Mutation Testing

Better Code by Making Bugs

Filip van Laenen

Mutation Testing
Better Code by Making Bugs

Filip van Laenen
This book is available at https://leanpub.com/mutationtesting

This version was published on 2025-11-11

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an in-progress
ebook using lightweight tools and many iterations to get reader feedback, pivot
until you have the right book and build traction once you do.

© 2013 - 2025 Filip van Laenen

https://leanpub.com/mutationtesting
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Filip van Laenen by spreading the word about this book on Twitter!
The suggested hashtag for this book is #mutestbook.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#mutestbook

http://twitter.com
https://twitter.com/search?q=%23mutestbook
https://twitter.com/search?q=%23mutestbook

Contents

Foreword e 1
Preface i1
How To Read This Book iv
Who Should Read ThisBook v
Acknowledgements o o oo oL vi

1. Introduction @ e 1

Foreword

Preface

Many years ago, I started experimenting and doing hobby projects in Ruby. But
with my Java background, I was used to measure code quality through static code
analysis and test coverage reports, so I started looking for Ruby tools that could
do the same thing. As I did some research on the Internet, I quickly found out that
there weren’t many useful tools in Ruby for static code analysis. The reason for
this is very simple: Ruby isn’t a typed language, and that makes it hard to do the
same kind of static code analysis that’s possible in languages like Java. But since |
wanted to improve my Ruby programming skills, I was willing to try any tool that
I could get running on my machine and that would help me get better in Ruby.

[did find a test coverage tool, but it didn’t work very well. Together with a simple
static code analysis tool that was able to give me some useful feedback, I had
something running, together with a mysterious tool called “Heckle”. I couldn’t
figure out what it really was, but somebody was recommending it on his blog.
[was able to install it and run it against my Ruby source code, so [decided to give
it a try. Somehow, it managed to point me to missing test cases from time to time,
much like an automatic code reviewer. That didn’t help me get better in Ruby per
se, but it was still a great benefit while working on hobby projects at home. I got
used to running it as part of my code quality check routine.

But then there was this one evening, when I was working on a piece of code that
I thought I had tested completely. had 100% test coverage, both for the lines and
the branches, so what more could I aim for? Nevertheless, Heckle didn’t seem to
be happy with my unit tests, and kept telling me that something was wrong. In
fact, it even gave me an alternative source code that it said would pass all my unit
tests, even though I could see that that piece of source code simply wouldn’t do the
job. Clearly, this had to be a bug in Heckle, and I started to prepare a bug report
so someone could fix the problem. I just had to prove first that Heckle was wrong.
And what better way could there be to prove that Heckle was wrong, than pasting
the source code it was proposing into my source code, and running all my unit
tests against it?

Of course, Heckle wasn’t wrong. The source code it proposed did pass all the unit
tests. That annoyed me even more, so | had to find out what was really going on. As

Preface 111

it turned out, there was indeed a test case missing, a test case that [hadn’t thought
of before. And yes, there was an alternative solution to the source code I had, one
that passed all the unit tests I had written so far. Even more, after some refactoring
it was also considerably simpler than the original soure code.

That evening, I learned that even if you try to follow all the rules of Test-Driven
Development (TDD) carefully and to the detail, you will still make mistakes and
write more source code than strictly needed to make all your unit tests pass. And
it’s hard to find out about this without an automatic tool that will systematically
vet your source code and ask for every statement it can find whether it’s really
necessary to have it there or not. No human code reviewer can do that. And no
human code reviewer can be so systematic and merciless as an automatic mutation
testing tool.

There have been more evenings where mutation testing has pointed me to test
cases I would never have discovered on my own. There have also been many
evenings where mutation testing has pointed me to parts in my source code
that turned out to be unnecessary, even though the test coverage reports where
indicating these parts were covered. Over the years, I have probably deleted
thousands lines of source code, and saved myself from a lot of maintenance and
even bug fixing, thanks to mutation testing. Not only was I able to discover the
unneeded lines of code, I also dared to delete them. If I really couldn’t come up
with a single unit test that would stop mutation testing from complaining about
some unneeded code, then why keep it?

