Object

Oriented

PHP

Junade Ali



Object-Oriented PHP
Writing Resilient & Reusable Code in PHP 7

Junade Ali

This book is for sale at http://leanpub.com/object-orientedphp

This version was published on 2017-06-03

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2017 Northern Optic Limited


http://leanpub.com/object-orientedphp
http://leanpub.com/
http://leanpub.com/manifesto

Contents

SOLID Design Principles . . . . . . . . ... ... . 1
Single Responsibility Principle . . . . . . ... ... ... oo 1
Open/Closed Principle . . . . . . . . . .. . . 9
Liskov Substitution Principle . . . . . . . .. ... ... 11
Interface Segregation Principle . . . . . . . . .. ... oL 14
Dependency-Inversion Principle . . . . . . . ... .. o oo L 16

Conclusion . . . . . . . s, 20



SOLID Design Principles

There are many PHP Developers who will write “OOP” on their resumes, but they will understand
little more than how to write classes and instantiate them. So far in this book we’ve covered some
more advanced language features that help us write Object-Oriented code, however you still may be
scratching your head wondering what purpose they are for. The concept of interfaces, for example,
confuses many developers; why would you write classes which contain no body?

This chapter seeks to go into the fundamental principles behind Object-Oriented Programming in a
clear and concise way. These principles are often referred to as the “First Five Principles of Object-
Oriented Programming”, or the SOLID Principles. The acronym of “SOLID” was coined by Robert
C. Martin based on what Michael Feathers described as the “First Five Principles”.

Single Responsibility Principle

Robert C. Martin expressed this principle quite simply: “A class should have only one reason to
change”

Consider you’re making a PHP app to calculate airline miles from flight information. After building
this project, what are the possible reasons we’d want to change the program after it’s built? Well,
maybe we want to change the algorithm for generating the points, or maybe the UI for displaying
the calculation. These are fundamentally our “reasons to change” and therefore we consider them
to be responsibilities under the SRP (Single Responsibility Principle).

Every module or class should only be responsible of one piece of functionality and it should fully
encapsulate that responsibility. Within the context of the SRP we consider a responsibility to be
“a reason to change”. By combining responsibilities we can cause some nasty issues, such as tight-
coupling and making code-reuse harder.

Let’s assume a project manager has given us an airline miles calculator app to refactor, and it doesn’t
match this principle. Let’s refactor it so it does. The code have been given contains a single Miles
class which has both the HTML that contains the User Interface and the business logic that runs the
points calculation:



SOLID Design Principles

1 <?php
2
3 class Miles
4 {
5 public function render(): string
6 {
7 if (isset($_POST['distance'])) {
8 return $this->getMiles();
9 }
10
11 return $this->getForm();
12 }
13
14 public function calculateMiles(int $distance, bool $businessClass, bool $fly\
15 ingClubMember): int
16 {
17 $multiplier = 1;
18
19 if ($businessClass === true) {
20 $multiplier *= 2;
21 }
22
23 if ($flyingClubMember === true) {
24 $multiplier *= 2;
25 }
26
27 return $distance * $multiplier;
28 }
29
30 private function getMiles(): string
31 {
32 $miles = $this->calculateMiles(
33 $_POST['distance'],
34 isset($_POST[ 'businessclass']),
35 isset($_POST['flyingclubmember'])
36 )
37
38 return $this->loadPage('<p>You have: <b>' . $miles . ' miles</b>.</p>');
39 }
40
41 private function getForm(): string

42 {



43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69

O O B W N~

SOLID Design Principles 3

return $this->loadPage("
<form action="" method="POST">
Distance:
<input type="number" name="distance" min="@" step="1" />
<br>
Business Class Flyer:
<input type="checkbox" name="businessclass"><br>
Flying Club Member:
<input type="checkbox" name="flyingclubmember">
<br><br>
<input type="submit" value="Submit">
</form>

")

private function loadPage(string $html): string
{

return
<IDOCTYPE html>
<html>
<body>
" . $html .
</body>
</html>

}

Our business logic is horribly intertwined with HTML, the Mi les class conjoins our calculator logic
with the code that renders the web page meaning the class is responsible for both the presentation
and calculation of reward miles. By separating presentation from our business logic we can better
prevent duplicate code and ensure our class supplies with the Single Responsibility Principle.

