

MODX and WordPress, Side by Side

Everett Griffiths

This book is for sale at http://leanpub.com/modx-vs-wordpress

This version was published on 2014-11-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Everett Griffiths

http://leanpub.com/modx-vs-wordpress
http://leanpub.com
http://leanpub.com/manifesto

Cover design by Nick Hoag, Owner/Director at The Future Forward

Contents

Chapter 1: Introduction . 1
Goals of this Book . 1
Intended Audience . 1
Organization of this Book . 1
WordPress: Pros and Cons . 2
MODX: Pros and Cons . 4
Comparing Both Systems . 5
Recommendations to Developers . 7

Complete Table of Contents . 8
Chapter 1: Introduction . 8
Chapter 2: The Basics . 8
Chapter 4: Menus . 8
Chapter 5: URLS and Links . 9
Chapter 6: Post-Types vs. Resource Types . 9
Chapter 7: Themes and Templates . 9
Chapter 8: Custom fields vs. Template Variables . 9
Chapter 9: Adding PHP Code to your Site . 9
Chapter 10: Permissions . 9
Chapter 11: Blogs . 10
Chapter 12: Taxonomies . 10
Chapter 13: Installing Updates . 10
Chapter 14: Moving Servers . 10
Chapter 15: Internationalizing your Code . 11
Chapter 16: Versioning Your Code . 11
Chapter 17: Publishing Add-Ons . 11
Chapter 18: Caching . 11
Chapter 19: Multiple Sites . 12
Chapter 20: Hacking Passwords . 12
Chapter 21: Hardening and Security . 12

Chapter 1: Introduction
Goals of this Book

This book compares MODX 2.x and Wordpress 3.x side-by-side (specifically MODX 2.3 and
WordPress 4.0). Its goals are to demonstrate through examples how to accomplish the same tasks
in both systems. The focus of this book is on practicality: topics that are essential to understanding
each system are included, as well as challenging topics that every good site administrator should
know (such as how to reset a lost password).

This book aims to be a crossover manual so that those who are familiar with one system can quickly
get up to speed on the other. This book aims to identify strengths and weaknesses in each system
so that the reader will see for themselves how one system can accomplish a particular task better or
more thoroughly than the other.

Intended Audience

This book is valuable to any developer who wants to quickly learn the ropes of either WordPress
or MODX, but it is most valuable to the people who already are familiar with one system and
want to learn the other. Just like books that teach a foreign language, this book attempts to repeat
each discussion in two ways. If you already “speak” WordPress, this book will teach you the most
important MODX “phrases”. If you are fluent in MODX and need to know how to get by in the land
of WordPress, this book will show you the WordPress equivalents of your “native MODX tongue”.

This book is not intended for PHP beginners or for people who are just learning to use a content
management system (CMS). If you are just starting to learn the ropes of how the web works or how
to beginweb development, then this book is probably not for you. If you have a technical background
and have worked with other web applications before however, then you should have little trouble
following this book and its examples.

Organization of this Book

Each chapter in this book covers a given topic in its most common permutations. When necessary,
the topics are given some background and explanation because that helps understand why the
applications are structured the way they are. When a solution in one system is discussed, it is
discussed from the point of view of the other system. For example, if the topic being covered is
templates or uploading media, the section describing how this works in WordPress is discussed
from a MODX point of view, whereas the section describing how it works in MODX is explained in

Chapter 1: Introduction 2

a way intended to make sense to a WordPress user. The terms “MODXers” and “WordPressers” are
used throughout to refer to users who are versed in the respective systems.

WordPress: Pros and Cons

Pros

WordPress came on the scene in 2003 and quickly became the go-to platform for blogging:
it is easy to set up, it can be customized fairly easily, and its admin dashboard is stream-
lined and intuitive. According to TechCrunch, it is one of the most popular web applications
of all time: it powers approximately a fifth of all new sites launched in the United States
(http://techcrunch.com/2011/08/19/wordpress-now-powers-22-percent-of-new-active-websites-in-the-
us/).With that kind popularity, it is easy to find developers and themes, and there is a huge repository
of plugins available for downloading.

Blogging has always been one of the core competencies in WordPress, and it stands out as one of the
easiest blogging systems to set up and maintain. For the end users, it represents a clean and simple
platform that helps them reach their audience quickly with minimal fuss.

Beginning with version 3, WordPress is finally wandering into the content management arena
instead of being just a blogging platform.

The biggest draw to WordPress is probably its manager: it is well laid out, it is easy to use, and it is
pretty snappy. Its PHP code is simplistic and easy for beginners to tinker with. If you are building
a site that fits a standard bill, then chances are good that WordPress will allow you to get it built
quickly and easily, and youwon’t need to be a developer to do it. WordPress is fantastically forgiving
of incompetence: even the most inept luddite can fumble their way through building and running a
WordPress site, and that fact alone is a hugely powerful testament to the value of this system.

