

Analysis on Manifolds

A Solution Manual of Selected Exercise Problems

Analysis on Manifolds

A Solution Manual of Selected Exercise Problems

Yan Zeng

Version 1.0, last revised on 2014-06-25.

This book is for sale at https://leanpub.com/munkres_solman

This version was published on 2022-08-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

Copyright ©2014–2025 Yan Zeng

Abstract

This is a solution manual of selected exercise problems from *Analysis on Manifolds*, by James R. Munkres [?]. If you find any typos/errors, please email me at quantsummaries@gmail.com.

Contents

1	The Algebra and Topology of \mathbb{R}^n	3
1	Review of Linear Algebra	3
2	Matrix Inversion and Determinants	4
3	Review of Topology in \mathbb{R}^n	5
4	Compact Subspaces and Connected Subspace of \mathbb{R}^n	5
2	Differentiation	6
5	The Derivative	6
6	Continuously Differentiable Functions	7
7	The Chain Rule	7
8	The Inverse Function Theorem	7
9	The Implicit Function Theorem	7
3	Integration	8
10	The Integral over a Rectangle	8
11	Existence of the Integral	10
12	Evaluation of the Integral	10
13	The Integral over a Bounded Set	10
14	Rectifiable Sets	10
15	Improper Integrals	10
4	Change of Variables	11
16	Partition of Unity	11
17	The Change of Variables Theorem	11
18	Diffeomorphisms in \mathbb{R}^n	11
19	Proof of the Change of Variables Theorem	11
20	Applications of Change of Variables	11
5	Manifolds	12
21	The Volume of a Parallelopiped	12
22	The Volume of a Parametrized-Manifold	14
23	Manifolds in \mathbb{R}^n	16
24	The Boundary of a Manifold	17
25	Integrating a Scalar Function over a Manifold	20

6 Differential Forms	23
26 Multilinear Algebra	23
27 Alternating Tensors	24
28 The Wedge Product	25
29 Tangent Vectors and Differential Forms	27
30 The Differential Operator	28
31 Application to Vector and Scalar Fields	31
32 The Action of a Differentiable Map	33
7 Stokes' Theorem	39
33 Integrating Forms over Parametrized-Manifolds	39
34 Orientable Manifolds	41
35 Integrating Forms over Oriented Manifolds	44
36 A Geometric Interpretation of Forms and Integrals	45
37 The Generalized Stokes' Theorem	46
38 Applications to Vector Analysis	47
8 Closed Forms and Exact Forms	49
39 The Poincaré Lemma	49
40 The deRham Groups of Punctured Euclidean Space	50
9 Epilogue—Life Outside \mathbb{R}^n	53
41 Differentiable Manifolds and Riemannian Manifolds	53

Chapter 1

The Algebra and Topology of \mathbb{R}^n

1 Review of Linear Algebra

A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [?]. In the below, we make connections between the results presented in this textbook and that reference.

Theorem 1.1 (page 2) corresponds to Lax [?, page 5], Chapter 1, Lemma 1.

Theorem 1.2 (page 3) corresponds to Lax [?, page 6], Chapter 1, Theorem 4.

Theorem 1.5 (page 7) corresponds to Lax [?, page 37], Chapter 4, Theorem 2 and the paragraph below Theorem 2.

► 2. (Theorem 1.3, page 5)

Proof. Recall the matrix norm $|\cdot|$ is defined as the maximum of the absolute values of matrix entries (page 5).

For any $i = 1, \dots, n, j = 1, \dots, p$, we have

$$\left| \sum_{k=1}^m a_{ik} b_{kj} \right| \leq \sum_{k=1}^m |a_{ik} b_{kj}| \leq |A| \sum_{k=1}^m |b_{kj}| \leq m|A||B|.$$

Therefore,

$$|A \cdot B| = \max \left\{ \left| \sum_{k=1}^m a_{ik} b_{kj} \right| ; i = 1, \dots, n, j = 1, \dots, p \right\} \leq m|A||B|.$$

□

► 3.

