

[image: Operations Cookbook: DevOps, DataOps and MLOps]

 Operations Cookbook: DevOps, DataOps and MLOps

 Learn to operationalize data, machine learning and software

 Noah Gift and Kennedy Behrman

 This book is for sale at http://leanpub.com/operationscookbookdevopsdataopsandmlops

 This version was published on 2021-12-14

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2021 Noah Gift and Kennedy Behrman

 Table of Contents

 	
 Introduction

 	
 About the cover

 	
 Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

 	
 Code Organization.

 	
 Managing a Python Environment

 	
 Evaluating to True or False

 	
 Chapter 2: Linux and Bash for Data Engineering

 	
 Notes on Bash

 	
 Chapter 3: Scripting with Python and SQL for Data Engineering

 	
 Chapter 4: Command-Line Tools in Python for Data Engineering

 Guide

 	
 Begin Reading

Introduction

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/operationscookbookdevopsdataopsandmlops.

About the cover

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/operationscookbookdevopsdataopsandmlops.

Chapter 1: Python, Pandas, Git and Local Development Setup for Data Engineering

 Kennedy Behrman

Code Organization.

A Python program consists of a series of statements and states. The state is the current environment of the running software. This includes what variables and functins have been defined, and any values that have been set. In a general sense the job of the statements is to define and change the state. Python statements can be run either in an interactive session or from a file. Any Python installation comes equiped with a built in Python Interpreter. By typing python with no arguments in a shell, the interpreter will open an interactive session. If you type a satement in an interactive session, it will run once you press enter. Any output will be displayed below the line. This is a great way to start playing around with the language as the feedback is immediate. Experienced programmers often open an interactive session to try out ideas and test syntax.

Managing a Python Environment

Libraries
A module is a series of Python statements saved in a file and meant for resuse. A package is a group of files bundled together to appear as a module. A module or package, can be imported into an interactive Python session, into a Python script, or even into another module. Once it is imported, any functionality defined in the module is available for use. When Python is installed, it comes bundled with collection of modules known as the Python Standard Library. These modules are available for use in any Python program. A great deal of the success and power of Python comes in the use of third-party modules and packages.

What is a python environment? libraries, code available to use
Importance of segregating project environments

 	packages installed globbally by default

 	different python version

 	different library versions

 	sharing project with other people

 	deploying project

direnv
pyenv

 	system python vs project python(s)

 	pyenv virtualenv

 	local

pipenv

Evaluating to True or False

Python has a number of operations that evaluate to the special values True or False. These include comparision operations, boolean operations, and object evaluations.

Comparisons yield boolean True or False
can be chained

Comparision Operations

Comparison can be made either by value or identity. Comparing by value are more generalized than camparison by value.
The comparison operators that compare by value are:

 	
== Equals

 	
!= Not Equals

 	
< Less Than

 	
<= Less Than or Equal

 	
> Greater Than

 	
>= Greater Than or Equal

In most cases, two objects that are of different type will always evaluate as not equal. So the comparison 1 == 'b' will evaluate as False, and 1 != 'b' will evaluate as True. One notable exception to this is numeric types, such as integars and floating point numbers. The comparison 1 == 1.0 will evaluate to True, and 1 != 1.0 will evaluate to False.
The order comparisons, those that test greater or less values, will generally raise an error if the objects compared are of different types. A notable exception, again, is numberic types. The comparision 3.0 >= 2 will result in True. The order of objects depends on the type of objects being consisdered. For example text (type string), uses lexographic order and numeric types use numeric order.
Order comparison can be chained with multiple operators 1 < 2 <= 3 will result in True.

The comparison operators which compare by identity are is and is not. They are most commonly use to compare against the special object None.

Membership Operations

Some objects in Python can contain others. For example the word (of type string) "Henry" contains the letter "r" (also a string). The in operator tests for this type of membership. The expression "r" in "Henry" will return True, and "b" in "Henry" will return False.

Boolean Operations

Boolean operatins are based on boolean math, which you may have learned in a mathematics or philosophy course. The operators are and, or, and not. The first two take two operands, the last one. The and operator returns true if both of it’s operands evaluate as True and False if either evaluates to False. The or operator evaluates to True if either of its operands evaluates as True and False if they are both False. The not operator returns False if it’s operand evaluates to True and True otherwise.
You can make more complex logical operations by nesting boolean operations in parenthesis. The expression (False and False) or (not False) evaluates to True, as not False is True.

