
Libro de tapa dura

Plantilla de portada: de izquierda a derecha

Libro: 7" x 10"

(177.80 mm x 254.00 mm)

Dimensiones totales: 16.257" x 11.417"

(412.92 mm x 290.00 mm)

Ancho del lomo: 0.682"

(17.32 mm)

Color prémium

210 páginas

Papel blanco

Portada

7" x 10"

(177.80 mm x 254.00 mm)

Línea continua negra = tamaño de impresión
Aquí es donde se cortará el libro en función del tamaño final de impresión.

Línea discontinua azul = pliegue del lomo
Aquí es donde están el lomo y el borde de la portada de su libro.

Línea discontinua/con puntos azules = borde de la bisagra
El área de la bisagra lleva una ranura que se pliega cuando se abre el libro. Esto significa que

cualquier logotipo o texto del área de la bisagra aparecerá distorsionado.

Área blanca = zona segura
En esta área puede poner los logotipos, el texto y las imágenes más importantes.

Área roja = Zona no segura/contracanto
La imagen de fondo debe llenar el área roja. No coloque los logotipos, el texto ni las imágenes

más importantes en la zona roja. Si su imagen no cumple estos requisitos, es posible que la

rechacemos.

ELIMINAR ESTA CAPA DE PLANTILLA DEL DISEÑO FINAL
Todo lo que sea visible en el diseño digital será visible también en el diseño impreso.

Contraportada

7" x 10"

(177.80 mm x 254.00 mm)

Código de barras

Ubicación y tamaño

2.000" x 1.200"

(50.80 mm x 30.48 mm)

A
n
c
h
o
 d

e
l lo

m
o
: 0

.6
8
2
" (1

7
.3

2
 m

m
)

Discover the future of systems control with this

innovative book on identification and adaptive control.

Written by an industrial engineer with specialized training in

automatic control and machine learning, this book offers a modern

and practical perspective on the design of adaptive systems

applied to real-world environments, guiding readers step by step

from linear control theory to nonlinear adaptive control.

It delves deeply into the theoretical and practical foundations of

systems control, with a focus on online machine learning. Ideal for

students, researchers, and engineers, it presents powerful tools for

addressing the identification and control of nonlinear systems in

real time.

The book includes practical examples programmed in MATLAB,

freely available on the book’s website, enabling applied

understanding of each concept. Additionally, it contains detailed

mathematical demonstrations to strengthen comprehension of the

fundamentals of adaptive control.

Whether you are beginning in the field or looking to expand your

skills in intelligent control, this book is an essential guide to the

control technologies of the future.

𝑧−1

𝐴

𝐶
ො𝑥(𝑘)ො𝑥+(𝑘 + 1) ො𝑦(𝑘)

𝐾

+

+
+

− 𝑦(𝑘)

ො𝑥−(𝑘 + 1)

N
E
U

R
A
L
 N

E
T
W

O
R
K
S
 A

N
D

 A
D

A
P
T
IV

E
 C

O
N

T
R
O

L
C
.A

.L
 S

E
G

U
R
A

Neural Networks and
Adaptive Control
AN ONLINE MACHINE LEARNING PERSPECTIVE

+
𝜇 𝑧−1

1 − 𝜇

𝑧−1𝛾

1 − 𝜇

+
+

+
+

+

𝜇

NEURAL NETWORKS
AND ADAPTIVE CONTROL

AN ONLINE MACHINE LEARNING PERSPECTIVE

CAL Segura

2025

Copyright © 2025 by CAL Segura
All rights reserved.

ISBN (Hardcover): 978-84-09-77486-9

Published by the author/editor
CAL Segura
neuralnetadaptivecontrol@gmail.com

Title: Neural Networks and Adaptive Control
Subtitle: An Online Machine Learning Perspective
Author: CAL Segura
Edition: 1st Special Edition (Translation from Spanish)
Entry date (Spanish edition): September 7, 2025
Spanish Copyright Registration: Nº expediente 00765-02815209
Registry: Registro Central de la Propiedad Intelectual, Spain

English version of the work originally published in Spanish:
Title: Neural Networks and Adaptive Control
Subtitle: Una perspectiva del aprendizaje automático en línea
Author: CAL Segura

Format: Hardcover (U.S.)

IBIC / THEMA Identifiers:
TJFM1 – Robotics (Featured Topic)
4T – For specific educational purposes
UP – Practical applications of information technology
GPFC – Cybernetics and systems theory
TJFM – Automatic control engineering

Neither this book nor any part of it may be reproduced or transmitted
by any means, whether electronic, mechanical, photocopying, recording,
or any information storage and retrieval system, without prior written
permission from the author/editor.

Acknowledgments

I deeply thank my daughter for her love and my partner for her patience
and constant support.

iii

iv

About the Author

C.A.L Segura holds degrees in Industrial Engineering and Electronic
Engineering, with a specialization in control systems and automation.
After extensive professional experience, he decided to pursue postgraduate
studies at a prestigious international institution, where he delved into
research areas related to adaptive control and machine learning. He is
currently engaged in independent technical publishing, focusing his work
on the intersection of artificial intelligence and control theory.

v

vi

Website

https://www.neuralnetadaptivecontrol.com/
neuralnetadaptivecontrol@gmail.com

The official website of the book serves as a complementary digital
platform, designed to expand and keep up to date the contents presented in
this work. It is aimed at students, researchers, and professionals interested
in adaptive control, state-space control, as well as its intersection with
machine learning, neural networks, and convex optimization.

