

Operations Cookbook:
DevOps, DataOps and MLOps

Learn to operationalize data, machine
learning and software

Noah Gift and Kennedy Behrman

This book is for sale at
http://leanpub.com/operationscookbookdevopsdataopsandmlops

This version was published on 2021-12-14

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2021 Noah Gift and Kennedy Behrman

http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction
Aboutthecover.,

Chapter 1: Python, Pandas, Git and Local Development
Setup for Data Engineering
Code Organization.
Managing a Python Environment
Evaluating to Trueor False

Chapter 2: Linux and Bash for Data Engineering
NotesonBash.

Chapter 3: Scripting with Python and SQL for Data Engi-
neering

Chapter 4: Command-Line Tools in Python for Data En-
gineering 0 L

BNW NN

Introduction

This content is not available in the sample book. The
book can be purchased on Leanpub at http://leanpub.com/
operationscookbookdevopsdataopsandmlops.

About the cover

This content is not available in the sample book. The
book can be purchased on Leanpub at http://leanpub.com/
operationscookbookdevopsdataopsandmlops.

http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/operationscookbookdevopsdataopsandmlops

Chapter 1: Python,
Pandas, Git and Local
Development Setup for
Data Engineering

Kennedy Behrman

Code Organization.

A Python program consists of a series of statements and states. The
state is the current environment of the running software. This in-
cludes what variables and functins have been defined, and any val-
ues that have been set. In a general sense the job of the statements is
to define and change the state. Python statements can be run either
in an interactive session or from a file. Any Python installation
comes equiped with a built in Python Interpreter. By typing python
with no arguments in a shell, the interpreter will open an interactive
session. If you type a satement in an interactive session, it will run
once you press enter. Any output will be displayed below the line.
This is a great way to start playing around with the language as
the feedback is immediate. Experienced programmers often open
an interactive session to try out ideas and test syntax.

Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

Managing a Python Environment

Libraries

A module is a series of Python statements saved in a file and
meant for resuse. A package is a group of files bundled together
to appear as a module. A module or package, can be imported into
an interactive Python session, into a Python script, or even into
another module. Once it is imported, any functionality defined
in the module is available for use. When Python is installed, it
comes bundled with collection of modules known as the Python
Standard Library'. These modules are available for use in any
Python program. A great deal of the success and power of Python
comes in the use of third-party modules and packages.

What is a python environment? libraries, code available to use
Importance of segregating project environments

» packages installed globbally by default
« different python version
« different library versions

sharing project with other people
« deploying project

direnv
pyenv

« system python vs project python(s)
e pyenv virtualenv

« local

pipenv

'https://docs.python.org/3/library/

https://docs.python.org/3/library/
https://docs.python.org/3/library/
https://docs.python.org/3/library/

Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

Evaluating to True or False

Python has a number of operations that evaluate to the special val-
ues True or False. These include comparision operations, boolean
operations, and object evaluations.

Comparisons yield boolean True or False
can be chained

Comparision Operations

Comparison can be made either by value or identity. Comparing by
value are more generalized than camparison by value.
The comparison operators that compare by value are:

« == Equals

« = Not Equals

+ < Less Than

« <= Less Than or Equal

+ > Greater Than

+ >= Greater Than or Equal

In most cases, two objects that are of different type will always
evaluate as not equal. So the comparison1 == 'b' will evaluate as
False,and1 != 'b' will evaluate as True. One notable exception to
this is numeric types, such as integars and floating point numbers.
The comparison 1 == 1.0 will evaluate to True, and1 != 1.0 will
evaluate to False.

The order comparisons, those that test greater or less values, will
generally raise an error if the objects compared are of different
types. A notable exception, again, is numberic types. The compari-
sion 3.0 >= 2 will result in True. The order of objects depends on
the type of objects being consisdered. For example text (type string),
uses lexographic order and numeric types use numeric order.

Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

Order comparison can be chained with multiple operators1 < 2 <=
3 will result in True.

The comparison operators which compare by identity are is and is
not. They are most commonly use to compare against the special
object None.

Membership Operations

Some objects in Python can contain others. For example the word
(of type string) "Henry" contains the letter "r" (also a string). The
in operator tests for this type of membership. The expression "r"
in "Henry" will return True, and "b" in "Henry" will return False.

Boolean Operations

Boolean operatins are based on boolean math, which you may have
learned in a mathematics or philosophy course. The operators are
and, or, and not. The first two take two operands, the last one. The
and operator returns true if both of it’s operands evaluate as True
and False if either evaluates to False. The or operator evaluates to
True if either of its operands evaluates as True and False if they are
both False. The not operator returns False if it’s operand evaluates
to True and True otherwise.

You can make more complex logical operations by nesting boolean
operations in parenthesis. The expression (False and False) or
(not False) evaluates to True, as not False is True.