Proof. Suppose $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^2 having the property that $|x| = \langle x, x \rangle^{\frac{1}{2}}$, where $|x|$ is the sup norm. By the equality $\langle x, y \rangle = \frac{1}{4}(|x+y|^2 - |x-y|^2)$, we have

$$\begin{aligned} \langle e_1, e_1 + e_2 \rangle &= \frac{1}{4}(|2e_1 + e_2|^2 - |e_2|^2) = \frac{1}{4}(4-1) = \frac{3}{4}, \\ \langle e_1, e_2 \rangle &= \frac{1}{4}(|e_1 + e_2|^2 - |e_1 - e_2|^2) = \frac{1}{4}(1-1) = 0, \\ \langle e_1, e_1 \rangle &= |e_1|^2 = 1. \end{aligned}$$

So $\langle e_1, e_1 + e_2 \rangle \neq \langle e_1, e_2 \rangle + \langle e_1, e_1 \rangle$, which implies $\langle \cdot, \cdot \rangle$ cannot be an inner product. Therefore, our assumption is not true and the sup norm on \mathbb{R}^2 is not derived from an inner product on \mathbb{R}^2 . □

2 Matrix Inversion and Determinants

► 1.

(a)

Proof. Suppose $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ is a left inverse for A . Then $BA = \begin{bmatrix} b_{11} + b_{12} & 2b_{11} - b_{12} + b_{13} \\ b_{21} + b_{22} & 2b_{21} - b_{12} + b_{23} \end{bmatrix}$. So $BA = I_2$ if and only if

$$\begin{cases} b_{11} + b_{12} = 1 \\ b_{21} + b_{22} = 0 \\ 2b_{11} - b_{12} + b_{13} = 0 \\ 2b_{21} - b_{22} + b_{23} = 1. \end{cases}$$

Plug $-b_{12} = b_{11} - 1$ and $-b_{22} = b_{21}$ into the last two equations, we have

$$\begin{cases} 3b_{11} + b_{13} = 1 \\ 3b_{21} + b_{23} = 1. \end{cases}$$

So we can have the following two different left inverses for A : $B_1 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. \square

(b)

Proof. By Theorem 2.2, A has no right inverse. \square

► 2.

(a)

Proof. By Theorem 1.5, $n \geq m$ and among the n row vectors of A , there are exactly m of them are linearly independent. By applying elementary row operations to A , we can reduce A to the echelon form $\begin{bmatrix} I_m \\ 0 \end{bmatrix}$. So we can find a matrix D that is a product of elementary matrices such that

$$D \cdot A = \begin{bmatrix} I_m \\ 0 \end{bmatrix}. \quad \square$$

(b)

Proof. If $\text{rank}A = m$, by part (a) there exists a matrix D that is a product of elementary matrices such that

$$DA = \begin{bmatrix} I_m \\ 0 \end{bmatrix}.$$

Let $B = [I_m, 0]D$, then $BA = I_m$, i.e. B is a left inverse of A . Conversely, if B is a left inverse of A , it is easy to see that A as a linear mapping from \mathbb{R}^m to \mathbb{R}^n is injective. This implies the column vectors of A are linearly independent, i.e. $\text{rank}A = m$. \square

(c)

Proof. A has a right inverse if and only if A^{tr} has a left inverse. By part (b), this implies $\text{rank } A = \text{rank } A^{tr} = n$. \square

► 4. (a)

Proof. Suppose $(D_k)_{k=1}^K$ is a sequence of elementary matrices such that $D_K \cdots D_2 D_1 A = I_n$. Note $D_K \cdots D_2 D_1 A = D_K \cdots D_2 D_1 I_n A$, we can conclude $A^{-1} = D_K \cdots D_2 D_1 I_n$. \square

► 5.

