PROJECT
MYOPIA

volume to
Continuous
Why Projects Damage Software
#NoProjects

Digital

NN

Allan Kelly
Associates

Project Myopia

Allan Kelly

This book is for sale at http://leanpub.com/myopia
This version was published on 2020-02-25

ISBN 978-1-912832-03-3

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight
tools and many iterations to get reader feedback, pivot until
you have the right book and build traction once you do.

© 2015 - 2020 Allan Kelly

http://leanpub.com/myopia
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Allan Kelly by spreading the word about this book
on Twitter!

The suggested tweet for this book is:

I just bought "Project Myopia” a #NoProjects book by
@allankellynet

The suggested hashtag for this book is #NoProjects.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#NoProjects

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20%22Project%20Myopia%22%20a%20%23NoProjects%20book%20by%20@allankellynet
https://twitter.com/intent/tweet?text=I%20just%20bought%20%22Project%20Myopia%22%20a%20%23NoProjects%20book%20by%20@allankellynet
https://twitter.com/search?q=%23NoProjects
https://twitter.com/search?q=%23NoProjects

Contents

FreeBook i
Project Myopia L. ii
Prologue L iv
1. Introduction 1
2. Agile projecttension 5
3. Projectproblems 10
3.1 Whyecritique? oL 11
3.2 Projectsexist L. 12
4. Definingaproject 14
5. Diseconomiesofscale 15
51 Milk is cheaper in large cartons 16
5.2 Evidence of diseconomies 19
5.3 Think diseconomies, think small 24
5.4 Economies of scale thinking prevails. 25
55 Andprojects... 26

5.6 ~ Making small decisions 27

CONTENTS

57 Optimize forsmall 28

58 Kelly’'sLaws. 29
6. Software isn’t temporary 30
7. Iftheyuseit, itwillchange 31
8. Falseprojects. 32
9. The problem with project success 33
10. Multiple projects 34
11. Increasingvalueo 35
12. Debt thinking 36
13. The quality problem 37
14. Programmes not projects 38
15. Personal changes 39
Wanttoread more? 40
Continuous Digital 41
Abouttheauthor 42

Alsoby AllanKelly 43

Free Book

Xanpan is available for free

Xanpan: Team Centric Agile Software Development is available
for free to all subscribers to Allan Kelly’s newsletter*

'https://www.allankellyassociates.co.uk/xanpan_offer/

https://www.allankellyassociates.co.uk/xanpan_offer/
https://www.allankellyassociates.co.uk/xanpan_offer/

Project Myopia

Project Myopia: The belief that the project model
is the only way of managing business change and
development. Not seeing digital development as a
continuing commitment to growing the business, but
instead believing it will end and working towards
that end.

Type 1 Project Myopia: Success

Failing to recognize that meeting project success criteria is not
the same as successfully delivering business benefit. Project
success criteria may actually reduce business benefit in the short
term, and even more in the long term.

Type 2 Project Myopia: Beyond the project

Failure to see that successful change, transformation, services
and products have a long life after the end of a project. Products
and services need to continue changing if they are to succeed.
Ongoing change, enhancements and renewal need to be a way
of life.

Type 3 Project Myopia: Digital Business

Failure to understand that for digital business to survive and
grow, digital technology needs to advance in tandem with the

ii

Project Myopia iii

business. Halting digital progress halts business progress.

Business change and transformation, product development and
maintenance don’t need to be set up as a project.

Prologue

Practical men, who believe themselves to be quite
exempt from any intellectual influence, are usually
the slaves of some defunct economist. John Maynard
Keynes, economist, 1883-1946

When I attended the Lean Agile Scotland conference to deliver
the #NoProjects presentation I met a group of people from an
Edinburgh financial services company. This group could not
comprehend work without projects. Yet when I quizzed them
I discovered that the same people had worked on the same
software code base, on the same mainframe, to serve the same
customers for over a decade. One project followed another; the
only thing that was temporary about their work was the end
dates.

The financial services company did not consider itself a digital
company, let alone a software company, but its very ability to
do business depended on information technology and software.
Take away the software or finish the software and the company
could not operate. It was a digital company whether it knew it
or not.

At times technology management, indeed perhaps all modern
management, seems to revolve around ‘projects’ as if they are
an inherently natural phenomenon: they are not. Projects are a
twentieth-century invention that has outlived its usefulness.

iv

Prologue A

The project model sidelines business benefit because it chases
the wrong goals in the wrong way. Traditional project planning
is not a harmless, benign, pastime. It is dangerous, it reduces
value and increases risk.

The project model does not describe the world of software
development or the digital business world. Forcing software
development into the project model requires so much mental en-
ergy, compromise, and workarounds that it becomes impossible
to see what is really happening.

Managers and engineers who cling to the project model to de-
scribe their work are like aircraft ground crew that use manuals
for a Supermarine Spitfire to service a Lockheed F-35 Lightning.
Both are agile single-seat fighters with wings, but that is where
the similarity ends.

Nowhere is this mismatch more apparent than in teams who
practice continuous delivery. Such teams will inevitably aban-
don the project model, a model made for a temporary world.

Continuous is not temporary.

