
1 | P a g e

Bug Bounty journal

W T L D TISSERA

Web security

2 | P a g e

Table of content

1 Introduction
2. Bug Bounty program ... 4

1. Program Rules ... 7

2. How we determine severity of a report .. 7

3. Out of Scope .. 7

4. Known issues .. 8

5. Sub domains of the main domain ... 9

3. Owasp top 10 .. 9

1. Injection: ... 10

2. Broken Authentication... 10

3. Sensitive Data Exposure .. 10

4. XML External Entities (XXE ... 10

5. Broken Access Control: ... 10

6. Security Misconfiguration.. 11

7. Cross-Site Scripting (XSS): ... 11

8. Insecure Deserialization .. 11

9. Using Components with Known Vulnerabilities ... 11

10. Insufficient Logging and Monitoring: .. 11

4. Tools used ... 12

1. OWASP ZAP .. 12

2. Burp suite ... 13

3. Sql map ... 14

4. XSSer .. 14

3 | P a g e

5. Wapiti ... 14

6. Amass .. 15

5. vulnerabilities I found ... 15

1. PII disclosure .. 16

2. sql injection .. 16

3. Vulnerable js library .. 16

4. Cross domain misconfiguration .. 17

5. CSP : wildcard .. 17

6. Absence of anti-csrf token ... 17

7. Hash disclosure... 17

6. Daily logs .. 18

7.Conclusion

4 | P a g e

1. Introduction

This report provides an overview of my bug bounty journey, detailing the selection process of the

program, methodologies employed to identify vulnerabilities, and the tools utilized throughout

the endeavor. It encompasses insights into OWASP Top 10 vulnerabilities and their significance

in the context of my findings. Additionally, it features daily logs, documenting the challenges

encountered and the actions taken to overcome them. Moreover, the report includes proof of

concept demonstrations, insights into TryHackMe room creation, and the process of submitting

reports to the platform.

2.Bug Bounty program

I used hacker1 platform to choose domain as my bug bounty program. At first, I selected different

domains, they were sheer.com and trip.com but those bug bounty programs scope was limited

then I found a bug bounty program www.boozt.com , comparing to previous two bug bounty

programs it has a wider scope. The reason to select it because the wider the scope there is more

possibility to find more vulnerabilities.

In the boozt fashion AB bug bounty program there were 6 main assets in scope they are,

• Com.booztlet

• Com.boozt

• Com.boozt.booztlet

• *.booztlet.com

• *.boozt.com

• Com.boozt.app

From these assets I mainly focused on *.boozt.com and *.booztlet.com

This bug bounty program was published in hacker1 by the company Boozt Fashion.

About the company

Boozt fashion is a Nordic technology company selling fashion and lifestyle online through our

multi-brand webstore Boozt.com and outlet Booztlet.com.

http://www.boozt.com/

5 | P a g e

Boozt.com is a multi-brand website for online shopping and booztlet.com is the Nordic fashion

outlet.

About boozt.com

About booztlet.com

6 | P a g e

The main domain - https://www.boozt.com/

Following are the list of assets which are in scope of the program and the bounty scheme depending of the

severity level of the vulnerability

Reward schema

In this bug bounty program, the minimum reward is $50 and the maximum is the $5000.

https://www.boozt.com/

7 | P a g e

1. Program Rules
Please provide detailed reports with reproducible steps. If the report is not detailed enough to

reproduce the issue, the issue will not be eligible for a reward.

• Submit one vulnerability per report, unless you need to chain vulnerabilities to provide

impact.

• When reporting vulnerabilities, please consider attack scenario, exploitability, and

security impact of the bug on our customers.

• When duplicates occur, we only award the first fully reproducible report that we receive.

• Multiple vulnerabilities caused by one underlying issue will be awarded one bounty. This

also applies in the case of the vulnerability affecting both Boozt and Booztlet domains.

• Social engineering (e.g. phishing, vishing, smishing) is prohibited.

• If you require an account with our services to showcase a vulnerability, please use your

@wearehackerone.com email when registering.

• Make a good faith effort to avoid privacy violations, destruction of data, and interruption

or degradation of our service. Only interact with accounts you own or with the explicit

permission of the account holder.

2. How we determine severity of a report

• After a report has been triaged by HackerOne, we will conduct an internal investigation to

understand the impact of the vulnerability on our customers; the final severity will always

factor in an assessment of how the issue affects our customers. Issues that can only be

leveraged to attack one's own account will have their severity score or applicability reflect

this.

• Reports for security issues that aren't vulnerabilities in our systems might receive a

bounty based on our assessment of the impact of the finding.

3. Out of Scope

The following issues are considered out of scope:

• Best practice concerns: evidence of a security issue is required.

8 | P a g e

• Issues that can only be leveraged to attack one's own account.

• Clickjacking on pages with no sensitive actions.

