

The Monad Manifesto:
Annotated (Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/monad-manifesto-annotated-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

The Monad Manifesto - Annotated 1

Capítulo 1 - ¿Qué es Monad? 4

Capítulo 2 – El Problema . 7

Capítulo 3 - El enfoque tradicional de la automatización
administrativa . 10

Capítulo 4 - Nuevos enfoques 13
4.1 - Un nuevo enfoque para construir comandos 14
4.2 - Un nuevo enfoque para componer soluciones 15
4.3 - Un nuevo enfoque de los modelos de gestión 16
4.4 - Un Nuevo Enfoque a las Herramientas GUI de Gestión 17

Capítulo 5 - El modelo de automatización de Monad (MAM) 19
5.1 - Un ejemplo . 20
5.2 – Aprovechando .NET 22

Capítulo 6 - El Shell Monad (MSH) 25
6.1 - Canalización de objetos (Pipelines) .NET 25
6.2 - Componentes del entorno de tiempo de ejecución

de Monad . 27
6.3 - Lenguaje de secuencias de comandos de MSH . . . 32

Capítulo 7 - Modelos de gestión de Monad (MMM) 33
Un ejemplo . 34

ÍNDICE GENERAL

Capítulo 8 - El Script Remoto de Monad (MRS) 36

Capítulo 9 - La consola de administración deMonad (MMC) 37

Chapter 10 - Value Propositions 39

The Monad Manifesto -
Annotated

by Jeffrey Snover as annotated by the PowerShell Community

Este proyecto está destinado a preservar The MonadManifesto¹, un
documento escrito por el inventor de Microsoft Windows PowerS-
hell Jeffrey Snover² en Microsoft en 2002. La idea de este proyecto
fue del autor de Pluralsight Tim Warner³, con las anotaciones
iniciales que hicieroen Tim y el Microsoft MVP Don Jones⁴.

El Manifiesto original era un documento prospectivo, anterior a
la publicación pública de PowerShell por alrededor de 4 años. En
los años transcurridos desde el lanzamiento de PowerShell 2006⁵, el
producto ha evolucionado sustancialmente, pero siempre alrededor
de los conceptos descritos en el Manifiesto.

Consideramos que no sólo es importante conservar el documento
con fines históricos, sino también anotar y ampliar los diversos
conceptos que introduce. Intentaremos vincular las referencias de
las tecnologías reales que el Manifiesto predijo y proporcionar
explicaciones contextuales en torno a algunas de las directivas del
Manifiesto.

Encontrará [^1] notas de pie de página en el texto. Éstas son
una característica de MultiMarkdown⁶ que no son compatibles con

¹http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
²https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
³http://www.pluralsight.com/author/tim-warner
⁴https://twitter.com/concentrateddon
⁵http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-

released.aspx
⁶http://fletcherpenney.net/multimarkdown/

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/
http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/

The Monad Manifesto - Annotated 2

nuestra plataforma de publicación, pero están destinadas a vincular
a las notas de pie de página correspondientes en la parte inferior de
la página. En algunos casos, estas son las notas originales de Jeffrey
marcadas como “ORIGINAL” para separarlas de las notas a pie de
página que nosotros hemos añadido.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective⁷ para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras:

• Nuestra rama principal GitHub organization⁸, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

• Nuestra GitBook page⁹, donde puede navegar por los libros
en línea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en línea, puede saltar a capítulos específicos.
Visite https://www.gitbook.com/@devopscollective

• En LeanPub¹⁰, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

⁷https://devopscollective.org/donate
⁸https://github.com/devops-collective-inc
⁹https://www.gitbook.com/@devopscollective
¹⁰https://leanpub.com/u/devopscollective

https://devopscollective.org/donate
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

The Monad Manifesto - Annotated 3

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser sólo espejos utilizados para el proceso
de publicación. GitBook normalmente contendrá nuestra última
versión, incluyendo algunos bits no terminados; LeanPub siempre
contiene la más reciente “publicación liberada” de cualquier libro.

Capítulo 1 - ¿Qué es
Monad?

Monad ¹¹ ¹² es la próxima generación de plataformas para la
automatización administrativa. Monad resuelve los problemas de
gestión tradicionales aprovechando la Plataforma .NET¹³. Des-
de el primer prototipo (limitado), se pueden resaltar beneficios
significativos para desarrolladores, testers, usuarios avanzados y
administradores. Monad aprovecha [^ 1-6] el .NETCommon Runti-
me¹⁴ Runtime para proporcionar un potente, consistente, intuitivo,
extensible y útil conjunto de herramientas que reducen los costos
de administración y hacen que la vida de los no programadores sea
mucho más sencilla.

Monad consta de:

1. Monad Automation Model (MAM)¹⁵: Un modelo de automa-
tización basado en clases .NET¹⁶, métodos y atributos para

¹¹(ORIGINAL) Este no es un documento técnico de Windows PowerShell ni es una
descripción precisa de cómo funciona V1.0. Esta es una versión del original Manifiesto deMonad
que articuló la visión a largo plazo y comenzó el esfuerzo de desarrollo que se convirtió en
PowerShell. Muchos de los elementos descritos en este documento han sido liberados y otros
han proporcionado una buena hoja de ruta para el futuro. El documento se ha actualizado para
su publicación. La información confidencial ha sido eliminada y los ejemplos se actualizan para
reflejar la sintaxis actual.

¹²(ORIGINAL) Monad es el término de Leibniz’s utilizado para describir una unidad
fundamental a la que luego se agregan componentes para implementar un propósito. En
esta filosofía, todo es una composición de Monads. Esto captura lo que queremos lo-
grar con una gestión compuesta. Más información sobre Monad se puede encontrar en:
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html

¹³http://bit.ly/1PAsRao
¹⁴http://bit.ly/1Q0TrV3
¹⁵
¹⁶http://bit.ly/1R9oPTO

http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://bit.ly/1Q0TyzZ
https://en.wikipedia.org/wiki/Monadology
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Composability
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html
http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO

Capítulo 1 - ¿Qué es Monad? 5

producir Cmdlets¹⁷.¹⁸
2. Monad Shell (MSH)¹⁹: Un entorno de ejecución de scripts ba-

sado en .NET para exponer los Cmdlets como herramientas de
línea de comandos de API²⁰ y un shell de línea de comandos
programable e interactivo.

3. Monad Management Models (MMM)²¹: El conjunto con las
clases de base de código administrado (o interfaces) pa-
ra implementar escenarios de administración específicos y
herramientas administrativas in-the-box para ejecutar esos
escenarios.

4. Monad Remote Scripting (MRS)²²: Conjunto de componentes
basados en Web Services²³ que permiten ejecutar secuencias
de comandos remotamente en muchas máquinas ²⁴.

5. Monad Management Console (MMC)²⁵: Un modelo basado
en .NET y un conjunto de servicios para la creación de
GUIs de administración sobre MSH²⁶ exponiendo todas las
interacciones de GUI como secuencias de comandos visibles
por el usuario ²⁷.

¹⁷https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
¹⁸La versión 1 de PowerShell se liberó en 2006 y proporcionó la implementación de cmdlets.

Los cmdlets de hoy se escriben en lenguajes .NET y consisten en una sola clase por cada cmdlet.
PowerShell proporciona una clase base que hace mucho del trabajo pesado. Los desarrolladores
definen las propiedades de la clase que se convierten en parámetros y reemplazan métodos
específicos para participar en el ciclo de vida de la canalización en el pipeline. Los cmdlets,
junto con el entorno general, fueron el primero de los cuatro puntos de visión principales que
se proponen en el Manifiesto.

