UNWRAPPING
MONADS &
FRIENDS

Shining Light on Functional
Programming’s Scariest Concepts

KYLE SIMPSON



Unwrapping Monads & Friends

Shining Light on Functional Programming’s Scariest

Concepts

Kyle Simpson
This book is available at https://leanpub.com/monads-and-friends

This version was published on 2025-04-10

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

ey

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License


https://leanpub.com/monads-and-friends
https://leanpub.com/
https://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc/4.0/deed.en_US

Tweet This Book!

Please help Kyle Simpson by spreading the word about this book on Twitter!
The suggested tweet for this book is:

I'm not scared anymore! I'm finally going to learn what monads are all about, by
reading "Unwrapping Monads + Friends” from @getifyX.
https: //leanpub.com/monads-and-friends

The suggested hashtag for this book is #MonadsAndFriends.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#MonadsAndFriends


http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20not%20scared%20anymore!%20I'm%20finally%20going%20to%20learn%20what%20monads%20are%20all%20about,%20by%20reading%20%22Unwrapping%20Monads%20&%20Friends%22%20from%20@getifyX.%20https://leanpub.com/monads-and-friends
https://twitter.com/intent/tweet?text=I'm%20not%20scared%20anymore!%20I'm%20finally%20going%20to%20learn%20what%20monads%20are%20all%20about,%20by%20reading%20%22Unwrapping%20Monads%20&%20Friends%22%20from%20@getifyX.%20https://leanpub.com/monads-and-friends
https://twitter.com/intent/tweet?text=I'm%20not%20scared%20anymore!%20I'm%20finally%20going%20to%20learn%20what%20monads%20are%20all%20about,%20by%20reading%20%22Unwrapping%20Monads%20&%20Friends%22%20from%20@getifyX.%20https://leanpub.com/monads-and-friends
https://twitter.com/search?q=%23MonadsAndFriends
https://twitter.com/search?q=%23MonadsAndFriends

Contents

Chapter 2: Whatisamonad? . ... .........................
WhatIsMonad? .. ... ... ... . ...
Simplest JS Illustration . . . ... ... ... ... ... .. .. .. ...
BuildingUpMonads . . . . .. .. ...
MonadicChain . . .. ... .. .. ... e

© 9 b W NN



Intro

Yeah, 1 know. Another monad tutorial. It's a rite of passage in the functional
programming world—every developer eventually writes one.

But here’s the thing: despite the countless explanations already floating around
out there, I never quite found the one that made it all click for me in a way that was
both practical and conceptually grounded. So I wrote the one I wish I'd had.

This guide isn’t trying to be comprehensive, academic, or authoritative in a
formal sense. It's not about wading through dense category theory or mimicking
Haskell idioms in JavaScript. Instead, it's a conversational exploration meant to de-
mystify monads and their related concepts—things like functors, applicatives, and
foldables—by connecting abstract ideas to actual working code, step by step.

We'll work through identity monads, maybe monads, 1O, state, and more, but
always through the lens of: what does this mean? Why should you care? How can
this help you write more predictable, composable, and testable code? And if it ever
feels like we're slipping into unnecessary abstraction, don't worry—Tll pull us back
to Earth and back to JavaScript.

You don't need to be a math wizard or already fluent in FP to get something
out of this. If you've ever written a map or filter in JS and thought “this feels...
different,” then you're already on the path. We'll fill in some of the conceptual gaps,
build up your intuition, and hopefully—eventually—you'll have that “Ohhh... that’s
what a monad is” moment.

Throughout, I'll reference tools and libraries (like Monio) that can help you
experiment and apply these ideas. But this guide isn’'t about any particular tool—it’s
about seeing the patterns that underlie them, and learning to reason about your
code in a more structured way.

So if youre curious, confused, or cautiously optimistic about FP and monads,
you're in the right place. Let’s unwrap these ideas—gently, one layer at a time.

e Note
The contents of this ebook are available to read for free online, as the
“Expansive Intro to Monads” guide.


https://github.com/getify/monio/blob/master/MONADS.md

Chapter 2: What is a monad?

Monad is a funny word, let’s admit it. It's a mathematical term more than a
programming term. It's not even close to what most of us would reach for if we
were coming up with a name for a powerful thing we hoped everyone around us
would adopt!

Before we get to a more technical definition, let me try to ease you in. It may
end up seeming a bit anti-climatic once you've read the next several sections of
this guide, because you may be expecting it to be a big, complex topic. And in some
ways it is. You may spend months or years revisiting monads (and related topics) and
building a deeper understanding. I certainly am still learning them, several years on.

