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Abstract

This is a solution manual of selected exercise problems for the text book Stochastic Differential
Equations (6th Edition), by Bernt Oksendal. If you find any typos/errors, please email me at
quantsummaries@gmail.com.



I dedicate this solution manual to the teacher of ORIE 768: Selected Topics in Applied Proba-
bility, Fall 2003, Cornell University.

It was an eye opener. It has been an intellectual adventure.



Contents

p_ 1to Integralg

4 '1T'he 1to Formula and the Martingale Representation 'I'heorem|
p__Stochastic Differential F.quations

b '1'he Filtering Problem|

I/ __Diftusions: basic Properties

B Other lopics in Diffusion 1'heory

P__Applications to boundary Value Problems

L0 Application to Uptimal Stopping

L1 Application to Stochastic Control

L2 Application to Vlathematical Financeg

IA_Probabilistic solutions of Plkd

5 Application of diffusions to obtaining analytic formulasg

14

19

28

29

40

47

56

57

62

64

67



Chapter 1

Introduction

This chapter introduced seven problems arising from six different situations in order to convince
readers that stochastic differential equations are an important subject. This approach illustrates
the author’s method of learning a subject when he does not know anything about it:

1) In what situations does the subject arise?

2) What are its essential features?

3) What are the applications and the connections to other fields?

Stochastic differential equations. The notion of a stochastic differential equation arises
naturally by introducing randomness into the coefficients of an ordinary differential equation. The
question is, how do we define rigorously and then solve a stochastic differential equation?

Filtering problems. Suppose Q(t) is a solution of a stochastic differential equation and we
do not observe it directly. Instead, we observe a disturbed version of it:

Z(s) = Q(s) + “noise”.

This leads to the filtering problem: What is the best estimate of Q(¢) based on the observations
(Zs)s<t? In other words, we need to find a procedure for estimating the state of a system which
satisfies a “noisy" linear differential equation, based on a series of “noisy" observations.

Boundary value problems. For a large class of semielliptic second order partial differential
equations, the corresponding Dirichlet boundary value problem (i.e. finding a continuous function
that is harmonic within a region and is equal to a prescribed function on the boundary of the
region) can be solved using the solution of a stochastic differential equation.

Optimal stopping problems. The example used to illustrate the optimal stopping problem
is a method to maximize the expected profit of selling an asset with stochastic price. The solution
can be expressed in terms of the solution of a corresponding (free) boundary value problem. It can
also be expressed in terms of a set of variational inequalities.

Stochastic control problems. This situation is illustrated via an optimal portfolio problem,
in which an asset allocation process (the “control variable") needs to be determined to maximize
the expected utility of the terminal fortune of a portfolio consisting of a safe asset and a risky asset.

Mathematical finance. The Black-Scholes option pricing formula and the underlying no-
arbitrage pricing theory illustrate the applications of stochastic differential equations to finance.



Chapter 2

Some Mathematical Preliminaries

Chapter Summary. The core of the mathematical preliminaries in this chapter consists of
answers to two fundamental questions:

e How to ensure the existence of a stochastic process with desired distributional properties?

e How to ensure such a stochastic process, if it exists, enjoys nice path-wise properties (like
continuity)?

Theorem 2.1 (Komogorov’s extension theorem). For all ty, ---, ty, € T, k € N, let vy, ... 4,
be probability measures on R™ s.t.

V¢ (Fl X oo X Fk) = 'Ut1,---,tk(Fg*1(1) X X Fgfl(k))

o(1):"" 7t0'(k)
for all permutations o on {1,2,--- k} and

n n
th’...,tk<F1 X e X Fk) = th)"')tk7tk+17"'1tk+m(F1 X X Fk x R" x R )

for all m € N, where the set on the right hand side has a total of k +m factors.
Then there exists a probability space (2, F, P) and a stochastic process { X} on Q, X; : Q — R",
8.1.
Vi gy (FL X X Fy) = P(Xy, € Fi, -, Xy, € Fy),

forallt; € T, k € N and all Borel sets Fj.
A thorough exposition of the above theorem can be found in Shiryaev [M0, Chapter I, §9].