We can utilise this class with the following index.php file:
<?php
require_once( 'Miles.php');

$calculator = new Miles();
echo $calculator->render();

This makes code reuse more difficult, a developer might not want to pull in a bloated class into
another part of the application just to do a simple points calculation. When a class does more and



0 N O O & W N~

W W W W W WNDNDDNDNDNDDNNNDNDNDNDNDDNDAS AP 2,2,
O O NP O O 0 N O O i WINPT O 00 NO0 O ik WOWNPAO O

SOLID Design Principles 4

more, as developers are reluctant to add classes to a project, this leads to an Anti-Pattern known
as the “God Class”. An irrational fear of adding classes to a project converges to there being one
“God Class” which has multiple responsibilities throughout the application. Functions with different
responsibilities become tightly bound to each other, and the code becomes a ball of mud.

Now let’s refactor this Miles class so we have aMilesCalculator class containing the business logic
and a MilesUI class containing the GUL Our Ul class looks like this:

<?php
class MilesUI
{

private $calculator;

public function __construct(Calculator $calculator)

{
$this->calculator = $calculator;
}
public function render(): string
{
if (isset($_POST['distance'])) {
return $this->getMiles();
}
return $this->getForm();
}
private function getMiles(): string
{
$miles = $this->calculator->calculate(
$_POST[ 'distance'],
isset($_POST[ 'businessclass']),
isset($_POST['flyingclubmember'])
)i
return $this->loadPage('<p>You have: <b>' . $miles . ' miles</b>.</p>');
}

private function getForm(): string
{
return $this->loadPage("
<form action="" method="POST">



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60

SOLID Design Principles 5

Distance:
<input type="number" name="distance" min="Q" step="1" />
<br>
Business Class Flyer:
<input type="checkbox" name="businessclass"><br>
Flying Club Member:
<input type="checkbox" name="flyingclubmember">
<br><br>
<input type="submit" value="Submit">
</form>

")

private function loadPage(string $html): string
{

return
<IDOCTYPE html>
<html>
<body>
" $html .
</body>
</html>

Note that our UI class contains some HTML, this is acceptable when well managed - but it sometimes
can be easier to use a template engine to manage HTML, one such engine is Twig'. A more optimal
solution is simply to have PHP serve an API which a Javascript framework like React or Vue.js can
consume. Regardless of how you chose to do it, it’s vital the UI class is separate from your business
logic, in this example we’re ensuring that the Ul is managed by a separate class.

When instantiating this Ul class, we inject a Calculator interface - this interface looks like this:

Uhttp://twig.sensiolabs.org/


http://twig.sensiolabs.org/
http://twig.sensiolabs.org/

~N O O B W N~

W N O O & W N =

NN NN DNNDDNDDNDN B B 5 1 | s s s
0O N1 O Ol b WO NP, O O 0 N0 O d W N~~~ ©

SOLID Design Principles 6

<7php

interface Calculator

{

public function calculate(int $distance, bool $businessClass, bool $flyingCl\
ubMember): int;

}

This interface is then implemented in our MilesCalculator class, this is our concrete implementa-
tion of our Calculator interface that we can use with our MilesUI class:

<?php

class MilesCalculator implements Calculator

{
public function calculate(int $distance, bool $businessClass, bool $flyingCl\
ubMember): int

{
$multiplier = $this->getMultiplier($businessClass, $flyingClubMember);
return $distance * $multiplier;
}
private function getMultiplier(bool $businessClass, bool $flyingClubMember):\
int
{
$multiplier = 1;
if ($businessClass === true) {
$multiplier *= 2;
}
if ($flyingClubMember === true) {
$multiplier *= 2;
}
return $multiplier;
}
}

Our index.php file looks much the same as it did earlier, except we inject an instance of MilesCal-
culator into MilesUI:



© 00 N O U b W N =

Y
(]

SOLID Design Principles 7

<?php

require_once( 'MilesUI.php');
require_once( 'Calculator.php');
require_once( 'MilesCalculator.php');

$calculator = new MilesCalculator();

$ui = new MilesUI($calculator);
echo $ui->render();

Notice that so far in this book, we’ve been testing code snippets by running them from the terminal?
In this example let’s do things slightly differently and use the in-built development server in PHP
by running this command from the terminal:

php -S localhost:8000

The server will then spin into action and we can access webpage at http://localhost:8000:

junades-mbp:afterRefactoring junade$ php -S localhost:8000

PHP 7.1.1 Development Server started at Sun Feb 19 22:36:01
2017

Listening on http://localhost: 8000

Document root is /Users/junade/Desktop/phpBook2Code/4/Singl

eResponsibilityPrinciple/afterRefactoring

Press Ctrl-C to quit.