1. Introduction

Basic to successful project management is recogniz-
ing when the project is needed — in other words,
when to form a project, as opposed to when to use
the regular functional organization to do the job.
Cleland and King', Systems Analysis and Project
Management, 1968

The simple fact is that there are projects and there is other stuff.
All work does not have to be a project. However, it sometimes
seems that many organizations have forgotten this fact. Projects
are not the only way to organize work. Project management is
not the only way to manage work.

There is work that fits the project model and can — even should
— get managed as ‘a project’. Then there is work that does not
fit the model. Managing such work as ‘a project’ can hinder the
work and be harmful to the final product. Software development
is an example of the latter. Managing software development
work using the project model makes the work more difficult than
it needs to be. The project model can reduce the value of the
product and result in an inferior product.

There are those who tell me that in rejecting the project model
I “fail to see the bigger picture’. In return I would say that the

'Systems Analysis and Project Management, David L. Cleland and William R. King,
1968. Excerpt taken from https://en.wikiquote.org/wiki/Project_management

https://en.wikiquote.org/wiki/Project_management

Introduction 2

opposite is true. It is because I see the bigger picture that I reject
the project model. Certainly to view software development as
coding alone is to ignore the ‘bigger picture’. Yet to view all
software development as a project — especially a defined project
- is to ignore an even bigger picture.

There have long been problems in applying project management
to software development. Look at the failure rate of software
projects, and contrast that failure rate with the omnipresence
of software-powered technology in our modern lives. Software
development has succeeded despite the application of the project
model, not because of it.

These problems have become more acute and pressing because
of two forces. The first of these is the rise of agile development.

Agile software development has made the problems with the
project model more apparent. As is so often the case, agile
highlights existing problems and challenges workers to fix them.
When agile teams are successful the limitations of the project
model are even clearer. Success creates tension between agile
teams and those who commission the teams.

The tensions between agile working and the project model
are visible to anyone who must manage or govern projects.
Successful agile teams working under the project model need
to satisfy two conflicting regimes.

The arrival of Continuous Delivery* (CD) and DevOps added
further tension. These approaches challenge the assumption of
temporary built into the project model. Projects can be surpris-
ingly long-lived, but the model used to manage them rests on the

*Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment
Automation, Humble and Farley, 2010.

Introduction 3

assumption of temporary. Continuous is not temporary. CD was
always embedded inside agile, but as people unlearn the project
model and technology advances, CD becomes a potent force.

Reconciling the project model with agile development and CD
has become more difficult, and the mismatch more obvious to
practitioners. The project model itself has become an impedi-
ment to advancement.

While the incompatibility of agile working and CD with the
project model makes life hard, it is a second and more important
force that is challenging project thinking: the rise of Digital
Business.

At its most crude, digital business is business based on software
technology. For digital businesses to continue, to grow and to
be competitive they must continue to improve the software that
underpins them.

When a business is a digital business the routine work — the
work the business does every day — is digital work, and digital
work implies software. Improving the business means improving
the software that powers the work. So improving software is
itself routine work, work the business exists to do and work the
business needs to be organized to do.

Businesses that end are usually seen as failures. Yet the project
model regards reaching the end as a success in its own right. The
rise of digital business makes it critical for companies to find a
new model for managing and governing their technology work.

In this book I outline the problems involved in applying the
project model to software development and digital business.
While I make a few suggestions for how to improve things, this

Introduction 4

book is a critique. The companion book, Continuous Digital® sets
out the alternative, continuous model.

*https://leanpub.com/cdigital/

https://leanpub.com/cdigital/
https://leanpub.com/cdigital/

2. Agile project tension

To claim that projects are not undertaken in agile environments
would be wrong. Agile teams undertake ‘projects’ all the time.
Indeed, there is a large collection of literature and training that
specifically discusses project management in an agile context —
it’s even possible to get certification in Agile Project Manage-
ment.

If one examines the goals and aims of project management they
can be surprisingly similar to the aims and goals behind agile.
But from a common starting position the two schools develop
radically different management models. Applying the project
model and the agile model at the same time to the same software
effort invariably creates tensions. The fundamental assumptions
underlying the two models are different even if the goals are the
same.

As a result proactive Project Managers and Scrum Masters
devote much of their time to managing these tensions. Indeed,
some executives even claim that using two models deliberately
creates tension in order to control work. Yet software develop-
ment and digital business are hard enough without deliberately
adding complications and easy scapegoats for when things go
wrong. Since the project model and the agile model have differ-
ent, almost contradictory, definitions of success and failure, at
some point failure will occur.

Many if not most teams faced with working with agile in a
project model never manage or resolve these tensions: instead

Agile project tension 6

they just ignore them. There are plenty of coders and testers who
would not recognize the PMI or PRINCE2 definition of a project.
Equally, there are plenty of Project Managers who view agile as
a series of mini-projects.

Such views may well work on a day-to-day basis and serve to
lessen an individual’s cognitive dissonance, but they neither pro-
mote effective working nor make for good governance. Sooner
or later one view comes to dominate: either the project model
asserts itself and neuters agile working, or agile working renders
the project model redundant. The ‘projects’ these teams work on
are little more than accounting conventions and are a long way
removed from the PMI and PRINCE2 models.