¹⁹
²⁰https://msdn.microsoft.com/en-us/library/ms123401.aspx
²¹
²²
²³https://msdn.microsoft.com/en-us/library/ms950421.aspx
²⁴Remoting fue introducido en PowerShell versión 2, que se liberó con Windows Vista

y Windows Server 2008. Remoting es el segundo de los cuatro puntos de visión principales
propuestos en el Manifiesto.

²⁵
²⁶https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
²⁷Aunque nunca se expuso como una MMC per se, el motor de PowerShell se implementó

como una clase .NET. Cualquier aplicación .NET puede instanciar el motor, ejecutar comandos
y traducir la salida a una pantalla GUI. Exchange Server 2007 fue el primer producto que lo
hizo y sigue siendo uno de los mejores ejemplos del “enfoque completo de PowerShell” para la
administración.

https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
http://blogs.msdn.com/b/powershell/archive/2009/07/23/windows-powershell-2-0-rtm.aspx
https://technet.microsoft.com/en-us/magazine/ff700227.aspx
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://msdn.microsoft.com/en-us/library/bb742441.aspx
https://technet.microsoft.com/en-us/magazine/2006.12.managementshell.aspx

Capítulo 1 - ¿Qué es Monad? 6

Este white paper²⁸ presenta el enfoque tradicional de la automatiza-
ción administrativa, sus fortalezas y deficiencias. A continuación,
se presenta una visión general de los principales componentes de
Monad. Un conjunto de propuestas de valor²⁹ se articula entonces
para las audiencias objetivo de Monad.

Notas:
²⁸https://en.wikipedia.org/wiki/White_paper
²⁹https://en.wikipedia.org/wiki/Value_proposition

https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition
https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition

Capítulo 2 – El Problema
Windows tiene herramientas administrativas GUI simples para
usuarios básicos (Panel de control, MMC, etc.). Windows también
tiene un rico conjunto de lenguajes, APIs ³⁰ ymodelos de objetos pa-
ra programadores de sistemas avanzados (C³¹, C++³², C#³³, WMI³⁴,
Win32³⁵, .NET, etc.). Lo que falta, son herramientas “compuestas”
vitales orientadas al administrador para escribir comandos y auto-
matizar la gestión. El centro de todo esta normalmente regido por
lenguajes de scripting.

Nuestras soluciones de secuencias de comandos actuales (WSH³⁶,
VB³⁷) se centran en el extremo superior del mundo de secuencias
de comandos que gestionan la plataforma utilizando abstracciones
de muy bajo nivel, como modelos de objetos complejos, esquemas
y API ³⁸. Esto puede resultar algo extraño para gran parte de
la comunidad de administradores. El scripting de administración

³⁰De hecho, las API son el diferenciador principal entre los sistemas Windows y Linux/U-
NIX. En Linux/UNIX, todo se parece esencialmente a una carpeta o un archivo, y casi todos los
bits de configuración se encuentran en un archivo de texto de estructura libre. La automatización
de la administración en ese entorno es fácil, ya que sólo tiene una API: archivos de texto.
Windows es más difícil porque para hacer algo, tiene que aprender alguna API - y todas las
API son diferentes. Saber cómo agregar un usuario a Active Directory no le ayuda a crear un
sitio en SharePoint: todas son API diferentes.

³¹http://bit.ly/1SmIDVh
³²http://bit.ly/1HmcYe5
³³http://bit.ly/1EngdQ6
³⁴http://bit.ly/1ekpnrY
³⁵http://bit.ly/1IORfB2
³⁶http://bit.ly/1ekpvra
³⁷http://bit.ly/1Q0VwjT
³⁸En otras palabras, no se alcanza el objetivo, porque VBScript es básicamente una forma

simplificada de tratar con las API que estaban destinadas a los desarrolladores. VBScript también
asume que los equipos de producto han creado API dedicadas, compatibles con VBScript, lo que
la mayoría no hizo. Conseguir algo con VBScript era a menudo complicado, y siempre a punta
de prueba-error.

http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
https://technet.microsoft.com/en-us/library/hh852274(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/ff678226.aspx
http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
https://msdn.microsoft.com/en-us/library/d1wf56tt(v=vs.84).aspx

Capítulo 2 – El Problema 8

debería fluir desde línea de comandos ³⁹, debería ser pequeño,
simple, incremental y tratar con niveles de abstracción muy altos.

John Ousterhout⁴⁰ describió la distinción entre scripting y progra-
mación de sistemas en su artículo Scripting: Higher Level Program-
ming for the 21st Century⁴¹.

Degree of Typing

Ousterhout⁴² postula que las secuencias de comandos deben per-
mitir “juntar” aplicaciones, una abstracción de nivel superior a
la programación de sistemas, lo que permitía un desarrollo de
aplicaciones aún más rápido que con los actuales lenguajes de
programación. El argumento fundamental es que debemos conti-

³⁹(ORIGINAL) El scripting administrativo es a menudo la progresión de scripts ad hoc a
operaciones automatizadas. Los administradores advierten que escriben los mismos comandos
una y otra vez así que mejor construyen una secuencia de comandos. Ellos se percatan que sus
secuencias de comandos siempre contienen muchas de las mismas cosas por lo que producen
subrutinas parametrizadas y avanzan desde allí.

⁴⁰http://web.stanford.edu/~ouster/cgi-bin/home.php
⁴¹http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
⁴²http://web.stanford.edu/~ouster/cgi-bin/home.php

http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/home.php
https://technet.microsoft.com/en-us/magazine/jj554301.aspx
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/home.php

Capítulo 2 – El Problema 9

nuar por el camino de la Ley de Moore⁴³ para llevar el desarrollo
a niveles más altos de abstracción a través del scripting. Para
habilitar la automatización de la administración en el mainstream,
los administradores necesitan un shell completo, con scripts y uti-
litarios, y las GUIs administrativas⁴⁴ necesitan estar superpuestas a
esta infraestructura [^2-4]. Esto permitiría una formación eficiente
de los administradores en la automatización desde la línea de
comandos y garantizaría capacidades administrativas completas así
como economías de escala en un modelo de automatización al que
llama admin-composable. ___

Notas

[^2-4] Se tenía entonces una fuerte dependencia de las capas de
GUIs. Eso explica un poco la ausencia de algunas GUIs adminis-
trativas en Linux/UNIX para algunas tareas. Su ausencia obliga a
asegurarse que todo se puede hacer desde la línea de comandos. La
GUI no se convierte en una clase especial de ciudadano que posee
poderes especiales y únicos. Sólo es otro consumidor de la línea de
comandos. La línea de comandos, a su vez, puede ser consumida
más fácilmente por otros públicos diferentes a una GUI.

⁴³http://www.mooreslaw.org
⁴⁴https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/

http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/
http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/

Capítulo 3 - El enfoque
tradicional de la
automatización
administrativa

El modelo tradicional ⁴⁵ para la automatización administrativa es
potente y exitoso. Consiste en:

1. Un shell de programación (por ejemplo, sh, csh, ksh, bash) ⁴⁶
2. Un conjunto de comandos administrativos (por ejemplo, if-

config, ps, chmod, kill)
3. Un conjunto de utilitarios para manipulación de texto (por

ejemplo, awk, grep, sed).
4. GUIs administrativas superpuestas a los comandos y los

utilitarios

La filosofía de este modelo es que cada ejecutable debe hacer
un pequeño conjunto de funciones, para que las funciones más
complejas sean compuestas a través del uso de pipelining o una
secuencia de ejecutables que se llaman unos a otros. Este modelo
ha sido muy exitoso a pesar de tener algunos inconvenientes. Tras
la inspección, lo que es ampliamente considerado como un bastión

⁴⁵Tradicional en el mundo Linux/Unix, pero no en Windows. Este es, de hecho, el cambio
que Snover proponía: hacer que la administración administrativa funcione más como en Unix,
ya que Unix es un modelo probado de éxito desde hace décadas. Probablemente ayudo que
Snover proviniera de Digital Computer, una compañía con bastante familiaridad en variantes
de Unix y sistemas operativos similares.