• Attacks requiring MITM or physical access to a customer's device.

• Use of known vulnerable libraries without a working proof of concept showcasing

leverage of that vulnerability.

• CSV injection without demonstrating a vulnerability.

• Any vulnerability affecting the availability of Boozt systems (e.g. denial of service

vulnerabilities).

• Missing HttpOnly or Secure flags on cookies.

• Vulnerabilities only affecting users of outdated or unpatched browsers (less than two

stable versions behind the latest released stable version).

• Software version disclosure.

• Public 0-day vulnerabilities that have had an official patch for less than one month will be

awarded on a case-by-case basis.

• Tabnabbing.

• Open redirect - unless an additional security impact can be demonstrated.

• Sessions being hijacked because of insecure protocol use.

• Reports from automated tools or scans.

• Spam techniques.

• Code obfuscation in mobile applications.

• Issues relating to password policies.

• Race conditions that don't compromise the security of Boozt or our customers.

• Issues that require unlikely customer interaction.

• Issues related to hardcoded vendor tokens on mobile applications which don't

compromise the security of Boozt or our customers.

• User enumeration vulnerabilities.

4. Known issues
The following issues are known to us and are being actively worked on. We consider them to be

out of scope while remediation is in progress.

• Cross-Site Request Forgery (CSRF) vulnerabilities on the /api/me/favorites endpoint.

• Issues related to mobile application authentication tokens.

9 | P a g e

• Brute-force issues, in particular with authentication endpoints.

5. Sub domains of the main domain

3.Owasp top 10

The OWASP Top 10 is a widely recognized and respected document that lists the top ten most

critical security risks facing web applications. It's created and regularly updated by the Open Web

https://owasp.org/www-project-top-ten/

10 | P a g e

Application Security Project (OWASP), a non-profit organization focused on improving software

security.

1. Injection: Injection vulnerabilities occur when attackers insert untrusted data into an input

or command, which is then interpreted by a system component. For instance, SQL injection

involves inserting SQL commands into input fields, potentially allowing attackers to

manipulate the database or access unauthorized data. Other types include OS injection and

LDAP injection. Preventive measures include using parameterized queries, input validation,

and escaping user input to mitigate these risks.

2. Broken Authentication: Broken authentication refers to weaknesses in the mechanisms

used for user authentication in web applications. Attackers may exploit these weaknesses to

impersonate users, steal session tokens, or bypass authentication altogether. Common

vulnerabilities include weak passwords, session fixation, and improper session management.

Mitigation strategies involve implementing secure authentication mechanisms, enforcing

strong password policies, and employing multi-factor authentication.

3. Sensitive Data Exposure: Sensitive data exposure occurs when web applications fail to

adequately protect confidential information, such as personal or financial data. Attackers can

intercept, modify, or steal this data, leading to identity theft, financial fraud, or privacy

violations. To mitigate this risk, developers should encrypt sensitive data, use secure

transmission protocols (e.g., HTTPS), and implement access controls to limit data exposure.

4. XML External Entities (XXE): XXE vulnerabilities arise when applications parse

XML input from untrusted sources without proper validation. Attackers can exploit these

vulnerabilities to access sensitive data or execute remote code. Mitigation techniques include

disabling XML external entity processing, validating XML input, and using secure XML

parsers that prevent entity expansion attacks.

5. Broken Access Control: Broken access control occurs when web applications fail to

enforce proper access controls, allowing attackers to perform unauthorized actions. This can

include modifying or deleting data, accessing restricted resources, or escalating privileges. To

11 | P a g e

mitigate this risk, developers should implement access controls at both the application and

database levels, validate user permissions, and enforce least privilege principles.

6. Security Misconfiguration: Security misconfiguration refers to insecure configurations,

default settings, or incomplete setups in web applications. Attackers can exploit these

misconfigurations to gain unauthorized access, expose sensitive data, or compromise the

application's security. Preventive measures include regularly updating software, disabling

unnecessary features, and properly configuring security settings, including those for cloud

environments.

7. Cross-Site Scripting (XSS): XSS vulnerabilities occur when attackers inject malicious

scripts into web pages viewed by other users. These scripts can hijack user sessions, steal

cookies, or deface websites. Mitigation techniques involve input validation, output encoding,

and implementing Content Security Policy (CSP) to prevent unauthorized script execution.

8. Insecure Deserialization: Insecure deserialization vulnerabilities arise when

applications deserialize untrusted data without proper validation. Attackers can exploit these

vulnerabilities to execute arbitrary code, perform remote code execution, or escalate

privileges. Mitigation strategies include input validation, integrity checks, and using secure

deserialization libraries.

9. Using Components with Known Vulnerabilities: This risk involves using third-

party libraries or software components with known security flaws. Attackers can exploit these

vulnerabilities to compromise the application's security, execute arbitrary code, or steal

sensitive data. To mitigate this risk, developers should regularly update dependencies,

monitor for security advisories, and use vulnerability scanners to identify and remediate

vulnerabilities.