But at the outset, I hope you feel somewhat comfortable with the basics of this
topic in just a few more minutes of reading here. I hope your reaction is, “Oh, is that
all a monad is?!”

The formalism, the terminology, the mathematical notation, it can really start
to overblow the concepts to an intimidating level. I stayed away from monads for a
long time. But now I'm hooked. And I hope you get there, too.

What Is Monad?

Here’s the simplest way I know how to describe what a monad is without getting
into code. A monad isn't actually a specific thing so much as it is a pattern. In our
programs, we can use things that behave according to this pattern (called “Monad”,
capitalized). These things in our programs are often referred to as “monads”
(lowercased), but that’s a bit informal. Instead, it might be more appropriate to
think of those things in your program as instances of a monad type, kind of like
the number 42 is a specific instance (value) of the number type.

The point of the monad pattern is to describe some behaviors we can expect
with these instances when we interact with them. It’s to give them a predictability,
much like we know that the number 39 and the number 3 can be added to make
the number 42.

But it goes beyond that. Monad can perhaps more accurately be described as a
pattern for a group of other patterns, like a higher-level type or a meta-type.

Tip: A simplified way of illustrating such a higher-level type / meta-type
concept: in JS, several different types of values (numbers, strings, booleans, etc) all



N O AW N

Chapter 2: What is a monad? 3

are described as “primitive” values (aka, not the “object” value type). Each individual
type has its own respective behaviors, but all primitive values (of any primitive type)
also share a common set of behavior; specifically, all JS primitive values held by-
value and assigned /passed by-value-copy - as opposed to object value types being
held by-reference and assigned/passed by-reference-copy.

So Monads (plural) would refer collectively to a variety of different types of
monads - which, again, we can define instances of in our programs - each of which
has their own unique individual pattern (behavior, etc). But all of these different
Monads - aka, “monad types”, “monad subtypes”, “monad kinds”, or however works
best for your brain - also conform to the core Monad pattern (with its specific
behaviors).

Formally, Monad is a part (Type) of a broad mathematical concept called
“Category Theory” You could briefly and incompletely describe Category Theory
as a way to categorize/group ideas based on how they behave with respect to
composition and transformation, including as you mix them with each other.

The Monad type, as it appears in programming, is a way to represent a value
or operation that associates the required specific behaviors with/around that
(underlying) value/operation. These additional behaviors augment (i.e., improve!)
the original value/operation with some “guarantees” about how it will interact
predictably with other monad-represented values/operations in the program.

Your head may already be swimming with the abstractiveness of all that. Take
a few minutes to let it sink in, then let's move on to illustrating them with some JS
code.

Simplest JS lllustration

What's the most stripped-down way we could implement the Monad type in JS?
How about this:

function Identity(v) {
return { val: v };

}

function chain(m,fn) {
return fn(m.val);

}

That'’s it, that’s a monad at its most basic. In particular, it’s the “Identity” monad,
which means that it will merely hold onto a value, and let you use that value,
untouched, whenever you want to.



Chapter 2: What is a monad? 4

const myAge = Identity(41); // { val: 41 }

We put a value inside an object container here only so we could recognize the
value as being monadic (behaving according the Monad type). This “container’ness
is one convenient way of implementing a monad, but it’s not actually required.

The chain(..) function provides a minimum basic capability to interact
with our monad instance. For example, imagine we wanted to take the monadic
representation of 41 and produce another monad instance where 41 had been
incremented to 42?

const myAge = Identity(41); // { val: 41 }

const myNextAge = chain( myAge, v => Identity(v + 1) ); // { val: 42 }

We have two distinct, concrete values (held in myAge and myNextAge), both of
which are instances of the “Identity” monad (as represented by this Identity(..)
function and its chain(..) function). Again, people often call these instances
“monads” (plural), but it’s better to think of them as instances of a single type of
Monad, “Identity”.

It's important to note that even though I use the function names Identity
and chain here, those are simply just artistic choices. There’s nothing explicitly
required by the concept of Monad in terms of what we name these things. But
like any good programming discipline, if we use names that others have regularly
chosen, it helps create a familiarity that improves our communications.

That chain(. .) function looks pretty basic, but it’s really important (whatever
it's called). We'll dig more into it much more in a bit.

But for now, I'm sure that code snippet seems pretty underwhelming to most
readers. Why not just stick with 41 and 42 instead of { val: 41 } and { val:
42 }? The WHY of monads is likely not at all apparent yet. You'll have to hang with
me for a bit to start to uncover the WHY.

Hopefully I've at least shown you that down at the very core, a monad is not a
mystical or complex thing.