Contact the author at neuralnetadaptivecontrol@gmail.com

vii

viii

Notation

This section explains in detail the notation that will be used throughout
this document.

States and Signals

x(t) State vector in continuous time

ẋ(t) Time derivative of the continuous-time state

x(k) State vector in discrete time

x(k + 1) State at the next discrete instant

u(t) System input in continuous time

u(k) System input in discrete time

y(t) System output in continuous time

y(k) System output in discrete time

Ts Sampling period

System Matrices

Ac, Bc, Cc, Dc Continuous state-space system matrices

Ad, Bd, Cd, Dd Discrete state-space system matrices

I Identity matrix of implicit dimension

ix

Laplace Transform and Transfer Functions

s Complex variable used in the Laplace transform

L{·} Laplace transform

L−1{·} Inverse Laplace transform

X(s), Y (s), U(s) Laplace transforms of x(t), y(t), u(t)

Φ(s) State transition function: Cc(sI −Ac)
−1

Υ(s) Generalized transfer function: Cc(sI −Ac)
−1Bc +

Dc

H(s), Hyu(s) Continuous transfer functions

Z Transform and Transfer Functions
z Complex variable used in the Z transform

Z{·} Z transform

Z−1{·} Inverse Z transform

X(z), Y (z), U(z) Z transforms of x(k), y(k), u(k)

Φ(z) State transition function: Cd(zI −Ad)
−1

Υ(z) Generalized transfer function: Cd(zI −Ad)
−1Bd +

Dd

H(z), Hyu(z) Discrete transfer functions

x

Modeling and Learning

e[k] Error between actual and estimated output

ŷ[k] Estimated system output

ε[k] Model error

J [k] Instantaneous cost: 1
2e[k]

2

η Learning rate

ϕ[k] Feature vector

w[k] Adaptive parameter vector

∆w[k] Change in adaptive parameters

n Vector of past inputs

ŷ Vector of past estimated outputs

Xk Combined vector for inner product

∇θL Gradient of the loss function with respect to pa-
rameters θ

Neural Networks and Functions
f(x) Target function to approximate

g(x) Neural network approximation

ϵ Approximation tolerance

W(ℓ) Weight matrix of layer ℓ

b(ℓ) Bias vector of layer ℓ

a(ℓ) Activations of layer ℓ

z(ℓ) Weighted input to layer ℓ: z(ℓ) = W(ℓ)a(ℓ−1)+b(ℓ)

δ(ℓ) Back-propagated error (delta) in layer ℓ

L Total number of layers (includes hidden and output
layers)

xi

Linear Algebra and Operations

adj(A) Adjugate matrix of A

det(A) Determinant of A

⟨x,y⟩ Inner product between vectors

∥x∥ Norm of vector x

A⊤ Transpose of matrix A

⊙ Element-wise product (Hadamard)

⊗ Outer product between vectors or matrices

◦ Composition of functions

∇ Gradient operator

xii

Contents

Acknowledgments iii

About the Author v

Website vii

Notation ix

1 Linear Algebra Tools 1

1.1 Dot Product or Scalar Product 2
1.2 Norms and Lengths . 3
1.3 Continuous convolution and discrete convolution 5
1.4 Matrices . 6
1.5 Eigenvalues and Eigenvectors 8
1.6 Jordan Normal Form . 10
1.7 Singular Value Decomposition (SVD) 11
1.8 Complex Numbers . 13
1.9 Moments and Central Moments 14
1.10 From Laplace to Fourier: a Connection on the Imaginary

Axis . 16
1.11 Discrete Fourier Transform (DFT) 19
1.12 Definition of a Linear System 19
1.13 LaSalle’s Invariance Principle 20
1.14 Barbalat’s Lemma . 21
1.15 Lyapunov Stability Theorem 21

2 Representation of Dynamical Systems 22

xiii

2.1 Second-Order Differential Equation and Its Analysis in the
Laplace Domain . 24

2.2 Continuous State-Space Representation 25

2.3 Discrete State-Space Representation 27

2.4 Discrete Transfer Function 32

2.5 Difference Equation . 34

2.6 FIR and IIR Architectures 37

2.7 Recurrent Neural Networks (RNN) 38

2.8 The Universal Approximation Theorem 40

3 Fundamentals of Adaptive Systems and Information The-
ory 43

3.1 Introduction to Time Series 44

3.2 Similarity Between Time Series 46

3.3 The Squared Error and Its Properties 46

3.4 Information Potential . 51

3.5 The Ideal Impulse and Its Limitations 55

3.6 Persistence of Excitation (PE) 56

4 Identification of Discrete Dynamic Systems 58

4.1 Analytical Estimation of First- and Second-Order Systems
in the Transfer Function Domain 59

4.2 Analytical Estimation of Higher-Order Systems in the
Transfer Function Domain 62

4.3 Sine Sweep Method . 66

4.4 Linear Mapping Functions: From Transfer Function to
State-Space . 67

4.5 State Space and Neural Networks 70

4.6 Nonlinear Mappers: Fundamentals and Development . . . 75

4.7 Determination of the Optimal in MSE: Wiener-Hopf Ap-
proach . 77

4.8 Online Learning . 88

4.9 Autonomous System and Adaptive Filter 90

4.10 Identification through Observer Theory 103

5 Control of Discrete Dynamic Systems 113

xiv

5.1 Evolution of Control Theory 113
5.2 Stability of Systems . 115
5.3 Step Response . 117
5.4 Frequency-Domain Design of Closed-Loop Control 120
5.5 Beyond SISO: Fundamentals of MIMO Systems 129
5.6 State Feedback . 130
5.7 Output state feedback control 134
5.8 State-Space Feedback Control 140
5.9 Ideal Nonlinear Control 147
5.10 Introduction to Adaptive Control 154
5.11 Nonlinear Control under Uncertainty 155
5.12 Concurrent Learning . 166
5.13 Integral Concurrent Learning 174
5.14 Adaptive Nonlinear Control with Stochastic Parameter

