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Abstract

This is a solution manual of selected exercise problems for the text book Stochastic Differential
Equations (6th Edition), by Bernt Øksendal. If you find any typos/errors, please email me at
quantsummaries@gmail.com.



I dedicate this solution manual to the teacher of ORIE 768: Selected Topics in Applied Proba-
bility, Fall 2003, Cornell University.

It was an eye opener. It has been an intellectual adventure.
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Chapter 1

Introduction

This chapter introduced seven problems arising from six different situations in order to convince
readers that stochastic differential equations are an important subject. This approach illustrates
the author’s method of learning a subject when he does not know anything about it:

1) In what situations does the subject arise?
2) What are its essential features?
3) What are the applications and the connections to other fields?

Stochastic differential equations. The notion of a stochastic differential equation arises
naturally by introducing randomness into the coefficients of an ordinary differential equation. The
question is, how do we define rigorously and then solve a stochastic differential equation?

Filtering problems. Suppose Q(t) is a solution of a stochastic differential equation and we
do not observe it directly. Instead, we observe a disturbed version of it:

Z(s) = Q(s) + “noise”.

This leads to the filtering problem: What is the best estimate of Q(t) based on the observations
(Zs)s≤t? In other words, we need to find a procedure for estimating the state of a system which
satisfies a “noisy" linear differential equation, based on a series of “noisy" observations.

Boundary value problems. For a large class of semielliptic second order partial differential
equations, the corresponding Dirichlet boundary value problem (i.e. finding a continuous function
that is harmonic within a region and is equal to a prescribed function on the boundary of the
region) can be solved using the solution of a stochastic differential equation.

Optimal stopping problems. The example used to illustrate the optimal stopping problem
is a method to maximize the expected profit of selling an asset with stochastic price. The solution
can be expressed in terms of the solution of a corresponding (free) boundary value problem. It can
also be expressed in terms of a set of variational inequalities.

Stochastic control problems. This situation is illustrated via an optimal portfolio problem,
in which an asset allocation process (the “control variable") needs to be determined to maximize
the expected utility of the terminal fortune of a portfolio consisting of a safe asset and a risky asset.

Mathematical finance. The Black-Scholes option pricing formula and the underlying no-
arbitrage pricing theory illustrate the applications of stochastic differential equations to finance.
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Chapter 2

Some Mathematical Preliminaries

Chapter Summary. The core of the mathematical preliminaries in this chapter consists of
answers to two fundamental questions:

• How to ensure the existence of a stochastic process with desired distributional properties?
• How to ensure such a stochastic process, if it exists, enjoys nice path-wise properties (like

continuity)?

Theorem 2.1 (Komogorov’s extension theorem). For all t1, · · · , tk ∈ T , k ∈ N, let νt1,··· ,t2
be probability measures on Rnk s.t.

vtσ(1),··· ,tσ(k)(F1 × · · · × Fk) = vt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k))

for all permutations σ on {1, 2, · · · , k} and

νt1,··· ,tk(F1 × · · · × Fk) = νt1,··· ,tk,tk+1,··· ,tk+m
(F1 × · · · × Fk × Rn × Rn)

for all m ∈ N, where the set on the right hand side has a total of k +m factors.
Then there exists a probability space (Ω,F , P ) and a stochastic process {Xt} on Ω, Xt : Ω → Rn,

s.t.
νt1,··· ,tk(F1 × · · · × Fk) = P (Xt1 ∈ F1, · · · , Xtk ∈ Fk),

for all ti ∈ T , k ∈ N and all Borel sets Fi.

A thorough exposition of the above theorem can be found in Shiryaev [10, Chapter II, §9].

Theorem 2.2 (Kolmogorov’s continuity theorem). Suppose that the process X = {Xt}t≥0
satisfies the following condition: For all T > 0 there exist positive constants α, β, D such that

E [|Xt −Xs|α] ≤ D · |t− s|1+β; 0 ≤ s, t ≤ T.

Then there exists a continuous version of X.