Proof. $A^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \frac{1}{d-bc}$ by Theorem 2.14. \square

3 Review of Topology in \mathbb{R}^n

► 2.

Proof. $X = \mathbb{R}$, $Y = (0, 1]$, and $A = Y$. \square

► 6.

Proof. For any closed subset C of Y , $f^{-1}(C) = [f^{-1}(C) \cap A] \cup [f^{-1}(C) \cap B]$. Since $f^{-1}(C) \cap A$ is a closed subset of A , there must be a closed subset D_1 of X such that $f^{-1}(C) \cap A = D_1 \cap A$. Similarly, there is a closed subset D_2 of X such that $f^{-1}(C) \cap B = D_2 \cap B$. So $f^{-1}(C) = [D_1 \cap A] \cup [D_2 \cap B]$. A and B are closed in X , so $D_1 \cap A$, $D_2 \cap B$ and $[D_1 \cap A] \cup [D_2 \cap B]$ are all closed in X . This shows f is continuous. \square

► 7.

(a)

Proof. Take $f(x) \equiv y_0$ and let g be such that $g(y_0) \neq z_0$ but $g(y) \rightarrow z_0$ as $y \rightarrow y_0$. \square

4 Compact Subspaces and Connected Subspace of \mathbb{R}^n

► 1.

(b)

Proof. Let $x_n = (2n\pi + \frac{\pi}{2})^{-1}$ and $y_n = (2n\pi - \frac{\pi}{2})^{-1}$. Then as $n \rightarrow \infty$, $|x_n - y_n| \rightarrow 0$ but $\left| \sin \frac{1}{x_n} - \sin \frac{1}{y_n} \right| = 2$. \square

► 3.

Proof. The boundedness of X is clear. Since for any $i \neq j$, $\|e_i - e_j\| = 1$, the sequence $(e_i)_{i=1}^\infty$ has no accumulation point. So X cannot be compact. Also, the fact $\|e_i - e_j\| = 1$ for $i \neq j$ shows each e_i is an isolated point of X . Therefore X is closed. Combined, we conclude X is closed, bounded, and non-compact. \square

Chapter 2

Differentiation

5 The Derivative

► 1.

Proof. By definition, $\lim_{t \rightarrow 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t}$ exists. Consequently,

$$\lim_{t \rightarrow 0} \frac{f(\mathbf{a} + t\mathbf{c}\mathbf{u}) - f(\mathbf{a})}{t} = c \cdot \lim_{t \rightarrow 0} \frac{f(\mathbf{a} + t\mathbf{c}\mathbf{u}) - f(\mathbf{a})}{ct} = c \lim_{t \rightarrow 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t}$$

exists and is equal to $cf'(\mathbf{a}; \mathbf{u})$. □

► 2.

(a)

Solution. $f(\mathbf{u}) = f(u_1, u_2) = \frac{u_1 u_2}{u_1^2 + u_2^2}$. So

$$\frac{f(t\mathbf{u}) - f(0)}{t} = \frac{1}{t} \frac{t^2 u_1 u_2}{t^2(u_1^2 + u_2^2)} = \frac{1}{t} \frac{u_1 u_2}{u_1^2 + u_2^2}.$$

In order for $\lim_{t \rightarrow 0} \frac{f(t\mathbf{u}) - f(0)}{t}$ to exist, it is necessary and sufficient that $u_1 u_2 = 0$ and $u_1^2 + u_2^2 \neq 0$. So for vectors $(1, 0)$ and $(0, 1)$, $f'(\mathbf{0}; \mathbf{u})$ exists, and we have $f'(\mathbf{0}; (1, 0)) = f'(\mathbf{0}; (0, 1)) = 0$. □

(b)

Solution. Yes, $D_1 f(\mathbf{0}) = D_2 f(\mathbf{0}) = 0$. □

(c)

Solution. No, because f is not continuous at $\mathbf{0}$: $\lim_{(x,y) \rightarrow 0, y=kx} f(x, y) = \frac{kx^2}{x^2 + k^2 x^2} = \frac{k}{1+k^2}$. For $k \neq 0$, the limit is not equal to $f(\mathbf{0})$. □

(d)

Solution. See (c). □

6 Continuously Differentiable Functions

► 1.