10. Insufficient Logging and Monitoring: Insufficient logging and monitoring occur

when web applications lack adequate logging and monitoring systems. This can enable

attackers to maintain persistence, evade detection, or escalate attacks unnoticed. Mitigation

12 | P a g e

measures include implementing comprehensive logging, setting up intrusion detection

systems, and establishing incident response procedures to detect and respond to security

incidents effectively.

4.Tools used

There are plenty of tools that a bug bounter can use for programs there can be automated tools as

well as manual methods for reconnaissance , find vulnerabilities, exploit.

Following are the tools that I utilized during the bug bounty hunting

▪ Owasp zap

▪ Burp suite

▪ XSSer

▪ Nikto

▪ Sql map

▪ Wapiti

▪ Amass

▪ Nmap

▪ Nslookup up

1. OWASP ZAP
Owasp zap also called as zed attack proxy is a free and open-source web application scanner that

is widely used in the world.

This tool mainly has two type of scans namely automated scan and the manual scan.

13 | P a g e

How you can use it

• Three interfaces

– Desktop

– API

– Heads Up Display (HUD - new)

Automated scans

1. Launch ZAP and select the Workspace Window's Quick Start tab.

2. Press the large "Automated Scan" icon.

3. Type the entire URL of the website you wish to target into the URL to attack text field.

4. Select Attack

ZAP will then use its spider to progressively crawl the web application, passively scanning every

page it comes across.

ZAP will then attack all of the found pages, functionality, and parameters using the active

scanner.

Manual Exploration

1. Launch ZAP and select the Workspace Window's Quick Start tab.

2. Press the large Manual

Explore button.

3. Type the complete URL of the web application you wish to explore into the URL to explore

text box.

4. Decide which browser you want to use.

5. Select "Launch Browser."

2. Burp suite
Burp Suite which is an integrated platform s used to test web applications for security. Its many

tools function in together to facilitate every step of the testing process, from the first mapping and

analysis of the attack surface of an application to the identification and exploitation of security

flaws.

14 | P a g e

With Burp, you have complete control over combining cutting-edge automation with

sophisticated manual techniques to increase productivity, enjoyment, and speed of work.

3. Sql map

sqlmap is an open-source penetration testing tool that automates the process of detecting and

exploiting SQL injection flaws and taking over of database servers. It comes with a powerful

detection engine, many niche features for the ultimate penetration tester and a broad range of

switches lasting from database fingerprinting, over data fetching from the database, to accessing

the underlying file system and executing commands on the operating system via out-of-band

connections.

I used sql map to check whether the website is vulnerable to any sql injection

4. XSSer

A web-based application's Cross Site "Scripter" (also known as XSSer) is an automatic

framework for identifying, taking advantage of, and reporting XSS vulnerabilities.

It offers multiple ways to attempt evading specific filters as well as a number of unique code

injection techniques.

5. Wapiti
Wapiti is a powerful tool used to audit the security of web applications. It conducts "black-box"

scans, meaning it examines the web pages of deployed applications without analyzing the source

code directly. Instead, it looks for vulnerabilities by injecting data into scripts and forms and

observing the application's response.

Wapiti can detect the following vulnerabilities:

• Database Injection (PHP/ASP/JSP SQL Injections and XPath Injections)

• Cross Site Scripting (XSS) reflected and permanent

• File disclosure detection (local and remote include, require, fopen, readfile…)

• Command Execution detection (eval(), system(), passtru()…)

• XXE (Xml external Entity) injection

15 | P a g e

• CRLF Injection

• Search for potentially dangerous files on the server (thank to the Nikto db)

• Bypass of weak htaccess configurations

• Search for copies (backup) of scripts on the server

• Shellshock

• DirBuster like

• Server-Side Request Forgery (through use of an external Wapiti website)

6. Amass

Amass is a powerful open-source reconnaissance tool designed for network mapping and

information gathering. Researchers and security experts use it frequently to map out external

network space and find assets that are owned by a target organization.

The tool collects data about the target network using a variety of methods, such as:

▪ DNS enumeration: To learn more about the target's domain name system, Amass sends

queries to DNS servers.

▪ Data scraping from search engines: The program searches for the target's online presence

(websites, social media profiles, and other online platforms) and gathers information

about it.

▪ Web crawling: Amass searches the target's webpages for possible points of attack, like

weak web applications.

▪ Reverse IP lookups: The tool checks which other domains are hosted on the same IP

address as the target, potentially uncovering additional attack vectors.