Theorem 2.2 (Kolmogorov’s continuity theorem). Suppose that the process X = {Xi}i>0
satisfies the following condition: For all T > 0 there exist positive constants o, 3, D such that

E[|X: — X% <D-|t—s'*P; 0<s,t<T.
Then there exists a continuous version of X.

As a result of the two above theorems, Brownian motion can be constructed and can have a
version with continuous sample paths.

> 2.1.
a)



Proof. Necessity is obvious. For sufficiency, we note for any open set U € R,
XHU) = Uger X (a)

is a countable union of elements of F and is therefore in F. OJ

Proof. Properties (b)-(d) are special cases of a series of theorems in real analysis (Monotone Con-
vergence Theorem, Dominated Convergence Theorem, and Bounded Convergence Theorem, respec-
tively). See Durrett [3] for details. O

> 2.2.
a)

Proof. F = P(X <) € [0,1] is obvious. Using Bounded Convergence Theorem, we have

T-300 P
For monotonicity, we note for a < b,
F(b)—F(a)=Pla< X <b)>0.
And for right continuity, we note for € > 0,
0< Flzte)— F(2) =Pz <X <a+¢) = E lpcxcoe| = 0
as € = 0 due to the Bounded Convergence Theorem. O
b)
Proof. When g is a simple function in the form of > 1" | gil(,, 5,)(2),
n oo
Blo(X)) = Yol (v) = Fla)) = [ oa)dF (@),

Then using the property that any Lebesgue integrable function can be approximated by a series of
simple functions and the Dominated Convergence Theorem, we can show

Blyx)] = [ ga)ar()

— 00

holds for general g. O
c)



Solution. For any z < 0, clearly P(B? < x) = 0. For any z > 0, we have
P (B} <a)=P(~VE<B <a)=F (V&) - F (V).

so that
iP(Bf§x> _p(ﬁ)z\l/fw(_ﬁ)l—p(ﬁ)

dx

In conclusion, the density function f(z) of B? is

1 T
f(z) = 1{m20}\/ﬁ exp <_2t) .

> 2.3.

Proof. First, since ) € H; (Vi € I), ) € H. Second, F € H = F € H;, Vi € I = F° € H,,
Vi € I = FY € H. Finally,

A Ag, - €M = Ay Ay, - €Hy Vil = A= | JA €My, Viel=> Al

k=1
O
> 2.4. a)
Proof. Let A ={w:|X| > A}, then
E[|X|P] > E[14]XP] > E[14N°] = APP(A) = APP(|X| > N).
O
b)
Proof. Let A = {w :|X|> A}, then
M > E[14exp(k|X|)] > e*P(A)
so that
P(|X| > \) < Me ™ for all A > 0.
O
> 2.5.
Proof. This is a straightforward application of Bounded Convergence Theorem. Just follow the
logic of the hint. O
> 2.6.
Proof. See Durrett [3, p.65] for details. O
> 2.8.

a)



Proof. B, has mean 0 and variance ¢t. Applying equation (2.2.3) gives the above formula.
b)

Proof.

% ik

k1, k L o 1ty
E[B/u” = exp _§Ut :ZE —5) v

k=0

E[ei'U,Bt] —
= k!

Matching the coefficients of even terms, we have

i 2% 2k 1 AN ok m(=5)" (2R,
i PP e _k!<_> W= BB = T = ot

2

c)
Proof. Tt can be made rigorous. See, for example, Durrett [3], Appendix A.5.
)
Proof.
e -l = Sp (80 - 50) |+ S e (50 - ) (89 - 59)]
i=1 i#j
= n A (t —s)? +n(n—1)(t—s)?
204

= n(n+2)(t—s)
> 2.15.
Proof. Since B; — By L Fy = 0(By :u < s), U(B; — By) L Fs. Note U(B, — By) <

seen by the characteristic functions.



Chapter 3

It6 Integrals

Chapter Summary. The first key component of this chapter is to use It6 isometry to extend
the definition of stochastic integral from elementary functions to functions in V = V(5,T) =

{F(t;w) : [0,00) x @ = R, f(t,w) is B x F-measurable, f is Fi-adapted, B [ [§ f(t,w)%dt] < oo}.
The three-step approximation is

Step 1. Let g € V be bounded and g(-,w) continuous for each w. Then there exists elementary
functions ¢, € V such that

E l/T(g - gbn)th] — 0,as n — oo.
S

Here ¢y, is defined as ¢y, (¢, w) =3, 9(tj,w) - Lt 6,,1)(1)-
Step 2. Let h € V be bounded. Then there exist bounded functions g, € V such that g,(-,w)
is continuous for all w and n, and

E VT(h — gn)zdt] — 0.