⁴⁶Estos ejemplos enfatizan la influencia que el mainframe y UNIX tenían en las opciones de
diseño de Snover.

Capítulo 3 - El enfoque tradicional de la automatización administrativa 11

UNIX es de hecho una implementación defectuosa de este modelo
⁴⁷.

Cuando retrocede y examina lo que realmente sucede cuando
alguien usa un comando pipelinado (si se me permite inventar
esta palabra) como en “$ a | b | c”, se concluye que el primer
comando, es decir, “a” no logró lo que el administrador quería
hacer. Si lo hubiera hecho, el administrador sólo tendría que
haber escrito “a” y listo. Entonces, la pregunta es ¿por qué “a” no
hizo lo que el administrador quería? La respuesta es que en este
modelo tradicional, los ejecutables autónomos unen firmemente
tres operaciones: 1) obtener objetos; 2) procesamiento de objetos;
3) salida de resultados como texto ⁴⁸. Una de esas operaciones no
hace lo que el administrador necesita, así que el resto de la tubería
es un intento de corregir eso.

Debido a que el ejecutable genera texto, los elementos descendentes
deben utilizar utilidades de manipulación de texto para intentar
volver a los objetos originales y realizar trabajo faltante. Si bien el
modelo básico es extremadamente poderoso, su defecto intrínseco
es la estrecha vinculación de estas operaciones y el uso de texto no
estructurado para la integración ⁴⁹. Esto requiere utilitarios para la

⁴⁷Las personas que ven PowerShell como “linux-ification” de Windows deben tener en
cuenta que Snover no estaba enamorado del modelo de línea de comandos Unix. Él sentía que
era inconsistente y que le faltaba una mejor semántica. De muchas maneras, PowerShell fue el
primer “segundo vencedor” en el modelo de línea de comandos de Unix, tomando sus puntos
fuertes, pero reconsiderando lo que se había convertido en debilidades algo obvias.

⁴⁸El resultado práctico de esto es que las herramientas - cmdlets, en el mundo de PowerShell
- deben hacer una cosa, y sólo una cosa. Obtener objetos, procesar objetos o formatear objetos
desde texto. Elija sólo una cosa y haga sólo eso. Si hace más de una cosa, comienza a crear
una herramienta monolítica que es menos fácil de reutilizar. Este concepto de una sola cosa
se ha convertido en el fundamento de las mejores prácticas en la comunidad de PowerShell,
especialmente en torno a la creación de herramientas.

⁴⁹Hay un punto enorme aquí que a menudo se pierde. Cuando se escribe una herramienta
que produce texto, las herramientas descendentes tienen que saber cómo procesar ese texto en
el formato exacto que se produjo. Sus datos no están estructurados. Si cambia la salida de su
herramienta, todo lo que se utiliza para trabajar con ella tendrá que cambiar. La orientación de
objetos, es decir, presentar los datos en una estructura estandarizada que podría ser consumida
por cualquier cosa que entienda “objetos”, fue una de las mayores diferencias entre PowerShell
y lo que había antes. Gran parte del tiempo de un administrador de Linux se gasta en el ciclo
grep/sed/awk, ya que tienen que analizar el texto para que la próxima herramienta tenga datos
con los que trabajar. PowerShell casi que elimina ese trabajo por completo.

Capítulo 3 - El enfoque tradicional de la automatización administrativa 12

manipulación de texto torpes, con pérdidas e imprecisiones.

El modelo tradicional refleja el estado de la tecnología que estaba
disponible en el momento en que surgió. .NET proporciona ⁵⁰ un
nuevo conjunto de capacidades y abre la posibilidad de nuevos
enfoques. Estos nuevos enfoques nos permiten sustituir el modelo
tradicional por uno decisivamente superior. Ese modelo es lo que
llamamos Monad

Notas
⁵⁰De manera realista, COM podría haber proporcionado las mismas capacidades ya que

estaba orientada a objetos. Sin embargo, en el momento en que se escribió el manifiesto, COM
fue “acabado” y Microsoft se había trasladado a .NET

Capítulo 4 - Nuevos
enfoques

Monad adopta nuevos enfoques a los problemas de 1) construcción
de comandos, 2) composición de soluciones 3) modelos de gestión
y 4) GUI de gestión. La arquitectura de Monad proviene de las
siguientes observaciones:

1. La mayoría de las soluciones son desarrolladas “in house” y
compuestas por comandos existentes por los administradores.

2. La mayoría de las soluciones se centran en la automatización
de la gestión o la provisión de correcciones ad hoc.

3. La mayoría de los administradores no son programadores
“natos”. O bien no tienen el deseo, la habilidad o (más a
menudo), el tiempo para hacer una programación sofisticada.

4. La mayoría de los desarrolladores de aplicaciones no harán
que su código sea manejable a menos que haya un beneficio
inmediato y sustancial para el usuario ⁵¹

⁵¹Lo que significa que la mayoría de los desarrolladores no implementarán interfaces que
los administradores puedan usar para administrar la aplicación. En el mejor de los casos, un
desarrollador “perezoso” podría simplemente poner toda su información de configuración en
un archivo de texto y llamarla “manejable”. Irónicamente, eso es esencialmente como Unix se
construyó desde cero, y es manejable, porque no es tan fácil como modificar un archivo de texto,
especialmente si está estructurado (como en JSON o XML).

Capítulo 4 - Nuevos enfoques 14

4.1 - Un nuevo enfoque para
construir comandos

El enfoque tradicional de la construcción de comandos es inefi-
ciente. Gran parte del esfuerzo se dedica a reescribir las mismas
funciones una y otra vez por diferentes personas de diferentes
maneras. Todos para:

• Analizar, validar y codificar la entrada de usuario.
• Documentar su uso.
• Dejar registro de actividades.
• Formatear datos, resultados de salida e informes de errores.
• Operar en nodos remotos o conjuntos de nodos remotos.

Sin embargo, a pesar de toda esta coincidencia, la mayoría de
las plataformas [^4-1] ⁵² proporcionan poco o ningún apoyo para
hacer estas actividades de manera coherente. El resultado es que
los comandos de hoy en día son ineficientes para desarrollar e
inconsistentes en su forma de usar ⁵³.

Monad adopta un enfoque diferente que proporciona a los desa-
rrolladores el máximo aprovechamiento y la máxima consistencia
para los usuarios finales, mediante la definición de un modelo
de automatización para aplicaciones que afecta a las funciones
comunes para que puedan implementarse una vez en un entorno de
ejecución común ⁵⁴. Los desarrolladores ya no producen ejecutables
autónomos. En su lugar, escriben piezas de código muy enfocadas
como clases .NET (Cmdlets) que luego se exponen como API,

⁵²ORIGINAL: VMS DCL y AS400’s CL son las excepciones a esto. Proporcionan un
analizador de comandos común para que los comandos que se usan tengan un alto grado de
consistencia sintáctica.

