

OOP the Easy Way

Graham Lee

This book is for sale at http://leanpub.com/ooptheeasyway

This version was published on 2018-10-30

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2018 Labrary Ltd.

http://leanpub.com/ooptheeasyway
http://leanpub.com/
http://leanpub.com/manifesto

Also By Graham Lee
APPropriate Behaviour

APPosite Concerns

http://leanpub.com/u/graham1
http://leanpub.com/appropriatebehaviour
http://leanpub.com/appositeconcerns

Contents

Introduction . 1
Organisation of this book 3
About the example code 4
Acknowledgements . 4

Introduction
What is object oriented programming? My guess is that
object oriented programming will be in the 1980’s what
structured programming was in the 1970’s. Everyone
will be in favor of it. Every manufacturer will promote
his products as supporting it. Every manager will pay
lip service to it. Every programmer will practise it
(differently). And no one will know just what it is.

Tim Rentsch, Object oriented programming¹

Object-Oriented Programming has its beginnings in the simula-
tion-focussed features of the Simula programming language, but
was famously developed and evangelised by the Smalltalk team
at Xerox’s Palo Alto Research Center. They designed a computing
system intended to be personal, with a programming environment
accessible to children who could learn about the world and about
the computer simultaneously by modelling real-world problems on
their computer.

I recently researched the propagation and extension of Object-
Oriented Programming from PARC to the wider software engi-
neering community, which formed the background to my disserta-
tion “We Need to (Small)Talk: object-oriented programming with
graphical code browsers”². What I found confused me: how had
this simple design language for children to construct computer pro-
grams become so complicated and troublesome that professional
software engineers struggled to understand it before declaring it a
failure and reaching for other paradigms?

¹https://dl.acm.org/citation.cfm?id=947961
²https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_

programming_with_graphical_code_browsers

https://dl.acm.org/citation.cfm?id=947961
https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_programming_with_graphical_code_browsers
https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_programming_with_graphical_code_browsers
https://dl.acm.org/citation.cfm?id=947961
https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_programming_with_graphical_code_browsers
https://www.academia.edu/34882629/We_need_to_Small_talk_object-oriented_programming_with_graphical_code_browsers

Introduction 2

A textbook on my shelf, “A Touch of Class” by Bertrand Meyer,
claims to be “a revolutionary introductory programming textbook
that makes learning programming fun and rewarding”. At 876
pages, it makes it a good workout too: not for the schoolchild, but
for the “entering computer science student” at degree level.

Digging further showed that the field of Object Thinking, Object
Technology, Object-Oriented Programming or whatever youwould
like to call it had been subject to two forces:

1. Additive complexity. Consultants, academics and architects
keen to make their mark on the world had extended basic
underlying ideas to provide their own, unique, marketable
contributions. While potentially valuable in isolation, the
aggregation of these additions (and they were, as we shall
see, deliberately aggregated in some cases) yields a rat’s nest
of complexity.

2. Structured on-ramps. To make OOP appear easier and more
accessible, people developed “object-oriented” extensions to
existing programming tools and processes. While this made
it easy to access the observable features of OOP, it made it
ironically more difficult to access the mental shift needed
to take full advantage of what is fundamentally a thought
process and problem-solving technique. By fitting the object
model into existing systems, technologists doomed it to stay
within existing mindsets.

I started giving conference talks based on the concept that this
object-oriented stuff was a few simple ideas hiding behind layers
of cruft and complexity, and found that these were well-received.
Each presented a specific aspect of the overall story: this book is an
attempt to bring the whole narrative together.

Introduction 3

Organisation of this book

There are three parts to this story. The first, and necessarily the
longest, antithesis: a deconstruction of the state of OOP as it exists
today. To get to the kernel of a good idea, you have to crack a few
nuts. Part one is the agitation that necessarily precedes revolution.

The second part, thesis: a reconstruction of OOP using only the
parts that were left over after the antithesis. Part two is the
manifesto: once we’ve seen that the last few decades of status quo
haven’t been working for us, we can evaluate something that will.

The third, synthesis: a discussion of the ideas from OOP that
aren’t being provided by today’s object systems, and the ideas and
problems that OOP doesn’t yet address at all. These are the next
steps to take to pursue the ideas behind object thinking. Part three
is the call to action.

This is not a pure takedown, a suggestion that we have been
monotonically doing it wrong for three decades: the antithesis part
of this book questions, rejects and destroys a lot of built aspects of
OOP, but by nomeans all of them. And by nomeans purely the later
ones, either: the message is not that Smalltalk was created in some
computational garden of Eden and that Sun tasted of the forbidden
fruit which doomed us all to Java. Belief in a primaeval wisdom
(urwissenheit) leads to an uncritical “tradition for tradition’s sake”
in the same way that belief in primaeval stupidity (urdummheit)
leads to an uncritical “novelty for novelty’s sake”.

Rather this is an attempt to find a consistent philosophy, a way of
thinking about software, and to find the threads in the narrative and
dialectic history of the making of software that are supportive and
unsupportive of that way of thinking. Because OOP is supposed to
be a paradigm, a pattern of thought, and if we want to adopt that
paradigm then we have to see how different tools or techniques
support, damage, or modify our thoughts.

Introduction 4

About the example code

I’ve consciously chosen to use “mainstream”, popular programming
languages wherever possible in this book. I have not stuck to
any one language, but have used things that most experienced
programmers should be able to understand at a glance: Ruby,
Python, and JavaScript will be common. Where I’ve used other
languages it’s to express a particular historical context (Smalltalk,
Erlang and Eiffel will be prevalent here) or to show ideas from
certain communities (Haskell or Lisp).

One of the points of this book is that as a cognitive tool, OOP is
not specific to any programming language and indeed many of
the languages that are billed as OO languages make it (or at least
large parts of it) harder. Picking any one language for the sample
code would then mean only presenting a subset of object-oriented
programming.

Acknowledgements

This book is the result of a long-running research activity, and
I hope that any work I have built upon is appropriately cited.
Nonetheless, the ideas here are not mine alone (that distinction
is reserved for the mistakes), and many conversations online, at
conferences, andwith colleagues have shaped the way I think about
objects. In alphabetical order I would like to pay particular thanks
to Steven Baker, Kent Beck, Alan Francis and Daniel Steinberg.

	Table of Contents
	Introduction
	Organisation of this book
	About the example code
	Acknowledgements