Some of the more obvious tensions between the project model
and the agile model include:

+ The agile model sees each small piece of work (for example
a story) as a potential deliverable, while the project model
aims to deliver a whole.

+ The agile model optimizes for small, while the project
model optimizes for large.

« In prioritizing work by business value the agile model
inherently accepts that some work will fall off the end.
Conversely, in the project model anything less than ev-
erything is failure.

« The agile model embraces changing requirements and
specifications, while the project model aims to ‘control’” or
even eliminate such changes (‘scope creep’).

+ The project model expects teams to be temporary orga-
nizations, while the agile model values stable long-lived
teams.

Agile project tension 7

« The project model sees ‘quality’ as a variable one can dial
up and down, while the agile model sees consistently high
quality as a prerequisite for effective working and delivery.

+ The project model assumes that a small number of indi-
viduals can initially scope, plan, define and design work.
Then a larger group of individuals can implement the plan
- a simple matter of programming. The agile model seeks
to engage all workers in meaningful decisions about scope,
plans, work definitions and design.

This list could go on. Each point of tension can be managed, but
such tensions obscure what is happening and increase the mental
load on workers. At some point one needs to ask “Is this model
fit for purpose?”

Where the two models coexist, individuals need to engage in
mental gymnastics — double-think — to reconcile the contradic-
tory assumptions. In extreme cases such tensions are enough
to destroy the work effort, but more commonly tension simply
increases costs and risk while reducing the benefit delivered.

Sometimes tension only becomes apparent when looking across
projects. For example, if an agile team is prioritizing work by
business value, then one can expect a point to come at which
all the high-value work is complete and the team is working on
low-value requests. One might also expect their next project to
contain some high-value items. The agile mind asks:

“Why should a team undertake the low-value work
to finish the first project when moving directly to
the high-value work of the next project will produce
a higher return?”

Agile project tension 8

Even if all the work in both projects is completed one day, a cost-
of-delay analysis would show that bringing forward high-value
items and postponing low-value items would increase the total
value delivered. On the other hand, one might ask:

“Who really cares about the low-value tail end of a
project after all?”

Fundamentally the project model defines and constrains work
in order to control it, while the agile model embraces emergent
needs and changing constraints. The project model is itself an
attempt to constrain agility.

For non-software businesses — banks, airlines, high street retail-
ers and so on — such tension can just about be managed. The
tension might be troubling and sap energy for the workers who
toil day-in, day-out inside organizations at the code-face, but
away from the code-face in the executive suite things carry on
much the same: project, project, project...

But not for much longer?

When the business is digital the business is a software business.
Finished is by definition a failure.

Workers can choose who they work for, and the best are no
longer choosing to work in such environments. If a company
wants the best workers it can’t ask them to practice double-think.

The costs of running two models, the agile model and the project
model, is too high for digital businesses. The obvious costs are
high already — the Project Manager and the Scrum Master, the
Gantt charts and the burn-down charts — but the hidden costs
are much higher:

Agile project tension 9

« ‘Successful’ projects that fail to deliver business value.

+ The reduced reactivity — agility — imposed by the need to
shoehorn all work into a project model: to write a require-
ments document, design an architecture and assemble yet
another temporary team.

+ The lost knowledge and capability that occurs when a
successful team completes the project and is disbanded. Or
the hurdles and barriers managers need to jump through
to keep teams together, to keep knowledge in the building.

« The loss of clarity and understanding as individuals trans-
late from project-speak to agile-speak and back again.

Not to mention projects that fail despite all the good agile tools
that get used.

A digital business can only succeed as a digital business if it is
an agile business. It is no use claiming to be a digital business
if it takes 27 months to introduce a new feature to match a
competitor’s product.

It is no longer enough for digital businesses to be ‘agile in
the engine room’, or practice ‘agile project delivery’. A digital
business needs to be digital and agile all the way through.

Digital businesses that fail to utilize agile strategy and tactics
will, sooner or later, meet a competitor that does. Applying
yesterday’s management models to tomorrow’s technology only
goes so far.

3. Project problems

The project model has multiple problems: it is a poor guide for
managing software development work. The hashtag #NoProjects
began life as a discussion of these problems. The following
chapters discuss why the project model is a bad fit for software
development, why it increases costs and why it destroys value.

Some offer the product model as an alternative to the project
model. While the product model is a better match for software
development, the two models are not symmetrical alternatives.
Rather they address different issues even though they overlap.
As such Project Myopia and #NoProject go beyond simply
arguing that project management can complement product man-
agement.

Key to the #NoProjects critique is the observation that the
development of commercially successful software is never fin-
ished. Unsuccessful software certainly finishes. When software
is successful the use of the software creates the need — and op-
portunities — for change. Not enhancing the software hinders its
usefulness. Prematurely curtailing change also curtails benefits.
Therefore all successful software is a product and needs to be
managed as a long-lasting product. Using the project model to
deliver a series of product increments (as many development
organizations do) is short-sighted and hinders value creation.

