Modular Architecture on
IOS and macOS

PP N 5 =Y F
. 3 e b :
W e] ke L i,
.‘q' - - " s
-] .- . _" : -\:' o \'*
J i
& . # r
g 4 A :
' F ‘ P e

| T “
1 LR
i1
111
T

I o 23 |
A e 1. ey |
) T
Hi

=

rem——

B

-._":'- 1 Iz
| IL'F | i
- r_ - _‘: "I':-l_,
1;@ T -
:%E. .|. i
l Ir o TR il
|

R ~x] L
Hﬁ:’;‘ Eﬂl- a“lr iR I 3'!:"I | ! | | A TEES o . | | TrFTrrre w S ———
4$=. Nl J'}" ||' II _.;I_:_:_;__| __- _..,,-—._.___.,_.,#,_ ''''' " i1l . | . ' i

i‘?;ﬂi:&; - ! Ei:hﬁ ;II|_i-I'I: II. "-:-'_-""r'.E" | i 41 t r i 1 J t

1 AL = ' UL .hl_.L_L,L._l l_hl_ A
Building La IOS and macOS Apps and
Frameworks With Domain-Driven Design

pro—

CINT), S SR

|

-]

&

==

1
i
.'u:-ln
e ——— U

e |

rge Scalable

Cyril Cermak

Modular Architecture on iOS and macOS

Building large scalable i0S/macOS apps and frameworks with Domain-Driven Design

CFBundleVersion - 2.0.0

Dedication

“To my Mom and Dad, because they really tried.”
&&

“To the community, rule no. 5 of my childhood hero Arnold Schwarzenegger says; Don’t just take, give some-
thing back. This is me giving back.”

&&

“Finally, to my current girlfriend ... whoever she might be at this very moment”

About the Author

Hi, lam , a software engineer by heart and the author of this book. Most of my professional ca-
reer was spent building iOS apps or iOS frameworks. My professional career began at Skoda Auto Connect
App in Prague, continued for Freelancer Ltd in Sydney building iOS platform, included numerous start-ups
along the way, and, currently, has me as an iOS Architect Porsche AG, in Stuttgart. In this book, | am describ-
ing different approaches for building modular iOS architectures and will be providing some mechanisms
and essential knowledge that should help one decide which approach would fit the best or should be con-
sidered for a project.

About the Reviewer

Greetings, | am , the unintentional and forever grateful reviewer of this book in both its
current and previous editions. My professional journey as an iOS Software Developer took an unexpected
turn when | met the illustrious Cyril while working on the same groundbreaking project. Our paths first
crossed amidst a whirlwind of iOS Swift code, Ruby code, and GitHub Actions during the development of
the aforementioned project. In this book, | provided a meticulous, albeit whimsical, review of modular iOS
architectures, contributing not just technical insights but also arcane wisdom gathered from my vast and
varied experiences. My reviews are known for their unique blend of hard-hitting analysis and absurd humor,
ensuring that even the driest of subjects can elicit a hearty chuckle.

About Contributors

Special thanks to , a dear colleague of mine, who did a bachelor thesis on modularisation of
iOS applications with my guidance. David wrote the Benchmarking of Modular Architecture chapter of this
book.

How to Contribute

Feel free to contribute to this work by opening a PR.

https://www.linkedin.com/in/cyril-cermak-210a8b6b/
https://www.linkedin.com/in/yesvegan/
https://www.linkedin.com/in/david-ullmer-214bbb223/

Contents

Modular Architecture on iOS and macOS
Dedication

About the Author
Aboutthe Reviewer i e e e e e e e e e e e e e e e
About Contributors o e e e e e e e e e e e e e e
Howto Contribute i i i i e e e e e e e e e e e

Introduction
Whatyou Need o i i s et e e e e e e e e e e e e e e e e e e
Whatisthisbookabout e e e e

LaYerS & o o e
Application Layer v i i e
DomainLayer i e e e e e e e e e e e e e e e
SerViCe Layer . v v i i e
0o = - YT
Shared Layer it e

Example: International Space Station L e e
OVEIVIEW . . o o i i e
CoSMONAUL . . . v v e e e e e e e e e e e e e
Laboratory . . . o i e

Conclusion . . . o o o e e e e e e e e e e

Libraries on Apple’s ecosystem
Dynamicvsstaticlibrary? o e e e e e e e e e e
PROS & CONS . . . e
Essentials . . v v v i i e
Exposing static3rd party library e e e e e e e e
Examininglibraryo e e e e e e e e e
Mach-Ofileformat i e e e e e e e
Fatheaders o o i i i i e e e e e e e e e e e e
Executabletype L e e e
Dependencies . . . v v i i e e e e e e e e e e e e e e e e e e
Symbolstable e e e e e e e

w W w w

o O O ®

10
10
11
11
11
12
12
12
12
14
15
16
16

SEHNGS . o . o o e e e e e e e e e 28

Build system L e e e e e e e e e e e 28
ConclUSION . . o o e 29
Swift Compiler (optional) 31
Compiler Architecture i i i e e e e e e e e e e e 31
ParSiNg . . e 33
Semanticanalysis v . it e 35
Clangimporter o o e e e e e e e e e e e e e e e 36
SILgeneration L e e e e e e e 36
LLVMIR Generation o i e e e e e e e e e 39
Exportingdylib o o e e e e e e e e e e e e 40
ConcClusion L e 42
Development of the Modular Architecture 43
Creatingworkspace structure e e e e e e e 44
Automatingthe process i i i i e e e e e e e e e 45
Xcode’sworkspace oL e e e e e e e e e e e e e e e e 46
Generating Projects i i e e e e e e e e e e e e e e e e e a7
HelloXcodeGen o o i e e e e e e e e e e e 48
Ground Rules L e e e e e e e e e e e e e e e e e e e 51
Cross-linkingdependencies i i i i i i i i e e e e e e e e e e e 52
Verticallinking o o e e e e e e e e e e e e 52

Core Framework o e e e e e e e e e e e e e e e 53
Using Core Framework o v i i i i e s e e e e e e e e e e e e e e e e e e 53

Core Framework Usage and Best Practices v i i i i i i i i it e e e v, 54

Core Framework linkingand advantages oo .. 55

Core Framework disadvantages L e 56
CoreFramework Rules o i i e e 57
Testing . . e 57
UnitTestinginlsolation e 57
Application Framework App . . . & . o i o i e e e e e e e e e e e 58

Unit Testing in Application Framework App i i ittt 59
UlTestinginlsolation e e e e e e e e e e e 59
UlTesting in Application Framework App o o i i i i i e i e e e e 61
Mock Framework e e e e e e e e e e e e e e e e 61

Final Look at One Fully Fledged Xcode Project (module) 62
Conclusion . . . o L L e e e e e e e e e e e e e e e e 62

Benchmarking of Modular Architecture
Test S tUD & . v e
Testresults . . . o o i e e e e e e e e e e e e e e
Y o] 0 351
MeMOIY USAZe . . . v o o i e e et e
Compiletime o i e e e e e e e e e e e e
Launchtime o . o e e e e e e e e
CoNClUSION . . s e

SPM (maybe v3? or never)

Application Framework - Best Practices
App Secrets e e e e e e e e e e e e e e e e e e
Howtohandlesecrets i i i i i i i it e e et e e e e e
TheGNUPG (GPG) . . . v o vt e e e e e e e e e e e e e e e e
GEM: Mobile Secrets o i e e e e e e e e e
The ugly and brilliant part of the Secretssourcecode
Workf oW . . s e

Scalability . . . o e e e e e e e e e e e e e
Application Framework & Distribution. e
Common Problems o . e e e e e e e e e e e e e e e e e e e
Maintenance i i i e e e e e e e e e e e e e
Codestyle . . . o v i i i i e e e e e e e e e e e e e
Not fully autonomousteams L e e e e
CONCIUSION . o . s e s e

Dependency Managers
COC0aPOAS . v v i e
Integration with the applicationframework o o oL
Carthage . . . i i e e e e e e e e e e e e e e e
SWITtPM . . e e e e e e e e e e e e e e e

Design Patterns
Coordinator o o e e e e e e e e e e e
Strategy . . . o e e e e e e e e
Configuration . . . o . L i e e e e e e e e e e e e e e e e
Decoupling e e e e e
MUVM+C L e

Protocol Oriented Programming (POP) 0 i i i i i e e e e e et e e
Conclusion . . . o ot e e e e e e e

Project Automation
Fastlane i e e e e e e e e e e
Continuous Integration (CI) i i e e e e e e e e e e e e e
Continuous Delivery (CD) v vt i e s s e e e e e e e e e e e e e e e
Ruby, programmer’sbestfriend e e
Conclusion . . . L e e e e e e e e e e e e e e e

THE END
Donation

Licence

95
95
96
96
97
97

98

98

929

Introduction

In the software engineering field, people are going from project to project, gaining a different kind of experi-
ence out of it. In particular, on iOS, mostly the monolithic approaches are used. In some cases it makes total
sense, so nothing against it. However, scaling up the team, or even better, the team of teams on a monolith-
ically built app is horrifying and nearly impossible without some major build time impacts on a daily basis.
Numerous problems will rise, that limit the way iOS projects are built or managed at the organisational
level.

Scaling up the monolithic approach to a team of e.g 10+ developers will most likely result in hell. By hell, |
mean, resolving xcodeproj issues, where in the worst case, both parties renamed, edited, or deleted the
same source code file or touched the same {storyboard|xib} file. That is, both worked on the same file which
would resolve in classic merge conflicts. Somehow, we all become accustomed to those issues and have
learned we will just need to live with them.

The deal-breaker comes when your PO/PM/CTO/CEO or anybody higher on the company’s food chain than
you are will come to the team to announce that he or she is planning to release a new flavour of the app or
to divide the current app into two separate parts. Afterwards, the engineering decision needs to be made
to either continue with the monolithic approach or implement something different. Continuing with the
monolithic approach, likely would result in creating different targets, assigning files towards the new flavour
of the app and continuing on living in multiplied hell all the while hoping that some requirement such as
shipping core components of the app to a subsidiary or open-sourcing it as a framework will not come into
play.

Not surprisingly, a better approach would be to start refactoring the app using a modular approach, where
each team can be responsible for particular frameworks (parts of the app) that are then linked towards final
customer-facing apps. That will most certainly take time as it will not be easy to transform it but the future
of the company’s mobile engineering will be faster, scalable, maintainable and even ready to distribute or
open-source some SDKs of it to the outer world.

Another scenario could be that you are already working on an app that is set up in a modular way but your
app takes around 20 mins to compile because it is a huge legacy codebase that has been in development
for the past ten or so years and has linked every possible 3rd party library along the way. The decision was
made to modularise it with Cocoapods therefore, you cannot link easily already pre-compiled libraries with
Carthage and every project clean means you can take a double shot of espresso. | have been there, trust
me, it is another type of hell, definitely not a place where anyone would like to be. | described the whole
migration process of such a project . Of course, in this book you will read
about it in more detail.

Nowadays, as an iOS System Architect, | am often getting asked some questions all over again from new
teams or new colleagues with regards to those topics. Thereafter, | decided to sum it up and tried to get the
whole subject covered in this book. The purpose of it is to help developers working on such architectures
to gain the background knowledge and experience in order to more quickly and correctly implement these

https://medium.com/freelancer-engineering/modular-architecture-on-ios-and-how-i-decreased-build-time-by-50-23c7666c6d2f

ideas.

Hopefully, this introduction provided enough motivation that you will want to dive further into this book.

What you Need

The latest version of for compilingthe demo examples, toinstall some mandatory dependencies,
,and for running scripts and downloading some ruby gems.

What is this book about

This book describes the essentials of building a modular architecture on iOS which further can be extended
to all Apple platforms. You will find examples of different approaches, framework types, their pros and cons,
common problems and so on. By the end of this book, you should have a very good understanding of what
benefits such an architecture will bring to your project, whether it is necessary at all, and which way would
be the best for modularising the project. This book focuses on high level architecture, modularisation of a
project, and collaboration in way to be the most efficient.

What is this book NOT about

SwiftUl.

https://apps.apple.com/us/app/xcode/id497799835?mt=12
https://brew.sh/
https://www.ruby-lang.org/en/
https://bundler.io/

Modular Architecture

Modular, adjective - employing or involving a module or modules as the basis of design or construction: “mod-
ular housing units”

In the introduction, | briefly touched on the motivation for building the project in a modular way. To sum-
marise, modular architecture will give us much more freedom when it comes to the product decisions that
willinfluence the overall app engineering. These include building another app for the same company, open-
sourcing some parts of the existing codebase, scaling the team of developers, and so on. With the already
existing mobile foundation, the whole development process will be done way faster and cleaner.

To befair, maintaining such a software foundation of a company might be also really difficult. By maintaining,
I mean, taking care of the CI/CD (Continuous Integration / Continuous Delivery), maintaining old projects
developed on top of the foundation that was heavily refactored in the meantime, legacy code, keeping it
up-to-date with the latest development tools and so on. It goes without saying that on a very large project,
this could be the work of one standalone team.

This book describes building such a large scalable architecture with domain-driven design and does so by
using examples; The software foundation for the

In the context of this book a module is the standalone drawn box, or in practice an Xcode project which
encapsulates frameworks, test bundles etc. Further to quote : A framework is a hierarchical directory
that encapsulates shared resources, such as a dynamic shared library, nib files, image files, localized strings,
header files, and reference documentation in a single package. Multiple applications can use all of these re-
sources simultaneously. The system loads them into memory as needed and shares the one copy of the re-
source among all applications whenever possible.

Design

In this book, | chose to use the architecture that | think is the most flexible. Itis a five-layer architecture that
consists of the following layers:

« Application
« Domain

+ Service

« Core

+ Shared

Each layer is explained in the following section.

Nevertheless, the same principles can be applied for other architectural structures as well. An example is a
simplified feature-oriented architecture where the layers could be defined as follows:

« Application

10

https://en.wikipedia.org/wiki/International_Space_Station
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WhatAreFrameworks.html

» Feature
« Core

This whole setup with layers and modules in them is further in the book referenced as Application
Framework.

Now to the specific layers.

Layers

Let us have a look now at each layer and its purpose. Further, we will look at the particular modules within
layers and their internal structure.

Application Layer

The application layer consists of the final customer-facing products: applications. Applications assemble all
the necessary parts from the Application Framework together, linking domains, services, and so on. Further
the app is instantiating the Ul stack, primarily domain coordinators (if such pattern is used) and objects
such as NetworkService, CashierService, etc. The app also has its unique app configuration, which hosts
information such as app flavour, app variant, enabled feature toggles, keychain configuration etc. Patterns
that will help achieve such requirements will be described later.

Additionally, the App might also contain some necessary application implementations like receiving push
notifications, handling deep linking, requesting permissions, and many more.

In the Application Framework, the App is just a container that stitches pieces together.

As an example, an app in an e-commerce business could be The Shop for online customer and Cashier
for the employees of that company.

Domain Layer

Domain layer links services and other modules from layers below and uses them to implement the busi-
ness domain needs of the company or the project. Domains will contain, for example, the user flow within
the particular domain part of the app. Furthermore, the domain will have the necessary components for
the flow like; coordinators, view controllers, views, models and view models. Obviously it depends on the
team’s preferences and technical experience which pattern will be used for creating screens. Personally, the
reactive MVVM+C is my favourite but more on that later.

Continuing with our example of an e-commerce app, a domain could be Checkout or Store Itemsand
a shared domain could be a User which would based on a configuration display flow for an employee or a
customer.

11

Service Layer

Services are modules supporting domains. Each domain can link several services to achieve desired out-
comes. Such services will most likely talk to the backend, obtaining data from it, persisting the data in its
storage, and exposing the data to domains.

A service in our theoretical e-commerce app could be a Checkout Service. This service would handle
all of the necessary communication with the backend so as to proceed with the credit card payments etc.

Core Layer

The core layer is the enabler for the whole app. Services will link the necessary modules out of it for e.g
communicating with the backend or providing a general abstraction of persisting the data. Domains will
link e.g Ul components for easier implementation of screens and so on.

A core module in our e-commerce app could be Network or UIComponents.

Shared Layer

The shared layer is a supporting layer for the whole framework. It can happen that this layer might not need
to exist, therefore, it is not considered in all diagrams. However, a perfect example of the shared layer is
some logging mechanism. Even core layer modules may want to log some output and that could potentially
lead to duplicates. This duplicated code could be solved by the shared layer or by following principles of
clean architecture. Nevertheless, more on that topic later.

For example, a shared module in an e-commerce app could be Logging or AppAnalytics.

Example: International Space Station

Now in this example, we will have a look at how such architecture could look like for the
. The diagram below shows the five-layer architecture with the modules and links. This structure is
henceforth referenced to as Application Framework throughout this work.

While this chapterisrather theoretical, in the following chapters everything will be explained and showcased
in practice.

The example has three applications.
« Overview: app that shows astronauts the overall status of the space station
« Cosmonaut: app where a Cosmonaut can control his spacesuit as well as his supplies and personal

information
+ Laboratory: app from which the laboratories on the space station can be controlled

12

https://en.wikipedia.org/wiki/International_Space_Station
https://en.wikipedia.org/wiki/International_Space_Station

Cosmonaut Overview

Laboratory

Columbus
Laboratory

Cosmonaut Docking .
Service PortService Heat Radiator Laboratory
Network Radio UlComponents

Common

Harmony
Laboratory

Cosmonaut Peripheries

o

Overview

Service Solar Array

Figure 1 - Application Framework

13

As described above, all apps link the Scaffold module which provides the bootstrapping for the app while
the app itself behaves like a container.

Overview

Overview

Peripheries Scaffold

Heat Radiator Solar Array

Docking
PortService

Network Radio UlComponents Persistence

Common

Figure 2 - Overview app

The diagram above describes the concrete linking of modules for the app. Let us have a closer look at it.

Overview app links the domain Peripheries, which implements logic and screens for peripheries of
the station.

The Peripheries domain links the Heat Radiator, Solar Array, and Docking Port services
from which data about those peripheries are gathered so as ULComponents for bootstrapping the screens’
development.

The linked services use the Network and Rad1io core modules. These provide the foundation for the com-
munication with other systems via network protocols. Rad1i o in this case could implement some communi-

14

cation channel via BLE (Bluetooth Low Energy) or other technology which would connect to the solar array
or heat radiator. Further, UIComponents are used to bootstrap the design and Pers-istenceis used for
database operations.

Cosmonaut

Cosmonaut

Cosmonaut

Cosmonaut
Service

Network Radio UlComponents Persistence

Common

Figure 3 - Cosmonaut app

The Cosmonaut app links the Spacesuit and Cosmonaut domains. This is the same for every other
domain, each domain is responsible for screens and users flow through the part of the app.

Spacesuit and Cosmonaut domains link Spacesuit Service and Cosmonaut Service,
services that provide data for domain-specific screens. UIComponents provides the Ul parts.

Spacesuitserviceis using Radio forcommunication with cosmonauts spacesuit via BLE or another type
of radio technology. Cosmonaut service uses Network for updating Houston about the current state of
the Cosmonaut and uses Persistence for storing the data of the cosmonaut for offline usage.

15

Laboratory

I will leave this one for the reader to figure out.

Conclusion

As you can probably imagine, scaling the architecture as described above should not be a problem. When it
comes to extending the Overview app for another ISS periphery, for example, a new domain module can be
easily added with some service modules etc.

When a requirement comes for creating a new app for e.g. cosmonauts, the new app can already link the
battlefield proven and tested Cosmonaut domain module with other necessary modules that are required.
Development of the new app will thus become much easier.

