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Abstract

This is a solution manual of selected exercise problems from Analysis on Manifolds, by James R.
Munkres [?]. If you find any typos/errors, please email me at quantsummaries@gmail.com.
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Chapter 1

The Algebra and Topology of Rn

1 Review of Linear Algebra
A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [?]. In
the below, we make connections between the results presented in this textbook and that reference.

Theorem 1.1 (page 2) corresponds to Lax [?, page 5], Chapter 1, Lemma 1.
Theorem 1.2 (page 3) corresponds to Lax [?, page 6], Chapter 1, Theorem 4.
Theorem 1.5 (page 7) corresponds to Lax [?, page 37], Chapter 4, Theorem 2 and the paragraph

below Theorem 2.
▶ 2. (Theorem 1.3, page 5)

Proof. Recall the matrix norm | · | is defined as the maximum of the absolute values of matrix
entries (page 5).

For any i = 1, · · ·n, j = 1, · · · , p, we have∣∣∣∣∣
m∑
k=1

aikbkj

∣∣∣∣∣ ≤
m∑
k=1

|aikbkj | ≤ |A|
m∑
k=1

|bkj | ≤ m|A||B|.

Therefore,

|A ·B| = max
{∣∣∣∣∣

m∑
k=1

aikbkj

∣∣∣∣∣ ; i = 1, · · ·n, j = 1, · · · , p

}
≤ m|A||B|.

▶ 3.

Proof. Suppose ⟨·, ·⟩ is an inner product on R2 having the property that |x| = ⟨x, x⟩
1
2 , where |x| is

the sup norm. By the equality ⟨x, y⟩ = 1
4(|x+ y|2 − |x− y|2), we have

⟨e1, e1 + e2⟩ =
1

4
(|2e1 + e2|2 − |e2|2) =

1

4
(4− 1) =

3

4
,

⟨e1, e2⟩ =
1

4
(|e1 + e2|2 − |e1 − e2|2) =

1

4
(1− 1) = 0,

⟨e1, e1⟩ = |e1|2 = 1.

So ⟨e1, e1 + e2⟩ ̸= ⟨e1, e2⟩+ ⟨e1, e1⟩, which implies ⟨·, ·⟩ cannot be an inner product. Therefore, our
assumption is not true and the sup norm on R2 is not derived from an inner product on R2.
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2 Matrix Inversion and Determinants
▶ 1.

(a)

Proof. SupposeB =

[
b11 b12 b13
b21 b22 b23

]
is a left inverse forA. ThenBA =

[
b11 + b12 2b11 − b12 + b13
b21 + b22 2b21 − b12 + b23

]
.

So BA = I2 if and only if 
b11 + b12 = 1

b21 + b22 = 0

2b11 − b12 + b13 = 0

2b21 − b22 + b23 = 1.

Plug −b12 = b11 − 1 and −b22 = b21 into the las two equations, we have{
3b11 + b13 = 1

3b21 + b23 = 1.

So we can have the following two different left inverses for A: B1 =

[
0 1 1
0 0 1

]
and B2 =[

1 0 −2
1 −1 −2

]
.

(b)

Proof. By Theorem 2.2, A has no right inverse.

▶ 2.
(a)

Proof. By Theorem 1.5, n ≥ m and among the n row vectors of A, there are exactly m of them
are linearly independent. By applying elementary row operations to A, we can reduce A to the

echelon form
[
Im
0

]
. So we can find a matrix D that is a product of elementary matrices such that

D ·A =

[
Im
0

]
.

(b)

Proof. If rankA = m, by part (a) there exists a matrix D that is a product of elementary matrices
such that

DA =

[
Im
0

]
.

Let B = [Im, 0]D, then BA = Im, i.e. B is a left inverse of A. Conversely, if B is a left inverse of
A, it is easy to see that A as a linear mapping from Rm to Rn is injective. This implies the column
vectors of A are linearly independent, i.e. rankA = m.

(c)
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Proof. A has a right inverse if and only if Atr has a left inverse. By part (b), this implies rankA =
rankAtr = n.

▶ 4. (a)

Proof. Suppose (Dk)
K
k=1 is a sequence of elementary matrices such that DK · · ·D2D1A = In. Note

DK · · ·D2D1A = DK · · ·D2D1InA, we can conclude A−1 = DK · · ·D2D1In.

▶ 5.

Proof. A−1 =

[
d −b
−c a

]
1

d−bc by Theorem 2.14.

