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Abstract

This is a solution manual of selected exercise problems from Analysis on Manifolds, by James R.
Munkres [?]. If you find any typos/errors, please email me at quantsummaries@gmail.com.
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Chapter 1

The Algebra and Topology of R"

1 Review of Linear Algebra

A good textbook on linear algebra from the viewpoint of finite-dimensional spaces is Lax [?]. In
the below, we make connections between the results presented in this textbook and that reference.

Theorem 1.1 (page 2) corresponds to Lax [?, page 5], Chapter 1, Lemma 1.

Theorem 1.2 (page 3) corresponds to Lax [?, page 6], Chapter 1, Theorem 4.

Theorem 1.5 (page 7) corresponds to Lax [?, page 37], Chapter 4, Theorem 2 and the paragraph
below Theorem 2.

» 2. (Theorem 1.3, page 5)

Proof. Recall the matrix norm | - | is defined as the maximum of the absolute values of matrix
entries (page 5).
Foranyi=1,---n,j5=1,--- ,p, we have
m m m
> ainbi| < laindis| < 1A |brjl < m|Al|B].
k=1 k=1 k=1
Therefore,
m
|A-B| = max{ Zaikbk]— ji=1,--m,j=1,-- ,p} < ml|Al||B|.
k=1
O
> 3.

Proof. Suppose (,-) is an inner product on R? having the property that |z| = <$,m>%, where |z| is
the sup norm. By the equality (z,y) = 1(|z +y|* — |z — y[%), we have

1 1 3
(e1,e1 +e2) = 1(1261 + e’ — ea]?) = 1(4 -1)= T
1

J1-1=0,

1
(e1,e2) = Z(lel + el — ler —e2f?) =
<€1,€1> = ’61‘2 =1.

So (e1,e1 +e2) # (e1,e2) + (e1, e1), which implies (-, -) cannot be an inner product. Therefore, our
assumption is not true and the sup norm on R? is not derived from an inner product on R2. O



2 Matrix Inversion and Determinants

> 1.

(a)

bir bz bis]. : b1 + b2 2b11 — b2 + b13
Proof. Suppose B = is a left inverse for A. Then BA = .
/- Supp bar b2 ba3| v ba1 +boa  2ba1 — b1 + bag

So BA = I, if and only if

bi1 +b12 =1
bo1 + b =0
2b11 — b2 +b13 =0
2021 — bag + boz = 1.

Plug —b12 = b1 — 1 and —bog = bo; into the las two equations, we have

{3b11 +big=1

3bo1 + bog = 1.
So we can have the following two different left inverses for A: By = [8 (1) 1] and By =
1 0 -2
[1 ~1 —2]‘ -
(b)
Proof. By Theorem 2.2, A has no right inverse. O
> 2.

(a)

Proof. By Theorem 1.5, n > m and among the n row vectors of A, there are exactly m of them
are linearly independent. By applying elementary row operations to A, we can reduce A to the

echelon form [Ig] . So we can find a matrix D that is a product of elementary matrices such that
L,
ba=[i] ;

(b)

Proof. If rankA = m, by part (a) there exists a matrix D that is a product of elementary matrices

such that
I,
pa=[t].

Let B = [I,,,0]D, then BA = I,,,, i.e. B is a left inverse of A. Conversely, if B is a left inverse of
A, it is easy to see that A as a linear mapping from R™ to R" is injective. This implies the column
vectors of A are linearly independent, i.e. rankA = m. O

()



Proof. A has a right inverse if and only if A' has a left inverse. By part (b), this implies rank A =

rank A" = n. O

> 4. (a)

Proof. Suppose (D)5, is a sequence of elementary matrices such that Dy --- DoD1A = I,,. Note

Dy ---DyD1A = Dy ---DyD11,A, we can conclude A~ = Dy --- Dy D1 1,. O

> 5.

Proof. A~ = d =0 1 by Theorem 2.14 O
. = o o | @TwDY 14.

3 Review of Topology in R"

> 2.
Proof. X =R, Y =(0,1],and A=Y O
> 6.

Proof. For any closed subset C of Y, f~1(C) = [f~H(C)n AJU[f~Y(C)N B]. Since f1(C)NAisa
closed subset of A, there must be a closed subset Dy of X such that f~}(C)NA = D;NA. Similarly,
there is a closed subset Dy of X such that f~1(C)NB = DyNB. So f~1C) = [D1NAJU[D2N BJ.
A and B are closed in X, so D1 N A, DyN B and [D; N A] U [D2 N BJ are all closed in X. This

shows f is continuous. O
> 7.

(a)
Proof. Take f(x) = yo and let g be such that g(yo) # 20 but g(y) — 20 as y — yo. O

4 Compact Subspaces and Connected Subspace of R"

> 1.

(b)
Proof. Let x, = (2n71'—|— %)_1 and y, = (2n7r— g)_l. Then as n — oo, |x, — yn| — 0 but
sini—sinyin’:Q. O
> 3.
Proof. The boundedness of X is clear. Since for any i # j, |e; — e;j| = 1, the sequence (e;)?2; has

no accumulation point. So X cannot be compact. Also, the fact |e; —e;| =1 for i # j shows each
e; is an isolated point of X. Therefore X is closed. Combined, we conclude X is closed, bounded,
and non-compact. O



Chapter 2

Differentiation

5 The Derivative

> 1.

flattw)—f(a)

7 exists. Consequently,

f(a+tcu) — f(a)

Proof. By definition, lim;_,q

fa+ten) — f(a) fla+tu) — f(a)

lim =c-lim = clim

t—0 t t—0 ct t—0 t
exists and is equal to cf’(a;u). O
> 2.

