o R

The Monad

Manifesto
(Annotated)

Jeffrey Snover
Original Author

// \K
¥ pevors R
\ COLLECTIVE A 1 W

L&

[)
PowerShell.org

The Monad Manifesto:
Annotated (Spanish)

The DevOps Collective, Inc.

Este libro esta a la venta en
http://leanpub.com/monad-manifesto-annotated-spanish

Esta version se public6 en 2018-10-28

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicacion. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.

Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell
Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers
Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTE?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Indice general

The Monad Manifesto - Annotated 1
Capitulo1-;QuéesMonad?. 4
Capitulo 2 - El Problema 7
Capitulo 3 - El enfoque tradicional de la automatizaciéon
administrativa L. 10
Capitulo 4 - Nuevos enfoques 13
4.1 - Un nuevo enfoque para construir comandos 14
4.2 - Un nuevo enfoque para componer soluciones 15
4.3 - Un nuevo enfoque de los modelos de gestiéon 16

4.4 - Un Nuevo Enfoque a las Herramientas GUI de Gestién 17

Capitulo 5 - El modelo de automatizacién de Monad (MAM) 19

51-Unejemplo 20
5.2 — Aprovechando NET 22
Capitulo 6 - El Shell Monad (MSH) 25
6.1 - Canalizacion de objetos (Pipelines) NET 25

6.2 - Componentes del entorno de tiempo de ejecucion
deMonad 27
6.3 - Lenguaje de secuencias de comandos de MSH . .. 32
Capitulo 7 - Modelos de gestion de Monad (MMM) 33

Unejemplo 34

INDICE GENERAL

Capitulo 8 - El Script Remoto de Monad (MRS) 36
Capitulo 9 - La consola de administraciéon de Monad (MMC) 37

Chapter 10 - Value Propositions 39

The Monad Manifesto -
Annotated

by Jeffrey Snover as annotated by the PowerShell Community

Este proyecto esta destinado a preservar The Monad Manifesto’, un
documento escrito por el inventor de Microsoft Windows PowerS-
hell Jeffrey Snover* en Microsoft en 2002. La idea de este proyecto
fue del autor de Pluralsight Tim Warner®, con las anotaciones
iniciales que hicieroen Tim y el Microsoft MVP Don Jones*.

El Manifiesto original era un documento prospectivo, anterior a
la publicacién publica de PowerShell por alrededor de 4 afios. En
los afios transcurridos desde el lanzamiento de PowerShell 2006°, el
producto ha evolucionado sustancialmente, pero siempre alrededor
de los conceptos descritos en el Manifiesto.

Consideramos que no sdlo es importante conservar el documento
con fines histéricos, sino también anotar y ampliar los diversos
conceptos que introduce. Intentaremos vincular las referencias de
las tecnologias reales que el Manifiesto predijo y proporcionar
explicaciones contextuales en torno a algunas de las directivas del
Manifiesto.

Encontrard ["1] notas de pie de péagina en el texto. Estas son
una caracteristica de MultiMarkdown® que no son compatibles con

*http://www.jsnover.com/blog/2011/10/01/monad-manifesto/

*https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server

*http://www.pluralsight.com/author/tim-warner

“https://twitter.com/concentrateddon

*http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell- 1-0-
released.aspx

°http://fletcherpenney.net/multimarkdown/

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/
http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/

The Monad Manifesto - Annotated 2

nuestra plataforma de publicacion, pero estan destinadas a vincular
a las notas de pie de pagina correspondientes en la parte inferior de
la pagina. En algunos casos, estas son las notas originales de Jeffrey
marcadas como “ORIGINAL” para separarlas de las notas a pie de
pagina que nosotros hemos afiadido.

Esta guia se publica bajo la licencia Creative Commons Attribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo més ampliamente posible, pero le solicitan que no
modifique el documento original.

;Ha sido util este libro? El (los) autor (es) le pide (n) que haga
una donacién deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective’ para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras:

+ Nuestra rama principal GitHub organization®, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

+ Nuestra GitBook page’, donde puede navegar por los libros
en linea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en linea, puede saltar a capitulos especificos.
Visite https://www.gitbook.com/@devopscollective

« EnLeanPub’, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donacion a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

"https://devopscollective.org/donate
®https://github.com/devops-collective-inc
*https://www.gitbook.com/@devopscollective
“%https://leanpub.com/u/devopscollective

https://devopscollective.org/donate
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

The Monad Manifesto - Annotated 3

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualizacion.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser solo espejos utilizados para el proceso
de publicacion. GitBook normalmente contendrd nuestra tltima
version, incluyendo algunos bits no terminados; LeanPub siempre
contiene la mas reciente “publicacién liberada” de cualquier libro.

Capitulo 1-;Qué es
Monad?

Monad ' ** es la préxima generaciéon de plataformas para la
automatizacion administrativa. Monad resuelve los problemas de
gestion tradicionales aprovechando la Plataforma .NET™. Des-
de el primer prototipo (limitado), se pueden resaltar beneficios
significativos para desarrolladores, testers, usuarios avanzados y
administradores. Monad aprovecha [* 1-6] el NET Common Runti-
me'* Runtime para proporcionar un potente, consistente, intuitivo,
extensible y util conjunto de herramientas que reducen los costos
de administracion y hacen que la vida de los no programadores sea
mucho mas sencilla.

Monad consta de:

1. Monad Automation Model (MAM)**: Un modelo de automa-
tizacion basado en clases NET"®, métodos y atributos para

"(ORIGINAL) Este no es un documento técnico de Windows PowerShell ni es una
descripcion precisa de como funciona V1.0. Esta es una version del original Manifiesto de Monad
que articul6 la vision a largo plazo y comenzd el esfuerzo de desarrollo que se convirtié en
PowerShell. Muchos de los elementos descritos en este documento han sido liberados y otros
han proporcionado una buena hoja de ruta para el futuro. El documento se ha actualizado para
su publicacién. La informacion confidencial ha sido eliminada y los ejemplos se actualizan para
reflejar la sintaxis actual.

">(ORIGINAL) Monad es el término de Leibniz’s utilizado para describir una unidad
fundamental a la que luego se agregan componentes para implementar un propésito. En
esta filosofia, todo es una composicion de Monads. Esto captura lo que queremos lo-
grar con una gestion compuesta. Mas informaciéon sobre Monad se puede encontrar en:
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html

http://bit.ly/1PAsRao

“http://bit.ly/1Q0TrV3

15

*Shttp://bit.ly/1R9oPTO

http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://bit.ly/1Q0TyzZ
https://en.wikipedia.org/wiki/Monadology
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Composability
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html
http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO

Capitulo 1 - ;Qué es Monad? 5

17 18

producir Cmdlets"’.

2. Monad Shell (MSH)**: Un entorno de ejecucion de scripts ba-
sado en .NET para exponer los Cmdlets como herramientas de
linea de comandos de API*° y un shell de linea de comandos
programable e interactivo.

3. Monad Management Models (MMM)*": El conjunto con las
clases de base de cddigo administrado (o interfaces) pa-
ra implementar escenarios de administracion especificos y
herramientas administrativas in-the-box para ejecutar esos
escenarios.

4. Monad Remote Scripting (MRS)**: Conjunto de componentes
basados en Web Services®® que permiten ejecutar secuencias
de comandos remotamente en muchas maquinas **.

5. Monad Management Console (MMC)**: Un modelo basado
en .NET y un conjunto de servicios para la creacion de
GUIs de administracién sobre MSH*® exponiendo todas las
interacciones de GUI como secuencias de comandos visibles
por el usuario *’.

https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx

**La version 1 de PowerShell se liberd en 2006 y proporcioné la implementacién de cmdlets.
Los cmdlets de hoy se escriben en lenguajes NET y consisten en una sola clase por cada cmdlet.
PowerShell proporciona una clase base que hace mucho del trabajo pesado. Los desarrolladores
definen las propiedades de la clase que se convierten en parametros y reemplazan métodos
especificos para participar en el ciclo de vida de la canalizacion en el pipeline. Los cmdlets,
junto con el entorno general, fueron el primero de los cuatro puntos de visién principales que
se proponen en el Manifiesto.