3 Review of Topology in Rn

▶ 2.

Proof. X = R, Y = (0, 1], and A = Y .

▶ 6.

Proof. For any closed subset C of Y , f−1(C) = [f−1(C)∩A]∪ [f−1(C)∩B]. Since f−1(C)∩A is a
closed subset of A, there must be a closed subset D1 of X such that f−1(C)∩A = D1∩A. Similarly,
there is a closed subset D2 of X such that f−1(C)∩B = D2 ∩B. So f−1(C) = [D1 ∩A]∪ [D2 ∩B].
A and B are closed in X, so D1 ∩ A, D2 ∩ B and [D1 ∩ A] ∪ [D2 ∩ B] are all closed in X. This
shows f is continuous.

▶ 7.
(a)

Proof. Take f(x) ≡ y0 and let g be such that g(y0) ̸= z0 but g(y) → z0 as y → y0.

4 Compact Subspaces and Connected Subspace of Rn

▶ 1.
(b)

Proof. Let xn =
(
2nπ + π

2

)−1 and yn =
(
2nπ − π

2

)−1. Then as n → ∞, |xn − yn| → 0 but∣∣∣sin 1
xn

− sin 1
yn

∣∣∣ = 2.

▶ 3.

Proof. The boundedness of X is clear. Since for any i ̸= j, ||ei − ej || = 1, the sequence (ei)
∞
i=1 has

no accumulation point. So X cannot be compact. Also, the fact ||ei − ej || = 1 for i ̸= j shows each
ei is an isolated point of X. Therefore X is closed. Combined, we conclude X is closed, bounded,
and non-compact.
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Chapter 2

Differentiation

5 The Derivative
▶ 1.

Proof. By definition, limt→0
f(a+tu)−f(a)

t exists. Consequently,

lim
t→0

f(a + tcu)− f(a)
t

= c · lim
t→0

f(a + tcu)− f(a)
ct

= c lim
t→0

f(a + tu)− f(a)
t

exists and is equal to cf ′(a; u).

▶ 2.
(a)

Solution. f(u) = f(u1, u2) =
u1u2

u2
1+u2

2
. So

f(tu)− f(0)

t
=

1

t

t2u1u2
t2(u21 + u22)

=
1

t

u1u2
u21 + u22

.

In order for limt→0
f(tu)−f(0)

t to exist, it is necessary and sufficient that u1u2 = 0 and u21 + u22 ̸= 0.
So for vectors (1, 0) and (0, 1), f ′(0; u) exists, and we have f ′(0; (1, 0)) = f ′(0; (0, 1)) = 0.

(b)

Solution. Yes, D1f(0) = D2f(0) = 0.

(c)

Solution. No, because f is not continuous at 0: lim(x,y)→0,y=kx f(x, y) = kx2

x2+k2x2 = k
1+k2

. For
k ̸= 0, the limit is not equal to f(0).

(d)

Solution. See (c).
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6 Continuously Differentiable Functions
▶ 1.

Proof. We note
|xy|√
x2 + y2

≤ 1

2

x2 + y2√
x2 + y2

=
1

2

√
x2 + y2.

So lim(x,y)→0
|xy|√
x2+y2

= 0. This shows f(x, y) = |xy| is differentiable at 0 and the derivative is
0. However, for any fixed y ̸= 0, f(x, y) is not a differentiable function of x at 0. So its partial
derivative w.r.t. x does not exist in a neighborhood of 0, which implies f is not of class C1 in a
neighborhood of 0.

7 The Chain Rule

8 The Inverse Function Theorem

9 The Implicit Function Theorem
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Chapter 3

Integration

10 The Integral over a Rectangle
▶ 6.

(a)

Proof. Straightforward from the Riemann condition (Theorem 10.3).