Variations . 179
5.15 Plants Subject to Saturation 185
5.16 Filtered Error . 186
5.17 Backstepping Control Considering Actuation Errors 189
5.18 Unstructured Uncertainty Modeling 190
5.19 Machine Learning Based Controllers 192
5.20 Conclusions . 196

Bibliography 198

Index 200

xv

xvi

Chapter 1

Linear Algebra Tools

“The century of data has begun! The truth is that vectors and
matrices have become the language to know.” Gilbert Strang
Strang [2016]

This chapter introduces basic tools of linear algebra that will be used
throughout the mathematical developments in this book. The automatic
control of discrete systems, system modeling, and, more generally, the
online study of linear and nonlinear systems rely on the acquisition or
estimation of numerical values in real time. The historical numerical data
generated by any industrial process, captured through data acquisition
systems, have a direct mathematical correspondence with vectors and
matrices in an n-dimensional space.

Consequently, the processing of a single time series—or a set of
them—is directly connected to the fundamental properties of linear alge-
bra. Furthermore, in the context of adaptive systems or systems employing
online convex optimization, the analysis of these time series allows us to
uncover the essential characteristics of the system or process under study.

For these reasons, this chapter presents several linear algebra tools
that will be developed and applied throughout the book. These tools
provide a formal framework to link historical sensor data—essentially time
series represented as vectors or matrices—with the underlying algebraic
properties that govern their behavior.

1

Neural Networks and Adaptive Control

1.1 Dot Product or Scalar Product

The dot product, also known as the scalar product and called dot product
in English, is an operation between two vectors of the same size that
results in a real number (scalar). It is used to measure the angular
relationship between vectors and has fundamental applications in linear
algebra, geometry, physics, and machine learning.

Algebraic Definition

Given two vectors in Rn:

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) (1.1)

The dot product is defined as:

u · v = u1v1 + u2v2 + · · ·+ unvn =

n∑

i=1

uivi (1.2)

Geometric Definition

It can also be expressed in terms of the angle θ between the vectors:

u · v = ∥u∥ · ∥v∥ · cos(θ) (1.3)

where ∥u∥ and ∥v∥ represent the norms (lengths) of the vectors, and
θ is the angle between them.

If u ̸= 0 and v ̸= 0, the cosine of the angle can be solved as:

cos(θ) =
u · v

∥u∥ · ∥v∥ (1.4)

This expression is useful to determine whether two vectors are orthog-
onal cos(θ) = 0, parallel cos(θ) = ±1, or form any other angle between
them.

Properties

• Scalar compatibility: (cu) · v = c (u · v)

• Orthogonality: If u · v = 0, then the vectors are orthogonal (per-
pendicular).

2

Chapter 1. Linear Algebra Tools

Cauchy–Schwarz Inequality

For any pair of vectors u,v ∈ Rn:

|u · v| ≤ ∥u∥ · ∥v∥ (1.5)

Equality holds if and only if u and v are linearly dependent.

Triangle Inequality

For any pair of vectors u,v ∈ Rn:

∥u+ v∥ ≤ ∥u∥+ ∥v∥ (1.6)

Equality holds if u and v are collinear and point in the same direction.

Inner and Outer Product

- Inner product: Given two column vectors u,v ∈ Rn, their inner
product is

u⊤v = ⟨u,v⟩ =
n∑

i=1

uivi, (1.7)

which results in a scalar.
- Outer product: Given u ∈ Rm and v ∈ Rn, the outer product is

an m× n matrix defined by

u⊗ v = uv⊤, (1.8)

where each element is (uv⊤)ij = uivj .

1.2 Norms and Lengths

Typically, we use the notation ∥A∥ to refer to the norm of a matrix
and ∥v∥ to indicate the length or magnitude of a vector. However, it is
common in mathematical and scientific literature for both terms, norm
and length, to be used interchangeably, especially in the context of vectors.

Norms provide a way to quantify the size or magnitude of a vector or
matrix according to different criteria. In this section, we present the most
commonly used norms: the Euclidean norm, also called the 2-norm, its
squared version, and the generalized p-norm.

3

Neural Networks and Adaptive Control

2-Norm or Vector Length

The 2-norm, also known as the Euclidean length, measures the distance
from the origin to the point defined by the vector v ∈ Rn:

∥v∥ = ∥v∥2 =
√
v21 + v22 + · · ·+ v2n =

√
v · v = (v · v)1/2 (1.9)

It is the most widely used norm in geometry, physics, and engineering.