As a result of the two above theorems, Brownian motion can be constructed and can have a
version with continuous sample paths.

▶ 2.1.
a)
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Proof. Necessity is obvious. For sufficiency, we note for any open set U ∈ R,

X−1(U) = ∪ak∈UX
−1(ak)

is a countable union of elements of F and is therefore in F .

b)
c)
d)

Proof. Properties (b)-(d) are special cases of a series of theorems in real analysis (Monotone Con-
vergence Theorem, Dominated Convergence Theorem, and Bounded Convergence Theorem, respec-
tively). See Durrett [3] for details.

▶ 2.2.
a)

Proof. F = P (X ≤ x) ∈ [0, 1] is obvious. Using Bounded Convergence Theorem, we have

lim
x→∞

F (x) = E
[

lim
x→∞

1{X≤x}
]

= 1, lim
x→−∞

F (x) = E

[
lim

x→−∞
1{X≤x}

]
= 0.

For monotonicity, we note for a ≤ b,

F (b) − F (a) = P (a < X ≤ b) ≥ 0.

And for right continuity, we note for ε > 0,

0 ≤ F (x+ ε) − F (x) = P (x < X ≤ x+ ε) = E
[
1{x<X≤x+ε}

]
→ 0

as ε → 0 due to the Bounded Convergence Theorem.

b)

Proof. When g is a simple function in the form of
∑n
i=1 gi1(ai,bi](x),

E[g(X)] =
n∑
i=1

gi[F (bi) − F (ai)] =
∫ ∞

−∞
g(x)dF (x).

Then using the property that any Lebesgue integrable function can be approximated by a series of
simple functions and the Dominated Convergence Theorem, we can show

E[g(X)] =
∫ ∞

−∞
g(x)dF (x)

holds for general g.

c)
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Solution. For any x < 0, clearly P (B2
t ≤ x) = 0. For any x ≥ 0, we have

P
(
B2
t ≤ x

)
= P

(
−

√
x ≤ Bt ≤

√
x
)

= F
(√
x
)

− F
(
−

√
x
)
.

so that
d

dx
P
(
B2
t ≤ x

)
= p

(√
x
) 1

2
√
x

+ p
(
−

√
x
) 1

2
√
x

= p (
√
x)√
x

In conclusion, the density function f(x) of B2
t is

f(x) = 1{x≥0}
1√

2πtx
exp

(
− x

2t

)
.

▶ 2.3.

Proof. First, since ∅ ∈ Hi (∀i ∈ I), ∅ ∈ H. Second, F ∈ H ⇒ F ∈ Hi, ∀i ∈ I ⇒ FC ∈ Hi,
∀i ∈ I ⇒ FC ∈ H. Finally,

A1, A2, · · · ∈ H ⇒ A1, A2, · · · ∈ Hi, ∀i ∈ I ⇒ A :=
∞⋃
k=1

Ak ∈ Hi, ∀i ∈ I ⇒ A ∈ H

▶ 2.4. a)

Proof. Let A = {ω : |X| ≥ λ}, then

E[|X|p] ≥ E[1A|X|p] ≥ E[1Aλp] = λpP (A) = λpP (|X| ≥ λ).

b)

Proof. Let A = {ω : |X| ≥ λ}, then

M ≥ E[1A exp(k|X|)] ≥ ekλP (A)

so that
P (|X| ≥ λ) ≤ Me−kλ for all λ ≥ 0.

▶ 2.5.

Proof. This is a straightforward application of Bounded Convergence Theorem. Just follow the
logic of the hint.

▶ 2.6.

Proof. See Durrett [3, p.65] for details.

▶ 2.8.
a)
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Proof. Bt has mean 0 and variance t. Applying equation (2.2.3) gives the above formula.

b)

Proof.

E[eiuBt ] =
∞∑
k=0

ik

k!
E[Bk

t ]uk = exp
(

−1
2
u2t

)
=

∞∑
k=0

1
k!

(
− t

2

)k
u2k.

Matching the coefficients of even terms, we have

i2k

(2k)!
E[B2k

t ]u2k = 1
k!