S

Here g, is constructed via convolution with a mollifier 1,:

gn(t,w) = /Ot Un(s —t)h(s,w)ds,

where each v, is a non-negative, continuous function on R such that v, = 0 for z € (—o0, —%] UI[0, o)
and [0 (z) = 1.

Step 3. Let f € V, Then there exists a sequence {h,} C V such that h,, is bounded for each n
and

E [/T(f—hn)th] — Oas n — oo.
S

Here
-n if f(t,w) <—n

hn(t,w) =< f(t,w) if —n < f(t,w) <n
n if f(t,w) > n.



Long story short, the insight is that V can be obtained by the closure of simpler subspaces,
where the closure is in the L?-norm:

V = closure(bounded elements of V)
= closure(bounded continuous elements of V)

= closure(elementary functions in V)

The second key component of this chapter is about the sample path properties of stochastic
integral. By Doob’s martingale inequality and the Borel-Cantelli lemma, we have the following
result on path continuity and uniform estimate:

Theorem 3.1. Let f € V(0,T). Then there exists a t-continuous version of
t
M, = / Fls,0)dBy(w); 0<t<T.
0

Moreover, My is a martingale w.r.t. Fy and

1 T
Plsup |Mt\2)\] §2-E[/ f(s,w)stl; AT > 0.
0<t<T A 0

The final component of this chapter is about extensions of the Itd integral. The extensions
include

a) measurability of the integrand and martingale property of the integrator with respect to a
generic filtration, not just the filtration generated by Brownian motion. This will allow us to define
the multi-dimensional It6 integral.

b) integrability of the integrand in a.e. sense, not in L?(£2) sense. The resulted integral is no
longer a martingale, but a local martingale.

c¢) a comparison of the Stratonovich integral vs. the It6 integral.

e The Stratonovich integral has the advantage of leading to ordinary chain rule formulas under a
transformation (change of variable), making it natural to use in connection with SDEs on manifolds.
It also makes the solutions of a family of SDEs whose integrators converge uniformly to Brownian
motion converge uniformly to the solution of a SDE whose integrator is Brownian motion.

e On the other hand, the specific feature of the It6 model of “not looking into the future" seems
to be a reason for choosing the It6 interpretation in many cases. And the martingale property of
the It6 integral gives an important computational advantage.

Below are the definitions and notations used frequently in the book.

Definition 3.1. Let Bi(w) be n-dimensional Brownian motion. We define F; = ]-"t(n) to be the
o-algebra generated by the random variables {B;(s)}1<i<n,0<s<t-

Definition 3.2. Let V = V(S,T) be the class of functions
f(t,w) :[0,00) x @ = R

such that
(i) (t,w) = f(t,w) is B x F-measurable, where B denotes the Borel o-algebra on [0, c0).
(i) f(t,w) is Fi-adapted.
(iii) E[Jd f(t,w)2dt] < oo.



Definition 3.3. Let B be n-dimensional Brownian motion. Then V™" (S,T) denotes the set of
m x n matrices v = [v;;(t,w)] where each entry vi;(t,w) satisfies (i) and (iii) of Definition @2 and
the following condition (ii)’:

(ii)” There exists an increasing family of o-algebra Hy : t > 0 such that

a) By is a martingale with respect to H; and
b) fi is ’Ht-adapted

IfH=F" {.7-} }t>07 we write V™*"(S,T) and define V™" = Npso V™*"(0,T).
The motivation of the extension from V(S,T) to V}}*"(S,T) is to generalize the Itd integral

so that f; can depend on more than F; as long as B; remains a martingale with respect to the
“history" of fg; s <'t.

Definition 3.4. Wy (S,T) denotes the class of processes f(t,w) € R satisfying (i) of Definition
3, (i)’ of Definition @3, and the following condition (iii)’:

(i) P (J§ f(s,w)?ds < 00) = 1.

Similarly to the notation for V we put Wi = (\pso Wa(0,T) and in the matriz case we write
WIS, T) ete. If H = F™ we write W(S,T) instead of Wrw) (S, T) etc.

