

 Naming Things

 The Hardest Problem in Software Engineering

 Copyright © 2023 Tom Benner. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher, tombenner@gmail.com.

Naming Things

	I. Introduction

	1. Purpose of this book

	2. Why is naming important?

	2.1. Understandable code

	2.2. Productivity and happiness

	2.3. Career growth

	3. Why is naming hard?

	3.1. Dynamic, subjective requirements

	3.2. Insufficient best practices and tooling

	3.3. Short-term costs and long-term value

	3.4. How can we make naming easier?

	4. Scope of this book

	II. Principles

	5. Overview

	5.1. List of principles

	6. Understandability

	6.1. Overview

	6.2. Rules

	6.2.1. Describe the concept

	6.2.2. Use dictionary terms

	6.2.3. Use problem-domain terms

	6.2.4. Use standard terms for domain-agnostic concepts

	6.2.5. Use correct pluralization

	6.2.6. Use accurate parts of speech

	6.2.7. Use accurate names for booleans

	6.2.8. Include units in measurements

	6.2.9. Avoid unconventional single-letter names

	6.2.10. Avoid abbreviations

	6.2.11. Avoid non-standard symbolic names

	6.2.12. Avoid cleverness

	6.2.13. Avoid usage of temporary or irrelevant concepts

	6.2.14. Consider the audience’s familiarity with the name

	7. Conciseness

	7.1. Overview

	7.2. Rules

	7.2.1. Use the appropriate level of abstraction

	7.2.2. Use words with rich meaning

	7.2.3. Omit metadata

	7.2.4. Omit implementation details

	7.2.5. Omit unnecessary words

	8. Consistency

	8.1. Overview

	8.2. Rules

	8.2.1. Obey popular naming conventions

	8.2.2. Avoid synonyms

	8.2.3. Avoid abbreviations

	8.2.4. Use similar names for similar concepts

	8.2.5. Use consistent antonyms

	9. Distinguishability

	9.1. Overview

	9.2. Rules

	9.2.1. Avoid homographs and near-homographs

	9.2.2. Avoid homophones and near-homophones

	9.2.3. Avoid polysemes

	9.2.4. Avoid names with distinct technical and non-technical meanings

	III. Application

	10. Overview

	11. Tradeoffs

	11.1. Overview

	11.2. Consistency vs. other principles

	11.3. Understandability vs. Conciseness

	11.4. Understandability vs. Distinguishability

	11.5. Conciseness vs. Distinguishability

	12. Identifier types

	12.1. Overview

	12.2. Classes

	12.3. Variables

	12.3.1. Booleans

	12.3.2. Collections

	12.3.3. Hash maps

	12.4. Methods

	12.5. Method arguments

	12.6. Interfaces

	12.7. Constants

	12.8. Packages/modules/namespaces

	13. Style guides

	14. Controlled vocabularies

	14.1. Evolution of controlled vocabularies

	14.2. Further reading

	15. Renaming

	15.1. Scope

	15.2. Principal and interest

	15.2.1. Interest costs

	15.2.2. Principal costs

	15.3. Process

	16. Domain-specific names

	16.1. Consult domain-related resources

	16.2. Consult domain experts

	16.3. Consult team members

	17. Developing naming skills

	17.1. Improving your naming skills

	17.1.1. Initial steps

	17.1.2. Ongoing learning

	17.2. Improving your team’s naming skills

	IV. Appendix

	18. Common antonyms

	19. Visually similar characters

	20. Rejected principles

	20.1. Length

	20.2. Searchability

	20.3. Pronounceability

	20.4. Meaningfulness

	20.5. Austerity

	20.6. Accuracy

	20.7. Precision

	20.8. Concision

	References

Acknowledgements

This book is the systemization of the knowledge of many people with experience in software engineering industry and academia. I greatly appreciate the sharing of this knowledge through papers, books, articles, talks, conversations, and other means. That shared knowledge was both the inspiration for and the foundation of this book.