SOLID Design Principles 8

Let’s fill out the form with a 3000 mile business class flight with Flying Club membership:

00 localhost:8000

& ' @ localhost:3000

Distance: 3000

Business Class Flyer: «#
Flying Club Member: ¥

Submit

With the form filled out, we should then get a result of 12000 reward miles:

000 localhost:8000

& ' @® localhost:8000

You have: 12000 miles.

The Single Responsibility Principle can be violated in many other ways; if we had a system for
employee data with the underlying data being stored in JSON, we should avoid creating a class
which simultaneously contains business logic for the employee data whilst also having the class
hold the logic for dealing with the persistence layer (storing and managing the JSON in the file
system).



<N O O B W N =

SOLID Design Principles 9

The Single Responsibility Principle is one of the most core principles to writing Object-Oriented
code and it should be something you start to do naturally by considering the axis for change for
each class.

Open/Closed Principle

The Open/Closed Principle states “software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification”.

Simply, this means that we should be able to extended a given piece of software without needing
to modify it’s source code. In the context of OOP, this means we should be able to extend a classes
behaviour without needing to modifying it. This fundamentally comes down to two core attributes:

« “Open for Extension” - we can make the class behave in new ways as the requirements for
what the class needs to do evolves

« “Closed for Modification” - you cannot change the source code of the class itself, it is
considered inviolable

This principle is said to be originally coined by the French software engineer, Bertrand Meyer, in his
1988 book Object Oriented Software Construction.

Whilst these principles may seem at odds with each other, they aren’t. Let me demonstrate how
we can extend a class using the Object Decorator Pattern. Imagine our MilesCalculator class from
earlier needs to be extended for a new MilesPlus program. With a MilesPlus credit card, Flying Club
members in Business class get a 1500 mile bonus for each flight - if these criteria aren’t met the
standard calculator applies.

Our Calculator interface is the same as before:

<?php

interface Calculator

{
public function calculate(int $distance, bool $businessClass, bool $flyingCl\

ubMember): int;

}

The same goes for our MilesCalculator class from before:



O N O O & W N~

NN NN NDDNDDNDNDDN A B 1 sl |y s
0 N O O b W N~ OO O 00 O O b W N~ O O

© © 00 N O O b W N =

N

SOLID Design Principles 10

<7php

class MilesCalculator implements Calculator

{

public function calculate(int $distance, bool $businessClass, bool $flyingCl\
ubMember): int

{
$multiplier = $this->getMultiplier($businessClass, $flyingClubMember);
return $distance * $multiplier;
}
private function getMultiplier(bool $businessClass, bool $flyingClubMember):\
int
{
$multiplier = 1;
if ($businessClass === true) {
$multiplier *= 2;
}
if ($flyingClubMember === true) {
$multiplier *= 2;
}
return $multiplier;
}
}

Our MilesPlusCalculator is where things start to get interesting, we are treating this like the
MilesCalculator by implementing the Calculator interface:

<?php

class MilesPlusCalculator implements Calculator

{

private $milesCalculator;

public function __construct()

{

$this->milesCalculator = new MilesCalculator();



11
12
13
14
15
16
17
18
19
20
21
22
23
24

SOLID Design Principles 11

public function calculate(int $distance, bool $businessClass, bool $flyingCl\
ubMember): int

{
$miles = $this->milesCalculator->calculate($distance, $businessClass, $f\
lyingClubMember);
if ($businessClass === true && $flyingClubMember === true) {
$miles += 1500;
}
return $miles;
}

When the new class is instantiated, it creates a private instance of the MilesCalculator class and
stores it in $milesCalculator for when it needs it. When the calculation actually takes place, the
calculate() method uses the $milesCalculator instance to find what the old value should be then
if the criteria for the bonus miles are met - the method adds them too.

Liskov Substitution Principle

In it’s simplified form: “Functions that use pointers or references to base classes must be able to use
objects of derived classes without knowing it”.

Fundamentally this principle means that any class should be substitutable for it’s base class or
interface; if we have an interface called Shape and a class called Square, we should be able to replace
any instance of Square with another object that meets the Shape interface and it should work as
normal. This definition of a subtype relation was named after Barbara Liskov in a 1987 conference
keynote address titled Data abstraction and hierarchy.