Object Evaluations

All objects (everything) in Python evaluates as True or False. This means you can use them in the places where you would test for True or False, such as in Boolean operations. Generally, most Python objects evaluate as True. The exceptions are:

 	Numeric types that equal zero, such as 0, or 0.0.

 	The constants False and None.

 	Anything that has a length of zero. This includes the empty string, "".

Chapter 2: Linux and Bash for Data Engineering

 Noah Gift

Notes on Bash

Project Goal: Truncate file with Bash

For this project you will create a shell pipeline that truncates a file via random shuffling, then verifies the correct number of lines. Many times large files are so big that traditional data science libraries like pandas or jupyter cannot process them. One approach to dealing with this problem is to sample the file by truncating and shuffling the results.

Part 1: Count the lines in the file and inspect the contents

1. Run wc -l nba_2017.csv
2. How many lines are in the file?
3. Run the head nba_2017.csv and inspect the first few rows of the file.

Part 2: Truncate and shuffle the file

1. Truncate and shuffle the file shuf -n 100 nba_2017.csv > small_nba_2017.csv
2. Count the number of lines. How many are there?
3. If you inspect the first few lines what do you see? `head nba_2017.csv

Part 3: Remove Column Names Before Shuffle

1. What happens when you run tail -n +2 nba_2017.csv | head?
2. How could use this approach to remove the column heads before shuffling?
3. Why would want to do this and how could you append them back on after you shuffle?

Project Goal: Build Bash Command Line Tool that accepts two arguments

You have learned to build Bash command-line tools. This exercise helps you master this concept.

Let’s create a Bash Command Line Tool that accepts two arguments. The current example accepts two arguments --count and --phrase.

To run the command you get the following output:

 1 ./cli.sh --count 5 --phrase "hello world"
2 hello world
3 hello world
4 hello world
5 hello world
6 hello world

Part 1: Perform the following steps

1. Change the --count option to be named --number.
2. Change the the --phrase option to be name --message.
3. Rerun the command-line tool

Part 2: Change the phrase generate

1. The phrase_generator() bash function prints out the phrase you entered as the second argument via echo "$2". Change function so it will print out the phrase with the following appended to the front: You entered phrase:.

Project Goal: Search the filesystem with the find command

Now that you have learned to search with the find command let’s put this to use.

Part 1: Search with find

1. Search the /bin directory and count the number of file you find find /usr/bin | wc -l
2. Find the location of python versions on your system: find /usr/bin | grep python
3. How could you change the last command to find a specific version of Python?

Part 2: Search for file types

1. Search for all of the csv files in docs directory: find -name "*.csv"
2. How many did you find?
3. Can you search for files with the .txt extension? How many do you find?

bash-scripts

Examples of Bash Scripts

 [image:]
 Bash Scripts

Basic Bash Script

Core components:

 	shebang line

 	debug modes

 	statements and variables

Core components breakdown

 	bash-script-basics.sh

 1 #!/usr/bin/env bash
 2 #
 3 # This is where comments go
 4 # It can be useful to explain the purpose of your code
 5 ## Note you can also start your script with #!/usr/bin/ba\
 6 sh -xv for verbose debugging
 7 ## https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02\
 8 _03.html
 9
10 # Set strict mode. Causes shell to exit when a command f\
11 ails
12 set -e
13
14 # Enables printing of shell input lines as they are read
15 #set -v
16
17 # Enables print of command traces before executing command
18 #set -x
19
20 # Set a variable
21 variable="one"
22
23 echo "This is a script with a variable: $variable"

Bash Functions

 [image:]
 Bash Functions

 	Bash Functions

 1 #!/usr/bin/env bash
 2 #
 3 ## Basic structure
 4 #function_name () {
 5 # command
 6 #}
 7
 8 # Parameters
 9 mimic() {
10 echo "First Parameter: $1"
11 echo "Second Parameter: $2"
12 }
13
14 # Call the function with two parameters
15 mimic 1 2
16
17 # Call it again with two different parameters
18 mimic 99 100
19
20 # Add function
21 # No return value, so must echo
22 add() {
23 num1=$1
24 num2=$2
25 result=$((num1 + num2))
26 echo $result
27 }
28
29 # will echo three
30 add 1 2
31
32 # capture output of function
33 # will not echo 14 because I captured it
34 output=$(add 5 9)
35
36 # sent that value into add again
37 add $output $output
38
39 #echo $output

