
Free Sample

Preface

Just Shut Up And Take My Money!

I’ve wanted to write this sort of book for 20 years. I’m quick to use web

client automation to get things done with onerous web sites or to test web

applications. I’ve spent a lot of timeworking in the guts of theHTTPprotocol

to watch things work, and my first presentation at my first Perl conference

was about a web sniffer tool, which I hope that no one ever finds because its

embarrassing now.

First there was Randal Schwartz’s Perl 4-era chat2.pl. At the time it was

amazing. When I required that library I could easily talk to other things.

But that was a simpler time.

Then, Graham Barr’s LWP (also known as libwww-perl) was the tool everyone

used. And it was amazing. I liked it and it solved many problems for me.

Then Mojolicious reinvented the web framework, and it’s amazing. It rein-

vented the web client with some advanced features that I had wished LWP

had. Someday I may look back on it with the reverence I have for its pre-

decessors, but something many times better would have to exist to displace

it.

I had thoroughly enjoyed Lincoln Stein’s Network Programming with Perl,

but it was a comprehensive book about all sorts of network programming.

I dreamed of something smaller and more focused on web clients and less

| v

https://metacpan.org/pod/LWP
https://metacpan.org/pod/LWP
https://amzn.to/2LpleD9

about sockets.

But, there was always another book that had my attention. After I finished

Learning Perl 6 (the language now named Raku) I wanted to work on some-

thing lighter that I could deliver much faster. Instead of 450 pages I wanted

to do something in 50 pages (I’m guessing I went over that). I can finally get

this web client book off my to-do list.

These sort of books are fun. My Learning Perl, Intermediate Perl, and Learn-

ing Perl 6 books are tutorial books where I’m limited to using only the fea-

tures I’ve previously explained. Not so with this book. This isn’t a tutorial.

You should try the examples but I won’t have exercises. I’ll reach for the

Perl features that I tend to use when I actually program. If something’s a

bit tricky I’ll probably explain it quickly andmove on. Often I won’t quickly

move on because I can’t helpmyself; don’t worry though—I employ no black

magic or special cleverness.

I set the goal of releasing a preview version of this book at the 2018 Nordic

Perl Workshop in September. That was about three months to pull it all to-

gether. How much could I get done? Since I’m not committing it to paper

distribution, I could easily fix problems later. As an eBook, I should be able

to release this often. The end of this preface has version and change infor-

mation.

This book is an experiment for this type of publishing. I’ll see how it turns

out.

What You Should Already Know

This is a book about the web user-agent that comes with the Mojolicious web

framework. You don’t need to know that much about the web and how it

works; you should realize that the web exists, it has a particular protocol,

and clients can fetch resources using that protocol.

If you are new to Perl this isn’t a good first book. You should know some

basic Perl—the level of Intermediate Perl. You need to be comfortable using

vi | Preface

https://www.learningraku.com/
https://www.learning-perl.com/
https://www.intermediateperl.com/
https://www.learningraku.com/
https://www.learningraku.com/
https://www.intermediateperl.com/

modules and working with objects, but not necessarily creating classes or

modules on your own.

Web design, CSS, and other things don’t matter that much here—I’m the

wrong person to give you any advice on that. This book is strictly about

exchanging content and extracting data. It’s helpful if you know a little

HTML or CSS, but you don’t need to know how tomake it do anything fancy.

Having said that, I should also point out that I completely ignore the exis-

tence of JavaScript. Perl web agents don’t handle that for you. It’s a big

cut-out in the topics you might expect, and I’m not going to include any

workarounds for that.

Some eBook Notes

This is an eBook first and any other sort of book after that. Any design de-

cision starts with the eBook presentation even if other forms suffer. Partic-

ularly, a PDF version of this book is not part of that design even though it’s

the form I prefer when I can’t have paper.

Will the eBook work? Can I produce more content more frequently for less

money? Are people more interested when I can update it frequently (maybe

twice a year)? Does that make up for the other trade-offs?

eBooks and their readers weren’t designed around technical books with sig-

nificant code examples. The resolution is quite low which is a problem for

normal code organization when you’re accustomed to an 80 character line.

I suggest that you use the largest page size that you can, but some readers

make odd choices about how much of the screen they should give a single

page. The reader I like magically switches to a two page layout when the

page size gets large enough.

Some lines shouldn’t wrap, such as the one-liners in chapter 11, but they do

and I preëmpt that. I use the ⏎ character to note that the line is continued

on the next line in the book but really belongs together:

Some eBook Notes | vii

% perl -Mojo -E "p('http://example.com' =>⏎

form => { robot => 'Bender'})"

In other places I’ve made code style concessions to fit in the format and the

behavior of the eBook readers that I’ve tested. Your favorite reader might

handle long lines just fine, but some other readers have problems. With this

experiment I can figure out what works the best; let’s hope that’s at least

good.

Letme knowwhatworks for you and sendme screenshots of the placeswhere

your eBook reader doesn’t do what you think I meant.

Installing Mojolicious

Mojolicious 9moved to Perl v5.16 as theminimumversion andwill soonmove

to requiring v5.20 so the code can use subroutine signatures. Those versions

are already a decade old, so now’s a good time to upgrade.

Mojolicious is a mostly self-contained system. Start by installing the basic

framework with your favorite CPAN client:

% cpan Mojolicious

% cpanm Mojolicious

Use the Perl Package Manager (ppm) if you are using ActivePerl:

% ppm install Mojolicious

Check the version you installed. I originally based this book on Mojolicious

8 and have updated it for version 9; the examples should work with both in

most cases, or you should see an example for each. If you have an earlier ver-

sion, upgrade! If you have a later version some things might have changed

but are probably a small adjustment:

% mojo version

viii | Preface

https://www.activestate.com/products/activeperl

CORE

Perl (v5.32.1, darwin)

Mojolicious (9.16, Waffle)

OPTIONAL

Cpanel::JSON::XS 4.09+ (4.25)

EV 4.32+ (n/a)

IO::Socket::Socks 0.64+ (n/a)

IO::Socket::SSL 2.009+ (2.070)

Net::DNS::Native 0.15+ (n/a)

Role::Tiny 2.000001+ (2.002004)

Future::AsyncAwait 0.36+ (n/a)

This version is up to date, have fun!

Notice that it also lists optional modules that Mojolicious can use if you have

them installed. Remember this command in case you have to report an issue;

you should include this output in your report.

Check your version of OpenSSL and install the latest IO::Socket::SSL. These

ensure that you’ll be able to access servers using SSL and all of its fancy fea-

tures:

% openssl version

LibreSSL 2.2.7

% cpan IO::Socket::SSL

Your particular system may have specialized ways to package and manage

modules, libraries, and tools. You’ll have to figure out that end on your own.