Cons

MODXers may be surprised at the incompleteness of the WordPress API in some areas, or at its
baffling thorniness in others. MODXers will be daunted by the complexity of WordPress themes. A
full WordPress theme involves a dozen or so PHP files, and it is not always clear how they interact
with each other, and it can be a time-consuming chore to track down which files are being used to
render a page. There are functions and logical flows in the template files too, and since they are PHP
code, they can crash or even be hacked! The only comparison that is remotely similar in the MODX
world is the PHx plugin and its kin of output filters, which allows users to put logical statements
into their template files, and its overuse often leaves MODX templates in the same state as most
WordPress themes: unpredictable and difficult to debug.

Perhaps the biggest shortcoming of WordPress is its underlying code: most of its API “methods” are
procedural functions declared in the main namespace. You might look through thousands of lines
of source code and not find a single PHP object or class. Naming collisions are a big concern, and

Chapter 1: Introduction 3

overriding default behavior is sometimes impossible. Some of this can be attributed to the fact that
WordPress supported a dwindling number of PHP 4 users for a very long time, and to be fair, it is
hard to change momentum and rewrite the core code when you have such a huge user base, but
regardless, some of the core code is downright sophomoric, poorly conceived, and difficult to work
with.

The other major consideration when dealing with WordPress is its near exclusive reliance on an
event-driven architecture, which ends up being both a blessing and a curse. Every plugin “hooks”
into either action- or filter-events and registers a callback function. The process is as simple as it
is flexible, but the “event-space” can quickly get polluted with competing callback functions and
there is zero visibility into which functions are modifying the output of any given event. By far,
most development problems arise from these conflicts. Given the architecture, these conflicts are
hard to avoid, so one of the first steps to debugging one plugin is to disable all the others. Whereas
namespace pollution is easy to see because PHP will generate visible errors or warnings, the event-
space pollution is a silent killer: there is rarely any warning. Even though most plugins rely on only a
handful of common events, other events are almost mythical in their obscurity and many are poorly
documented, so sometimes finding the right action or filter can be a demoralizing research task.

Because so many would-be “developers” have made what appear to be poorly conceived pork barrel
contributions to the WordPress core, there are often multiple functions that accomplish almost the
same thing, e.g. get_posts(), query_posts(), and WP_Query(). The WordPress coding standards
are lax, and some parts of the core are inefficient and bloated and most of the code relies heavily on
global variables. It must be said that poorly architected code is quite difficult to follow. As one core
contributor groused in frustration: “WordPress is 100% open-source, 0% open-minded… [it’s] one big
patchwork of bad ideas and unchecked opinions” – this is a common sentiment in any open-source
project, but the problem seems quite acute in WordPress. The code that is easy to implement when
you start building your site is the same code that becomes a tangled, unforgiving mess when your
project needs to scale or be customized.

WordPress is shorthanded when it comes to certain features that are common in more mature
systems: there is no built-in logging, the control of permissions is simplistic, and official support
is practically nonexistent. It may be king of the blogosphere, but in other arenas WordPress is a
deadbeat or worse: users can be ruthlessly flamed for even suggesting that the architecture ought to
be changed (full disclosure: I’ve been flamed for that). If you work in both systems, you may find
that sometimes MODX’s complexity and flexibility is matched by WordPress’ primitiveness and
streamlining. Tit for tat.

No Logs
The WordPress core does not log information, so debugging can be extremely challenging.

A practical note for web professionals: WordPress users are accustomed to getting things for free,
so negotiating fees is a challenge. In my experience, WordPress clients tend to rank closer to
hobbyists, so the project budgets follow accordingly. You have fewer tools at your disposal because

Chapter 1: Introduction 4

the core API is sometimes maddeningly limited, and do not underestimate the pain that results from
having no application logs to help you troubleshoot the inevitable problems. This means that many
WordPress projects require extra work to implement and they often pay less because the competition
is absolutely massive. It can be a bad place for a developer to work. Conversely, this is sometimes
exactly why site owners choose WordPress: they don’t want any lack of developers who can help
maintain their sites.

MODX: Pros and Cons

Pros

MODX 2 (Revolution) was officially released in 2010 as the successor to MODX Evolution. It has a
small and loyal following, and it offers features that are hard to find anywhere in the open-source
world.

Historically, one of the strengths of MODX has been its implementation of custom fields (known as
“Template Variables” in MODX parlance). It has always been easy to define and associate a variety
of custom fields with a type of document, making MODX ideal for content-driven sites where the
standard fields may not fit the bill.