Perhaps you just had that “Oh, is that it!?” moment.

Building Up Monads

Monads have somewhat (in)famously been described with a variety of silly-sound-
ing metaphors, like “burritos” Others call monads “wrappers” or “boxes”, or “data



Chapter 2: What is a monad? 5

structures” or... the truth is, all these ways of describing a monad are partial
descriptions. It’s like looking at a Rubik’s Cube. You can look at one face of the
cube, then turn it around and look at a different face, and get more of the whole
thing.

A complete understanding requires being familiar with all sides. But complete
understanding is not a single atomic event. It's often built up by lots of smaller bits
of understanding, like looking at each face of the cube one at a time.

For now, I just want you to focus on the idea that you could take a value like 42,
or an operation like console.log("Hello, friend!"), and attach/associate
additional behaviors to them which will give them super powers. That’s what the
Monad type/pattern will do.

Here’s another possible way of expressing monad instances in JS, using capabil-
ities provided by the Monio library:

const myAge = Just(41);

Monio Reference: Just

The above code shows a function called Just(..), which is pretty similar to
the Identity(..) function shown previously. It acts as a constructor (aka, “unit”)
of the Just monad.

And also...

const printGreeting = IO(() => console.log("Hello, friend!"));

Here we see another Monio function called I0( . . ), which acts as a constructor
for the I0 monad (which holds functions).

Thinking of our sketch in the previous section, you could sort of
think of myAge as { val: 41 } and printGreeting as { val: () =>
console.log("Hello, friend!") }. Monio’s representation is actually a
bit more sophisticated than just an object like that. But under the covers, it’s not
that far different.

I'm going to use Monio throughout the rest of the guide, so that we don’t have
to keep inventing all our own monad implementations. The convenient affordances
are nice to use, and easier to illustrate with.

Keep in mind, however, that under all the trappings, we could be doing some-
thing as straight-forward as defining an object like { val: 41 }.


MONIO.md

Chapter 2: What is a monad? 6

Digging Into Map

Instances of Just (. .) as shown above come with some methods on them, namely

chain(..) (like we saw earlier) and also map (. . ), which we'll look at now.
Consider the notion of an array’s map (. . ) method. Its job is to apply a mapping

(value translation) operation against all the contents of the associated array.

[ 1, 2, 3 ].map(v => v * 2); // [ 2, 4, 6]

Note: the technical term for this capability is Functor. In fact, all monads are
Functors, but don’t worry too much about that term for now. Just file in the back
of your head.

We started with one array ([ 1, 2, 3 ])and produced a new distinct array
([ 2, 4, 6 ])bymapping each element in the original array to a new value that
was doubled.

This mapping on arrays of course works even if our array has a single element,
right?

[ 41 J.map(v =>v + 1); // [ 42 ]

An extremely important detail there, that's easy to miss, is that the map(..)
function didn’t just give us 42 (a number) but gave us [ 42 ] (array holding
a number). Why? Because map(..)’s job is to produce a new instance of the
same type of “container” it was invoked against. In other words, if you use array’s
map(..), youre going to always get back an array.

But what if our “container” is a monad instance, and what if there’s only one
underlying value, like 41 in it? Since the monad is also a functor (able to be
“mapped”), we should still expect the same kind of outcome, right?

const myAge = Just(41);

const myNextAge = myAge.map(v => v + 1); // Just(42)

Hopefully it makes intuitive sense here that myNextAge should be another Just
instance, representing the underlying number 42.
Recall this bare-bones example from the previous section?



B W N -

A W N B

Chapter 2: What is a monad? 7

// assumed: function Identity(val) { .. }
// assumed: myAge ==> { val: 41 }

const myNextAge = chain( myAge, v => Identity(v + 1) ); // { val: 42 }

Substituting Monio’s implementation, that looks like:

const myNextAge = myAge.chain(v => Just(v + 1));

So what'’s the relationship here between the map(..) and chain(..)? Let’s
line the operations up next to each other, to see it:

myAge.map( v => v+1l ); // Just(42)
myAge.chain( v => Just(v + 1) ); // Just(42)

Now do you see it? map(..) assumes that its returned value needs to be
automatically “wrapped up” in an instance of the “container”, whereas chain(. .)
expects the return value to already be “wrapped up” in the right kind of “container”.

The map(..) function doesn’t at all have to be named that to satisfy the
functor’ness of the monad instance. In fact, you don't even strictly need amap (. .)
function at all, if you have chain(. . ), becausemap(..) canbe implemented with
chain(..):

function JustMap(m,fn) { return m.chain(v => Just(fn(v))); }

fortyOne.map ( v =V + 1); // Just(42)
JustMap(fortyOne,v => v + 1); // Just(42)

Having map(..) (or whatever it’s called) available is a convenience over using
just the chain(. .) by itself; but it’s not strictly required.