Once you’ve installed Mojolicious, try it out. There’s a ojo module designed

to load from the command line; with -M it looks like “Mojo”:

% perl -Mojo -E 'say g(shift)->body'⏎

https://www.mojolicious.org

That g() does a GET request and returns the response. The body method

extracts the content. To look at only the headers (a common task in working

Installing Mojolicious | ix

https://www.openssl.org
https://metacpan.org/pod/IO::Socket::SSL
https://metacpan.org/pod/ojo

out automation tasks) use h() to do a HEAD request:

% perl -Mojo -E 'say h(shift)->headers⏎

->to_string' https://www.mojolicious.org

If those worked out you’re ready for everything in this book.

Third-party tools

Web client programming isn’t just Perl. You’ll use interactive browsers (so,

Safari, Chrome, Firefox, Opera) to figure out what’s happening so you can

implement that in code. These are more important than they used to be;

the world is moving toward ubiquitous HTTPS so the secure networking

precludes external sniffer tools. I won’t explain these tools here but they

shouldn’t be too hard to figure out:

• In Safari, turn on the developer tools in the Advanced tab of prefer-

ences. You should see a Develop menu item after you do that.

• For Chrome and Firefox, look for extensions like “HTTP Headers”.

There are many of varying quality. Try them until you find one that

you like.

• The Postman tool onmacOS has been helpful tome for exploring APIs.

• httpbin.org has a simple server that can show you what’s happening

in HTTP transactions. There’s even a dockerized version of it. I’ll use

that in many examples.

Getting Help

I don’t have special techniques for debugging Mojo code. I still use my fa-

vorite debugger that’s available in almost any programming language: print

(or puts or println or …).

x | Preface

https://httpbin.org/

Running my programs with the environment variable MOJO_CLIENT_DEBUG

set to some true value shows me what’s happening underneath all of my

client code. That might elucidate my problem. You’ll see an example on

that in chapter 1.

Pare down your situation to a small program that demonstrates the problem.

Remove as many distractions as possible; often that gives me my answer.

Not only do I solve the problem but I learn about how things work and how I

probably misunderstood things. If I can’t figure it out I have all the makings

of a good question.

There are many people waiting to help. Develop a good question and include

the versions you are using, what you expected to happen, and how that is

different than what you got.

• Mojolicious website

• Mojolicious Google Group

• #mojo on IRC

• Stackoverflow

• The GitHub project

Acknowledgments

The Mojolicious core developers have been quite kind in their support of the

book. Sebastian Riedel even designed the cover after he saw my kludgey at-

tempt. Joel Berger reviewed early drafts and offered great advice. Marcus

Ramberg was quite helpful and supportive as well. The Oslo Perl mongers

invited and sponsored me for the 2018 Nordic Perl Workshop where I pre-

sented some of the book and worked on it in the hackathon.

David Cross, the publisher of Perl School, gave me the impetus to try an

eBook. He’s publishing low-cost, easy-to-update eBooks on a variety of niche

subjects that traditional publishers won’t invest in. He walked me through

Acknowledgments | xi

https://mojolicious.org
https://groups.google.com/forum/#!forum/mojolicious
https://kiwiirc.com/nextclient/#irc://irc.freenode.net/mojo?nick=guest-?
https://www.stackoverflow.com/
https://github.com/mojolicious/mojo

the publishing process he developed after tryingmany differentways his idea

could work.

Several people have provided helpful edits that led to updates, including

Mark Anderson, Tigran Khachikyan, Tim Potapov, and Gabor Szabo.

Perl School

The Perl School brand has its roots in a series of low-cost Perl training courses

that Dave Cross ran in 2012. By running low-cost training at the weekend,

he hoped to encourage more programmers to keep their Perl knowledge up

to date. These courses were run regularly for about a year before the idea

was put on hold for a while.

Dave always knew that he would want to return to the Perl School brand at

some point and late in 2017 he realised what the obvious next step was low-

cost Perl books. He had already developed a pipeline for creating e-books

fromMarkdownfiles so itwas a short step to republishing some of his training

materials as books.

The first Perl School book, Perl Taster was published at the end of 2017 (just

in time for the London Perl Workshop). The second was Selenium and Perl

and this is the third. Dave has plans to publishmore over the comingmonths.

If you are interested in writing a book for the Perl School range, then please

get in touch. We are @perl_school on Twitter.

Changes

January 2024

• More small fixes from Brigham Johnson

xii | Preface

https://perlschool.com/
https://perlschool.com/books/perltaster
https://perlschool.com/books/selenium-perl/
https://twitter.com/perl\protect \penalty \z@ _school

December 2023

• Various small fixes from Brigham Johnson

June 2023

• Various small fixes from Hussam Qasem

May 2021

• Various small fixes, mostly from Tim Ka.

May 2021

• Update chapter 5 for :matches renamed to :is (Mojo 8.42)

• Update chapter 5 for :has and :scope (Mojo 8.54)

• Note that Mojolicious 9 exists and requires v5.16

• Update chapter 5 for :text (Mojo 9.14)

• Minor text fixes from Jan Jona Javoršek

October 2020

• Mojo::DOM example for building amacOS plist from scratch (chapter 4)

• Mojo::DOM examples for finding next and previous sibling nodes (chap-

ter 5)

Changes | xiii

https://metacpan.org/pod/Mojo::DOM
https://metacpan.org/pod/Mojo::DOM

May 2020

• Tigran Khachikyan provided edits to minor technical mistakes in ex-

amples for Mojo::Collection and counting elementswith postfix deref-

erences.

April 2020

• Added an example for processing a response in chunks (chapter 8)

• Added a few more one-liner examples (chapter 11)

February 2020

• Minor fixes

January 2020

• Minor fixes

December 2019

• First release

xiv | Preface

https://metacpan.org/pod/Mojo::Collection

Chapter 1

Introduction

My story is a lot like yours, only more interesting ‘cause it involves

robots.

This chapter looks a little bit at Mojolicious and its philosophy. I’ll show

some simple programs to review basic HTTP principles while I introduce the

framework itself.

The Mojo Philosophy

TheMojolicious framework is self-contained. It needs only core Perl; changes

in CPAN modules have minimal impact on the basic operations. It handles

just about anything that you need to do in a web application or client. That

includes a couple of web servers to run your application, but that’s the sub-

ject of a different book.

The client, however, isn’t everything you’d need for a full-fledged interactive

web browser (for instance, it’s not going to handle a graphic interface or run

JavaScript) but it has most things you’d need to automate web tasks.

| 1

Mojo reinvented some wheels but those wheels came out even better. Since

almost everything is under the control of the Mojolicious team, they can fix,

extend, and control almost every aspect of your experience. This gives you

a consistent experience across the entire framework.

However, the developers move as quickly as they want to go even if they

might break things. And, they do sometimes break backward compatibility,

but they tend to give fairwarning andwait for amajor version change. There

is a three-month deprecation period, so parts of this book might be outdated

by the time you read it. When that happens I’ll try to update the book.