Mutation testing has thaught me that traditional test coverage reports, with line
and branch coverage, simply aren’t good enough. These reports only tell you
which lines and branches your unit tests run through, not whether they really
matter. Mutation testing has also thaught me to write unit tests in a different way,
and care more about being able to test what the source code really does —or is
supposed to do—, rather than trying to write unit tests that touch every line and
branch in the source code. That makes a big difference. It makes for better unit
tests, better source code, and also less source code. All three are positive effects in
their own right, and it’s amazing that mutation testing can do all three at once.

These days, I don’t use Heckle any more. It stopped working after upgrading
to Ruby 1.9, so I switched to Mutant, which works even better. When I'm
programming in Java, I use PIT, which is a great tool too. Unfortunately, 'm not
able to use mutation testing in every project I work on. But even if I can’t use
mutation testing, I still program as if mutation testing was lurking somewhere

Preface v

behind the door. I write plenty of unit tests, especially to test boundary cases, and
I've become much more critical of putting in extra lines of source code if 'm not
sure I really need them.

If you wonder what the little problem was that I was working on that evening,
many years ago, have a look at the practical example later in this book. It’s
partly simplified and partly modified for pedagogical reasons, but the essence
is still there. I've used it in my talks about mutation testing, and it seems to
me that it’s able to tell someting fundamental about mutation testing. I guess
that anybody who starts using mutation testing takes software development and
software quality seriously, and therefore sooner or later will run into a similar
case: a mutation testing epiphany.

How To Read This Book

If you're new to mutation testing, you should start by reading the introduction
to this book, the chapter about the basics of mutation testing, and work your
way through the practical example. After that, you should be able to pick the
right tool, and get started running mutation testing on your projects. As you gain
more experience on mutation testing, you will want to browse through the other
chapters to get a deeper understanding of mutation testing, how it works, the
mutators that are available to you, and some of the history. But I tried to order
the chapters such that they make the most sense if you want to read the book
from the beginning to the end, as a sort of text book, so you may chose to do that
too.

If you already have some experience with mutation testing you can probably skip
the introduction and the practical example, and go straight to the more advanced
chapters. In particular the chapters on how mutation testing works and how
mutation testing tools are built should be of interest to you, as they will explain
why the tool you're using behaves the way it behaves, and give you some ideas on
how you can get more out of mutation testing as a technique, and the mutation
testing tool you're using.

If you're thinking about creating a mutation testing tool on your own, perhaps
because there isn’t one for your favourite programming language, I would advice
you to start experimenting with one of the tools for the other languages. Just pick
the best one for the language that you're the most familiar with, and try it out. After

Preface \%

that, the chapter explaining how mutation testing tools work should give you an
overview over the things you'll have to think about. And if you finally decide to
really build a new mutation tool, don’t forget to notify me, so I can include it in
this book!

The examples in this book are written in pseudocode, just to keep things as
much as possible language neutral. That’s also why I've chosen to keep it close to
mathematical notations, which also reduces the number of keywords needed and
helped keep it simple and concise. There’s no formal definition for the language,
and there isn’t even a guarantee that it’s completely consistent across all examples.
It may even be inconsistent from one example to another just because of what I
try to point out in the examples.

Who Should Read This Book

This book has been written for developers, senior developers and technologists,
in order to give them an understanding of what mutation testing is about, how it
can be used, and how they can get started working with it. However, if you're not
so familiar with automatic unit tests, and your project still has low test coverage,
you should probably go and fix that first.

If you're a tester or responsible for QA, you can also benefit from this book to
understand the impact of mutation testing on your work, and give you some ideas
on how the results of a mutation testing report can be helpful to you.