The knowledge of the software that remains in one repository where developers have access to and can
learn from is also very beneficial.

There are of course some disadvantages as well. For example, onboarding new developers on such an archi-
tecture might take a while, especially when there is already a huge existing codebase. In such a case, pair
programming comes into play so as a proper project onboarding, software architecture document and the
overall documentation of modules which helps newcomers to get on the right track.

16

Libraries on Apple’s ecosystem

Before we deep dive into the development of previously described architecture, there is some essential
knowledge that needs to be explained. In particular, we will need some background in the type of library
that is going to be used for building such a project and its behaviour.

In Apple’s ecosystem as of today, we have two main options when it comes to creating a library. The library
can either be statically or dynamically linked. Previously known as Cocoa Touch Framework, the dy-
namically linked library is nowadays referred to simply as Framewor k. The statically linked library is known
astheStatic Library.

Actually, at this point, a short note deserves also Swift Package and Swift Package Manager (SPM). SPM is
part of the Swift’s ecosystem rather than Apple’s. A swift package describes how a source code should be
attached to a target, leaving up to the swift package developer if static or dynamic linking is used. By default,
SPM uses static linking and similarly as a Framework can have additional resources attached to it. SPMis not
designed to share a compiled executables, it is designed to share source code files with ease. It also became
a common practice to share a XCFramework via SPM, in that case SPM servers just as a wrapper around
the attached compiled binary.

What is a library?
To quote Apple: “Libraries define symbols that are not built as part of your target.”

What are symbols? Symbols reference to chunks of code or data within binary.

17

Choose a template for your new project:

Multiplatform i0S macQ0S watchOS tvOS Other

Application

A 5

Document App Augmented Sticker Pack App
Reality App

@

iMessage App

Framework & Library

= fat N\

Framework Static Library Metal Library

Cancel

Figure 4 - Xcode Framework Types

18

Types of libraries:
1) Dynamicaly linked

« Dylib: Library that has its own Mach-O (explained later) binary. (.dy1lib)

« Framework: Framework is a bundle that contains the binary and other resources the binary might
need during the runtime. (. framework)

« TBDs: Text Based Dynamic Library Stubs is a text stubbed library (symbols only) around a binary with-
out including it as the binary resides on the target system, used by Apple to ship lightweight SDKs for
development. (. tbd)

+ XCFramework: From Xcode 11, the XCFramework was introduced which allows grouping a set
of frameworks for different platforms e.g macOS, i0S, i0S simulator, watchOS etc. (.
xcframework)

2) Statically linked

« Archive: Archive of a compiler produced object files with object code. (. a)

« Framework: Framework contains the static binary or static archive with additional resources the li-
brary might need. (. framework)

« XCFramework: Same as for dynamically linked library the XCFramework can be used with statically
linked. (. xcframework)

We can look at a framework as some bundle that is standalone and can be attached to a project with its own
binary. Nevertheless, the binary cannot run by itself, it must be part of some runnable target. So what is
exactly the difference?

Dynamic vs static library?

The main difference between a staticand dynamic library isin the Inversion Of Control (loC) and how they are
linked towards the main executable. When you are using something from a static library, you are in control
of it as it becomes part of the main executable during the build process (linking). On the other hand, when
you are using something from a dynamic framework you are passing responsibility for it to the framework as
the framework is dynamically linked to the executable’s process on app start. I'll delve more into loC in the
paragraph below. Static libraries, at least on iOS, cannot contain anything other than the executable code
unless they are wrapped into a static framework. A framework (dynamic or static) can contain everything
you can think of e.g storyboards, XIBs, images and so on...

As mentioned above, the way dynamic framework code execution works is slightly different than in a classic
project or a static library. For instance, calling a function from the dynamic framework is done through a
framework’s interface. Let’s say a class from a framework is instantiated in the project and then a specific
method is called on it. When the call is being made, you are passing the responsibility for it to the dynamic
framework and the framework itself then makes sure that the specific action is executed and the results

19

then passed back to the caller. This programming paradigm is known as Inversion Of Control. Thanks to
the umbrella file and module map you know exactly what you can access and instantiate from the dynamic
framework after the framework was built.

A dynamic framework does not support any Bridging-Header file; instead, there is an umbrella.h file. An
umbrella file should contain all Objective-C imports as you would normally have in the bridging-Header file.
The umbrella file is one big interface for the dynamic framework and it is usually named after the framework
name e.g myframework. h. If you do not want to manually add all the Objective-C headers, you can just
mark . h files as public. Xcode generates headers for ObjC for public files when building. It does the same
thing for Swift files as it puts the ClassName-Swift.h into the umbrella file and exposes the publicly
available Swift interfaces via the swiftmodule definition. You can check the final umbrella file and swiftmod-
ule under the derived data folder of the compiled framework.

On the other hand, a statically linked library is attached directly to the main executable during linking as the
library contains already a pre-compiled archive of the source files with symbols. That being said, thereis no
need for an umbrella file as is the case with loC in a dynamic framework.

It goes without saying that classes and other structures must be marked as public in order to be visible
outside of a framework or a library. Not surprisingly, only objects that are needed for clients of a framework
or a library should be exposed.

PROS & CONS

Now let’s have a look at some pros & cons of both.

Dynamic:
« PROS

- Can be opened on demand, therefore, might not get opened at all if user does not open specific
part of the app (dlopen).

- Can be linked transitively to other dynamic libraries without any difficulty.

- Can be exchanged without the recompile of the main executable just by replacing the framework
with a new version.

- Is loaded into a different memory space than the main executable.

- Can be shared between applications especially useful for system libraries.

- Can be loaded partially, only the needed symbols can be loaded into the memory (dLsym).

- Can be loaded lazily, only objects that are referenced will be loaded.

- Can be re-used between targets e.g an iOS app and its app extensions, an watch app and its
extensions.

- Library can perform some cleanup tasks when itis closed (dlclose).

- Potentially faster app start time as if a library is linked lazily, and opened in the runtime.

20

Mergeable libraries, Xcode 15 feature could be used for production builds to combine all dynamic
libraries into a single framework leveraging the best from the both worlds.
Hard separation of the codebase improves the compile time of the application.

« CONS

Static:

Slower app launch as each dynamic library must be opened, and loaded to memory separately.
At the very worst case, a library can run some computational difficult algorithm on the dlopen
initialiser which could slow the start up time even further.

The target must copy all dynamic libraries else the app crashes on the start or during runtime
withdyld library not found.

The overall size of the binary is bigger than the static one as the compiler can strip symbols from
the static library during the compile-time while in dynamic library the symbols at least the public
ones must remain.

Potential replacement of a dynamic library with a new version with different interfaces can break
the main executable.

Slower library API calls as it is loaded into a different memory space and called via library inter-
face.

Launch time of the app might take longer if all dynamic libraries are opened during the launch
time.

« PROS

Faster app start up, as just one executable is loaded into the memory

Is part of the main executable and therefore the app cannot crash during launch or runtime due
to a missing library.

Overall smaller size of the final executable as the unused symbols can be stripped.

In terms of call speed, there is no difference between the main executable and the library as the
library is part of the main executable.

Compiler can provide some extra optimisation during the build time of the main executable.

« CONS

The library must NOT be linked transitively as each link of the library would add it again. The
library must be present only once in the memory either in the main executable or one of its de-
pendencies otherwise the app will need to decide on startup which library is going to be used.
The main executable must be recompiled when the library has an update even though the li-
brary’s interface remains the same.

Compile time is slower as there are no hard interfaces and the build system must always figure
out what to re-compile

21

Essentials

When building any kind of modular architecture, it is crucial to keep in mind that a static library is attached
to the executable while a dynamic one is opened and linked at the launch time. Thereafter, if there are
two frameworks linking the same static library the app will launch with warnings Class loaded twice

one of them will be used. issue. That causes even slower app starts as the app needs to
decide which of those classes will be used. Furthermore, when two different versions of the same static
library are used the app will use them interchangeably. Debugging will become a horror in that case. That
being said, it is very important to be sure that the linking was done right and no warnings appear.

All that is the reason why using dynamically linked frameworks for internal development is the way to go.
However, working with static libraries is, unfortunately, inevitable especially when working with 3rd party
libraries. Big companies like Google, Microsoft or Amazon are using static libraries for distributing their SDKs.
As of now, for example: GoogleMaps, GooglePlaces, Firebase, MSAppCenter and all subsets of
those SDKs are linked statically.

When using 3rd party dependency manager like Cocoapods for linking one static library attached to more
than one project (App or Framework) it would fail the installation with target has transitive
dependencies that include static binaries. Therefore, it takes extra effort to link static
binaries into multiple frameworks.

Let’s have a look at how to link such a static library into a dynamically linked SDK.

Exposing static 3rd party library

As mentioned above, it takes extra effort to link a static library or static framework into a dynamically linked
project correctly. The crucial part is to make sure that it is linked only in one place. Either it can be linked
towards one dynamic framework or towards the app target. When linked toward a dynamic framework,
the static library can be exposed via umbrella file and made available everywhere the framework is linked.
When linked toward the app target, the static library or framework cannot be exposed anywhere else directly
but can be passed through to other frameworks on the code level via some level of abstraction. The same
applies to the static framework.

As an example of such umbrella file exposing GoogleMaps library that was linked to it could be:

// MyFramework.h - Umbrella file
#import <UIKit/UIKit.h>
#import "GoogleMaps/GoogleMaps.h"

The import of the header file of GoogleMaps into the frameworks umbrella file exposes all public headers
of the GoogleMaps because the GoogleMaps. h has all the GoogleMaps public headers.

// GoogleMaps.h
#import "GMSIndoorBuilding.h"
#import "GMSIndoorLevel.h"

22

#import "GMSAddress.h"

The library becomes available as soon as the My Framework import precedes the GoogleMaps one.

// MyFileInApp.swift
import MyFramework
import GoogleMaps

In case of the static GoogleMaps framework, it is necessary to copy its bundle towards the app because it
is there that the GoogleMaps binary is looking for its resources (translations, images, and so on).

Examining library

Let us have a look at some of the commands that comes in handy when solving some problems when it
comes to compiler errors or receiving compiled closed source dynamic framework or a static library. To
give it a quick start let’s have a look at a binary we all know very well; UIKit. The path to the UlKit.framework
is: /Applications/Xcode.app/Contents/Developer/Platforms/iPhone0S.platform/
Library/Developer/CoreSimulator/Profiles/Runtimes/i0S.simruntime/Contents
/Resources/RuntimeRoot/System/Library/Frameworks/UIKit.framework

Apple shipsvarious different tools for exploring compiled libraries and frameworks. On the UlKit framework,
I will demonstrate only essential commands that | often find quite useful.

Mach-O file format

Before we start, it is crucial to know what we are going to be exploring. In the Apple ecosystem, the file
format of any binary is called Mach-O (Mach object). Mach-O has a pre-defined structure starting with Mach-
0 header, following by segments, sections, load commands and so on.

Since you are surely a curious reader, by now you have many questions about where it all comes from. The
answer to that is quite simple. Since itis all part of the system, you can open up Xcode and look for afilein a
global path /usr/include/mach-o/loader.h. Inthe Loader. hfile for example the Mach-O header
struct is defined.

/*

* The 64-bit mach header appears at the very beginning of object files for
* 64-bit architectures.

*/
struct mach_header_64 {
uint32_t magic; /* mach magic number identifier x/
cpu_type_t cputype; /* cpu specifier x/

cpu_subtype_t cpusubtype; /* machine specifier x/
uint32_t filetype; /* type of file x/
uint32_t ncmds /* number of load commands x/

23

uint32_t sizeofcmds; /x the size of all the load commands x/
uint32_t flags; /* flags */
uint32_t reserved; /* reserved x*/

+s

When the compiler produces thefinal executable the Mach-O headeris placed at a concrete byte positioninit.
Therefore, tools that are working with the executables knows exactly where to look for desired information.
The same principle applies to all other parts of Mach-0 as well.

For further exploration of Mach-O file, | would recommend reading the following

Fat headers

First, let’s have a look at what Architectures the binary can be linked on (fat headers). For that, we are going
to use otool; the utility that is shipped within every macQS. To list fat headers of a compiled binary we will
use the flag - f and to produce a symbols readable output | also added the -v flag.

otool -fv ./UIKit

Not surprisingly, the output produces two architectures. One that runs on the Intel mac (x86_64) when de-
ploying to the simulator and one that runs on iPhones as well as on the recently introduced M1 Mac (armé64

).

Fat headers

fat_magic FAT_MAGIC

nfat_arch 2

architecture x86_64
cputype CPU_TYPE_X86_64
cpusubtype CPU_SUBTYPE_X86_64_ALL
capabilities 0x0
offset 4096
size 26736
align 2712 (4096)

architecture arme4
cputype CPU_TYPE_ARM64
cpusubtype CPU_SUBTYPE_ARM64_ALL
capabilities 0x0
offset 32768
size 51504
align 2714 (16384)

When the command finishes successfully while not printing any output it simply means that the binary does
not contain the fat header. That being said, the library can run only on one architecture and to see which
architecture that is, we have to print out the Mach-O header of the executable.

otool -hv ./UIKit

From the output of the Mach-O header we can see thatthe cputypeis X86_64. We can also see some extra
information like with which flags the library was compiled, the filetype, and so on.

24

https://medium.com/@cyrilcermak/exploring-ios-es-mach-o-executable-structure-aa5d8d1c7103

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds
MH_MAGIC_64 X86_64 ALL 0x00 DYLIB 21 1400
flags

NOUNDEFS DYLDLINK TWOLEVEL APP_EXTENSION_SAFE

Executable type

Second, let us determine what type of library we are dealing with. For that, we will use again the otoo'l as
mentioned above. Mach-O header specifies filetype. So running it again on the UIKit. framework
with the —hv flags produces the following output:

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds
MH_MAGIC_64 X86_64 ALL 0x00 DYLIB 21 1400
flags

NOUNDEFS DYLDLINK TWOLEVEL APP_EXTENSION_SAFE

From the output’s filetype we can see that it is a dynamically linked library. From its extension, we can
say it is a dynamically linked framework. As described ealier, a framework can be dynamically or statically
linked. The perfect example of a statically linked framework is GoogleMaps. framework. When running
the same command on the binary of GoogleMaps from the output we can see that the binary is NOT dy-
namically linked as its type is OBJECT aka object files which means that the library is static and linked to
the attached executable at the compile time.

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds
MH_MAGIC_64 X86_64 ALL 0Ox00 OBJECT 4 2688
flags

SUBSECTIONS_VIA_SYMBOLS

The reason for wrapping the static library into a framework was the necessary inclusion of GoogleMaps
.bundle which needed to be copied to the target in order for the library to work correctly with its re-
sources.

Now, let’s try to run the same command on the static library archive. As an example we can use

again one of the Xcode’s libraries located at /Applications/Xcode.app/Contents/Developer/

Toolchains/XcodeDefault.xctoolchain/usr/1lib/swift/iphoneos/libswiftCompatibility50

. a path. From the library extension we can immediately say the library is static. Running the otool -hv
libswiftCompatibility50.a justconfirmsthatthe filetypeisOBJECT.

Archive : ./libswiftCompatibility50.a (architecture armv7)
Mach header

25

magic cputype cpusubtype caps filetype ncmds sizeofcmds
MH_MAGIC ARM V7 0Ox00 OBJECT 4 588

flags
SUBSECTIONS_VIA_SYMBOLS

Mach header

magic cputype cpusubtype caps filetype ncmds sizeofcmds
MH_MAGIC ARM V7 0x00 OBJECT 5 736
flags

SUBSECTIONS_VIA_SYMBOLS

While static library archive ending with . a is a clearly static one with a framework to be sure that the library
is dynamically linked it is necessary to check the binary forits filetype in the Mach-O header.

Dependencies

Third, let’s have a look at what the library is linking. For that the otool provides -L flag.

otool -L ./UIKit

The output lists all dependencies of the UIKit framework. For example, here you can see that UlKit is linking
Foundation. That’s why the import Foundationisno longer needed when importing UTKi t into a
source code file.

LJUIKit:

/System/Library/Frameworks/UIKit.framework/UIKit ...

/System/Library/Frameworks/FileProvider.framework/FileProvider ...

/System/Library/Frameworks/Foundation.framework/Foundation ...
/System/Library/PrivateFrameworks/DocumentManager.framework/DocumentManager

/System/Library/PrivateFrameworks/UIKitCore.framework/UIKitCore ...
/System/Library/PrivateFrameworks/ShareSheet. framework/ShareSheet ...
/usr/lib/1libobjc.A.dylib ...

/usr/1lib/1libSystem.B.dylib ...

Symbols table

Fourth, it is also useful to know which symbols are defined in the framework. For that, the nm utility is
available. To print all symbols including the debugging ones | added -a flag as well as —C to print them
demangled. Name mangling is a technique of adding extra information about the language data type (class,
struct, enum ...) to the symbol during compile time in order to pass more information about it to the linker.
With a mangled symbol, the linker will know that this symbols is for a class, getter, setter etc and can work
with it accordingly.

26

nm -Ca ./UIKit

Unfortunately, the output here is very limited as those symbols listed are the ones that define the dynamic
framework itself. The limitation is because Apple ships the binary obfuscated and when reverse-engineering
the binary with for example Radare2 disassembler, all we can seeis a couple of add byte assembly instruc-
tions. It is still possible to dump the list of symbols, but for that we would have to either use 11db and have
the UIKit framework loaded in the memory space or dump the memory footprint of the framework and ex-
plore it decrypted. That is unfortunately not part of this book.

OPOOEEAOEEEOTTO s _UIKitVersionNumber
0000000000000fcOd s _UIKitVersionString
U dyld_stub_binder

Just to give an example of how the symbols would look, | printed out compiled realm framework by running
nm -Ca ./Realm.

2c4650 T realm::Table::do_move_row(unsigned long, unsigned long)
2cble8 T realm::Table::do_set_link(unsigned long, unsigned long, unsigned

4305e0 S realm::Table::max_integer

4305e8 S realm::Table::min_integer

2c44b4 T realm::Table::do_swap_rows(unsigned long, unsigned long)

2ce9bc T realm::Table::find_all_int(unsigned long, long long)

2cb3ac T realm::Table::get_linklist(unsigned long, unsigned long)

2c4d64 T realm::Table::set_subtable(unsigned long, unsigned long, realm::
Table constx)

2bdo9f8 T realm::Table::create_column(realm::ColumnType, unsigned long, bool,

realm: :Allocator&)
2bf3fc T realm::Table::discard_views()

It seems like Realm was developed in C++ but it can be clearly seen what kind of symbols are available within
the binary. Let us look at one more example but for Swift with Alamofire. There we can, unfortunately, see
that the nm was not able to demangle the symbols.

34d00o

T _$s9Alamofire7RequestC8delegateAAl2TaskDelegateCvM
34dcO T _S$s9Alamofire7RequestC4taskSol6NSURLSessionTaskCSgvg
34e20 T _$s9Alamofire7RequestC7sessionSol12NSURLSessionCvg
34e50 T _S$s9Alamofire7RequestC7requestl®FoundationlOURLRequestVSgvg
350c0 T _$s9Alamofire7RequestC8responseSol7NSHTTPURLResponseCSgvg
351e0 T _S$s9Alamofire7RequestClOretryCountSuvpfi

To demangle swift manually following command can be used.

nm -a ./Alamofire | awk '{ print $3 }' | xargs swift demangle {} \;

Which produces the mangled symbol name with the demangled explanation.