Squared Length or Squared 2-Norm

The squared length of a vector is simply the square of its 2-norm. It is
defined as:

∥v∥2 = ∥v∥22 = v · v = v21 + v22 + · · ·+ v2n (1.10)

This form is frequently used in computational and optimization con-
texts, as it avoids calculating the square root.

p-Norm

The p-norm of a vector v = (v1, v2, . . . , vn) ∈ Rn is defined for p ≥ 1 as:

∥v∥p =
(

n∑

i=1

|vi|p
)1/p

(1.11)

Important special cases are:

• ∥v∥1 =
∑n

i=1 |vi|: Manhattan norm or ℓ1

• ∥v∥2 =
√∑n

i=1 v
2
i : Euclidean norm or ℓ2

• ∥v∥∞ = maxi |vi|: infinity norm

All these norms satisfy the fundamental properties: positivity, homo-
geneity, zero-vector identity, and the triangle inequality.

4

Chapter 1. Linear Algebra Tools

Unit Vector

A unit vector is a vector whose norm is equal to one. It is obtained by
normalizing a vector v by dividing it by its Euclidean norm, that is,

v̄ =
v

∥v∥ , (1.12)

where ∥v∥ =
√
v21 + v22 + · · ·+ v2n is the Euclidean norm of the vector

v = (v1, v2, . . . , vn). In this way, the vector v̄ has length one and preserves
the direction of v.

1.3 Continuous convolution and discrete convolu-
tion

The convolution is a fundamental mathematical operation used to describe
how an input signal is modified by a system. It is widely applied in
the analysis of linear time-invariant (LTI) systems, signal processing,
automatic control, and deep learning.

1.3.1 Continuous convolution

Given two real functions f(t) and g(t) defined on R, their continuous
convolution is defined as:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ) g(t− τ) dτ. (1.13)

In the context of LTI systems, if f(t) represents the input to the
system and g(t) its impulse response, then (f ∗ g)(t) represents the output
of the system.

1.3.2 Discrete convolution

When functions are represented as discrete-time sequences, convolution
is defined as a weighted sum of products. Given two sequences x[n] and
h[n], their discrete convolution is given by:

y[n] = (x ∗ h)[n] =
∞∑

k=−∞
x[k]h[n− k]. (1.14)

5

Neural Networks and Adaptive Control

In practice, if the sequences are finite and of bounded length, the sum
is evaluated over a limited interval.

y[n] =

M−1∑

k=0

x[k]h[n− k], for n = 0, 1, . . . ,M. (1.15)

In both cases, continuous and discrete, convolution can be understood
as an operation that measures the degree of overlap between a signal
and a shifted version of another. This allows modeling the output of a
system in response to any arbitrary input, as long as its impulse response
is known.

1.4 Matrices

1.4.1 Identity matrix

The identity matrix I is a square matrix of size n × n whose diagonal
elements are equal to 1 and the rest are 0. It is the neutral element in
matrix multiplication, that is, for any matrix A of compatible size:

IA = AI = A. (1.16)

1.4.2 Matrix multiplication

Matrix multiplication is not commutative in general, but it is associative.
For matrices A, B, and C of compatible dimensions, we have:

(AB)C = A(BC) (Associativity), (1.17)

but
AB ̸= BA in general (Non-commutativity). (1.18)

1.4.3 Augmented matrix

An augmented matrix is a matrix that combines two matrices, typically
a coefficient matrix and a column of independent terms in a system of
linear equations, for example:

[A|b] =



a11 · · · a1n | b1
...

... | ...
am1 · · · amn | bm


 . (1.19)

6

Chapter 1. Linear Algebra Tools

1.4.4 Inverse matrix

The inverse of a square matrix A is another matrix A−1 such that

AA−1 = A−1A = I. (1.20)

It only exists if A is invertible (non-zero determinant).

Inverse of a matrix product

For invertible matrices A and B, the reverse order property holds:

(AB)−1 = B−1A−1. (1.21)

Matrix transpose

The transpose of a matrix A, denoted as A⊤, is obtained by exchanging
rows with columns:

(A⊤)ij = Aji. (1.22)

Matrix rank

The rank of a matrix A, denoted as rang(A) or rank(A), is the maximum
number of linearly independent columns (or rows) of A. It is equivalent
to the number of non-zero pivots after applying Gaussian elimination (or
row reduction).

Another way to understand it is as the dimension of the column space
of A, that is, the subspace spanned by its columns.

For example, if A ∈ Rm×n, then:

rank(A) ≤ min(m,n). (1.23)

A matrix has full rank if its rank equals the minimum between its
number of rows and columns. This is often an important condition for
the existence and uniqueness of solutions in systems of linear equations.

Determinants and their properties

The determinant is a scalar value associated with a square matrix A ∈
Rn×n, denoted as det(A) or |A|. This number provides key information
about the matrix, such as its invertibility, orientation, and volume scaling.
The determinant of a matrix is zero when it has no inverse. The inverse

7

Neural Networks and Adaptive Control

of a 2× 2 square matrix, if it exists, can be computed using an explicit
formula. Given the matrix

A =

[
a b
c d

]
, (1.24)

its inverse exists if and only if det(A) ̸= 0, where

det(A) = ad− bc. (1.25)

In that case, the inverse is given by:

A−1 =
1

det(A)
adj(A) =

1

det(A)

[
d −b
−c a

]
(1.26)

where adj(A) is the transpose of the cofactor matrix of A.
The eigenvalues of a matrix A are obtained by solving the characteristic

equation:
det(A− λI) = 0, (1.27)

where λ represents an eigenvalue and I is the identity matrix.