19

**https://msdn.microsoft.com/en-us/library/ms123401.aspx
21

22

“https://msdn.microsoft.com/en-us/library/ms950421.aspx

**Remoting fue introducido en PowerShell versién 2, que se liberé6 con Windows Vista
y Windows Server 2008. Remoting es el segundo de los cuatro puntos de vision principales
propuestos en el Manifiesto.

25

*https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx

*” Aunque nunca se expuso como una MMC per se, el motor de PowerShell se implement
como una clase NET. Cualquier aplicacion .NET puede instanciar el motor, ejecutar comandos
y traducir la salida a una pantalla GUL Exchange Server 2007 fue el primer producto que lo
hizo y sigue siendo uno de los mejores ejemplos del “enfoque completo de PowerShell” para la
administracion.

https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
http://blogs.msdn.com/b/powershell/archive/2009/07/23/windows-powershell-2-0-rtm.aspx
https://technet.microsoft.com/en-us/magazine/ff700227.aspx
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://msdn.microsoft.com/en-us/library/bb742441.aspx
https://technet.microsoft.com/en-us/magazine/2006.12.managementshell.aspx

Capitulo 1 - ;Qué es Monad? 6

Este white paper®® presenta el enfoque tradicional de la automatiza-
cién administrativa, sus fortalezas y deficiencias. A continuacion,
se presenta una vision general de los principales componentes de
Monad. Un conjunto de propuestas de valor®® se articula entonces
para las audiencias objetivo de Monad.

Notas:

**https://en.wikipedia.org/wiki/White_paper
*’https://en.wikipedia.org/wiki/Value_proposition

https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition
https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition

Capitulo 2 - El Problema

Windows tiene herramientas administrativas GUI simples para
usuarios basicos (Panel de control, MMC, etc.). Windows también
tiene un rico conjunto de lenguajes, APIs ** y modelos de objetos pa-
ra programadores de sistemas avanzados (C**, C++°%, C#°*, WMI*,
Win32*, NET, etc.). Lo que falta, son herramientas “compuestas”
vitales orientadas al administrador para escribir comandos y auto-
matizar la gestion. El centro de todo esta normalmente regido por
lenguajes de scripting.

Nuestras soluciones de secuencias de comandos actuales (WSH?®,
VB®’) se centran en el extremo superior del mundo de secuencias
de comandos que gestionan la plataforma utilizando abstracciones
de muy bajo nivel, como modelos de objetos complejos, esquemas
y API *. Esto puede resultar algo extrafio para gran parte de
la comunidad de administradores. El scripting de administracion

*De hecho, las API son el diferenciador principal entre los sistemas Windows y Linux/U-
NIX. En Linux/UNIX, todo se parece esencialmente a una carpeta o un archivo, y casi todos los
bits de configuracion se encuentran en un archivo de texto de estructura libre. La automatizacion
de la administracion en ese entorno es facil, ya que solo tiene una API: archivos de texto.
Windows es mas dificil porque para hacer algo, tiene que aprender alguna API - y todas las
API son diferentes. Saber como agregar un usuario a Active Directory no le ayuda a crear un
sitio en SharePoint: todas son API diferentes.

*'http://bit.ly/1SmIDVh

**http://bit.ly/1THmcYe5

**http://bit.ly/1EngdQ6

**http://bit.ly/1ekpnrY

**http://bit.ly/1IORfB2

*http://bit.ly/1ekpvra

*"http://bit.ly/1QOVwjT

**En otras palabras, no se alcanza el objetivo, porque VBScript es basicamente una forma
simplificada de tratar con las API que estaban destinadas a los desarrolladores. VBScript también
asume que los equipos de producto han creado API dedicadas, compatibles con VBScript, lo que
la mayoria no hizo. Conseguir algo con VBScript era a menudo complicado, y siempre a punta
de prueba-error.

http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
https://technet.microsoft.com/en-us/library/hh852274(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/ff678226.aspx
http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
https://msdn.microsoft.com/en-us/library/d1wf56tt(v=vs.84).aspx

Capitulo 2 - El Problema 8

deberia fluir desde linea de comandos *°, deberia ser pequefio,

simple, incremental y tratar con niveles de abstraccién muy altos.

John Ousterhout*® describi6 la distincion entre scripting y progra-
macioén de sistemas en su articulo Scripting: Higher Level Program-
ming for the 21st Century*'.

1000s Scripting -
T
£
% 100s System Programming |
w
@
c
Ne]
G
3 10s]
o
£

. O Assembly
Mone Strong
Degree of Typing
Degree of Typing

Ousterhout*® postula que las secuencias de comandos deben per-
mitir “juntar” aplicaciones, una abstracciéon de nivel superior a
la programacion de sistemas, lo que permitia un desarrollo de
aplicaciones aun mas rapido que con los actuales lenguajes de
programacién. El argumento fundamental es que debemos conti-

**(ORIGINAL) El scripting administrativo es a menudo la progresién de scripts ad hoc a
operaciones automatizadas. Los administradores advierten que escriben los mismos comandos
una y otra vez asi que mejor construyen una secuencia de comandos. Ellos se percatan que sus
secuencias de comandos siempre contienen muchas de las mismas cosas por lo que producen
subrutinas parametrizadas y avanzan desde alli.

“°http://web.stanford.edu/~ouster/cgi-bin/home.php

“‘http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf

“*http://web.stanford.edu/~ouster/cgi-bin/home.php

http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/home.php
https://technet.microsoft.com/en-us/magazine/jj554301.aspx
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/home.php

Capitulo 2 - El Problema 9

nuar por el camino de la Ley de Moore** para llevar el desarrollo
a niveles mas altos de abstraccion a través del scripting. Para
habilitar la automatizacién de la administracion en el mainstream,
los administradores necesitan un shell completo, con scripts y uti-
litarios, y las GUIs administrativas* necesitan estar superpuestas a
esta infraestructura [*2-4]. Esto permitiria una formacién eficiente
de los administradores en la automatizacion desde la linea de
comandos y garantizaria capacidades administrativas completas asi
como economias de escala en un modelo de automatizacion al que
llama admin-composable. __

Notas

["2-4] Se tenia entonces una fuerte dependencia de las capas de
GUIs. Eso explica un poco la ausencia de algunas GUIs adminis-
trativas en Linux/UNIX para algunas tareas. Su ausencia obliga a
asegurarse que todo se puede hacer desde la linea de comandos. La
GUI no se convierte en una clase especial de ciudadano que posee
poderes especiales y inicos. S6lo es otro consumidor de la linea de
comandos. La linea de comandos, a su vez, puede ser consumida
mas facilmente por otros publicos diferentes a una GUI.

“*http://www.mooreslaw.org
“*https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell- runtime/

http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/
http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/

Capitulo 3 - El enfoque
tradicional de la
automatizacion

administrativa

El modelo tradicional * para la automatizacién administrativa es
potente y exitoso. Consiste en:

1. Un shell de programacion (por ejemplo, sh, csh, ksh, bash) *¢

2. Un conjunto de comandos administrativos (por ejemplo, if-
config, ps, chmod, kill)

3. Un conjunto de utilitarios para manipulacion de texto (por
ejemplo, awk, grep, sed).

4. GUIs administrativas superpuestas a los comandos y los
utilitarios

La filosofia de este modelo es que cada ejecutable debe hacer
un pequeno conjunto de funciones, para que las funciones mas
complejas sean compuestas a través del uso de pipelining o una
secuencia de ejecutables que se llaman unos a otros. Este modelo
ha sido muy exitoso a pesar de tener algunos inconvenientes. Tras
la inspeccion, lo que es ampliamente considerado como un bastion

“Tradicional en el mundo Linux/Unix, pero no en Windows. Este es, de hecho, el cambio
que Snover proponia: hacer que la administraciéon administrativa funcione mas como en Unix,
ya que Unix es un modelo probado de éxito desde hace décadas. Probablemente ayudo que
Snover proviniera de Digital Computer, una compafiia con bastante familiaridad en variantes
de Unix y sistemas operativos similares.

““Estos ejemplos enfatizan la influencia que el mainframe y UNIX tenian en las opciones de
disefio de Snover.