27

_$s9Alamofire7RequestC4taskSol6NSURLSessionTaskCSgvg
--=> Alamofire.Request.task.getter : __C.NSURLSessionTask?
_$s9Alamofire7RequestC4taskSol6NSURLSessionTaskCSgvgTq
---> method descriptor for Alamofire.Request.task.getter : __C.
NSURLSessionTask?
_$s9Alamofire7RequestClOretryCountSuvpfi
-—=> variable initialization expression of Alamofire.Request.retryCount :
Swift.UInt

Strings

Last but not least, it can be also helpful to list all strings that the binary contains. That could help catch
developers’ mistakes such as not obfuscated secrets and some other strings that should not be part of the
binary. To do that we will use strings utility again on the Alamofire binary.

strings ./Alamofire

The output is a list of plain text strings found in the binary.

Could not fetch the file size from the provided URL:

The URL provided is a directory:

The system returned an error while checking the provided URL for
reachability.

URL:

The URL provided is not reachable:

Build system

The last piece of information that is missing now is how it all gets glued together. As Apple developers, we
are using Xcode for developing apps for Apple products that are then distributed via App Store or other distri-
bution channels. Xcode under the hood is using Xcode Build System for producing final executables
that run on X86 and ARM processor architectures.

The Xcode build system consists of multiple steps that depend on each other. Xcode build system supports
C based languages (C, C++, Objective-C, Objective-C++) compiled with clang as well as Swift language com-
piled with swi ftc.

Let’s have a quick look at what Xcode does when the build is triggered.

1. Preprocessing

28

Preprocessing resolves macros, removes comments, imports files and so on. In a nutshell, it prepares the
code for the compiler. The preprocessor also decides which compiler will be used for which source code file.
Not surprisingly, Swift source code file will be compiled by sw1i ftc and other C like files will use clang.

2. Compiler (swiftc,clang)

As mentioned above, the Xcode build system uses two compilers; clang and swiftc. The compiler consists of
two parts, front-end and back-end. Both compilers use the same back-end, LLVM (Low-Level Virtual Machine)
and language-specific front-end. The job of a compiler is to compile the post-processed source code files
into object files that contain object code. Object code is simply human-readable assembly instructions that
can be understood by the CPU.

3. Assembler (asm)

The assembler takes the output of the compiler (assembly) and produces relocatable machine code. Ma-
chine code is recognised by a concrete type of processor (ARM, X86). The opposite of relocatable machine
code would be absolute machine code. While relocatable code can be placed at any position in memory by
loader the absolute machine code has its position set in the binary.

4. Linker (1d)

Thefinal step of the build system is linking. The linker is a program that takes object files (multiple compiled
files) and links (merges) them together based on the symbols those files are using as well as static and dy-
namic libraries as needed. In order to be able to link libraries the linker needs to know the paths where to
look for them. Linker produces the final single file; Mach-O executable.

5. Loader (Loader)

After the executable was built, the job of a loader is to bring the executable into memory and start the pro-
gram execution. Loader is a system program operating on the kernel level. Loader assigns the memory
space and loads Mach-O executable to it.

Now you should have a high-level overview of what phases the Xcode build system goes through when the
build is started.

Conclusion

I hope this chapter provided a clear understanding of the essential differences between static and dynamic
libraries as well as provided some clear examples showing to examine them. It was quite a lot to grasp, so
now it’s time for a double shot of espresso or any kind of preferable refreshment.

I would highly recommend to deep dive into this topic even more. Here are some resources | would recom-
mend;

29

https://medium.com/@cyrilcermak/exploring-ios-es-mach-o-executable-structure-aa5d8d1c7103

Static and Dynamic Libraries

Difference in between static and dynamic library from our beloved StackOverflow
Dynamic Library Programming Topics

Xcode Build System : Know it better

Mach-O Executables

LLVM website

Behind the Scenes of the Xcode Build Process
Building Faster in Xcode

Used binaries:

GoogleMaps

Alamofire

Realm

30

https://pewpewthespells.com/blog/static_and_dynamic_libraries.html
https://stackoverflow.com/questions/15331056/library-static-dynamic-or-framework-project-inside-another-project
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1
https://medium.com/flawless-app-stories/xcode-build-system-know-it-better-96936e7f52a
https://www.objc.io/issues/6-build-tools/mach-o-executables/
https://llvm.org/
https://developer.apple.com/videos/play/wwdc2018/415/
https://developer.apple.com/videos/play/wwdc2018/408/
https://developers.google.com/maps/documentation/ios-sdk/v3-client-migration#install-manually
https://github.com/Alamofire/Alamofire
https://realm.io/docs/swift/latest

Swift Compiler (optional)

Since we touched the Xcode’s build system in the previous chapter it would be unfair to the swi ftc to leave
it untouched. Even though knowing how compiler works is not mandatory knowledge it is really interesting
and it gives a good closure of the whole process from writing human-readable code to running it on bare
metal. In this chapter we are going to look at how a library can be built purely in Swift’s ecosystem.

While other chapters are rather essential for having a good understanding of the development of modular
architecture, this chapter is optional.

Compiler Architecture

To fully understand swift’s compiler architecture and its process, let us have a look at the documentation
provided by and do some practical examples based on it.

The following image describes the swi ftc architecture. It consists of seven steps, which are explained in
subchapters.

Semantic

t SIL Guaranteed SIL LLVM IR
Analysis

FE] Transformations Optimizations Generation

— clang Importer —— SIL Generation ——

Figure 5 - Swiftc Architecture

For demonstration purposes, | prepared two simple swift source code files. First, employee.swift and
secondmain.swift. Thefileemployee.swiftisstandalone source code whilemain. swiftrequires
the Employee being linked to it as a library. All compiler steps are explained on the employee. swift but
in the end, the employee source code will be created as a library that the main file will consume and use.

employee.swift

import Foundation

public protocol Address {
var houseNo: Int { get }
var street: String { get }
var city: String { get }
var state: String { get }
}

public protocol Person {
var firstName: String { get }
var lastName: String { get }
var address: Address { get }

}

public class Employee: Person {
public let firstName: String

31

https://swift.org/swift-compiler/#compiler-architecture

public let lastName: String
public let address: Address

public init(firstName: String, lastName: String, address: Address) {

self.firstName = firstName
self.lastName = lastName
self.address = address

}

public func printEmployeeInfo() {
print("\ (firstName) \(lastName)")

print("\ (address.houseNo). \(address.street), \(address.city), \(

address.state)")

}

public struct EmployeeAddress: Address {
public let houseNo: Int
public let street: String
public let city: String
public let state: String

public 1init(houseNo: Int, street: String, city:

self.houseNo = houseNo
self.street = street
self.city = city
self.state = state

main.swift

import Foundation
import Employee
let employee = Employee(firstName: "Cyril",

lastName: "Cermak",

String, state: String) {

address: EmployeeAddress(houseNo: 1, street: "

PorschePlatz", city:

ll))

employee.printEmployeeInfo()

32

"Stuttgart", state:

"Germany

Parsing

The parser is a simple, recursive-descent parser (implemented in lib/Parse) with an integrated, hand-
coded lexer. The parser is responsible for generating an Abstract Syntax Tree (AST) without any seman-
tic or type information, and emit warnings or errors for grammatical problems with the input source.

Source: swift.org

First in the compilation process is parsing. As the definition says, the parser is responsible for the lexical
syntax check without any type check. The following command prints the parsed AST.

swiftc ./employee.swift —-dump-parse

In the output, you can notice that the types are not resolved and end with errors.

(source_file "./employee.swift"
// Importing Foundation
(import_decl range=[./employee.swift:1:1 - 1line:1:8] 'Foundation')
// Address protocol declaration
(protocol range=[./employee.swift:3:8 - 1line:8:1] "Address" <Self :
Address> requirement signature=<null>
(pattern_binding_decl range=[./employee.swift:4:5 - 1line:4:28]
(pattern_typed
(pattern_named 'houseNo')
(type_ident
(component id='Int' bind=none))))
// houseNo variable declaration
(var_decl range=[./employee.swift:4:9 - 1line:4:9] "houseNo" type='<null
type>' readImpl=getter immutable
(accessor_decl range=[./employee.swift:4:24 - 1line:4:24] 'anonname=0
x7fcle408db80' get_for=houseNo
// Not recognized Int type
(parameter "self"./employee.swift:4:18: error: cannot find type 'Int

' in scope
var houseNo: Int { get }
A~

)

// Employee class declaration
(class_decl range=[./employee.swift:16:8 - 1line:31:1] "Employee" dinherits: <
null>
(pattern_binding_decl range=[./employee.swift:17:12 - 1line:17:27]
(pattern_typed
(pattern_named 'firstName')
(type_ident
(component id='String' bind=none))))
// Employee class vars declaration
(var_decl range=[./employee.swift:17:16 - line:17:16] "firstName" type='
<null type>' let readImpl=stored immutable)
(pattern_binding_decl range=[./employee.swift:18:12 - 1line:18:26]
(pattern_typed
(pattern_named 'lastName')

33

https://swift.org/swift-compiler/#compiler-architecture

(type_ident
(component 1id='String' bind=none))))

From the parsed AST we can see that it is really descriptive. The source code of employee. swift has 47
lines of code while its parsed AST without type check has 270.

Out of curiosity, let us have a look at how the tree would look with a syntax error. To do so, | added the
winner of all times in hide and seek, a semi-colon ;, to the protocol declaration.

public protocol Address {
var houseNo: Int; { get }

After running the same command we can see a syntax error at the declaration of houseNo variable. That is
the error Xcode would show as soon as it type checks the source file.

(var_decl range=[./employee.swift:4:9 - line:4:9] "houseNo" type='<null type
>'./employee.swift:4:9: error: property in protocol must have explicit {
get } or { get set } specifier
var houseNo: Int; { get }

34

Semantic analysis

Semantic analysis (implemented in lib/Sema) is responsible for taking the parsed AST and transform-
ing it into a well-formed, fully-type-checked form of the AST, emitting warnings or errors for semantic
problemsin the source code. Semantic analysis includes type inference and, on success, indicates that
it is safe to generate code from the resulting, type-checked AST.

Source: swift.org

After parsing, comes the semantic analysis. From its definition, we should see fully type-checked parsed
AST. Executing the following command will give us the answer.

swiftc ./employee.swift -dump-ast

In the output all types are resolved and recognised by the compiler and the errors no longer appear.

// Address protocol with resolved types
(protocol range=[./employee.swift:3:8 - 1line:8:1] "Address" <Self : Address>
interface type='Address.Protocol' access=public non-resilient
requirement signature=<Self>
(pattern_binding_decl range=[./employee.swift:4:5 - 1line:4:18]
trailing_semi
(pattern_typed type='Int'
(pattern_named type='Int' 'houseNo')
(type_ident
(component id='Int' bind=Swift.(file).Int))))

// EmployeeAddress conforming to the Address protocol
(struct_decl range=[./employee.swift:33:8 - 1line:45:1] "EmployeeAddress"
interface type='EmployeeAddress.Type' access=public non-resilient
inherits: Address
(pattern_binding_decl range=[./employee.swift:34:12 - 1line:34:25]
(pattern_typed type='Int'
(pattern_named type='Int' 'houseNo')
(type_ident
(component id='Int' bind=Swift.(file).Int))))
// Variable declaration on EmployeeAddress
(var_decl range=[./employee.swift:34:16 - line:34:16] "houseNo" type='Int
' interface type='Int' access=public let readImpl=stored immutable
(accessor_decl implicit range=[./employee.swift:34:16 - 1line:34:16] '
anonname=0x7fd2821409e8' 1interface type='(EmployeeAddress) -> () ->
Int' access=public get_for=houseNo
(parameter "self" type='EmployeeAddress' interface type='
EmployeeAddress')
(parameter_1list)
(brace_stmt dimplicit range=[./employee.swift:34:16 - 1line:34:16]
(return_stmt +implicit
(member_ref_expr implicit type='Int' decl=employee.(file).
EmployeeAddress.houseNo@. /employee.swift:34:16
direct_to_storage
(declref_expr implicit type='EmployeeAddress' decl=employee. (
file) .EmployeeAddress.<anonymous>.self@./employee.swift

35

https://swift.org/swift-compiler/#compiler-architecture

:34:16 function_ref=unapplied))))))

Not surprisingly, when using an unknown type, the command results in an error.

public protocol Address {
var houseNo: Foo { get }

employee.swift:4:18: error: cannot find type 'Foo' in scope
/ 1 ift:4:18 t find t '"Foo' i

var houseNo: Foo { get }
A~

(source_file "./employee.swift"
(import_decl range=[./employee.swift:1:1 - line:1:8] 'Foundation')
(protocol range=[./employee.swift:3:8 - 1line:8:1] "Address" <Self :
Address> dinterface type='Address.Protocol' access=public non-resilient
requirement signature=<Self>
(pattern_binding_decl range=[./employee.swift:4:5 - 1line:4:28]
(pattern_typed type='<<error type>>'

Clang importer

The Clang importer (implemented in lib/ClangImporter imports Clang modules and maps the C or
Objective-C APIs they export into their corresponding Swift APIs. The resulting imported ASTs can be
referred to by semantic analysis.

Source: swift.org

The third in the compilation process is the clang importer. This is the well-known bridging of C/ObjC lan-
guages to the Swift API’s and wise versa.

SIL generation

The Swift Intermediate Language (SIL) is a high-level, Swift-specific intermediate language suitable for
further analysis and optimization of Swift code. The SIL generation phase (implemented in lib/SILGen)
lowers the type-checked AST into so-called “raw” SIL. The design of SIL is described in docs/SIL.rst.

Source: swift.org

The fourth step in the compilation process is the Swift Intermediate Language. Are you curious about how
it looks? To print it, we can use the following command.

swiftc ./employee.swift -emit-sil

In the output, we can see thewitness tables, vtables and message dispatch tables alongside
with other intermediate declarations. Unfortunately, an explanation of this is out of the scope of this book.
More about these topics can be obtained in the article about method dispatch.

36

https://swift.org/swift-compiler/#compiler-architecture
https://swift.org/swift-compiler/#compiler-architecture
https://www.rightpoint.com/rplabs/switch-method-dispatch-table

o ~No U1~

10
11
12
13
14

15

16
17
18

19
20

21

22

23
24
25
26

27

28

// protocol witness for Address.state.getter in conformance EmployeeAddress

sil shared [transparent] [serialized] [thunk]
@$s8employeel5EmployeeAddressVAAOCOA2aDP5stateSSvgTW @ $@convention(
witness_method: Address) (@in_guaranteed EmployeeAddress) -> @owned

String {
/] %0 // user: %
bb0 (%0 : S$SxEmployeeAddress):
%1 = load %0 : S$*EmployeeAddress // user: %

// function_ref EmployeeAddress.state.getter
%2 = function_ref @$s8employeel5EmployeeAddressV5stateSSvg : $@convention(
method) (@guaranteed EmployeeAddress) -> @owned String // user: %3
%3 = apply %2(%1) : S@convention(method) (@guaranteed EmployeeAddress) ->
@owned String // user: %
return %3 : $String // id: %4
} // end sil function '$s8employeel5EmployeeAddressVAAOCOA2aDP5stateSSvgTw!

sil_vtable [serialized] Employee {

#Employee.init!allocator: (Employee.Type) -> (String, String, Address) ->
Employee :
@$s8employee8EmployeeC9firstName04lastDO7addressACSS_SSAA7Address_ptcfC

// Employee.__allocating_init(firstName:lastName:address:)

#Employee.printEmployeeInfo: (Employee) -> () -> ()
@$s8employee8EmployeeCO5printB4InfoyyF // Employee.printEmployeeInfo
O

#Employee.deinit!deallocator: @$s8employee8EmployeeCfD // Employee.
__deallocating_deinit

}

sil_witness_table [serialized] Employee: Person module employee {
method #Person.firstName!getter: <Self where Self : Person> (Self) -> ()
-> String : @$s8employee8EmployeeCAAG6PersonA2aDP9firstNameSSvgTwW //
protocol witness for Person.firstName.getter in conformance Employee
method #Person.lastName!getter: <Self where Self : Person> (Self) -> () ->
String : @$s8employee8EmployeeCAA6PersonA2aDP8lastNameSSvgTW //
protocol witness for Person.lastName.getter in conformance Employee
method #Person.address!getter: <Self where Self : Person> (Self) -> () ->
Address : @$s8employee8EmployeeCAAG6PersonA2aDP7addressAA7Address_pvgTW
// protocol witness for Person.address.getter in conformance
Employee
}

sil_witness_table [serialized] EmployeeAddress: Address module employee {

method #Address.houseNo!getter: <Self where Self : Address> (Self) -> ()
-> Int : @$s8employeel5EmployeeAddressVAAQCOA2aDP7houseNoSivgTW //
protocol witness for Address.houseNo.getter in conformance
EmployeeAddress

method #Address.street!getter: <Self where Self : Address> (Self) -> () ->
String : @$s8employeel5EmployeeAddressVAAOCOA2aDP6streetSSvgTW //
protocol witness for Address.street.getter in conformance
EmployeeAddress

method #Address.city!getter: <Self where Self : Address> (Self) -> () ->
String : @$s8employeel5EmployeeAddressVAAOCOA2aDP4citySSvgTW //

37

protocol witness for Address.city.getter in conformance
EmployeeAddress

29 method #Address.statelgetter: <Self where Self : Address> (Self) -> () ->
String : @$s8employeel5EmployeeAddressVAAOCOA2aDP5stateSSvgTW //
protocol witness for Address.state.getter in conformance
EmployeeAddress

30 }

31

Furthermore, the SIL must go through next two phases; guaranteed transformation and optimisation.

SIL guaranteed transformations: The SIL guaranteed transformations (implemented in lib/SILOptimiz-
er/Mandatory) perform additional dataflow diagnostics that affect the correctness of a program (such
as a use of uninitialized variables). The end result of these transformations is “canonical” SIL.

Source: swift.org

SIL Optimizations: The SIL optimizations (implemented in lib/Analysis, lib/ARC, lib/LoopTransforms,
and lib/Transforms) perform additional high-level, Swift-specific optimizations to the program, includ-
ing (for example) Automatic Reference Counting optimizations, devirtualization, and generic special-
ization.

Source: swift.org

38

https://swift.org/swift-compiler/#compiler-architecture
https://swift.org/swift-compiler/#compiler-architecture

LLVM IR Generation

IR generation (implemented in lib/IRGen) lowers SIL to LLVM IR, at which point LLVM can continue to
optimize it and generate machine code.

Source: swift.org

The final step in the compilation process is that of the IR (Intermediate Representation) for LLVM. To get the
IR from the swiftc we can use the following command:

swiftc ./employee.swift -emit-ir | more

Here we can see a snippet of the LLVM’s familiar code declaration. In the next step, the code would be trans-
formed by LLVM into the machine code.

entry:

%1 = getelementptr inbounds %__opaque_existential_type_1, 9
__oOpaque_existential_type_1x %0, i32 0, i32 1

%2 = load %swift.typex, %swift.typexx %1, align 8

%3 = getelementptr +inbounds %__opaque_existential_type_1, ¢
__opaque_existential_type_1x %0, i32 0, i32 0

%4 = bitcast %swift.typex %2 to i8xx*x

%5 = getelementptr inbounds i8*x, i8xx*x %4, i64 -1

%.valueWitnesses = load i8%*, i8*xx %5, align 8, !invariant.load !64, !
dereferenceable !65

%6 = bitcast i8** %.valueWitnesses to %swift.vwtablex

%7 = getelementptr 1inbounds %swift.vwtable, %swift.vwtablex %6, i32 0,
i32 10

%flags = load 932, i32x %7, align 8, !invariant.load !64

%8 = and i32 %flags, 131072

%flags.isInline = icmp eq i32 %8, O

br i1 %flags.isInline, label %inline, label %outline

o~

o~

39

https://swift.org/swift-compiler/#compiler-architecture

Exporting dylib
Finally, we can explore how to manually create a library out of the source code and link it towards the exe-

cutable.

