

Modern Java
Java 7 and Polyglot Programming on the JVM

Adam L. Davis

This book is for sale at http://leanpub.com/modernjava

This version was published on 2014-01-31

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Adam L. Davis

http://leanpub.com/modernjava
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Adam L. Davis by spreading the word about this book on Twitter!

The suggested hashtag for this book is #modernjava.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#modernjava

http://twitter.com
https://twitter.com/search?q=%23modernjava
https://twitter.com/search?q=%23modernjava

Also By Adam L. Davis
What’s New in Java 8

Modern Programming Made Easy

http://leanpub.com/u/adamldavis
http://leanpub.com/whatsnewinjava8
http://leanpub.com/ModernProgrammingMadeEasy

Dedicated to my wife and son.

Contents

Introduction . i
Always be learning . i
Who is this book for? . i
What is this book about? . i
What this book is not about . i

Tech Predictions . ii
Multi-core Processors are Commonplace . ii
Multi-touch Becomes Standard . ii
Linux has Arrived . ii
Smart Phones will be Old Hat . ii

Part I: Java . 1

Java . 2
History . 2
Open-ness . 2
The Java Ecosystem . 3

Java 5 & 6 . 4
Java 1.5 . 4
Java 1.6 . 6

Java 7 . 8
Language Updates . 8
Fork/Join . 11
New IO (nio) . 13
JVM Benefits . 14
Performance Benefits . 14
Backwards Compatibility . 15

Introduction
Always be learning

It’s an exciting time to be a programmer, especially in the JVM space. Java 7 is widely used and Java
8 is closer to completion while other JVM languages, like Groovy and Scala, have been increasing
in popularity. With the accelerating pace of change in technology, it is important as a programmer
to always be learning and looking forward to the latest and greatest technology.

Who is this book for?

This book is meant for Java programmers or aspiring programmers who want to know about the
latest Java and JVM technology.

What is this book about?

This book should help you understand the latest in Java 7; concurrent programming; build, testing,
and web frameworks; and the best JVM languages so you can advance your career in software
development.

What this book is not about

This book will not cover the basics of HTML, CSS, SQL, or any other non-JVM languages and will
assume you know the basics of programming.

Tech Predictions
It’s important to think ahead in this ever changing world, especially as a programmer. Making
predictions of technology in the near future is somewhat easy, but it gets more difficult when you
predict five years ahead or more. Here are some predictions relevant to programmers (which are
basically just observations of current trends circa 2014):

Multi-core Processors are Commonplace

Dual-cores are already showing up in our smart-phones, and due to the simple progression of an
updated “Moore’s law”, we should have 16-cores in smart-phones and tablets by 2020. This will make
concurrent programming more mainstream as many of us already know. So learning about modern
concurrent programming approaches (agents, immutability, etc.) is important.

Multi-touch Becomes Standard

It seems almost self-evident that multi-touch will become the standard interaction model. Tablets
and smart-phones are soaring in popularity, and multi-touch is even moving into the dwindling
desktop and laptopmarkets. It makes sense then to stop assumingmouse and/or keyboard interaction
if you deal with any sort of user-interface design. Java on Android is an obvious winner, but so are
HTML5-based solutions like Sencha Touch¹.

Linux has Arrived

With Ubuntu, Android, and ChromeOS, Linux is already forging ahead into mainstream technology.
Does this effect you? Probably not if you’re a web-developer, but if you develop apps for Windows
or OSX, you will need to diversify. Linux (in its many different forms) might just (finally) disrupt
the OS market.

Smart Phones will be Old Hat

To some people smart-phones are already old news; the big new thing is Google Glass² or smart
watches like Pebble³. There will probably be several competitors to Google Glass and Pebble, so the
“glasses” and/or smart-watch market might look much like the smart-phone market of today.

¹http://www.sencha.com/products/touch
²http://en.wikipedia.org/wiki/Project_Glass
³https://getpebble.com/

http://www.sencha.com/products/touch
http://en.wikipedia.org/wiki/Project_Glass
https://getpebble.com/
http://www.sencha.com/products/touch
http://en.wikipedia.org/wiki/Project_Glass
https://getpebble.com/

Part I: Java

Java
History

Java™ was first developed in the 90’s by James Gosling. It borrows much of its syntax from C and
C++ to bemore appealing to existing programmers at the time. Javawas owned by SunMicrosystems
which was then acquired by Oracle in 2010.

Java is a statically typed, object-oriented language. Statically typed means every variable and
parameter must have a defined type (as opposed to languages like Javascript which are dynamically
typed). Object-oriented (OO), means that data and functions are grouped together into objects
(functions are usually referred to as methods in OO languages).

Java code is compiled to byte-code which runs on a virtual machine (the Java Virtual Machine, JVM).
The virtual machine handles garbage collection and allows Java to be compiled once, and run on
any OS or hardware that has a JVM. This is an advantage over C/C++ which has to be compiled
directly to machine code and has no automatic garbage collection (the programmer needs to allocate
and deallocate memory).

The standard implementation of Java comes in two different packages, the JRE (Java Runtime
Environment) and the JDK (Java Developement Kit). The JRE is strictly for running Java as an
end user, while the JDK is for developing Java code. The JDK comes with the “javac” command for
compiling Java code to byte-code, among other things.