⁵³Es por eso que los desarrolladores odian hacerlos y los administradores odian usarlos.
⁵⁴ORIGINAL: Existe una maravillosa sinergia entre el deseo del programador de minimizar

la cantidad de código que escribe para la administración y los clientes que desean tener una
experiencia de administración consistente.

http://h71000.www7.hp.com/doc/732final/9996/9996pro.html

Capítulo 4 - Nuevos enfoques 15

comandos e interfaces gráficas. Las funciones comunes se imple-
mentan y prueban una vez y proporcionan un conjunto único de
semántica, así como un conjunto coherente y uniforme de mensajes
de error. ⁵⁵

4.2 - Un nuevo enfoque para
componer soluciones

El enfoque tradicional para componer soluciones es difícil y frágil.
Utiliza “pipelines” para realizar análisis basado en oraciones de
flujos de texto ⁵⁶. Estos mecanismos son incómodos, inconsistentes
e imprecisos. Los administradores pasan la mayor parte de su
tiempo buscando mecanismos para resolver problemas, en lugar
de resolver dichos problemas. Monad tiene un enfoque diferente
que proporciona un motor de ejecución de secuencias de comandos
preciso y potente para crear tuberías (pipelines) de objetos .NET.
En lugar de canalizar texto no estructurado, canalizamos objetos
.NET ⁵⁷. Esto permite que los componentes de la canalización
(pipelines) operen a bajo nivel directamente sobre los objetos y
sus propiedades utilizando las API .NET Reflection⁵⁸. (Las API de
Reflection permiten encontrar el tipo de un objeto, las propiedades

⁵⁵Este es el modelo adoptado por PowerShell. Los cmdlets son instancias de una clase, que
heredan de una única base. Esa clase proporciona una tonelada de funcionalidad común, de
modo que el código real en un cmdlet está alrededor del 99% centrado en lo que sea que el
cmdlet esté haciendo. El desarrollador del cmdlet no se centra en analizar los argumentos de la
línea de comandos, validar los elementos obligatorios, etc.

⁵⁶El análisis basado en la oración es cuando analiza el texto y luego ora para que lo
entienda correctamente. p.ej. Cortar las primeras 3 (¿o eran 4?) Líneas, recortar la columna 30-40
(suponiendo que esos espacios no son Tabs), convertir a un entero (hmm. - ¿Alguien utiliza 64
bits? … bueno espero que sea de 32 bits).

⁵⁷Un “objeto” en este sentido es poco más que un conjunto de datos estructurados, a
diferencia de una tabla de base de datos o una hoja de cálculo. Cada objeto representa algún
componente de gestión, y sus propiedades representan bits de información sobre ese objeto. Los
comandos no tienen que analizar estos objetos para encontrar datos, ya que .NET entiende la
estructura del objeto y puede simplemente recuperar los bits de información haciendo referencia
a los nombres de propiedades.

⁵⁸http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconreflectionoverview.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp

Capítulo 4 - Nuevos enfoques 16

y métodos que tiene, obtener los valores de propiedades e invocar
sus métodos).

El entorno de tiempo de ejecución de Monad proporciona un medio
para acceder a los cmdlets y ejecutar secuencias de comandos en
máquinas remotas a través de Web Services. ⁵⁹

4.3 - Un nuevo enfoque de los
modelos de gestión

El enfoque tradicional de los modelos de gestión produce una ex-
periencia de administración inconsistente. Hoy en día hay miles de
comandos optimizados localmente. Cada desarrollador de coman-
dos define su propiomodelo de gestión con un conjunto de nombres
y conceptos. Mientras se produce la copia de comandos populares,
no hay incentivo sistémico para hacerlo. Se han hecho esfuerzos
para proporcionar directrices que impulsen la optimización global,
pero el peso del legado ha dificultado que tales esfuerzos ganen
mucha fuerza.

Una situación similar existe con las tecnologías de instrumentación
actuales que languidecen debido a la falta de soporte de herra-
mientas. Los esfuerzos de evangelización por instrumentación son
difíciles a medida que los grupos [de productos] rechazan la estra-
tegia “construye y vendrá”. Los desarrolladores de herramientas se
resisten a la vasta superficie de los objetos y responden proporcio-
nando una funcionalidad genérica (como supervisión o navegación)
a través de una amplia gama de objetos o proporcionando funciones
complejas para un pequeño conjunto de problemas.

Monad adopta un enfoque diferente: minimiza el coste de la auto-
matización y proporciona un beneficio inmediato para el usuario

⁵⁹Una de las primeras referencias directas a lo que se convirtió en PowerShell Remoting,
que de hecho es un servicio web basado en WS-MAN (Web Services for Management).

Capítulo 4 - Nuevos enfoques 17

final proporcionando clases de extensión de automatización ba-
sadas en escenarios y herramientas in-the-box que explotan esas
clases. Monad puede soportar casi cualquier esquema de auto-
matización, pero alienta firmemente el uso de esquemas estándar
proporcionando un conjunto de clases base para escenarios ad-
ministrativos específicos. Estas clases base incluyen: Navegación,
Diagnóstico, Configuración, Ciclo de Vida y Operaciones ⁶⁰. Dichas
clases proporcionan una sintaxis común, conmutadores, mensajes
de error internacionalizados y soluciones a problemas de escenarios
comunes (por ejemplo, una implementación común de una pila
de directorios para todos los comandos de navegación). Monad
también proporciona un conjunto de controles de interfaz de usua-
rio y herramientas que se suministran con el sistema operativo
que controla dichas extensiones para realizar una tarea de gestión
específica

4.4 - Un Nuevo Enfoque a las
Herramientas GUI de Gestión

El enfoque tradicional de las GUI de administración proporciona un
mínimo de apalancamiento para desarrolladores. Las herramientas
de GUI de administración deWindows de hoy en día se desarrollan
de la mismamanera que una aplicación completa. Tienen código de
interfaz gráfica de usuario, aplicación de lógica de dominio/restric-
ción y acceso de API a objetos administrados locales y remotos. Los
servicios de GUI de gestión se limitan en gran medida a un conte-
nedor de interfaz de usuario que facilita la multiplexación de varias
herramientas y un cierto nivel de integración. Este enfoque requiere
un esfuerzo significativo y un conjunto de pruebas exhaustivo.

⁶⁰PowerShell nunca tuvo clases bases específicas para estos escenarios, pero este fue el origen
de la lista estandarizada de verbos de PowerShell que se utilizaron en los nombres de cmdlet.
Este concepto también impulsó la creación de las abstracciones PSProvider y PSDrive, en el que
cualquier almacén de datos podría ser expuesto como una “unidad de disco”, lo que permite un
conjunto estandarizado de comandos para manipular cualquier almacén de datos expuestos.

Capítulo 4 - Nuevos enfoques 18

Dado que gran parte de la lógica del dominio y la imposición de
restricciones está incrustada en la GUI, es común que las líneas de
comandos expongan un subconjunto de las funciones de una GUI.
El enfoque tradicional funciona en contra de la automatización.

Monad adopta un enfoque diferente que proporciona un rico con-
junto de servicios orientados a la gestión para desarrollar herra-
mientas de GUI de gestión. Estos servicios permiten que las GUI de
administración se superpongan al motor de secuencias de coman-
dos y Cmdlets. Esto proporciona auditoría, grabación/reproducción
de macros y herramientas integradas de GUI/línea de comandos.
Esto disminuye el nivel de habilidad requerido para desarrollar
una GUI de administración, al simplificar el acceso y el control
de los objetos de administración transparentes de manera remota.
También permite a los usuarios ver los scripts ejecutados por las
interacciones GUI que les ayuda a aprender la capa de automati-
zación y crear sus propios scripts automatizados. La estratificación
reduce la matriz de pruebas aprovechando las pruebas realizadas
en la línea de comandos y las secuencias de comandos y solo es
necesario probar las rutas GUI para invocar esas funciones. La
GUI de administración también puede exponer su funcionamiento
interno a través de Cmdlets que proporciona a los desarrolladores,
probadores y soporte un fácil acceso al estado interno y el control
de la GUI para la depuración/diagnóstico/prueba automatizada.

Notas: [^4-1]: ORIGINAL: UNIX tiene getopt ()⁶¹ para el análisis
simple de opciones de comandos.