The following command will export the employee.swift fileasan Employee.dyl1ib with its module
definition. Instead of using the parameter —~emit-module we could use —emit-object to obtain a stat-
ically linked library.

swiftc ./employee.swift -emit-library -emit-module -parse-as-library -module
-name Employee

After executing the command, the following files should be created.

380B Apr 2 13:36 Employee.swiftdoc

19K Apr 3 20:52 Employee.swiftmodule
2.9K Apr 3 20:52 Employee.swiftsourceinfo
1.1K Apr 3 20:52 employee.swift

57K Apr 3 20:52 1libEmployee.dylib

Now we canimport the Employee library into thema-in. swi ft fileand proceed with the compile. However,
here we have to tell the compiler and linker where to find the Employee library. In this example, | placed the
library into a directory named Frameworks which resides on the same level as the main.swift.

swiftc main.swift -emit-executable -1Employee -I ./Frameworks -L ./
Frameworks

To give it a bit more explanation the command swi ftc —h desribes those flags as follows:

-emit-executable Emit a linked executable

-I <value> Add directory to the import search path
-L <value> Add directory to library link search path
-1l<value> Specifies a library which should be linked against

Hurrray, the executable was created with the linked library! Unfortunately, it crashes right on start with the
following:
dyld: Library not loaded: libEmployee.dylib
Referenced from: /Users/cyrilcermak/Programming/i0S/
modular_architecture_on_ios/example/./main

Reason: image not found
[1] 92481 abort ./main

Using the knowledge from the previous chapter we can check where the binary expects the library to be with
the command otool -1 ./main.

Load command 15
cmd LC_LOAD_DYLIB

40

cmdsize 48
name libEmployee.dylib (offset 24)
time stamp 2 Thu Jan 1 01:00:02 1970
current version 0.0.0
compatibility version 0.0.0

The binary expects the libEmployee.dylib to be at the same path. This can be easily fixed with one more

tool, install_name. It changes the path to the linked library in the main executable. It can be used as
follows;

install_name_tool -change libEmployee.dylib @executable_path/Frameworks/
libEmployee.dylib main

Running it again prints the desired output:

Cyril Cermak
1. PorschePlatz, Stuttgart, Germany

41

Conclusion
In this chapter, the basics of Swift compiler architecture were explored. | hope this (optional) chapter gave

a high-level overview and brought more curiosity into the topic of how compilers work. For more study |
would refer to the following sources:

42

https://swift.org/swift-compiler/#compiler-architecture
https://developer.apple.com/videos/play/wwdc2016/416/
https://heartbeat.fritz.ai/understanding-method-dispatch-in-swift-684801e718bc
https://www.rightpoint.com/rplabs/switch-method-dispatch-table
https://modocache.io/getting-started-with-swift-development
https://wincent.com/wiki/%40executable_path%2C_%40load_path_and_%40rpath

Development of the Modular Architecture

The necessary theory about Apple’s libraries and some essentials were explained. Finally, it is time to deep
dive into the building phase.

First, let us do it manually and automate the process of creating libraries later on so that the newcomers do
not have to copy-paste much of the boilerplate code when starting a new team or new part of the application
framework.

For demonstration purposes, | chose the Cosmonaut app with all its necessary dependencies. Nevertheless,
the same principle applies to all other apps within our future i0S/macOS ISS foundational framework.

Youcanlookattheiss_modular_architecturefolderandfully focuson the step by step explanations
in the book or you can build it on your own up until a certain point.

As a reminder, the following schema showcases the Cosmonaut app with its dependencies.

Cosmonaut

Cosmonaut

o

Cosmonaut
Service

Network Radio UlComponents Persistence

Common

Figure 6 - Cosmonaut app

43

Creating workspace structure

First, let us manually create the Cosmonaut app from Xcode under the iss_application_framework
/app/ directory. To achieve that, simply create a new App from the Xcode’s menu and save it under the
predefined folder path with the Cosmonaut name. An empty project app should be created, you can run
it if you want. Nevertheless, for our purposes, the project structure is not optimal. We will be working in a
workspace that will contain multiple projects (apps and frameworks).

Choose a template for your new project:

Multiplatform i0S macOS watchOS tvOS Other

Application

s

Document App Augmented Sticker Pack App
Reality App

iMessage App

Framework & Library

= fm N

Framework Static Library Metal Library

Figure 7 - Create New App

Since we do not have Cocopods yet, which would convert the project into a workspace, we have to do it
manually. In Xcode under F1i le, select the option Save As Workspace. Close the project and open the
Workspace that was newly created by Xcode. So far the workspace contains only the App. Now it is time to
create the necessary dependencies for the Cosmonaut app.

Going top-down through the diagram first comes the Domain layer where Spacesuit, Cosmonaut

and Scaffo'ld is needed to be created. For creating the Spacesuit let us use Xcode one last
time. Under the new project select the framework icon, name it Cosmonaut and save it under the
iss_application_framework/domain/ directory.

44

Choose a template for your new project:

Multiplatform i0S macOS watchOS tvOS Other

Application

s:a
<

Augmented Sticker Pack App
Reality App

iMessage App

Framework & Library

=] 1 N

Framework Static Library Metal Library

Cancel

Figure 8 - Create New Framework

Automating the process

While creating new frameworks and apps is not a daily business, the process still needs to assure that correct
namespaces and conventions are used across the whole application framework. This usually leads to copy-
pasting an existing framework or app to create a new one with the same patterns. Now is a good time to
create the first script that will support the development of the application framework.

If you are building the application framework from scratch please copy the {PROJECT_ROOT} /fastlane
directory from the repository into your root directory.

The scripting around the framework with Fastlane is explained later on in the book. However, all
you need to know now is that Fastlane contains lane make_new_project that takes three arguments;
type {app|framework}, project_name and destination_path. The lane in Fastlane simple uses
the instance of the ProjectFactory class located in the {PROJECT_ROOT}/fastlane/scripts/
ProjectFactory/project_factory.rbfile.

The ProjectFactory creates a new framework or app based on the type parameter that is passed to
it from the command line. As an example of creating the Spacesuit domain framework, the following com-
mand can be used.

fastlane make_new_project type:framework project_name:Spacesuit
destination_path:../domain/Spacesuit

45

In case of Fastlane not being installed on your Mac, you can install it via brew install fastlaneor
later on via Ruby gems defined in Gemf 1 Le. For installation please follow the official

Furthermore, now that we have the script, all the remaining dependencies can be created with it.
The overall ISS Application Framework should look as follows:
=+ iss_modular_architecture git:() x tree -L 2

pp
Cosmonaut

Laboratory
Overview

core
Network
Persistence
Radio
UIComponents
domain

Columbus\ Laboratory
Cosmonaut
Harmony\ Laboratory

Peripheries

Scaffold

Spacesuit
fastlane

Fastfile
README . md
build_settings.yml

report.xml
scripts
service

CosmonautService
Docking\ Port
Heat\ Radiator
Laboratory

Solar\ Array
SpacesuitService

25 directories, 4 files

Figure 9 - Tree structre

Each directory contains an Xcode project which is either a framework or an app created by the script. From
now on, every onboarded team or developer should use the script when adding a framework or an app.

Xcode’s workspace

Last but not least, let us create the same directory structure in Xcode’s Workspace so that we can, later on,
link those frameworks together and towards the app. The workspace Cosmonaut.xcworkspace resides
in the folder Cosmonaut under the app folder. An xcworkspace is simply a structure that contains:

« xcshareddata: Directory that contains schemes, breakpoints and other shared information
« xcuserdata: Directory that contains information about the current users interface state, opened/-
modified files of the user and so on

46

https://docs.fastlane.tools/getting-started/ios/setup/

« contents.xcworkspacedata: An XML file that describes what projects are linked towards the
workspace such that Xcode can understand it

The workspace structure can be created either by drag and drop all necessary framework projects for the
Cosmonaut app or by directly modifying the contents. xcworkspacedata XML file. No matter which
way was chosen the final xcworkspace should look as follow:

v [Cosmonaut I

» @ Cosmonaut

» B CosmonautTests
» B CosmonautUITests
» W Frameworks TARGETS

3 Products A\ Cosmonaut

@8 domain Bl CosmonautTests
» [# Cosmonaut
> [Spacesuit
» B Scaffold

W service

PROJECT

@ Cosmonaut

B CosmonautUITests

> [B CosmonautService
» [SpacesuitService
W core

> @ UlComponents

» [Radio

» [& Persistence

> [Network

Figure 10 - Workspace strucutre

Generating projects

You might have noticed project.yml file that was created with every framework or app. This file is used
by XcodeGen (will be introduced in a second) to generate the project based on the settings described in
the yaml file. This will avoid conflicts in Apple’s infamous project.pbxproj files that represent each
project. In modular architecture, this is particularly useful as we are working with many projects across the
workspace.

Conflicts in the project.pbxproj files are very common when more than one developer is working on

47

the same codebase. Besides the build settings for the project, this file contains and tracks files that are
included for the compilation. It also tracks the targets to which these files belong. A typical conflict happens
when one developer removes a file from the Xcode’s structure while another developer was modifying it in
a separate branch. This will resolve in a merge conflictin the pbxproj file which is very time consuming to
fix as the file is using Apple’s mystified language no one can understand.

Since programmers are lazy creatures, it very often also happens that a file removed from an Xcode project
still remains in the repository as the file itself was not moved to the trash. That could lead to git continuing
to track a now unused and undesired file. Furthermore, it could also lead to the file being re-added to the
project by the developer who was modifying it.

Hello XcodeGen

Fortunately, in the Apple ecosystem, we can use , a program that generates the pbxproj file for
us based on the well-arranged yaml file. In order to use it, we have to first install it via brew install
xcodegen or via other ways described on its homepage.

As an example, let us have a look at the Cosmonaut app project.yml.
app/Cosmonaut/project.yml

Import of the main build_settings file
include:
- ../../fastlane/build_settings.yml

Definition of the project
name: Cosmonaut
settings:
groups:
- BuildSettings

Definition of the targets that exists within the project
targets:

The main application
Cosmonaut:
type: application
platform: i0S
sources: Cosmonaut
dependencies:
Domains
- framework: ISSCosmonaut.framework
implicit: true
- framework: ISSSpacesuit.framework
implicit: true
- framework: ISSScaffold.framework
implicit: true
Services
- framework: ISSSpacesuitService.framework

48

https://github.com/yonaskolb/XcodeGen

implicit: true

- framework: ISSCosmonautService.framework
implicit: true

Core

- framework: ISSNetwork.framework
implicit: true

- framework: ISSRadio.framework
implicit: true

- framework: ISSPersistence.framework
implicit: true

- framework: ISSUIComponents.framework
implicit: true

Tests for the main application
CosmonautTests:
type: bundle.unit-test
platform: 10S
sources: CosmonautTests
dependencies:
- target: Cosmonaut
settings:
TEST_HOST: $(BUILT_PRODUCTS_DIR)/Cosmonaut.app/Cosmonaut

UITests for the main application
CosmonautUITests:
type: bundle.ui-testing
platform: 10S
sources: CosmonautUITests
dependencies:
- target: Cosmonaut

Even though the YAML file speaks for itself, let me explain some of it.
First of all, let us look at the include in the very beginning.

Import of the main build_settings file
include:
- ../../fastlane/build_settings.yml

Before xcodegen starts generating the pbxproj project it processes and includes other YAML files if the in-
clude keyword is found. In case of the application framework, this is extremely helpful as the build settings
for each project can be described just by one YAML file.

Imagine a scenario where the iOS deployment version must be bumped up for the app. Since the app links
also many frameworks which are being compiled before the app, their deployment target also needs to be
bumped up. Without XcodeGen, each project would have to be modified to have the new deployment target.
Even worse, when trying some build settings out instead of modifying it on each project a simple change in
one file that is included in the others will do the trick.

A simplified build settings YAML file could look like this:

fastlane/build_settings.yml

49

options:
bundleIdPrefix: com.iss
developmentLanguage: en
settingGroups:
BuildSettings:
base:
Architectures
SDKROOT: -iphoneos
Build Options
ALWAYS_EMBED_SWIFT_STANDARD_LIBRARIES: $(inherited)
DEBUG_INFORMATION_FORMAT: dwarf-with-dsym
ENABLE_BITCODE: false
Deployment
IPHONEOS_DEPLOYMENT_TARGET: 13.0
TARGETED_DEVICE_FAMILY: 1

Worth mentioning is that in the Bui ldSettings the key in the YAML matches with Xcode build settings
which can be seen in the inspector side panel. As you can see the BuildSettings key is then referred
inside the project.yml file under the settings right after the project name.

name: Cosmonaut

settings:

groups:
- BuildSettings

The following key is targets. In the case of the Cosmonaut application, we are setting three targets. One
for the app itself, one for unit tests and finally one for Ul tests. Each key sets the name of the target and then
describes it with type, platform,dependencies and other parameters XcodeGen supports.

Next, let us have a look at the dependencies:

dependencies:

Domains

- framework: ISSCosmonaut.framework
implicit: true

- framework: ISSSpacesuit.framework
implicit: true

- framework: ISSScaffold.framework
implicit: true

The dependencies section links the specified frameworks toward the app. On the snippet above, you can
see which dependencies the app is using. The implicit keyword with the framework means that the
framework is not pre-compiled and requires compilation to be found. That being said, the framework needs
to be part of the workspace in order for the build system to work. Another parameter that can be stated there
is embeded: {true|false}. This parameter sets whether the framework will be embedded with the
app and copied into the target. By default XcodeGen has embeded: true for applications as they have
to copy the compiled framework to the target in order for the app to launch successfully and embeded:

50

false for frameworks. Since the framework is not a standalone executable and must be part of some
application it is expected that the application copies it.

Full documentation of XcodeGen can be found on its GitHub

Finally, let’s generate the projects and build the app with all its frameworks. For that, a simple lane in Fast-
lane was created.

lane :generate do
Dir["../*x/project.yml"].each do |project_path]|
next if project_path.include? "fastlane"

UI.success "Generating project: #{project_path}"
“xcodegen -s
end
end

Simply executing the fastlane generate commandin the root directory of the application framework
generates all projects and we can open the workspace and press run. The output of the command should
look as follows:

-+ 1iss_modular_architecture git:() x fastlane generate

144

[19:07:54]: Get started using a Gemfile for fastlane https://docs.fastlane.tools/getting-started/ios/setup/#use-a-gemfile
[19:07:59]: #

[19:07:59]:

[19:07:59]:

[19:07:59]:

[19:07:59]:

[19:07:59]:
[19:07:59]:
[19:07:59]:
[19:08:00]:
[19:08:00]:
[19:08:00]:
[19:08:00]:

Figure 11 - fastlane generate output

Ground Rules

Looking at the ISS architecture, two very important patterns are being followed.

First of all, any framework does NOT allow linking modules on the same layer. Doing so is meant to prevent
creating cross-linking cycles in between frameworks. For example, if the Network module would link Radio
module and the Radio module would link Network module we would be in serious trouble. Surprisingly,
Xcode does not fail to build every time in such a setup. However, it will have a really hard time with compiling
and linking, up until one day it starts failing.

51

https://github.com/yonaskolb/XcodeGen

Second of all, each layer can link frameworks only from its sublayer. This ensures the vertical linking pattern.
That being said, the cross-linking dependencies will also not happen on the vertical level.

Let us have a look at some examples of cross-linking dependencies.

Cross-linking dependencies

Let us say that the build system will jump on compiling the Network module where the Radio is being linked
to. When it comes to the point where the Radio needs to be linked it jumps to compile the Radio module
without finishing the compilation of the Network. The Radio module now requires a Network module to con-
tinue compiling, however, the Network module has not finished compiling yet, therefore, no swi ftmodule
and other files were yet created. The compiler will continue compiling up until one file will be referencing
some part (e.g a class in a file) of the other module and the other module will be referencing the caller.

That’s where the compiler will stop.

Needless to say, each layer is defined to contain stand-alone modules that are just in need of some sub-
dependencies. In theory this is all nice and makes sense. In practice, however, it can happen that one do-
main will require something from another domain (for example, the Cosmonaut domain will require some-
thing from the Spacesuit domain). It can be some domain-specific logic, views or even the whole flow of
screens. In that case, there are some options for how to tackle the issue. Either, a new module on the ser-
vice layer can be created and the necessary source code files that are shared across multiple domains being
moved there. Another option is to shift those files from the domain layer to the service layer. A third option
would be to use abstraction and achieve the same result not from the module level but from the code level.
The ideal solution solely depends on the use case. There is yet another possibility, to separate the interfaces
into a separate framework which will be introduced in the next section.

A simple example could be that some flow is represented by a protocol that has a start function on it.
That could for example be a coordinator pattern that would be defined for the whole framework and all
modules would be following it. That protocol must then be defined in one of the lower layers frameworks in
this case since it is related to a flow of view controllers, the UIComponents could be a good place for it. Due
to that, in the framework, we can rely on all domains understanding it. Thereafter, the Cosmonaut app could
instantiate the coordinator from the Spacesuit domain and pass it down or assign it as a child coordinator
to the Cosmonaut domain.

Vertical linking

As with horizontal layer linking, vertical linking is also very important and must be followed to avoid the
aforementioned compilerissues. In practice, such a scenario can also happen very easily. Imagine, that your
team designed a new framework on the Core layer that will provide some extended logging functionality and
some data analytics. After a while, some team will want to use the logging functionality, for example in the
Radio module, to provide more debugging details for developers for the Bluetooth module.

52

Unlike in the cross-linking dependencies scenario, in this case, the abstraction was defined on the core level
already. Thereafter, there is no way of passing it in the code from the top down. In this case, the new layer
needs to be created, let us say shared or common. The supporting layer will contain mostly some shared
functionality for the Core layer as well as some protocols that would allow passing references from the top
down.

Another solution would be to separate the core public protocols and models of the framework such that the
framework can be exposed and linked towards more frameworks on the same layer. On the higher level,
the instantiation would take place and the instances would be passed to the implementations on the lower
layer as they both linked towards the newly created core framework of that module. This, however, has
the downside of having an extra framework that needs to be linked and maintained. However, with this
approach, theso-called Clean Architecturewouldbefollowed. More about thatinthe nextsection.

Needless to say, any higher-level layer framework can link any framework from any lower layer. So for ex-
ample, the Cosmonaut app can link anything from the Core or the newly defined Shared layer.

Core Framework

For most cases, the architecture described until now would be sufficient. However, as teams and the Ap-
plication Framework grow, there will be more and more use cases where the services will have to interact.
There is always a possibility to connect the services on a higher level, in this case described they could be
interacting either on a domain level or if more domains would be in need of it, even on the app level.

