

[image: Mutation Testing]

 Mutation Testing

 Better Code by Making Bugs

 Filip van Laenen

 This book is available at https://leanpub.com/mutationtesting

 This version was published on 2025-11-11

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2013 - 2025 Filip van Laenen

 Table of Contents

 	
 Foreword

 	
 Preface

 	
 How To Read This Book

 	
 Who Should Read This Book

 	
 Acknowledgements

 	
 1. Introduction

 Guide

 	
 Begin Reading

Foreword

Preface

Many years ago, I started experimenting and doing hobby projects in Ruby.
But with my Java background, I was used to measure code
quality through static code analysis and test coverage reports, so I started
looking for Ruby tools that could do the same thing. As I did some research on the
Internet, I quickly found out that there weren’t many useful tools in Ruby for
static code analysis. The reason for this is very simple: Ruby isn’t a typed
language, and that makes it hard to do the same kind of static code analysis
that’s possible in languages like Java. But since I wanted to improve
my Ruby programming skills, I was willing to try any tool that I could get
running on my machine and that would help me get better in Ruby.

I did find a test coverage tool, but it didn’t work very well. Together with
a simple static code analysis tool that was able to give me some useful
feedback, I had something running, together with a mysterious tool called
“Heckle”. I couldn’t figure out what it really was, but somebody was
recommending it on his blog. I was able to install it and run it against my
Ruby source code, so I decided to give it a try. Somehow, it managed to point
me to missing test cases from time to time, much like an automatic code reviewer.
That didn’t help me get better in Ruby per se, but it was still a great benefit
while working on hobby projects at home. I got used to running it as part of my
code quality check routine.

But then there was this one evening, when I was working on a piece of code that I
thought I had tested completely. I had 100% test coverage, both for the lines
and the branches, so what more could I aim for? Nevertheless, Heckle didn’t seem
to be happy with my unit tests, and kept telling me that something was wrong. In fact, it even
gave me an alternative source code that it said would pass all my unit tests,
even though I could see that that piece of source code simply wouldn’t do
the job. Clearly, this had to be a bug in Heckle, and I started
to prepare a bug report so someone could fix the problem.
I just had to prove first that Heckle was wrong. And what better way could
there be to prove that Heckle was wrong, than pasting the source code it was
proposing into my source code, and running all my unit tests against it?

Of course, Heckle wasn’t wrong. The source code it proposed did pass all
the unit tests. That annoyed me even more, so I had to find out what was really going
on. As it turned out, there was indeed a test case missing, a test case that I
hadn’t thought of before. And yes, there was an alternative solution to the
source code I had, one that passed all the unit tests I had written so far.
Even more, after some refactoring it was also considerably simpler
than the original soure code.

That evening, I learned that even if you try to follow all the rules of
Test-Driven Development (TDD) carefully and to the detail, you will still make
mistakes and write more source code than strictly needed to make all your unit
tests pass. And it’s hard to find out about this without an automatic tool that
will systematically vet your source code and ask for every statement it can
find whether it’s really necessary to have it there or not. No human code reviewer can
do that. And no human code reviewer can be so systematic and merciless as an automatic
mutation testing tool.

There have been more evenings where mutation testing has pointed me to
test cases I would never have discovered on my own. There have also
been many evenings where mutation testing has pointed me to parts in my source
code that turned out to be unnecessary, even though the test coverage reports
where indicating these parts were covered. Over the years, I have probably
deleted thousands lines of source code, and saved myself from a lot of
maintenance and even bug fixing, thanks to mutation testing. Not only was I
able to discover the unneeded lines of code, I also dared to delete them.
If I really couldn’t come up with a single unit test that would
stop mutation testing from complaining about some unneeded code, then why keep
it?

Mutation testing has thaught me that traditional test coverage reports, with
line and branch coverage, simply aren’t good enough. These reports only tell you
which lines and branches your unit tests run through, not whether they really
matter. Mutation testing has also thaught me to write unit tests in a different
way, and care more about being able to test what the source code really does
–or is supposed to do–, rather than trying to write unit tests that touch
every line and branch in the source code. That makes a big difference. It makes
for better unit tests, better source code, and also less source code. All three
are positive effects in their own right, and it’s amazing that mutation testing
can do all three at once.

These days, I don’t use Heckle any more. It stopped working after upgrading to
Ruby 1.9, so I switched to Mutant, which works even better. When I’m programming
in Java, I use PIT, which is a great tool too. Unfortunately, I’m not able to
use mutation testing in every project I work on. But even if I can’t use
mutation testing, I still program as if
mutation testing was lurking somewhere behind the door. I write plenty of unit tests,
especially to test boundary cases, and I’ve become much more critical of
putting in extra lines of source code if I’m not sure I really need them.

If you wonder what the little problem was that I was working on that evening,
many years ago, have a look at the practical example later in this book. It’s partly simplified
and partly modified for pedagogical reasons, but the essence is still there.
I’ve used it in my talks about mutation testing, and it seems
to me that it’s able to tell someting fundamental about mutation testing. I
guess that anybody who starts using mutation testing takes software development
and software quality seriously, and therefore sooner or later will run into
a similar case: a mutation testing epiphany.

How To Read This Book

If you’re new to mutation testing, you should start by reading the introduction
to this book, the chapter about the basics of mutation testing, and work your
way through the practical example. After that, you should be able to pick the
right tool, and get started running mutation testing on your projects. As you gain
more experience on mutation testing, you will want to browse through the other
chapters to get a deeper understanding of mutation testing, how it works, the mutators
that are available to you, and some of the history. But I tried to
order the chapters such that they make the most sense if you want to read the book from
the beginning to the end, as a sort of text book, so you may chose to do that
too.