Capitulo 3 - El enfoque tradicional de la automatizacion administrativa 11

UNIX es de hecho una implementacion defectuosa de este modelo
47

Cuando retrocede y examina lo que realmente sucede cuando
alguien usa un comando pipelinado (si se me permite inventar
esta palabra) como en “$ a | b | ¢”, se concluye que el primer
comando, es decir, “a” no logrd lo que el administrador queria
hacer. Si lo hubiera hecho, el administrador sélo tendria que
haber escrito “a” y listo. Entonces, la pregunta es jpor qué “a” no
hizo lo que el administrador queria? La respuesta es que en este
modelo tradicional, los ejecutables auténomos unen firmemente
tres operaciones: 1) obtener objetos; 2) procesamiento de objetos;
3) salida de resultados como texto **. Una de esas operaciones no
hace lo que el administrador necesita, asi que el resto de la tuberia
es un intento de corregir eso.

Debido a que el ejecutable genera texto, los elementos descendentes
deben utilizar utilidades de manipulacion de texto para intentar
volver a los objetos originales y realizar trabajo faltante. Si bien el
modelo basico es extremadamente poderoso, su defecto intrinseco
es la estrecha vinculacion de estas operaciones y el uso de texto no
estructurado para la integracion *’. Esto requiere utilitarios para la

“"Las personas que ven PowerShell como “linux-ification” de Windows deben tener en
cuenta que Snover no estaba enamorado del modelo de linea de comandos Unix. El sentia que
era inconsistente y que le faltaba una mejor semantica. De muchas maneras, PowerShell fue el
primer “segundo vencedor” en el modelo de linea de comandos de Unix, tomando sus puntos
fuertes, pero reconsiderando lo que se habia convertido en debilidades algo obvias.

“8E] resultado practico de esto es que las herramientas - cmdlets, en el mundo de PowerShell
- deben hacer una cosa, y solo una cosa. Obtener objetos, procesar objetos o formatear objetos
desde texto. Elija s6lo una cosa y haga sélo eso. Si hace mas de una cosa, comienza a crear
una herramienta monolitica que es menos facil de reutilizar. Este concepto de una sola cosa
se ha convertido en el fundamento de las mejores practicas en la comunidad de PowerShell,
especialmente en torno a la creacion de herramientas.

“Hay un punto enorme aqui que a menudo se pierde. Cuando se escribe una herramienta
que produce texto, las herramientas descendentes tienen que saber como procesar ese texto en
el formato exacto que se produjo. Sus datos no estan estructurados. Si cambia la salida de su
herramienta, todo lo que se utiliza para trabajar con ella tendra que cambiar. La orientacion de
objetos, es decir, presentar los datos en una estructura estandarizada que podria ser consumida
por cualquier cosa que entienda “objetos”, fue una de las mayores diferencias entre PowerShell
y lo que habia antes. Gran parte del tiempo de un administrador de Linux se gasta en el ciclo
grep/sed/awk, ya que tienen que analizar el texto para que la proxima herramienta tenga datos
con los que trabajar. PowerShell casi que elimina ese trabajo por completo.

Capitulo 3 - El enfoque tradicional de la automatizacion administrativa 12

manipulacion de texto torpes, con pérdidas e imprecisiones.

El modelo tradicional refleja el estado de la tecnologia que estaba
disponible en el momento en que surgié. .NET proporciona ** un
nuevo conjunto de capacidades y abre la posibilidad de nuevos
enfoques. Estos nuevos enfoques nos permiten sustituir el modelo
tradicional por uno decisivamente superior. Ese modelo es lo que
llamamos Monad

Notas

**De manera realista, COM podria haber proporcionado las mismas capacidades ya que
estaba orientada a objetos. Sin embargo, en el momento en que se escribi6 el manifiesto, COM
fue “acabado” y Microsoft se habia trasladado a .NET

Capitulo 4 - Nuevos
enfoques

Monad adopta nuevos enfoques a los problemas de 1) construccién
de comandos, 2) composicion de soluciones 3) modelos de gestion
y 4) GUI de gestion. La arquitectura de Monad proviene de las
siguientes observaciones:

1. La mayoria de las soluciones son desarrolladas “in house” y
compuestas por comandos existentes por los administradores.

2. La mayoria de las soluciones se centran en la automatizacion
de la gestion o la provisién de correcciones ad hoc.

3. La mayoria de los administradores no son programadores
“natos”. O bien no tienen el deseo, la habilidad o (més a
menudo), el tiempo para hacer una programacion sofisticada.

4. La mayoria de los desarrolladores de aplicaciones no haran
que su codigo sea manejable a menos que haya un beneficio
inmediato y sustancial para el usuario °*

*'Lo que significa que la mayoria de los desarrolladores no implementaran interfaces que
los administradores puedan usar para administrar la aplicacion. En el mejor de los casos, un
desarrollador “perezoso” podria simplemente poner toda su informacién de configuracion en
un archivo de texto y llamarla “manejable”. Irdnicamente, eso es esencialmente como Unix se
construy6 desde cero, y es manejable, porque no es tan facil como modificar un archivo de texto,
especialmente si esta estructurado (como en JSON o XML).

Capitulo 4 - Nuevos enfoques 14

4.1 - Un nuevo enfoque para
construir comandos

El enfoque tradicional de la construcciéon de comandos es inefi-
ciente. Gran parte del esfuerzo se dedica a reescribir las mismas
funciones una y otra vez por diferentes personas de diferentes
maneras. Todos para:

« Analizar, validar y codificar la entrada de usuario.

« Documentar su uso.

« Dejar registro de actividades.

« Formatear datos, resultados de salida e informes de errores.
« Operar en nodos remotos o conjuntos de nodos remotos.

Sin embargo, a pesar de toda esta coincidencia, la mayoria de
las plataformas [*4-1] ** proporcionan poco o ningun apoyo para
hacer estas actividades de manera coherente. El resultado es que
los comandos de hoy en dia son ineficientes para desarrollar e
inconsistentes en su forma de usar **.

Monad adopta un enfoque diferente que proporciona a los desa-
rrolladores el maximo aprovechamiento y la maxima consistencia
para los usuarios finales, mediante la definicion de un modelo
de automatizaciéon para aplicaciones que afecta a las funciones
comunes para que puedan implementarse una vez en un entorno de
ejecuciéon comin ** Los desarrolladores ya no producen ejecutables
auténomos. En su lugar, escriben piezas de cédigo muy enfocadas
como clases .NET (Cmdlets) que luego se exponen como API,

>?0ORIGINAL: VMS DCL y AS400’s CL son las excepciones a esto. Proporcionan un
analizador de comandos comun para que los comandos que se usan tengan un alto grado de
consistencia sintactica.

**Es por eso que los desarrolladores odian hacerlos y los administradores odian usarlos.

>*ORIGINAL: Existe una maravillosa sinergia entre el deseo del programador de minimizar
la cantidad de cédigo que escribe para la administracién y los clientes que desean tener una
experiencia de administracion consistente.

http://h71000.www7.hp.com/doc/732final/9996/9996pro.html

Capitulo 4 - Nuevos enfoques 15

comandos e interfaces graficas. Las funciones comunes se imple-
mentan y prueban una vez y proporcionan un conjunto dnico de
semantica, asi como un conjunto coherente y uniforme de mensajes
de error. *®

4.2 - Un nuevo enfoque para
componer soluciones

El enfoque tradicional para componer soluciones es dificil y fragil.
Utiliza “pipelines” para realizar andlisis basado en oraciones de
flujos de texto *°. Estos mecanismos son incémodos, inconsistentes
e imprecisos. Los administradores pasan la mayor parte de su
tiempo buscando mecanismos para resolver problemas, en lugar
de resolver dichos problemas. Monad tiene un enfoque diferente
que proporciona un motor de ejecucion de secuencias de comandos
preciso y potente para crear tuberias (pipelines) de objetos .NET.
En lugar de canalizar texto no estructurado, canalizamos objetos
NET *’. Esto permite que los componentes de la canalizacion
(pipelines) operen a bajo nivel directamente sobre los objetos y
sus propiedades utilizando las API .NET Reflection®®. (Las API de
Reflection permiten encontrar el tipo de un objeto, las propiedades

>*Este es el modelo adoptado por PowerShell. Los cmdlets son instancias de una clase, que
heredan de una tnica base. Esa clase proporciona una tonelada de funcionalidad comun, de
modo que el codigo real en un cmdlet esta alrededor del 99% centrado en lo que sea que el
cmdlet esté haciendo. El desarrollador del cmdlet no se centra en analizar los argumentos de la
linea de comandos, validar los elementos obligatorios, etc.