Object Evaluations

All objects (everything) in Python evaluates as True or False. This
means you can use them in the places where you would test for True
or False, such as in Boolean operations. Generally, most Python
objects evaluate as True. The exceptions are:

Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

1. Numeric types that equal zero, such as o, or @.0.

2. The constants False and None.

3. Anything that has a length of zero. This includes the empty
string, "".

Chapter 2: Linux and
Bash for Data
Engineering

Noah Gift

Notes on Bash

Project Goal: Truncate file with Bash

For this project you will create a shell pipeline that truncates a
file via random shuffling, then verifies the correct number of lines.
Many times large files are so big that traditional data science
libraries like pandas or jupyter cannot process them. One approach
to dealing with this problem is to sample the file by truncating and
shuffling the results.

Part 1: Count the lines in the file and
inspect the contents

1. Runwc -1 nba_2017.csv
2. How many lines are in the file?

3. Run the head nba_2017.csv and inspect the first few rows of the
file.

Chapter 2: Linux and Bash for Data Engineering 8

Part 2: Truncate and shuffle the file

1. Truncate and shuffle the file shuf -n 100 nba_2017.csv > small_-
nba_2017.csv

2. Count the number of lines. How many are there?

3. If you inspect the first few lines what do you see? ‘head nba_-
2017.csv

Part 3: Remove Column Names Before
Shuffle

1. What happens when you run tail -n +2 nba_2017.csv | head?
2. How could use this approach to remove the column heads before
shuffling?

3. Why would want to do this and how could you append them
back on after you shuffle?

Project Goal: Build Bash Command Line
Tool that accepts two arguments

You have learned to build Bash command-line tools. This exercise
helps you master this concept.

Let’s create a Bash Command Line Tool that accepts two arguments.
The current example accepts two arguments - -count and - -phrase.

To run the command you get the following output:

> O s W N

Chapter 2: Linux and Bash for Data Engineering 9

./cli.sh --count 5 --phrase "hello world"
hello world
hello world
hello world
hello world

hello world

Part 1: Perform the following steps

1. Change the --count option to be named - -number.
2. Change the the - -phrase option to be name - -message.
3. Rerun the command-line tool

Part 2: Change the phrase generate

1. The phrase_generator () bash function prints out the phrase you
entered as the second argument via echo "$2". Change function so
it will print out the phrase with the following appended to the front:
You entered phrase:.

Project Goal: Search the filesystem with the
find command

Now that you have learned to search with the find command let’s
put this to use.

Part 1: Search with find

1. Search the /bin directory and count the number of file you find
find /usr/bin | wc -1

2. Find the location of python versions on your system: find
/usr/bin | grep python

Chapter 2: Linux and Bash for Data Engineering 10

3. How could you change the last command to find a specific
version of Python?

Part 2: Search for file types
1. Search for all of the csv files in docs directory: find -name
"* csv"
2. How many did you find?

3. Can you search for files with the .txt extension? How many do
you find?

bash-scripts

Examples of Bash Scripts

PBash SCF\PB

chmog
%

Teratemunk

Bash Scripts

© 00 N O O B W N =

[S T N T N T S S S S
W N S0 O 00 N0 0w N e

Chapter 2: Linux and Bash for Data Engineering 11

Basic Bash Script

Core components:

« shebang line
+ debug modes
« statements and variables

Core components breakdown

« bash-script-basics.sh?

#!/usr/bin/env bash

#

This 1s where comments go

It can be useful to explain the purpose of your code

Note you can also start your script with #!/usr/bin/ba\
sh -xv for verbose debugging

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02\
03.html

Set strict mode. Causes shell to exit when a command £\
ails

set -e

Enables printing of shell input lines as they are read

#set -v

Enables print of command traces before executing command

#set -x

Set a variable

variable="one"

echo "This is a script with a variable: $variable"

*https://github.com/noahgift/bash-scripts/blob/main/bash-script-basics.sh

https://github.com/noahgift/bash-scripts/blob/main/bash-script-basics.sh
https://github.com/noahgift/bash-scripts/blob/main/bash-script-basics.sh

Chapter 2: Linux and Bash for Data Engineering 12

Bash Functions

qu h TFundhons

Cuncrion .“%r\)'\shwqgh e

T X
LN()VK Machine \/@,

/

‘]
ov\l—[ejma ¥>ou3r

Bash Functions

« Bash Functions®

1 #!/usr/bin/env bash

o #

3 ## Basic structure

4 #function_name () {

5 # command

6 #}

T

8 # Parameters

9 mimic() {

10 echo "First Parameter: $1"
11 echo "Second Parameter: $2"
12}

*https://github.com/noahgift/bash-scripts/blob/main/bash-functions.sh

https://github.com/noahgift/bash-scripts/blob/main/bash-functions.sh
https://github.com/noahgift/bash-scripts/blob/main/bash-functions.sh

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Chapter 2: Linux and Bash for Data Engineering

Call the function with two parameters
mimic 1 2

Call it again with two different parameters

mimic 99 100

Add function
No return value, so must echo
add() {
numi=$1
num2=$2
result=$((numi1 + num2))
echo $result

will echo three

add 1 2

capture output of function

will not echo 14 because I captured it

output=$(add 5 9)

sent that value into add again
add $output $output

#echo $output

Bash CLI

Run Script:

