nodebots

javascript and robotics
in the real world

By Wilson Mendes

Nodebots - Javascript and robotics in the real
world

Wilson Mendes

This book is for sale at http://leanpub.com/nodebots-javascript-and-robotic-in-the-real-world

This version was published on 2020-05-12

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2020 Wilson Mendes

http://leanpub.com/nodebots-javascript-and-robotic-in-the-real-world
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction e

Supporting Your Code on Multiple Operating Systems
Adding Continuous Integration Servers to Your Project

Introduction

This book is for anyone who wants to take the first steps on Nodebots or has an interest in deliving
into some concepts that are poorly demonstrated on the subject.

It will be shown contents with simple and low-cost sensors, however relating the sensors with
real integrations of a nodebots application, such as integration between external APIs from events
reading some sensor data, among others.

In addition, the book is covering important topics in the test questions, showing good practices for
testing coverage and how to test with quality and performance, with integrations in external services
for automation of code quality and build validation tasks.

Another point is the evolution of the application with a focus on the architecture itself. How to use
software architecture standards in any type of project and how to take advantage of each of them
applying to your system.

Supporting Your Code on Multiple
Operating Systems

In this stage of the book, we will then validate and verify the coverage of tests in our project on
different operating systems, as well as enable different web services for workflow improvements,
such as continuous integration tools and code coverage.

This step is very important because these tools help us in the security process of our code, checking
different criteria of acceptance of our application in an automated way.

Adding Continuous Integration Servers to Your Project

Like all quality projects, our Nodebots project will be concerned with some other aspects, such as
automating the test suite, build and other tasks relevant to our project.

For this, we will rely on the help of a continuous integration server. There are several in the market,
being free or paid, and in this stage of the book, we will know a little more about the operation and
configuration of two of them: Travis-CI and Appveyor.

Travis-Cl: Checking Your Code on Linux and OSX

Knowing that currently, the most used operating systems are Unix/Linux, Windows and OSX we
will create checks for each of them and for this the Travis-CI comes into play.

It is one of the most famous services of continuous integration' and assists in the process of
integrating the new features or bug fixes of the code of the current project in several Environments,
and can even deploy for production if all the validation steps are correct.

Let’s go to the official project site travis-ci* and enable access using our Github account. Click on
the “Sign up” button and enable access to your repositories.

'http://blog.caelum.com.br/integracao-continua/
*https://travis-ci.org/

http://blog.caelum.com.br/integracao-continua/
https://travis-ci.org/
http://blog.caelum.com.br/integracao-continua/
https://travis-ci.org/

Supporting Your Code on Multiple Operating Systems 3

Travis €| ser s

Test and Deploy with Confidence

Easily sync your GitHub projects with Travis Cl and you'll be testing your code in minutes!

[] ® Travis Cl - Test and Deploy with Confidence

Tra\/is C! Blog Status Help Sam lamm ﬂ

Search all repositories green-eggs/ham ©

My Repositories Current Branches BuildHistory Pull Requests [oedting: = |
 green-egg/ham 2 [B master adding in Oh the places you'll go! 209 passed C,
You'll be on'y our way up! g by
Duration: 30 sec gl You'll be seeing great sights! ommiceoLy 22 o
Finished: less than a minute ago Compare 88f312a..d019f29 et
ran for 53 sec
 one-fish/two-fish 2686 e Sven Fuchs authored and committed about 2 hours ago

Duration: 33 min 46 sec

Finished: 30 minutes ago

XZ Removelog §% Download Log

+ hop-on/pop 7001

Duration: 22 min 54 sec . = — -
Finished: about an hour ago q
|

Travis-CI Service Site

After this step, you will be redirected to a new page with all your repositories. To add a new one
just click on the “+” icon next to the text “My Repositories”.

Travis ClI @® Blog Status Help

allepos Q willmendesneto / ng-numbers-only ©
My Repositories ~ + Current Branches Build History Pull Requests
V' willmendesneto/ng-numbers-onl. $f 21 v master feat(ngNumbersOnly): force precise decimals in input -o- #21 passed
(© Duration: 1 min 33 sec ;) Commit d46a274 (& Elapsed time 1 min 33 sec
7 Finished: about 19 hours ago) Compare 7db6eca..d46a274 7 about 19 hours ago

Page of a repository configured in Travis-CI

Now, you will be redirected to a new page with all your repositories. To add a new one just click on
the “+” icon next to the text “My Repositories”.