(
− t

2

)k
u2k =⇒ E[B2k

t ] =
1
k!(−

t
2)k

(−1)k

(2k)!

= (2k)!
2k · k!

tk.

c)

Proof. It can be made rigorous. See, for example, Durrett [3], Appendix A.5.

d)

Proof.

Ex[|Bt −Bs|4] =
n∑
i=1

Ex
[(
B

(i)
t −B(i)

s

)4
]

+
∑
i ̸=j

Ex
[(
B

(i)
t −B(i)

s

)2 (
B

(j)
t −B(j)

s

)2
]

= n · 4!
2! · 4

· (t− s)2 + n(n− 1)(t− s)2

= n(n+ 2)(t− s)2.

▶ 2.15.

Proof. Since Bt −Bs ⊥ Fs := σ(Bu : u ≤ s), U(Bt −Bs) ⊥ Fs. Note U(Bt −Bs)
d= N(0, t− s), as

seen by the characteristic functions.
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Chapter 3

Itô Integrals

Chapter Summary. The first key component of this chapter is to use Itô isometry to extend
the definition of stochastic integral from elementary functions to functions in V = V(S, T ) =
{f(t, ω) : [0,∞) × Ω → R, f(t, ω) is B × F -measurable, f is Ft-adapted, E

[∫ T
S f(t, ω)2dt

]
< ∞}.

The three-step approximation is
Step 1. Let g ∈ V be bounded and g(·, ω) continuous for each ω. Then there exists elementary

functions ϕn ∈ V such that

E

[∫ T

S
(g − ϕn)2dt

]
→ 0, as n → ∞.

Here ϕn is defined as ϕn(t, ω) =
∑
j g(tj , ω) · 1[tj ,tj+1)(t).

Step 2. Let h ∈ V be bounded. Then there exist bounded functions gn ∈ V such that gn(·, ω)
is continuous for all ω and n, and

E

[∫ T

S
(h− gn)2dt

]
→ 0.

Here gn is constructed via convolution with a mollifier ψn:

gn(t, ω) =
∫ t

0
ψn(s− t)h(s, ω)ds,

where each ψn is a non-negative, continuous function on R such that ψn = 0 for x ∈ (−∞,− 1
n ]
⋃

[0,∞)
and

∫∞
−∞ ψn(x) = 1.

Step 3. Let f ∈ V, Then there exists a sequence {hn} ⊂ V such that hn is bounded for each n
and

E

[∫ T

S
(f − hn)2dt

]
→ 0as n → ∞.

Here

hn(t, ω) =


−n if f(t, ω) < −n
f(t, ω) if −n ≤ f(t, ω) ≤ n

n if f(t, ω) > n.
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Long story short, the insight is that V can be obtained by the closure of simpler subspaces,
where the closure is in the L2-norm:

V = closure(bounded elements of V)
= closure(bounded continuous elements of V)
= closure(elementary functions in V)

The second key component of this chapter is about the sample path properties of stochastic
integral. By Doob’s martingale inequality and the Borel-Cantelli lemma, we have the following
result on path continuity and uniform estimate:

Theorem 3.1. Let f ∈ V(0, T ). Then there exists a t-continuous version of

Mt =
∫ t

0
f(s, ω)dBs(ω); 0 ≤ t ≤ T.

Moreover, Mt is a martingale w.r.t. Ft and

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ 1
λ2 · E

[∫ T

0
f(s, ω)2ds

]
; λ, T > 0.

The final component of this chapter is about extensions of the Itô integral. The extensions
include

a) measurability of the integrand and martingale property of the integrator with respect to a
generic filtration, not just the filtration generated by Brownian motion. This will allow us to define
the multi-dimensional Itô integral.

b) integrability of the integrand in a.e. sense, not in L2(Ω) sense. The resulted integral is no
longer a martingale, but a local martingale.

c) a comparison of the Stratonovich integral vs. the Itô integral.
• The Stratonovich integral has the advantage of leading to ordinary chain rule formulas under a

transformation (change of variable), making it natural to use in connection with SDEs on manifolds.
It also makes the solutions of a family of SDEs whose integrators converge uniformly to Brownian
motion converge uniformly to the solution of a SDE whose integrator is Brownian motion.