Fundamentally the project model is about temporary while suc-
cessful products have longevity. This mismatch imposes costs:

10

Project problems 11

management overhead, technical liabilities and, most of all, lost
value. In the past companies could get away with this, but in the
digital age short-sighted project thinking exacts too high a price.

3.1 Why critique?

Why write a book critiquing the project model? There are really
two reasons.

Firstly, many businesses already have a pretty good way of
working even with the project model. Such businesses can take a
shortcut: just stop talking about projects, ban the word, and carry
on working as you were but without all the project rigmarole.

There are some tell-tale signs that a business falls into this
category:

« Project B follows Project A, after which comes Project C.
Each project deals with the same platform/service/code-
base and employs most of the same people.

« Projects start at the start of a new financial year and finish
at the end of a financial year.

» You have work-steams, platforms and themes to guide
your work as well as projects.

Such companies can simply start by banning the word ‘project’
and adopting new vocabulary.

In my capacity as an agile consultant, I get asked:

“What is the hardest part of agile?”

Project problems 12

I answer:

“The hard bit is not what you have to learn, it’s what
you have to unlearn; the things you have to stop
doing and the processes you need to take away.”

Simply unlearning the project model is a great starting point.

The second reason for looking in detail at the failings of the
project model is to learn from it. Some things within the model
are good and deserve retention (deadlines, for example), but
much else causes problems (temporary teams, for example.)
These are things that a new model should avoid.

3.2 Projects exist

I’m not stupid: software projects do exist. I see software projects
all the time. I've worked on software projects throughout my
career: as a programmer, as a manager and as a consultant. I've
even held the title of ‘Project Manager’ on occasions.

Nor do I deny that you will meet external customers and internal
colleagues who want you to ‘do a project’. I won’t even deny
that ‘the customer is always right’, and if the customer is offering
good money for you to do a software project then your company
might be stupid for turning the work down.

Most of all I am not saying the project model is everywhere
and always flawed. It might be: I don’t know. My expertise is in
software development, the underpinning of the digital business
revolution. I confine my argument to this domain; ’'m happy to

Project problems 13

speculate about extending the argument, but right now I make
few claims beyond digital business and software development.

What [am saying is: the project model contains flaws when used
for managing the development of software systems, especially
software systems on which businesses depend. While the model
can be — indeed has been — used for exactly this purpose, the
flaws in the model in this context mean reduced value and
magnified management problems.

When customers ask you to undertake a project you might
want to consider educating them in the alternatives. Part of this
education might be to highlight the difficulties of the project
model.

In the short term your company may still need to undertake
software projects. In the long term, your company stands to
make more money and create happier customers by following
an alternative model.

As the digital revolution advances, the long term gets closer.

4. Defining a project

14

5. Diseconomies of scale

Whenever a theory appears to you as the only pos-
sible one, take this as a sign that you have neither
understood the theory nor the problem which it was
intended to solve. Karl Popper, philosopher, 1902-
1994

Without really thinking about it, you are not only familiar
with the idea of economies of scale — you expect economies of
scale. Much of our market economy operates on the assumption
that when you buy or spend more, you get more per unit of
spending. The assumption of economies of scale is not confined
to free-market economies: the same assumption underlays much
communist era planning.

At some stage in our education - even if you never studied
economics or operational research — you will have assimilated
the idea that if Henry Ford builds a million identical black cars
and sells a million cars, then each car will cost less than if Henry
Ford manufactures one car, sells one car, builds another very
similar car, sells that car, and continues in the same way another
999,998 times.

The net result is that Henry Ford produces cars more cheaply and
sells more cars more cheaply, so buyers benefit. This is economies
of scale.

The idea and history of mass production and economies of scale

15

Diseconomies of scale 16

are intertwined. I'm not discussing mass production here, I'm
talking economies of scale and diseconomies of scale.

5.1 Milk is cheaper in large cartons

That economies of scale exist is common sense: every day one
experiences situations in which buying more of something is
cheaper per unit than buying less. For example, you expect that
in your local supermarket buying one large carton of milk - say
four pints — will be cheaper than buying four one-pint cartons.

IOCWE SSELLBY]

frocToe Sseuvay
=

0CT08 <SELLBY

A B Milk is cheapest MILK
— .
M"_K in BIG cartons VITAMIN D ADDED

VITAMIN D ADDED

MILK
VITAMIN D ADDED
I

VITAMIN D ADDED

(GRADE A
HOMOGENIZED PASTEURIZED
NETSFLOZ 237mL

GRADE A
HOMOGENIZED PASTEURIZED
NET8FLOZ 237mL

0CT06 CSELLBY

T
£%;

0CT06 CSELLBY
=

wumnn&m V/u%’ Hu‘uin M I L K
]
HOMOGENAED PASTELRZED HOMOGENIZED PASTEURIZED VITAMIN D ADDED
NETBFLOZ 237mL NETBFLOZ 237mL And smaII cartons |
of software GRADE A
; reduce risk HOMOGENIZED
Softwareis 20 PASTEURIZED
cheapest in
lots of small
cartons

NET 32 FL OZ (1QT) 946 mL
Small cartons of software are cheaper and less risky

So ingrained is this idea that it is newsworthy if shops charge

Diseconomies of scale 17

more per unit for larger packs — complaints are made. In April
2015 The Guardian newspaper in London ran this story:

UK supermarkets dupe shoppers out of hundreds of
millions, says Which?