It6 integral can be defined on Wy via convergence in probability (not via the It isometry).
However, the resulted integral is not in general a martingale, but a local martingale.

> 3.2,

Proof. WLOG, we assume t = 1, then

B} = ZZ:(B?/n—B?jn/n)

- 231 [(Bj/" o B(J'*l)/n)3 +3B(j—1)/mBjn (Bj/n - B(jl)/n>:|

<.
—

<.
Il

I
M:

( i/ — B 1/n) +Z3B(a 1/n( j/n—B(m)/n)

<.
Il
—

2
+ Z 3B(j—1)/n (Bj/m — Bi-1)m)
Jj=1
— I+ II+1

By Problem EP1-1 and the continuity of Brownian motion.

n

j;l (Bj/n - B(j—l)/n)2] max. ’Bj/n - B(j—l)/n‘ 0 as

I<

To argue II — 3]01 B2dB,; as n — oo, it suffices to show E [fOl(Bt2 — Bgn))Zdt} — 0, where

B =3, BY_ 1) jnl{(i-1)/n<t<j/ny- Indeed,

ol ot e a] = [ [0t -t n) ]

(=1 /n

10



2
We note (Bt2 — B(Qj_l)/n) is equal to

n

(Bt - B%f 14 (Bt - B%>3B% +4 (Bt - B%)2B?_1

s E {(ngl)/n - 33)2] —3(t—(j = 1)/n)2 + 4t — (j — 1)/n)(j — 1)/n, and

J

n 2 2j +1
/ El(B?l—Bf)ldt: s
izl ) n

2 ,
Hence F [fol <Bt - Bt(n)) dt] =y 2 S 0asn— oo

j=1 "p3

To argue III — 3 fol Bdt as n — o0, it suffices to prove
> Bi-tyn (Bin = Bi-nym) = 2 By-vym (3~ =) =0 as.
j=1 j=1
By looking at a subsequence, we only need to prove the L2-convergence. Indeed,
2
n 9 1
E > B(j-1)/m [(Bj/n ~Bj_ym) - ,J
j=1
n ) 9 112
= Y BBy |(Bim—Bu-vm) — -

=1
i1 4 2 2 1
= ZITE [(Bj/n—Bun/n) ~ =By~ Bg-nym) +n2}
=
Nl 11
N _]—Zl n <3n2 2n2+n2>
~2(j—1)
= 221 5 0
=

as n — oo. This completes our proof.

> 3.9.

Proof. We first note that
> Bit (Biyy, — Byy)
j 2

2
= Z |:Btj+tj+1 (Btj-H — Btj+tj+1) + Btj (Btj+tj+l — Btj>:| =+ Z (Btj+tj+1 — Btj> .
2 2 2

J 2 g

11



The first term converges in L?(P) to f(;[ BdB;. For the second term, we note

E

<

since E [(Bf —t)?]

T
ZBM (Btj-H - Bt]-) —>/ BydB; + — =
J 2 0

» 3.10.

Proof. According to the result of Exercise 3.9.,

Indeed, note

IN

IN

— E [B} — 2tB? + 1] = 3E [BY)?

2 ti—t 2
- Btj) T 9 (B%Hkﬂ - Btk> -
2
)]

Liv1 — L

— 2t +t2 = 2t%. So
T 1
5 53% in L2(P).

it suffices to show

ft],wAB th w)AB;j|| — 0.

E Zf(tj,wAB th w)AB;

ZEHf )~ |

- = 5
S E|#t) - )] | E[1aB; ]
j L
1+4+€ 1
1| 2 /|2
VK |t; -t} * |t -t
J
1+£
VES |ty -t 2
j
TVEK max ’tj —t; ?
1<j<n
0.

12

tet1 — tk



> 3.11.

Proof. Assume W is continuous, then by the Bounded Convergence Theorem,

lim E {(W,}N) - WS(N>)2} —0.

s—t

Since Wy and W; are independent and identically distributed, so are WS(N) and Wt(N). Hence
2 2 2
e[l wey) < e[y e ()]

2F {(W,}N))Q} —2F [W}N)r.