Another area where MODX shines is in its templates: they more or less follow the Model-View-
Controller (MVC) architecture pattern. MODX has always used a template system that is static:
this aspect may be counterintuitive to WordPressers who are used to thinking of the templates as a
dynamic part of the application (or perhaps more commonly, they don’t think about the template
internals at all). The MVC style approach is flexible. No matter what kind of HTML or XML you
want to use to when displaying content, MODX has been one of the simplest template systems to
work with, making it an easy task to adapt existing HTML/CSS wireframes into dynamic templates
that can power an entire site. Each MODX document can have its own template, and each template
can use whatever HTML, CSS, or JavaScript you desire, resulting in virtually unparalleled flexibility
for designers. It is never a mystery figuring out which template a given page is skinned with.

Cons

Because MODX is built on a framework, it can be much more difficult for the junior PHP developer
to understand its advanced programming structures.

The MODX manager is frustratingly inefficient (due to its use of ExtJS), and a MODX site may
require a beefier server than its WordPress counterpart. We’ll look into this in detail later on, but
MODX’s caching internals make its performance on the front-end quite attractive.

Perhaps the biggest drawback with MODX is its complexity, especially inside the manager. The
manager does not do much handholding, and some degree of competence is required for the admins
because its degree of streamlining is nowhere close to the drag-and-drop dreamland of WordPress’

Chapter 1: Introduction 5

manager. MODX as a platform caters more to web professionals who are comfortable with building
HTML or PHP sites by hand or who at least understand the underlying components of a web page.

WordPressers may be bewildered that MODX stores its templates and PHP code in the database,
including the HTML for your templates. You can create MODX templates and PHP Snippets without
ever adding files to the file system. This setup has left more than one noob wandering lost through
the file system trying to find the “magical” directory that MODX scans for these elements, and this
architecture can cause problems during migrations.

WordPress users are paradoxically confused by the simplicity of the MODX templates: instead of
relying on a series of interconnected PHP files, a MODX template is self-contained, and it contains
no PHP. Instead, MODX templates use simple [[*placeholder]] tags, which get replaced with data
when a page is rendered. A MODX template cannot be the attack vector for a hack (since no PHP
tags are parsed), but the downside is there is no functionality there unless you explicitly add it.

Blogging in MODX can be confusing: it’s not the easy setup you get on a WordPress site. You can
set up a blog in MODX, but it takes time to configure. You’ll hear this a lot in this book, but it holds
true in many regards, including blogging: MODX is more flexible, but it takes longer to set up.

Every open-source project suffers from a lack of documentation, and MODX is no exception: even
on the official web site (http://rtfm.modx.com/) examples are sometimes difficult to find. Because
MODX has a relatively small following, there are precious few books and sites that detail its
usage. This is changing as MODX grows (you’re holding evidence of that right now), but it can be
frustrating as a developer when you are unable to find documentation. To be fair, the MODX forums
are vibrant with many helpful individuals contributing to discussions (sometimes even members of
the core team), but the MODX documentation is still catching up to the product, and that may leave
some developers groping for solutions in the dark.

Comparing Both Systems

This chapter would not be complete if I didn’t at least attempt to summarize both systems. The
following informal graph represents my take on what it’s like to work in both systems (based off
personal experience and recorded hours).

Chapter 1: Introduction 6

MODX vs. WordPress : Development Time

The general lesson here is that WordPress is easier to set up, but the more customizations that
are required, the harder it gets to develop and maintain. Given people’s optimistic tendencies to
underestimate complexity and their natural inclination towards scope creep, I have often ended up
in the nasty area of that graph, burning hour after un-billable hour fixing WordPress issues that
simply would not have arisen had the site been built with MODX. The flip side is that for simple
sites, WordPress is quicker to work with.

There are tradeoffs to working with either system, and sometimes it’s hard to determine the best
course of action. I try to realistically determine how complex a site will be so I can choose the most
efficient way of getting there.

Chapter 1: Introduction 7

Recommendations to Developers

Become a polyglot! Learn more than one system, and you will be that much wiser about application
design. It will make you a better coder and more valuable to clients looking to hire someone. Each
system has its own advantages, and it really behooves the developer to have experience in multiple
systems. Certain problems may be more easily solved using one system over another. When drawing
up specifications for a project, it can be invaluable to know off the top of your head whether a certain
system is capable of performing a certain task.

If possible, I recommend that you find a couple projects (hopefully ones with some room for
experimentation) and then devote yourself to finishing them using the new system. Just like living
abroad and speaking a foreign language, the task requires patience, especially when the thought
keeps gnawing at you: “If I were using the other system I’d be done by now.” If that thought creeps
into your head (and it will), take a deep breath. It’s not the point that you know the other system
better. The point is that you are learning something new, and you have the patience to wander
out of your comfort zone to acquire that new knowledge and experience. Take the time to immerse
yourself and stumble through the problems, even when (or especially when) it is frustrating and
feels awkward. This frustration is to be expected and it is an entirely normal part of the learning
process. So have patience and be confident that eventually, you will achieve a degree of fluency and
competence.