• On the other hand, the specific feature of the Itô model of “not looking into the future" seems
to be a reason for choosing the Itô interpretation in many cases. And the martingale property of
the Itô integral gives an important computational advantage.

Below are the definitions and notations used frequently in the book.

Definition 3.1. Let Bt(ω) be n-dimensional Brownian motion. We define Ft = F (n)
t to be the

σ-algebra generated by the random variables {Bi(s)}1≤i≤n,0≤s≤t.

Definition 3.2. Let V = V(S, T ) be the class of functions

f(t, ω) : [0,∞) × Ω → R

such that
(i) (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ-algebra on [0,∞).
(ii) f(t, ω) is Ft-adapted.
(iii) E

[∫ T
S f(t, ω)2dt

]
< ∞.
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Definition 3.3. Let B be n-dimensional Brownian motion. Then Vm×n
H (S, T ) denotes the set of

m× n matrices v = [vij(t, ω)] where each entry vij(t, ω) satisfies (i) and (iii) of Definition 3.2 and
the following condition (ii)’:
(ii)’ There exists an increasing family of σ-algebra Ht : t ≥ 0 such that

a) Bt is a martingale with respect to Ht and
b) ft is Ht-adapted.

If H = F (n) = {F (n)
t }t≥0, we write Vm×n(S, T ) and define Vm×n =

⋂
T>0 Vm×n(0, T ).

The motivation of the extension from V(S, T ) to Vm×n
H (S, T ) is to generalize the Itô integral

so that ft can depend on more than Ft as long as Bt remains a martingale with respect to the
“history" of fs; s ≤ t.

Definition 3.4. WH(S, T ) denotes the class of processes f(t, ω) ∈ R satisfying (i) of Definition
3.2, (ii)’ of Definition 3.3, and the following condition (iii)’:
(iii)’ P

(∫ T
S f(s, ω)2ds < ∞

)
= 1.

Similarly to the notation for V we put WH =
⋂
T>0 WH(0, T ) and in the matrix case we write

Wm×n
H (S, T ) etc. If H = F (n) we write W(S, T ) instead of WF(n)(S, T ) etc.

Itô integral can be defined on WH via convergence in probability (not via the Itô isometry).
However, the resulted integral is not in general a martingale, but a local martingale.

▶ 3.2.

Proof. WLOG, we assume t = 1, then

B3
1 =

n∑
j=1

(
B3
j/n −B3

(j−1)/n

)

=
n∑
j=1

[(
Bj/n −B(j−1)/n

)3
+ 3B(j−1)/nBj/n

(
Bj/n −B(j−1)/n

)]

=
n∑
j=1

(
Bj/n −B(j−1)/n

)3
+

n∑
j=1

3B2
(j−1)/n

(
Bj/n −B(j−1)/n

)

+
n∑
j=1

3B(j−1)/n
(
Bj/n −B(j−1)/n

)2

:= I + II + III

By Problem EP1-1 and the continuity of Brownian motion.

I ≤

 n∑
j=1

(
Bj/n −B(j−1)/n

)2
 max

1≤j≤n

∣∣∣Bj/n −B(j−1)/n

∣∣∣ → 0 a.s.

To argue II → 3
∫ 1

0 B
2
t dBt as n → ∞, it suffices to show E

[∫ 1
0 (B2

t −B
(n)
t )2dt

]
→ 0, where

B
(n)
t =

∑n
j=1B

2
(j−1)/n1{(j−1)/n<t≤j/n}. Indeed,

E

[∫ 1

0

∣∣∣B2
t −B

(n)
t

∣∣∣2 dt] =
n∑
j=1

∫ j/n

(j−1)/n
E

[(
B2
t −B2

(j−1)/n

)2
]
dt
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We note
(
B2
t −B2

(j−1)/n

)2
is equal to

(
Bt −B j−1

n

)4
+ 4

(
Bt −B j−1

n

)3
B j−1

n
+ 4

(
Bt −B j−1

n

)2
B2

j−1
n

so E
[(
B2

(j−1)/n −B2
t

)2
]