Mojo only guarantees that it works with supported perls. That’s the current

and previous stable versions. This saves time testing and working around

older versions. As I write this, that’s v5.28 and v5.30 (see official perl support

policy). Mojo may work on early versions of perl but don’t rely on it. If

you are worried about that, don’t update things. And, even if you aren’t

worried about that, try things before updating. Come up with some system

to rollback changes to a known good system. That’s just good advice no

matter what you are using.

Futurama

Many of the examples and sample data in the Mojo documentation draw

from the animated series Futurama. I’ll continue that here. The pithy state-

ments and references probably come from that show. You don’t need to

know anything about the show to understand the structure and purpose of

the code, but it can’t hurt. I’ll leave it to you and your web browser to dis-

cover who Bender, Fry, Leela, and the others are.

Fluent programming

The Mojo interface is an example of “fluent programming”—a type of inter-

face from Eric Evans and Martin Fowler that relies on chained method calls

where most methods return another object (which you call more methods

2 | Introduction

https://perldoc.pl/perlpolicy
https://perldoc.pl/perlpolicy
https://www.cc.com/shows/futurama
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html

on):

use Mojo::UserAgent;

shift() outside a subroutine works on @ARGV

say Mojo::UserAgent->new->get(shift)->result->body;

That’s a soup of text where it’s hard to pick out what’s going on. I like to

rewrite these things to highlight major operations on their own line (and it

works out better for eBooks):

say Mojo::UserAgent->new

->get(shift)

->result

->body;

The new returns a Mojo::UserAgent object. The get returns the transaction

object, which includes the request and the response. The result extracts the

response object, and the body gets its content. At first you’ll struggle with

the documentation to keep all this straight, but you’ll get used to it.

If something goes wrong, that code will croak. Most often you’ll make the

transaction then check that it works. This is generally a good idea with any-

thing that interactswith the outsideworld. Things fail for all sorts of reasons,

many outside of your control:

use Mojo::UserAgent;

my $tx = Mojo::UserAgent->new->get(shift);

unless($tx->result->success) {

die "There was a problem\n";

}

say $tx->result->body;

Often I’ll define a method in UNIVERSAL (a particular no-no I don’t recom-

mend for production code). Every object will inherit these methods; I can

call the NAMEmethod on any object to see the class name for an object:

The Mojo Philosophy | 3

https://metacpan.org/pod/Mojo::UserAgent

package UNIVERSAL {

sub NAME { ref $_[0] }

}

use Mojo::UserAgent;

my $tx = Mojo::UserAgent->new->get(shift);

say $tx->NAME; # Mojo::Transaction::HTTP

unless($tx->result->is_success) {

die "There was a problem\n";

}

say $tx->result->NAME; # Mojo::Message::Response

In some code examples in Mojolicious, you’ll see a code reference used as a

method. It’s valid Perl. The argument has the invocant as the first element

so you can use that to do more localized debugging:

my $namer = sub { ref $_[0] };

...

say $tx->result->$namer(); # Mojo::Message::Response

Some future version of Perl might have reflection features that make this

sort of trickery obsolete.

Be Nice to Servers

This is a book essentially about how to annoy servers with your own pro-

grams. Sometimes these programs are called “bots” because they operate

on their own without supervision. Sometimes they can go awry and wreak

havoc with too many requests, repetitive requests, and so on. These are typ-

ically different from the programs that connect to a couple of websites to

grab particular resources then shut down.

4 | Introduction

Many of the things that you’ll likely want to create will be a force for good:

automating repetitive tasks, collating information, and other things. How-

ever, not everyone sees it that way. It’s their server so it’s their rules even if

I don’t like them.

Some sites haveTerms of Service. If youwant to interactwith these siteswith

your own program, read that agreement. Some sites might outright disallow

it, but others have instructions on how to do it within their frameworks.

Don’t send several hundred requests to a server right away. Spread them out

a bit by pausing slightly between requests. A couple requests a second is a

rule that I like to use (and the rate thatmany rate-limiting APIs seem to like).

You don’t want to draw too much attention to your program lest the server

stops responding to you (or worse, complaining to your hosting provider).

Remember that your actions can cost the server side real money in band-

width costs. You’d be surprised howmany things that look like sophisticated

big businesses are really some guy at his kitchen table.

/robots.txt

Servers might have a /robots.txt file that specifies some of their rules ac-

cording to the Standard for Robot Exclusion. This was a more popular thing

a couple decades ago and seems to have fallen out of favor. I’m guessing

most bots didn’t care and servers developedmuch better methods to respond

to unfriendly bots).

It specifies rules by the user-agent string. You should compare your user-

agent identifier to the rules to see what the servers wants you to exclude.

This one wants Mojo programs to ignore everything:

User-agent: Mojolicious (Perl)

Disallow: /

Perhaps it tells you that parts of the website are inappropriate for any bots

by using a * as the user-agent string:

Be Nice to Servers | 5

http://www.robotstxt.org/orig.html

User-agent: *

Disallow: /cgi-bin/gnarly-db-query/

Maybe it tells you that everything is disallowed:

User-agent: *

Disallow: /

Although many servers don’t provide these, some of the big web crawlers

(such as Google) look for and respect them. Remember that when you start

creating your own Mojolicious servers (but not in this book!).

I assume that you have permission to dowhat you are doing. If it’s something

worthwhile you’re likely to want to keep doing it and not be shut out from

the server. Play nice so you can keep playing.

How HTTPWorks

HTTP (and HTTPS, the secure version) work on a request-response protocol.

The client sends a request and the server sends a response. On top of that

there are various tricks to make things more efficient but you don’t need to

worry about that for this book. Or, when that’s not sufficient you’ll read

more about that topic.

Most of this is defined in RFC 7230 and RFC 7231. If you want to do high-

powered web client programming you should study these documents. Mojo

handles the mechanics but you need to know what to tell the server.

HTTPmessages

Each request and response is anHTTP “message”. There are three parts—the

“start line”, the “header”, and the “message body”. Here’s an example:

POST / HTTP/1.1

6 | Introduction

https://developers.google.com/search/docs/advanced/robots/create-robots-txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231

Host: www.example.com

Content-Length: 10

name=value

The first line is the start line of the request. It gives the HTTP verb, the path,

and theHTTPversion. The headers immediately follow and are line-oriented

collection of names and values. Themessage body is set apart from the head-

ers by a blank line (technically, double carriage return / newline pair).

The request triggers a response. Its start line includes the protocol version,

the HTTP status number that describes what happened, and a string version

of that status. It has headers and possibly a message body:

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: 6

Bender

The headers

Theheader contains variousmetadata, instructions, and other tracking things.

Themessage body is the content. Thatmight beHTML, JSON, or almost any-

thing else. A request can send a body to the server and the server can send a

body back. Or either can have an empty body.