Ready? Pack your bags with patience and tenacity, stamp your developer passport for foreign lands
and let the adventure begin!

Complete Table of Contents
MODX and WordPress, Side by Side¹ includes 21 chapters (nearly 200 pages) of material. Here’s
what is included in the full version of the book:

Chapter 1: Introduction

• Goals of this Book
• Intended Audience
• Organization of this Book
• WordPress: Pros and Cons
• MODX: Pros and Cons
• Comparing Both Systems
• Recommendations to Developers

Chapter 2: The Basics

• Installation
• Logging In
• Documentation
• Chapter 3: Content
• Content in WordPress
• Content in MODX
• Symlinks
• Articles
• SUMMARY

Chapter 4: Menus

• Menus in WordPress
• Menus in MODX

¹https://leanpub.com/modx-vs-wordpress

https://leanpub.com/modx-vs-wordpress
https://leanpub.com/modx-vs-wordpress

Complete Table of Contents 9

Chapter 5: URLS and Links

• MODX Link Tricks

Chapter 6: Post-Types vs. Resource Types

• Post-Types in WordPress
• Custom Content Type Manager
• Resource Types in MODX

Chapter 7: Themes and Templates

• WordPress Themes
• MODX Templates
• Overview of MODX Resource Variables

Chapter 8: Custom fields vs. Template Variables

• Adding Custom Fields to WordPress Posts or Pages
• Adding Template Variables to MODx Documents
• Summary

Chapter 9: Adding PHP Code to your Site

• Plugins, Snippets, and Custom Manager Pages
• PHP in a Template
• MODX Snippets
• PHP on a specific Page
• Logging in MODX
• Logging in WordPress

Chapter 10: Permissions

• Users and Roles
• Administrator
• Editor

Complete Table of Contents 10

• Subscriber
• Author
• Contributor
• Resource Groups, Categories, and Beyond
• Adding Custom Permissions
• WordPress Permissions
• Summary

Chapter 11: Blogs

• Why Blog?
• What is a Blog?
• Must we Have One?
• Component Pages
• Setting up a MODX Blog without Articles
• Setting up a MODX Blog using Articles

Chapter 12: Taxonomies

• Taxonomies in WordPress
• Taxonomies in MODX

Chapter 13: Installing Updates

• Updating WordPress
• Updating MODX

Chapter 14: Moving Servers

• Preparing to Back up MODX
• General Backup Instructions
• Installing your Backup on a New Server
• Warning about WordPress
• Migrating a MODX Site

Complete Table of Contents 11

Chapter 15: Internationalizing your Code

• WordPress and gettext()
• MODX Lexicon
• Overriding Lexicon Messages
• Summary

Chapter 16: Versioning Your Code

• Introduction to Versioning
• SVN vs. Git
• WordPress: Versioning in SVN
• SVN Clients
• MODX: Versioning in Git
• Summary

Chapter 17: Publishing Add-Ons

• Releasing a WordPress Plugin
• Releasing a MODX Add-On
• Creating a Build Script by Hand
• Repoman
• Removing Packages
• Uploading Your Package
• Summary

Chapter 18: Caching

• Caching in WordPress
• Caching in MODX
• Resource Cache
• The Showdown: MODX vs. WordPress
• And the Winner Is…
• Summary

Complete Table of Contents 12

Chapter 19: Multiple Sites

• WordPress Multi-Site
• Limitations
• MODX Multi-Context
• The Assets Problem
• Sessions

Chapter 20: Hacking Passwords

• Hacking WordPress
• Hacking MODX
• Summary

Chapter 21: Hardening and Security

• Basic Web Security
• MODX Hardening
• WordPress Hardening
• Conclusion

	Table of Contents
	Chapter 1: Introduction
	Goals of this Book
	Intended Audience
	Organization of this Book
	WordPress: Pros and Cons
	MODX: Pros and Cons
	Comparing Both Systems
	Recommendations to Developers

	Complete Table of Contents
	Chapter 1: Introduction
	Chapter 2: The Basics
	Chapter 4: Menus
	Chapter 5: URLS and Links
	Chapter 6: Post-Types vs. Resource Types
	Chapter 7: Themes and Templates
	Chapter 8: Custom fields vs. Template Variables
	Chapter 9: Adding PHP Code to your Site
	Chapter 10: Permissions
	Chapter 11: Blogs
	Chapter 12: Taxonomies
	Chapter 13: Installing Updates
	Chapter 14: Moving Servers
	Chapter 15: Internationalizing your Code
	Chapter 16: Versioning Your Code
	Chapter 17: Publishing Add-Ons
	Chapter 18: Caching
	Chapter 19: Multiple Sites
	Chapter 20: Hacking Passwords
	Chapter 21: Hardening and Security