I also want to give a special thank you to everyone who provided insightful feedback that shaped and refined the content of this book: Albert Chae, Andy Wang, David Gage, Joel Eaton, Marian Hlavac, Nathan Miles, Richard Dyce, Rob Nugen, Tiago Boldt Sousa, Tom Clark, and Zeger Knops.

I. Introduction

1. Purpose of this book

The naming of identifiers (classes, variables, functions, etc) is one of the most frequently-used, timeless, and impactful skills in software engineering. However, it’s rarely analyzed, poorly understood, and poorly executed.

A codebase with good names is a joy. Engineers can understand it quickly, communicate about it easily, and modify it efficiently.

A codebase with bad names is drudgery. Understanding it takes ages. Reasoning about it requires mental gymnastics. Discussing it is unnecessarily challenging. Modifying it is risky and painful.

This book’s goal is to make software engineering more efficient and enjoyable through better naming. This may sound audacious, but we can achieve it by applying the same practical, rigorous structure that we’ve used to improve other aspects of software engineering.

2. Why is naming important?

Your code is for a human first and a computer second. Humans need good names.

— Martin Fowler, Refactoring: Improving the Design of Existing Code

Throughout the modern history of software engineering, many of the field’s experts have emphasized naming’s importance, and many of software engineering’s most well-regarded books on best practices include chapters about naming, including:

	Clean Code (Robert C. Martin) — “Variable Names” [1]

	Code Complete (Steve McConnell) — “Meaningful Names” [2]

	The Pragmatic Programmer (Andrew Hunt, David Thomas) — “Naming Things” [3]

	The Practice of Programming (Brian W. Kernighan, Rob Pike) — “Names” [4]

	Refactoring (Martin Fowler) — “Mysterious Name”, “Rename Variable”, “Rename Field” [5]

Software engineers agree. An ethnographic study found that students and professional software engineers found naming conventions and identifier naming to be “essential” and “important”, and that the professional engineers “pay more attention to the name of the identifiers than source code comments”. [6] Identifier names are “implicit documentation and are instrumental for program comprehension”. [7] Empirically, naming seems important.

As with any software engineering problem, though, we need to understand the problem and its impact, as that understanding leads us to the best solution.

2.1. Understandable code

Good naming makes code understandable, which in turn makes maintenance (including both enhancements and corrections) more efficient.

Good naming → Understandable code → Efficient maintenance

Codebases are knowledge bases. A codebase stores the knowledge of how an application should behave, and if the codebase is easy to understand, then software engineers can absorb that knowledge efficiently and modify the application easily, quickly, and confidently.

Can we quantify the importance of a codebase’s understandability? Studies show that maintenance consumes 60%-80% of software development life cycle costs. [8] Approximately 40%-60% of this effort is spent understanding the software that is being modified. [9] By taking the product of these, we estimate that 25%-50% of the life cycle time is spent understanding the software. (This figure is project-dependent and has caveats, but we’re just making a rough estimate.) Code understandability thus has a huge influence on engineering efficiency.

How much influence does naming have on understandability? Identifiers (names of classes, variables, functions, etc) account for roughly 70% of a codebase [10], so we expect that if these identifiers are easy to understand, then the codebase’s overall understandability should consequently be high.

Studies about the influence of identifier names on comprehension, recall, and defect resolution time reflect this. Let’s first describe what these terms mean in this context:

	Comprehension - The ability of a software engineer to understand the logic, structure, and purpose of the code.

	Recall - The ability of a software engineer to remember the logic, structure, and purpose of the code.

	Defect resolution time - The duration between when a software engineer starts working on a defect (a bug) and when they resolve the defect.

(When we discuss defects, we’ll focus on semantic defects, as opposed to syntactic defects. Comprehension is required for the former but often is not required for the latter. Semantic defects also generally have much higher costs.)

Before modifying code, a software engineer must sufficiently comprehend it. After the initial comprehension, recall enables engineers to make modifications without needing to relearn the code’s logic, structure, and purpose.