5.vulnerabilities I found

• PII disclosure

• Sql Injection

• Vulnerable js library

• Cross domain misconfiguration

• CSP : wildcard

16 | P a g e

• Absence of anti-csrf token

• Hash disclosure

• Apart from these I tried to perform xss on the website

1. PII disclosure
Owasp top 10 – sensitive data exposure (A03:2017)/ Cryptographic failures(A02:2021)

PII (Personally Identifiable Information) disclosure vulnerability refers to a flaw or weakness in a

system or application that could potentially expose sensitive personal information about

individuals, this information can be used to identify or contact a person uniquely or can be

traced back to a specific individual PII includes data such as names, addresses, social security

numbers, credit card number, phone numbers, email addresses, financial information, and more

2. sql injection
Owasp top 10 – Injection (rank 3)

SQL injection, or SQLI for short, is a well-known attack vector that leverages malicious SQL

code to manipulate backend databases and retrieve data that wasn't meant to be shown. Any

number of things, such as user lists, private customer information, or sensitive company data,

may be included in this information.

In my bug bounty program, I found 3 vulnerabilities related to sql injection. They are,

▪ SQL Injection hypersonic SQL

▪ SQL Injection – SQLite

▪ SQL Injection – Oracle

3. Vulnerable js library
Owasp top 10 - Using Components with Known Vulnerabilities

vulnerable JS library is a security vulnerability that occurs due to the use of outdated or

unpatched js libraries. Cybercriminals often target web applications that utilize these vulnerable

17 | P a g e

libraries, exploiting them for malicious purposes.

4. Cross domain misconfiguration

Owasp top 10 - Security Misconfiguration(rank 5)

Cross-domain misconfiguration, also known as cross-origin misconfiguration, refers to a security

vulnerability that occurs when a web application improperly allows interactions between different

domains or origins. Web browsers have a security feature called the Same-Origin Policy (SOP),

which prevents scripts on one domain from accessing resources on another domain, to mitigate

various types of attacks such as Cross-Site Scripting (XSS) and Cross-Site Request Forgery

(CSRF)

5. CSP : wildcard
Owasp top 10 – Insecure design (rank 4)

The "Content Security Policy" (CSP) is a security standard that enables web developers specify

which content sources are acceptable for their online application, therefore assisting in the

prevention of many sorts of attacks, including data injection and Cross-Site Scripting (XSS). A

component of the Content Security Policy is the CSP Wildcard Directive, sometimes referred to

as the default-src directive.

6. Absence of anti-csrf token
Owasp top 10- Insecure design(rank 4)

The absence of anti csrf token leaves a web application vulnerable to csrf attacks. CSRF tokens

are unique , random values generated by the server and embedded in web forms. They help to

prevent unauthorized commands executed on behalf of user . without these tokens, attackers can

forge request , leading to unauthorized actions behalf of the user

7. Hash disclosure
Owasp top 10 – cryptographic failures(rank 2)

An application that inadvertently divulges a hashed version of a password is known as a hash

disclosure vulnerability. Although this might seem safe because the actual password isn't

18 | P a g e

exposed, it can still be dangerous.

Hash disclosure - SHA-256 crypt refers to a vulnerability where the web server inadvertently

exposes hashed passwords that have been hashed using the SHA-256 crypt algorithm on a

system.

6.Daily logs

• 2024.3.22

Started the assignment. First, I wanted to select a domain as my bug bounty program. I have not

done bug bounty previously so I searched how to selected a domain.

For that I referred some YouTube videos. Following are those video links,

https://www.youtube.com/watch?v=vbXpRHcKIr0

https://www.youtube.com/watch?v=F9dV5lH8nvo&list=RDCMUCCZDt7MuC3Hzs6IH4xODL

Bw&start_radio=1&rv=F9dV5lH8nvo&t=10

✓ Takeaways

we need to check scope, rewards in the program. And choosing

✓ Challenges

there are so many videos in you tube about how to select a domain, most of them said

• 2024.4.4

As a beginner for bug bounty, I did not know much about tools, methodologies , platforms for

bug bounty.

Then I found an amazing article,

https://infosecwriteups.com/bug-hunting-methodology-for-beginners-20b56f5e7d19

https://www.youtube.com/watch?v=vbXpRHcKIr0
https://www.youtube.com/watch?v=F9dV5lH8nvo&list=RDCMUCCZDt7MuC3Hzs6IH4xODLBw&start_radio=1&rv=F9dV5lH8nvo&t=10
https://www.youtube.com/watch?v=F9dV5lH8nvo&list=RDCMUCCZDt7MuC3Hzs6IH4xODLBw&start_radio=1&rv=F9dV5lH8nvo&t=10
https://infosecwriteups.com/bug-hunting-methodology-for-beginners-20b56f5e7d19

19 | P a g e

this article covered wide range of basic information we need to know as a bug bounty programs.

It mentioned about bug bounty platforms. I only knew about hacker one, bug crowd and integrity

but mentioned about some other bug bounty platforms as well.