The headers are line-oriented. There’s a header name, a colon, and the header

value. Here’s a short program to print the request header then the response

header. After you make the request you get a transaction object in $tx (the

customary name). That transaction has both the request (req) and response

(result). The headers extracts that part of the message. The to_string

formats it nicely for you:

use Mojo::UserAgent;

How HTTPWorks | 7

my $tx = Mojo::UserAgent->new->get(shift);

unless($tx->result->is_success) {

die 'Could not make request';

}

say "Request\n", '-' x 50, "\n",

$tx->req->to_string;

say "Response\n", '-' x 50, "\n",

$tx->result->headers->to_string;

The output shows each side:

% ./show_transaction https://www.mojolicious.org/

Request

--

Content-Length: 0

Accept-Encoding: gzip

User-Agent: Mojolicious (Perl)

Host: www.mojolicious.org

Response

--

Content-Type: text/html;charset=‑UTF8

Connection: keep-alive

Server: cloudflare

Date: Wed, 20 Jun 2018 01:13:45 GMT

Content-Length: 13420

Expect-CT: max-age=604800, report-uri="..."

CF-RAY: 42da5fe7cd5421d4-EWR

Set-Cookie: __cfduid=...

The request headers output in the previous section excludes the start line of

the transaction, which specifies the request verb, the resource path, and the

protocol version:

GET / HTTP/1.1

You can reconstruct this yourself from the request object since it has all the

8 | Introduction

information stored in various internal objects:

say join ' ',

$tx->req->method,

$tx->req->url->path,

'HTTP/' . $tx->req->version

;

You’ll often want to use an interactive browser to watch this happen so you

can figure out what you need to tell Mojo to do. The “Show Developer Tools”

in Safari’s Advanced preferences gives you the Develop menu. The HTTP

Headers extension for Chrome or the HTTP Headers Live extension for Fire-

fox are useful. There are various other developer tools that show you the

HTTP transactions.

Request verbs

Each request specifies a “verb” and each of these has a particular intent and

meaning. In this book you’ll see them in all uppercase to distinguish them

from normal text. A “resource” is a fancy word for data the server or client

provides.

These are the HTTP methods:

• GET - Return something but don’t change the server state (idempo-

tency)

• HEAD - Return the header for a resource

• POST - Here are some data; do something with it that possibly changes

the server state

• PUT - Create (or replace) this resource on the server

• PATCH - Change this resource on the server

• DELETE - Remove this resource from the server

How HTTPWorks | 9

• OPTIONS - Return information about what you can do to the resource

Some of these are idempotent, meaning that you can request that resource

as often as you like without changing the state of the server. You make the

same request over and over and the server stays the same. Think about view-

ing your bank’s balance. Check as often as you like without that changing

the number you see. The GET and HEAD requests are supposed to be like

that.

Other requests may change the state of the server (but not necessarily). Your

request might add or update a record in the database. If you repeated your

request you might create additional database records or change the server in

some other way. You don’t want to repeat those or make duplicate records.

All of the other request methods besides GET and HEAD are like these.

There’s nothing particularly special about these methods or their names.

There are others out there. You can make up your own if you like; you just

need a server that understands it.

Each of the HTTP methods have a convenience method. To make a HEAD

request to get just the headers and metadata for a resource, use the head

method:

use Mojo::UserAgent;

my $ua = Mojo::UserAgent->new;

my $tx = $ua->head('https://www.mojolicious.org/');

Response codes

The first line of the response also has a start line. It shows the protocol ver-

sion, the HTTP status code (a number), and the status description:

HTTP/1.1 200 OK

The stringification of the request headers didn’t show this line but you can

reconstruct it:

10 | Introduction

say join ' ',

'HTTP/' . $tx->result->version,

$tx->result->code,

$tx->result->message,

;

Each group of hundreds is a type of status and they are the code that Mojo

uses to determine if the request succeeded or failed:

• 100 - Informational

• 200 - Successful request

• 300 - Redirection

• 400 - An error in the request

• 500 - An error in the server

Expand the earlier program to be more particular about the status of the

response. These methods come from the response object (so look in Mojo

::Message::Response):

use Mojo::UserAgent;

my $ua = Mojo::UserAgent->new;

my $tx = $ua->get(shift);

if($tx->result->is_success or

$tx->result->is_redirect) {

say "Request\n", '-' x 50, "\n",

join(' ',

$tx->req->method,

$tx->req->url->path,

'HTTP/' . $tx->req->version

), "\n",

$tx->req->headers->to_string;

say "\nResponse\n", '-' x 50, "\n",

How HTTPWorks | 11

https://metacpan.org/pod/Mojo::Message::Response
https://metacpan.org/pod/Mojo::Message::Response

join(' ',

'HTTP/' . $tx->result->version,

$tx->result->code,

$tx->result->message

), "\n",

$tx->result->headers->to_string;

}

elsif($tx->result->is_error) {

if($tx->is_server_error) {

say "Oops! Server Error!";

}

else {

say "A 4xx error";

}

}

Try this with a working address and you get mostly the same thing. But try

it with HTTP instead of HTTPS:

% ./show_transaction http://www.mojolicious.org/

Request

--

GET / HTTP/1.1

Host: www.mojolicious.org

Accept-Encoding: gzip

User-Agent: Mojolicious (Perl)

Content-Length: 0

Response

--

HTTP/1.1 301 Moved Permanently

Server: cloudflare

Location: https://www.mojolicious.org/

Content-Length: 0

Expires: Wed, 20 Jun 2018 03:38:53 GMT

Connection: keep-alive

Date: Wed, 20 Jun 2018 02:38:53 GMT

Cache-Control: max-age=3600

CF-RAY: 42dadc9f367391a6-EWR

12 | Introduction

Now there’s a different sort of response. The status is 301. This domain im-

mediately redirects to the HTTPS site. The status message says “Moved Per-

manently” which normally means your client should remember the new lo-

cation and use that preferentially next time.

BydefaultMojo doesn’t follow that redirection for you. Set the max_redirects

to some positive value and Mojo will follow these redirections up to that

many times. Three is a good number (because you can get into infinite loops):

my $ua = Mojo::UserAgent->new;

$ua->max_redirects(3);

This works as one method chain too because the methods to configure the

user-agent object return that same object:

my $ua = Mojo::UserAgent->new->max_redirects(3);

The same request ends up with a different response now. Mojo saw the redi-

rection, looked in its Location header, and made another request for that

URL. You didn’t have to look at each step of the process:

% ./show_transaction http://www.mojolicious.org/

Request

--

GET / HTTP/1.1

User-Agent: Mojolicious (Perl)

Host: www.mojolicious.org

Accept-Encoding: gzip

Content-Length: 0

Response

--

HTTP/1.1 200 OK

Connection: keep-alive

Set-Cookie: __cfduid=...

Expect-CT: max-age=604800, ...