Since the RHS=2Var (Wt(N)) is independent of s, we must have RHS=0, i.e. Wt(N) =F {Wt(N)}

a.s.. Let N — oo and apply the Dominated Convergence Theorem to F [Wt(N)}, we get Wy = 0.
Therefore W. = 0. O

> 3.18.

Proof. If t > s, then

M, o [o(Bi—By)—Lo2(t—s) _ Ele7P]
E[Ms]-"s}_E{e : ; ]—"S}_W_
The second equality is due to the fact B; — By is independent of Fj. 0

13



Chapter 4

The It6 Formula and the Martingale
Representation Theorem

Chapter Summary. To derive the 1-dimensional Ité6 formula, i.e. the SDE for Y; = g(¢, X})
where X; is a 1-dimensional It6 process with dX; = usdt + v;dB; and g(t, z) € C2%([0,00) x R), the
intuition is to consider the Taylor expansion of Y and study the convergence property of each term
in its expansion.

More specifically, let to = 0 and t,, = t, the Taylor expansion of Y; is

Vi—Yo = g(t X¢) —g(0, Xo)

= z::{ J+17th+1)_g(tj7th)}
.

Z t],Xt (At)(AX;) + = Z tJ,Xt (AX;)?+> R,
J J

g
t],Xt].)Atj—i—Za (tj, X)) AX; + = Z 52 9 (t;, X1,) (At;)?

QD‘Q

where Atj = tj+1 — tj, AXJ = Xt
enough, we have

X, and R; = o(|Atj|? + |AX;|?). Then assuming g is nice

j+1

dg
ga(tj,Xt )AL, —>/ o (s, X,)ds
dg
Za (t;, X, ) AKX —>/ (s, X,)dX,
j
2
Z 9 (45, X0, 2/ PPl 2ds

other terms — 0

This gives the 1-dimensional It6 formula:

1 0%g

59m 2(t X, )v2dt.

9y
= 5 2,

14



Remark 4.1. Note that it is enough that g(t,z) is C? on [0,00) x U, if U C R is an open set such
that X¢(w) € U for all t > 0, w € Q. Moreover, it is sufficient that g(t,z) is C' w.r.t. t and C?

w.r.t. x.
When Ité formula is extended to multi-dimension, this condition on g will allow Ité formula to
be applied to g(t,x) = |x| for n > 2 since By never hits the origin a.s. when n > 2.

The intuition of Martingale Representation Theorem can be incrementally built in the
following steps:

Step 1. For a dense subset {t;}5°; of [0,T], the set of random variables {¢(B,, - ,Bs,) : t; €
[0,T],¢6 € C(R™),n =1,2,---}is dense in L?(Fr, P). This insight is based on a non-trivial result
from the martingale convergence theorem:

g = Elg|Fr] = Jim Elglo(Byy,- -, By,)] a.s. and in L*(Fr, P)
Step 2. The linear span of random variables of the type
T 1 T
exp / h(t)dB;(w) — 5/ R2()dt b5 hoe 120, T
0 0
is dense in L?(Fr, P). Here we have relied on the inverse Fourier transform theorem

o(x) = 2m)™" | oy)eVdy

to convert the orthogonality to functions of the form exp{>", \iB,} to functions of the form
¢(Bt17 T >Btn)'

Step 3. The Ito representation theorem: for any F € L2 (]—":(Fn),P>, there exists a unique
f(t,w) € V*(0,T) such that

T
F(w) = E[F] + /0 F(t,w)dB().

We can see this is a direct consequence of Step 2 (modulo some technicalities), since

Zy = exp {/OT h(t)dB(w) — ;/OT h2(t)dt}

satisfies the SDE dZ; = h(t)Z;dB;.
Step 4. The martingale representation theorem. The connection with the Itd representation
theorem is that for 0 < t; < t2, we have

t1 t1
My, = E[Mo] + / FU(s,w)dBy(w) = E[My,|F,] = E[Mo] + / £ (s,w)dBy(w)
0 0
—  fM(s,w) = f12)(s,w) for a.a. (s,w) € [0,t1] x Q
So we can define f(s,w) for a.s. s € [0,00) x Q by setting

f(s,w) = fMN(s,w), if s € [0, N].