Examples raised by Which? include Tesco flagging
the ‘special value’ of a six-pack of sweetcorn when a
smaller pack was proportionately cheaper, and Asda
raising the individual price of a product when it was
part of a multi-buy offering in order to make the deal
more attractive’.

Economies of scale are often cited as the reason for corporate
mergers. Buying more allows buyers to extract price concessions
from suppliers. Manufacturing more allows the cost per unit to
be reduced, and such savings can be passed on to buyers if they
buy more. Purchasing departments expect economies of scale.

I am not for one minute arguing that economies of scale do not
exist: in some industries economies of scale are very real. Milk
production and retail are examples. It is reasonable to assume
such economies exist in most mass-manufacturing domains, and
they are clearly present in marketing and branding.

But... and this is a big ‘but’...

Software development does not have economies of
scale

'UK supermarkets dupe shoppers out of hundreds of millions, says Which?,
21 April 2015, https://www.theguardian.com/business/2015/apr/21/uk-supermarkets-dupe-
shoppers-out-of-hundreds-of-millions-says-which

Diseconomies of scale 18

In all sorts of ways, software development has diseconomies of
scale. If software development was sold by the pint, then a four-
pint carton of software would not just cost four times the price
of a one-pint carton, it would cost far more.

Once software is built there are massive economies of scale in
reselling (and reusing) the same software and services built on
it. Producing the first piece of software has massive marginal
costs; producing the second, identical copy, has a cost so close to
zero it is unmeasurable — Ctrl-C, Ctrl-V.

Diseconomies abound in the world of software development.
Once development is complete, once the marginal costs of one
copy are paid, then economies of scale dominate, because marginal
cost is as close to zero as to make no difference.

Diseconomies of scale 19

Diseconomies of scale Economies of scale
dominate before first dominate when same
product complete product is duplicated

\

+“—> <

Very high costs

. for first unit
Marginal costs |

(additional costs
per additional
unit produced)

Zero costs for second
and subsequent

0 1 2 g Quantity

Diseconomies of scale and high marginal costs give way to economies of scale
and negligible marginal costs

5.2 Evidence of diseconomies

Software development diseconomies of scale have been observed
for some years. Cost estimation models like COCOMO actually
include an adjustment for diseconomies of scale. But the im-
plications of diseconomies are rarely factored into management
thinking - rather, economies of scale thinking prevails.

Small development teams frequently outperform large teams;
five people working as a tight team will be far more productive

Diseconomies of scale 20

per person than a team of 50, or even 15. The Quattro Pro devel-
opment team in the early 1990s is probably the best-documented
example of this?®.

A more recent study of open source software development states
that:

‘We find strong evidence for a negative relation
between team size and productivity. ...we further
conclude that all of the studied projects represent dis-
economies of scale, exhibiting diminishing returns to
scale”.

The more lines of code a piece of software has, the more difficult
it is to add an enhancement or fix a bug. Putting a fix into a
system with a million lines of code can easily be more than ten
times harder than fixing a system with 100,000 lines.

As much as software engineers love the Lego-brick analogy,
software does not scale like Lego. Software exhibits power-law
characteristics®. Some parts of the system become more central.
They are connected to more parts and changed far more often.
Making multiple simultaneous changes to these parts is difficult,
so changes must be sequenced. Consequently bringing more
people to bear on the code does not make change happen faster
— it happens more slowly.

*Organizational Patterns of Agile Software Development, Coplien & Harrison, 2005.

*From Aristotle to Ringelmann: a Large-scale Analysis of Team Productivity and
Coordination in Open Source Software projects, Scholtes, Mavrodiev, Schweitzer, Em-
pirical Software Engineering volume 21 issue 2, April 2016, pre-print version available
https://www.sg.ethz.ch/media/publication_files/paper_bQeEC8G.pdf

“Understanding the Shape of Java Software, Gareth] Baxter, James Noble, Marcus
Frean and Ewan D. Tempero, Proceedings of the 21th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006,
October 22-26, 2006, Portland, Oregon, USA

Diseconomies of scale 21

Experience of work in progress limits shows that doing less at
any one time gets more done overall.

Projects that set out to be big have far higher costs and lower
productivity per deliverable unit than small systems. Capers
Jones’ 2008 book contains some tables of productivity per func-
tion point that illustrate this. It is worth noting that the biggest
systems are usually military, and they have an atrocious produc-
tivity rate, not to mention horrendous schedule slips. The Airbus
A400 transport was reportedly four years late and €5 billion over
budget, while the Lockheed F35 fighter is reportedly seven years
late and $163 billion over budget’.

Testing

Testing is another area where diseconomies of scale play out.
Testing a piece of software with two changes requires more tests,
time and money than the sum of testing each change in isolation.