Content-Type: text/html;charset=‑UTF8

CF-RAY: 42daf614cc229260-EWR

Content-Length: 13420

How HTTPWorks | 13

Server: cloudflare

Date: Wed, 20 Jun 2018 02:56:16 GMT

It gets even better. The $tx knows about the previous HTTP requests and

responses that led to the final one. If there were a redirect and a new trans-

action, you can see the previous transaction. Wrap that output in a loop to

show all of the transactions leading to the final response:

use Mojo::UserAgent;

my $ua = Mojo::UserAgent->new->max_redirects(3);

my(@txs) = $ua->get(shift);

while(my $previous_tx = $txs[0]->previous) {

unshift @txs, $previous_tx;

}

foreach my $tx (@txs) { ... }

For me, this interface for the transaction object and everything that hap-

pened is a big benefit over LWP. Everything is wrapped into a tidy transaction

package.

To see everything that happened, set the MOJO_CLIENT_DEBUG environment

variable to a true value. Exporting that variable sets it for the rest of the

session. This uses bash syntax to set the value for the entire session:

% export MOJO_CLIENT_DEBUG=1

% ./show_transaction http://www.mojolicious.org/

Setting it before the command does it for only that one invocation:

% MOJO_CLIENT_DEBUG=1 ./show_transaction http://www.mojolicious.org/

Either way you’ll see the initial request, the redirection response, and the

new request with its response. You wouldn’t need to output the transactions

yourself.

14 | Introduction

https://metacpan.org/pod/LWP

I’ve written a tiny tool called 3xx to show the entire redirection chain. It has

a Mojo example, but also a Ruby and Python example.

Add to the Request

You can affect your request in almost any way that you like. You’ll see more

of this later but here’s a simple one. Instead of naming your client “Mojoli-

cious (Perl)” as you see in the User-Agent field in the previous section, change

it to something that’s not quite as suspicious.

Modify the previous example to include a new line:

my $ua = Mojo::UserAgent->new->max_redirects(3);

$ua->transactor->name('Planet Express');

Now the request is slightly different:

% ./show_transaction https://www.mojolicious.org/

Request

--

GET / HTTP/1.1

Content-Length: 0

Accept-Encoding: gzip

User-Agent: Planet Express

Host: www.mojolicious.org

Sometimes you’ll fake being another sort of user-agent because some servers

are content to look only at the User-Agent header to decide what to do, such

as returning user-agent specific content (e.g. “Update to a supported browser”).

Grab one that you like from www.useragentstring.com.

Add to the Request | 15

https://github.com/briandfoy/3xx
http://www.useragentstring.com/pages/useragentstring.php

httpbin

httpbin is a webserver suitable for testing user-agent code. It has many dif-

ferent endpoints to show you different things. Here’s your IP address:

% curl http://httpbin.org/ip

{

"origin": "107.152.104.229, 107.152.104.229"

}

It shows the headers from your request:

% curl http://httpbin.org/headers

{

"headers": {

"Accept": "*/*",

"Host": "httpbin.org",

"User-Agent": "curl/7.54.0"

}

}

Or anything in the request:

% curl http://httpbin.org/anything?robot=Bender

{

"args": {

"robot": "Bender"

},

"data": "",

"files": {},

"form": {},

"headers": {

"Accept": "*/*",

"Host": "httpbin.org",

"User-Agent": "curl/7.54.0"

},

"json": null,

"method": "GET",

16 | Introduction

http://httpbin.org

"origin": "89.46.102.12, 89.46.102.12",

"url": "https://httpbin.org/anything?robot=Bender"

}

Or some XML (that I’ve truncated in this example):

% curl http://httpbin.org/xml

<?xml version='1.0' encoding='us-ascii'?>

...

Run httpbin in docker

httpbin is handy for isolated checks about what you are doing, but you don’t

want to overwhelm a free service. If you really want to bang on it, you can

run your httpbin server locally by using it through docker (Getting Started

with Docker):

% docker run -p 80:80 kennethreitz/httpbin

% curl localhost:80/headers

{

"headers": {

"Accept": "*/*",

"Host": "localhost",

"User-Agent": "curl/7.54.0"

}

}

Add an entry for httpbin.org to your /etc/hosts and you don’t have to change

the httpbin addresses you see in this book:

/etc/hosts

127.0.0.1 httpbin.org

httpbin | 17

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/

Summary

You have the basic ideas behind Mojo, HTTP, and fluent programming. The

rest of the book builds on those concepts, but also assumes you’ll read more

about the HTTP specification on your own.

By now, you should have installedMojo and played aroundwith some simple

examples to see that it works. Before you dive into more Mojo features, I’m

going to use the next couple of chapters to catch up on some Perl features

you’ll see throughout the book.

18 | Introduction

Chapter 4

The Document Object Model

I’ve never seen anything so mind-blowing. Ooh, a reception table

with muffins!

The Document Object Model, or simply DOM, represents structured data

such as HTML or XML so that you can easily inspect and modify it. The

Mojo::DOM module handles both of those formats. This chapter only intro-

duces some of the common things that you can do with it, but you’ll see more

in chapter 5.

Walking Through HTML or XML

What are you going to do with that HTML once the server sends it back

to you? Like every other programmer who has touched a keyboard you’ve

probably pulled out a regex to get out the parts that want. There’s a better

way to do that.

Mojo represents the HTML in a Document Object Model (DOM). This makes

way for some powerful tools. Parsing some text with Mojo::DOM defaults to

| 57

https://metacpan.org/pod/Mojo::DOM
https://metacpan.org/pod/Mojo::DOM

parsing HTML:

use Mojo::DOM;

my $html = <<~'HTML';

Bender

Fry

Hermes

HTML

my $dom = Mojo::DOM->new($html);

my $links = $dom->find('a'); # a collection

say $links->join("\n");

The find takes a CSS selector (coming up in the next chapter, chapter 5) and

walks the DOM looking for matching pieces. It returns a collection of what

it finds. The example extracts all of the anchor tags (complete with opening

tag, contents, and closing tag):

Bender

Fry

Hermes

It gets better. The elements in that collection are still Mojo::DOM::HTML ob-

jects. Use the attr method to get the attribute values. Use that as the first

argument to map and give it href as its argument:

my $links = $dom->find('a')->map(attr => 'href');

say $links->join("\n");

Now you get the URL in every anchor:

http://www.example.com/bender

http://www.example.com/fry

http://www.example.com/hermes

58 | The Document Object Model

https://metacpan.org/pod/Mojo::DOM::HTML

Use text to get the stuff inside the tags:

my $links = $dom->find('a')->map('text');

say $links->join("\n");

This time the output is stuff between the opening and closing tags:

Bender

Fry

Hermes

This only includes text not inside of nested HTML tags. Try this by parsing

this paragraph with some styled text in it. The new can work with snippets

of HTML:

say Mojo::DOM->new('<p>Bender <i>Fry</i> Leela</p>')

->find('p')

->map('text')

->join("\n");

The output finds the text outside the <i> tag. There are two spaces between

the words because there are two spaces around the interior tag:

Bender Leela

Use all_text instead to strip out interior HTML:

say Mojo::DOM->new('<p>Bender <i>Fry</i> Leela</p>')

->find('p')

->map('all_text')

->join("\n");

Now the output has the text from the interior tags too:

Bender Fry Leela

In this example you know that you have exactly one P tag so you could have

Walking Through HTML or XML | 59

also written it without the map:

say Mojo::DOM->new('<p>Bender <i>Fry</i> Leela</p>')

->at('p')

->all_text;

You can extract parts of the DOM using much more sophisticated situations

with fancier selectors. Those get their own chapter in chapter 5.