Let us look at the concrete example. We can take a CosmonautService abstracted by a pub-
lic protocol CosmonautServicing and SpacesuitService abstracted by a public protocol
SpacesuitServicing each implemented in the relevant framework. A valid architectural need could
be that CosmonautService must somehow interact with the SpacesuitService meaning knowing
the public interface of the SpacesuitService such that an instance conforming to the public protocol
can be passed in. The easiest way would be to interconnect those services via callbacks on a domain level
or the app level, where an output of CosmonautService would be observed and trigger the needed
functionality of the SpacesuitService. Having one case like that is probably fine, however, as such
interaction grows the code will get ugly, luckily there is a way to improve our existing architecture by
introducing something we can call a Core framework.

Using Core Framework

Core framework is essentially another Framework target within the SpacesuitService Xcode
project of the main framework. In our example of SpacesuitService, a core framework would be
SpacesuitServiceCore. The SpacesuitServiceCore framework would however have to
follow yet another set of rules to avoid any kind of cross compile issues.

In XcodeGen the Core framework could be defined as follows;

53

The service framework containing implementations
ISSSpacesuitService:

type: framework

platform: 10S

sources: SpacesuitService

dependencies:

Linking and implements the “ISSSpacesuitServiceCore’ protocols

- framework: ISSSpacesuitServiceCore.framework

implicit: true

Core Framework for ISSSpacesuitServiceCore
defines interfaces and plain public types
ISSSpacesuitServiceCore:
type: framework
platform: 10S
sources: SpacesuitServiceCore
dependencies:
Linking and uses only 1interfaces from the NetworkCore
- framework: ISSNetworkCore.framework
implicit: true

Consequently, the SpacesuitServiceCore can be linked and used in the CosmonautService frame-
work. Making all publicly available protocols and types available to the CosmonautServiice.

The service framework containing implementations
ISSCosmonautService:
type: framework
platform: i0S
sources: CosmonautService
dependencies:
Linking the SpacesuitServiceCore in order to be able to use
the public interfaces from -it.
- framework: ISSSpacesuitServiceCore.framework
implicit: true

In Xcode another target would just appear under the available targets and within the Cosmonaut project.

Core Framework Usage and Best Practices

Not surprisingly, when introducing e.g a new service framework, the best practice would be to start simple.
For starters, having just the main framework with the protocols, types and implementations all mixed in. As
the use cases of re-using some of the public parts of the service within another framework on the same layer
emerge, the main framework could be split and the core parts could be moved out of the main framework
to the core one.

54

PROJECT

SpacesuitService

TARGETS

&= |SSSpacesuitService

& ISSSpacesuitServiceCore

<% SpacesuitServiceTests

Figure 12 - SpacesuitService with Core

The core framework should contain only plain protocols, type definitions and basic data objects to really
express only the “core”. Certainly, in the ideal world, the core framework would not have any concrete im-
plementations, however, in practice sometimes it is inevitable to add some helper class or a small class
there.

Core Framework linking and advantages

The most brilliant part about the Core framework is actually not only its reusability on the same layer while
ensuring no cross compile issues but also the linking abstraction. As soon as the Core framework exists, it
is no longer needed to link the main implementation heavy framework in services or domains. Instead, the
Coreisused as adependency to higher layers. The framework that is linking the core framework will depend
on the lightweight abstraction part of it. This further brings couple of wins.

Compile time decrease

A compile time could be heavily decreased. Let us have a look at why. Since now on the broader scope
services and domains would depend on core frameworks representing protocols and basic types only, build
system would not have to recompile or re-check to ensure the stability of dependent frameworks. If any
implementation is changed within the main framework, the change affects only the main framework which
ideally is linked only to the main app in order to instantiate the objects. Therefore, everything else within
the Application Framework dependent on the core framework remains untouched. The build system instead
of re-building the whole tree and checking recursively all dependencies would just have to re-compile the
implementation. That already is a big win. However, no need to say that this applies to changes that are

55

not modifying the core. If for example a protocol would be updated in the core module then no compile
time would be saved. Yet another reason to focus and design protocols well - this however applies and is
absolutely crucial in a later stage of development.

Tests needed to run decrease

Similarly to compile time, the tests that need to run to ensure stability and health of the Appli-
cation Framework would also decrease. In our scenario where CosmonautService uses the
SpacesuitServiceCore, the CosmonautService no longer depends on the implementations,
therefore, instead of in tests working with concrete classes stubs and mocks are implemented based on
the protocols - which at this point we are sure that remained the same. CosmonautServiceTestsona
changein main SpacesuitServiceframework won’t need to run at all. Because there is no direct depen-
dency between those two frameworks. The tests would have to run only if the SpacesuitServiceCore
would change. The lesser linking of main frameworks within the Application Framework the faster the
testing. Especially on big project this brings lots of wins, imagine a project with hundreds of frameworks
each having hundreds or even thousands of tests, which need to run before merge. Optimising the amount
of frameworks needed to be tested on each PR at this point is crucial.

Framework Control And Encapsulation

A less significant benefit is, the fact that clients of the linked framework can no longer instantiate objects
on their own. There is no concrete implementation within the Core. The main framework would have to be
linked in order to let the client instantiate the objects. This particular case can improve the code a lot. Due
to the fact that each client depends on the abstraction only and for example only the app instantiates the
concrete objects which are then passed down to lower layers or registered in a dependency injection pool,
all by the abstracted protocols. This further is ensuring single instances of classes are used across the app
lifecycle rather than random clients using and creating new instances as they like.

Core Framework disadvantages

As with everything in our industry, core frameworks also have some downsides. First and foremost it is yet
another framework that must be properly linked within the Application Framework and taken care of. In
our example project that might be very simple but on big projects the Application Framework can contain
hundreds of frameworks and the core parts potentially at some points doubles the amount.

Further, worth mentioning point is the app start time, as not surprisingly core frameworks introducing new
dynamic frameworks that must be linked and copied to the main app which will make the cold starts slower,
as each dynamic framework must be loaded and opened on the app start which takes time, especially on
older devices.

Mergeable Libraries

Mergeable libraries to the rescue, Apple introduced in WWDC2023 new compiler feature which can merge
dynamic frameworks into one shared framework, drastically improving the start up time while leaving de-

56

velopers with the flexibility of dynamic linking. Unfortunately, as of now, almost one year after this feature
was introduced the mergeable libraries are still having lots of issues. Certainly, those will be fixed with new
Xcode updates and then the disadvantage of slower app start will be heavily improved.

Core Framework Rules

Generally, a core framework should not have many dependencies. However, it is possible to link lower
layer frameworks, ideally abstracted by the core framework but also the concrete implementation if
such pattern on lower framework was not applied. Furthermore, a core framework can potentially
link another core framework on the same layer. Delving on our CosmonautServiceCore and
SpacesuitServiceCore,each could link one and other. Given that there are no concrete implementa-
tions in it no issues should arise. However such case should be carefully evaluated to avoid tangling and
yet again the compiler issues when cross linking.

Certainly, linking the framework downwards should not be allowed in our example, CosmonautServiceCore
should never be linked to NetworkService or any of its parts as lower layer must be agnostic of the
upper layer.

Testing

Since we already have a good working structure of our highly modular Application Framework let us have
a look at how to test it in the most efficient and effective way. On small projects time spend on testing
might not play very significant part as tests might be finished within a couple of minutes contrary on a big
projectand in our case tests could easily take hours to finish. Accordingly, the test strategy must be designed,
developed, and supported locally and on the Cl systems.

Unit Testing in Isolation

First and foremost, let us look at unit testing and the ability to run tests in isolation. Not surprisingly, each
Xcode project created should also contain unit tests for the implementations of the main framework. Contin-
uing on the example, the test bundle can be added just by extending the configuration in the project.yml.

The service framework containing implementations
ISSCosmonautService:

type: framework

platform: i0S

sources: CosmonautService

dependencies:

- framework: ISSNetworkCore.framework
implicit: true

57

https://developer.apple.com/documentation/xcode/configuring-your-project-to-use-mergeable-libraries
https://developer.apple.com/documentation/xcode/configuring-your-project-to-use-mergeable-libraries

CosmonautServiceTests:
type: bundle.unit-test
platform: i0S
sources: CosmonautServiceTests
dependencies:
- target: ISSCosmonautService

Something definitely worth mentioning when developing in the Application Framework is the run in isola-
tion. A developer no longer needs to compile the whole app consisting of lots frameworks but can set and
build the desired framework just by setting it as a run/build target in Xcode. This allows beautiful tunnel
focus isolation on a particular framework from the whole Application Framework. By doing so, the setup is
the most optimal way to do test driven development, especially for a lower level Ul free frameworks.

To ensure the stability and good health of a framework, tests should run on any change within the
framework so as on any change of the dependent framework listed in dependencies. In our example,
CosmonautService links ISSNetwork, therefore, if ISSNetworkCore has changes, everything that
depends on the ISSNetwork must also be compiled and tested. To ensure that a change in a pull request
does not break the integrity before the merge all relevant frameworks must be tested.

In the example, of a change in the ISSNetworkCore on the core layer, lots of frameworks would have to
undergo the testing because of the framework is widely used across the application framework and provides
essential functionality. On the other hand when a change in a domain like e.g Cosmonaut happen, there
are no dependencies to a domain besides the app, therefore, only tests for the domain itself would have to
run so as the main app or apps that are having this domain as a dependencies would have to be compiled
or also run their unit tests.

Further, in development usually a mixture of those two scenarios combined together is very often seen. As
if ISSNetworkCore extends its protocol the developer also must adjust the affected code in other mod-
ules.

Hint, as described already, an app in the Application Framework behaves like a container and usually does
not have any logic implemented. Therefore, it can be that such app does not have many tests.

| hope those two different examples gave a good idea of how drastically the time can differ on the Cl when
testing a change. From lets say testing a one domain and an app to running tests of the whole application
framework. Unfortunately, Apple does not provide any tools that would count with those scenarios, but
thanks to XcodeGen and its yaml description such testing can be scripted before the project is generated.

Application Framework App

Up until now, the testing happened under one umbrella of an app in the Application Framework. However,
Application Framework can have multiple applications consisting of the frameworks available. Those frame-

58

works does not necessarily have to be related. There might be frameworks solely dedicated to one app, but
leveraging the foundational work of the application framework. Meaning, using the same core frameworks
for e.g Networking, Persistence etc.

This scenario somehow forces us to introduce something we can call Application Framework App,
which is a dummy application living on the app level consisting of all frameworks available within the Appli-
cation Framework. The app does not necessarily have to do anything. It is there just to provide a container,
an encapsulation of the whole Application Framework. The app by default can have all frameworks in, in-
cluding one or more XCTestPlans defining the testing strategy and all test targets.

Unit Testing in Application Framework App

Application Framework App is the perfect place for developers to ensure that their change, let’s continue
with the example, in ISSNetworkCore does compile within the whole Application Framework and not
only within the singular app.

On the CI, however, this app could be scripted and created on the fly based on the identified changes com-
pared to the targeted branch. The scripted app would consist only of the needed frameworks for compila-
tion so as already adjusted the targets needed to test in the test plan. It would be a subset of the Application
Framework agnostic of any other app.

UlTesting in Isolation

Similarly to unit testing the Ul tests can be developed and executed. Unlike unit tests, Ul tests need an app
to run in, as there is the actual Ul. The first logical idea that comes to mind is to implement and maintain
the Ul tests on the app level. There the full application is created and can be deployed to a simulator or a
device to run those tests. While this is surely the most intuitive way of introducing Ul tests to the project it
is not the ideal one. Imagine a scenario, where a domain, e.g ISSUser which provides the user’s sign up /
sign in functionality, profile details its flows etc. should be Ul tested. Such a common business domain can
be easily re-used across different apps. As those apps would grow, they would also aim for the Ul testing
strategy, and here we have the conflict. Either one app would give up on Ul testing the user profile part of the
app; if even possible. As login might be required to test some of the app’s functionalities or the tests would
be simply duplicated. In case of Ul tests, the code duplication could be a significant which is something, we
as good citizens of Application Framework should badly avoid doing.

Yet another stunningly beautiful part of this highly modular architecture comes in to play. Let us call it Ul
Testsinisolation. Instead of defining the Ul Tests on the app level, they can directly be defined on the domain
level. Adomain e.g ISSCosmonaut, can have its own so called by Apple HostingApp. The hosting app
would be created within the Xcode project of the Cosmonaut domain and be nicely encapsulated in the
Xcode’s project. All this can be easily defined in project.yml.

59

ISSCosmonaut:
type: framework
platform: i0S
sources: Cosmonaut
dependencies:
Service
- framework: ISSCosmonautService.framework
implicit: true

Tests for the main application
CosmonautTests:
type: bundle.unit-test
platform: 1i0S
sources: CosmonautTests
dependencies:
- target: ISSCosmonaut

CosmonautUITestsHostApp:
type: application
platform: i0S
sources: CosmonautUITestsHostApp
dependencies:
The host app must have all the dependencies from the ISSCosmonaut
Service
- framework: ISSCosmonautService.framework
implicit: true

CosmonautUITests:
type: bundle.ui-testing
platform: 10S
sources:
- path: CosmonautUITests

UlTestsHostApp brings again another level of testing in isolation. Independently from the whole Application
Framework, the app can be deployed and Ul tested. An ideal scenario is when a domain is represented by
a coordinator or many coordinators which take over the screen. The UlTestsHostApp would simply mock
the services those coordinators need to interact with and set up the app just as simply as instantiating the
coordinators stack.

Within such architecture the UlTestsHostApp could be up and ready in no time, leaving the adequate team
to develop the Ul Tests. Essentially, the UlTestsHostApp would just copy the instantiating boilerplate from
the main app to ensure the consistency.

This could be done for every domain that provides screen flows through the application, covering the Appli-
cation Framework with as many tests as possible.

60

UlTesting in Application Framework App

Similarly to unit tests the Ul tests would also have their place in the grouped app. By default in this case it
could be a Ul test plan defined in the xctestplan consisting of all hosting apps and their Ul tests from the
whole Application Framework, leaving developers with singular place to run all those tests for all available
targets in one go.

No need to mention that this Ul xctestplan could be also scripted on the Cl and only tests that are rele-
vant to a change would be compiled and run on a Pull Request.

Sadly, Ul tests are usually very expensive to run, it is not a surprise that sometimes those tests take hours
before finishing, therefore, they could run on a nightly basis or another development workflow relevant
time.

Mock Framework

As the tests grow there will be a pattern emerging, lots of frameworks will start implementing their own
stubs and mocks from linked framework. As an example, a CosmonautServiceTests could instantiate
the CosmonautService withstubbed NetworkService,inorderto provide the data or return mocked
responses. This mocked NetworkService however will get implmeneted pretty much in every tests of a
framework that is linking and using the NetworkService. Therefore, over time those stubs and mocks
will be by each test module that needs them, making very difficult to adjust the NetworkService protocol
because on such change all conformed objects will have to be adapted. Making the developer go through
all tests and adapt the mocks and stubs accordingly.

Luckily, yet again, there is a beautiful solution for such problem in our modular architecture. Let us call it a
Mock framework. A Mock framework sits again within the same Xcode project as the main framework and
just simply provide generic stubs and mocks which can then further be extended or adapted as needed for
the tests.

There are many advantages of the Mock framework. First of all, it enforces a developer to make one great
mock or a stub which is highly flexible and re-usable. Having a mock framework drastically reduces the
need of creating such class in the test modules all over again. It also nicely separates the mock objects from
the main production framework, pre-compiler macros would achieve the same but when mocking lots of
classes, separating them completely to a different framework is even better.

Worth mentioning is that mock frameworks are specifically used for testing, and should not be linked and
used in the production app - that would be an anti-pattern. In project.yml such mocked framework could
be defined as follows;

ISSNetworkMock:
type: framework
platform: 1i0S

61

sources: NetworkMocks
dependencies:
- framework: ISSNetworkCore.framework
implicit: true

For the test from dependent frameworks bundles, only change would be to link the mocked framework in
order to get access to mocks and stubs it provides.

Final Look at One Fully Fledged Xcode Project (module)

Finally, let us have a look at one fully fledged module which is featuring everything previously described. In
our example CosmonautServiice seems like the ideal candidate that leverages everything described in
here.

The CosmonautService has

+ CosmonautServiceTests - Ensuring stability via unit testing

« CosmonautServiceUlTests - Ensuring stability via Ul testing in the CosmonautServiceUlTest-
sHostApp

« CosmonautServiceUlTestsHostApp - A special container app that allows the service to profile its fea-
tures and run them in isolation from the whole Application Framework

« CosmonautService - The main framework for developing the CosmonautService module

+ CosmonautServiceCore - The core framework for the main, ensuring that across others only the in-
terfaces are used so as enabling the same layer re-reusability

Conclusion

In this chapter we delved on the modularisation of the whole Application Framework, further slicing a frame-
work and separating it into its Core, or adding the UlTestingHostApp to it which further allows running the
framework in complete isolation from the rest. | hope that the benefits of this approach are now well un-
derstood. Like everything, there is a pros and cons, this scalable architecture would be a big overhead for a
team of two or three developers. However, when having many teams contributing to the codebase on a daily
basis this would definitely be a huge benefit. | can tell from my experience where at Porsche we scaled from
two teams to nowadays ~30 teams with this approach. The development of frameworks can and should
start simply, when needed the architecture can be enhanced.

In the next chapter we are going to have a look at other possibilities of modularisation. Particularly, we
are going to focus on the difference between static and dynamic linking, launch time of the app based on
the number of modules, and compile time of each different approach from on a developer’s change in the
codebase to a full clean build and similar to an incremental build.

62

Cosmonaut Service Project

CosmonautService

CosmonautServiceTests
CosmonautServiceUITests

CosmonautServiceUlTestsHostApp

Figure 13 - Cosmonaut Service Fully Fledged Framework

PROJECT

CosmonautService

TARGETS

<% CosmonautServiceTests

B0 CosmonautServiceUITests

CosmonautServiceUlTestsHostApp

&= ISSCosmonautService

#= 1SSCosmonautServiceCore

Figure 14 - Cosmonaut Service - Xcode project

63

Benchmarking of Modular Architecture

When choosing an architecture foran application or any type of application framework, there are several per-
formance metrics and working structures to consider. The metrics we will focus on in the following section
are application size, application compile time, memory usage and, most interestingly, application launch
time. These metrics are compared for static and dynamic linking for different architectures.

The first architecture to be benchmarked is the four-layer modular architecture described in the previous
chapters, but without the separation of frameworks into core and implementation. The second architecture
is similar to the previous one, but with a combined domain and service layer, resulting in a three-layer archi-
tecture. The third and final architecture is similar to the approach of separating modules into their protocols
and implementation frameworks, as described in previous chapters with core modules.

A monolithic application is used as a baseline for comparison. In this application, the code is not separated
into different modules. All code is added directly to the main application project in Xcode. It therefore does
not use any linking at all. In the following comparisons, it is often compared to the statically linked applica-
tions, as monoliths are closer to statically linked applications than dynamically linked ones. At launch time,
monolith and statically linked applications behave similarly.

Test setup

In order to test the different architectures, it wasn’t feasible to migrate a working application of significant
size to the different architectures, as this would take a lot of time and effort. Instead, a code generator was
written.

The generator can dynamically generate enums, protocols and corresponding implementations according
to a template and replace the name of the file. These files also reference each other, so an implementation
of protocol A will reference protocol B. As these files are generated, they are automatically structured by the
generator according to the architectures being benchmarked against each other.

The content of the files tries to resemble real-world projects, using complex features such as Comb-ine and
generics. The generated swift files were then included into an iOS app project using xcodegen to generate
the corresponding Xcode project files.