*°El analisis basado en la oracién es cuando analiza el texto y luego ora para que lo
entienda correctamente. p.ej. Cortar las primeras 3 (;0 eran 4?) Lineas, recortar la columna 30-40
(suponiendo que esos espacios no son Tabs), convertir a un entero (hmm. - ;jAlguien utiliza 64
bits? ... bueno espero que sea de 32 bits).

>"Un “objeto” en este sentido es poco mas que un conjunto de datos estructurados, a
diferencia de una tabla de base de datos o una hoja de calculo. Cada objeto representa algin
componente de gestion, y sus propiedades representan bits de informacion sobre ese objeto. Los
comandos no tienen que analizar estos objetos para encontrar datos, ya que .NET entiende la
estructura del objeto y puede simplemente recuperar los bits de informacién haciendo referencia
a los nombres de propiedades.

**http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpeonreflectionoverview.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp

Capitulo 4 - Nuevos enfoques 16

y métodos que tiene, obtener los valores de propiedades e invocar
sus métodos).

El entorno de tiempo de ejecucion de Monad proporciona un medio
para acceder a los cmdlets y ejecutar secuencias de comandos en
maquinas remotas a través de Web Services. *°

4.3 - Un nuevo enfoque de los
modelos de gestion

El enfoque tradicional de los modelos de gestion produce una ex-
periencia de administracion inconsistente. Hoy en dia hay miles de
comandos optimizados localmente. Cada desarrollador de coman-
dos define su propio modelo de gestion con un conjunto de nombres
y conceptos. Mientras se produce la copia de comandos populares,
no hay incentivo sistémico para hacerlo. Se han hecho esfuerzos
para proporcionar directrices que impulsen la optimizacién global,
pero el peso del legado ha dificultado que tales esfuerzos ganen
mucha fuerza.

Una situacion similar existe con las tecnologias de instrumentacion
actuales que languidecen debido a la falta de soporte de herra-
mientas. Los esfuerzos de evangelizacién por instrumentacién son
dificiles a medida que los grupos [de productos] rechazan la estra-
tegia “construye y vendra”. Los desarrolladores de herramientas se
resisten a la vasta superficie de los objetos y responden proporcio-
nando una funcionalidad genérica (como supervisién o navegacion)
através de una amplia gama de objetos o proporcionando funciones
complejas para un pequefio conjunto de problemas.

Monad adopta un enfoque diferente: minimiza el coste de la auto-
matizacion y proporciona un beneficio inmediato para el usuario

>*Una de las primeras referencias directas a lo que se convirti6 en PowerShell Remoting,
que de hecho es un servicio web basado en WS-MAN (Web Services for Management).

Capitulo 4 - Nuevos enfoques 17

final proporcionando clases de extension de automatizacion ba-
sadas en escenarios y herramientas in-the-box que explotan esas
clases. Monad puede soportar casi cualquier esquema de auto-
matizacion, pero alienta firmemente el uso de esquemas estandar
proporcionando un conjunto de clases base para escenarios ad-
ministrativos especificos. Estas clases base incluyen: Navegacion,
Diagnéstico, Configuracion, Ciclo de Vida y Operaciones *. Dichas
clases proporcionan una sintaxis comun, conmutadores, mensajes
de error internacionalizados y soluciones a problemas de escenarios
comunes (por ejemplo, una implementacién comun de una pila
de directorios para todos los comandos de navegacién). Monad
también proporciona un conjunto de controles de interfaz de usua-
rio y herramientas que se suministran con el sistema operativo
que controla dichas extensiones para realizar una tarea de gestion
especifica

4.4 - Un Nuevo Enfoque a las
Herramientas GUI de Gestidn

El enfoque tradicional de las GUI de administraciéon proporciona un
minimo de apalancamiento para desarrolladores. Las herramientas
de GUI de administracion de Windows de hoy en dia se desarrollan
de la misma manera que una aplicacion completa. Tienen codigo de
interfaz grafica de usuario, aplicacion de logica de dominio/restric-
cién y acceso de API a objetos administrados locales y remotos. Los
servicios de GUI de gestion se limitan en gran medida a un conte-
nedor de interfaz de usuario que facilita la multiplexacion de varias
herramientas y un cierto nivel de integracion. Este enfoque requiere
un esfuerzo significativo y un conjunto de pruebas exhaustivo.

**PowerShell nunca tuvo clases bases especificas para estos escenarios, pero este fue el origen
de la lista estandarizada de verbos de PowerShell que se utilizaron en los nombres de cmdlet.
Este concepto también impulso la creacion de las abstracciones PSProvider y PSDrive, en el que
cualquier almacén de datos podria ser expuesto como una “unidad de disco”, lo que permite un
conjunto estandarizado de comandos para manipular cualquier almacén de datos expuestos.

Capitulo 4 - Nuevos enfoques 18

Dado que gran parte de la logica del dominio y la imposicién de
restricciones esta incrustada en la GUI, es comtn que las lineas de
comandos expongan un subconjunto de las funciones de una GUL
El enfoque tradicional funciona en contra de la automatizacion.

Monad adopta un enfoque diferente que proporciona un rico con-
junto de servicios orientados a la gestién para desarrollar herra-
mientas de GUI de gestion. Estos servicios permiten que las GUI de
administracién se superpongan al motor de secuencias de coman-
dos y Cmdlets. Esto proporciona auditoria, grabacion/reproducciéon
de macros y herramientas integradas de GUI/linea de comandos.
Esto disminuye el nivel de habilidad requerido para desarrollar
una GUI de administracion, al simplificar el acceso y el control
de los objetos de administracion transparentes de manera remota.
También permite a los usuarios ver los scripts ejecutados por las
interacciones GUI que les ayuda a aprender la capa de automati-
zacion y crear sus propios scripts automatizados. La estratificacion
reduce la matriz de pruebas aprovechando las pruebas realizadas
en la linea de comandos y las secuencias de comandos y solo es
necesario probar las rutas GUI para invocar esas funciones. La
GUI de administracién también puede exponer su funcionamiento
interno a través de Cmdlets que proporciona a los desarrolladores,
probadores y soporte un facil acceso al estado interno y el control
de la GUI para la depuracién/diagnéstico/prueba automatizada.

Notas: ["4-1]: ORIGINAL: UNIX tiene getopt ()** para el anélisis
simple de opciones de comandos.

*http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html

http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html

Capitulo 5 - El modelo de
automatizacion de
Monad (MAM)

Monad define un modelo de automatizacién altamente apalan-
cado para aplicaciones. El modelo extrae funciones comunes pa-
ra que puedan implementarse una vez en el entorno de ejecu-
cién. Esto proporciona tanto apalancamiento para el desarrollador
como coherencia para los administradores. El costo incremental
para desarrollar y probar funciones especificas de la aplicacion
es bastante bajo en comparacién con los métodos tradicionales.

Unix platform provides
little to no leverage

7’
7’
7’

7’ Cost to Automate

Dev & Test Cost

” Monad platform is a single cost
7’ leveraged across all App automation

Functions

Los desarrolladores exponen un modelo de automatizacién a los

Capitulo 5 - El modelo de automatizacién de Monad (MAM) 20

administradores como un conjunto de nombres y verbos faciles
de utilizar. El desarrollador las implementa subclasificando un
conjunto de clases de automatizacién base de .NET, marcandolas
con atributos de automatizacién para producir un conjunto de
Cmdlets. El motor MSH expone estos cmdlets como un API y un
conjunto de comandos. Los administradores y los desarrolladores
de herramientas ahora obtienen una forma general de acceder uni-
formemente a la automatizacién de todos los aspectos del sistema
operativo.

5.1 - Un ejemplo

Imagine al desarrollador que necesita exponer el registro de sucesos
de Windows para la automatizacién de informes. El desarrollador
decide como estructurar la automatizacion en términos de sustan-
tivos y verbos (“Get-EventLog”). Monad proporciona una sélida
orientacion sobre este tema. El desarrollador escribe un CmdLet
(en C #, VB.NET, COBOL, etc) para exponer esta funcion.