As an illustration of the impact of comprehension and recall on defect resolution time, one study found that when engineers were tasked with resolving defects in code that had single-word identifiers vs code that had multi-word identifiers, they resolved issues 14% faster when given multi-word identifiers, which are more understandable than single-word identifiers [11]. They also “read the code more serially, jumping less frequently back and forth.” [11] Another study found that “when finding semantic defects in code with words instead of abbreviations and letters, participants found on average 19% more defects per minute and thus were faster when words were used as identifier names.” [12]

2.2. Productivity and happiness

The effect of naming on engineering efficiency isn’t surprising, and it’s relatively easy to measure on short timescales like the resolution of individual defects described above. The longer-term impact of naming is studied less often, unfortunately. However, just as language influences thought, naming influences how engineers think about and communicate about software, which can impact productivity and happiness over longer timescales.

This impact is immediately obvious to engineers who are new to a team or project, as they experience an unpleasant spike in time wasted simply trying to understand concepts that are often more understandable than their names suggest. Additionally, they are not blinded to these issues by the defeatism or complacency that more tenured team members sometimes develop. A codebase with poor understandability can cause a newcomer to take much more time to become productive than if the codebase was more understandable. On top of all of these costs, the newcomer may develop a poor perception of the project and in the worst case, a poor perception of the team.

The negative effects of a poorly-named codebase certainly aren’t limited to the onboarding of newcomers, though. As described earlier, 60%-80% of software engineering life cycle costs come from maintenance. Codebases include huge numbers of identifiers, and engineers cannot remember the meaning of every single variable in a large codebase. When an engineer needs to understand a part of the codebase that they haven’t touched recently, they must rely on either recall to remember the meaning of previously-seen identifiers or rely on comprehension. Poor names can significantly increase the cost of both of these tasks.

Thus, the total cost of a single poorly-named identifier can be huge when the identifier needs to be repeatedly comprehended by multiple engineers over a long period of time. If comprehensionCount(i)comprehensionCount(i) is the number of times that an identifier, ii, needs to be comprehended by engineers, then its total cost is approximately:

totalCost(i) = minimum(recallCost(i), comprehensionCost(i)) × comprehensionCount(i)

Many codebases last multiple years and contain thousands to millions of names of variables, classes, functions, and other identifiers. When these names have poor understandability, the sum of the total costs of all of the identifiers is massive.

In addition to the understandability costs that occur for a single engineer in isolation, there are also understandability costs involved in communication. When one engineer describes a concept to other engineers, poor names can muddle and lengthen the explanation and in the worse case, create confusion that is difficult to resolve. Similar to other naming costs, this cost is also a recurring cost.

These costs and their related inefficiencies can permeate many of the tasks of a software engineer. This not only makes engineering teams less inefficient but also impacts their happiness. Engineers who have ongoing productivity costs tend to be less satisfied with their work and consequently tend to be less productive [13, 14]. Poor understandability thus can create a vicious circle in which poor productivity and lack of satisfaction feed off of each other. Poor naming isn’t the only cause of environments like this, but it certainly doesn’t help!

2.3. Career growth

In addition to the long-term impact of naming on productivity and happiness, the practice of good naming can also have a positive influence on leadership skills. Practicing good naming helps engineers understand their domain deeply, develop influence within their organization and other leadership skills, and increase their opportunities to focus on higher-value work.

To be successful at naming, an engineer must understand a domain and its terminology deeply. This understanding can cause an engineer to develop more influence within an engineering team, as the team will start to seek their advice about the domain. Domain expertise is also often desired for leadership roles, as leadership requires making decisions that are informed by domain knowledge.

For high-profile naming decisions, an engineer must understand how to make a decision with input from their teammates. When teammates observe an engineer consistently making intelligent naming decisions, they often develop more respect for that person and may seek them out for guidance when faced with their own naming decision.

Being successful at naming also reduces the time that an engineer spends on inefficient, low-value work. By choosing understandable names and engendering good naming practices among others, they spend less time explaining concepts and names to others.