Bash CLI

 1 # Run Script:
2 ./cli.sh --count 5 --phrase "hello world"

 1 * [Bash CLI](cli.sh)
 2
 3 #!/usr/bin/env bash
 4 #output looks like this:
 5 #
 6 # Run Script:
 7 # ./cli.sh --count 5 --phrase "hello world"
 8 #hello world
 9 #hello world
10 #hello world
11 #hello world
12 #hello world
13
14 ## A. Does the Work
15 #Generate phrase "N" times
16 phrase_generator() {
17 for ((i=0; i<$1;i++)); do
18 echo "$2"
19 done
20 }
21
22 ## B. Parses input from the CLI
23 #Parse Options
24 while [[$# -gt 1]]
25 do
26 key="$1"
27
28 case $key in
29 -c|--count)
30 COUNT="$2"
31 shift
32 ;;
33 -p|--phrase)
34 PHRASE="$2"
35 shift
36 ;;
37 esac
38 shift
39 done
40
41 ##C. Pass parsed input to function and run everything
42 #Run program
43 phrase_generator "${COUNT}" "${PHRASE}"

Bash Makefiles and Dockerfiles

 [image:]
 L BASH

Makefiles

Basic formula:

 1 target :
2 recipe

 	Good Example is the Linux Makefile

 	More documentation

Dockerfiles

Builds a container.
You can read more documentation here.

To build it: docker build .

Find container id: docker image ls

 1 docker run -it <your-id> bash
 2 ````
 3
 4 Then try out `ipython` and `import pandas`
 5
 6 ### Bash Data Structures: Lists and Hashes
 7
 8 Bash 4.0 and beyond have "hashes", you should check if it\
 9 is available:
10 ``` bash --version```
11
12 Note that modern cloudshell environments have version gre\
13 ater than 4.0, like Github codespaces and AWS Cloudshell.\
14 On OS X, you will need to ```brew install bash``` to up\
15 grade.
16
17 #### Bash Lists
18
19 * [lists](https://github.com/noahgift/bash-scripts/blob/m\
20 ain/lists.sh)
21
22 ```bash
23 #!/usr/bin/env bash
24
25 #This is a bash list/arrary
26 declare -a array=("apple" "pear" "cherry")
27
28 ## now loop through the above array
29 for i in "${array[@]}"
30 do
31 echo "This ${i} is delicious!"
32 done

Bash Hashes

 	hashes

 1 #!/usr/bin/env bash
 2 # Requires Bash >=4.0
 3
 4 declare -A mealhash=([dinner]="steak" [lunch]="salad" [br\
 5 eakfast]="fruit")
 6
 7 ## now loop through the above hash
 8 for key in "${!mealhash[@]}"; do
 9 echo "For $key I like to eat: ${mealhash[$key]}"
10 done

Chapter 3: Scripting with Python and SQL for Data Engineering

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/operationscookbookdevopsdataopsandmlops.

Chapter 4: Command-Line Tools in Python for Data Engineering

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/operationscookbookdevopsdataopsandmlops.

OEBPS/resources/leanpub_key.png

OEBPS/resources/leanpub_bug.png

OEBPS/resources/leanpub_pencil.png

OEBPS/resources/leanpub_comments.png

OEBPS/resources/leanpub_warning.png

OEBPS/resources/leanpub_question-circle.png

OEBPS/resources/leanpub_info-circle.png

OEBPS/resources/DCD50C6E89C045CE8A02B00C86E77E37.png
Bash Scripts

#,’/USV/ b}r\/@\\/ baslf\q/ciqui
echo s%MemeW

z‘;%mw-

OEBPS/resources/AD8132BBE6E245D68DEA89A7EC2DF72B.png
%QS o Funchions

_ Funckion N| f‘WD;shwqgh(w
TR ﬁ%

)lw iwg\(‘l Machine \/g

\Souk [&mﬂ Pout

OEBPS/resources/61073C054ECC47B4BB9BC3A12E7E02E4.png
NokeEle Dockerfile
¥ ’ﬁ\ V\’&O Wﬂ"tﬁé)X—'A u\-l—oy\aq%(<
*x Yecip€_ ¥ Cor\+mg
¥ bosh lke | X Format

\

OEBPS/resources/leanpub-logo.png
[

Leanpub

OEBPS/resources/title_page.png