Determinant of a triangular matrix

If a square matrix A is upper triangular or lower triangular, its
determinant is equal to the product of the elements on its main diagonal.

det(A) = a11 · a22 · · · ann =

n∏

i=1

aii (1.28)

This property significantly simplifies the computation of the deter-
minant, especially in elimination methods such as LU factorization or
Gaussian elimination.

Example:

A =



2 3 1
0 4 5
0 0 −1


 ⇒ det(A) = 2 · 4 · (−1) = −8 (1.29)

1.5 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, an eigenvector (or characteristic
vector) x ̸= 0 and an eigenvalue λ ∈ R satisfy the equation:

8

Chapter 1. Linear Algebra Tools

Ax = λx. (1.30)

This means that multiplying the matrix A by the vector x results in
the same vector scaled by the scalar λ.

This property has an important computational use: if x is an eigen-
vector of A, then:

Akx = λkx, for all k ∈ N. (1.31)

That is, raising A to a power and applying it to x is simply equivalent
to scaling x by λk, which is much more computationally efficient.

Eigenvalues are obtained by solving the characteristic equation:

det(A− λI) = 0. (1.32)

The number of eigenvalues of a matrix A ∈ Cn×n (counting multiplic-
ities) equals the number of roots of the characteristic polynomial

p(λ) = det(A− λI) = 0, (1.33)

That is, there will be n eigenvalues, some of which may repeat accord-
ing to their algebraic multiplicity.

If x are the eigenvectors corresponding to the eigenvalue λ, then:

(A− λI)x = 0, (1.34)

Therefore, by solving the previous equation for each eigenvalue, we
find the eigenvector x associated with that eigenvalue.

Let A ∈ Cn×n be a square matrix with eigenvalues λ1, λ2, . . . , λn
(counting multiplicities). Then:

n∏

i=1

λi = det(A) (1.35)

and

n∑

i=1

λi = tr(A), (1.36)

9

Neural Networks and Adaptive Control

where det(A) is the determinant of A and tr(A) is the trace of A,
that is, the sum of the elements on its main diagonal.

Note 1: In MATLAB®, we can compute eigenvalues and eigenvectors using
the command [V, D] = eig(A), where D is a diagonal matrix containing the
eigenvalues, and V contains the eigenvectors as columns; that is, A = V DV −1

if A is diagonalizable.

1.6 Jordan Normal Form

Given a square matrix A ∈ Cn×n, there exists an invertible matrix P such
that:

J = PAP−1 =




J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 Jp


 (1.37)

where J is the Jordan canonical form of A, and Jk is a special
block called a Jordan block.

1.6.1 Jordan block

A Jordan block Jk(λ) associated with the eigenvalue λ and of size n× n
has the form:

Jk(λ) =




λk 1 0 · · · 0
0 λk 1 · · · 0
...

.
...

0 · · · 0 λk 1
0 · · · · · · 0 λk



nk×nk

(1.38)

Here, each λk is an eigenvalue of A, and the number P of Jordan
blocks equals the total number of linearly independent eigenvectors of A.
The matrix J is unique and is called the Jordan normal form of A.

Note 2: Using MATLAB®, it is possible to compute the Jordan canonical
form of a square matrix A with the command [J] = jordan(A).

10

Chapter 1. Linear Algebra Tools

1.7 Singular Value Decomposition (SVD)

When the matrix A is not square, the direct computation of eigenvalues
is not possible, since eigenvalues are only defined for square matrices.
However, it is still possible to compute the singular values of a rectangular
matrix.

The Singular Value Decomposition, known as SVD, of a matrix
A ∈ Rm×n allows us to factorize it as the product of three matrices:

A = UΣV⊤, (1.39)

where:

• U ∈ Rm×m is an orthogonal matrix whose columns are the left
singular vectors of A.

• V ∈ Rn×n is an orthogonal matrix whose columns are the right
singular vectors.

• Σ ∈ Rm×n is a (possibly rectangular) diagonal matrix with the
singular values σ1 ≥ σ2 ≥ · · · ≥ 0 on its diagonal.

A = u1σ1v
⊤
1 + u2σ2v

⊤
2 + · · ·+ urσrv

⊤
r (1.40)

where ui and vi are the i-th columns of the orthogonal matrices U
and V, respectively, and σi is the i-th singular value, corresponding to a
diagonal entry of Σ.

Each singular value σi is the square root of an eigenvalue of the
symmetric matrix A⊤A, that is:

σi =
√
λi, where λi is an eigenvalue of A⊤A. (1.41)

The SVD is particularly useful for:

• Matrix approximation (rank reduction).

• Solving overdetermined or ill-conditioned systems.

• Understanding internal data structures in multivariate analysis (e.g.,
PCA).

11

Neural Networks and Adaptive Control

Note 3: Using MATLAB®, singular values of a matrix A can be computed
with the command S = svd(A), where S contains the singular values sorted in

descending order. The full decomposition can also be obtained with
[U, S, V] = svd(A).

Moore-Penrose Pseudoinverse

When a matrix A ∈ Rm×n is not square or not invertible, it is not possible
to compute a classical inverse. In such cases, the Moore-Penrose
pseudoinverse, denoted by A+, generalizes the concept of inverse for
rectangular matrices.