When two changes are tested together the combination of both
changes needs to be tested as well. As more changes are added
and more tests are needed, there is a combinatorial explosion in
the number of test cases required, and thus a greater than pro-
portional change in the time and money needed to undertake the
tests. But testing departments regularly lump multiple changes
together for testing in an effort to exploit economies of scale.
In attempting to exploit non-existent economies of scale, testing
departments increase costs, risks and time needed.

If a test should find a bug that needs to be fixed, finding the
offending code in a system that has fewer changes is far easier

*https://en.wikipedia.org/wiki/Lockheed_Martin_F-35_Lightning_IT#Program_cost_-
overruns_and_delays

Diseconomies of scale 22

than finding and fixing a bug when there are more changes to
be considered.

Working on larger endeavors means waiting longer — and prob-
ably writing more code — before you ask for feedback or user
validation compared to smaller endeavors. As a result, there is
more that could be ‘wrong’, more that users don’t like, more
spent, more that needs changing and more to complicate the task
of applying fixes.

Cost of delay

Waiting is an interesting case because it has a cost. The longer
it takes to deliver a product, the greater the cost of delay®. For
example, the more time the product spends in development, the
greater the costs, the more time it spends in development, the
less time it spends in the market, the less time it is in the market
before competitors arrive, and so on.

(To my mind cost of delay would be better called benefit foregone
or value foregone.)

Those who have worked on agile teams that use small stories,
or user stories, will have noticed that small stories flow through
the system and are delivered sooner than large stories. For this
reason agile teams often want lots of small stories rather than
fewer larger stories. Unfortunately they are often met by product
managers who claim that “The customer wants all or nothing.
The customer will not accept anything less than everything they
asked for”

®Principles of Product Development, Reinertsen D., 2009.

Diseconomies of scale 23

Cost of delay means that delivering something sooner, even if it
is smaller, may well be worth more than delivering a big thing
later. Even if creating the big thing enjoys economies of scale -
which is doubtful — and is cheaper per unit (line of code?) than
a small thing, the revenue lost because of late delivery needs to
be considered.

Batch size

Software development works best in small batch sizes. There
are a few places where software development does exhibit
economies of scale in which case large batch sizes make sense,
but on most occasions, diseconomies of scale are the norm.
(Reinertsen” has some figures on batch size that also support the
diseconomies of scale argument.)

This happens because each time you add to software work the
marginal cost per unit increases:

« Add a fourth team member to a team of three and the
communication paths increase from three to six.

+ Add one feature to a release and you have one feature to
test; add two features and you have three tests to run: two
features to test plus the interaction between the two.

In part this is because human minds can only hold so much
complexity. As the complexity increases (more changes, more
code) our cognitive load increases, mental processing slows
down, people make more mistakes and work takes longer.

" Principles of Product Development, Reinertsen D., 2009.

Diseconomies of scale 24

Economies of scope and specialization are specific forms of
economies of scale and again, on the whole, software develop-
ment has diseconomies of scope and diseconomies of specializa-
tion:

« Teams should focus first and broaden later when they have
a working product.

+ Generalists are usually preferable to specialists: technolo-
gies that demand in-depth expertise should be avoided if
possible.

However, be careful: once the software is developed then economies
of scale are rampant. The world switches. Software that has been
built probably exhibits more economies of scale than any other
product known to man.

(In economic terms the marginal cost of producing the first
instance are extremely high, but the marginal costs of producing
an identical copy (production) are so close to zero as to be zero,
Ctrl-C Ctrl-V.)

5.3 Think diseconomies, think
small

First of all you need to rewire your brain: almost everyone in the
advanced world has been brought up with economies of scale
since school. You need to start thinking diseconomies of scale.

Second, whenever faced with a problem where you feel the urge
to ‘go bigger’, run in the opposite direction: go smaller.

Diseconomies of scale 25

Third, take each and every opportunity to go small.

Fourth, get good at working ‘in the small’: optimize your pro-
cesses, tools and approaches to do lots of small things rather than
a few big things.

Fifth — and this is the killer: know that most people don’t get this
at all. In fact, it’s worse...

5.4 Economies of scale thinking
prevails

In any existing organization, particularly a large corporation,
the majority of people who make decisions are out and out
economies of scale thinkers. They expect that going big is
cheaper than going small and they force this view on others,
especially software technology people.

Many senior people got to where they are today because of
economies of scale, and many of these companies exist because
of economies of scale; if they are good at economies of scale, they
are good at doing what they do.

Consider banking for example. Banking, both retail and in-
vestment, exhibits many economies of scale. These occur in
marketing: the same brand can offer many services and cross-
sell: sign a customer for a current account, later sell them a loan,
then a mortgage, then life insurance and so on.

Economies of scale occur in capital funding too. Some have even
argued that size alone, while making banks riskier, also makes
their funding cheaper, because governments must underwrite

Diseconomies of scale 26

‘too big to fail banks’™.

There are those who claim that modern banks are disguised
software companies. Yet the individuals who reach positions of
authority in a bank will do so because they are good bankers
rather than good technologists. Consequently they will have
spent a career exploiting economies of scale thinking. When
confronted with technology concerns they will cling to what
has brought success in the past: economies of scale. Inevitably
this will place them in conflict when faced with a problem that
requires the opposite thinking.