Using this method, several different applications were created: A monolithic application as a baseline; four
applications using the described four-layer architecture; four applications using a three-layer architecture;
and four applications using the separated core module architecture of the four-layer architecture.

For each of the architectures (excluding the monolithic application), four variants of the applications were
generated: two statically linked and two dynamically linked applications. One of these two applications has
30 modules and the other has 300 modules.

With this strategy, it is possible to compare all architectures for each linking method and how the metrics
change with increasing number of modules.

64

The total number of applications tested is 13 (4 different architectures x 2 different linking methods x 2 dif-
ferent number of modules + 1 monolith).

For the generation of the swift files, the following templates were used for enums:

public enum EnumName<T1, T2, T3, T4, T5> {
case case0

case case6/(
Ti, T2, 73, T4, 15, T1, T2, T3, T4, T5, T1, T2, T3, T4, T5, T1, T2, T3,
T4, T5, T1, T2, T3, T4,
T5)

case casel2(URLSession, UIView, UIViewController, UINavigationController,
any View)

public var comment: String {
switch self {
case .case0:
return "case0"

case .caseb6(
let tl1 as URL, let t2 as CurrentValueSubject<Any, Never>,
let t3 as CurrentValueSubject<Any, Never>, let t4, let t5, let t12,
let t22, let t32, let t42,
let t52, let t13,
let t23, let t33, let t43, let t53, let tl4, let t24, let t34, let t44
, let t54, let t15,
let t25, let t35, let t45, let t55):
let just = Just(tl)
let combined = t2.combineLatest(t3, just).sink { _ 1in
print("Received values")
}
return
"case6 combined: \(combined.hashValue) \(t1) \(t2) \(t3) \(t4) \(t5
) \(t12) \(t22) \(t32) \(t42) \(t52) \(t13) \(t23) \(t33) \(t43)
\(t53) \(t14) \(t24) \(t34) \(t44) \(t54) \(t15) \(t25) \(t35)
\ (t45) \(t55)"

case .casel2(
let urlsession, let uiView, let vc, let nvc,
let view):
return

"case 12 \(urlsession.description) \(uiView.isExclusiveTouch) \(vc.
isViewLoaded) \(nvc.description) \(view)"

default:
return "default"

}

}
}

for protocols:

65

public protocol ProtocolName {

var getPropl: String { get }
var getProp2: String { get }
var getProp3: String { get }
var getProp4: String { get }
var getProp5: String { get }
var getProp6: String { get }
var getProp7: String { get }
var getProp8: String { get }
var getProp9: String { get }
var getPropl0: String { get }
var getPropll: String { get }
var getPropl2: String { get }
var getPropl3: String { get }
var getPropl4: String { get }
var getPropl5: String { get }

var combineProp: CurrentValueSubject<URL?, Never> { get set }

var getSetPropl6: String? { get set }
var getSetPropl7: String? { get set }
var getSetPropl8: String? { get set }
var getSetPropl9: String? { get set }
var getSetProp20: String? { get set }
var getSetProp2l: String? { get set }
var getSetProp22: String? { get set }
var getSetProp23: String? { get set }
var getSetProp24: String? { get set }
var getSetProp25: String? { get set }
var getSetProp26: String? { get set }
var getSetProp27: String? { get set }
var getSetProp28: String? { get set }
var getSetProp29: String? { get set }
var getSetProp30: String? { get set }

func function31(propl: String, prop2: Bool) -> String
func function32(propl: String, prop2: Bool) -> String
func function33(propl: String, prop2: Bool) -> String
func function34(propl: String, prop2: Bool) -> String
func function35(propl: String, prop2: Bool) -> String
func function36(propl: String, prop2: Bool) -> String
func function37(propl: String, prop2: Bool) -> String
func function38(propl: String, prop2: Bool) -> String
}

and the corresponding protocol implementation:

public class ##name##: ##protocol## {
public var cancellables = Set<AnyCancellable>()

public var otherProtocolImpl: ##otherProto##?

public init(otherProtocolImpl: ##otherProto##?) {

66

self.otherProtocolImpl = otherProtocolImpl
}

public var getPropl: String {
llproplll
}

public var combineProp: CurrentValueSubject<URL?, Never> =
CurrentValueSubject(URL(string: "demo"))

public var getSetPropl6: String?

public func function3l(propl: String, prop2: Bool) -> String {
combineProp
.sink { url 1in
print(url?.description ?? "default value")

}

.store(in: &cancellables)
combineProp.send(URL(string: "two"))
otherProtocolImpl?.combineProp.send(URL(string: "https://hello.from.
other.implementation.com/"))
return propl + "\ (prop2)" + (getSetPropl6 ?? "") + (getSetPropl7 ??

|l|l)
}

public func function32(propl: String, prop2: Bool) -> String {
combineProp
.sink { url 1in
print(url?.description ?? "default value")

}
.store(in: &cancellables)
return propl + "\ (prop2)" + (getSetPropl8 ?? "") + (getSetPropl9 ??

|l|l)

}

Each application contains 1000 generated enums, 1000 generated protocols and 1000 protocol implementa-
tions. The only variables are the linking methods, the architectures and the number of frameworks used.

Formergeable libraries,the dynamically linked app in the four-layer architecture was enabled. As
similar results to the statically linked frameworks are expected, this application is only used as a comparison
that mergeable libraries behave as expected thus can indeed achieve the start up time of a statically linked

application. Let’s find out!

67

Test results

The following sub-sections show the results of the applications described in terms of the four metrics men-
tioned: application size, memory usage, compile time and cold start time.

App size

App Size [MB]

300 modules 30 modules 300 modules 30 modules
116,7 84,3 884 80,7
1103 838 908 81,0

Protocol-modular 100,6 83,1 80,3 80,2

The results of the application size measurements are shown in the table above. Dynamic and static linking
are shown in the columns, while the four different architectures are shown in the rows.

The results of the statically linked application for the four-layer and protocol modular architectures show
the expected results of having a similar size to the monolithic application, although slightly smaller.

The four-layer dynamically linked application is about 30% larger than the static monolithic application,
showing the overhead of packaging the same code in 300 different dynamic frameworks.

The core-separated application has an application bundle size thatis about 22% larger than either the mono-
lithic application or the comparable statically linked application, showing that the overhead for 200 dynamic
frameworks is less than for 300 frameworks. It can be concluded that 100 dynamic frameworks have an over-
head of approximately 10MB.

Outliers from this data are both the dynamically and statically linked three-layer applications. They show
a significant reduction in bundle size, application size and frameworks folder size respectively. Even after
multiple retests, the results remained the same. A possible explanation could be a specific Swift compiler op-
timisation for this architecture, although this is unlikely. Confirming that all 200 dynamic frameworks were
part of the application bundle also failed to explain the significantly smaller size. Since each of the dynamic
frameworks is about the same size as the frameworks in the other applications, there is no explanation for
this discrepancy.

They are all very similar in size to the monolithic application. In fact, the main executable for the dynamically
compiled applications in the table is exactly the same size. The only measurable size difference was then
seen in the size of the dynamic frameworks folder.

68

Memory usage

Memory usage [MB]

12

10.2
9.8
10.4
10.1
10.23
10
10.18

10

B 0iPhone 14 Pro dynamic linking
I I iPhone 14 Pro static linking
I I iPhone Xs dynamic linking
I B iPhone Xs static linking

[e 0.6
[O N 1039
I I N A 044
I N e 1065
[N I N 061
I I I 04
I I N N 1096
[N 05
[I A B 1053
I N . o4
I
I I N N 1045
[N I N 1043
[e 0.8
o o
memory usage [MB]

4
DD iPhone 6s dynamic linking
2 DD iPhone 6s static linking
J_I*_I“I_IIII_I“L 0
& & S S
> D > >
&° & o
e = &
W bt <

* combination technically not possible

Figure 15 - Memory usage benchmarking results

The results of the memory usage measurements show the expected results as shown in the table above. All
readings are in the range of (10.3 + 0.5) MB, regardless of device age, architecture and linking method.

As all applications load the same view at startup, this result is expected. The small remaining difference can
only be explained by run-to-run variations. As this measurement showed no deviation, it was not measured
for the test cases with fewer dynamic frameworks. It would be expected that the memory usage would also

be in the same range.

Compile time

The results of the compile-time measurements are shown in the graph below. The incremental build results
are marked accordingly.

Compiling the monolith application took 115.8 s. Compiling the four-layer modular, three-layer modular
and protocol modular static linked applications was about 5 to 20 s faster than the monolith application
at 109.5 s, 105.3 s and 95.4 s respectively. This increase in speed could be due to an increase in parallel
compilation of the different static frameworks. With a monolith application, Xcode may not be as optimised
to compile the different source files in parallel.

Compiling the dynamically linked four-layer application took about 32% longer than the statically linked
application. This increase may be due to the overhead of compiling the various dynamic frameworks and

linking them to the main executable.

69

Compile time [s]

2 160
.5 B 3 140
= 0 = : 120
lH i B : 5100 1 dynamic linking
IR BR BB T Dioynamictinking G

g ynamic linking (incremental)

II I N I 2 l > I . I . I 60 I static linking
== Iiii Iiii Iiiﬁ 42 BN static linking (incremental)

X \b\ \2“\ A
& 3 N &
) O O SN
$ S S S
& & S
< -
& & o
& & &
W % N

* combination technically not possible

Figure 16 - Compile time benchmarking results

For the protocol modular and three-layer application, there is no noticeable difference in build time com-
pared to the statically linked counterpart. In contrast, there is an increase for the four-layer application.
Incremental builds for all modular application architectures are then faster than the clean build by a factor
of 2-3. There is no such decrease for the monolithic application. This is probably because Xcode recompiles
all files in the monolithic module, resulting in the same build time as a clean build (or even slightly longer,

as seen in this example).
Compared to the compile times for the applications with fewer static and dynamic frameworks (by a factor

of 10), as shown in the graph, the clean build time is drastically reduced. For example, for the four-layer
application, the dynamically linked application now compiles in 47.4 seconds instead of 144.3 seconds.

The other two application architectures see a similar reduction in compile time, although not as drastic
as the four-layer applications. The dynamically linked three-layer and protocol modular applications now
compile faster than their statically linked counterparts. As this is not the case for the four-layer application,
there seems to be a threshold somewhere between 20 and 30 frameworks (for the configurations tested in
this benchmark) under which it is faster to compile dynamically. Above this threshold, static linking seems

to be faster.

Launch time

The launch time of the application is highly dependent on the device used. For this reason, the tests were
carried out on iPhones of different generations.

The phones tested were an iPhone 6s, an iPhone Xs and an iPhone 14 Pro. These phones were not brand

70

new at the time of the tests and had already been used extensively for app development. Even though these
phones were in use, the results should still be valid, as all of the devices still showed high performance mode
in their battery health settings.

The following three graphs show the cold start times of the tested applications on the different iPhones (6s,
Xs and 14 Pro):

Launch time [s] iPhone 6

time [s]

| B dynamic linking (~300 modules)
In dynamic linking (~30 modules)
In static linking (~300 modules)
ID static linking (~30 modules)

Tested device: iPhone 6s

* combination technically not possible

Figure 17 - Launch time usage benchmarking results

The difference in age and processing power between the iPhone 6s and the 14 Pro is clearly visible here. The
older device launches the same application (four-layer modular with dynamic linking) about 10 times slower
than the new device, while the iPhone Xs is about half as fast as the latest iPhone. While the iPhone 6s takes
14.4s to launch the four-layer modular application with dynamic linking, the iPhone Xs takes 2.94s and the
iPhone 14 Pro takes 1.54s. This reduction in launch time for the newer iPhone models is greater than the
improvement in device specifications over the years.

The figures also clearly show that having more dynamic frameworks is the biggest contributor to applica-
tion startup time. While the tested four-layer application has 300 frameworks, and the three-layer and core-
separated application have around 200 frameworks, there is a clear increase in launch time from the three-
layer to the four-layer application across all devices. This effect is also seen with fewer frameworks (by a
factor of 10, resulting in 30 frameworks for the four-layer application and 20 frameworks for the 3-layer and
core-separated), but with a smaller margin. The results with fewer dynamic frameworks are marked accord-
ingly. However, the reduction in startup time with 10 times fewer dynamic frameworks does not translate
into a 10 times reduction in startup time. For the iPhone 14 Pro, the reduction from 300 to 30 frameworks in
the four-layer modular architecture results in an decrease of the start time by a factor of about 7.7.

With static linking, no dynamic frameworks need to be loaded at all. This results in a very fast application

71

Launch time [s]

2.5

—_

I N -0

0.49

8

Tested device: iPhone Xs

* combination technically not possible

Figure 18 - Launch time usage benchmarking results

Launch time [s]

<
2
—
I

| 1 0;
I

Tested device: iPhone 14 Pro

* combination technically not possible

Figure 19 - Launch time usage benchmarking results

72

time [s]

1.5

time [s]

iPhone X&)

| Bdynamic linking (~300 modules)
I dynamic linking (~30 modules)
In static linking (~300 modules)
In static linking (~30 modules)

iPhone14 Pro

| Bdynamic linking (~300 modules)
[dynamic linking (~30 modules)
In static linking (~300 modules)
0D static linking (~30 modules)

cold launch time for all three devices, comparable to the monolith launch time. While the iPhone 6s is still
only about half as fast as the iPhone 14 Pro, a launch time of 0.13s, 0.16s and 0.33s respectively is still fast
compared to the launch times with dynamic linking.

Mergeable libraries can significantly reduce the startup time of production-built applications. Any dynamic
frameworks that are not needed in your app extensions are merged into the main executable as if they were
statically linked. This means that the frameworks no longer need to be dynamically loaded on app startup.

Frameworks that are shared with your app extensions (for example, a widget) cannot be merged into the
main app executable because the app extensions still depend on these dynamic frameworks. If they were
also merged into the app extensions, the code inside the frameworks would be shipped twice to all users:
once merged into the main executable and once merged into the app extension. The frameworks are only
merged for release builds, meaning that debug builds still have all the benefits of dynamically linked li-
braries.

The generated app in the four-layer architecture was also tested for launch time: the same app that took 1.5
seconds to launch on the iPhone 14 Pro took only 0.15 seconds to launch with mergeable libraries enabled.
The same application with static linking took 0.12 seconds to launch. This suggests that apps built with
mergeable libraries take about the same time to launch as statically linked apps.

Conclusion

When building applications in the modular architecture described above, the benchmark results suggest a
number of considerations.

1. If mergeable libraries are not enabled, adding a new framework to an application framework should
be done with absolute care. Splitting the application into several smaller frameworks could result in
longer startup times for users of that application.

2. If at all possible, mergeable libraries should be enabled. The result is essentially the launch time of a
statically built app. For the sample app tested on the iPhone 14, it reduces the launch time by about
90%!

3. Separating the modules into their core and implementation parts may speed up your application’s
compile time. If no protocol or interface changes are made, the modules that only depend on the core
part of the framework do not need to be recompiled. Only the main application, which depends on
the concrete implementation module, needs to be recompiled, which has to be done anyway. Other
advantage of this architecture, however, is that it allows linking at the same level.

SPM (maybe v3? or never)

// TODO: Building the same with SPM

73

Application Framework - Best Practices

At this point, we have a very well designed and benchmarked architecture, let us continue in this chapter
with the best practices of contribution and collaboration on the modularised Application Framework.

App secrets

Project secrets could be APl keys, SDK keys, encryption keys, as well as configuration files or certificates con-
taining sensitive information that could cause potential harm to the app. Considering, many developers are
working in the same repository on the same project, keeping project secrets stored securely such that they
are exposed only to appropriate developers can be challenging. Essentially, any piece of sensitive informa-
tion should not be exposed to anyone not working directly on the project. By any means, secrets should
NOT be stored in the repository and should not be part of the compiled binary as plain strings.

The app ideally should decrypt encrypted secret during its runtime. Even though, on ajailbroken iPhone the
potential attacker could gain runtime access and print out the secrets while debugging or bypass SSLPinning
and sniff the secrets from the network. Considering, the SSLPinning was in a place like it should. In any case,
it will take much more effort than just dumping binary strings that contain secrets.

If taking it a step further, in an ideal scenario all application’s secrets should be used by the backend.
The front end mobile client should be free of those secrets, however, for directly integrated SDK’s like
GoogleMaps or any vendor’s SDKs the keys are sometimes necessary.

About two years ago me and my colleague Jorg Nestele had a look at the problem and over few weekends
we came out with an open-source project written purely in Ruby called Mobile Secrets which solves this
problem in a Swifty way.

Now, let us have a look at how to handle secrets in the project.

How to handle secrets

First thing first, as mentioned above any secret must be obfuscated, without a doubt. String obfuscation is
a technique that via XOR, AES or other encryption algorithms modifies the confidential string or a file such
that it cannot be de-obfuscated without the initial encryption key.

Unfortunately, obfuscating strings or files and committing them to the repository might not be enough.
What if there is a colleague who has access to the source repository or someone who might want to steal
these secrets and hand them out? Simply downloading the repository and printing the de-obfuscated string
into a console would do it.

Essentially, the secret should be visible only for the right developer in any circumstances. Especially, for
mono-repository projects where many teams are contributing simultaneously. That is where GPG comes
into play.

74

The GnuPG (GPG)

GPG is an asymmetric key management system that creates a hash for encryption from the public keys of all
participants. In theinitialisation process, GPG will generate a private and public key. The public key is saved
inthe . gpg folder under the user’s email visible to everyone. The private key is saved in ~/ . gnupg and is
protected by a password chosen by the user.

To instal GPG on the mac, following command can be used: brew install gnupgandgem 1install
dotgpgtoinstall dotgpg, Ruby program that simplifies the usage of GPG.

To add a developerinto the authorised group, the developer needs to provide a public key from his machine,
simply executing dotgpg key will print the key. This key must then be added by the already authorised
personvia dotgpg add.

Thefile encrypted by GPG containingall project secrets can be then thoughtfully committed to the repository
since only authorised developers who possess the private key can decrypt it.

GEM: Mobile Secrets

gem uses an XOR cipher alongside with GPG to handle the whole process. To install MobileS-
ecrets simply execute gem install mobile-secrets.

Mobile Secrets itself can then initialise the GPG for the current project if it has not been done yet by running:
mobile-secrets --init-gpg .

When GPG is initialised, a template YAML file can be created by running: mobile-secrets --create-
template.

: "KokoBelloKoko"
¢ "Swift"

: "123123123"

: "asdasdasd"
: "asdl23asdl23"

Figure 20 - MobileSecrets.yml

The MobileSecrets.yml file contains the hash key used for obfuscation of secrets with the key-value
dictionary of secrets that must be adjusted to the project needs. All secrets of the projectincluding the initial
hashing key are then being organised in this structure encrypted by GPG. When everything was edited simply
import the configuration file by running the command.

75

https://github.com/CyrilCermak/mobile-secrets

mobile-secrets —--import ./MobileSecrets.yml and it will be stored under secrets.gpg

Finally, we can run: mobile-secrets --export ./Output/Path/ to export the swift file with ob-
fuscated secrets.

Mobile Secrets exported Swift source code will look like the example below. Last but not least, the path to
this file must be added to the . gitignore. The secrets source code must be generated locally alongside
with generating the projects.

import Foundation
class Secrets {

static let standard =
private let bytes: [[

private init() {}

func string(: 7?7 {
guard let index = (where: { (H
let value = + 1]) else { return

)

return (

s

private func decrypt(
let key = [0]
guard ! else { return
var output = [10)
for byte in () {
+

return

Figure 21 - Exported Swift secrets source file

The ugly and brilliant part of the Secrets source code

What happened under the hood of the mobile-secrets? Out of the YAML configuration, secrets were obfus-
cated with the specified hash key via XOR and converted into bytes. Therefore, it ended up with an array of

76

UInt8 arrays.