The pseudoinverse can be computed from the Singular Value Decom-
position (SVD) of the matrix:

A = UΣV⊤, (1.42)

then the pseudoinverse is given by:

A+ = VΣ+U⊤, (1.43)

where Σ+ is obtained by inverting the nonzero singular values in Σ,
transposing the matrix, and filling the rest with zeros.

The pseudoinverse has many applications, including dimensionality
reduction and regularization in machine learning and data processing.

Note 4: Using MATLAB®, the Moore-Penrose pseudoinverse of a matrix A,
square or rectangular, can be computed with the command A_pinv = pinv(A).

Matrix Norm

The norm of a matrix A, understood as its induced 2-norm or spectral
norm, is defined as:

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

. (1.44)

If the matrix A is not symmetric, its induced 2-norm can be computed
from the symmetric positive semidefinite matrix A⊤A, since it preserves
the necessary information about the singular values of A. In particular:

∥A∥2 =
√
λmax(A⊤A), (1.45)

12

Chapter 1. Linear Algebra Tools

where λmax(A
⊤A) represents the largest eigenvalue of the symmetric

matrix A⊤A. This square root equals the maximum singular value of A,
ensuring that:

∥A∥2 = σmax(A). (1.46)

Note 5: Using MATLAB®, different matrix norms can be computed with
the command norm(A, p), where A is a matrix and p specifies the type of

norm. For example: norm(A, 2) computes the spectral norm (largest singular
value), norm(A, ’fro’) the Frobenius norm, and norm(A, 1) or
norm(A, inf) the induced 1-norm and infinity-norm, respectively.

1.8 Complex Numbers

The transfer functions of a dynamic system, whether in discrete or contin-
uous time, as well as the eigenvalues obtained from the state-transition
matrix of a system, are often represented using complex numbers of the
form γ = a+ bi. In this expression, i denotes the imaginary unit, which
satisfies the fundamental property i2 = −1. It is worth noting that in
electrical engineering it is common to use j instead of i to avoid confusion
with the notation for electric current Strang [2016]. This imaginary num-
ber is deeply connected to important identities such as Euler’s formula,
where e2πi = 1, revealing the inherent periodicity in the complex plane.
The modulus of the complex number is given by |γ| =

√
a2 + b2.

The concept of complex numbers is essential in system analysis. On
one hand, in the Laplace Transform, the variable s is defined as a complex
number s = σ + ωi, where σ represents the real part (associated with
system damping) and ω corresponds to the angular frequency in radians
per second. On the other hand, in discrete systems we work with the
Z Transform, where the variable z is directly related to s through the
sampling period T via the expression z = esT = e(σ+ωi)T = eσT · eωTi.
In this formulation, the term eσT determines the magnitude behavior,
while eωTi provides information about the phase, elegantly connecting
the continuous and discrete worlds.

A complex number γ = a+ bi has a corresponding complex conjugate
defined as γ̄ = a− bi. Its inverse is given by 1

γ = γ̄
|γ|2 = γ̄

a2+b2
.

Consider a column vector γ = (γ1, . . . , γn)
⊤ in the space Cn of n-

tuples of complex numbers. The squared norm of γ is defined as the sum
of the squares of the moduli of its components:

13

Neural Networks and Adaptive Control

∥γ∥2 =
n∑

k=1

|γk|2 = |γ1|2 + |γ2|2 + · · ·+ |γn|2, (1.47)

where each |γk| represents the modulus of the complex number γk,
given by |γk| =

√
γkγk. This definition coincides with the canonical inner

product in Cn and generalizes the notion of Euclidean length to the
complex case. Note that when all γk are real, we recover the classical
formula for vectors in Rn.

For a complex vector γ ∈ Cn, its squared norm is obtained via the
product γ⊤γ, where γ⊤ represents the transpose of the conjugate vector.
This product, which equals the sum

∑n
k=1 γkγk =

∑n
k=1 |γk|2, always

yields a non-negative real scalar.

1.9 Moments and Central Moments

Moments are statistical measures that describe fundamental characteristics
of a random variable. Given a random variable X and a positive integer r,
the r-th order moment is defined as the expected value of the r-th power
of the variable:

µ′r = E[Xr], (1.48)

where µ′r is known as the r-th order moment about the origin. It
describes properties such as central tendency (r = 1), dispersion (r = 2),
skewness (r = 3), and kurtosis (r = 4), among others.

1.9.1 Central Moments

Central moments are a generalization that measures the powers of devia-
tions from the mean. The r-th order central moment is defined as:

µr = E[(X − E[X])r], (1.49)

where µr represents the r-th order central moment. In particular:

• µ1 = 0, since the mean of deviations from the mean is zero.

• µ2 = V[X] is the variance, measuring data dispersion.

• µ3 indicates skewness: if positive, the distribution has a right tail;
if negative, a left tail.

14

Chapter 1. Linear Algebra Tools

• µ4 relates to kurtosis, describing the concentration of values around
the mean and in the tails.

1.9.2 Relationship Between Moments and Central Moments

There is a relationship between central moments and moments about the
origin. For example, the second central moment (variance) can be written
as:

µ2 = E[X2]− (E[X])2 = µ′2 − (µ′1)
2. (1.50)

This relationship allows expressing central moments in terms of raw
moments and is useful for theoretical and computational analysis.

1.9.3 Interpretation as Outer Products

Central moments can be interpreted as outer products in the space of
random variables, particularly in terms of covariances. This interpretation
reveals an algebraic structure useful for statistical analysis and vectorial
treatment of random variables.