Parsing XML

You might be tempted to use XML::Simple to turn an XML string into a Perl

data structure; many people are. Do not be seduced to the dark side! That

module is only suitable for the simplest problems or until you can arrange to

use something better—perhaps XML::Hash::XS or XML::Fast. Or, for a really

nasty problem, XML::Twig.

However, if you only need to grab a few values out of the XML data you can

extract them from the DOM directly. Mojo::DOM switches to its XML mode

if it sees the XML declaration at the beginning of the string. Almost nothing

else in your program needs to change:

use Mojo::DOM;

say Mojo::DOM->new(

'<?xml version="1.0"?><p>Bender <i>Fry</i> Leela</p>'

)

->find('p')

->map('all_text')

->join("\n");

Howdoes Mojo::DOM know that it’s XML? There is the DOCTYPE declaration

there! But, XML and XHTML (and clean HTML) play by the same rules so

the situation is not that different.

60 | The Document Object Model

https://metacpan.org/pod/XML::Simple
https://metacpan.org/pod/XML::Hash::XS
https://metacpan.org/pod/XML::Fast
https://metacpan.org/pod/XML::Twig
https://metacpan.org/pod/Mojo::DOM
https://metacpan.org/pod/Mojo::DOM

Modifying the DOM

There are many methods to modify the DOM but I’m going to ignore those

other than this tiny example that builds a new HTML document from an

empty string:

use Mojo::DOM;

my $dom = Mojo::DOM->new('');

$dom->append_content('<html>');

$dom

->at('html')

->append_content('<h1>Planet Express</h1>');

say $dom->to_string;

Each modification returns a new DOM object but you can assign that back

to the same variable:

<html><h1>Planet Express</h1></html>

That append_content takes a DOM too, and will append all of that. The new

_tag uses the tag name and content I supply:

use Mojo::DOM;

my $dom = Mojo::DOM->new('');

$dom->append_content('<html>');

$dom

->at('html')

->append_content(

$dom->new_tag('h1' => 'Planet Express')

);

say $dom->to_string;

Modifying the DOM | 61

Creating a PropertyList

I’ve used Mojo::DOM to construct macOS PropertyList files (although I wrote

the Mac::PropertyList module). I start with the header, which includes a

couple of declarations:

use v5.26;

use Mojo::DOM;

my $dom = Mojo::DOM->new(<<~"HERE");

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

HERE

say $dom;

That’s easy enough. The next part creates the root element, plist, and a

string element that it will contain. Once I have both, I can select the plist

element from that sub-DOM and append content to it:

use v5.26;

use Mojo::DOM;

my $dom = Mojo::DOM->new(<<~"HERE");

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

HERE

my $plist = $dom->new_tag('plist', version => '1.0');

my $string = $dom->new_tag('string', 'https://www.example.com');

$plist->at('plist')->append_content($string);

$dom->append_content($plist);

say $dom;

62 | The Document Object Model

https://metacpan.org/pod/Mojo::DOM
https://metacpan.org/pod/Mac::PropertyList

I end up with the PropertyList I need:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.

apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0"><string>https://www.example.com</string></plist>

Summary

This is just the start of your DOM processing. The mechanism is easy, and

in the next chapter you’ll see the myriad ways to find exactly the parts of

HTML you want to extract.

Summary | 63

64 | The Document Object Model

Chapter 11

Command-Line Programs

Oh wait, you’re serious. Let me laugh even harder.

Several of the methods from Mojo::UserAgent and other utilities have short-

cuts tomake them easy for you to use directly from the command line. These

one-liners are handy for short programs you probably won’t need again or

even those that you’d want to make into shell aliases.

Themojo Command

The mojo command is mostly for creating, running, and testing Mojo web

applications—stuff that I don’t cover in this book. It does have one interest-

ing command: get, which makes a web request. It’s there to make requests

against your own application but it’s useful for any request to any server.

Without any arguments, you get a help message that lists several things that

you can do. Most of these aren’t interesting for this chapter:

| 225

https://metacpan.org/pod/Mojo::UserAgent

% mojo

Usage: APPLICATION COMMAND [OPTIONS]

mojo version

mojo generate lite_app

./myapp.pl daemon -m production -l http://*:8080

./myapp.pl get /foo

./myapp.pl routes -v

...

Try the get commandwithout further arguments; you get another helpmes-

sage that’s specific to that command.

% mojo get

Usage: APPLICATION get [OPTIONS] URL⏎

[SELECTOR|JSON-POINTER] [COMMANDS]

./myapp.pl get /

...

Fetch a resource by supplying the URL as the argument to get. IPify returns

your IP address as text:

% mojo get api.ipify.org

89.187.178.38

Dump it to the screen or redirect it to a file:

% mojo get https://mojolicious.org

% mojo get https://mojolicious.org > mojo.html

Use -v to see the request and response headers. If you request just mojolicious.org,

it looks like nothing happens. The headers tell a different story. You get a

response but it’s an HTTP redirect. Themojo command didn’t automatically

handle that for you:

% mojo get -v www.mojolicious.org

GET / HTTP/1.1

226 | Command-Line Programs

User-Agent: Mojolicious (Perl)

Accept-Encoding: gzip

Host: www.mojolicious.org

Content-Length: 0

HTTP/1.1 301 Moved Permanently

Location: https://www.mojolicious.org/

Date: Mon, 23 Jul 2018 18:08:54 GMT

Transfer-Encoding: chunked

CF-RAY: 43f01855c650923c-EWR

Connection: keep-alive

Server: cloudflare

Cache-Control: max-age=3600

Expires: Mon, 23 Jul 2018 19:08:54 GMT

Follow redirects (up to 10 of them) with the -r switch. Now you see some

content:

% mojo get -r www.mojolicious.org

<!doctype html><html>

<head>

<link rel="search" type="..."

href="/opensearch.xml" title="Mojolicious" />

<title>

Mojolicious - Perl real-time web framework

</title>

...

Add a header with -H. Separate the header name and value with a colon:

% mojo get -v -H 'X-Bender: Bite me!' www.mojolicious.org

GET / HTTP/1.1

Accept-Encoding: gzip

Host: www.mojolicious.org

Content-Length: 0

User-Agent: Mojolicious (Perl)

X-Bender: Bite me!