= 3(t− (j − 1)/n)2 + 4(t− (j − 1)/n)(j − 1)/n, and

∫ j
n

j−1
n

E

[(
B2

j−1
n

−B2
t

)2
]
dt = 2j + 1

n3

Hence E
[∫ 1

0

(
Bt −B

(n)
t

)2
dt

]
=
∑n
j=1

2j−1
n3 → 0 as n → ∞.

To argue III → 3
∫ 1

0 Btdt as n → ∞, it suffices to prove

n∑
j=1

B(j−1)/n
(
Bj/n −B(j−1)/n

)2
−

n∑
j=1

B(j−1)/n

(
j

n
− j − 1

n

)
→ 0 a.s.

By looking at a subsequence, we only need to prove the L2-convergence. Indeed,

E

 n∑
j=1

B(j−1)/n

[(
Bj/n −B(j−1)/n

)2
− 1
n

]2

=
n∑
j=1

E

(
B2

(j−1)/n

[(
Bj/n −B(j−1)/n

)2
− 1
n

]2
)

=
n∑
j=1

j − 1
n

E

[(
Bj/n −B(j−1)/n

)4
− 2
n

(
Bj/n −B(j−1)/n

)2
+ 1
n2

]

=
n∑
j=1

j − 1
n

(
3 1
n2 − 2 1

n2 + 1
n2

)

=
n∑
j=1

2(j − 1)
n3 → 0

as n → ∞. This completes our proof.

▶ 3.9.

Proof. We first note that∑
j

B tj +tj+1
2

(
Btj+1 −Btj

)

=
∑
j

[
B tj +tj+1

2

(
Btj+1 −B tj +tj+1

2

)
+Btj

(
B tj +tj+1

2
−Btj

)]
+
∑
j

(
B tj +tj+1

2
−Btj

)2
.
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The first term converges in L2(P ) to
∫ T

0 BtdBt. For the second term, we note

E


∑

j

(
B tj +tj+1

2
−Btj

)2
− t

2

2


= E


∑

j

(
B tj +tj+1

2
−Btj

)2
−
∑
j

tj+1 − tj
2

2


=
∑
j, k

E

[((
B tj +tj+1

2
−Btj

)2
− tj+1 − tj

2

)((
B tk+tk+1

2
−Btk

)2
− tk+1 − tk

2

)]

=
∑
j

E

[(
B2

tj+1−tj
2

− tj+1 − tj
2

)2
]

=
∑
j

2 ·
(
tj+1 − tj

2

)2

≤ T

2
max

1≤j≤n
|tj+1 − tj | → 0,

since E
[
(B2

t − t)2] = E
[
B4
t − 2tB2

t + t2
]

= 3E
[
B2
t

]2 − 2t2 + t2 = 2t2. So∑
j

B tj +tj+1
2

(
Btj+1 −Btj

)
→
∫ T

0
BtdBt + T

2
= 1

2
B2
T in L2(P ).

▶ 3.10.

Proof. According to the result of Exercise 3.9., it suffices to show

E

∣∣∣∣∣∣
∑
j

f(tj , ω)∆Bj −
∑
j

f(t′j , ω)∆Bj

∣∣∣∣∣∣
 → 0.

Indeed, note

E

∣∣∣∣∣∣
∑
j

f(tj , ω)∆Bj −
∑
j

f(t′j , ω)∆Bj

∣∣∣∣∣∣


≤
∑
j

E
[∣∣∣f(tj) − f(t′j)

∣∣∣ |∆Bj |]

≤
∑
j

√
E

[∣∣∣f(tj) − f(t′j)
∣∣∣2]E [|∆Bj |2]

≤
∑
j

√
K
∣∣∣tj − t′j

∣∣∣ 1+ϵ
2
∣∣∣tj − t′j

∣∣∣ 1
2

=
√
K
∑
j

∣∣∣tj − t′j

∣∣∣1+ ϵ
2

≤ T
√
K max

1≤j≤n

∣∣∣tj − t′j

∣∣∣ ϵ
2

→ 0.
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▶ 3.11.