Bibiic Class Eventiogcmdiat : cmdlet

{ [Parameter(Position=0)]
public string LogName = “system”; //Default to the systen

Protected overrride void ProcessRecord() .
{ writeobject(new EventLog(LogName).Entries);
}

Un CmdLet podria verse asi **:

A primera vista puede parecer que el Admininistrador no va a
obtener mucho uso de este cdigo, pero nada podria estar mas lejos
de la realidad. El uso de los atributos CmdNoun y CmdVerb registra
automaticamente este CmdLet como el comando “Get-EventLog”
con un solo pardmetro “LogName”. El Admininistrador entonces
usa este comando junto con un conjunto de comandos de utilidad
base para componer escenarios mucho mas complejos

“*Brevemente, durante el desarrollo, los “cmdlets de script” de PowerShell (ahora, “funciones
avanzadas”) tenian una sintaxis similar a ésta. En C #, el codigo fuente del cmdlet todavia se
parece mucho a esto.

Capitulo 5 - El modelo de automatizacion de Monad (MAM) 21

;Qué esta llenado el log de aplicacion? ¢

$ Get-EventLog application |Group source |Select -first 5 |Format-Table®
counter Property

1,269 crypt32
1,234 MsiInstaller
1,062 ci

280 Userenv

278 scecli

Ejemplo 4
cPor qué MSI Installer esta llenando el log?

$ Get-EventLog application |where {$_.source -eq “MsiInstaller”} °
|Group Message |Select -first 5 |Format-Table
counter Message

344 petection of product '{90600409-6E45-45CA-BFCF-CLE1BEF5B3F7}..
344 petection of product '{90600409-6E45-45CA-BFCF-CLE1BEF5B3F7}...
336 Product: Vvisual Studio.NET 7.0 Enterprise - English - Inter..
145 Failed to connect to server. Error: 0x800401FO0

8 Product: Microsoft office XP Professional with FrontPage --..

Ejemplo 5

cEl uso de mi registro de eventos es regular a lo largo de la semana?

$ Get-EventLog aEp1ication |Group {$_.Timewritten.Dayofweek}
DayofwWee

1,333 Tuesday
1,251 wednesday
744 Thursday
680 Monday
651 Friday
556 Sunday
426 Saturday

Ejemplo 6

El administrador puede agregar Cmdlets adicionales a la canaliza-
cién (pipeline) para filtrar sélo aquellos eventos que se generaron el
martes y luego averiguar qué eventos ocurren mas alla de ese dia ($
Cet-EventLog application |Where {$_.TimeWritten.DayofWeek
-eq "Tuesday"} |Group EventID). Después de haber encontrado
el evento méas frecuente de los martes, pueden filtrar facilmente
el registro para ese evento y determinar la distribucién de dicho

®3ORIGINAL: “Get-EventLog Application” es proporcionado por el codigo de ejemplo
anterior y el resto proviene de los comandos de base de Monad. “ Group source” cuenta el nimero
de objetos que tienen el mismo valor para una propiedad en particular (es decir, cuantas veces
apareci6 una fuente en particular). “Select -First 5” trunca el conjunto de objetos para que s6lo
tengan los primeros 5. “Format-Table” formatea los objetos y sus propiedades una tabla.

Capitulo 5 - El modelo de automatizacién de Monad (MAM) 22

evento a través de los dias de la semana. ($ Get-EventlLog appli-
cation |Where {$_.EventID -eq 131080} |Group {$_.TimeWrit-
ten.DayofWeek})

Monad requiere una pequefia cantidad de cédigo CmdLet ** para
integrarse en el entorno de ejecuciéon y aprovechar su rico con-
junto de funciones y utilidades para proporcionar un potente y
distinguido conjunto de funciones administrativas. Si bien este
ejemplo se centrd en una investigacion ad hoc, es obvio coémo esta
investigacion podria conducir a un conjunto de informes nocturnos
automatizados. Este ejemplo es un escenario sencillo. Los cmdlets
completos necesitarian proporcionar una gama completa de verbos,
hacer que las entradas se validen y realizar el manejo de errores. Sin
embargo, los ahorros en desarrollo y prueba son draméticos.

5.2 - Aprovechando .NET

Los desarrolladores utilizan los atributos .NET para descargar el
trabajo al entorno de ejecucion *°. La filosofia general de Monad es
implementar las cosas una vez y luego usarlas en todas partes. Un
rico conjunto de atributos declarativos dirigen el tiempo de ejecu-
cién de Monad para realizar acciones en nombre del desarrollador.
Esto transfiere la responsabilidad de escribir y probar este codigo,
asi como de interactuar con el usuario durante las condiciones de
error y producir y localizar mensajes de error.

Monad define los atributos de automatizacién en las siguientes
areas:

*“Tenga en cuenta que incluso en este documento, Snover no era coherente acerca de
“CmdLet” versus “Cmdlet”. Hoy en dia, “Cmdlet” es el estandar. Su idea original era enfatizar
que un “Cmdlet” no era un “comando completo” con todo el analisis sintactico, pero no era un
comando tradicional implementado. En su lugar, era parte de un comando, con gran parte de la
sobrecarga proporcionada por las clases base del motor de automatizacion.

®3Significado, un desarrollador .NET puede indicar al runtime .NET que realice ciertas tareas
estandarizadas. Esto se ve mucho en PowerShell: por ejemplo, una funcién puede declarar un
parametro como obligatorio y el shell aplicaré ese atributo en lugar de que el desarrollador de
funciones tenga que escribir la 16gica para hacerlo.

Capitulo 5 - El modelo de automatizacion de Monad (MAM)

Parsing Guidance

Data Generation

Data Validation

Encoding Directives

Object Processing

Indican al analizador como
asignar la entrada del usuario
al objeto de peticion CmdLet.
P.ej. Como asignar los
parametros a las propiedades,
o si un calificador es
obligatorio.

Dicen al shell que procese la
entrada del usuario para
generar los datos reales.
También habra procesadores
para hostnames, ipaddrs,
registrykeyames,
ProcessNames, etc.

Expresan reglas de validacién
en los datos de entrada. P.ej.
Cardinalidad de los datos,
valores min/max de los datos,

etc.
Transmiten la entrada del

usuario procesada como
objetos de datos. P.ej. Un
CmdLet puede querer una
matriz de StreamWriters en
lugar de una matriz de

nombres de archivo.
Realizan un conjunto de

funciones comunes en tipos
de datos comunes. P.e¢j.
convertir una cadena a
minusculas, etc.

23

Capitulo 5 - El modelo de automatizacion de Monad (MAM)

Notas

Visibility/Applicability

Documentation

Test

Proporcionan predicados para
visibilidad/aplicabilidad. P.ej.
Los cmdlets se pueden
etiquetar con la maquina y
las funciones del usuario. Si
una maquina no tiene la
funcién de servidor DHCP,
los comandos del servidor
DHCP no estaran visibles de
forma predeterminada.
Proporcionan informacion de
utilidades sobre el elemento.
P.ej. Ayuda

Proporcionan sugerencias a
las utilidades para facilitar la
generacion automatica de
matrices de prueba.

24

Capitulo 6 - El Shell
Monad (MSH)

Monad proporciona un entorno de tiempo de ejecucién para crear
APIs, lineas de comandos e interfaces graficas altamente cohe-
rentes, poderosas, detectables y seguras mediante la creacion de
pipelines de cmdlets. Esta capacidad se suministra como una clase
NET que se puede integrar en una serie de “hosts” que exponen
dicha funcionalidad al usuario. El término MSH se refiere tanto al
entorno de ejecuciéon como al host que expone el uso como un shell
interactivo de linea de comandos.

6.1 - Canalizacion de objetos
(Pipelines) .NET

Monad procesa la entrada del usuario, construye una canalizacién
(Pipeline) de Cmdlets para cada uno de los comandos ingresados,
analiza y codifica la entrada del usuario para cada comando en
un objeto de peticion CmdLet (CRO-CmdLet Request Object). El
motor de ejecuciéon de secuencias de comandos “ensambla” la
ejecucion para luego invocar primer Cmdlet pasando su CRO como
un parametro. Este Cmdlet devuelve un conjunto de objetos NET
que luego se procesan y pasan al siguiente Cmdlet junto con su
CRO vy asi sucesivamente hasta que la Canalizacion (pipeline) se
complete.