./cli.sh --count 5 --phrase "hello world"

© 00 N O O b W N =

W W W W W W N N DNDNDDNDNDDNDDNDDNDNS~ » = = 2 =~ B
O b WO N P O O 0 N O O » W N -~ OO © 0 1 O O b w N =~ O

Chapter 2: Linux and Bash for Data Engineering

* [Bash CLI](cli.sh)

#!/usr/bin/env bash

#output looks like this:

#

Run Script:

#
#hello
#hello
#hello
#hello
#hello

A

#Generate phrase "N" times

./cli.sh --count 5 --phrase "hello world"

world
world
world
world

world

Does the Work

phrase_generator() {

for ((i=0; i<$1;i++)); do

echo "$2"

done

B. Parses input from the CLI

#Parse

Options

while [[$# -gt 1]]

do

key: n $1 "

case $key in

-c|--count)
COUNT="$2"
shift

1

-pl--phrase)
PHRASE="$2"
shift

36
37
38
39
40
41
42
43

1
2

Chapter 2: Linux and Bash for Data Engineering 15

esac
shift

done
##(C. Pass parsed input to function and run everything

#Run program
phrase_generator "${COUNT}" "${PHRASE}"

Bash Makefiles and Dockerfiles

L BASH™,

NokeGile Dockerfile

—

¥ A@vovmﬂ[e@ 3 /\U\JmWC«%(’g

x Yecip€ Y contaiher
¥ Bosh 1K€ X '\iOﬁ’V\O\.\.

\

L BASH

Makefiles

Basic formula:

target :
recipe

0 N O O B W N =

11
12
13
14
15
16
17
18
19
20
21
22

Chapter 2: Linux and Bash for Data Engineering 16

« Good Example is the Linux Makefile*
« More documentation’

Dockerfiles

Builds a container.
You can read more documentation here®.

To build it: docker build

Find container id: docker image 1s

docker run -it <your-id> bash

Then try out “ipython™ and "“import pandas”

Bash Data Structures: Lists and Hashes

Bash 4.0 and beyond have "hashes", you should check if it\
is available:

""" bash --version®"

Note that modern cloudshell environments have version gre\

ater than 4.0, like Github codespaces and AWS Cloudshell.\
On OS X, you will need to " "brew install bash™ "~ to up\

grade.

Bash Lists

* [lists] (https://github.com/noahgift/bash-scripts/blob/m\
ain/lists.sh)

" “bash

“https://github.com/torvalds/linux/blob/master/Makefile
*https://www.gnu.org/software/make/manual/make html#Overview
“https://docs.docker.com/engine/reference/builder/

https://github.com/torvalds/linux/blob/master/Makefile
https://www.gnu.org/software/make/manual/make.html#Overview
https://docs.docker.com/engine/reference/builder/
https://github.com/torvalds/linux/blob/master/Makefile
https://www.gnu.org/software/make/manual/make.html#Overview
https://docs.docker.com/engine/reference/builder/

23
24
25
26
27
28
29
30
31
32

© 00 N O O b W N =

N
(]

Chapter 2: Linux and Bash for Data Engineering 17

#!/usr/bin/env bash

#This is a bash list/arrary
declare -a array=("apple" "pear" "cherry")

now loop through the above array
for i in "${array[@]}"
do

echo "This ${i} is delicious!"
done

Bash Hashes

« hashes’

#!/usr/bin/env bash

Requires Bash >=4.0

declare -A mealhash=([dinner]="steak" [lunch]="salad" [br\
eakfast]="fruit")

now loop through the above hash
for key in "${!mealhash[@]}"; do

echo "For $key I like to eat: ${mealhash[$key]}"
done

"https://github.com/noahgift/bash-scripts/blob/main/hashes.sh

https://github.com/noahgift/bash-scripts/blob/main/hashes.sh
https://github.com/noahgift/bash-scripts/blob/main/hashes.sh

Chapter 3: Scripting with
Python and SQL for Data
Engineering

This content is not available in the sample book. The
book can be purchased on Leanpub at http://leanpub.com/
operationscookbookdevopsdataopsandmlops.

http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/operationscookbookdevopsdataopsandmlops

Chapter 4:
Command-Line Tools in
Python for Data
Engineering

This content is not available in the sample book. The
book can be purchased on Leanpub at http://leanpub.com/
operationscookbookdevopsdataopsandmlops.

http://leanpub.com/operationscookbookdevopsdataopsandmlops
http://leanpub.com/operationscookbookdevopsdataopsandmlops

	Table of Contents
	Introduction
	About the cover

	Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering
	Code Organization.
	Managing a Python Environment
	Evaluating to True or False

	Chapter 2: Linux and Bash for Data Engineering
	Notes on Bash

	Chapter 3: Scripting with Python and SQL for Data Engineering
	Chapter 4: Command-Line Tools in Python for Data Engineering