⁶¹http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html

http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html

Capítulo 5 - El modelo de
automatización de

Monad (MAM)

Monad define un modelo de automatización altamente apalan-
cado para aplicaciones. El modelo extrae funciones comunes pa-
ra que puedan implementarse una vez en el entorno de ejecu-
ción. Esto proporciona tanto apalancamiento para el desarrollador
como coherencia para los administradores. El costo incremental
para desarrollar y probar funciones específicas de la aplicación
es bastante bajo en comparación con los métodos tradicionales.

Los desarrolladores exponen un modelo de automatización a los

Capítulo 5 - El modelo de automatización de Monad (MAM) 20

administradores como un conjunto de nombres y verbos fáciles
de utilizar. El desarrollador las implementa subclasificando un
conjunto de clases de automatización base de .NET, marcándolas
con atributos de automatización para producir un conjunto de
Cmdlets. El motor MSH expone estos cmdlets como un API y un
conjunto de comandos. Los administradores y los desarrolladores
de herramientas ahora obtienen una forma general de acceder uni-
formemente a la automatización de todos los aspectos del sistema
operativo.

5.1 - Un ejemplo

Imagine al desarrollador que necesita exponer el registro de sucesos
de Windows para la automatización de informes. El desarrollador
decide cómo estructurar la automatización en términos de sustan-
tivos y verbos (“Get-EventLog”). Monad proporciona una sólida
orientación sobre este tema. El desarrollador escribe un CmdLet
(en C #, VB.NET, COBOL, etc) para exponer esta función.

UnCmdLet podría verse así ⁶²:

A primera vista puede parecer que el Admininistrador no va a
obtener mucho uso de este código, pero nada podría estar más lejos
de la realidad. El uso de los atributos CmdNoun y CmdVerb registra
automáticamente este CmdLet como el comando “Get-EventLog”
con un solo parámetro “LogName”. El Admininistrador entonces
usa este comando junto con un conjunto de comandos de utilidad
base para componer escenarios mucho más complejos

⁶²Brevemente, durante el desarrollo, los “cmdlets de script” de PowerShell (ahora, “funciones
avanzadas”) tenían una sintaxis similar a ésta. En C #, el código fuente del cmdlet todavía se
parece mucho a esto.

Capítulo 5 - El modelo de automatización de Monad (MAM) 21

¿Qué está llenado el log de aplicación? ⁶³

Ejemplo 4

¿Por qué MSI Installer está llenando el log?

Ejemplo 5

¿El uso de mi registro de eventos es regular a lo largo de la semana?

Ejemplo 6

El administrador puede agregar Cmdlets adicionales a la canaliza-
ción (pipeline) para filtrar sólo aquellos eventos que se generaron el
martes y luego averiguar qué eventos ocurren más allá de ese día ($
Get-EventLog application |Where {$_.TimeWritten.DayofWeek

-eq "Tuesday"} |Group EventID). Después de haber encontrado
el evento más frecuente de los martes, pueden filtrar fácilmente
el registro para ese evento y determinar la distribución de dicho

⁶³ORIGINAL: “Get-EventLog Application” es proporcionado por el código de ejemplo
anterior y el resto proviene de los comandos de base deMonad. “ Group source” cuenta el número
de objetos que tienen el mismo valor para una propiedad en particular (es decir, cuántas veces
apareció una fuente en particular). “Select -First 5” trunca el conjunto de objetos para que sólo
tengan los primeros 5. “Format-Table” formatea los objetos y sus propiedades una tabla.

Capítulo 5 - El modelo de automatización de Monad (MAM) 22

evento a través de los días de la semana. ($ Get-EventLog appli-

cation |Where {$_.EventID -eq 131080} |Group {$_.TimeWrit-

ten.DayofWeek})

Monad requiere una pequeña cantidad de código CmdLet ⁶⁴ para
integrarse en el entorno de ejecución y aprovechar su rico con-
junto de funciones y utilidades para proporcionar un potente y
distinguido conjunto de funciones administrativas. Si bien este
ejemplo se centró en una investigación ad hoc, es obvio cómo esta
investigación podría conducir a un conjunto de informes nocturnos
automatizados. Este ejemplo es un escenario sencillo. Los cmdlets
completos necesitarían proporcionar una gama completa de verbos,
hacer que las entradas se validen y realizar el manejo de errores. Sin
embargo, los ahorros en desarrollo y prueba son dramáticos.

5.2 – Aprovechando .NET

Los desarrolladores utilizan los atributos .NET para descargar el
trabajo al entorno de ejecución ⁶⁵. La filosofía general de Monad es
implementar las cosas una vez y luego usarlas en todas partes. Un
rico conjunto de atributos declarativos dirigen el tiempo de ejecu-
ción de Monad para realizar acciones en nombre del desarrollador.
Esto transfiere la responsabilidad de escribir y probar este código,
así como de interactuar con el usuario durante las condiciones de
error y producir y localizar mensajes de error.

Monad define los atributos de automatización en las siguientes
áreas:

⁶⁴Tenga en cuenta que incluso en este documento, Snover no era coherente acerca de
“CmdLet” versus “Cmdlet”. Hoy en día, “Cmdlet” es el estándar. Su idea original era enfatizar
que un “Cmdlet” no era un “comando completo” con todo el análisis sintáctico, pero no era un
comando tradicional implementado. En su lugar, era parte de un comando, con gran parte de la
sobrecarga proporcionada por las clases base del motor de automatización.

⁶⁵Significado, un desarrollador .NET puede indicar al runtime .NET que realice ciertas tareas
estandarizadas. Esto se ve mucho en PowerShell: por ejemplo, una función puede declarar un
parámetro como obligatorio y el shell aplicará ese atributo en lugar de que el desarrollador de
funciones tenga que escribir la lógica para hacerlo.

Capítulo 5 - El modelo de automatización de Monad (MAM) 23

Parsing Guidance Indican al analizador cómo
asignar la entrada del usuario
al objeto de petición CmdLet.
P.ej. Cómo asignar los
parámetros a las propiedades,
o si un calificador es
obligatorio.

Data Generation Dicen al shell que procese la
entrada del usuario para
generar los datos reales.
También habrá procesadores
para hostnames, ipaddrs,
registrykeyames,
ProcessNames, etc.

Data Validation Expresan reglas de validación
en los datos de entrada. P.ej.
Cardinalidad de los datos,
valores min/max de los datos,
etc.

Encoding Directives Transmiten la entrada del
usuario procesada como
objetos de datos. P.ej. Un
CmdLet puede querer una
matriz de StreamWriters en
lugar de una matriz de
nombres de archivo.

Object Processing Realizan un conjunto de
funciones comunes en tipos
de datos comunes. P.ej.
convertir una cadena a
minúsculas, etc.

Capítulo 5 - El modelo de automatización de Monad (MAM) 24

Visibility/Applicability Proporcionan predicados para
visibilidad/aplicabilidad. P.ej.
Los cmdlets se pueden
etiquetar con la máquina y
las funciones del usuario. Si
una máquina no tiene la
función de servidor DHCP,
los comandos del servidor
DHCP no estarán visibles de
forma predeterminada.

Documentation Proporcionan información de
utilidades sobre el elemento.
P.ej. Ayuda

Test Proporcionan sugerencias a
las utilidades para facilitar la
generación automática de
matrices de prueba.

Notas

Capítulo 6 - El Shell
Monad (MSH)

Monad proporciona un entorno de tiempo de ejecución para crear
APIs, líneas de comandos e interfaces gráficas altamente cohe-
rentes, poderosas, detectables y seguras mediante la creación de
pipelines de cmdlets. Esta capacidad se suministra como una clase
.NET que se puede integrar en una serie de “hosts” que exponen
dicha funcionalidad al usuario. El término MSH se refiere tanto al
entorno de ejecución como al host que expone el uso como un shell
interactivo de línea de comandos.