(a)
Solution. f(u) = f(u1,us) = uléfjg So
f(ta) —f(0) 1 Pujug 1 ujup
t t2(ud +u3)  tuf+ud

In order for lim;_q w to exist, it is necessary and sufficient that ujus = 0 and u% + u% #0.

So for vectors (1,0) and (0,1), f'(0;u) exists, and we have f’(0;(1,0)) = f'(0;(0,1)) = 0. O
(b)

Solution. Yes, D1f(0) = D2f(0) = 0. O
(c)

Solution. No, because f is not continuous at 0: lim, ,\0y—ks f(7,y) = xzf’f{zxz = 1+kk2' For

k # 0, the limit is not equal to f(0).
(d)

Solution. See (c). O



6 Continuously Differentiable Functions

> 1.

Proof. We note

1 224y 1

R i N
172 + y2 2 $2 + y2 2

lzyl  _ _ T . e

JoiE 0. This shows f(z,y) = |zy| is differentiable at 0 and the derivative is

0. However, for any fixed y # 0, f(x,y) is not a differentiable function of x at 0. So its partial

derivative w.r.t. = does not exist in a neighborhood of 0, which implies f is not of class C' in a

neighborhood of 0. O

So lim, )0

7 The Chain Rule
8 The Inverse Function Theorem

9 The Implicit Function Theorem



Chapter 3

Integration

10 The Integral over a Rectangle

» 6.

(a)
Proof. Straightforward from the Riemann condition (Theorem 10.3). O

(b)

Proof. Suppose Q = [a1,b1] XX [an,b,] and P = (P, --- , P,) such that P; is a partition of [a;, b;]
for each j. Without loss of generality, assume P” is obtained by adjoining t* to P; = {th,tl, - i}
with a; =t} < ---<75l11_1 < t* <tl11 <o <t =by. Let

Ri(la, - ,ln) = [t} _ ] X [ty 87 ] X oo X [ty 17 ]

Roy(lp, -+ ln) = [t*, 8] ] X [ty 61 ] X - X [t} _y, 1]

R(ly, -+ ) = [t 1, t] ] X [t 67 ] X - X [ty 87 ]
Then (we omit the lo, - - - , I, indexes for simplicity of notation)

L(f7P”)_L(f7P)
= > [ma(f) v(R1) + me,(f) - v(Ra) — mg(f) - v(R)]

lo, o yln
= {Imr,(f) = mr(f)] - v(R1) + [mp, (f) — mr(f)] - v(R2)}
l2,+,ln
We note
0 <mp, (f) —mgr(f) <2M, 0 < mp,(f) — mg(f) <2M
and

v(R1) + v(Re) = (t, =, )(t, —ti, 1) -~ (), — 11, 1)



Therefore

0 < L(ij")—L(f,P)
< ) [2M - v(Ry) +2M - v(Ry)]
Iz, ln
< 2M-(t, —th ) D (i —th_y) - (4, — 1 0)

l2,ln

< 2M - mesh(P) - (width(Q))" !

where the last inequality comes from (tll1 - tlll_l) < mesh(P) and

D —th )t )

la,ln

= D |t |t ) )

I3, ,ln l2

< Y width(Q) - (6, — 1) -+~ (¢, — 17 1)

I3, ln

< (width(Q))" !
The result for upper sums can be derived similarly. O

()

Proof. Given € > 0, choose a partition P’ such that U(f, P') — L(f,P') < §. Let N be the number

of partition points in P’ and let
€

~ 8MN(widthQ)" 1’

Suppose P has mesh less than §, the common refinement P” of P and P’ is obtained by adjoining
at most N points to P. So by part (b)

5

0

IN

L(f,P") — L(f, P) < N - 2M (mesh P) (widthQ)"*

&
2MN - (widthQ)™ !
SMN (widthq)n—1 ~ (Vidth@)

IN

d »P'\ ™

Similarly, we can show 0 < U(f, P) = U(f,P") < 5. So

U(f7P)_L(f7P)

I
S

f7P _U(pr,l)}+[L(f7PH)_L(f7P)]+[U<f7P”)_L(frpll)]

[U(f,P/) —L(ij/)]

~—

IN
+ 4
[NCENONTSNS O
+

IN
Mpo| M| M

This shows for any given € > 0, there is a 6 > 0 such that U(f, P) — L(f, P) < ¢ for every partition
P of mesh less than 0. O]



> 7.

Proof. (Sufficiency) Note > f(zr)v(R) — A| < € can be written as

A—-e< Zf(xR)v(R) <A+e.
R

This shows U(f,P) < A+ ¢ and L(f,P) > A—e. So U(f,P)— L(f,P) < 2e. By Problem 6,
we conclude f is integrable over @), with fQ f€[A—¢e, A+ ¢]. Since ¢ is arbitrary, we conclude
fo f= A

(Necessity) By Problem 6, for any given € > 0, there is a 6 > 0 such that U(f, P) — L(f,P) < e
for every partition P of mesh less than §. For any such partition P, if for each sub-rectangle R
determined by P, xg is a point of R, we must have

L(f,P) =A< flzr)v(R) — A< U(f, P) — A.
R

Since L(f,P) < A< U(f,P), we conclude

S fer)v(R) — A

R

<U(f,P)—L(f,P) <e.

11 Existence of the Integral
12 Evaluation of the Integral
13 The Integral over a Bounded Set

14 Rectifiable Sets

15 Improper Integrals

10