In the world of software development this mindset is a recipe for
failure and underperformance. The conflict between economies
of scale thinking and diseconomies of scale working will create
tension and conflict.

5.5 And projects...

Part of the problem with projects is that they are, almost by defi-
nition, large batches of work. The administrative work involved
in creating a project, getting it approved, bringing the resources
together, making the resources work together effectively, then at
the end unwinding all the temporary structures means that the
project model only makes sense when projects are large.

Complicating matters, it can be hard to disentangle the costs
of the organization from actual development costs. Some orga-
nizations demand that all work is conducted under the project
model; consequently, whether the initiative is small or large, two

8The Bankers New Clothes, Admati & Hellwig, 2013

Diseconomies of scale 27

weeks of effort or two years, both initiatives require the same
preparation, paperwork and approval.

In the language of economists, both initiatives have fixed costs
(the start-up costs), but the longer initiative will have lower
average costs. This is because the same fixed start-up costs are
amortized over more production units. However, because the
larger initiative requires more coordination, the marginal costs
per unit will be higher. Consequently it can be hard to do true
cost comparisons between endeavors.

Companies seem to like projects: projects imply change, and
change implies growth. This is much more attractive than ‘busi-
ness as usual’. But the need for projects to be large means small
is not an option, and therefore the stakes are high and the risks
are large.

Unfortunately, software development lacks economies of scale.
Time and time again building software in the small is more
efficient than doing so in the large.

Software is cheapest in small quantities.

There is an inherent conflict between the best way of running
a project and the best way of organizing software development
endeavors.

5.6 Making small decisions

In part big-batch projects are an attempt to maximize the value
of the most precious limited resource: senior management time.
Getting time with a senior manager is difficult, their interest

Diseconomies of scale 28

in discussing anything worth less than $10 million is negligible
(replace with a relevant figure for your organization). So why
bother them with small pieces of work? You are more likely to
get a few minutes of their time to approve a $10 million project
than to discuss 100 small $100,000 pieces of work.

For software development to exploit the rampant diseconomies
of scale, decision authority needs to be devolved downwards so
that small decisions can be made efficiently when needed, rather
than bundled into single big decisions.

5.7 Optimize for small

Diseconomies of scale mean that organizational structures need
to be reconsidered. Individuals, teams and organizations need to
learn to think small. They need to start looking for small:

Teams need to organize themselves for lots of small.

Organizations, teams, processes and practices need
to be optimized for small.

Because of diseconomies of scale, it is necessary to rethink the
traditional economies of scale-based organizational structures,
and create structures and processes that are optimized for small.
Only by optimizing for small can organizations and team ex-
ploits diseconomies of scale.

Work processes need to be optimized for small pieces of work —
small batch sizes and small items. This means big activities (for
example set-up, teardown, one-off reviews) need to be removed.

Diseconomies of scale 29

Things that are expensive and get minimized (such as sign-off
and final test cycles) need to be removed or rethought so that
they can be efficient in the small.

Each of those small pieces of work needs to demonstrate poten-
tial value and be evaluated later for value delivered.

5.8 Kelly’s Laws

I have two personal laws.

Kelly's first law of project complexity

Project scope will always increase in proportion to
resources.

The more people, time, and money you have, the more your
project will attempt to do.

Kelly’s second law of project complexity

Inside every large project there is a small one strug-
gling to get out.

Look for the small piece of work struggling to get out, then work
to deliver that early.

6. Software isn't
temporary

30

7. If they use it, it will
change

The most loved and legendary building of all at MIT
is a surprise: a temporary building left over from
World War II without even a name, only a number:
Building 20. ...constructed hastily in 1943 for urgent
development of radar and almost immediately slated
for demolition. Stewart Brand', author

Building 20 was demolished in 1998, 55 years after its
construction.

'How Building Learn, Stewart Brand, 1994

31

8. False projects

32

9. The problem with
project success

33

10. Multiple projects

34

11. Increasing value

35

12. Debt thinking

36

13. The quality problem

Defects are not free. Somebody makes them, and gets
paid for making them. John Cage, composer, 1912-
1992

The bottom line is that poor-quality software costs
more to build and to maintain than high-quality
software, and it can also degrade operational perfor-
mance, increase user error rates, and reduce revenue
by decreasing the ability handle customer transac-
tions or attract additional clients’.

For the software industry, not only is quality free,
as stated by Phil Crosby, but it benefits the entire
economic situations of both developers and clients
Jones, 2011%.

'The Economics of Software Quality, Jones, C., Bonsignour, B. and Subramanyam, J.,
2011

37

14. Programmes not
projects

38

15. Personal changes

Do not think of today’s failures, but of the success
that may come tomorrow. You have set yourselves a
difficult task, but you will succeed if you persevere,
and you will find a joy in overcoming obstacles — a
delight in climbing rugged paths, which you would
perhaps never know if you did not sometimes slip
backward — if the road was always smooth and
pleasant. Helen Keller, author and activist, 1880-1968

39

Want to read more?

I hope you enjoyed this sample. If you would like to read more...