They reduce the mental overhead and other costs of working in a codebase that’s difficult to understand. They spend less time dealing with confusion among engineers about the meaning of a concept or name. They can spend time on higher-value work that’s meaningful, thus increasing not only their own impact and happiness but also the impact and happiness of their organization.

Naming has a significant impact on many facets of software engineering, from the time spent understanding a single identifier to the overall happiness of a team. Its importance seems obvious, so why is naming still executed poorly so often? To understand that, we need to understand what makes naming “hard.”

3. Why is naming hard?

There are only two hard things in Computer Science: cache invalidation and naming things.

— Phil Karlton

We’ve all struggled to grasp for the right name, only to come up short. Phil Karlton’s quote about naming being one of the two hard problems in computer science perfectly captures the surprising complexity of such a seemingly simple task.

Software engineers see the evidence of the difficulty of naming daily: poorly-designed names are abundant in most codebases. Many engineers happily admit that they struggle with naming, even though it seems like it should be an easy task. Naming is one of the few skills in software engineering that has been required for the entirety of the field’s existence, and yet we’re still lousy at it. Why is naming so hard?

3.1. Dynamic, subjective requirements

An identifier’s name is the communication of a dynamic concept to a dynamic audience. First, the namer must have an understanding of what the concept is. In modern, iterative software engineering, newly-introduced concepts are often poorly-defined, and their definition often evolves over time. It can be difficult to know how a concept may change in the next iteration. The concept and its name are also highly dependent on the domain, which can also change over time.

Not only is the concept and its definition dynamic, but so is the audience. The namer can guess who the audience of the name will be, but the audience may very well change over time. Engineers with different backgrounds and different amounts of domain experience will likely have to understand the name. In some cases, names must be understood by increasingly large and varied audiences, like a data model name that grows in importance and must eventually be understood by product managers, designers, customer support team members, salespeople, and even end-users. Any change in the original concept’s definition, in the domain, or in the audience can make even a good name become a bad one.

If all of this dynamism wasn’t complex enough, the way in which a name’s correctness is judged is also subjective: it can vary greatly from person to person. For the name to be judged as being good by others, it must satisfy many requirements (e.g., understandability, conciseness) that are determined by the audience. These requirements are typically subjective and vary from person to person. Engineers with experience in one programming language community may think that a name is great, while those from another language community may find that it violates one of the most fundamental principles of that language’s naming conventions. Even the requirements that are commonly agreed upon (e.g., understandability) can be judged differently by different people.

The complexity of naming things well isn’t unique to software engineering. There are entire fields devoted to understanding naming (e.g., brand naming, terminology planning). Within the broader domain of the general public, there is very little agreement on how to best name things. Studies have shown that “the probability of having two people apply the same name to an object is between 7% and 18%, depending on the object.” [15]

3.2. Insufficient best practices and tooling

Because of this dynamism, subjectivity, and general complexity, there aren’t currently well-defined, industry-wide standards for identifier naming, which further increases its difficulty. Best practices about naming within software engineering are mentioned in passing in chapters within books, blog posts, and articles but there hasn’t been industry-wide standardization around what the universal best practices should be. Many of these resources discuss rules that belong within general principles (e.g., consistency, understandability), but there isn’t a shared vocabulary for either the rules or principles, which makes the communication of them less unified and less widely understood.

Due to both the lack of industry-wide best practices and the complexity of naming, there is also a lack of tooling for enforcing high-quality naming. Naming is a category of software quality, but unlike other quality categories, naming has virtually no support within software quality tooling. There are very few tools and libraries that verify the quality of their identifier names within static analysis or provide engineers with tools for improving their naming within their development environments. Some work is being done in this field, such as the use of deep learning to automatically identify inconsistent method names and then suggest appropriate names [16]. However, much of this is still academic and not widely used.

Automated solutions for other software quality categories (e.g., vulnerability scanning, maintainability analysis) have benefited both from industry-wide convergence on best practices and from tooling development, but naming has been relatively underserved. The subjectivity and general difficulty of naming have thus persisted while other types of quality have improved.