The second central moment, or variance, can be expressed as:

µ2 = Var(X) = E[(X − E[X])2], (1.51)

and represents the outer product of X with itself, in the sense of
measuring dispersion around its mean.

More generally, the outer product between two random variables
X and Y is given by their covariance:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])], (1.52)

which can be understood as a measure of the linear interaction be-
tween deviations of both variables from their means. This expression is
symmetric, bilinear, and plays a role analogous to an outer product in
multilinear algebra.

In matrix form, if we consider n random variables as a random vector
X = [X1, X2, . . . , Xn]

T , the second-order tensor given by:

Σ = E
[
(X− E[X])(X− E[X])T

]
(1.53)

15

Neural Networks and Adaptive Control

corresponds to the covariance matrix, which generalizes the idea of an
outer product to higher-dimensional spaces, and is central in multivariate
statistical analysis.

This approach provides a solid foundation for constructing orthogonal
decompositions, correlation analysis, dimensionality reduction (such as
PCA), and geometric formulations of statistics.

Note 6: In MATLAB®, central moments can be calculated manually or
using functions such as moment(x, n) from the Statistics and Machine

Learning Toolbox.

1.10 From Laplace to Fourier: a Connection on
the Imaginary Axis

The Laplace transform is one of the fundamental tools in control system
analysis and design, as it allows describing the dynamics of a system in
the complex domain using the variable s = σ + jω.

Laplace Transform

The Laplace transform of a signal x(t) is defined as:

X(s) = L{x(t)} △
=

∫ ∞

0−
x(t) e−st dt, s = σ + jω. (1.54)

Inverse Laplace Transform

The inverse Laplace transform allows recovering the original signal in the
time domain:

x(t) = L−1{X(s)} △
=

1

2πj

∫ σ+j∞

σ−j∞
(X(s) est)|s=σ+jω dω, (1.55)

Example: Inverse Transform of a Third-Order System

Consider a third-order linear system with a general transfer function:

H(s) =
b0s

2 + b1s+ b2
(s− p1)(s− p2)(s− p3)

, (1.56)

16

Chapter 1. Linear Algebra Tools

where p1, p2, p3 are the system poles, which may be real, complex, or
complex conjugates, and b0, b1, b2 are the numerator coefficients, deter-
mining the system zeros.

Using partial fraction decomposition, it can be expressed as:

H(s) =
A

s− p1
+

B

s− p2
+

C

s− p3
, (1.57)

where the coefficients A,B,C depend on the poles and numerator
coefficients.

Applying the inverse Laplace transform, the system’s time-domain
response is:

h(t) = L−1{H(s)} = Aep1t +B ep2t + C ep3t, t ≥ 0. (1.58)

Each pole pi in the Laplace domain contributes an exponential term
epit in the time domain, and the coefficients A,B,C modulated by the
zeros determine the amplitude of each component. Thus, the full time-
domain dynamics of the system are defined both by the pole locations
and the numerator coefficients of the transfer function.

We know that the poles belong to the complex domain p ∈ C →
p = σ + jω, and the associated exponential term in the time response is
therefore:

ept = e(σ+jω)t = eσt ejωt. (1.59)

Applying Euler’s formula, we can separate the real and imaginary
parts:

Re{ept} = eσt cos(ωt), Im{ept} = eσt sin(ωt). (1.60)

Thus, a complex pole generates a damped oscillatory term in the time
response, where its real part σ determines the decay or growth rate and
ω the oscillation frequency.

Since the evolution of the time response h(t) is determined by the
exponential term ept, both the real and imaginary parts of the response
grow or decay depending on the real part of the pole σ. From this
observation, one of the most important conclusions about the stability of
a continuous-time dynamic system defined by its transfer function follows:

• If the real part of all poles is negative (σ < 0), the time response
decays to zero (stable).

17

Neural Networks and Adaptive Control

• If the real part of any pole is positive (σ > 0), the time response
grows without bound (unstable).

• If the real part is exactly zero (σ = 0), the response remains constant
in magnitude, producing sustained oscillations in the case of complex
poles (marginally stable).

Consequently, the input-output stability of a continuous linear system
is completely determined by the location of the real component of the
poles in the complex plane.

Fourier Transform

The Fourier transform of a signal x(t) is defined as:

X(jω) = F{x(t)} =

∫ ∞

−∞
x(t) e−jωt dt. (1.61)

Its inverse transform allows recovering the original signal in the time
domain:

x(t) = F−1{X(jω)} =
1

2π

∫ ∞

−∞
X(jω) ejωt dω. (1.62)

Relationship Between Both

Notice that the Fourier transform 1.61 is similar to the Laplace transform
1.54, obtained by evaluating the complex variable s on the imaginary axis
jw, with a clear difference in the integration limits of the two equations.

When the signal x(t) is real, its Fourier transform satisfies the conjugate
symmetry property:

X(−jω) = X(jω), (1.63)

which reflects symmetry in magnitude and phase of the spectral
components.

In this way, the Laplace transform provides a more general framework,
while the Fourier transform focuses on spectral analysis, particularly
useful when the signal has finite energy or is stationary.

18

Chapter 1. Linear Algebra Tools

1.11 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is a fundamental tool for the
spectral analysis of discrete-time signals. It allows representing a finite
sequence of N samples in the frequency domain as a combination of
complex sinusoids.