(b)

Proof. Suppose Q = [a1, b1]×· · ·×[an, bn] and P = (P1, · · · , Pn) such that Pj is a partition of [aj , bj ]
for each j. Without loss of generality, assume P ′′ is obtained by adjoining t∗ to P1 = {t10, t11, · · · , t1k}
with a1 = t10 < · · · < t1l1−1 < t∗ < t1l1 < · · · < t1k = b1. Let

R1(l2, · · · , ln) = [t1l1−1, t
∗]× [t2l2−1, t

2
l2
]× · · · × [tnln−1, t

n
ln
]

R2(l2, · · · , ln) = [t∗, t1l1 ]× [t2l2−1, t
2
l2
]× · · · × [tnln−1, t

n
ln
]

R(l2, · · · , ln) = [t1l1−1, t
1
l1
]× [t2l2−1, t

2
l2
]× · · · × [tnln−1, t

n
ln
]

Then (we omit the l2, · · · , ln indexes for simplicity of notation)

L(f, P
′′
)− L(f, P )

=
∑

l2,··· ,ln

[mR1(f) · v(R1) +mR2(f) · v(R2)−mR(f) · v(R)]

=
∑

l2,··· ,ln

{[mR1(f)−mR(f)] · v(R1) + [mR2(f)−mR(f)] · v(R2)}

We note
0 ≤ mR1(f)−mR(f) ≤ 2M, 0 ≤ mR2(f)−mR(f) ≤ 2M

and
v(R1) + v(R2) = (t1l1 − t1l1−1)(t

2
l2 − t2l2−1) · · · (tnln − tnln−1)
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Therefore

0 ≤ L(f, P
′′
)− L(f, P )

≤
∑

l2,··· ,ln

[2M · v(R1) + 2M · v(R2)]

≤ 2M · (t1l1 − t1l1−1) ·
∑

l2,··· ,ln

(t2l2 − t2l2−1) · · · (tnln − tnln−1)

≤ 2M · mesh(P ) · (width(Q))n−1

where the last inequality comes from (t1l1 − t1l1−1) ≤ mesh(P ) and∑
l2,··· ,ln

(t2l2 − t2l2−1) · · · (tnln − tnln−1)

=
∑

l3,··· ,ln

∑
l2

(t2l2 − t2l2−1)

 · (t3l3 − t3l3−1) · · · (tnln − tnln−1)

≤
∑

l3,··· ,ln

width(Q) · (t3l3 − t3l3−1) · · · (tnln − tnln−1)

...
≤ (width(Q))n−1

The result for upper sums can be derived similarly.

(c)

Proof. Given ε > 0, choose a partition P ′ such that U(f, P ′)−L(f, P ′) < ε
2 . Let N be the number

of partition points in P ′ and let
δ =

ε

8MN(widthQ)n−1
.

Suppose P has mesh less than δ, the common refinement P ′′ of P and P ′ is obtained by adjoining
at most N points to P . So by part (b)

0 ≤ L(f, P ′′)− L(f, P ) ≤ N · 2M(meshP )(widthQ)n−1

≤ 2MN · ε

8MN(widthQ)n−1
· (widthQ)n−1

=
ε

4
.

Similarly, we can show 0 ≤ U(f, P )− U(f, P ′′) ≤ ε
4 . So

U(f, P )− L(f, P ) = [U(f, P )− U(f, P ′′)] + [L(f, P ′′)− L(f, P )] + [U(f, P ′′)− L(f, P ′′)]

≤ ε

4
+
ε

4
+ [U(f, P ′)− L(f, P ′)]

≤ ε

2
+
ε

2
= ε.

This shows for any given ε > 0, there is a δ > 0 such that U(f, P )−L(f, P ) < ε for every partition
P of mesh less than δ.
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▶ 7.

Proof. (Sufficiency) Note |
∑

R f(xR)v(R)−A| < ε can be written as

A− ε <
∑
R

f(xR)v(R) < A+ ε.

This shows U(f, P ) ≤ A + ε and L(f, P ) ≥ A − ε. So U(f, P ) − L(f, P ) ≤ 2ε. By Problem 6,
we conclude f is integrable over Q, with

∫
Q f ∈ [A − ε,A + ε]. Since ε is arbitrary, we conclude∫

Q f = A.
(Necessity) By Problem 6, for any given ε > 0, there is a δ > 0 such that U(f, P )−L(f, P ) < ε

for every partition P of mesh less than δ. For any such partition P , if for each sub-rectangle R
determined by P , xR is a point of R, we must have

L(f, P )−A ≤
∑
R

f(xR)v(R)−A ≤ U(f, P )−A.

Since L(f, P ) ≤ A ≤ U(f, P ), we conclude∣∣∣∣∣∑
R

f(xR)v(R)−A

∣∣∣∣∣ ≤ U(f, P )− L(f, P ) < ε.

11 Existence of the Integral

12 Evaluation of the Integral

13 The Integral over a Bounded Set

14 Rectifiable Sets

15 Improper Integrals

10