Proof. Assume W is continuous, then by the Bounded Convergence Theorem,

lim
s→t

E

[(
W

(N)
t −W (N)

s

)2
]

= 0.

Since Ws and Wt are independent and identically distributed, so are W (N)
s and W

(N)
t . Hence

E

[(
W

(N)
t −W (N)

s

)2
]

= E

[(
W

(N)
t

)2
]

− 2E
[
W

(N)
t

]
E
[
W (N)
s

]
+ E

[(
W (N)
s

)2
]

= 2E
[(
W

(N)
t

)2
]

− 2E
[
W

(N)
t

]2
.

Since the RHS=2Var
(
W

(N)
t

)
is independent of s, we must have RHS=0, i.e. W (N)

t = E
[
W

(N)
t

]
a.s.. Let N → ∞ and apply the Dominated Convergence Theorem to E

[
W

(N)
t

]
, we get Wt = 0.

Therefore W· ≡ 0.

▶ 3.18.

Proof. If t > s, then

E

[
Mt

Ms

∣∣∣∣Fs

]
= E

[
eσ(Bt−Bs)− 1

2σ
2(t−s)

∣∣∣Fs

]
= E[eσBt−s ]

e
1
2σ

2(t−s)
= 1

The second equality is due to the fact Bt −Bs is independent of Fs.
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Chapter 4

The Itô Formula and the Martingale
Representation Theorem

Chapter Summary. To derive the 1-dimensional Itô formula, i.e. the SDE for Yt = g(t,Xt)
where Xt is a 1-dimensional Itô process with dXt = utdt+ vtdBt and g(t, x) ∈ C2([0,∞) × R), the
intuition is to consider the Taylor expansion of Y and study the convergence property of each term
in its expansion.

More specifically, let t0 = 0 and tn = t, the Taylor expansion of Yt is

Yt − Y0 = g(t,Xt) − g(0, X0)

=
n−1∑
j=0

[
g(tj+1, Xtj+1) − g(tj , Xtj )

]
=

∑
j

∂g

∂t
(tj , Xtj )∆tj +

∑
j

∂g

∂x
(tj , Xtj )∆Xj + 1

2
∑
j

∂2g

∂t2
(tj , Xtj )(∆tj)2

+
∑
j

∂2g

∂t∂x
(tj , Xtj )(∆tj)(∆Xj) + 1

2
∑
j

∂2g

∂x2 (tj , Xtj )(∆Xj)2 +
∑
j

Rj ,

where ∆tj = tj+1 − tj , ∆Xj = Xtj+1 −Xtj , and Rj = o(|∆tj |2 + |∆Xj |2). Then assuming g is nice
enough, we have

∑
j

∂g

∂t
(tj , Xtj )∆tj →

∫ t

0

∂g

∂t
(s,Xs)ds

∑
j

∂g

∂x
(tj , Xtj )∆Xj →

∫ t

0

∂g

∂x
(s,Xs)dXs

1
2
∑
j

∂2g

∂x2 (tj , Xtj )(∆Xj)2 → 1
2

∫ t

0

∂2g

∂x2 (s,Xs)v2
sds

other terms → 0

This gives the 1-dimensional Itô formula:

dYt = dg(t,Xt) = ∂g

∂t
(t,Xt)dt+ ∂g

∂x
(t,Xt)dXt + 1

2
∂2g

∂x2 (t,Xt)v2
t dt.
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Remark 4.1. Note that it is enough that g(t, x) is C2 on [0,∞) ×U , if U ⊂ R is an open set such
that Xt(ω) ∈ U for all t ≥ 0, ω ∈ Ω. Moreover, it is sufficient that g(t, x) is C1 w.r.t. t and C2

w.r.t. x.
When Itô formula is extended to multi-dimension, this condition on g will allow Itô formula to

be applied to g(t, x) = |x| for n ≥ 2 since Bt never hits the origin a.s. when n ≥ 2.