6.1 - Canalización de objetos
(Pipelines) .NET

Monad procesa la entrada del usuario, construye una canalización
(Pipeline) de Cmdlets para cada uno de los comandos ingresados,
analiza y codifica la entrada del usuario para cada comando en
un objeto de petición CmdLet (CRO-CmdLet Request Object). El
motor de ejecución de secuencias de comandos “ensambla” la
ejecución para luego invocar primer Cmdlet pasando su CRO como
un parámetro. Este Cmdlet devuelve un conjunto de objetos .NET
que luego se procesan y pasan al siguiente Cmdlet junto con su
CRO y así sucesivamente hasta que la Canalización (pipeline) se
complete.

Capítulo 6 - El Shell Monad (MSH) 26

Pipelines

Pasar objetos .NET a cmdlets en lugar de flujos de texto permite
que las utilidades basadas en Reflection proporcionen una fun-
ción para cualquier objeto .NET. En el ejemplo anterior, WHERE
CmdLet filtra un conjunto de objetos basándose en una prueba
de las propiedades del objeto. Resuelve objetos de cualquier tipo
(por ejemplo, Procesos, Archivos, Discos, etc.) y consultas para su
tipo utilizando las API de Reflection de .NET. Mediante el tipo,
consulta la existencia de la propiedad especificada por el usuario
(“HandleCount”). Luego, utiliza esta información para consultar
cada objeto para el valor de dicha propiedad y finalmente realiza la
prueba en esa propiedad para filtrar el objeto apropiadamente.

El mismo mecanismo es utilizado por SORT CmdLet para ordenar
un conjunto de objetos y el FORMAT-TABLECmdLet paramostrar
las propiedades de un conjunto de objetos como una tabla. Las
utilidades de Monad facilitan el procesamiento de las funciones
comunes de los Cmdlets, lo que ahorra costes para el desarrollador
y aumenta la potencia/consistencia de los administradores.

La integración de comandos heredados ⁶⁶ es trivial porque los flujos
de texto son simplemente un tipo de flujo de objetos .NET. Dicho

⁶⁶ORIGINAL: MSH podrá invocar de forma transparente los comandos heredados y los
shells heredados podrán invocar sin problemas MSH CmdLets. (MSH proporcionará un meca-
nismo para exportar CmdLets para el acceso desde los shells heredados) [De hecho, PowerShell
nunca implementó una forma fácil de invocar cmdlets para comandos heredados].

Capítulo 6 - El Shell Monad (MSH) 27

esto, una vez traducido a texto, se pierde la capacidad de operar
sobre él como un objeto rico basado en Reflection para regresar de
vuelta al mundo del análisis de texto.

6.2 - Componentes del entorno de
tiempo de ejecución de Monad

El siguiente diagrama ilustra los principales componentes del en-
torno de tiempo de ejecución de Monad.

Tiempo de ejecución

6.2.1.1 - El analizador

El analizador de Monad es utilizado por todos los Cmdlets y
garantiza una sintaxis coherente. Es responsable de analizar la
entrada del usuario para el motor de ejecución de secuencias de
comandos. Cuando un usuario introduce una línea de comandos,
el analizador asigna el comando a un método CmdLet y su Cmdlet
Request Object. Los campos y atributos del objeto de petición se
utilizan para analizar el resto de la línea de comandos, generar
cualquier información adicional, validar la entrada y codificar esos

Capítulo 6 - El Shell Monad (MSH) 28

valores en el objeto de petición.

Al realizar este proceso, el analizador puede agregar metadatos pro-
porcionados por el objeto Request con metadatos proporcionados
por proveedores de terceros. Por ejemplo, un objeto de solicitud
puede indicar que puede aceptar hasta 16 nombres de nodo y que
los nombres deben resolver a una dirección IPv4. Una directiva no
puede cambiar esas directivas, pero podría añadir una directiva que
indique que los nodos deben responder actualmente a un ping ICMP
(por ejemplo, IsAlive).

6.2.1.2 - El motor de ejecución de secuencias de
comandos

El motor de ejecución de secuencias de comandos Monad encadena
los cmdlets y garantiza una experiencia de ejecución consistente.
También es responsable de tomar las canalizaciones (pipelines)
codificadas por el analizador y realizar todas las operaciones ne-
cesarias para secuenciarlas hasta su finalización. Si las acciones
deben ocurrir en una máquina remota o un conjunto de máquinas
remotas, se coordina con la MRS⁶⁷ y además registra todas las acti-
vidades en el registro de auditoría. El motor de ejecución observa el
flujo de datos entrante y encuentra las propiedades correctas para
enlazar en un CmdLet (un CmdLet puede tener varios parámetros
para aprovechar diferentes tipos de datos). La salida de un CmdLet
se recoge, se procesa y se pasa a las propiedades apropiadas del
siguiente CmdLet. Dado que el entorno de tiempo de ejecución se
puede incrustar en varios hosts (por ejemplo, línea de comandos,
GUI, etc.), es importante que un CmdLet nunca se comunique
directamente con el usuario. El motor de ejecución de secuencias
de comandos media esta actividad entre el CmdLet y los distintos
hosts.

⁶⁷https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/
chapter-8-the-monad-remote-script-mrs.txt

https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt
https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt
https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt

Capítulo 6 - El Shell Monad (MSH) 29

6.2.1.3 - Los Cmdlets

Los cmdlets realizan acciones. Hay cuatro tipos de Cmdlets: 1) Base
2) Host 3) Plataforma y 4) Usuario. Los cmdlets Base funcionarán
en cualquier entorno .NET, como Sort, Where, Group, etc. Los
cmdlets de Plataform son aquellos que dependen de una platafor-
ma determinada (XP, Smart Phone o Compact Framework) y no
están disponibles en otras plataformas. Los cmdlets de Host son
aquellos proporcionados por la aplicación que incorpora el entorno
de tiempo de ejecución de Monad. Por ejemplo, msh.exe o GUI de
administración que exponen Cmdlets específicos para ese host (por
ejemplo, Cambiar una fuente, cerrar una ventana, etc.). Los Cmdlets
de User son los escritos por el usuario. Estos pueden ser escritos en
cualquier lenguaje (C #, VB.NET, etc), pero la mayoría se escribirá
en MSH (el lenguaje shell).

El identificador único de estos Cmdlets es su tipo .NET (por ejem-
plo, System.Command.ProcessCmdLet). Aunque este identificador
siempre se puede utilizar para invocar el CmdLet, es largo y hostil.
Como tal, los autores de CmdLet están obligados a proporcionar
nombres amistosos a través de atributos.

Será bastante común y fácil que los Cmdlets de mayor orden se
implementen obteniendo un conjunto de datos y luego utilizando
el tiempo de ejecución de Monad para invocar un script en esos
datos y devolver los resultados de ese script.

6.2.1.4 - El reflector de tipo extendido

El poder de Monad es su capacidad de aprovechar la reflexión
(Reflection) de .NET. El problema es que hay objetos que están
codificados en formas que despojan el poder de la reflexión. Por
ejemplo, cuando se reflejan contra datos como Datables ADO,
donde las propiedades están “encapsulados” como columnas. En
esto escenario lo que necesitamos son los nombres de las columnas,
pero estos se codifican de forma diferente. Un problema similar

Capítulo 6 - El Shell Monad (MSH) 30

existe con WMI, Active Directory y XML. El reflector de tipo
extendido está diseñado para abordar estos problemas.

6.2.1.5 - El Sistema de Anotación y Extensión de Tipo

Tratar con los objetos en crudo proporciona a veces demasiada y
otras veces muy poca información. Es el trabajo del tipo anotación
y sistema de extensión resolver esta paradoja, proporcionando un
mecanismo para que terceras partes definan conjuntos de propie-
dades (por ejemplo, propiedades asociadas con el rendimiento, la
configuración, el consumo de recursos o las dependencias) y dar al
conjunto un nombre público. Esto permite al usuario dar un nombre
en lugar de tener que especificar cada propiedad. P.ej. “Format-
Table resources “ vs. “ Format-Table name ,pid, workingset, hand-
lecount, virtualmemory, privatememory”.