Monadic Chain

chain(..) sometimes goes by other names (in other libraries or languages), like
flatMap(..) or bind(..). In Monio’s monads, all three methods names are
aliased to each other, so pick whichever one you prefer.

The name flatMap(..) can help reinforce the relationship between it and
map(..).



Chapter 2: What is a monad? 8

Just(41) .map( v => Just(v + 1) ); // Just(Just(42)) -- oops!?

Just(41).flatMap( v => Just(v + 1) ); // Just(42) -- phew!

If we return a Just monad instance from map( . . ), it still wraps that in another
Just, so we end up with nesting. That is perfectly valid and sometimes desired,
but often not. If we return the same form of value from flatMap(..) (again, aka
chain(..)), there’s no nesting. Essentially, the flatMap(..) flattens out the
nesting by one level!

The chain(..) methodisintended for the provided function to return a monad
of the same kind (Just, Maybe, etc) as the one the method was invoked on. However,
Monio does not generally perform explicit type enforcement, so there’s nothing
that strictly prevents such crossing of monad kinds (e.g., between Just and Maybe).
It's up to the developer to follow (or not) the implied type characteristics of these
mechanisms.

I've asserted chain(..) (or whatever we call it!) is pretty central to something
being monadic. Yet even as simple as chain looks to implement (see earlier), it
works in such a specific way that it provides some very important guarantees
about how one monad instance can interact with another monad instance. Such
interactions and transformations are critical to building up a program of monads
without chaos.

Another side of the Monad Rubik’s Cube is these guarantees; theyre ensured by
a set of “laws” that all conforming monad implementations must satisfy:

1. Left Identity
2. Right Identity
3. Associativity

The formality and mathematical importance of these laws is not super impor-
tant to immerse in right now. But to illustrate them very simply with our trivial
identity monad Just from Monio:



O© 00 NN O U A W N -

e el
w N = o

Chapter 2: What is a monad? 9

// helpers:
const inc = v => Just(v + 1);
const double = v => Just(v * 2);

// (1) "left identity" law
Just(41).chain(inc); // Just(42)

// (2) "right identity" law
Just(42).chain(Just); // Just(42)

// (3) "associativity" law
Just(20).chain(inc).chain(double); // Just(42)
Just(20).chain(v => inc(v).chain(double)); // Just(42)

Here I used Monio’s chain(..) method; that’s again merely for convenient
illustration. The monad laws are stated in terms of a chain operation, regardless
of what an implementation chooses to call it.

Back To The Core Of Monad

Boiling this all down: the Monad type only strictly requires two things:

1. a function (of any name) to construct an “instance” of the type (the unit
constructor)

2. afunction (of any name) to properly perform the “chain” operation, as shown
in the 3 laws

Everything else you see in the code snippets in this guide, such as wrapper
monad instances, specific method names, “friends of monads” behaviors, etc -
that’s all convenient affordance provided specifically by Monio.

But from that narrow perspective, a monad doesn't have to be a “container” (like
a wrapping object or class instance) and there doesn’t even have to be a concrete
“value” (like 42) involved. While a “container wrapping a value” is one potentially
helpful side of the Rubik’s Cube to look at, it’s not all that a monad is or can be.
Don't get too wrapped up in that way of thinking!



Wrapping up!

We've now scratched the surface of monads (and several friends). That's by no
means a complete exploration of the topic, but I hope you're starting to feel they're
a little less mysterious or intimidating.

A monad is a narrow set of behavior (required by “laws”) you associate with a
value or operation. Category Theory yields other adjacent/related behaviors, such
as Foldable and Concatable, that can augment the capabilities of this representa-
tion.

This set of behavior improves coordination/interoperation between other
monad-and-friends-compliant values, such that results are more predictable. The
behaviors also offer many opportunities to abstract (shift into the behavioral-
definitions) certain logic that usually clutters up our imperative code, such as
null'ish checks.

Monads certainly don't fix all the problems we may encounter in our code, but
think there’s plenty of intriguing power to unlock by exploring them further. I hope
this guide inspires you to keep digging, and perhaps in your explorations, you'll find
the Monio library helpful.


https://github.com/getify/monio

	Table of Contents
	Intro
	Chapter 2: What is a monad?
	What Is Monad?
	Simplest JS Illustration
	Building Up Monads
	Monadic Chain
	Back To The Core Of Monad

	Wrapping up!