3.3. Short-term costs and long-term value

In addition to the inherent difficulties of naming itself, it is also difficult to prioritize because many of its costs are immediate and most of its value is long-term. When an engineer needs to decide between the short-term optimization of quickly choosing a name that may be suboptimal or the long-term optimization of spending slightly more time finding a better name, they often choose the short-term option. This decision can be due to several factors, whether it’s a lack of experience in naming, a tendency towards shorter-term prioritization within the team, or some other reason.

To choose a good name, an engineer must have developed experience with naming, have some domain experience, and take at least a small amount of time to choose the name. All of these are costs, and if the value of a good name seems nebulous, then the logical decision is to not invest in naming. However, the value of good names is not nebulous. It has been studied and repeatedly proven to have multiple short-term and long-term benefits (as described earlier in Why is naming important?). These benefits are not always easily perceptible, though, which makes the prioritization of naming difficult.

3.4. How can we make naming easier?

To make high-quality naming easier to prioritize and perform, we need to do two things: we need to decrease its cost and increase its demonstrated value. Its value has been discussed in Why is naming important?, and if you’re taking the time to read this book, you probably already believe that there is at least some reasonable amount of value in it.

We should then shift our focus to decreasing the cost of high-quality naming. As with any hard problem in software engineering, we can break it down to better understand how to solve it. Throughout the rest of this book, we’ll develop principles and processes that can be used to methodically determine what the best name for a given concept is. When we finish, we’ll have a clear understanding of what constitutes a good name and how to choose one efficiently.

4. Scope of this book

Before we consider solutions, let’s determine what is in scope and out of scope. We’ll focus specifically on the naming of identifiers within software engineering. Identifier naming is the problem of choosing a name for a concept that needs to be represented within a codebase as an identifier, like a class, variable, or function.

For example, given the concept of a person who is using our product, what should we name the variable representing that concept? We could use user, end_user, valid_user, customer, or countless other names. How do we determine what the best name is? What principles are most important for a name? What information should influence the choice of the name? These are the questions that we’ll be answering in this book, and while doing so, we’ll develop a practical set of guidelines for quickly naming identifiers.

To ensure that we focus precisely on solving this problem, we will explicitly not include discussions of adjacent topics. We will generally not discuss language-specific conventions, like the formatting and casing of identifiers (e.g., camel case vs. snake case). Because these topics are numerous, it would be difficult to provide a comprehensive perspective on them. They’re also typically already well-established within each language’s community, so there isn’t a great deal of value in discussing them in depth here, as more thorough, language-specific documentation about them already exists. Some language-specific naming conventions can impact comprehension, though, so we will touch on them briefly.

We will also explicitly avoid all naming topics other than identifier naming. Engineering teams often encounter other types of naming (e.g., product naming, brand naming, team naming), and we will not discuss these topics. A problem that’s related to identifier naming is how to determine the name and scope of domains, contexts, modules, and other groupings of concepts within a codebase. For example, how do we decide what classes belong within a module, and how do we name that module? This problem would greatly increase the scope of this book, and it has been discussed at length elsewhere (e.g., Domain-Driven Design [17]), so we’ll omit it as well.

Now that we’ve defined the scope of the problem, how do we solve it? Similar to how we’ve solved other software engineering problems, we can develop a set of principles that describe the best practices of solutions. We can then develop tools for pragmatically applying those principles.