Suppose we have an abstract class called Staff (this could just as easily be an interface or a normal
class), to this we’re going to add two concrete implementations of this in Manager and Executive:



O N O O & W N~

NN NN B P 1 | sl
W N, O O© 03O0 O b W N~ O O

0 N O O & W N =

N S U
B W N = O O

SOLID Design Principles

<?php

abstract class Staff

{
protected $baseSalary;
private $paid;
public function __construct(double $baseSalary)
{
$this->baseSalary = $baseSalary;
}
public abstract function getWeeklyHours(): double;
public abstract function getSalary(): double;
public function pay(double $bonus): bool
{
$this->paid += $this->getSalary() + $bonus;
return true;
}
}

The first concrete implementation we’ll build will be Executive:

<?php

class Executive extends Staff

{
public function getWeeklyHours(): double
{
return 37.5;
}
public function getSalary(): double
{
return $this->baseSalary;
}
}

Similarly, we can build another concrete implementation called Manager:



O N O O & W N~

S G
D WO, O

0 I O O b WO N =~

S
© 00 9 O O » WO NN~ O ©

SOLID Design Principles 13

<7php

class Manager extends Staff

{
public function getWeeklyHours(): double
{
return 40;
}
public function getSalary(): double
{
return $this->baseSalary * 1.2;
}
}

However; now suppose we want to add an UnpaidIntern class - we will quickly find that the pay ()
would end up needing to be overwritten to do absolutely nothing:

<?php

class UnpaidIntern

{
public function getWeeklyHours(): double
{
return 35;
}
public function getSalary(): double
{
return O;
}
public function pay(double $bonus): bool
{
return false;
}
}

Our UnpaidIntern class is extending our Staff class but changing the behaviour of the underlying
Staff abstract method so it breeches this principle. Suppose we then add an additional method to
our UnpaidIntern class, this poses another breech of the principle:



O 00 9 O O b W N =~ W N -

N
S

SOLID Design Principles 14

public function makeCoffee(): bool

{

return true;

As we have added a public method which doesn’t exist in the original interface, we introduce a
situation whereby instances of the UnpaidIntern class cannot be substituted for other instances of
the Staff abstract class.

Another more hypothetical example that has been coined before is the example of aRectangle class
which mandates a setWidth() and a setHeight() method. When we extend this class to a Square
class mandating both a setWidth() and a setHeight() method no longer makes sense. You change
one property, and the other must change - all sides must be equal in a square. It is a mathematical
impossibility to independently change the $width and the $height property when we talk about a
square. Therefore the Square inheriting a Rectangle class fails the Liskov Substitution Test as you
cannot ensure they’re both the same without having a check after the property has been changed to
make sure both the $width and the $height property are the same.

Interface Segregation Principle

The Interface Segregation Principle states that no client should be forced to depend on methods it
does not use.

This principle essentially outlines that we should favour small, specific interfaces over large bloated
ones. All classes should only have to implement the methods they need - this helps keep our system
decoupled. I'll demonstrate this with a simple example of a CardReader interface:

<?php

interface BadCardReader

{
public function __construct(string $cardNumber, string $expiry, string $pin);
public function withdraw(double $amount): bool;
public function deposit(double $amount): bool;

}

In order for a ATM to implement this interface, it has to have a deposit() method, even if it might
only be used for withdrawing money from accounts with the withdraw() method. Similarly a
DepositKiosk class might only need the deposit() method but it has to contain the withdraw()
method.



0 N O O & W N =~ ©O© 00 9 O O b W N =

0 N O Ol & W N =~

SOLID Design Principles 15

Let’s simplify the interface down so that the new CardReader interface contains the constructor and a
method which generates the security auth tokens required to check balances, perform withdrawals
and add deposits. We can leave the logic which actually does that behaviour in a separate class
which satisfies a separate interface. In short we are closely aligning our CardReader interface to a
single responsibility and in doing so we ensure that classes implementing it don’t have to depend
on methods they don’t use:

<?php

interface CardReader

{
public function __construct(string $cardNumber, string $expiry, string $auth\

Code);

public function getAuthCode(): double;

We can then build an interface for CashDispenser which our ATM class will later be able to use:

<?php
interface CashDispenser
{

public function __construct(CardReader $reader);

public function withdraw(double $amount): bool;

By injecting an instance of CardReader into the CashDispenser we are able to use the getAuthCode()
method from the CashDispenser() method. In a similar light, we are are also able to build an
interface for our DepositKiosk using the CashDepository interface:

<?php
interface CashDepository
{

public function __construct(CardReader $reader);

public function deposit(double $amount): bool;



O© 00 9 O O P W N =

Bl S s s
0 9 0 O b 0ON =~

SOLID Design Principles 16

We now have two specific interfaces, meaning our CashDispenser interface isn’t bloated and
ensuring our classes are decoupled from each other. Interface Bloat is an anti-pattern by which
interfaces become so large that code which has different responsibilities becomes tied together in
one interface. By abiding by the Interface Segregation Principle we help ensure Interface Bloat is
prevented and our code remains decoupled well.