Capitulo 6 - El Shell Monad (MSH) 26

“Process | where{$_.handlecount-ge 500} Isort -descending Handlecount IFormat-Table”

\ ‘/Parser |
- ——
Process Where Sort Table
Request Request Request Request
Object Object Object Object
! ! ! !
Process Where Sort Format-Table|
r CmdlLet CmdLet—l CmdLet—J CmdLet

l Runtime Environment |

Pipelines

Pasar objetos .NET a cmdlets en lugar de flujos de texto permite
que las utilidades basadas en Reflection proporcionen una fun-
cién para cualquier objeto .NET. En el ejemplo anterior, WHERE
CmdLet filtra un conjunto de objetos basindose en una prueba
de las propiedades del objeto. Resuelve objetos de cualquier tipo
(por ejemplo, Procesos, Archivos, Discos, etc.) y consultas para su
tipo utilizando las API de Reflection de .NET. Mediante el tipo,
consulta la existencia de la propiedad especificada por el usuario
(“HandleCount”). Luego, utiliza esta informacién para consultar
cada objeto para el valor de dicha propiedad y finalmente realiza la
prueba en esa propiedad para filtrar el objeto apropiadamente.

El mismo mecanismo es utilizado por SORT CmdLet para ordenar
un conjunto de objetos y el FORMAT-TABLE CmdLet para mostrar
las propiedades de un conjunto de objetos como una tabla. Las
utilidades de Monad facilitan el procesamiento de las funciones
comunes de los Cmdlets, lo que ahorra costes para el desarrollador
y aumenta la potencia/consistencia de los administradores.

La integracién de comandos heredados ° es trivial porque los flujos
de texto son simplemente un tipo de flujo de objetos .NET. Dicho

®SORIGINAL: MSH podra invocar de forma transparente los comandos heredados y los
shells heredados podran invocar sin problemas MSH CmdLets. (MSH proporcionara un meca-
nismo para exportar CmdLets para el acceso desde los shells heredados) [De hecho, PowerShell
nunca implement6 una forma facil de invocar cmdlets para comandos heredados].

Capitulo 6 - El Shell Monad (MSH) 27

esto, una vez traducido a texto, se pierde la capacidad de operar
sobre él como un objeto rico basado en Reflection para regresar de
vuelta al mundo del analisis de texto.

6.2 - Componentes del entorno de
tiempo de ejecuciéon de Monad

El siguiente diagrama ilustra los principales componentes del en-
torno de tiempo de ejecuciéon de Monad.

Soap/Http

! Dime/Tcp
Remote
Agent Console Rich GUI NET
Host (— Host | — Hosts
WMI
l i "E:
q q Extended
Script Execution T ADO
Parser " ype
Engine — | Reflector
Audit
l l l l Log
Base Platform Host Automation
Cmdlets|| CmdLets [| CmdLets [[.CmdLets
T i H : Runtime
T e 13 1 Environment
Type
Annotation & | - Tools
Extension [Automation
Authors
[5¢ Party]
I [39Parties

Tiempo de ejecucion

6.2.1.1 - El analizador

El analizador de Monad es utilizado por todos los Cmdlets y
garantiza una sintaxis coherente. Es responsable de analizar la
entrada del usuario para el motor de ejecucién de secuencias de
comandos. Cuando un usuario introduce una linea de comandos,
el analizador asigna el comando a un método CmdLet y su Cmdlet
Request Object. Los campos y atributos del objeto de peticion se
utilizan para analizar el resto de la linea de comandos, generar
cualquier informacion adicional, validar la entrada y codificar esos

Capitulo 6 - El Shell Monad (MSH) 28

valores en el objeto de peticion.

Al realizar este proceso, el analizador puede agregar metadatos pro-
porcionados por el objeto Request con metadatos proporcionados
por proveedores de terceros. Por ejemplo, un objeto de solicitud
puede indicar que puede aceptar hasta 16 nombres de nodo y que
los nombres deben resolver a una direccion IPv4. Una directiva no
puede cambiar esas directivas, pero podria afiadir una directiva que
indique que los nodos deben responder actualmente a un ping ICMP
(por ejemplo, IsAlive).

6.2.1.2 - El motor de ejecucion de secuencias de
comandos

El motor de ejecucion de secuencias de comandos Monad encadena
los cmdlets y garantiza una experiencia de ejecucién consistente.
También es responsable de tomar las canalizaciones (pipelines)
codificadas por el analizador y realizar todas las operaciones ne-
cesarias para secuenciarlas hasta su finalizacion. Si las acciones
deben ocurrir en una maquina remota o un conjunto de maquinas
remotas, se coordina con la MRS y ademas registra todas las acti-
vidades en el registro de auditoria. El motor de ejecucién observa el
flujo de datos entrante y encuentra las propiedades correctas para
enlazar en un CmdLet (un CmdLet puede tener varios parametros
para aprovechar diferentes tipos de datos). La salida de un CmdLet
se recoge, se procesa y se pasa a las propiedades apropiadas del
siguiente CmdLet. Dado que el entorno de tiempo de ejecucion se
puede incrustar en varios hosts (por ejemplo, linea de comandos,
GUI, etc.), es importante que un CmdLet nunca se comunique
directamente con el usuario. El motor de ejecucion de secuencias
de comandos media esta actividad entre el CmdLet y los distintos
hosts.

"https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/
chapter-8-the-monad-remote-script-mrs.txt

https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt
https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt
https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt

Capitulo 6 - El Shell Monad (MSH) 29

6.2.1.3 - Los Cmdlets

Los cmdlets realizan acciones. Hay cuatro tipos de Cmdlets: 1) Base
2) Host 3) Plataforma y 4) Usuario. Los cmdlets Base funcionaran
en cualquier entorno .NET, como Sort, Where, Group, etc. Los
cmdlets de Plataform son aquellos que dependen de una platafor-
ma determinada (XP, Smart Phone o Compact Framework) y no
estan disponibles en otras plataformas. Los cmdlets de Host son
aquellos proporcionados por la aplicacién que incorpora el entorno
de tiempo de ejecucion de Monad. Por ejemplo, msh.exe o GUI de
administracién que exponen Cmdlets especificos para ese host (por
ejemplo, Cambiar una fuente, cerrar una ventana, etc.). Los Cmdlets
de User son los escritos por el usuario. Estos pueden ser escritos en
cualquier lenguaje (C #, VB.NET, etc), pero la mayoria se escribira
en MSH (el lenguaje shell).

El identificador tinico de estos Cmdlets es su tipo .NET (por ejem-
plo, System.Command.ProcessCmdLet). Aunque este identificador
siempre se puede utilizar para invocar el CmdLet, es largo y hostil.
Como tal, los autores de CmdLet estan obligados a proporcionar
nombres amistosos a través de atributos.

Sera bastante comun y facil que los Cmdlets de mayor orden se
implementen obteniendo un conjunto de datos y luego utilizando
el tiempo de ejecucién de Monad para invocar un script en esos
datos y devolver los resultados de ese script.

6.2.1.4 - El reflector de tipo extendido

El poder de Monad es su capacidad de aprovechar la reflexion
(Reflection) de .NET. El problema es que hay objetos que estan
codificados en formas que despojan el poder de la reflexion. Por
ejemplo, cuando se reflejan contra datos como Datables ADO,
donde las propiedades estan “encapsulados” como columnas. En
esto escenario lo que necesitamos son los nombres de las columnas,
pero estos se codifican de forma diferente. Un problema similar

Capitulo 6 - El Shell Monad (MSH) 30

existe con WMI, Active Directory y XML. El reflector de tipo
extendido esta disefiado para abordar estos problemas.

6.2.1.5 - El Sistema de Anotacion y Extension de Tipo

Tratar con los objetos en crudo proporciona a veces demasiada y
otras veces muy poca informacion. Es el trabajo del tipo anotacién
y sistema de extension resolver esta paradoja, proporcionando un
mecanismo para que terceras partes definan conjuntos de propie-
dades (por ejemplo, propiedades asociadas con el rendimiento, la
configuracion, el consumo de recursos o las dependencias) y dar al
conjunto un nombre publico. Esto permite al usuario dar un nombre
en lugar de tener que especificar cada propiedad. P.ej. “Format-
Table resources “ vs. “ Format-Table name ,pid, workingset, hand-
lecount, virtualmemory, privatememory”.