EPUB/nav.xhtml

 Naming Things

 		
 Naming Things

 		Acknowledgements

 		
 I. Introduction

 		1. Purpose of this book

 		
 2. Why is naming important?

 		2.1. Understandable code

 		2.2. Productivity and happiness

 		2.3. Career growth

 		
 3. Why is naming hard?

 		3.1. Dynamic, subjective requirements

 		3.2. Insufficient best practices and tooling

 		3.3. Short-term costs and long-term value

 		3.4. How can we make naming easier?

 		4. Scope of this book

 		
 Cover

EPUB/media/file0.png
ABSTRACT

Wealth

Asset

Farm assets
Livestock

Cow

Bessie

The cow we perceive

The cow as defined by science (atoms, etc)

CONCRETE

EPUB/media/cover_ebook.png
X&M22&&1TNEP&# 1 KQC7SM7 !WEO&5 I SREM7XHM4! *HVCP71RAZZTK®@2X&W

ICIY#N49F@*CL27*7SQX1TN523QHSA#! 2APMA2#261

EW*XT%PEIA*ENIYKS5#N&P 1 2L7XLCE4#3#ZEQAYL&AIM2&AN2!COB35I
MER3R#CR#CBC#Y%7C#CBZA98EM1F#/PP!%/PAALPMSMV&IK72LM260*B

1TY#WFPRN*P#FAA™*

/9

6E3PS1/7B%8*NRHA/1YAG!PCWSN47@RIJMYEBZEXATO9TL#%K@#KQ! *

&&NMNXCAQ9EIV7#OLD2WAY *TXS%HLP@RZ&1*/PF@%#&|192AS7E&C6Z&G71J

IAASA3119#E%2C1#65P9A1ZEK4MIHCF8F/#ZTETJ@18634%42%391AW

VW2EC/3AH##WQNB ! 7%ENWNA#PIAL1CJE1TS#X7#*7/AIE#C!R%I

/ 5SE3R&

~© THEHARDEST PROBLEM IN SOFTWARE ENGINEERING =~~~ =~~~ =0

IKWY4NIPLH64VEINA77PN2KX!XXN*1TN6#!BVA79S4*RD!PCAQ%OHEY7S5

LV 7Z 1V #T
p*V!I#626GA*8Q/Z4AMET7Y2A7
I11P4BS8

IRZSA@#EKYZL272 |51
h9%MAS6R%CIH/G2NI

27PAPAA/A4AET7 /&S5ZQHC%GNAT77K#/

6R%9 1 #373TMCTF%!CMD | J%E&Z2A 1 %Z2

23

ﬁ_
1

9

Y

[5

VI
L32ZPCWP*5HKX#*4&P9G&FM2 | 7HEXC2SP&4 1|

IFif‘i
N B

4
A
ki

A9W& ! 2286/ #
BAZLS &P 7

\ B
1 a

3

#

N

711SAE!
Q&NKE%A 4
/ &ZW4 # MK
H#NGMS 5
2'5/F $:5N'S d

e# | A@Q2 | 7K#&G I AW62%P11GP

| & &CTEAYBP&C#2N!N2P&
D*1QQX 1 9#77ECX/M9Y@R9PCEX
NIW6F@J*ENSO#E&S#EMI &C3E
#IY2ZP2INVOIRZIPIIZIAPE*TP

D5S5NN%I TMZ9JV##2CIE9KJ&W4738

A!’

/7VEZ&NET7ZE#Y ! 7A9L ! T%YB#45
INF6F1 27RPNIYS !

g
g
o
LF &AM

WH) 28&CA#AFA%PET#9MI &I | 1T%AYVNIN#AGIAW2SPG
5)
1
M

17 2% 1 5SZLZVWZL TV

PSP!IPT2*KEAM@FYG&E7N7A/

\

4 2
7 |
Wo ETUNZ

[
L o
[N« X
o= N OnwI -~ #*d
noCsmo—2
ZaovOU<Caw
w >Nwvwa - —
w LA NNO S
~mRTOom~
<o~ >0

LY& I @Z#6AT3LX@5M@2Z

K231G/EALLM2!53T79C!AJ2ADSL7VIKCS3M6NVWAE!AXB7#7BT@22Z7CQ

IMY/NXX#AC!W&9/ *7&@AHAN77V*#%
*AZS&ET&OZA2#RMQITMVXZXERTA4C%TS5Z3#7NX#O0O%Y#LWELCCV%&@P*3C

2XJ74#V2TVVNMHN*%CC#DRA1G1WJ

IH&G /X | L PCRAIVES#IALYP2241KYAYEP9Z
ENOSSL87AC*WA%YNW1Y #94WY&BAHPI7P4XAC2#N!JZZK1

AFJWPP@! AMXEN!SEBL@# #C |
PP5S5CF7CJ%NWW7JS#7X/

IP761 @3Q1%FP

IP@ZT7C&H%&4NNNT&WETJJ7@V*RYAAA

1@/ 1% !