...

The mojo Command | 227

Add some form data with -f. Specify each name and value pair with a sep-

arate -f:

% mojo get -v -f 'a=b' -f 'a=c' www.httpbin.org/get

GET /get?a=b&a=c HTTP/1.1

Host: www.httpbin.org

User-Agent: Mojolicious (Perl)

Accept-Encoding: gzip

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: application/json

Content-Encoding: gzip

Server: nginx

Date: Sat, 13 Apr 2019 01:26:51 GMT

Connection: keep-alive

Content-Length: 202

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: true

{

"args": {

"a": [

"b",

"c"

]

},

"headers": {

"Accept-Encoding": "gzip",

"Host": "www.httpbin.org",

"User-Agent": "Mojolicious (Perl)"

},

"origin": "89.46.103.172, 89.46.103.172",

"url": "https://www.httpbin.org/get?a=b&a=c"

}

Try it with something that needs URL encoding, such as a space in the value

for a:

% mojo get -v -f 'a=b' -f 'a=c d' www.httpbin.org/get

228 | Command-Line Programs

GET /get?a=b&a=c+d HTTP/1.1

Host: www.httpbin.org

Accept-Encoding: gzip

User-Agent: Mojolicious (Perl)

Content-Length: 0

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Content-Type: application/json

Content-Length: 205

Connection: keep-alive

Date: Sat, 13 Apr 2019 01:28:34 GMT

Access-Control-Allow-Credentials: true

Server: nginx

Content-Encoding: gzip

{

"args": {

"a": [

"b",

"c d"

]

},

"headers": {

"Accept-Encoding": "gzip",

"Host": "www.httpbin.org",

"User-Agent": "Mojolicious (Perl)"

},

"origin": "89.46.103.172, 89.46.103.172",

"url": "https://www.httpbin.org/get?a=b&a=c+d"

}

Although the command name is get you can change the HTTP verb with -

M. Now the form data are in the message body so you don’t see those in the

request headers:

% $ mojo get -v -M POST -f 'a=b' -f 'a=c d'⏎

www.httpbin.org/post

POST /post HTTP/1.1

The mojo Command | 229

User-Agent: Mojolicious (Perl)

Content-Length: 9

Host: www.httpbin.org

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip

...

Processing the response

Immediately process the result of a request by providing a selector. For JSON

responses, the selector starts with / and follows the rules from Mojo::JSON

::Pointer (RFC 6901. XPath users should be comfortable with this:

% mojo get -f 'a=b' -f 'a=c d' www.httpbin.org/get /url

https://www.httpbin.org/get?a=b&a=c+d

% mojo get -f 'a=b' -f 'a=c d' www.httpbin.org/get /args

{"a":["b","c d"]}

Earlier, in chapter 3, you saw jq doing the same sort of thing. Use it to extract

part of the response:

% mojo get -f 'a=b' -f 'a=c d' www.httpbin.org/get /args⏎

| jq '.a[1]'

"c d"

If the response is HTML, use CSS selectors instead. This extracts the title

part of the DOM and includes the HTML:

% mojo get -r www.mojolicious.org title

<title>

Mojolicious - Perl real-time web framework

</title>

After the selector, supply a command and its arguments. Select only the text

in the title tag:

230 | Command-Line Programs

https://metacpan.org/pod/Mojo::JSON::Pointer
https://metacpan.org/pod/Mojo::JSON::Pointer
https://datatracker.ietf.org/doc/html/rfc6901
https://stedolan.github.io/jq/

% mojo get -r www.mojolicious.org title text

Mojolicious - Perl real-time web framework

In this example, attr selects values from attributes of the selected items; the

href is the argument to attr:

% mojo5.28.0 get -r www.mojolicious.org 'a[href]' attr href

https://metacpan.org/release/Mojolicious

https://mojolicious.org

https://mojolicious.org/perldoc

...

Here’s another example in which you extract the text inside the H1, H2, and

H3 tags:

% mojo get -r www.mojolicious.org 'h1, h2, h3' text

A next generation web framework for the Perl programming language.

Features

Installation

Getting Started

Duct tape for the HTML5 web

Want to know more?

Perl One-Liners

A “one-liner” is a program that you write and execute on the command line.

It’s typically for small bits of code that you may not intend to reuse. Specify

that program as the argument to the -e switch:

% perl -e 'print "Hello World\n"'

On Windows, you need to use double quotes for the argument, which is a

problem inside your program. Use the qq generalized quoting instead of dou-

ble quotes in your program:

Perl One-Liners | 231

C:\perl -e "print qq(Hello World\n)"

In those two examples you need the double quotes inside the program to

interpolate the \n into a newline. You can get rid of the double quote problem

by using the -l switch; that automatically adds a newline to a print. You

don’t need the interior double quotes (or equivalent) now. The Unix shell

and Windows command lines can look the same:

% perl -l -e "print 'Hello World'"

C:\perl -l -e "print 'Hello World'"

Since the -l takes no argument, you can “bundle” the switches for a little less

typing:

% perl -le "print 'Hello World'"

C:\perl -le "print 'Hello World'"

The -E is like -e but also enables the new features added since v5.8. One

of those features is say—it adds a newline to the end of its output. This is

effectively the same as the -l and -e together:

% perl -E "say 'Hello World'"

C:\perl -E "say 'Hello World'"

Use -M to load a module from the command line. The ojomodule is cleverly

named to spell out “Mojo” when you load it with -M:

% perl -Mojo -E "say Mojolicious->VERSION"

The -I adds directories to themodule search path. This example will find the

./lib/yModule.pm file:

% perl -Ilib -MyModule "..."

Remember that v5.26 removed the dot from the default @INC. Reädd that

with -I. if you need it:

232 | Command-Line Programs

https://metacpan.org/pod/ojo

% perl -I. -MyModule "..."

The PERL5OPT environment variable can make these one-liners a bit shorter

and are often useful in a session (but maybe not across sessions). These

command-line options are automatically added to your call to perl. Along

with that, the PERL5LIB environment variable adds directories to @INC. These

reduce the amount of repeated typing a bit:

% export PERL5OPT='-Mojo'

% export PERL5LIB='lib'

% perl -E "say Mojolicious->VERSION"

In your shell setting file you should be able to define aliases for one-liners.

Here’s the bash alias for a Perl one-liner that converts a decimal number to

its hexadecimal representation:

.bash_profile

alias d2h="perl -e 'printf qq|%X\n|, int(shift)'"

You can do a similar thing with DOS or PowerShell but it’s a bit more compli-

cated than I want to show here; I’ll punt to a [Aliases in Windows command

prompt](https://stackoverflow.com/q/20530996/2766176) on StackOverflow.

