[image: OEBPS/images/image0001.png]

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.
Copyright © 2024 by Adegoke Akintoye
First edition. May 3, 2024.
Juri Books (email: call.juri@outlook.com tel: +2349012885870)

Disclaimer
While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

Other Books By The Author:
Mastering JavaScript Array Methods: A Beginner's Guide to Simplifying Array Manipulation
Mastering JavaScript String Methods: A Beginner's Guide to Simplifying String Manipulation
Mastering Coding Test: 50 Problems with Solutions
Mastering Design Patterns in TypeScript: An Approachable Guide
Object-Oriented Programming In TypeScript: A Beginner's Guide
Mastering TypeScript: A Beginner’s Guide
JavaScript: The Ultimate Guide to Interview Questions
Integrating HTMX with Laravel: An Approachable Guide
Object-Oriented Programming in PHP:An Approachable Guide
Functional Programming in TypeScript: An Approachable Guide
Laravel Guide
Mastering API Development with Laravel
HTMX Guide
Lumen Illuminated
Easy, Fast, and Practical PWA

Preface
This book aims to provide a comprehensive introduction to object-oriented programming in PHP. Each chapter builds upon the last, introducing concepts in a clear, easy-to-understand manner, and culminating in a practical project that utilizes all the knowledge acquired throughout the book. By the end of this guide, readers will have a solid foundation in OOP principles in PHP and the confidence to apply these principles in real-world projects
Thank you for choosing this book as your guide to learning object-oriented programming in PHP. Whether your goal is to build your own projects, contribute to open-source, or pursue a career in web development, the knowledge and skills you acquire here will serve as a solid foundation for your future endeavors.
Let's begin this exciting journey together.
Yor feedback will be highly appreciated. You can reach me here: call.juri@outlook.com

Chapter 1: Introduction to Object-Oriented Programming (OOP)
This chapter is designed to lay the foundation for everything you'll learn in this book. We'll start with the basics of OOP, explore the evolution of PHP from a procedural to an object-oriented language, and discuss why OOP is a powerful paradigm for programming in PHP.
Understanding the Basics of OOP
Object-Oriented Programming is a programming paradigm based on the concept of "objects", which can contain data, in the form of fields (often known as attributes or properties), and code, in the form of procedures (often known as methods).
Key Concepts of OOP
Class: A blueprint for creating objects (a particular data structure), providing initial values for state (member variables or attributes), and implementations of behavior (member functions or methods).
Object: An instance of a class. When a class is defined, no memory is allocated until objects are created from the class.
Methods: Functions defined inside a class that operate on instances of the class. They are used to perform operations with the attributes of our objects.
Attributes: Variables that hold data about our objects. They are also known as properties.
Why OOP?
Modularity: The source code for an object can be written and maintained independently of the source code for other objects.
Reusability: Objects can be reused across programs.
Pluggable and Debuggable: If a particular object turns out to be problematic, you can simply remove it from your application and plug in a different object as its replacement.
The Evolution of PHP: Procedural to Object-Oriented
PHP started as a procedural language, offering a straightforward way of writing scripts. Procedural programming is about writing procedures or functions that perform operations on the data, while object-oriented programming is about creating objects that contain both data and functions.
Over the years, PHP has evolved significantly, incorporating object-oriented features since PHP 5. This evolution has made PHP more powerful and flexible, allowing developers to build complex, scalable, and maintainable applications more efficiently.
Why OOP in PHP?
Using OOP in PHP allows developers to:
Write code that is more organized and manageable.
Create reusable code blocks (classes) which can save time and effort in the long run.
Enhance the security of the application by using encapsulation and abstraction.
Easily maintain and update the code by employing inheritance and polymorphism.
Code Example: Defining a Class and Creating an Object
Let's define a simple class called Book and create an object of that class.
<?php
class Book {
 // Attributes
 public $title;
 public $author;

 // Constructor
 public function __construct($title, $author) {
 $this->title = $title;
 $this->author = $author;
 }

 // Method
 public function getDetails() {
 return $this->title . " written by " . $this->author;
 }
}

// Creating an object of the Book class
$book1 = new Book("PHP OOP", "A. Akintoye");

// Calling a method of the object
echo $book1->getDetails();
?>
In this example, Book is a class with two attributes ($title and $author) and a method called getDetails(). The __construct() method is a special type of method known as a constructor, which is automatically called when an object is created. We create an instance of the Book class named $book1 and initialize it with the title "PHP OOP" and the author "A. Akintoye". Finally, we call the getDetails() method on $book1, which outputs " PHP OOP written by A. Akintoye".
This simple example illustrates how classes and objects work in PHP. As we progress through this book, we'll dive deeper into OOP concepts and explore more complex examples.
By understanding these foundational concepts, you're now ready to delve deeper into the world of object-oriented programming in PHP. In the next chapters, we'll explore classes and objects in more detail, and you'll learn about the four pillars of OOP: encapsulation, inheritance, polymorphism, and abstraction.