Proof. We note

$$\frac{|xy|}{\sqrt{x^2 + y^2}} \leq \frac{1}{2} \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \frac{1}{2} \sqrt{x^2 + y^2}.$$

So $\lim_{(x,y) \rightarrow 0} \frac{|xy|}{\sqrt{x^2 + y^2}} = 0$. This shows $f(x, y) = |xy|$ is differentiable at $\mathbf{0}$ and the derivative is 0. However, for any fixed $y \neq 0$, $f(x, y)$ is not a differentiable function of x at 0. So its partial derivative w.r.t. x does not exist in a neighborhood of 0, which implies f is not of class C^1 in a neighborhood of $\mathbf{0}$. \square

7 The Chain Rule

8 The Inverse Function Theorem

9 The Implicit Function Theorem

Chapter 3

Integration

10 The Integral over a Rectangle

► 6.

(a)

Proof. Straightforward from the Riemann condition (Theorem 10.3). \square

(b)

Proof. Suppose $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$ and $P = (P_1, \dots, P_n)$ such that P_j is a partition of $[a_j, b_j]$ for each j . Without loss of generality, assume P'' is obtained by adjoining t^* to $P_1 = \{t_0^1, t_1^1, \dots, t_k^1\}$ with $a_1 = t_0^1 < \cdots < t_{l_1-1}^1 < t^* < t_{l_1}^1 < \cdots < t_k^1 = b_1$. Let

$$\begin{cases} R_1(l_2, \dots, l_n) = [t_{l_1-1}^1, t^*] \times [t_{l_2-1}^2, t_{l_2}^2] \times \cdots \times [t_{l_n-1}^n, t_{l_n}^n] \\ R_2(l_2, \dots, l_n) = [t^*, t_{l_1}^1] \times [t_{l_2-1}^2, t_{l_2}^2] \times \cdots \times [t_{l_n-1}^n, t_{l_n}^n] \\ R(l_2, \dots, l_n) = [t_{l_1-1}^1, t_{l_1}^1] \times [t_{l_2-1}^2, t_{l_2}^2] \times \cdots \times [t_{l_n-1}^n, t_{l_n}^n] \end{cases}$$

Then (we omit the l_2, \dots, l_n indexes for simplicity of notation)

$$\begin{aligned} & L(f, P'') - L(f, P) \\ &= \sum_{l_2, \dots, l_n} [m_{R_1}(f) \cdot v(R_1) + m_{R_2}(f) \cdot v(R_2) - m_R(f) \cdot v(R)] \\ &= \sum_{l_2, \dots, l_n} \{[m_{R_1}(f) - m_R(f)] \cdot v(R_1) + [m_{R_2}(f) - m_R(f)] \cdot v(R_2)\} \end{aligned}$$

We note

$$0 \leq m_{R_1}(f) - m_R(f) \leq 2M, \quad 0 \leq m_{R_2}(f) - m_R(f) \leq 2M$$

and

$$v(R_1) + v(R_2) = (t_{l_1}^1 - t_{l_1-1}^1)(t_{l_2}^2 - t_{l_2-1}^2) \cdots (t_{l_n}^n - t_{l_n-1}^n)$$