If you already have some experience with mutation testing you can probably
skip the introduction and the practical example, and go straight to the more
advanced chapters. In particular the chapters on how mutation testing works and
how mutation testing tools are built should be of interest to you, as they
will explain why the tool you’re using behaves the way it behaves, and give
you some ideas on how you can get more out of mutation testing as a technique,
and the mutation testing tool you’re using.

If you’re thinking about creating a mutation testing tool on your own, perhaps
because there isn’t one for your favourite programming language, I would advice
you to start experimenting with one of the tools for the other languages. Just
pick the best one for the language that you’re the most familiar with, and try
it out. After that, the chapter explaining how mutation testing tools work
should give you an overview over the things you’ll have to think about. And if
you finally decide to really build a new mutation tool, don’t forget to notify me, so
I can include it in this book!

The examples in this book are written in pseudocode, just to keep things as
much as possible language neutral. That’s also why I’ve chosen to keep it close
to mathematical notations, which also reduces the number
of keywords needed and helped keep it simple and concise. There’s no
formal definition for the language, and there isn’t even a guarantee that it’s
completely consistent across all examples. It may even be inconsistent from
one example to another just because of what I try to point out in the examples.

Who Should Read This Book

This book has been written for developers, senior developers and technologists,
in order to give them an understanding of what mutation testing is about, how it can
be used, and how they can get started working with it. However, if you’re not
so familiar with automatic unit tests, and your project still has low test
coverage, you should probably go and fix that first.

If you’re a tester or responsible for QA, you can also benefit from this book
to understand the impact of mutation testing on your work, and give you some
ideas on how the results of a mutation testing report can be helpful to you.

If you’re a business analyst or a project leader, the introductory chapters in
this book should be able to give you a basic understanding of what mutation
testing is. But be warned that the rest of the
material in this book is very technical, and therefore probably not so much
of interest to you.

Acknowledgements

I want to thank Henry Coles, the author of PIT, for letting me use “Better Code
by Making Bugs” as the subtitle for this book.

I also want to thank the folks at Leanpub for their great service. They were
even so kind to add Deja Vu Mono to their set of fonts, so I could use all
the glyphs I needed in the pseudocode listings.

1. Introduction

 Quis custodiet ipsos custodes? Who is guarding the guards?

 – Juvenal (Satire VI, lines 347–8)

Unit tests guard the source code, so we can be sure that the system behaves
correctly. Indeed, each of them should test a little unit in the system, and
make sure that given a certain input to the system, the resulting behavior is
as expected. But how do we know that every part of our source code has been
tested sufficiently by our unit tests? There are tools that can verify that the
unit tests run through every line of the source code, every branch in the
source code, and even all paths through the source code. But how do we know that
the unit tests also verify every statement in the source code?

Traditional test coverage tools can easily be fooled –or “gamed”– by unit
tests that run through all the lines, branches and paths of the source code,
but never test anything useful. In fact, many of these test coverage tools will
report full coverage of the source code even for unit tests that don’t contain a
single assertion. But even if these tools are smart enough to include only the
unit tests that contain an assertion, there’s no guarantee that the assertion
verifies anything usefull. It could just as well be verifying that 1 still
equals 1.

Even if all the unit tests contain an assertion, and all of them are written
in good faith, i.e. in order to really test the system and not just
reach a certain threshold, we still need to know whether our unit tests are
doing a good job at verifying all the important aspects of our source code.
There’s a subtle difference between measuring that the unit tests run through
every statement of the source code, measuring that the unit tests
verify the correctness of every statement, and measuring that the unit
tests verify the necessity of every statement.

Every statement in the source code should contribute to make at least one unit
test pass. Not being the cause of the failure of a unit test is not a good enough
reason for a statement to be present in the source code. If that’s all a certain
statement does, it could just as well be removed from the source code – and
should be too. Mutation testing can, to a much larger extent than
traditional code coverage tools, asses whether all statements in the source
code are correct according to the unit tests, and whether they all are needed
for the unit tests to pass.

But if mutation testing is so great, why hasn’t it been in use for years? The
truth is, until a few years ago, mutation testing tools didn’t work very well.
Many of them were proof of concepts, or academic tools to do research, and
never built with performance or efficiency in mind. Today it’s possible to
use mutation testing in real-life projects, and in fact, is used by many
projects. You still have to think through the set-up of the mutation testing
tool though, and how you’re going to
integrate it with the rest of your build environment. If you don’t,
mutation testing can easily degrade into a job that requires a lot of computing
power only to produce useless reports nobody ever reads.

Does that make mutation testing very different from the many other tools that
are available to you as a software developer these days? Maybe not on the surface, but
the reader should be warned that it really still is early days for the practical
use of mutation testing in real-life projects. There are many aspects of mutation
testing where there’s still a lot of room for improvement, and best practices
to use mutation testing are still evolving. Integration with common development
environments and other tools in the software development eco-system is still lacking
for many of the mutation testing tools. The community is still trying to find
out what’s the best way to report which mutants stayed alive during a mutation
testing round. Unit test selection strategies are becoming better and better,
and that means that the performance of the tools is greatly improving. But the
biggest drawback of mutation testing is still that full rounds require a
lot of computing power. Then again, that just means that you have to be a little bit
smarter when you want to apply mutation testing to your project compared to
using any of the other tools and techniques that are considered to be common
goods in a software developement environment. But isn’t that part of what it
makes exciting to try out mutation testing in your project? I know for sure that
the extra effort certainly is worth the while.

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Mutation Testing

Better Code by Making Bugs

3

Filip van Laenen

