
CONTENTS

1	ABOUT AUTHOR:	7
2	INTRODUCTION	8
2.1	Enterprise Architecture Framework (EAF)	9
2.2	Components of enterprise architecture framework	12
2.2.1	Enterprise architecture domains and subdomains	13
2.2.2	View model	13
3	ELEMENTS OF CRYPTOGRAPHY	16
3.1	Principles of cryptography	17
3.2	Three types of cryptography techniques	18
3.3	Public Key Cryptography	18
3.4	Hash Functions	19
3.5	Types of Encryption	19
3.6	Encryption and Decryption	19
3.7	Symmetric-Key Encryption	20
3.8	Symmetric-key encryption	20
3.9	Public-Key Encryption	21
3.10	Public Key and Private Keys	22
3.11	Digital Signatures	23
3.12	Digital Certificate	25
3.13	Public key Encryption Example	26
3.14	Decryption with B's Private Key	27
4	RSA ALGORITHM	29
4.1	RSA algorithm	29
4.2	RSA Algorithm in Cryptography	30
4.2.1	Key Generation	30
4.2.2	Encryption	31
4.2.3	Decryption	32
4.3	RSA Algorithm Limitations:	33
4.4	Diffie-Hellman Algorithm	33
4.4.1	Where is the Diffie-Hellman key exchange used?	35
4.4.2	Variations of the Diffie-Hellman key exchange	36
4.4.3	Elliptic-curve Diffie-Hellman	36
4.4.4	TLS	36
4.4.5	ElGamal	37
4.4.6	STS	37

5 FIREWALL	38
5.1 Netfilter/Iptables	41
5.2 Load balancing and fault tolerance	46
5.3 L7 Filtering	49
6 NETWORK ADDRESS TRANSLATION (NAT)	52
7 ATTACKS	62
7.1 Attacks on low levels of the ISO / OSI stack.	62
7.1.1 Physical attacks	62
7.1.2 Connection level connections	62
7.1.3 Network-level attacks	64
7.2 Attacks on high levels of the ISO / OSI stack	70
7.2.1 Transport level attacks	70
7.2.2 Attacks on middleware	72
7.2.3 SQL Injection	72
7.2.4 Cross-Site-Scripting (XSS)	75
7.2.5 Attacks on higher protocols	77
7.3 Buffer overflow	79
8 SECURITY OF WIRELESS NETWORKS	81
8.1 802.11 and Wi-Fi protocol	84
8.2 Insecurities of the 802.11 protocol	92
8.3 The 802.11i protocol	101
8.4 Security tools	107
9 NETWORK MANAGEMENT	109
9.1 Internet	117
9.2 Routing	122
9.3 Quality of Service	132
9.4 Network Management	143
10 CONCLUSION	150

LIST OF FIGURES

Figure 1	Enterprise Architecture Framework Model	10
Figure 2	Enterprise Architecture Framework	11
Figure 3	View model of Architecture	14
Figure 4	Same Key	18
Figure 5	Different Key	19
Figure 6	Hash Function	19
Figure 7	Type Of Encryption	20
Figure 8	Encryption And Decryption	21
Figure 9	Public Key Encryption	22
Figure 10	Digital Signature	24
Figure 11	Digital Certificates and Certification Authorities	26
Figure 12	Example-Public Key Encryption	27
Figure 13	Decryption with B's Private Key	28
Figure 14	Key Generation	31
Figure 15	ENCRYPTION	31
Figure 16	DECRYPTION	32
Figure 17	Flow Design of RSA Algorithm	32
Figure 18	Step by Step Explanation	34
Figure 19	Diffie-hellman algorithm- Example	35
Figure 20	Double Firewall Configuration	41
Figure 21	Logical diagram of the firewall	42
Figure 22	Complete Netfilter Scheme	43
Figure 23	Example of attempting to connect to a host on the internal network with a destination port higher than 1024	45
Figure 24	Conntrack state machine for TCP connections	46
Figure 25	Primary-configuration backup	48
Figure 26	Multi-primary hash-based stateful firewall-clusters	49
Figure 27	Performance with and without state replication	49
Figure 28	Non-Routable Address Space	52
Figure 29	On the left an example of dynamic NAT, on the right an example of NAPT	53
Figure 30	Possible ways of configuring NAPT and IPsec	54
Figure 31	STUN Diagram (RFC 3489)	59

1

ABOUT AUTHOR:

Joseph Thachil George is a Technical consultant for International Game Technology (IGT), Rome, Italy. He completed M. S in Cyber Security from the Università degli Studi di Firenze, Italy. Additionally, he also doing research in the Università degli Studi di Firenze, Italy. His research interests cover Blockchain technology- Hyperledger fabric, and cyber security. He published three books *Cybercrime and Social Media Relationships*, *Designing Distributed Systems* and *Social Network Analysis*, respectively. In IGT he is been a part of various project related to game configuration and integration in various platform. Specialized in Java and spring boot-based projects.