 Most important thing to me was it mentioned about useful YouTube channels for learning

I referred some videos

✓ Takeaways

https://www.youtube.com/watch?v=qlzbzfNAXXE

when to report a bug

how to find sub domains – it mentioned some tools such as subfinder, Amass, sublist3r

Different tools we can use – burp suite, xsser, google dorking, shodan, Metasploit, sql map ,

nmap

take aways from the videos -

https://www.youtube.com/watch?v=OsIXSuVO8ig – Bug bounty fundamentals

✓ Takeaways

 scope : why there is out of scope in programs

what happen if we find a bug in out of scope – most probably we will not get a reward

top 5 bug bounty tips - https://www.google.com/search?client=firefox-b-

d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628

535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwj

https://www.youtube.com/watch?v=qlzbzfNAXXE
https://www.youtube.com/watch?v=OsIXSuVO8ig
https://www.google.com/search?client=firefox-b-d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwjqioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=ive&vld=cid:75167493,vid:QLYVXIme10I,st:0
https://www.google.com/search?client=firefox-b-d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwjqioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=ive&vld=cid:75167493,vid:QLYVXIme10I,st:0
https://www.google.com/search?client=firefox-b-d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwjqioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=ive&vld=cid:75167493,vid:QLYVXIme10I,st:0

20 | P a g e

qioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=iv

e&vld=cid:75167493,vid:QLYVXIme10I,st:0

✓ Takeaways

spend time looking for target

use your target until you are bored

test wisely

test every parameter for reflection

pick your targets wisely

• 2024.4.7

I choose a domain; The platform is hacker one. The bug bounty program is sheer.com.

This website is a content creator website, u can either register as a content creator or a fan

There was field to enter brand name, the brand name will save as a URL. So, I tried to enter most

basic xss payload. But it says it only accept letters and numbers.

https://www.google.com/search?client=firefox-b-d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwjqioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=ive&vld=cid:75167493,vid:QLYVXIme10I,st:0
https://www.google.com/search?client=firefox-b-d&sca_esv=88efb82a0fd29766&sxsrf=ACQVn0_FEQxGgHHDYA7jPkPXhK6zJ3grZg:1714628535164&q=bug+bounty+tips&tbm=vid&source=lnms&prmd=visnmbz&sa=X&ved=2ahUKEwjqioqGoe6FAxULbmwGHaINBTQQ0pQJegQIFBAB&biw=766&bih=730&dpr=1.25#fpstate=ive&vld=cid:75167493,vid:QLYVXIme10I,st:0

21 | P a g e

I had some issues in creating an account in sheer website.

So, I had to look for another domain.

Then I found a fashion clothing website called boozt.com

It is a Nordic online fashion store, it has mainly two sites namely, boozt.com and booztlet.com .

First, I did some basic injections like sql injection and xss .

✓ Challenges

I got tried some sql injections but none of them worked . I got over whelmed as I spent so much

time but yet I did not get any results. But I did not give up.

So far, I have found vulnerabilities in portswigger labs, dvwa, pico ctf , try hack me rooms. Nut

these are to enhance our skills so they are built to be vulnerable. But bug bounty programs are not

like that most of them already has robust security measurements . It is hard to hack then or find

bug using basic payloads.

• 2024.4.8

22 | P a g e

I searched about tools mentioned in the assignment.

Shodan - Shodan is a search engine for finding specific devices, and device types, that exist

online. The most popular searches are for things like webcam, linksys, cisco, netgear, SCADA,

etc. shodan can be also used to find sub domains.

Cencys – information about a domain when we give ip address or domain name. information like

host, ports, status of connection, location, redirection locations, technologies used.

23 | P a g e

Amass – enumeration tool

I used amass tool and find out the related subdomains of bootz.com and booztlet.com

24 | P a g e

• 2024.4.9

I found a tool called owasp zap which can be used to identify vulnerabilities in a website. I

searched about the tool and it is a tool that can be useful for bug hunters specially if they are new

to bug hunting.

In my kali machine owasp zap was not downloaded, so I had to download it on my machine. Yet I

didn’t know how to use the tool.

Using owasp zap I scanned subdomains of boozt.com , I found about some csp issues, but still

couldn’t find any serious vulnerabilities of the website.

I also found a site for sitechecking

https://sitecheck.sucuri.net

https://sitecheck.sucuri.net/

25 | P a g e

this site check whether a given domain has malware, whether it is blacklisted, and other security

issues.

But it suggested some heading improvements in the domain

▪ Challenges

Some of the tools were completely new to me, so I had to learn how to use them.

• 2024.4.10

Today I started doing sql injection on the website. For that I used sql map tool which is a

popular tool for finding sql injection vulnerabilities

First, I started on kali virtual machine and accessed to SQL map tool. In sql map wizard you only

have to give the url and then wizard will ask to choose some options like difficulty of attack,

enumeration.