The intuition of Martingale Representation Theorem can be incrementally built in the
following steps:

Step 1. For a dense subset {ti}∞
i=1 of [0, T ], the set of random variables {ϕ(Bt1 , · · · , Btn) : ti ∈

[0, T ], ϕ ∈ C∞
0 (Rn), n = 1, 2, · · · } is dense in L2(FT , P ). This insight is based on a non-trivial result

from the martingale convergence theorem:

g = E[g|FT ] = lim
n→∞

E[g|σ(Bt1 , · · · , Btn)] a.s. and in L2(FT , P )

Step 2. The linear span of random variables of the type

exp
{∫ T

0
h(t)dBt(ω) − 1

2

∫ T

0
h2(t)dt

}
; h ∈ L2[0, T ]

is dense in L2(FT , P ). Here we have relied on the inverse Fourier transform theorem

ϕ(x) = (2π)−n/2
∫
Rn
ϕ̂(y)eix·ydy

to convert the orthogonality to functions of the form exp{
∑
i λiBti} to functions of the form

ϕ(Bt1 , · · · , Btn).
Step 3. The Itô representation theorem: for any F ∈ L2

(
F (n)
T , P

)
, there exists a unique

f(t, ω) ∈ Vn(0, T ) such that

F (ω) = E[F ] +
∫ T

0
f(t, ω)dB(t).

We can see this is a direct consequence of Step 2 (modulo some technicalities), since

Zt = exp
{∫ T

0
h(t)dBt(ω) − 1

2

∫ T

0
h2(t)dt

}

satisfies the SDE dZt = h(t)ZtdBt.
Step 4. The martingale representation theorem. The connection with the Itô representation

theorem is that for 0 ≤ t1 < t2，we have

Mt1 = E[M0] +
∫ t1

0
f (t1)(s, ω)dBs(ω) = E[Mt2 |Ft1 ] = E[M0] +

∫ t1

0
f (t2)(s, ω)dBs(ω)

=⇒ f (t1)(s, ω) = f (t2)(s, ω) for a.a. (s, ω) ∈ [0, t1] × Ω

So we can define f(s, ω) for a.s. s ∈ [0,∞) × Ω by setting

f(s, ω) = f (N)(s, ω), if s ∈ [0, N ].

▶ 4.4. (Exponential martingales)
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Proof. For part a), use Theorem 4.1.2 by setting g(t, x) = ex and

Xt =
∫ t

0
θ(s, ω)dB(s) − 1

2

∫ t

0
θ2(s, ω)ds,

so that

dZt = dg(t,Xt) = ∂g

∂t
(t,Xt)dt+ ∂g

∂x
(t,Xt)dXt + 1

2
∂2g

∂x2 (t,Xt) · (dXt)2

= 0 + eXtdXt + 1
2
eXt · θ2(t, ω)dt

= Ztθ(t, ω)dB(t).

For part b), it comes from the fundamental property of Itô integral, i.e. Itô integral preserves
martingale property for integrands in V (Corollary 3.2.6).

▶ 4.5.

Proof.

Bk
t =

∫ t

0
kBk−1

s dBs + 1
2
k(k − 1)

∫ t

0
Bk−2
s ds

Take expectation of both sides and use the fact that
∫ t

0 kB
k−1
s dBs is a martingale, we have

βk(t) = k(k − 1)
2

∫ t

0
βk−2(s)ds.

This gives E[B4
t ] and E[B6

t ]. For part b), prove by induction.

▶ 4.6.

Proof. For part a), use Theorem 4.1.2 by setting g(t, x) = ex and

Yt = ct+ αBt

so that

dXt = deYt = 0 + eYtdYt + 1
2
eYt · (dYt)2 = Xt(cdt+ αdBt + 1

2
α2dt) =

(
c+ 1

2
α2
)
Xtdt+ αXtdBt.