8#7W%Y#75PL#35V*1E8B8QVXH/#AC6ZAPIA4A4VE2E3J4T7A!5E272/Cl7vVve?

A#T5D@&MK |

I 5F#& ! &O0@SEST1#Y%7&KM%Z62GF%&

I T*6N!
&*ZCB1P42!EVN&Y&VA/%E&1TCC!AZKCSNEA2#CMXZP!3K&!AL&ZE2L7*

1PE%%/S&27NI
%2ZEP7#%E#A2S*A*Q1IN9S5P&EAI

/TYXAL#61 1TW3A*A2#6ECRSAZW60918

JWAEVSE1TP7R&EBXF2 1 6KL5S&8NC2Y84X21K@CZS&%*YNNZF6M&S@YCQJ

177 #ZL!'HXG#MMI X%K1VYM%B1HG##/7257%!V

3LJC#*WD&Q4T 1 /77&7K&CPHEDFP2%TLSAA&S5W73J9#VNRAS5SAJAMYS I A

8Q51ES57LAM7A4EMG%2SG1

| &*P/NRE

IA6YWBZY /X1 7#/2!5%Vé6SJ/4P&72@AI

V%71JS7ZICA6N9#8*S#NKCC9EMA!A*37C/6RAX!XD14L4XS*2375C73C

WC1sS*3AMHFQS* 8Y **

lEG4P4CVB456M4LCA*LY9! INV@RY&KEMC7MSH%3A! P2WX&C2LPS2C4&&P&

! %ZGG@*NIC*#2 ! 4W2N2RE&2ALZ39Y6@IGM&DTW6 ! MA7@L I E4*8XVPWT

¥
@/ #CE571

| SENPLHC

IAN2W!B@SW19*%*1TCCACY*! 97LLAB%1#Y!3@A&1
W3IMA2@AC24NP7E/AIHCHBY | 2PA#L7T@RQXZINEIH@R%! M@R%@/M5*15#5LQ

!'S#V#/@CLWI #GBAWRZES

/ C225P1@A@RAKLNIJAT56A3SPAL#NE%GRE#1PI

IME34MXZVG@MWYYA ! %# ! %W/ 2AV#/FVMGP&CHY

/A& | &7 3E*CS# ! KX*

% E |

EYKICEGEL YT PPE

7

¢ FTRZA %I FE C“NBEVI VBHOY KL #41RFLEYWE L
@AI1S7%1B9XV!IY2M@QVI9E&36CT71#QX#7VWHL&Y I

1885 8IN¢

!'RYE2K&AALKIN#2RCA&

GBPA/EY7NF!C623%@6VV2#23P1/3%82&3VIN/L#Y@P63XQ&!14C8@S&P
6#C I T6&2JS1VB8IJ%#6&A25ELTLC&CI7!7XIWGFC29 I KICA4&QZ&MM7 # * #

S5VA2	&X29M*HV7@X29LV79A0Q*2CEEN#! #2%YS5AETS/L/PMY I 72JY#

1 %Y

H7Y@N&9A34*KBZPR/AP*2CIEF77KQ*3DF%N#WJ7VH#@A/2DZY #7 #&*

171 YT6&@2#7W22W/CJ!9*@&1TG&IWPWNYJA3YQ&Y1TP@ROPOWEAL8%&

N@22B1ETS3#ZWLVIG6FR/EBPT@QAN/W2M47CEAQ@*&NEY2TA&AT7%N2! #4W

L o |

/! %J%PMA9 ! Y6%7CC#7LIWAD&L3*A!