Monad proporciona acceso a los objetos y los métodos sobre esos
objetos. Sin embargo, los métodos intrinsecos de un objeto repre-
sentan un nimero muy pequefio de las cosas interesantes que los
usuarios quieren hacer. El mecanismo de extension de tipo permite
que terceras partes registren métodos intermedios en esos objetos.
Estos métodos pueden ser accedidos utilizando la misma sintaxis
que los nativos, pero este sistema los enviara al método apropiado
de terceros, pasando el objeto original como un parametro.

6.2.1.6 - El Agente Remoto

Los usuarios podran ejecutar secuencias de comandos en maquinas
remotas a través de solicitudes de servicio Web para el host de
agente remoto. Este host incorporara el tiempo de ejecucion y res-
ponder4 a las solicitudes recibidas via SOAP/HTTP o DIME/TCP.
Los usuarios seran autenticados y sus actividades autorizadas (ya
sea por ID o por ROLE). Las solicitudes y las respuestas se co-
dificaran de manera que permitan la cancelacion y el rastreo de
las actividades locales a solicitudes especificas en los registros de
auditoria remota.

Capitulo 6 - El Shell Monad (MSH) 31

Cuando una secuencia de comandos esta completa, sus objetos de
retorno se serializan por valor para la transmisién a través de la red.

6.2.1.7 - Seguridad

Monad podria ser uno de los entornos de shell mas seguros jamas
creados. Todas las acciones se consignan en un registro de audi-
toria. Las facilidades de identificacion de codigo proporcionadas
por NET reducen significativamente la exposicién a una de los
problemas de seguridad mas comunes en un entorno de shell:
Troyanos. Firmas, nombres fuertes y hashes en la politica del
sistema se utilizaran para identificar qué utilidades son legitimas
y estan aprobadas asi como para evitar que troyanos conocidos se
ejecuten.

En resumen, el shell de Monad minimiza las exposiciones de
seguridad y facilita la deteccién y correccién de las brechas de
seguridad.

6.2.1.8 - Host MSH

MSH es un ensamblado .NET que se puede incrustar en cualquier
host ejecutable para proporcionar ejecucion de scripts y acceso a
Cmdlets. Los hosts son capaces de determinar qué subconjunto de
Cmdlets se ponen a disposicion del usuario. El caso més comun
es que un Host expone todos los Cmdlets de Base (por ejemplo,
ordenar, filtar, etc.), todos sus Cmdlets de Host (por ejemplo,
Outlook expondria Cmdlets para tratar con buzones y mensajes)
y un subconjunto apropiado de los Cmdlets de Plataforma Cmdlets
que tratan de procesos, discos, adaptadores de red, etc.).

MSH es también un ejecutable auténomo que aloja el motor de eje-
cucion de secuencias de comandos y proporciona una rica experien-
cia interactiva al mismo tiempo que una experiencia de tipo vt100
convincente. MSH proporciona capacidades graficas complejas co-
mo Intellisense para completar el comando. Los datos se pueden

Capitulo 6 - El Shell Monad (MSH) 32

imprimir en formatos graficos para aprovechar las capacidades de
interaccién y visualizacion de las PC.

6.3 - Lenguaje de secuencias de
comandos de MSH

MSH proporciona un lenguaje de scripting completo utilizando
las funciones y la sintaxis del modelo POSIX Shell (control de
flujo, manejo de fallas, variables, definicion de funciones, alcance,
redireccionamiento IO, etc.) como punto de partida, para mejorar
la experiencia de programacion, aprovechar la nueva funcionalidad
o proporcionar una ruta de evolucion a C#. El objetivo es que los
administradores de UNIX que trabajen con Windows encuentren
facil aprender y migrar sus habilidades a MSH.

Ademas de escribir funciones tradicionales, los usuarios pueden
usar las capacidades de secuencias de comandos de MSH para
escribir sus propios Cmdlets y para agregar o reemplazar verbos
a los sustantivos existentes de CmdLet.

Notas

Capitulo 7 - Modelos de
gestion de Monad (MMM)

Monad ayuda a los desarrolladores de aplicaciones a disefiar la
experiencia administrativa proporcionando un conjunto de mo-
delos de gestion. Un MMM es un conjunto rico de clases base
de automatizaciéon basadas en escenarios y una herramienta o
conjunto de herramientas que utilizan esas clases para realizar un
escenario de administracion particular. Estas clases bases cubren los
principales escenarios de administracion, incluyendo: Navegacion,
Diagnéstico, Configuracion, Ciclo de vida y Operaciones. Las clases
base proporcionan una forma comun de realizar estas tareas en
varios tipos de recursos. Esto permite al administrador aprender un
modelo para gestionar un escenario en particular y luego aplicar
ese modelo a una amplia gama de problemas y nuevas situaciones.
Los desarrolladores seleccionan el conjunto apropiado de clases
base, derivan sus propias clases de éstas e implementan los métodos
apropiados para sus tipos de recursos. Las clases base proporcionan
lo siguiente:

1. Un conjunto de verbos para el escenario (por ejemplo, Navi-
gation tiene el conjunto de verbos: pwd, cd, dir, pushd, popd,
dirs)

2. Un conjunto de objetos de solicitud base que definen califica-
dores comunes. P.ej. Si el escenario se refiere a una maquina
remota, el objeto de peticiéon base definiria un calificador
comin -MACHINENAME. Esto disuade a la gente de usar
los términos: NODE, SERVER, HOST, etc.

3. Un conjunto de excepciones y mensajes de error para ese
escenario. P.ej. Habra una excepcién esquematizada estandar

Capitulo 7 - Modelos de gestion de Monad (MMM) 34

para “Recurso no disponible” para que no terminemos con
decenas de variaciones [que existen hoy en dia].

4. Soluciones comunes a problemas de escenario comunes. P.ej.
Las clases base proporcionaran una solucion estandar para el
problema de que alguien pida accidentalmente demasiada in-
formacién [por ejemplo, obtener todos los objetos en LDAP].

Microsoft localizara todas las partes visibles de estos escenarios
(verbos, calificadores, mensajes de error, etc.) para que los ISVs
puedan reducir significativamente sus costos de desarrollo me-
diante el aprovechamiento de estas clases base. Ademas de estos
beneficios, Monad proporciona controles de interfaz de usuario
para mostrar graficamente e interactuar con implementaciones de
estas clases base. Monad enra con un plug-in MMC de herramientas
que alojan estos controles de interfaz de usuario, pero los ISV o los
desarrolladores internos pueden alojar los controles en sus propias
UI de administraciéon. Dado que estos controles tendran acceso a
interfaces de datos y control bien definidos, terceras partes también
pueden crear controles de reemplazo.

Un ejemplo

La navegacion proporciona un ejemplo de un modelo de gestion.
Habra una clase base para todos los Cmdlets que quieran hacer
Navigation. Esto definira los verbos (pwd, cd, pushd, dirs, popd,
dir), mensajes de error comunes y proporcionara implementaciones
comunes para problemas comunes (pushd, dirs y popd se imple-
mentaran una vez). Esa clase base puede ser “subclaseada” para
proporcionar una experiencia de administracion consistente con
una cantidad minima de cddigo. Una vez que el administrador
aprende como usar este modelo, podra utilizarlo en una amplia
gama de recursos. Navegar el sistema de archivos sera el caso por
defecto:

Capitulo 7 - Modelos de gestiéon de Monad (MMM) 35

[4]1$ pwd
F:{xpsh\prototype4\bin

[5]$ dir

written Length.kb Name

5/17/2002 1:02:26 PM 11 audit.txt

5/15/2002 12:56:35 PM 44 AxInterop.SHDocvw.d11
5/17/2002 12:55:28 PM 64 basecmds.d11
5/17/2002 12:55:28 PM 232 basecmds.pdb

[6]1$ pushd ..