If you're a business analyst or a project leader, the introductory chapters in this
book should be able to give you a basic understanding of what mutation testing
is. But be warned that the rest of the material in this book is very technical, and
therefore probably not so much of interest to you.

Acknowledgements

I want to thank Henry Coles, the author of PIT, for letting me use “Better Code
by Making Bugs” as the subtitle for this book.

I also want to thank the folks at Leanpub for their great service. They were even
so kind to add Deja Vu Mono to their set of fonts, so I could use all the glyphs I
needed in the pseudocode listings.

1. Introduction

Quis custodiet ipsos custodes? Who is guarding the guards?

— Juvenal (Satire VI, lines 347-8)

Unit tests guard the source code, so we can be sure that the system behaves
correctly. Indeed, each of them should test a little unit in the system, and make
sure that given a certain input to the system, the resulting behavior is as expected.
But how do we know that every part of our source code has been tested sufficiently
by our unit tests? There are tools that can verify that the unit tests run through
every line of the source code, every branch in the source code, and even all paths
through the source code. But how do we know that the unit tests also verify every
statement in the source code?

Traditional test coverage tools can easily be fooled —or “gamed”- by unit tests that
run through all the lines, branches and paths of the source code, but never test
anything useful. In fact, many of these test coverage tools will report full coverage
of the source code even for unit tests that don't contain a single assertion. But
even if these tools are smart enough to include only the unit tests that contain an
assertion, there’s no guarantee that the assertion verifies anything usefull. It could
just as well be verifying that 1 still equals 1.

Even if all the unit tests contain an assertion, and all of them are written in
good faith, i.e. in order to really test the system and not just reach a certain
threshold, we still need to know whether our unit tests are doing a good job at
verifying all the important aspects of our source code. There’s a subtle difference
between measuring that the unit tests run through every statement of the source
code, measuring that the unit tests verify the correctness of every statement, and
measuring that the unit tests verify the necessity of every statement.

Every statement in the source code should contribute to make at least one unit test
pass. Not being the cause of the failure of a unit test is not a good enough reason
for a statement to be present in the source code. If that’s all a certain statement
does, it could just as well be removed from the source code — and should be too.
Mutation testing can, to a much larger extent than traditional code coverage tools,

Introduction 2

asses whether all statements in the source code are correct according to the unit
tests, and whether they all are needed for the unit tests to pass.

But if mutation testing is so great, why hasn't it been in use for years? The truth
is, until a few years ago, mutation testing tools didn't work very well. Many of
them were proof of concepts, or academic tools to do research, and never built
with performance or efficiency in mind. Today it’s possible to use mutation testing
in real-life projects, and in fact, is used by many projects. You still have to think
through the set-up of the mutation testing tool though, and how you're going
to integrate it with the rest of your build environment. If you don’t, mutation
testing can easily degrade into a job that requires a lot of computing power only
to produce useless reports nobody ever reads.

Does that make mutation testing very different from the many other tools that
are available to you as a software developer these days? Maybe not on the surface,
but the reader should be warned that it really still is early days for the practical
use of mutation testing in real-life projects. There are many aspects of mutation
testing where there’s still a lot of room for improvement, and best practices to
use mutation testing are still evolving. Integration with common development
environments and other tools in the software development eco-system is still
lacking for many of the mutation testing tools. The community is still trying
to find out what’s the best way to report which mutants stayed alive during a
mutation testing round. Unit test selection strategies are becoming better and
better, and that means that the performance of the tools is greatly improving.
But the biggest drawback of mutation testing is still that full rounds require a
lot of computing power. Then again, that just means that you have to be a little
bit smarter when you want to apply mutation testing to your project compared to
using any of the other tools and techniques that are considered to be common
goods in a software developement environment. But isn’t that part of what it
makes exciting to try out mutation testing in your project? I know for sure that
the extra effort certainly is worth the while.

	Table of Contents
	Foreword
	Preface
	How To Read This Book
	Who Should Read This Book

	Acknowledgements
	Introduction