1ED!G7GRCI1Z2Z6!YMC!E53%4V##C9@2@#K*3GLNA&X7!ZC%73S9E

L*TMTP@Q7EP%NGL@EC |

CTINE3IQL TR

%T3/5S1

IM@RR&ABM*WPT79NB3ZM8O9TV1363JAC@RC2@8A3CE2AY

| 7TW9NRM7P%EE |

%P3/CKS51

BY YO Y #3532 5852V9C8813

%
IDEC#0C417AQ#G2&NG3HW2J I AKGWA/&YS257X@@P ! @2M1@MCMFBALWA?2

9@

%

&/ 3E##Y I SE1TAYME! YMA&#C7 #@

*43W#C*R/2AZ

I &N 1 Z7N&K1/BSMIS2#YS/Y#T I #%J&!&M#SKAATAT I
7TAPNY2 #MF&7C2#89MYAENDW4PE2JYIM2M2PQI PMWES7#RP%/QV2&L8Q

SH

/MWZ /LS7P6W&6TN9@2 /S| 2EP4GJMEC&%T*&#CI1712FA4AC7
| OWH#F*B8#C2XVSW#S*NTHAYP@R@% | %6 PX#K3IK&Y%E I 331WX/ #A

Aeg8TZ&2e@|

K1BIwL1
1 9CZT7A23/ ##I

%V !NL4AK!PE2AYA*MDAN#A&#H3

7' &O&EVE&PAG65Y ! MN!
XKDM@WAA2P3P%Y%7LLAN3E#82Q2J&7@#Y7 IC#NA/** | EEBMQ%A&!GZ25

H8%S9 | &/ X&##W!IWJLX52*#EZ@AY ! TL2T7L#/5J)J&LI1827KA4DI1%8NS5%K

16 &PA4T7WZS2I1CCGA4HJ#Y&*N&#&&

!R7J5G9CZ I F%ALG#I

LY#Z76%*#KC&61

IN7!61/PK%C4*7LPMM&TA/ACMTZ7ZMZ4X1VN#

T%O0%&&T&FCANP&9J7%4K*YSCXLAJTT2#CMM2&YWYSS1TA*S5WZNRIA#3*K

L73PFLEZ.#2E@FT 3T

1&T7RVY75Q2G%

| & PE#LR6M*4FPS21#QI TAYKM7BCC*X#M7*2#!
KN#7%&%T@&YNA92#Y7313#/K5V%%A8SN83HH8B82AB9#&RP4AN7IFOGN! &A

@!E1T9!GEXYH&P36M95L7Y@3LHM%BOVLZM7 #E#OP@CAKMWV21NEI3Z@3E

L8 /2 |

A3 14BBLA@K

/72KINLASWX%!BFZ#4N9L&RMS&4YEM/ 267MMAS 44!

8 &

LLE#W769%1T6M7 /@! &@2ESZP#RK*F94 | &1K

1 7ZEAW/XKMIOAB8B8E6RLQXKIJQAW24L7I3N5/P7PV%*WA66WP%8 | &YHRY®@

V61l &%ATQZ@XAP I 2N&8ZAI
KQ31Y&WTOMBENNERT A S % |

/IVIA#PK65Z&NI X6!ZY@S&YNAC27#@MIPPI32P

I TT7GW7H@&9CPMXA I %2#YY7LA7 1 A@QLWBB8EVV7IVMP%M#7AXK

171 #JET9AS5VLZA#NC7 IM! 7AAZIB8HGAIYC/AXWV3!PNAK/*2213LPAYPA4
*ITNCPLF*Z%A2WFB#M7B27S&#&S3HA#ABF7A&78A7HW21&%DXAE*/X7M#

WBNKS *N# |

FHIESANS 2226 * KEXFESEKTIP2PGCT7T2&7 #5686/ MIN

X1%P#F#@&A! AV3I#761

EPUB/media/file1.jpg
Cost

Interest

_/ PrinCipal

Time