Dependency-Inversion Principle

The Dependency-Inversion Principle is stated in two parts:

 High-level modules should not depend on low-level modules. Both should depend on
abstractions.

« Abstractions should not depend on details. Details should depend on abstractions.

When developing software it is common for us to have high-level classes which need to depend on
low-level classes. We can have a Users class which depends upon a Database class. In Chapter 3 we
actually looked at an example of using a class to read from a JSON file, I'll use a truncated versioned
of that example here. We start with a JSON file that looks like this:

{
"text": "junade.com",
"type": "link"

}I

{

"text": "It's raining today.",
lltypell : "teXt”

1

{
"text": "icyapril.com",
"type": "link"

},

{

"text": "Hello world!",

lltypen . "teXt"

Accordingly we have a simple class to read the JSON file (our low-level module):



O N O O & W N~

W W W W W W WwWwWwNNDNDNDDDNDNDNDDNDNNNASEAEPAEPASEPS, PSS s
0 N O Ol b WODN- O O© 03O0 Ol WON PO © 00 3O O b OWN O O

SOLID Design Principles

<?php

class JSON

{
private $data;

public function __construct(string $file)

{
$this->processFile($file);
}
private function processFile(string $file)
{
$contents = file_get_contents($file);
$array = json_decode($contents);
$arrayReverse = array_reverse($array);
$this->data = $arrayReverse;
}
public function getData(): array
{
return $this->data;
}
public function getDataByType(string $type): array
{
$result = [];
$data = $this->getData();
foreach ($data as $entry) {
if ($entry->type === $type) {
array_push($result, $entry);
}
}
return $result;
}

This low-level module is in turn consumed by our high-level module (our Link class):

17



SOLID Design Principles 18

1 <?php
2
3 class Link
4
5 private $data;
6
7 public function __construct(JSON $data)
8 {
9 $this->data = $data;
10 }
11
12 public function getContent(): Generator
13 {
14 $links = $this->data->getDataByType('link');
15
16 foreach ($links as $1link) {
17 yield $link->text;
18 }
19 }
20}
There is, however a fairly major issue in this Link class - what if we want to read from an XML file
instead of a JSON file? Our current Link class makes explicitly clear that we are injecting a concrete
JSON class instead of a generic File interface. In order to comply with the Dependency-Inversion
Principle we need to build a File interface for our JSON file:
1 <7php
2
3 interface File
4 A
5 public function __construct(string $file);
6
7 public function getData(): array;
8
9 public function getDataByType(string $type): array;
10}

Let’s go ahead and amend our JSON class to implement this:



D W N~

0 N O O & W N~

(RN
N O ©

SOLID Design Principles

<7php

class JSON implements File

With this in place our constructor for our Link class can be refactored so it type hints for the File

interface instead of the concrete JSON class.

public function __construct(File $data)

Finally, our index.php file demonstrates how this can all be put together:

<?php

require_once('File.php');

require_once('JSON.php');

require_once('Link.php');

$data
$link

foreach

new JSON('data.json');
new Link($data);

($link->getContent() as $content) {

echo $content. "\n";

The script outputs the links we desired; the added benefit is now that should we want to replace our
low-level JSON class, we can do that so long as the File interface is met:



SOLID Design Principles 20

junades-mbp:Dependency-InversionPrinciple junade$ php index.php
icyapril.com

junade.com

junades-mbp:Dependency-InversionPrinciple junade$

Conclusion

In this chapter we’ve discussed the SOLID Design Principles and how they can help make sure you
write great code; ensuring your code is decoupled, extendable and will be easy to test later down the
road. There are some things here which go unsaid; you still need to ensure your code is descriptively
named and that you aren’t repeating code.

In the next chapter we’ll start to discuss Design Patterns which provide effective but reusable
solutions to common programming problems.



	Table of Contents
	SOLID Design Principles
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency-Inversion Principle
	Conclusion