Therefore

$$\begin{aligned}
0 &\leq L(f, P'') - L(f, P) \\
&\leq \sum_{l_2, \dots, l_n} [2M \cdot v(R_1) + 2M \cdot v(R_2)] \\
&\leq 2M \cdot (t_{l_1}^1 - t_{l_1-1}^1) \cdot \sum_{l_2, \dots, l_n} (t_{l_2}^2 - t_{l_2-1}^2) \cdots (t_{l_n}^n - t_{l_n-1}^n) \\
&\leq 2M \cdot \text{mesh}(P) \cdot (\text{width}(Q))^{n-1}
\end{aligned}$$

where the last inequality comes from $(t_{l_1}^1 - t_{l_1-1}^1) \leq \text{mesh}(P)$ and

$$\begin{aligned}
&\sum_{l_2, \dots, l_n} (t_{l_2}^2 - t_{l_2-1}^2) \cdots (t_{l_n}^n - t_{l_n-1}^n) \\
&= \sum_{l_3, \dots, l_n} \left(\sum_{l_2} (t_{l_2}^2 - t_{l_2-1}^2) \right) \cdot (t_{l_3}^3 - t_{l_3-1}^3) \cdots (t_{l_n}^n - t_{l_n-1}^n) \\
&\leq \sum_{l_3, \dots, l_n} \text{width}(Q) \cdot (t_{l_3}^3 - t_{l_3-1}^3) \cdots (t_{l_n}^n - t_{l_n-1}^n) \\
&\quad \vdots \\
&\leq (\text{width}(Q))^{n-1}
\end{aligned}$$

The result for upper sums can be derived similarly. \square

(c)

Proof. Given $\varepsilon > 0$, choose a partition P' such that $U(f, P') - L(f, P') < \frac{\varepsilon}{2}$. Let N be the number of partition points in P' and let

$$\delta = \frac{\varepsilon}{8MN(\text{width}Q)^{n-1}}.$$

Suppose P has mesh less than δ , the common refinement P'' of P and P' is obtained by adjoining at most N points to P . So by part (b)

$$\begin{aligned}
0 &\leq L(f, P'') - L(f, P) \leq N \cdot 2M(\text{mesh}P)(\text{width}Q)^{n-1} \\
&\leq 2MN \cdot \frac{\varepsilon}{8MN(\text{width}Q)^{n-1}} \cdot (\text{width}Q)^{n-1} \\
&= \frac{\varepsilon}{4}.
\end{aligned}$$

Similarly, we can show $0 \leq U(f, P) - U(f, P'') \leq \frac{\varepsilon}{4}$. So

$$\begin{aligned}
U(f, P) - L(f, P) &= [U(f, P) - U(f, P'')] + [U(f, P'') - L(f, P)] + [L(f, P'') - L(f, P'')] \\
&\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + [U(f, P') - L(f, P')] \\
&\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
&= \varepsilon.
\end{aligned}$$

This shows for any given $\varepsilon > 0$, there is a $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ for every partition P of mesh less than δ . \square

► 7.

Proof. (Sufficiency) Note $|\sum_R f(x_R)v(R) - A| < \varepsilon$ can be written as

$$A - \varepsilon < \sum_R f(x_R)v(R) < A + \varepsilon.$$

This shows $U(f, P) \leq A + \varepsilon$ and $L(f, P) \geq A - \varepsilon$. So $U(f, P) - L(f, P) \leq 2\varepsilon$. By Problem 6, we conclude f is integrable over Q , with $\int_Q f \in [A - \varepsilon, A + \varepsilon]$. Since ε is arbitrary, we conclude $\int_Q f = A$.

(Necessity) By Problem 6, for any given $\varepsilon > 0$, there is a $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ for every partition P of mesh less than δ . For any such partition P , if for each sub-rectangle R determined by P , x_R is a point of R , we must have

$$L(f, P) - A \leq \sum_R f(x_R)v(R) - A \leq U(f, P) - A.$$

Since $L(f, P) \leq A \leq U(f, P)$, we conclude

$$\left| \sum_R f(x_R)v(R) - A \right| \leq U(f, P) - L(f, P) < \varepsilon.$$

□

11 Existence of the Integral

12 Evaluation of the Integral

13 The Integral over a Bounded Set

14 Rectifiable Sets

15 Improper Integrals