First, I used sql map on www.boozt.com , but it did not give any output it displayed that there

were no forms at given target url.

http://www.boozt.com/

26 | P a g e

' UNION SELECT NULL,NULL,NULL-- : This payload is used for testing if the application is vulnerable to

union-based SQL injection.

I also tried to inject some sql payloads in the search field of the website. Due to input sanitization and

validation the payload that are used are not successful.

▪ Takeaways

Learned some new sql payloads

• 2024.4.11

Today I used tool called nikto, nikto is used test a Web Site, Virtual Host and Web Server for

known security vulnerabilities and mis-configurations.

27 | P a g e

Nikto performs over 6000 tests against a website. The large number of tests for both security

vulnerabilities and mis-configured web servers

Through the nikto scanning following are what I found

▪ Anti-hijacking header is not present

▪ Alt-svc header was found which is advertising HTTP/3 . the end point is : 443

▪ The x-content-type-option header is not set

Also, it gave information about the host, the target ip, port using, root page

Did some cross site scripting attempts

A review aggregation system or third-party review integration where users can submit reviews for

products and services on a website, such as www.boozt.com , via a third-party platform like

https://uk.trustpilot.com. The 'topic' field allows users to specify the subject of their review, and

once submitted, the topic becomes a clickable link, potentially leading to the full review or

related content.

http://www.boozt.com/
https://uk.trustpilot.com/

28 | P a g e

29 | P a g e

30 | P a g e

31 | P a g e

32 | P a g e

✓ Takeaways

I searched why xss did not work here what I gathered

Why payload did not work?

33 | P a g e

 HTML Encoding: The application might be encoding the input before displaying it as a link.

This means that although you're injecting <script>alert(2)</script>, it's being HTML-encoded

before being rendered in the browser. So, it might appear as <script>alert(2)</script> in the link,

but it's treated as plain text and not executed as JavaScript.

 Input Sanitization: The application may have input sanitization mechanisms in place that

filter out or neutralize potentially dangerous input, including script tags and JavaScript code. This

prevents XSS attacks by removing or escaping any HTML or JavaScript code entered into the

form field.

 Contextual Filtering: Even if the input appears as a link, the context in which it's rendered

might not allow execution of JavaScript. For example, if the input is rendered within an <a> tag's

href attribute, the browser would interpret it as a URL, not as JavaScript code.

Stored xss

34 | P a g e

• 2024.4.16

Attempted some cross site scripting.

Today I did xss on the url. But for most xss payloads I got a 400-status code. Because this

site use url encoding, input sanitation and validation.

35 | P a g e

36 | P a g e

I also use burp suit intruder to perform list of xss payloads on website but any of the attempts

were not successful. I used xss payload list in https://github.com/payloadbox/xss-payload-list to

attack the website using burp suite intruder.

Using xsser

Used xsser tool in kali to perform xss on the boozt.com and booztlet.com. A web-based

application's Cross Site "Scripter" (also known as XSSer) is an automatic framework for

identifying, exploiting and reporting XSS vulnerabilities.

https://github.com/payloadbox/xss-payload-list

37 | P a g e

38 | P a g e

39 | P a g e

Why xsser did not work?

In the output it is displayed that

[ERROR] XSSer(or your target) is not properly working

-Wrong url

-Firewall

-proxy

-target offline

-[?]

From these options wrong url is not affecting because I double checked the url before entering it.

Also, the target is not offline, I did a ping command to the target and as a result I received

packets, so that mean our target is online.

40 | P a g e

If the xsser did not work it is because of the following reasons,

1. Proxy :

▪ A proxy server acts as an intermediary between a client and a destination server. It

can intercept and inspect traffic passing through it, allowing it to filter out

potentially malicious content, including XSS payloads.

▪ Proxies can be configured to block requests containing suspicious patterns or

known XSS payloads, preventing them from reaching the target application.

▪ Some proxy servers offer features like content filtering and web application

firewall (WAF) capabilities, which can detect and block XSS attacks in real-time.

2. Firewall :

▪ Firewalls are network security devices that monitor and control incoming and

outgoing network traffic based on predetermined security rules.

▪ Web application firewalls (WAFs) specifically focus on filtering and monitoring

HTTP traffic to and from web applications.

41 | P a g e

▪ WAFs can be configured with rulesets designed to detect and block common XSS

attack patterns, such as script injections and suspicious JavaScript payloads.

▪ They can also enforce policies to block requests containing specific HTTP headers

or parameters commonly associated with XSS attacks.

Used firewall

• 2024.04.17

I had downloaded owasp zap, Today I used owasp zap.

I had used this for once but I did not know how to adjust options

First of all, I needed to know how to use this tool . for that I referred following vide. In that video

it explains what is automated scan, manual scan and available options in owasp zap tool

https://www.youtube.com/watch?v=wLfRz7rRsH4

through this tool I learned how to adjust and modify default policy. I changed the strength of the

attack. After that I scanned the site using automated scan. I found a high risked vulnerability in

alert tab. This vulnerability is called PII (personally identifiable information) disclosure.

https://www.youtube.com/watch?v=wLfRz7rRsH4

42 | P a g e

43 | P a g e

✓ Challenges:

I had to find about the PII vulnerability, it was a new concept for me.

