
RP/0/RP0/CPU0:router(config-ospf-ar)# virtual-link 192.168.0.1
RP/0/RP0/CPU0:router(config-ospf-ar-vl)# authentication message-digest
RP/0/RP0/CPU0:router(config-ospf-ar-vl)#message-digest-key 4 md5 keymd5
RP/0/RP0/CPU0:router(config-ospf-ar-vl)# exit
../CPU0:router(config-ospf-ar)# range 192.168.0.0 255.255.0.0 advertise

1.6 OSPF Finite State Machine

The OSPF Finite State Machine (FSM) describes the various stages and states of a neighborship with another OSPF neighbor. This FSM is maintained on a per-neighbor basis. The OSPF FSM is shown below for reference purposes.

 [image: The OSPF FSM]
 The OSPF FSM

The OSPF FSM as drawn above is essentially a verbatim reprint from RFC 2328, Figures 12 and 13. A more detailed explanation of the various events and states is offered in the same section, section 10.1 of RFC 2328.

1.7 References

 	OSPF show Commands Respond Slowly

 	Reverse lookup of OSPF Router IDs

 	RFC 5243 - OSPF Database Exchange Summary List Optimization

 	The OSPF Options Field

 	OSPF Support for MTR

 	Multi-Topology Routing in OSPF

 	IP Routing: OSPF Configuration Guide, Cisco IOS Release 15M&T, OSPF Per-Interface Link-Local Signaling

 	OSPF Nonstop Forwarding (NSF) Awareness

 	High Availability Configuration Guide, Cisco IOS Release 15SY - Configuring NSF-OSPF

 	Troubleshooting Duplicate Router IDs with OSPF

 	The War is On Between R4 and SW4!

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/area0-graph.png

OEBPS/images/area1-graph.png

OEBPS/images/OSPF-packet.png
IP Header

OSPF Header

OSPF message

OEBPS/images/small-graph_no-net-nodes.png
N1

OEBPS/images/LSDB-concept.png

OEBPS/images/LSDB-structure.png
R1 R2 R3

Type 1 Type 1 Type 1
Type 2 Type 2
Type 3 Type 3
Type 3

N\ /
Types | %

OEBPS/images/multi-area-OSPF.png
IIIIIIIIIIII

Area 1

Area O

e

e —

OEBPS/images/timeline.png
Year:

1989 1991 1994 1997 1998 1999 2003 2008

OSPFvl RFC 1247 RFC 1583 OSPFv2 NSSA OSPFv3
RFC2178 RFC2740

OEBPS/images/small_multihomed.png
S
\

TN

192.168.0.0/24—%7—% %

’—10 1.0.0/24

OEBPS/images/small-graph.png
R1

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Advanced Topics for the

for the Initiated

OSPF

NN

=) i ¢ -

9 ==
AN

\ (] =

S T

! ».,r...\’%.u.‘%a“\
[T

= SHINE =/ 2= /

nzt=rd

WE=

CCIE Enterprise Infrastructure v1.0

Candidate

Angelos Vassiliou

OEBPS/images/FSM.png
(neighbor
Start command
configured)

Hello received

Hello received Attempt

2-way received

NegotiationDone

Exchange done

@ Loading done

1-way received

Non-DR neighbors
are formed

OEBPS/images/LSDB-split.png
LSDB

N LSDB
stale LSA

&

&

&

i

OEBPS/images/LSDB-resync.png
two LSDBs R4 detects,
. LSpl:an invalid mstance
synchronized of its LSA in the
LSDB and
merge W|thdraws |t

after networks
h:%

=, old Ré4's
L LSA has
been

updated

S

OEBPS/images/LSDB-rejoin-timeline.png
LSA;

& B

Connection
with R1 lost

Connection
with R1 reestablished

LSA;

—_—

LSA,;

B S EEE——

LSA; - Max Age

f——————————————————

LSA,

LSA:- Max Age

LSA;- Max Age

awn

OEBPS/images/net-command.png
10.0.12.6/30
10.2.2. 1/24 /
)

G'9°/3 10.0.13.17/30

10.1.1.1/24/ \Km 0.14.2/30

OEBPS/images/OSPF-packet-header.png
version |packet Type | packet Length
Router ID
Area ID
Checksum | Authentication Type

Authentication Data 1

Authentication Data 2

24 bytes

OEBPS/images/hello_packet.png
Network Mask

Router Priority

Hello Interval (16 bits) Options (8 bits) (8 bits)

Router Dead Interval

Designated Router

Backup Designated Router

Neighbor Router ID

Neighbor Router ID

—_

32 bits wide

OEBPS/images/DBD.png
32 bits

version | 2 | packet length

Router ID

Area ID

Checksum | Authentication Type

Authentication Data 1

Authentication Data 2

Interface MTU | Options |o]o[o[o]o[1]Mus]

DD sequence number

LSA Header

More LSA Header(s)

OEBPS/images/hello-options.png
DN| O ([DC| L |[N/P MC| E | MT

o~ /

Network Mask /

| , . Router Priority
Hello Interval (16 bits) |Options (8 bits) (8 bits)

Router Dead Interval

Designated Router

Backup Designated Router

Active Neighbor Router ID

A

32 bits

Y