Monad proporciona acceso a los objetos y los métodos sobre esos
objetos. Sin embargo, los métodos intrínsecos de un objeto repre-
sentan un número muy pequeño de las cosas interesantes que los
usuarios quieren hacer. El mecanismo de extensión de tipo permite
que terceras partes registren métodos intermedios en esos objetos.
Estos métodos pueden ser accedidos utilizando la misma sintaxis
que los nativos, pero este sistema los enviará al método apropiado
de terceros, pasando el objeto original como un parámetro.

6.2.1.6 - El Agente Remoto

Los usuarios podrán ejecutar secuencias de comandos en máquinas
remotas a través de solicitudes de servicio Web para el host de
agente remoto. Este host incorporará el tiempo de ejecución y res-
ponderá a las solicitudes recibidas vía SOAP/HTTP o DIME/TCP.
Los usuarios serán autenticados y sus actividades autorizadas (ya
sea por ID o por ROLE). Las solicitudes y las respuestas se co-
dificarán de manera que permitan la cancelación y el rastreo de
las actividades locales a solicitudes específicas en los registros de
auditoría remota.

Capítulo 6 - El Shell Monad (MSH) 31

Cuando una secuencia de comandos está completa, sus objetos de
retorno se serializan por valor para la transmisión a través de la red.

6.2.1.7 - Seguridad

Monad podría ser uno de los entornos de shell más seguros jamás
creados. Todas las acciones se consignan en un registro de audi-
toría. Las facilidades de identificación de código proporcionadas
por .NET reducen significativamente la exposición a una de los
problemas de seguridad más comunes en un entorno de shell:
Troyanos. Firmas, nombres fuertes y hashes en la política del
sistema se utilizarán para identificar qué utilidades son legítimas
y están aprobadas así como para evitar que troyanos conocidos se
ejecuten.

En resumen, el shell de Monad minimiza las exposiciones de
seguridad y facilita la detección y corrección de las brechas de
seguridad.

6.2.1.8 - Host MSH

MSH es un ensamblado .NET que se puede incrustar en cualquier
host ejecutable para proporcionar ejecución de scripts y acceso a
Cmdlets. Los hosts son capaces de determinar qué subconjunto de
Cmdlets se ponen a disposición del usuario. El caso más común
es que un Host expone todos los Cmdlets de Base (por ejemplo,
ordenar, filtar, etc.), todos sus Cmdlets de Host (por ejemplo,
Outlook expondría Cmdlets para tratar con buzones y mensajes)
y un subconjunto apropiado de los Cmdlets de Plataforma Cmdlets
que tratan de procesos, discos, adaptadores de red, etc.).

MSH es también un ejecutable autónomo que aloja el motor de eje-
cución de secuencias de comandos y proporciona una rica experien-
cia interactiva al mismo tiempo que una experiencia de tipo vt100
convincente. MSH proporciona capacidades gráficas complejas co-
mo Intellisense para completar el comando. Los datos se pueden

Capítulo 6 - El Shell Monad (MSH) 32

imprimir en formatos gráficos para aprovechar las capacidades de
interacción y visualización de las PC.

6.3 - Lenguaje de secuencias de
comandos de MSH

MSH proporciona un lenguaje de scripting completo utilizando
las funciones y la sintaxis del modelo POSIX Shell (control de
flujo, manejo de fallas, variables, definición de funciones, alcance,
redireccionamiento IO, etc.) como punto de partida, para mejorar
la experiencia de programación, aprovechar la nueva funcionalidad
o proporcionar una ruta de evolución a C#. El objetivo es que los
administradores de UNIX que trabajen con Windows encuentren
fácil aprender y migrar sus habilidades a MSH.

Además de escribir funciones tradicionales, los usuarios pueden
usar las capacidades de secuencias de comandos de MSH para
escribir sus propios Cmdlets y para agregar o reemplazar verbos
a los sustantivos existentes de CmdLet.

Notas

Capítulo 7 - Modelos de
gestión de Monad (MMM)
Monad ayuda a los desarrolladores de aplicaciones a diseñar la
experiencia administrativa proporcionando un conjunto de mo-
delos de gestión. Un MMM es un conjunto rico de clases base
de automatización basadas en escenarios y una herramienta o
conjunto de herramientas que utilizan esas clases para realizar un
escenario de administración particular. Estas clases bases cubren los
principales escenarios de administración, incluyendo: Navegación,
Diagnóstico, Configuración, Ciclo de vida y Operaciones. Las clases
base proporcionan una forma común de realizar estas tareas en
varios tipos de recursos. Esto permite al administrador aprender un
modelo para gestionar un escenario en particular y luego aplicar
ese modelo a una amplia gama de problemas y nuevas situaciones.
Los desarrolladores seleccionan el conjunto apropiado de clases
base, derivan sus propias clases de éstas e implementan los métodos
apropiados para sus tipos de recursos. Las clases base proporcionan
lo siguiente:

1. Un conjunto de verbos para el escenario (por ejemplo, Navi-
gation tiene el conjunto de verbos: pwd, cd, dir, pushd, popd,
dirs)

2. Un conjunto de objetos de solicitud base que definen califica-
dores comunes. P.ej. Si el escenario se refiere a una máquina
remota, el objeto de petición base definiría un calificador
común -MACHINENAME. Esto disuade a la gente de usar
los términos: NODE, SERVER, HOST, etc.

3. Un conjunto de excepciones y mensajes de error para ese
escenario. P.ej. Habrá una excepción esquematizada estándar

Capítulo 7 - Modelos de gestión de Monad (MMM) 34

para “Recurso no disponible” para que no terminemos con
decenas de variaciones [que existen hoy en día].

4. Soluciones comunes a problemas de escenario comunes. P.ej.
Las clases base proporcionarán una solución estándar para el
problema de que alguien pida accidentalmente demasiada in-
formación [por ejemplo, obtener todos los objetos en LDAP].

Microsoft localizará todas las partes visibles de estos escenarios
(verbos, calificadores, mensajes de error, etc.) para que los ISVs
puedan reducir significativamente sus costos de desarrollo me-
diante el aprovechamiento de estas clases base. Además de estos
beneficios, Monad proporciona controles de interfaz de usuario
para mostrar gráficamente e interactuar con implementaciones de
estas clases base. Monad enrá con un plug-inMMCde herramientas
que alojan estos controles de interfaz de usuario, pero los ISV o los
desarrolladores internos pueden alojar los controles en sus propias
UI de administración. Dado que estos controles tendrán acceso a
interfaces de datos y control bien definidos, terceras partes también
pueden crear controles de reemplazo.

Un ejemplo

La navegación proporciona un ejemplo de un modelo de gestión.
Habrá una clase base para todos los Cmdlets que quieran hacer
Navigation. Esto definirá los verbos (pwd, cd, pushd, dirs, popd,
dir), mensajes de error comunes y proporcionará implementaciones
comunes para problemas comunes (pushd, dirs y popd se imple-
mentarán una vez). Esa clase base puede ser “subclaseada” para
proporcionar una experiencia de administración consistente con
una cantidad mínima de código. Una vez que el administrador
aprende cómo usar este modelo, podrá utilizarlo en una amplia
gama de recursos. Navegar el sistema de archivos será el caso por
defecto:

Capítulo 7 - Modelos de gestión de Monad (MMM) 35

Example 1

Los mismos comandos se pueden utilizar para explorar el Registro:

Example 2

Losmismos comandos se pueden utilizar para explorar el sistema de
Ayuda, Active Directory, bases de datos SQL,WMI u otros espacios
de nombres.