» 4.4. (Exponential martingales)

15



Proof. For part a), use Theorem 4.1.2 by setting g(t,z) = e and
X; = /esde /923w

dg dg 19%g
dZt = dg(t,Xt) = ot (t Xt)dt+ O (t Xt)dXt + - 2 O 9.9

1
= 04eXdX, + ¢ Xt 0% (t,w)dt
= Z0(t,w)dB(t).

so that

(t, X;) - (dX;)?

For part b), it comes from the fundamental property of Itd integral, i.e. It6 integral preserves
martingale property for integrands in V (Corollary 3.2.6). O

> 4.5.
Proof.
! 1 " ok—2
B :/ RBELB, + Sh(k - 1)/ BF2ds
0 0
Take expectation of both sides and use the fact that fg kB%~1dB, is a martingale, we have

k(k — 1)

Bi(t) = = /0 B (s)ds.

This gives E[B}] and E[BY]. For part b), prove by induction. O
» 4.6.
Proof. For part a), use Theorem 4.1.2 by setting g(¢,xz) = e* and
Y; =ct+ aB;
so that

1 1 1
dX; = de¥ =0+ eV dY; + 2@ (dY;)? = Xy(cdt + adB; + §a2dt) = (c + 2a2> Xdt + aXdB;.

For part b), apply Theorem 4.1.2 with g(t,z) = ® and X; = ct+3"7_ ;B;(t). Note }°7_; a; B;
is a BM, up to a constant coefficient. ]

> 4.7.

Proof. For part a), v = I,,x,. For part b), use integration by parts formula (Exercise 4.3.), we have

t t t t
X7 :X§+2/ Xst+/ |vs|2ds=X§+2/ stsst+/ |lvg|2ds.
0 0 0 0

16



So My := X} — [{ |vs|?ds = X3 +2 [ X5vsdBs is a local martingale. To show it is a martingale, let
C be a bound for |v|, then

¢ t
E [/ |sts|2d8] < C’E {/ |XS|2ds]
0 0
t s 2
= C’2/El/vudBu ]ds
0 0
t S
= 02/ E [/ |vu|2du} ds
0 0

C4?
— 2 .
This shows X;v; € V(0,7T). So by Corollary 3.2.6, M, is a martingale. O

> 4.12.

Proof. Let Yy = [ u(s,w)ds = X; — [¢ v(s,w)dBs. Then Y is a continuous {ft(n)}—martingale with
finite variation. On one hand,

(Y = A%tikn—%o tkz;t Vi — Y, |2 < A%fikn_l>O (total variation of Y on [0,t]) - max Vi — Ya,| = 0.

On the other hand, integration by parts formula yields
t
V=2 [ YidYo+ (V)
0

So Y2 is a local martingale. If (T},), is a localizing sequence of stopping times, by Fatou’s lemma,
E[Y?] < lim B[Y,7,] = E[Y{] = 0.
n
So Y. = 0. Take derivative, we conclude u = 0 for a.a. (s,w) € [0,00) x Q. O

> 4.16.

Proof. For part a), use Jensen’s inequality for conditional expectations.

For part b),
(i) Apply Ito’s formula to B?, we have

d(B?) = 2B;dB; + dt.

SoY = BYT) = 2fOT BydB; + T. By the martingale property of fot BydBg, we conclude M; =
E[Y|F]=T+2 [{ BsdBs. So g(t,w) = 2B;.

(ii) By It6’s formula and integration-by-parts formula, we have

T T T T
B%:/ 3B§st+3/ Bsds:?)/ B2dB, +3 BTT—/ sdB, | .
0 0 0 0

So
t t t
M; = E[B3|F] = 3/ B2dB, + 3T B; — 3/ sdB, = / 3(B? + (T — s))dBs
0 0 0

17



Therefore g(t,w) = 3(BZ + (T —t)).

(iii) We follow the hint that Z; = exp (UB(t) — %U2t) is a martingale, then

1 1
M, = E[exp(ocBr)|F] = FE [exp (O'BT — ;UQT) ’ ft} exp (202T) = Ziexp (202T> )

Since Z solves the SDE dZ; = ZyodB; with Zy = 1, we have

t 1 1 t 1
M, = (1 +/ ZSO'dBS> exp (202T> = exp (202T> +/ o exp (O’Bs + 502(T — s)) dB;.
0 0

This shows

2
g(t,w) = oexp (UBt + %(T - t)) .
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