Given a discrete-time signal x[n], defined for n = 0, 1, . . . , N − 1, the
DFT is defined as:

X[k] =

N−1∑

n=0

x[n] e−j 2π
N

kn, k = 0, 1, . . . , N − 1, (1.64)

where:

• X[k] represents the spectral value of the sequence at discrete fre-
quency k.

• The factor e−j 2π
N

kn corresponds to the orthogonal basis functions in
Fourier space.

The inverse transform, known as the IDFT (Inverse Discrete Fourier
Transform), allows recovering the signal in the time domain:

x[n] =
1

N

N−1∑

k=0

X[k] ej
2π
N

kn, n = 0, 1, . . . , N − 1. (1.65)

In this way, the DFT establishes a bidirectional relationship between
the time domain and the frequency domain for finite discrete signals,
forming the theoretical foundation of computational algorithms such as
the Fast Fourier Transform (FFT).

1.12 Definition of a Linear System

A dynamic system is called linear if it satisfies the superposition principle,
which encompasses two fundamental properties:

• Additivity: if an input u1(t) produces output y1(t), and another
input u2(t) produces output y2(t), then the combined input u1(t) +
u2(t) produces the output y1(t) + y2(t).

• Homogeneity: if an input u(t) produces output y(t), then a scaled
input αu(t), with α ∈ R, produces the scaled output αy(t).

19

Neural Networks and Adaptive Control

In a compact form, the superposition principle states that, for any
linear combination of inputs, the corresponding output is the same linear
combination of the individual outputs:

α1u1(t) + α2u2(t) −→ α1y1(t) + α2y2(t), ∀α1, α2 ∈ R. (1.66)

Therefore, a system is linear if and only if it simultaneously satis-
fies additivity and homogeneity, properties that together constitute the
superposition principle.

Most engineering processes can be approximated or represented by
an equivalent linear system. This representation is highly relevant, as
linear systems, in contrast to nonlinear systems, possess a well-developed
theoretical framework that allows rigorous and relatively straightforward
analysis. Consequently, the study of linear models is a fundamental
tool in engineering, not only because of their practical utility in system
design and analysis, but also because they provide a solid conceptual
foundation upon which extensions to nonlinear system analysis can be
built. In practice, real systems are bounded input, bounded output (BIBO),
meaning that the inputs and outputs are inherently limited, which ensures
predictable and stable behavior within operating ranges.

1.13 LaSalle’s Invariance Principle

LaSalle’s Invariance Principle (also known as LaSalle’s Theorem) is a gen-
eralization and extension of the direct Lyapunov method for analyzing the
stability of autonomous dynamical systems. This principle is particularly
powerful for proving asymptotic stability in cases where the derivative
of the candidate Lyapunov function is only negative semidefinite (i.e.,
V̇ (x) ≤ 0), which by itself is insufficient to conclude global asymptotic
stability using the classical Lyapunov theorem.

Consider the autonomous system ẋ = f(x), with f a locally Lipschitz
function, and let Ω ⊂ D be a compact set (closed and bounded) that
is positively invariant with respect to the system. Let V : D → R be a
continuously differentiable function such that V̇ (x) ≤ 0 for all x ∈ Ω.

Define E as the set of points in Ω where V̇ (x) = 0:

E =
{
x ∈ Ω | V̇ (x) = 0

}
(1.67)

and let M be the largest invariant set contained in E. LaSalle’s Invariance
Principle then states that every trajectory starting in Ω converges to M

20

Chapter 1. Linear Algebra Tools

as t→ ∞:
x(t) →M as t→ ∞ (1.68)

In practice, this theorem allows one to demonstrate convergence to
equilibrium by identifying the largest invariant set within the region where
the system’s energy (or Lyapunov function) stops decreasing.

1.14 Barbalat’s Lemma

Barbalat’s Lemma is a fundamental result in the analysis of non-autonomous
(time-varying) systems that relates the properties of a function and its
derivative to conclude convergence to zero. Unlike Lyapunov theorems
for autonomous systems, Barbalat’s Lemma is essential for addressing
asymptotic stability in systems where the candidate Lyapunov function
V (t,x) depends explicitly on time.

A widely used corollary in control theory is the following:

• Corollary: If a function f(t) is differentiable and has a finite limit
as t → ∞, and if its derivative ḟ(t) is uniformly continuous, then
ḟ(t) → 0 as t→ ∞.

The uniform continuity condition of f(t) is often verified by showing
that its derivative, ḟ(t), is bounded. This lemma is a key tool to demon-
strate that a signal (such as a tracking error e(t)) converges asymptotically
to zero in stability analysis of non-autonomous systems, even when a
Lyapunov function with a negative definite derivative cannot be found.

1.15 Lyapunov Stability Theorem

Consider a dynamical system such that:

ẋ = f(x), x ∈ Rn, f(0) = 0, (1.69)

and let V : Rn → R be a continuously differentiable function such that:

1. V (0) = 0 and V (x) > 0 for all x ̸= 0 (positive definite),

2. V̇ (x) = ∂V
∂x f(x) ≤ 0 for all x (negative semidefinite).

Then, the equilibrium point x = 0 is stable.
Moreover, if V̇ (x) < 0 for all x ≠ 0 (negative definite), then x = 0 is

asymptotically stable.

21

	Diapositiva 1