Appendix: Supplementary Resources and Tools for PHP Development
This appendix provides a curated list of resources, tools, and best practices to support your journey in PHP development, especially focusing on Object-Oriented Programming (OOP). Whether you're a beginner or looking to enhance your skills, these resources will offer valuable insights and assistance.
A. Development Environment
A.1 Local Development Servers
XAMPP: A free and open-source cross-platform web server solution stack package developed by Apache Friends, consisting mainly of the Apache HTTP Server, MariaDB database, and interpreters for scripts written in the PHP and Perl programming languages.
XAMPP Official Website
MAMP: A free, local server environment that can be installed under macOS and Windows with just a few clicks. MAMP provides them with all the tools they need to run WordPress on their desktop PC for testing or development purposes, for example.
MAMP Official Website
A.2 Integrated Development Environments (IDEs)
PHPStorm: A commercial, cross-platform IDE for PHP developed by JetBrains. It provides an editor for PHP, HTML, and JavaScript with on-the-fly code analysis, error prevention, and automated refactorings for PHP and JavaScript code.
PHPStorm Official Website
Visual Studio Code: A free, open-source, and cross-platform code editor developed by Microsoft. It supports a multitude of programming languages and frameworks, including PHP, through extensions.
Visual Studio Code
B. Learning Resources
B.1 Official Documentation
PHP.net: The official PHP documentation contains a comprehensive guide to the language's syntax, functions, and core features, including OOP concepts.
PHP.net Official Documentation
B.2 Online Learning Platforms
Laracasts: Though Laravel-focused, Laracasts offers numerous PHP and OOP tutorials that are invaluable for developers of all levels.
Laracasts
PHP The Right Way: A popular and easy-to-read quick reference for PHP best practices, accepted coding standards, and links to authoritative tutorials around the Web.
PHP The Right Way
C. Tools and Libraries
C.1 Composer
Composer: A tool for dependency management in PHP. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you.
Composer Official Website
C.2 Testing Tools
PHPUnit: A programmer-oriented testing framework for PHP. It is an instance of the xUnit architecture for unit testing frameworks.
PHPUnit Official Website
D. Best Practices and Design Patterns
Refactoring.Guru: Offers clear, understandable explanations of design patterns and their correct use in PHP.
Refactoring.Guru on PHP Design Patterns
SOLID Principles: Understanding and applying SOLID principles is crucial for writing maintainable, scalable, and robust PHP applications.
SOLID Principles Overview
E. Community and Support
Stack Overflow: A vast community of developers. A great place to ask questions and share knowledge about PHP and OOP.
Stack Overflow
GitHub: Contributing to open-source projects or starting your own is a great way to learn, get feedback, and collaborate with other developers.
GitHub
PHP Conferences and Meetups: Attending local or international PHP conferences and meetups can provide valuable learning opportunities and the chance to connect with other developers.
This appendix aims to equip you with a comprehensive set of resources and tools to support your PHP development endeavors. Remember, the journey of learning and improvement never truly ends; there's always something new to discover or a better way to solve problems. Happy coding!

Glossary
This glossary provides definitions for key terms and concepts discussed throughout "Object-Oriented Programming in PHP: A Beginner's Guide." Understanding these terms is crucial for grasping the principles of object-oriented programming (OOP) in PHP.
A
Abstract Class: A class that cannot be instantiated on its own and is designed to be extended by other classes. It can contain abstract methods with no implementation.
Attributes: Also known as properties, these are variables defined inside a class that represent the state or data of the objects created from the class.
B
Behavior: The actions that can be performed by an object. The behavior of an object is defined by its methods.
C
Class: A blueprint or template for creating objects. A class defines the properties and behaviors of the objects instantiated from it.
Composer: A dependency management tool for PHP, allowing developers to manage their project's libraries and dependencies.
Constructor: A special method within a class that gets called automatically when an object of the class is created. It is commonly used to initialize object properties.
D
Dependency Injection: A design pattern that allows a class to receive its dependencies from external sources rather than creating them internally. This improves code modularity and testability.
E
Encapsulation: An OOP principle that involves bundling the data (attributes) and methods that operate on the data into a single unit, or class, and restricting access to some of the object's components.
F
Factory Method Pattern: A design pattern that provides an interface for creating objects in a superclass but allows subclasses to alter the type of objects that will be created.
I
Inheritance: An OOP principle where a class (subclass) can inherit properties and methods from another class (superclass), allowing for hierarchical classification.
Interface: A contract or blueprint for classes that specifies what methods a class must implement, without providing the implementation itself.
M
Method: A function defined inside a class that describes the behaviors of the objects created from the class.
Model-View-Controller (MVC): A design pattern that separates an application into three main components: the model (data), the view (user interface), and the controller (processes that handle input).
N
Namespace: A declarative region that provides a scope to the identifiers (the names of types, functions, variables, etc.) inside it. Namespaces are used to organize code into logical groups and prevent name collisions.
O
Object: An instance of a class. An object is created from a class and represents a specific implementation of the class.
OOP (Object-Oriented Programming): A programming paradigm based on the concept of "objects," which can contain data, in the form of fields, and code, in the form of procedures.
P
Polymorphism: An OOP principle that allows objects of different classes to be treated as objects of a common superclass. It is the ability to present the same interface for differing underlying forms (data types).
S
Singleton Pattern: A design pattern that restricts the instantiation of a class to one single instance. This is useful when exactly one object is needed to coordinate actions across the system.
Static Methods and Properties: Methods and properties that belong to the class, rather than any object instance. They can be called without creating an instance of the class.
T
Trait: A mechanism for code reuse in single inheritance languages like PHP. Traits can include methods and abstract methods that can be used in multiple classes.
Understanding these terms will enhance your comprehension of object-oriented programming in PHP and enable you to apply OOP principles more effectively in your projects.

OEBPS/toc.xhtml
		Other Books By The Author:

		Preface

		Chapter 1: Introduction to Object-Oriented Programming (OOP)

		Appendix: Supplementary Resources and Tools for PHP Development

		Glossary

OEBPS/images/image0001.png
~ Object-Oriented
- Programming in
: PHP

Adegoke Akintoye