He has also worked in various companies in India, Angola, Portugal and UK. In total he has seven years of experience in various IT companies.

2

INTRODUCTION

In today's globalized world, each and every activity is interlinked in one way or the other way. In this book we shall be analysing computer networks and understand how data can be transferred securely from one system to another system. The concept of security can be briefly described as the protection of information of a system from theft or from hardware or software damage to the system itself. The main ones security properties are three:

[1]. Confidentiality: Ensure that the information is not accessible by unauthorized persons.

[2]. Integrity: Ensure that the information is not altered by unauthorized persons in any way which is not detectable by authorized users.

[3]. Authentication: Ensuring that users are the people those who are authorized.

Achieving these goals, however, is not that simple. It is also very common to confuse the concept of *security* with that of *safety*:

- **Security.** This term expresses the set of measures aimed at preventing or reducing the probability that a given unwanted event will occur.

- **Safety.** With this term we mean the "response" of the system to the occurrence of a particular unwanted event. Safety is linked to danger / damage to people, and not just to things.

In general, security is sought for the safety of a system (e.g. control tower in an airport). Moreover, It is always good to keep in mind the costs related to security: security is not free. This in fact implies a greater complexity of the system, higher operational and implementation costs and the workflow change (some things may not be feasible, or may be done with limitations).

3

ELEMENTS OF CRYPTOGRAPHY

Cryptography is the study and practice of techniques for secure communication in the presence of third parties called adversaries. It deals with developing and analyzing protocols which prevents malicious third parties from retrieving information being shared between two entities thereby following the various aspects of information security.

Secure Communication refers to the scenario where the message or data shared between two parties can't be accessed by an adversary. In Cryptography, an Adversary is a malicious entity, which aims to retrieve precious information or data thereby undermining the principles of information security.

1. **Availability:** the service must always be available. Availability is violated in case of a Denial of Service (DoS) attack. Availability of the service is the most difficult thing to be guaranteed, since there are always physical limits of resources and a DoS attack must be implemented cost as much as possible. Availability is generally obtained with an accurate design of the network.
2. **Security:** the data exchanged must remain confidential between the parties participating in the exchange. Keep in mind that ethernet networks generally allow packet sniffing. For to obtain this property, cryptographic algorithms (symmetric, asymmetric, distributed, etc.).
3. **Data integrity:** refers to maintaining and making sure that the data stays accurate and consistent over its entire life cycle.
4. **Authentication:** is the process of making sure that the piece of data being claimed by the user belongs to it.
5. **Non-repudiation:** whoever sends a message cannot later deny having sent it. This property is especially important at the application level when exchanging documents.



Figure 5: Different Key

message to bob, then Alice will encrypt it with Bob's public key and Bob can decrypt the message with its private key.

3.4 HASH FUNCTIONS

Not an key. Rather it uses a fixed length hash value that is computed on the basis of the plain text message. Hash functions are used to check the integrity of the message to ensure that the message has not be altered, compromised or affected by virus.

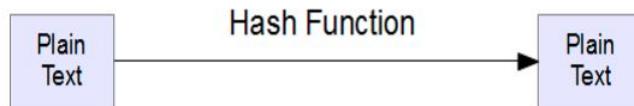


Figure 6: Hash Function

3.5 TYPES OF ENCRYPTION

3.6 ENCRYPTION AND DECRYPTION

- Encryption is the process of transforming information so it is unintelligible to anyone but the intended recipient. Decryption is the process of transforming encrypted information so that it is intelligible again.
- A cryptographic algorithm, also called a cipher, is a mathematical function used for encryption or decryption. In most cases, two related functions are employed, one for encryption and the other for decryption.
- With most modern cryptography, the ability to keep encrypted information secret is based not on the cryptographic algorithm, which