Thefirstitem in the bytes array is the hash key. The second item is the key for a secret, the third item contains
the obfuscated secret, the fourth is again the key and fifth is the value, and so forth.

To get the de-obfuscated key just callthe string(forKey key: String) function. It will iterate over
the bytes array, convert the bytes into a string and comparing it with the given key. If the key was found, the
decrypt function will be called with a value on the next index.

Since we have the array of UInt8 arrays([[UInt8]]) mixed with the hash key, keys and obfuscated secrets,
it would take a significant effort to reverse-engineer the binary and get the algorithm. Even to get the bytes
array of arrays would take a significant effort. Doing so also made it hard to get the secrets out of the bi-
nary. Yet, the secrets can still be obtained when the attacker gains control over the runtime of the app like
mentioned before.

Workflow

While this book is mostly focused on the development aspects of modular architecture, some management
essentials must also be mentioned. Not surprisingly, developing software for a large organisation can be a
real challenge. Imagine a scenario where around ~100 developers per platform (i0S/Android/Backend) are
working on the same project towards the same goal. Those developers are usually divided into multiple
cross-functional teams that are working independently as toward each team’s own goals.

A cross-functional team usually consists of a product owner or a product manager, designers, who are defin-
ing the UI/UX and behaviour on each platform, developers from each platform, and last but not least, the
quality assurance. Obviously the particular combination is highly dependent upon the company and its
structure as well as the agile methodologies the company is using.

Forexample, the team goal can be developing some specific business domain where the team then becomes
the domain expert and is further responsible for developing, improving, and integrating that domain into
the final customer-facing application.

It could also be that the team develops a standalone application on top of the framework. If the team fol-
lowed the same patterns defined in the framework, usually by technical leads. The app can be then easily
later on integrated as a part of some bigger application that for example groups those functionalities in one
app. Or the other way around splits one big app into multiple smaller ones. Like for example, Facebook did
with their Messenger app.

Teams

Teams and their management play a crucial role in the success of the project. The modular architecture
by any means helps define boundaries of teams. From the developers POV, each developer is responsible

7

for developing the frameworks belonging to the team. In our Cosmonaut example, it could be the Cosmo-
naut domain alongside with Cosmonaut service. While Spacesuit domain and Spacesuit service would be
developed by another team.

That does not necessarily mean that the team Cosmonaut, let us say, cannot develop or modify the source
code in the domain or service of Spacesuit. It should however mean that changes team Cosmonaut makes
to team Spacesuit’s domain code should seek review and approval from the Spacesuit team.

Luckily, thereis one simple solution supported by many CI/CD platforms forit: code owners. The code owner
file simply defines who is the owner of which part of the codebase. This already briefly touched the topic of
git which is covered in the following subchapter.

Git & Contribution

While there are many different approaches on how to contribute to the repository via git in our modular
architecture, | find one particular the most helpful: The . lam sure you have heard of it at some
point or if you have not you could be using it without knowing.

Most likely, on projects developed by a single team, the whole workflow heavily depends on the team how
they will decide to contribute to the repository. Nevertheless, in the case of a team of teams, contributing
to a mono-repository with the GitHub flow, coupled with the four eyes principle, is the way to go.

The four eyes principle simply means that in order to merge a pull request, the pull request must first be
reviewed by another set of eyes, another person. That being said, in the team, each platform must have at
least two developers so that the team can develop autonomy and work independently.

When making changes in another team’s code, a dedicated code owner from the team must approve the
changes. Once approved, the team can stay ahead and maintain the overview of its part of the codebase and
domain knowledge. Without defining the code owners early on in the project’s lifetime, everyone would be
working everywhere and it could all turn into chaos.

Looking at the framework structure, it is quite clear where each team has its boundaries. However, there is
one part that is very difficult to maintain and takes the most effort. That part will be the core layer. While
the core layer could be developed by the creators of the application framework in the very early stages, it is
surely the part everybody is relying on. Therefore, great test coverage plays a crucial role when developing
anything in the core layer. Later on, any change in any interface of an object will affect everybody who is
using it. Since it is the lowest layer (since we are not counting the utils layer), it will be highly likely that it
will be used by many frameworks in the higher layers.

After all the desired functionality has been implemented and known bugs have been fixed, the core layer will
not need much of a focus. However, teams may still need to extend the functionality on that layer. This could
result in those teams opening a PR with their needed functionality or with suggestions of improvements. In
this case, the tech leads should be seen as being code owners of the code in question since they are the ones
with the duty of maintaining the overall vision of the project.

78

https://guides.github.com/introduction/flow/

Scalability

As mentioned already in the book, modular architecture is designed to be highly scalable. With the pre-
defined scripts, the new team can simply create a new framework or app and start the implementation right
away. Nevertheless, the onboarding of a new colleague or the whole team takes time which needs to be
considered by the project management.

Most likely, scaling to a Nth team working on the framework will require quite an extensive onboarding ses-
sion. Due to the amount of code, design patterns, Cl/CD, code style and so on, it may take a lot of time
for newcomers to get the speed. In such a case, platform technical leads bring new members up to speed
via pair programming, code reviews, and further onboarding up until the newcomers are familiar with the
development concept, patterns, and so on.

Application Framework & Distribution

Architecture-wise, the application framework can be used as the software foundation for a company. Dif-
ferent products can now be easily created with the pre-built foundation which encapsulates the entire com-
pany’s knowledge in software development. Needless to say, from the engineering point of view, this is a
big win for the whole company. With the application framework in hand, software engineers can provide
much more accurate estimates and do so with more confidence and speed. Software engineers will be able
to forecast development time and make note of the biggest risks and challenges of development.

Nevertheless, there are many more use cases where such an architecture would be helpful. Due to modu-
larisation, standalone frameworks can be exported and used for development without affecting the current
development workflow. This could be particularly helpful when, for example, a subsidiary would be devel-
oping another software product. With pre-built core components, most importantly the Ul part facing the
customers, new products in the subsidiary can be built much faster and without gaining access to the confi-
dential parts held in service or domain layers. However, in such case the team responsible for developing the
distributed components, or let us say the SDK, will become the support team for the consumers of the SDK.
In that case, a new process and workflow must be established. The responsible team could be opened to
submitting bug reports and distributing the new versions of the SDK bi-weekly, or whenever it is suitable.

Common Problems

While praising such architecture pretty much all the time, like everything, it comes with its disadvantages as
well.

Maintenance

First things first, the maintenance of the application framework can be very inefficient and difficult. The
application framework will not go far without technical leads who can align the company strategy for the

79

development of the framework and products. Thereafter, technical leads give the directions for the devel-
opment technically backed up by system and solution architects. Since there can be many teams working
and contributing to the repository some maintenance might be happening daily. The most affected part
is probably the CI/CD chain. On the CI/CD things can break quickly, furthermore, maintenance of failing
unit-tests, legacy code, supporting apps that are no longer in development etc is needed.

In case of the maintenance, a particular difficulty (challenge) could be maintaining apps or frameworks that
are no longer in development. Let us say, an app consisting of domains and services was successfully de-
livered to the customers and there is no more development planned for it. This results in code that runs
in production. Therefore, it is very important. Since it relies on the e.g service layer frameworks that are
still in development the tests will start failing. Interfaces need to be updated and so on. In the end, this
will require additional effort for one of the teams to just take care of it until a further decision is made for
development.

Another approach would be to archive it, remove it from the actively developed codebase and when the
time comes, put it back. Furthermore, update all interfaces and changes that happened in the framework
and then happily continue the development.

Code style

Since many different developers are working together, collaborating on the same code base, following the
same code style, principles and patterns can be a challenge. Everybody has different preferences and differ-
ent experiences. Getting people on the same board can sometimes be quite difficult.

Nevertheless, following the ground rules and overall framework patterns is what matters the most. In this
case, what helps is having the code itself and framework being well documented. Good documentation
should be complemented by a proper onboarding process that ideally consists of pair programming, code
reviews, and ad-hoc one on one sessions. Changes in the code style, importing new libraries, introducing
new patterns and so on can be discussed in developers guild meetings where everybody can vote for what
seems to be the best option. In guilds, everybody can make suggestions for improvements and vote for
changes he or she likes.

Not fully autonomous teams

In theory, each team should have its own autonomy. Nevertheless, in practice it can be slightly more com-
plicated. In some cases, teams might depend upon each other. If so, challenges of increased inter team
collaboration and increased team communication may need to be addressed. Without adequately dealing
with these circumstances, a worst case may be teams failing to meet their goals due to unfulfilled promises
of the dependent team.

As more teams become increasingly dependent on one another, more meetings and alignments are needed.
The increase in these syncs can, unfortunately, slows down the teams.

80

Conclusion

In this chapter, we had a look at how the development of modular architecture could look in practice. We
explored ground rules, generated projects with XcodeGen, securely handled secrets, and addressed some
common problems people working on such projects will be facing.

| hope it all provided a good understanding of how to work in such a setup.

81

Dependency Managers

Generally, a good practice when working on large codebases is not to import many 3rd party libraries, es-
pecially the huge ones, for example, RxSwift, Alamofire, Moja, etc. Those libraries are extraordinarily big
and it is highly likely that some of their functionality will never be used. This will result in having dead code
attached to the project. Needless to say, the binary size, compilation time, and, most importantly, the main-
tenance will increase heavily. With each API change of the library every part of the codebase will have to be
adapted. Obviously, essential vendor SDKs, like GoogleMaps, Firebase, AmazonSDK and so on will still have
to be linked to the project. However, using libraries to provide wrappers around the native iOS code should
be avoided and instead libraries should be developed specifically to the project’s needs.

Inone of the projects | worked on, the compile time of the whole application was at about 20-25 minutes. The
project had been in development for about 8 years and had approximately 80 3rd party dependencies linked
via Cocoapods. This alone accounted for the largest percentage of build time. | do remember that | spent
nearly three full months refactoring the huge codebase into the modular architecture described here. Before
the transformation, the project was modularised with internally developed pods. While refactoring, | also
removed some of the unused libraries. Furthermore, and most importantly, | removed Alamofire, RxSwift,
RxCocoa, and other big libraries from being included via Cocoapods and linked them via Carthage instead.
This change decreased the compile time drastically.

Cocoapods libraries are compiled every time the project is cleaned while Carthage is compiled only once.
Carthage produces binaries that are then linked to a project. Cleaning a project was a pretty common thing
to do, and Xcode has improved in that sense a lot, but with the first Swift versions it was nowhere near
perfection and with a clean build most issues disappeared immediately. After the refactoring, the compile
time after cleaning the project was decreased to 10 minutes. Most of this time was the compilation of the
project source code and the few 3rd party libraries that remained linked via Cocoapods for convenience.

The way third party libraries are managed and linked to the project matters a lot, especially, when the project
is big oris aiming to be big. Now let us have a look at the three most commonly used dependency managers
when developing for iOS and how to use them in modular architecture. They are as follows: Cocoapods,
Carthage, and Apple’s new Swift Package Manager.

Cocoapods

The most used and well-known dependency manager on iOS are . Cocoapods are great to start
with, it is really easy to integrate a new library so as to remove it. Cocoapods manage everything for the
developer under the hood, therefore, there is no further work required to start using the library. When Co-
coapods are installed, with pod install, they are attached to the workspace as an Xcode project that
contains all libraries that are specified in the Podfile. During the compilation of the project, dependencies
are compiled as they are needed. This is good for small projects, or even big ones, but the libraries must
be linked carefully as every library takes some time to compile and eventually requires maintenance, like

82

https://cocoapods.org/

mentioned earlier.

Quite often Cocoapods are also used for in-house framework development which is very convenient. How-
ever, all the fun stops when the project grows and the internal dependencies are using many big libraries.
Then the whole project depends on the in-house developed pods which are internally linking the 3rd party
pods. This scenario can easily resultin a very long compilation phase as there is no legit way of replacing the
linked 3rd party frameworks via their compiled versions. It goes without saying then that Cocoapods also
will not let you integrate a static library to more than one framework because of transitive dependencies.
Therefore some dynamic library wrappers might need to be introduced to avoid it.

In such cases, it might be necessary to move away from internally developed Cocoapods and integrate a
similar approach like described in this book which gives the project complete freedom. This could lead
to days or even weeks of work, depending on how big and how well structured the project is. Nevertheless,
moving away from such a design will improve the everyday compile time for each developer. Like mentioned
before, for small projects it could really be the way to go but it has its limits.

Integration with the application framework

Surprisingly, integrating Cocoapods in the whole application framework might not be as easy as you might
think. Cocoapods must keep the same versions of libraries across all frameworks and on each app devel-
oped upon those frameworks. This will require a little bit of Ruby programming. Essentially, the application
framework must have one shared Pod 1 Le that will define pods for each framework. Thereafter, every app
can easily reuse it. Furthermore, each app hasits own Podf1 lLe that specifies which pods must be installed
for which framework to avoid unnecessarily linking frameworks the app will not need.

Let us have a look now how the app’s Pod 1 Le could look for the Cosmonaut example. app/Cosmonaut
/Podifle

require_relative "../../fastlane/Podfile"

platform :dios, '13.0'
workspace 'CosmonautApp'

spacesuit_sdk
cosmonaut_sdk
scaffold_sdk

spacesuitservice_sdk
cosmonautservice_sdk

network_sdk
radio_sdk
uicomponents_sdk
persistence_sdk

83

Installing pods for the Application target
target 'CosmonautApp' do
use_frameworks!

pod $snapKit.name, S$snapKit.version

Linking all dynamic libraries required from any used framework towards
the main app target

as only app can copy frameworks to the target

add_linked_1libs_from_sdks_to_app

Dedicated tests for the application

target 'CosmonautAppTests' do
inherit! :search_paths

end

target 'CosmonautAppUITests' do
Pods for testing
end
end

Firstly, the shared Podf-ile that defines pods for all frameworks is included. After setting the plat-
form and workspace, the installation for all linked frameworks takes place. Last but not least, the well
known app target is defined, potentially with some extra pods. Here, special attention goes to the
add_Tlinked_1libs_from_sdks_to_app function which will be explained in a second.

To fully understand what is happening inside of the app’s Podfile we have to have a look at the shared
Podfile. fastlane/Podifle.rb

require 'cocoapods'
require 'set'

Lib = Struct.new(:name, :version, :is_static)
SlinkedPods = Set.new

available libraries within the whole Application Framework

$snapKit = Lib.new("SnapKit", "5.0.0")
$siren = Lib.new("Siren", "5.8.1")

Project paths with required libraries

Domains
$scaffold_project_path = '../../domain/Scaffold/Scaffold.xcodeproj"

$spacesuit_project_path = '../../domain/Spacesuit/Spacesuit.xcodeproj'

Linked libraries
Snetwork_T1libs = [$trustKit]
$cosmonaut_libs = [$SsnapKit]

84

22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

69

70

Domain
def spacesuit_sdk

target_name = 'ISSSpacesuit'

install target_name, $spacesuit_project_path, []
end

def cosmonaut_sdk
target_name = 'ISSCosmonaut'
test_target_name = 'CosmonautTests'
install target_name, $cosmonaut_project_path, $cosmonaut_Tlibs

install_test_subdependencies $cosmonaut_project_path, target_name,
test_target_name, []
end

Helper wrapper around Cocoapods installation
def install target_name, project_path, linked_libs
target target_name do
use_frameworks!
project project_path

link linked_T1libs
end
end

Helper method to install pods that
track the overall linked pods in the linkedPods set
def link 1libs
libs.each do |lib]|
pod lib.name, 1lib.version
$linkedPods << 1lib
end
end

Helper method called from the app target to dinstall
dynamic libraries, as they must be copied to the target
without that the app would be crashing on start
def add_linked_1libs_from_sdks_to_app
$linkedPods.each do |lib]|
next if lib.dis_static
pod lib.name, lib.version
end
end

Maps the list of dependencies from YAML files to the global variables
defined on top of the File

e.g ISSUIComponents.framework found in subdependencies will get mapped to
the uicomponents_Tlibs.

From all dependencies found a Set of desired libraries is taken and
installed

def install_test_subdependencies project_path, target_name, test_target_name

85

, found_subdependencies

end

Here we can see, at the top of the file, the struct Lib that represents a Cocoapod library. In the next lines,
Lib is used to describe the libraries that can be used within the whole framework and apps. Furthermore,
each framework is defined by a function, e.g. spacesuit_sdk, which is then called from the main app
Podfile toinstall the libraries for those required frameworks. Finally, helper functions are defined to sim-
plify the whole workflow.

Those two functions require some explanation. First, the add_1linked_1libs_from_sdks_to_app
mentioned in the app’s Pod 1 le must be called from within the app’s target to add all the dependencies
of the linked frameworks. Without it, we would end up in the so-called dependency hell. The app would be
crashing with e.g TrustKit library not loaded... referenced from: ISSNetwork, be-
cause the libraries were linked towards the frameworks, however, frameworks do not copy linked libraries
into the target. Therefore, the App must do it for us. Frameworks then can find their libraries at the @rpath
(Runpath Search Paths).

The second function is install_test_subdependencies. This is the same scenario as for the pre-
vious function but for the tests. In order to launch tests, tests have to link all dependencies of the linked
frameworks towards the XCTests. Lucky enough, thanks to Xcodegen, we can iterate over all project.
ym1 files and find the linked frameworks and within the shared Podf1 le then use the defined pods for
those frameworks.

In the source code everything is well commented so it should be easy to understand.

Carthage

While Cocoapods is a true 3rd party dependency manager that does everything for the developer under the
hood, leaves developers with free hands. Frameworks to be included via Carthage are listed in
the Cartfile. Frameworks listed within this file will be fetched and either built locally or pre-compiled
XCFramework will be downloaded. Executing Carthage’s build command with carthage update --
platform 70S will fetch all the dependencies and produces the compiled versions. Such a task can be
time consuming, especially, when some of the 3rd party libraries included are some of the aforementioned
big ones. Nevertheless, such a command is usually executed only once. Compiled libraries can then be
stored in some cloud storage where each developer or Cl will pull them into the pre-defined git ignored
project’s folder or possibly update them if it is necessary. That being said, a dependency maintenance and
sharing strategy needs to be in place.

As mentioned above, Carthage only builds the libraries. Thus it is up to the developer to dictate how they
are linked toward the frameworks and apps. Luckily, XcodeGen helps a lot when linking Carthage libraries.
In the YAML file, it can be easily defined where the Carthage executables are stored as well as which ones we
want to link. Linking a static framework can easily be performed by specifying the LinkType.

86

https://github.com/Carthage/Carthage

Definition of the targets that exists within the project
targets:

The main application
Cosmonaut:
type: application
platform: i0S
sources: Cosmonaut
Considering the Carthage is stored in the root folder of the project
carthageBuildPath: ../../Carthage/build
carthageExecutablePath: ../../Carthage
dependencies:
- carthage: Alamofire
- carthage: SnapKit
- carthage: MSAppCenter
linkType: static
Domains
- framework: ISSCosmonaut.framework
implicit: true
- framework: ISSSpacesuit.framework
implicit: true
- framework: ISSScaffold.framework
implicit: true

At build time, the compiled binaries are linked to the frameworks and apps. The expensive compile time
is no longer required for each build. When the build is started, Xcode looks at the library search paths for
compiled binaries to link. In comparison to compiling all 3rd party libraries from source code, linking takes
only seconds.