Capítulo 8 - El Script
Remoto de Monad (MRS)
Monad proporciona un mecanismo basado en Web Services para
ejecutar scripts en sistemas remotos. Los scripts se pueden ejecutar
en un solo o un gran número (muchos miles) de sistemas remotos.
Los resultados de los scripts pueden ser procesos a la medida
que cada script individual completa o los resultados pueden ser
agregados y procesados en masa cuando todos han terminado.
Un script se puede ejecutar en modo BestEffort o Reliable. Los
scripts de BestEffort se ejecutan desde el proceso existente y si
ese proceso termina, no se realiza ningún trabajo para limpiar los
scripts remotos y se pierden los resultados. Los scripts de modo
Reliable se persisten en una tienda de SQL local y un servicio
maneja la ejecución de la secuencia de comandos. El usuario puede
iniciar sesión en la máquina y el servicio continúa procesando el
script. El usuario puede iniciar sesión y obtener los resultados de
ese trabajo en el futuro.

Capítulo 9 - La consola de
administración de
Monad (MMC)

Monad proporciona un conjunto rico de Cmdlets de servicio de
marco de administración para facilitar la creación de consolas de
administración. Estos servicios reducen los costos de desarrollo y
de pruebas para producir UIs y consolas de administración, a la
vez que permiten una experiencia integrada y administrativa. Los
servicios se utilizan para producir una consola de administración
integrada, pero también pueden ser utilizados por terceros o por
la propia TI para implementar su propia consola de gestión. El
objetivo es ser capaz de proporcionar el 50-70% de una herramienta
genérica de administración GUI de forma gratuita sólo mediante
la construcción del tipo correcto de Cmdlets. Monad ofrece los
siguientes recursos y servicios:

1. Un entorno de ejecución de secuencias de comandos que
proporciona a las GUI un acceso uniforme y coherente a
recursos locales y remotos.

2. Una interfaz integrada y un entorno de línea de comandos
para que las interacciones GUI se muestren en una consola de
línea de comandos. Los usuarios pueden usar esto para apren-
der la capa de automatización y también pueden ejecutar
directamente acciones de línea de comandos. Este mecanismo
además proporciona el soporte para la grabación/reproduc-
ción de macros.

3. Scripts de aplicaciones específicas. La aplicación puede expo-
ner sus funciones internas (por ejemplo, botones, pantallas,
estructuras de datos internas, etc.) a través de Cmdlets para

Capítulo 9 - La consola de administración de Monad (MMC) 38

permitir scripting específico de aplicaciones, depuración y
compatibilidad.

4. Controles de la interfaz de usuario base asociados conMMMs
específicos. (Por ejemplo, controles de navegación, controles
del ciclo de vida, controles de diagnóstico).

5. Conjunto rico de mensajes de error de base que se localizarán
por MMC.

6. Un marco de interfaz de usuario declarativa para permitir
GUI de administración personalizada basada en metadatos.

Chapter 10 - Value
Propositions

• For application developers who need to expose their ad-
ministrative functions as command lines and GUIs, Monad
provides a highly productive development framework.

– Unlike building stand-alone command lines,Monad pro-
vides most of the common functions including a parser,
a data validator/encoder, error reporting mechanisms,
common functions like sorting/filtering/grouping/for-
matting/outputting and a set of management models
which provide common verb sets, error messages and
solutions to common problems and tools.

– UnlikeWMI/WMIC, Monad provides a simple program-
ming model. Cmdlets are merely attributed .Net classes.

– Unlike MMC, Monad provides strong guidance on how
to perform management tasks and large benefits (redu-
ced coding/testing) for those that follow that guidance.

• For application testers who want to ensure that the admi-
nistrative command lines and GUIs operate correctly, Monad
reduces the amount of code that needs to be tested and
increases the productivity of the test process.

– Unlike building stand-alone command lines,Monad pro-
vides a common implementation of most common fun-
ctions minimizing the amount of application code to
develop and test.

– Unlike traditionalmanagementGUIs,Monad layers GUIs
on top of Cmdlets so the bulk of the GUI core will
already be tested when the command line is tested.
Monad will also make it easier to test GUIs by exposing

Chapter 10 - Value Propositions 40

the inner workings of the GUI through a command line
shell and by the ability to drive the GUI controls and
code paths through command line scripts.

• For power users who want to interact with the system
through command line interfaces, Monad provides a highly
consistent set of commands and utilities as well as an envi-
ronment that allows the creation of custom admin tools (i.e.
not scenario bound).

– Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mands and utilities, Monad provides a common parser
for all CmdLet and utilities ensuring syntactic consis-
tency and common input error handling and messaging
across all Cmdlets and utilities.

– Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mand and utilities, Monad provides a strong prescriptive
guidance and enforcement of CmdLet naming and error
handling and provides a set of scenario automation base
classes which make it easy and valuable for developers
to follow those guidelines.

– Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mand and utilities, Monad replaces pipelines passing
text with pipelines passing .Net objects which allows
utilities to use the .Net reflection APIs to operate directly
against the objects without the need to perform error-
prone text parsing and object lookup.

• ForAdministrators that want to developmanagement scripts
to automate the management of their systems, Monad provi-
des a highly productive model for learning and effecting that
automation.

– Unlike cmd.exe, the Monad shell is based upon and
extends the Bourne Shell syntax and control structures
facilitating the skill transfer of Unix Admins.

– Unlike sh, ksh, csh, etc and traditional command/uti-
lities, Monad uses .Net objects instead of text as an

Chapter 10 - Value Propositions 41

integrationmechanism allowing easier andmore precise
integration.

– Unlike sh, ksh, csh, etc and traditional command/utili-
ties, Monad exposes a rich error model leveraging .Net
objects to expose precise details of what went wrong,
where, when, and what objects where processed/unpro-
cessed.

– Unlike traditionalmanagementGUIs,MonadGUIs allow
Admins the ability to see the inner workings of the GUI
by exposing their actions via a command line console
so that the Admin can learn the automation surface by
using the GUI.

• For GUI users who want to automate their operations, Mo-
nad facilitates learning the automation layer by exposing the
shell equivalents of GUI interactions.

– Unlike traditional management GUIs, Monad GUIs are
layered on top of Cmdlets so every function available in
the GUI is also available via the command line. Unlike
traditional management GUIs, Monad GUIs allow Ad-
mins the ability to see the inner workings of the GUI
by exposing their actions via a command line console so
that the Admin can see the command line equivalent of
their GUI interactions.

	Tabla de contenidos
	The Monad Manifesto - Annotated
	Capítulo 1 - ¿Qué es Monad?
	Capítulo 2 – El Problema
	Capítulo 3 - El enfoque tradicional de la automatización administrativa
	Capítulo 4 - Nuevos enfoques
	4.1 - Un nuevo enfoque para construir comandos
	4.2 - Un nuevo enfoque para componer soluciones
	4.3 - Un nuevo enfoque de los modelos de gestión
	4.4 - Un Nuevo Enfoque a las Herramientas GUI de Gestión

	Capítulo 5 - El modelo de automatización de Monad (MAM)
	5.1 - Un ejemplo
	5.2 – Aprovechando .NET

	Capítulo 6 - El Shell Monad (MSH)
	6.1 - Canalización de objetos (Pipelines) .NET
	6.2 - Componentes del entorno de tiempo de ejecución de Monad
	6.3 - Lenguaje de secuencias de comandos de MSH

	Capítulo 7 - Modelos de gestión de Monad (MMM)
	Un ejemplo

	Capítulo 8 - El Script Remoto de Monad (MRS)
	Capítulo 9 - La consola de administración de Monad (MMC)
	Chapter 10 - Value Propositions