• 2024.04.18

Today I used owasp zap to automatically scan www.bootz.com, and I found 5 high-rate alerts. 3

of them are sql vulnerabilities and one of them is a vulnerability regarding hash disclosure.

Sql injection – hypersonic sql

http://www.bootz.com/

44 | P a g e

Details of vulnerability

RDBMS [Hypersonic SQL] likely, given error message regular expression [\QhSql.\E] matched

by the HTML results.

The vulnerability was detected by manipulating the parameter to cause a database error message

to be returned and recognized

Solution by owasp zap

▪ Do not trust client-side input, even if there is client-side validation in place.

▪ In general, type check all data on the server side.

▪ If the application uses JDBC, use Prepared Statement or Callable Statement, with

parameters passed by '?'

▪ If the application uses ASP, use ADO Command Objects with strong type checking and

parameterized queries.

▪ If database Stored Procedures can be used, use them.

▪ Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec

immediate', or equivalent functionality!

▪ Do not create dynamic SQL queries using simple string concatenation.

▪ Escape all data received from the client.

▪ Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user

input.

▪ Apply the principle of least privilege by using the least privileged database user possible.

▪ In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate

SQL injection, but minimizes its impact.

▪ Grant the minimum database access that is necessary for the application.

Ref -

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

45 | P a g e

SQL Injection -Oracle- Time based

Details about vulnerability

The query time is controllable using parameter value [true" and exists (SELECT

UTL_INADDR.get_host_name('10.0.0.1') from dual union SELECT

UTL_INADDR.get_host_name('10.0.0.2') from dual union SELECT

UTL_INADDR.get_host_name('10.0.0.3') from dual union SELECT

UTL_INADDR.get_host_name('10.0.0.4') from dual union SELECT

UTL_INADDR.get_host_name('10.0.0.5') from dual) --], which caused the request to take

[7,050] milliseconds, when the original unmodified query with value [true] took [66]

milliseconds

Solution by owasp zap

▪ Do not trust client-side input, even if there is client side validation in place.

▪ In general, type check all data on the server side.

▪ If the application uses JDBC, use PreparedStatement or CallableStatement, with

parameters passed by '?'

▪ If the application uses ASP, use ADO Command Objects with strong type checking and

parameterized queries.

▪ If database Stored Procedures can be used, use them.

46 | P a g e

▪ Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec

immediate', or equivalent functionality!

▪ Do not create dynamic SQL queries using simple string concatenation.

▪ Escape all data received from the client.

▪ Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user

input.

▪ Apply the principle of least privilege by using the least privileged database user possible.

▪ In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate

SQL injection, but minimizes its impact.

▪ Grant the minimum database access that is necessary for the application.

SQL -Injection=Sqlite

47 | P a g e

Details about vulnerability

The query time is controllable using parameter value [' | case randomblob(100000) when not null

then "" else "" end | '], which caused the request to take [68] milliseconds, parameter value [' |

case randomblob(1000000) when not null then "" else "" end | '], which caused the request to take

[96] milliseconds, when the original unmodified query with value [carousel_68011|68015] took

[53] milliseconds.

Solution by owasp zap

▪ Do not trust client side input, even if there is client side validation in place.

▪ In general, type check all data on the server side.

▪ If the application uses JDBC, use PreparedStatement or CallableStatement, with

parameters passed by '?'

▪ If the application uses ASP, use ADO Command Objects with strong type checking and

parameterized queries.

▪ If database Stored Procedures can be used, use them.

▪ Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec

immediate', or equivalent functionality!

▪ Do not create dynamic SQL queries using simple string concatenation.

▪ Escape all data received from the client.

▪ Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user

input.

▪ Apply the principle of least privilege by using the least privileged database user possible.

▪ In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate

SQL injection, but minimizes its impact.

▪ Grant the minimum database access that is necessary for the application.

Ref -

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

48 | P a g e

Hash disclosure

✓ Challenges

The automated scan of owasp zap takes a long time to complete the scan.

I had to assign some time to study about new things I learn. Such as hypersonic sql, sql lite,

oracle databases

• 2024.04.19

I started making reports for vulnerabilities I found. I made reports for pii disclosure, xss attempts.

Today I used a new tool called wapiti, it comes in kali as a web vulnerability scanner. It scans for

vulnerabilities like sqli, xss, csp vulnerabilities and more.

It generates a report after the scan , we can view it in browser. Here Is the report for

https://www.boozt.com

Wapiti display the vulnerabilities found also give recommend mitigations. The scan gave alerts

for security header issues and csp issues.