Fetching a Resource

All of the HTTP verbs have a shortcut function. Instead of returning a trans-

action object they return the response object; that cuts out one step in getting

to the result. Instead of get there is g and you can call body right away:

% perl -Mojo -E "say g('mojolicious.org')->body"

Notice the lack of a scheme in that example. It’s just the host name and the

shortcut figures it out. The g takes the same arguments as get. This one

includes some form data in the request:

Fetching a Resource | 233

% perl -Mojo -E "say g('http://httpbin.org/get'⏎

=> form => { robot => 'Bender'})->body"

Save the content so you can play with it later:

% perl -Mojo -E "g(shift)->save_to('test.html')"⏎

mojolicious.org

The p does a POST request:

% perl -Mojo -E "say p('http://httpbin.org/post' =>⏎

form => { robot => 'Bender'})->body"

The h shortcut stands in for the head method. Sometimes you don’t care

about the content (which can be quite long). This one-liner shows all of the

headers:

% perl -Mojo -E "say h('mojolicious.org')⏎

->headers->to_string"

Server: cloudflare

Content-Encoding: gzip

Connection: keep-alive

Set-Cookie: ...

CF-RAY: 43eeea976c1021c2-EWR

Content-Type: text/html;charset=UTF-8

Expect-CT: max-age=604800, report-uri="..."

Date: Mon, 23 Jul 2018 14:42:55 GMT

Or look at a particular header:

% perl -Mojo -E 'say h("mojolicious.org")->headers⏎

->set_cookie'

__cfduid=d1727b77aa1044975e86fb61badd3f1ad1532357521;⏎

expires=Tue, 23-Jul-19 14:52:01 GMT; path=/; domain=⏎

.mojolicious.org; HttpOnly; Secure

234 | Command-Line Programs

Some one-liners

This section includes some one-liners. Some of them can use both the mojo

command and the shortcuts.

Show the HTTP status code, which I like to check if the right thing is hap-

pening:

% perl -Mojo -e "say g(shift)->code" www.perl.com

200

Extract the unique links in a resource:

% mojo get https://www.mojolicious.org a attr href

% perl -Mojo -E 'g("mojolicio.us")->dom("a")⏎

->map(attr => "href")->uniq->join("\n")->say'

Extract all the images:

% mojo get https://www.mojolicious.org img attr src

% perl -Mojo -E 'g("mojolicio.us")->dom("img")⏎

->map(attr => "src")->uniq->join("\n")->say'

Get the titles from the latest articles in /r/perl on Reddit:

% mojo https://www.reddit.com/r/perl/⏎

'p.title > a.title' text

List all the HTML headings (not HTTP headers) in a document:

% mojo get https://www.mojolicious.org 'h1,h2,h3' text

Grab the value of a particular header. Most of the time you only need a HEAD

request:

% perl -Mojo -E "say h(shift)->headers⏎

->header(shift) // ''"⏎

Fetching a Resource | 235

https://www.reddit.com/r/perl

https://www.mojolicious.org Server

cloudflare

% perl -Mojo -E "say h(shift)->headers⏎

->header(shift) // ''"⏎

https://www.perl.com/ ETag

"5b5a1636-8248"

Download some JSON and extract something from it. The j turns a JSON

string into a Perl data structure. This one gets the author record fromMetaC-

PAN by the ID and extracts the full name:

% perl -Mojo -e "say⏎

j(g('https://fastapi.metacpan.org/v1/author/'⏎

.shift)->body)->{name}" BDFOY

brian d foy

And here’s one with the IPify response:

% perl -Mojo -E "say j(g(shift)->body)->{ip}"⏎

'api.ipify.org?format=json'

89.187.178.38

In this case, it’s easier to go for the JSON payload directly:

% perl -Mojo -E "say g(shift)->json->{ip}"⏎

'api.ipify.org?format=json'

Playing with the DOM

The f shortcut creates a Mojo::File object. Call slurp on that and you’ve

reïnvented the cat (or type) command:

% perl -Mojo -e "print f('test.md')->slurp"

Instead of specifying the filename inside the program, use shift to get it from

236 | Command-Line Programs

https://metacpan.org/pod/Mojo::File

the command-line arguments. Outside of a subroutine definition the shift

works on @ARGV. This give the same result:

% perl -Mojo -e "print f(shift)->slurp" test.md

The x shortcut creates a Mojo::DOM object from its argument.

% perl -Mojo -E "say x('<p>Bender</p>')⏎

->at('p')->text"

Bender

Combine that with f to load a local file into a DOM

% perl -Mojo -E "say x(f(shift)->slurp)⏎

->at('p')->text"

The n runs a block of code the number of times that you specify. Here’s one

that slurps a file then finds all the DIV tags 10 times. It outputs a report of

the benchmarks:

% perl -Mojo -E 'my $dom=x(f(shift)->slurp);⏎

n { $dom->find("div") } 10' spec.html

5.09754 wallclock secs (5.06 usr + 0.01 sys = 5.07 CPU)

Or grab it from the network, which is a little bit slower:

% perl -Mojo -E 'my $dom=g(shift)->dom;⏎

n { $dom->find("div") } 10' https://html.spec.whatwg.org

5.31821 wallclock secs (5.28 usr + 0.01 sys = 5.29 CPU)

Extending ojo

Create your own ojo-likemodule to provide other shortcuts you’d like. Here’s

an extension that adds an S to slurp a file and cookie to extract the Set-

Cookie header. It loads ojo first and reëxports those functions:

Extending ojo | 237

https://metacpan.org/pod/Mojo::DOM
https://metacpan.org/pod/ojo
https://metacpan.org/pod/ojo

use Mojo::Base -strict, -signatures;

use ojo;

use Exporter qw(import);

our @EXPORT = (

new shortcuts

qw(s cookie),

from ojo

qw(a b c d f g h j n o p r t u x)

);

sub S ($file) { f($file)->slurp }

sub cookie ($url) { g($url)->headers->set_cookie }

Now loading a file is a bit shorter (something important for one-liners):

% perl -Ilib -MyOjo -e "print S(shift)" test.html

Create a DOM from the slurped file right away:

% perl -Ilib -MyOjo -e "x(S(shift))->at('p')->text" test.html

Check the cookie value for a resource:

% perl -Ilib -MyOjo -E "say cookie(shift)"⏎

mojolicious.org

__cfduid=dc889efdd23c2fca4379087e969ae66901532359564;⏎

expires=Tue, 23-Jul-19 15:26:04 GMT; path=/; domain=⏎

.mojolicious.org; HttpOnly; Secure

You might also consider not inheriting from ojo. Take a look at the source;

it’s very simple and you can easily create your standalone module doing the

same sort of thing with your specialized subroutines.

238 | Command-Line Programs

https://metacpan.org/pod/ojo

Summary

There are several shortcuts that make Mojo one-liners easy. Make your re-

quest and process it right from the command line. If you want to reüse these

one-liners you can create shell aliases. If you need more you can create your

own shortcut module to handle it for you.

Summary | 239

240 | Command-Line Programs