For part b), apply Theorem 4.1.2 with g(t, x) = ex and Xt = ct+
∑n
j=1 αjBj(t). Note

∑n
j=1 αjBj

is a BM, up to a constant coefficient.

▶ 4.7.

Proof. For part a), v ≡ In×n. For part b), use integration by parts formula (Exercise 4.3.), we have

X2
t = X2

0 + 2
∫ t

0
XsdX +

∫ t

0
|vs|2ds = X2

0 + 2
∫ t

0
XsvsdBs +

∫ t

0
|vs|2ds.
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So Mt := X2
t −

∫ t
0 |vs|2ds = X2

0 + 2
∫ t

0 XsvsdBs is a local martingale. To show it is a martingale, let
C be a bound for |v|, then

E

[∫ t

0
|Xsvs|2ds

]
≤ C2E

[∫ t

0
|Xs|2ds

]
= C2

∫ t

0
E

[∣∣∣∣∫ s

0
vudBu

∣∣∣∣2
]
ds

= C2
∫ t

0
E

[∫ s

0
|vu|2du

]
ds

≤ C4t2

2
.

This shows Xtvt ∈ V(0, T ). So by Corollary 3.2.6, Mt is a martingale.

▶ 4.12.

Proof. Let Yt =
∫ t

0 u(s, ω)ds = Xt −
∫ t

0 v(s, ω)dBs. Then Y is a continuous {F (n)
t }-martingale with

finite variation. On one hand,

⟨Y ⟩t = lim
∆tk→0

∑
tk≤t

|Ytk+1 − Ytk |2 ≤ lim
∆tk→0

(total variation of Y on [0, t]) · max
tk

|Ytk+1 − Ytk | = 0.

On the other hand, integration by parts formula yields

Y 2
t = 2

∫ t

0
YsdYs + ⟨Y ⟩t.

So Y 2
t is a local martingale. If (Tn)n is a localizing sequence of stopping times, by Fatou’s lemma,

E[Y 2
t ] ≤ lim

n
E[Y 2

t∧Tn
] = E[Y 2

0 ] = 0.

So Y· ≡ 0. Take derivative, we conclude u = 0 for a.a. (s, ω) ∈ [0,∞) × Ω.

▶ 4.16.

Proof. For part a), use Jensen’s inequality for conditional expectations.
For part b),
(i) Apply Itô’s formula to B2

t , we have

d(B2
t ) = 2BtdBt + dt.

So Y = B2(T ) = 2
∫ T

0 BtdBt + T . By the martingale property of
∫ t

0 BsdBs, we conclude Mt =
E[Y |Ft] = T + 2

∫ t
0 BsdBs. So g(t, ω) = 2Bt.

(ii) By Itô’s formula and integration-by-parts formula, we have

B3
T =

∫ T

0
3B2

sdBs + 3
∫ T

0
Bsds = 3

∫ T

0
B2
sdBs + 3

(
BTT −

∫ T

0
sdBs

)
.

So
Mt = E[B3

T |Ft] = 3
∫ t

0
B2
sdBs + 3TBt − 3

∫ t

0
sdBs =

∫ t

0
3(B2

s + (T − s))dBs

17



Therefore g(t, ω) = 3(B2
t + (T − t)).

(iii) We follow the hint that Zt = exp
(
σB(t) − 1

2σ
2t
)

is a martingale, then

Mt = E [exp(σBT )|Ft] = E

[
exp

(
σBT − 1

2
σ2T

)∣∣∣∣Ft

]
exp

(1
2
σ2T

)
= Zt exp

(1
2
σ2T

)
.

Since Z solves the SDE dZt = ZtσdBt with Z0 = 1, we have

Mt =
(

1 +
∫ t

0
ZsσdBs

)
exp

(1
2
σ2T

)
= exp

(1
2
σ2T

)
+
∫ t

0
σ exp

(
σBs + 1

2
σ2(T − s)

)
dBs.

This shows

g(t, ω) = σ exp
(
σBt + σ2

2
(T − t)

)
.
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