Buy Project Myopia today on Amazon'

amazZon

'https://amzn.to/2wZW9JM

40

https://amzn.to/2wZW9JM
https://amzn.to/2wZW9JM

Continuous Digital

Continue the #NoProjects story with Continuous Digital continues

Allan Kelly’s latest book:

« Why digital business need a new model of software devel-
opment
« A full description of the Continuous model

Ebook draft available on LeanPub® and pre-order on Amazon®.

*https://leanpub.com/cdigital/
*https://www.amazon.co.uk/Allan-Kelly/e/B001JSFJEE

41

https://leanpub.com/cdigital/
https://www.amazon.co.uk/Allan-Kelly/e/B001JSFJEE
https://leanpub.com/cdigital/
https://www.amazon.co.uk/Allan-Kelly/e/B001JSFJEE

About the author

Allan inspires digital teams to effectively deliver better prod-
ucts through Agile technologies. These approaches shorten lead
times, improve predictability, increase value, improve quality
and reduce risk. He believes that improving development re-
quires broad view of interconnected activities. Most of his work
is with innovative teams, smaller companies - including scale-
ups; he specialises in product development and engineering. He
uses a mix of experiential training and ongoing consulting.

He is the originator of Retrospective Dialogue Sheets®, the au-
thor of several books including: “Xanpan - team centric Agile
Software Development” and “Business Patterns for Software
Developers”, and a regular conference speaker.

Contact: allan@allankelly.net
Twitter: @allankellynet®

Web: http://www.allankelly.net/®
Blog: http://blog.allankellynet/’

“http://www.dialoguesheets.com/
*https://twitter.com/allankellynet
“http://www.allankelly.net/
"http://blog.allankellynet/

42

http://www.dialoguesheets.com/
https://twitter.com/allankellynet
http://www.allankelly.net/
http://blog.allankellynet/
http://www.dialoguesheets.com/
https://twitter.com/allankellynet
http://www.allankelly.net/
http://blog.allankellynet/

About the author

Also by Allan Kelly

Little Book of Requirements and User
Stories

Available from your local Amazon®

Xanpan: Team Centric Agile Software
Development

Ebook: https://leanpub.com/xanpan’
Print on demand: Lulu.com™®

And your local Amazon™

Business Patterns for Software
Developers

Published by John Wiley & Sons

Available in all good bookshops and at Amazon*?

*https://www.amazon.com/Little-Book-about-Requirements-Stories-ebook/dp/

B06XZZ6BQD
*https://leanpub.com/xanpan

%http://www.lulu.com/shop/allan-kelly/xanpan-team-centric-agile- software-

development/paperback/product-22271338 html

https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-

keywords=Xanpan
*https://www.amazon.com/Business- Patterns- Software- Developers- Allan-
ebook/dp/B007U2ZT7K

43

https://www.amazon.com/Little-Book-about-Requirements-Stories-ebook/dp/B06XZZ6BQD
https://leanpub.com/xanpan
http://www.lulu.com/shop/allan-kelly/xanpan-team-centric-agile-software-development/paperback/product-22271338.html
https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias=aps&field-keywords=Xanpan
https://www.amazon.com/Business-Patterns-Software-Developers-Allan-ebook/dp/B007U2ZT7K
https://www.amazon.com/Little-Book-about-Requirements-Stories-ebook/dp/B06XZZ6BQD
https://www.amazon.com/Little-Book-about-Requirements-Stories-ebook/dp/B06XZZ6BQD
https://leanpub.com/xanpan
http://www.lulu.com/shop/allan-kelly/xanpan-team-centric-agile-software-development/paperback/product-22271338.html
http://www.lulu.com/shop/allan-kelly/xanpan-team-centric-agile-software-development/paperback/product-22271338.html
https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias=aps&field-keywords=Xanpan
https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias=aps&field-keywords=Xanpan
https://www.amazon.com/Business-Patterns-Software-Developers-Allan-ebook/dp/B007U2ZT7K
https://www.amazon.com/Business-Patterns-Software-Developers-Allan-ebook/dp/B007U2ZT7K

About the author

Changing Software Development:
Learning to Be Agile

Available in all good bookshops and at Amazon*

Phttps://www.amazon.com/Changing-Software-Development-Learning-
Become/dp/047051504X

44

https://www.amazon.com/Changing-Software-Development-Learning-Become/dp/047051504X
https://www.amazon.com/Changing-Software-Development-Learning-Become/dp/047051504X
https://www.amazon.com/Changing-Software-Development-Learning-Become/dp/047051504X

	Table of Contents
	Free Book
	Project Myopia
	Prologue
	Introduction
	Agile project tension
	Project problems
	Why critique?
	Projects exist

	Defining a project
	Diseconomies of scale
	Milk is cheaper in large cartons
	Evidence of diseconomies
	Think diseconomies, think small
	Economies of scale thinking prevails
	And projects…
	Making small decisions
	Optimize for small
	Kelly's Laws

	Software isn't temporary
	If they use it, it will change
	False projects
	The problem with project success
	Multiple projects
	Increasing value
	Debt thinking
	The quality problem
	Programmes not projects
	Personal changes
	Want to read more?
	Continuous Digital
	About the author
	Also by Allan Kelly