By the end of the day, Carthage will require much more work in order to have it properly configured and
maintained in the project. Updating one library will require recompiling the library and its dependencies,
uploading it somewhere to the server where it can be accessible by all developers and, finally, downloading
the latest Carthage builds by developers locally. Surely, each developer can also recompile the libraries
locally but that can take away again a lot of time from each developer, depends on the amount of libraries
used.

One last thing worth mentioning is ABI (Application Binary Interface) interoperability. Since with Carthage
the binaries are being linked, the compiler must be interoperable with the compiler that produced the bi-
naries. In the end that might be a big problem, as the whole team will have to update Xcode at the same
time. Furthermore, the vendors of those libraries might need to update their source code to be compatible
with the higher version of Swift. ABI is a very interesting topic in language development. | would highly
encourage reading about it in the official Swift

SwiftPM

is the official dependency manager provided by Apple. It works on a similar basis

87

https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://swift.org/package-manager/

as Cocoapods. Each framework or app is described with its dependencies in a Package. swi ft file and
compiled during the build. The benefit of using SwiftPM is that it can be used for script development or even
cross-platform development. Cocoapods on the other hand is AppleOS dependent. Nevertheless, SwiftPM
can be used for i0S/macOS development with ease. In comparison with Cocoapods, SwiftPM does not re-
quire extra actions in order to fetch the dependencies, Xcode simply takes care of it. SwiftPM also does not
require using a Workspace for development asit directly adds the dependencies to the current Xcode project.
In contrast, Cocopods requires working with an Xcode Workspace as the Pods are attached as a standalone
project that contains all the binaries.

One of the example projects using the SwiftPM for cross-platform development is the Swift server-side web
framework, . Vapor runs happily on both macOS and Linux instances. Nevertheless, developing Swift
code for both platforms might not be as easy as you imagine. There are many differences in the Foundation
developed for Apple OSes and Linux versions. Therefore, some alignments might be necessary in order to
run the code on both systems and this may be the reason why some libraries cannot simply be used on both
systems.

v B App
Package.swift import PackageDesc
v @@ Sources
> I Acp
> il Run
v [Tests
» Bl AppTests
v [Dependencies
> B JWT 312
> B Leaf3.0.2
> . FluentMySQL 3.1.0
» @ MysQL 3.31
» @l Fluent 3.2.1
> @ sqQL2.3.2
» @ Vapor 3.3.3
» @l WebSocket 1.1.2
» Wl Validation 2.1.1
» @ URLEncodedForm 1.1.0
» @ TemplateKit 1.5.0
» @ Routing 3.1.0
» @ Multipart 3.1.2
> @ HTTP3.3.2
» M swift-nio-ssl 1.4.0
» Wl Databasekit 1.3.3
» @l Crypto 3.3.3
» @l Console 3.1.1
» @@ Service 1.0.2
» @ Core 3.10.0
> W swift-nio 1.14.2
» @ Products
» @ Resources
» @ Public

", "Crypto", "Random"]),

Figure 22 - SwiftPM with Vapor application

Conclusion

This chapter gave an introduction to the most common package managers that could be used for managing
3rd party frameworks with ease. Choosing the right one might, unfortunately, not be as obvious as we would

88

https://github.com/vapor/vapor

wish for. There are trade offs for each one of them. Choosing Cocoapods or SwiftPM at the start and then
potentially replacing some of the big libraries with Carthage, to reduce compile times as needed, might be a

good way to go. That being said, with the hybrid approach, the project benefits from both feature sets which
could speed up everyday development dramatically.

89

Design Patterns

Design patterns help developers to solve complex problemsin a known, organised, and structured way. Fur-
thermore, when new developers are onboarded, they might already know the patterns used for solving such
problem which helps them to gain speed and confidence for development in the new codebase.

The purpose of this book is not to focus on design patterns in detail as there are plenty of books about them
already. However, some patterns that are particularly useful when developing such modular architecture
are highlighted here.

Coordinator

First of all, let us have a look at the Coordinator pattern, one of the most well known navigation patterns of
all times when it comes to iOS development. Coordinator, as its name says, takes care of coordinating the
user’s flow throughout the app. In our Application Framework, each domain framework can be represented
by its coordinator as an entry point to that domain. The coordinator can then internally instantiate view
controllers and their view models and coordinate the presentation flow. For the client, who is using it, all
the necessary complexity is abstracted and held in one place. Coordinators usually need to be triggered to
take charge with a start method. Such a method could also provide an option for a link or a route
which is a deep link which the coordinator can decide to handle or not.

While there are many different implementations of such a pattern, for the sake of the example and our Cos-
monautApp | chose the simplest implementation.

First, let us have a look at some protocols: File: core/UIComponents/UIComponents/Source/
Coordinator.swift

// DeepLink represents a linking within the coordinator
public protocol DeeplLink {}

public protocol Coordinator: AnyObject {

var childCoordinators: [Coordinator] { get set }
var finish: ((DeepLink?) -> Void)? { get set }

func start()
func start(link: DeeplLink) -> Bool

}

// Representation of a coordinator who is using navigationController
public protocol NavigationCoordinator: Coordinator {
var navigationController: UINavigationController { get set }

}

// Representation of a coordinator who is using tabBarController
public protocol TabBarCoordinator: Coordinator {
var tabBarController: UITabBarController { get set }

90

var tabViewController: TabBarViewController { get }
}

public protocol TabBarViewController: UIViewController {
var tabBarImage: UIImage { get }
var tabBarName: String { get }

}

To see how those protocols are used in action we can have a look at the CosmonautCoordinator. File:
domain/Cosmonaut/Cosmonaut/Source/CosmonautCoordinator.swift

public class CosmonautCoordinator: NavigationCoordinator {
public enum CosmonautLink {
case info

}

public lazy var navigationController: UINavigationController =
UINavigationController ()

public var childCoordinators: [Coordinator] = []
public 1init() {}

public func start() {
navigationController.setViewControllers([
makeCosmonautViewController ()
], animated: false)

}

public func start(link: DeepLink) -> Bool {
guard let link = 1link as? CosmonautLink else { return false }

// TODO: handle rute
return true

}

private func makeCosmonautViewController() -> UIViewController {
return ComsonautViewController ()
}
}

After hooking up the coordinator into the App window, with for example the main AppCoordinator de-
fined in the Scaffo'ld module, simply calling start() or start(link: CosmonautLink.info)
will take over the flow of the particular domain or user’s flow.

Strategy
One of my favourite patterns is Strategy, even though | create it in a slightly different way than it was origi-

nally intended. Strategy patternis particularly helpful when developing reusable components, like for exam-
ple views. Such a view can be initialised with a certain strategy ora type. In traditional book examples,

91

strategy pattern is often described and defined via protocols and the ability to exchange the protocol with a
different implementation that conforms to it. However, there is a much more Swift-like way to achieve the
same goal with ease, enum. Enum can simply represent a strategy for each case for the object and via enum
functions, the necessary logic can be implemented. Surely, the enum can be abstracted by some protocol.

Configuration

Configuration is great for all the services and components that serve more than one purpose which will
highly likely happen as we are developing many apps on top of the same reusable services. Configuration is
a simple object that describes how an instance of the desired object should look or behave. That could be
as simple as setting SSLPinning for a network service or setting a name to a CoreData context and so on.

As an example in the Application Framework, we can have a look at the AppCoordinator where
the Configuration is defined in its extension. File: domain/Scaffold/Scaffold/Source/
AppCoordinator.swift

extension AppCoordinator {
public struct Configuration {
public enum PresentatinStyle {
case tabBar, navigation

}

public var style: PresentatinStyle
public var menuCoordinator: Coordinator?

public init(style: PresentatinStyle, menuCoordinator: Coordinator?)

{
self.style = style

self.menuCoordinator = menuCoordinator

}

AppCoordinator takes the configuration object and performs necessary actions based on its values to pro-
vide the desired behaviour.

File: domain/Scaffold/Scaffold/Source/AppCoordinator.swift
public class AppCoordinator: Coordinator {
public init(window: UIWindow, configuration: Configuration) {

self.configuration = configuration
self.window = window

92

Decoupling

It can surely happen that at some point a different implementation of some protocol must be used. However,
that may prove to be much harder than you might think. Imagine a scenario where a CosmonautService
(protocol) is used all over our ComsonautApp. Then imagine it was decided that this app will have two
different flavours, one for US cosmonaut and one for Russian cosmonaut. The cosmonaut service logic can
be huge, 3rd party libraries that are used might also differ and surely we do not want to include unused
libraries with our US ComsonautApp or vice versa, that would be shipping a dead code! In that case, we have
to decouple those two frameworks and provide a common interface to them in a separate framework.

In such a case we have to make one exception to our Application Framework linking law. For example, let
us call it the CosmonautServiceCore framework that would be representing the public interfaces for
the higher layers. It would contain protocols and necessary objects that need to be exposed out of the
framework to the outer world. USCosmonautService and RUCosmonautService would then link
the CosmonautServiceCore on the same hierarchy level and would provide the implementations of
protocols defined there.

In such a case, since there is no cross-linking of those interfaces, frameworks, and their implementations,
itis fine to link it that way. The higher level framework or, even better, the main App itself, in our example,
CosmonautApp would then be based on the availability of the linked framework instantiated the objects
represented in the CosmonautServiceCore from the framework that was linked to it. Which would be
either USCosmonautService orRUCosmonautService.

This example is not part of the source code demo although such a scenario can happen. Nonetheless it is
important to keep the solution for such a problem in mind.

MVVM + C

Probably no need for much explanation for Model, View, ViewModel with Coordinator pattern, however,
there are many different approaches and implementations. First of all, sometimes it is not necessary to use
MVVM as the plain old classic MVC can do the trick as well without the necessity of having an extra object.
Second of all, the way in which objects are bound together matters.

Protocol Oriented Programming (POP)

The most beautiful way of extending any kind of functionality of an object is probably via protocols and
their extensions. In some cases, like for structs or enumes, it is also the only way. In Swift, structs and enums
cannot use inheritance. On the other hand, protocols can use inheritance so as a composition for defining
the desired behaviour which gives the developer the freedom to design fine granular components with all
OOP features.

93

Conclusion

The purpose of this chapter was only to mention the most important patterns that helps when developing
modular architecture. | would highly recommend deep diving more into this topic via books that are spe-
cially focused on such topic.

94

Project Automation

When it comes to a project where many developers are contributing simultaneously, automation will be-
come a crucial part of its success. It might be hard in the very beginning to imagine what kind of tasks might
be automated but it will become crystal clear during the development phase. It can be as simple as gener-
ating the xcodeproj projects with XcodeGen like in our example to avoid conflicts. Automation can also
be used to pull new translation strings, generate entitlements on the fly, and can be used to build the app
on the Cl as well as publishing it to the AppStore or other distribution centre (CD).

Fastlane

First and foremost in the way of automation is iOS developers beloved Fastlane. Fastlane is probably the
biggest automation help when it comes to iOS development. It contains a countless amount of plugins that
can be used to support project automation. With Fastlane, itis also easy to create your own plugins that will
be project-specific only. Fastlane is developed in Ruby and its plugins are as well. However, since all is built
with Ruby, Fastlane gives the freedom to import any other ruby projects or classes developed in plain Ruby
and directly call them from the Fastlane’s recognisable function so-called Lane.

As an example, we can have a look at the Fastfile’s make_new_project lane introduced in the very be-
ginning. In this case the so-called ProjectFactory class is implemented in /fastlane/scripts/
ProjectFactory/ and imported into the Fastfile. Then it is used as a normal Ruby program. It is NOT
purposely developed as a Fastlane’s action. The reason being that it is much easier to develop a pure Ruby
program as the program unlike Fastlane’s action does not require the whole Fastlane’s ecosystem to be
launched. Launching Fastlane takes a couple of seconds at its best. Perhaps obviously, Fastlane’s action
surely comes with its advantages as well, like Fastlane’s action listings, direct execution and so on.

/fastlane/Fastfile

require_relative "scripts/ProjectFactory/project_factory"

lane :make_new_project do |options|
type = options[:type] # Project type can be either app or framework
project_name = options[:project_name]
destination_path = options[:destination_path]

UI.error "app_name and destination_path must be provided." unless
project_name && destination_path

factory = ProjectFactory.new project_name, destination_path

type == "app" ? factory.make_new_app : factory.make_new_framework
end

Creating a proper Fastlane’s plugin out of the Ruby program could be easily done by following this

95

https://docs.fastlane.tools/plugins/create-plugin/
https://docs.fastlane.tools/plugins/create-plugin/

Fastlane gives the ultimate home for the whole project automation which will prevent script duplications
and help with organising and finding necessary actions. To check what is available already in the house of
automation, Fastlane can be executed out of the command line and it will give you the option to choose
from the publicly available Lanes that are already implemented.

Furthermore, we will need a central place where we can execute those scripts to free the developers’ re-
sources. There are many different CI/CD providers that offers pretty much the same solution with very simi-
lar setups and problems.

Continuous Integration (Cl)

To grow a codebase that scales fast, it is crucial to maintain and ensure its quality. In order to achieve that
developers are writing the following tests and checks that are then executed by the Cl pipeline before the
merge can proceed,;

« Unit tests, ensure that the logic of the code remained the same

+ Ul tests, ensure that the Ul looks the same after the change

« Integration tests, ensure that the app as a whole has all the libraries, launches fine, does not crash on
start or at some parts

+ Acceptance tests, ensure that the business level remains the same, meaning, the app provides the
business defined value and even though the app might have some minor issues the business value is
maintained

+ Others, there might be other kinds of tests implemented within the tests, like for example test that all
languages have 100% translations strings, latest app documents are attached, an offline database is
updated and so on

Build
Framework / Unit tests Ul tests

Integration

APP tests

Figure 23 - Cl Pipeline Success Example

If everything goes well and all tests are passing, the merge request can be approved and merged by the Cl
and CD takes it over. On the other hand, if something breaks, developers then need to provide fixes on their
changes or adjustment to those tests to reflect their latest changes.

Continuous Delivery (CD)

As soon as the merge is done continuous delivery can start. In order to quickly detect if something goes
wrong (fail fast) when, for example the pipeline has not detected a breaking change or due to any other rea-
son, alpha builds are created. An Alpha build reflects the latest development state of the codebase. Ideally,

96

Build
Framework /
APP

Unit tests

Figure 24 - Cl Pipeline Failure Example

developers should work in a way where the development state of the codebase is always production-ready.
They should do so in such a way that if some hot-fixes in production are needed the production build can be
triggered from the development state immediately. This approach avoids any bug-fixing by cherry-picking
and forces developers to commit high-quality atomic commits onto the codebase.

Based on the project, different build configurations can be produced. Build configurations could specify
different environments, different identifiers, different secrets to service providers and so on.

Deployment Alpha /
QA
to Acceptance Beta /
distribution P RC/

centers tests Production

Archiving

App (IPA) Signing

Figure 25 - CD Pipeline Example

Ruby, programmer’s best friend

If you have not learned it yet, do so, it’s great.

Conclusion

Cl/CDis a crucial part of every bigger project and unfortunately as of today maintaining pipelines is difficult.
Especially in fast-paced projects. Many things can go wrong, 3rd party dependencies CDN might go down
for some time, something works locally but not on the Cl, different versioning of tools, failing tests, Xcode
can cause lots of headaches and so on. Needless to mention the configuration of the CI/CD itself.

The purpose of this chapter was to introduce the concept on a higher level. To deep dive into CI/CD, the
documentation of the provider is the best read.

Furthermore, to deep dive more into this topic, | would recommend this article and free ebook.

https://blog.codemagic.io/the-complete-guide-to-ci-cd/ https://codemagic.io/ci-cd-ebook/

97

THE END

When everything goes well, containers will get shipped on the boat to the end customers and life of all is
great. However, if it gets stuck at Suez same as the Evergreen ferry, do not panic. It is just software and
everything is fixable (unless you ran bad code on top of the production database with Schrédinger’s backup
policy. In that case may all the network bandwidth be with you). Sometimes it just takes time and lots of

work but in the end, the ferry with its containers will depart and leave towards the customers.

Figure 26 - Libraries ready to be dispatched

If you have reached this page then | would like to thank you very much for reading this book and I hope it
enlightened you at least at some parts of the development of modular architecture.

Do not hesitate at all to shoot me an email or connect on LinkedIn if you have any questions, suggestions or
just want to drop a few lines.

Thanks!

Donation

If this book helped you or you found it interesting any kind of donation would be greatly appreciated.

98

mailto:info@cyrilcermak.com
https://www.linkedin.com/in/cyril-cermak-210a8b6b/

Donate
vsa) I D R =

Licence

Copyright © 2024 Cyril Cermak.

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatso-
ever without the express written permission of the publisher except for the use of brief quotations in a book

review.
Publisher Cyril Cermak

www.cyrilcermak.com

99

https://www.paypal.com/donate?hosted_button_id=MYSY29ZZF4GSN

	Modular Architecture on iOS and macOS
	Dedication
	About the Author
	About the Reviewer
	About Contributors
	How to Contribute

	Introduction
	What you Need
	What is this book about
	What is this book NOT about

	Modular Architecture
	Design
	Layers
	Application Layer
	Domain Layer
	Service Layer
	Core Layer
	Shared Layer

	Example: International Space Station
	Overview
	Cosmonaut
	Laboratory

	Conclusion

	Libraries on Apple’s ecosystem
	Dynamic vs static library?
	PROS & CONS

	Essentials
	Exposing static 3rd party library
	Examining library
	Mach-O file format
	Fat headers
	Executable type
	Dependencies
	Symbols table
	Strings

	Build system
	Conclusion

	Swift Compiler (optional)
	Compiler Architecture
	Parsing
	Semantic analysis
	Clang importer
	SIL generation
	LLVM IR Generation
	Exporting dylib

	Conclusion

	Development of the Modular Architecture
	Creating workspace structure
	Automating the process
	Xcode’s workspace

	Generating projects
	Hello XcodeGen

	Ground Rules
	Cross-linking dependencies
	Vertical linking

	Core Framework
	Using Core Framework
	Core Framework Usage and Best Practices
	Core Framework linking and advantages
	Core Framework disadvantages
	Core Framework Rules

	Testing
	Unit Testing in Isolation
	Application Framework App
	Unit Testing in Application Framework App
	UITesting in Isolation
	UITesting in Application Framework App
	Mock Framework

	Final Look at One Fully Fledged Xcode Project (module)
	Conclusion

	Benchmarking of Modular Architecture
	Test setup
	Test results
	App size
	Memory usage
	Compile time
	Launch time

	Conclusion

	SPM (maybe v3? or never)
	Application Framework - Best Practices
	App secrets
	How to handle secrets
	The GnuPG (GPG)
	GEM: Mobile Secrets
	The ugly and brilliant part of the Secrets source code

	Workflow
	Teams
	Git & Contribution
	Scalability
	Application Framework & Distribution

	Common Problems
	Maintenance
	Code style
	Not fully autonomous teams
	Conclusion

	Dependency Managers
	Cocoapods
	Integration with the application framework

	Carthage
	SwiftPM
	Conclusion

	Design Patterns
	Coordinator
	Strategy
	Configuration
	Decoupling
	MVVM + C
	Protocol Oriented Programming (POP)
	Conclusion

	Project Automation
	Fastlane
	Continuous Integration (CI)
	Continuous Delivery (CD)
	Ruby, programmer’s best friend
	Conclusion

	THE END
	Donation
	Licence