This next step is very simple since the page has a tutorial showing each of the steps to enable the
integration of Travis-CI with its repository in Github, as we can see in the image below.

g b W N =

Supporting Your Code on Multiple Operating Systems 4

Will Mendes

We're only showing your public repositories. You can find your private projects on travis-ci.com.

tra
L
Flick the repository Add .travis.yml file Trigger your first
switch on to your repository build with a git push

Synchronizing repositories with the service

On the same page, all your repositories will be listed so you can choose and enable Travis-CI
integration with your project. To enable it, just click the grey button with an “X” and when it changes
colour to green it means that everything went as expected and its repository is synchronised with
Travis-CL

Travis-Cl is fully configurable and you can add information from a wide range of commands, from
commands to be invoked before, during or after the build, and even configure the types of operating
systems that the tasks should take place.

These settings will be in the .travis.yml file that will be in the root folder of our project. Let’s
explain a bit more about configuring these tasks in Travis-CI.

03 willmendesneto/build-checker

Activating travis webhook

First, in the .travis.yml file, we will add the os field, with the appropriate information of the
operating systems used for our tests.

0s:
- linux

- 0OSX

We will also add the "node_js" field, which will be our information about the Node]JS versions that

Bw N

Bw N

o N O O b W N =

Supporting Your Code on Multiple Operating Systems 5

the tasks should be used in our tasks. In our case, we will only add one version, but we could add
several others based on our support needs, for example.

node_js:
- '12.16.2°'

Our continuous integration server is nothing more than a container with a complete operating
system. So we can also configure environment variables in it. In this case, we will add the variable
NO_SERIALPORT_INSTALL, specifying that we should not install the ‘serialport’ package in this case
because it is a test that uses a mock of a physical board.

NOTE: The idea of this book is to focus on the concepts directly related to Nodebots and integrations
with the javascript repository created, so I will not explain the concept of containers. If you want
to know more about this concept used by Travis-CI, visit the official Docker project website®.

env:
- NO_SERIALPORT_INSTALL=1

We can also define the set of tasks that will be used before and after our Travis script. In this case,
we will use before for the commands that must occur before our main script and after for the
commands that must occur after the Travis commands, as you can see in the following code snippet:

before_script:

- 'npm install’

after_script:
- 'make test'

In this case, we are installing our dependencies and running our tests. All this in a very simple and
well-defined way. The contents of our .travis.yml file with all the changes will be as follows:

*https://www.docker.com

https://www.docker.com/
https://www.docker.com/

O© 00 I O O b W N =

I =S =N
W N s,

Supporting Your Code on Multiple Operating Systems

language: node_js

0Ss:
- linux
- 0SX
node_js:
- '12.16.2"

before_script:

- 'npm install’

after_script:
'make test'
env:
- NO_SERIALPORT_INSTALL=1

We can see that the Travis-CI build is a bit different now since we are running the same setup on
Linux and OSX operating systems, identified by the icons of each operating system.

v 25.1 Node.js: 5.3.0 NO_SERIALPORT_INSTALL=1 4 min 33 sec

v 25.2 Node.js: 5.3.0 NO_SERIALPORT_INSTALL=1 5min 47 sec

List of used operating systems

With the integration tested, let’s then put the Travis-ci badge in our README . md file in the repository.
With this, you will see an image with the status of the build.

1 [![Build Status](https://travis-ci.org/willmendesneto/build-checker.png?branch=maste\
2 r)](https://travis-ci.org/willmendesneto/build-checker)

With this, we have finished our integration with Travis-CI continuous integration server and we
have our entire suite of tests running on Linux and OSX systems. In this next step we will configure
the same tasks, but to be verified by the Windows operating system, using another continuous
integration server called Appveyor.

	Table of Contents
	Introduction
	Supporting Your Code on Multiple Operating Systems
	Adding Continuous Integration Servers to Your Project