Wapiti scan for www.boozt.com

https://www.boozt.com/
http://www.boozt.com/

49 | P a g e

50 | P a g e

51 | P a g e

Wapiti scan for www.booztlet.com

http://www.booztlet.com/
http://www.booztlet.com/

52 | P a g e

53 | P a g e

54 | P a g e

2024.4.20

I did an automated scan for www.booztlet.com . Apart from PII disclosure I found other medium

risked alerts for CSP: wildcard vulnerability, CSP: script-src unsfe-inline, CSP-style-src-unsafe-

inline, Absence of anti csrf token.

Absence of anti csrf token

http://www.booztlet.com/

55 | P a g e

CSP- wild card directive

CSP – unsafe inline

Csp -unsafe inline script

56 | P a g e

• 2024.04.22

Found vulnerable javascript library in www.booztcdn.com

Vulnerable url – https://assets2.booztcdn.com/assets/js/webshop_vendors-56280cc6.js

References:

https://nvd.nist.gov/vuln/detail/CVE-2012-6708

https://github.com/jquery/jquery/issues/2432

http://research.insecurelabs.org/jquery/test

related cve s

CVE-2020-11023

http://www.booztcdn.com/
https://assets2.booztcdn.com/assets/js/webshop_vendors-56280cc6.js
https://nvd.nist.gov/vuln/detail/CVE-2012-6708
https://github.com/jquery/jquery/issues/2432
http://research.insecurelabs.org/jquery/test

57 | P a g e

CVE-2020-11022

CVE-2015-9251

CVE-2019-11358

CVE-2020-7656

CVE-2012-6708

Found a medium risk vulnerability for cross domain misconfiguration. The vulnerability was

found using owasp zap tool

• 2024.04.23

Started to finish some reports .Today started to finish reports for sql vulnerabilities I found, and

also cross domain misconfiguration, csp : wildcard issue.

• 2024.04.24

Today I submitted my first report to my bug bounty program. The platform I used was try hack me room. I

created a template for my report and submit the report.

58 | P a g e

✓ Challenges

I had never uploaded a report in hacker one me before, I did not know the procedure, anyhow I

googled and found out how to report a vulnerability in hacker one.

Another challenge I faced was that I can only submit a one report per day, because I was a

beginner in hacker one.

• 2024.4.25

Started making the try hack me room. The try hack me room I created was regarding the hash

disclosure vulnerability. It highlights the risk of publicly disclosed hashes, because attackers can

get the plain text by using tools and attacks like rainbow attacks.

Here is the try hack me room link.

https://663870ac2e909578549f9474--classy-malasada-a34a5f.netlify.app/

59 | P a g e

✓ Challenges

I had issues with uploading virtual machine to try hack me. It gave me errors repeatedly .

So, I deployed my webpage using Netlify and attached the link in the try hack me room.

2024.4.30

I uploaded copy of this journal to the lean pub.

Following is the link

7. Conclusion

To conclude, this report outlines my bug bounty journey, detailing how I selected programs,

found vulnerabilities, and utilized various tools. It emphasizes understanding OWASP Top 10

vulnerabilities and addressing security risks. Daily logs illustrate the challenges faced and the

perseverance required. Moreover, it showcases proof of concept demonstrations and insights into

report submission, highlighting dedication to thoroughness and professionalism in bug hunting.

Overall, this report reflects the ongoing learning and commitment involved in advancing

cybersecurity through ethical hacking practices.

8. References
https://www.cloudflare.com/learning/security/threats/owasp-top-10/

https://www.kali.org/tools/burpsuite/

https://www.shodan.io/

https://sqlmap.org/

https://medium.com/@cuncis/amass-an-overview-of-the-network-reconnaissance-tool-

79049f34bb46

https://portswigger.net/web-security/sql-injection

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

https://owasp.org/www-project-top-ten/

https://github.com/pgaijin66/XSS-Payloads/blob/master/payload/payload.txt#L18

https://www.cloudflare.com/learning/security/threats/owasp-top-10/
https://www.kali.org/tools/burpsuite/
https://www.shodan.io/
https://sqlmap.org/
https://medium.com/@cuncis/amass-an-overview-of-the-network-reconnaissance-tool-79049f34bb46
https://medium.com/@cuncis/amass-an-overview-of-the-network-reconnaissance-tool-79049f34bb46
https://portswigger.net/web-security/sql-injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/
https://github.com/pgaijin66/XSS-Payloads/blob/master/payload/payload.txt#L18

60 | P a g e

https://hackerone.com/boozt/bounty_table_versions?type=team&change=2023-10-

17T08%3A31%3A22.175Z

https://hackerone.com/boozt/bounty_table_versions?type=team&change=2023-10-17T08%3A31%3A22.175Z
https://hackerone.com/boozt/bounty_table_versions?type=team&change=2023-10-17T08%3A31%3A22.175Z