[7]$ dirs

F:\xpsh\prototype4
F:\xpsh\prototyped\bin

Example 1

Los mismos comandos se pueden utilizar para explorar el Registro:

[2]§ pwd/reg
HKEY_LOCAL_MACHINE

'53] $ dir/reg

ame SubkeyCount valueCount
HKEY_LOCAL_MACHINE\HARDWARE 4 0
HKEY_LOCAL_MACHINE\SAM 1 0
HKEY_LOCAL_MACHINE\SOFTWARE 32 0
HKEY_LOCAL_MACHINE\SYSTEM 7 0

[4]$ pushd/reg HARDWARE

[5]1% dirs/reg
HKEY_LOCAL_MACHINE\HARDWARE [0x628]
HKEY_LOCAL_MACHINE

Example 2

Los mismos comandos se pueden utilizar para explorar el sistema de
Ayuda, Active Directory, bases de datos SQL, WMI u otros espacios
de nombres.

Capitulo 8 - El Script
Remoto de Monad (MRS)

Monad proporciona un mecanismo basado en Web Services para
ejecutar scripts en sistemas remotos. Los scripts se pueden ejecutar
en un solo o un gran nimero (muchos miles) de sistemas remotos.
Los resultados de los scripts pueden ser procesos a la medida
que cada script individual completa o los resultados pueden ser
agregados y procesados en masa cuando todos han terminado.
Un script se puede ejecutar en modo BestEffort o Reliable. Los
scripts de BestEffort se ejecutan desde el proceso existente y si
ese proceso termina, no se realiza ningun trabajo para limpiar los
scripts remotos y se pierden los resultados. Los scripts de modo
Reliable se persisten en una tienda de SQL local y un servicio
maneja la ejecucion de la secuencia de comandos. El usuario puede
iniciar sesién en la maquina y el servicio continda procesando el
script. El usuario puede iniciar sesion y obtener los resultados de
ese trabajo en el futuro.

Capitulo 9 - La consola de
administracion de
Monad (MMCQC)

Monad proporciona un conjunto rico de Cmdlets de servicio de
marco de administracion para facilitar la creacion de consolas de
administracion. Estos servicios reducen los costos de desarrollo y
de pruebas para producir Uls y consolas de administracion, a la
vez que permiten una experiencia integrada y administrativa. Los
servicios se utilizan para producir una consola de administraciéon
integrada, pero también pueden ser utilizados por terceros o por
la propia TI para implementar su propia consola de gestiéon. El
objetivo es ser capaz de proporcionar el 50-70% de una herramienta
genérica de administracién GUI de forma gratuita solo mediante
la construccién del tipo correcto de Cmdlets. Monad ofrece los
siguientes recursos y servicios:

1. Un entorno de ejecucién de secuencias de comandos que
proporciona a las GUI un acceso uniforme y coherente a
recursos locales y remotos.

2. Una interfaz integrada y un entorno de linea de comandos
para que las interacciones GUI se muestren en una consola de
linea de comandos. Los usuarios pueden usar esto para apren-
der la capa de automatizacion y también pueden ejecutar
directamente acciones de linea de comandos. Este mecanismo
ademas proporciona el soporte para la grabacién/reproduc-
cién de macros.

3. Scripts de aplicaciones especificas. La aplicacion puede expo-
ner sus funciones internas (por ejemplo, botones, pantallas,
estructuras de datos internas, etc.) a través de Cmdlets para

Capitulo 9 - La consola de administracién de Monad (MMC) 38

permitir scripting especifico de aplicaciones, depuracién y
compatibilidad.

4. Controles de la interfaz de usuario base asociados con MMMs
especificos. (Por ejemplo, controles de navegacién, controles
del ciclo de vida, controles de diagnéstico).

5. Conjunto rico de mensajes de error de base que se localizaran
por MMC.

6. Un marco de interfaz de usuario declarativa para permitir
GUI de administracion personalizada basada en metadatos.

Chapter 10 - Value
Propositions

« For application developers who need to expose their ad-
ministrative functions as command lines and GUIs, Monad
provides a highly productive development framework.

— Unlike building stand-alone command lines, Monad pro-
vides most of the common functions including a parser,
a data validator/encoder, error reporting mechanisms,
common functions like sorting/filtering/grouping/for-
matting/outputting and a set of management models
which provide common verb sets, error messages and
solutions to common problems and tools.

— Unlike WMI/WMIC, Monad provides a simple program-
ming model. Cmdlets are merely attributed .Net classes.

— Unlike MMC, Monad provides strong guidance on how
to perform management tasks and large benefits (redu-
ced coding/testing) for those that follow that guidance.

« For application testers who want to ensure that the admi-
nistrative command lines and GUIs operate correctly, Monad
reduces the amount of code that needs to be tested and
increases the productivity of the test process.

— Unlike building stand-alone command lines, Monad pro-
vides a common implementation of most common fun-
ctions minimizing the amount of application code to
develop and test.

— Unlike traditional management GUIs, Monad layers GUIs
on top of Cmdlets so the bulk of the GUI core will
already be tested when the command line is tested.
Monad will also make it easier to test GUIs by exposing

Chapter 10 - Value Propositions 40

the inner workings of the GUI through a command line
shell and by the ability to drive the GUI controls and
code paths through command line scripts.

« For power users who want to interact with the system
through command line interfaces, Monad provides a highly
consistent set of commands and utilities as well as an envi-
ronment that allows the creation of custom admin tools (i.e.
not scenario bound).

— Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mands and utilities, Monad provides a common parser
for all CmdLet and utilities ensuring syntactic consis-
tency and common input error handling and messaging
across all Cmdlets and utilities.

— Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mand and utilities, Monad provides a strong prescriptive
guidance and enforcement of CmdLet naming and error
handling and provides a set of scenario automation base
classes which make it easy and valuable for developers
to follow those guidelines.

— Unlike cmd.exe, sh, ksh, csh, etc and traditional com-
mand and utilities, Monad replaces pipelines passing
text with pipelines passing .Net objects which allows
utilities to use the .Net reflection APIs to operate directly
against the objects without the need to perform error-
prone text parsing and object lookup.

+ For Administrators that want to develop management scripts
to automate the management of their systems, Monad provi-
des a highly productive model for learning and effecting that
automation.

— Unlike cmd.exe, the Monad shell is based upon and
extends the Bourne Shell syntax and control structures
facilitating the skill transfer of Unix Admins.

— Unlike sh, ksh, csh, etc and traditional command/uti-
lities, Monad uses .Net objects instead of text as an

Chapter 10 - Value Propositions 41

integration mechanism allowing easier and more precise
integration.

— Unlike sh, ksh, csh, etc and traditional command/utili-
ties, Monad exposes a rich error model leveraging .Net
objects to expose precise details of what went wrong,
where, when, and what objects where processed/unpro-
cessed.

— Unlike traditional management GUIs, Monad GUIs allow
Admins the ability to see the inner workings of the GUI
by exposing their actions via a command line console
so that the Admin can learn the automation surface by
using the GUL

« For GUI users who want to automate their operations, Mo-
nad facilitates learning the automation layer by exposing the
shell equivalents of GUT interactions.

— Unlike traditional management GUIs, Monad GUIs are
layered on top of Cmdlets so every function available in
the GUI is also available via the command line. Unlike
traditional management GUIs, Monad GUIs allow Ad-
mins the ability to see the inner workings of the GUI
by exposing their actions via a command line console so
that the Admin can see the command line equivalent of
their GUI interactions.

	Tabla de contenidos
	The Monad Manifesto - Annotated
	Capítulo 1 - ¿Qué es Monad?
	Capítulo 2 – El Problema
	Capítulo 3 - El enfoque tradicional de la automatización administrativa
	Capítulo 4 - Nuevos enfoques
	4.1 - Un nuevo enfoque para construir comandos
	4.2 - Un nuevo enfoque para componer soluciones
	4.3 - Un nuevo enfoque de los modelos de gestión
	4.4 - Un Nuevo Enfoque a las Herramientas GUI de Gestión

	Capítulo 5 - El modelo de automatización de Monad (MAM)
	5.1 - Un ejemplo
	5.2 – Aprovechando .NET

	Capítulo 6 - El Shell Monad (MSH)
	6.1 - Canalización de objetos (Pipelines) .NET
	6.2 - Componentes del entorno de tiempo de ejecución de Monad
	6.3 - Lenguaje de secuencias de comandos de MSH

	Capítulo 7 - Modelos de gestión de Monad (MMM)
	Un ejemplo

	Capítulo 8 - El Script Remoto de Monad (MRS)
	Capítulo 9 - La consola de administración de Monad (MMC)
	Chapter 10 - Value Propositions