At the time of writing, Java is one of the most popular programming languages in use⁴, particularly
for server-side web applications.

Open-ness

In an attempt to make Java more open and community based, Sun Microsystems started the
Java Community Process (JCP), which allows a somewhat democratic evolution of Java and JVM
specifications. Also, Sun relicensed most of its Java technologies under the GNU General Public
License in May 2007 which has resulted in multiple open-source implementations of the JVM
(OpenJDK is the official one). Although Sun has many patents on some aspects of the JVM,
historically it has not used these patents to sue other companies, which has allowed a healthy
ecosystem of competing JVM’s to emerge. Although Oracle sued Google over its use of Java in
Android, Oracle eventually lost the case in May 2012⁵.

⁴http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
⁵http://news.cnet.com/8301-1023_3-57440235-93/

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://news.cnet.com/8301-1023_3-57440235-93/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://news.cnet.com/8301-1023_3-57440235-93/

Java 3

Generally when we refer to the JVM, we are referring Oracle’s JVM, but OpenJDK or any other JVM
can be used.

The Java Ecosystem

The Java Ecosystem is huge. It is mainly composed of JVM’s, libraries, tools, and IDE’s. It is so huge,
there’s no way to really summarize it in one book, but we will cover some of the highlights.

The three most popular IDE’s are (in no particular order):

• Eclipse⁶ - Open-source project by the Eclipse Foundation.
• NetBeans⁷ - Sun’s (now Oracle’s) open-source Java IDE.
• IntelliJ IDEA⁸ - A commercial IDE with a community edition.

We will discuss some of the more promising new libraries and tools in the Java ecosystem, such as
the following:

• Maven, gradle and other build tools.
• Libraries for concurrent programming.
• JUnit, spock and other test frameworks.
• Groovy, Scala, and other JVM languages.
• Grails, Play, and other web-frameworks.
• JVM Cloud providers.

⁶http://eclipse.org/
⁷http://netbeans.org/
⁸https://www.jetbrains.com/idea/

http://eclipse.org/
http://netbeans.org/
https://www.jetbrains.com/idea/
http://eclipse.org/
http://netbeans.org/
https://www.jetbrains.com/idea/

Java 5 & 6
Java 1.5

Java 5 added several new features to the language. If you’re not familiar with Java 5 or would like a
refresher, keep reading. We’re going to assume you understand these concepts in the remainder of
the book.

Java 5 added the following features:

• Generics
• Annotations
• More concise for loops
• Static imports
• Autoboxing/unboxing
• Enumerations
• Varargs
• Concurrency utilities in package java.util.concurrent

Generics

Generics were a huge addition to the language. They improved the type-safety of Java, but also
added a lot of complexity to the language.

Generics are used most commonly to specify what type a Collection holds. This reduces the need
for casting and improves type-safety. For example, declaring a List of Strings is the following:

1 List<String> strings = new ArrayList<String>();

Declaring a Map of Long to String would appear as the following:

1 Map<Long,String> map = new HashMap<Long,String>();

The need to repeat the generic type twice in the declaration is one of Java’s harshest criticisms.
However various libraries, such as Google’s guava, make this less painful by using static methods.
For example declaring the above map would be as simple as the following:

Java 5 & 6 5

1 Map<Long,String> map = Maps.newHashMap();

Also, Java 7 will ameliorate this situation with the diamond operator, which we will discuss later.

Annotations

Java annotations allow you to add meta-information to Java code that can be used by the compiler,
various API’s, or even your own code at runtime.

The most common annotation you will see is the @Override annotation which declares to the
compiler that you are overriding a method. This is useful because it will cause a compile-time error
if you mistype the method name for example.

Other useful annotations are those in javax.annotation such as @Nonnull and @Nonnegativewhich
declare your intentions.

Annotations such as @Autowired and @Inject are used by direct-injection frameworks like Spring
and Google Guice⁹, respectively, to reduce “wiring” code.

More concise for loops

You can write for loops in a concise way for an array or any class that implements Iterable. For
example:

1 String[] strArray = {"a", "b", "c"};

2 for (String str : strArray)

3 out.println(str);

“Wait, don’t you need a System there?” you’re probably thinking. Not necessarily in Java 5 with the
static import feature.

Static import

In Java 5 you can use the words import static to import a static member of another class. This
can help your code be more concise as shown in the above section. To do this, you would need the
following at the top of the class file:

1 import static java.lang.System.out;

However, the creators of Java recommend you use static import very sparingly¹⁰, so don’t get carried
away.

⁹http://code.google.com/p/google-guice/
¹⁰http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html

http://code.google.com/p/google-guice/
http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html
http://code.google.com/p/google-guice/
http://docs.oracle.com/javase/1.5.0/docs/guide/language/static-import.html

Java 5 & 6 6

Autoboxing, Enums, Varargs

Autoboxing
The Java compiler will automatically wrap a primitive type in the corresponding object when
it’s necessary. For example, when assigning a variable or passing in parameters to a function,
as in the following: printSpaced(1, 2, 3)

Unboxing
This is simply the reverse of Autoboxing. The Java compiler will unwrap an object to the
corresponding primitive type when possible. For example, the following code would work:
double d = new Double(1.1) + new Double(2.2)

Enums
The enum keyword creates a typesafe, ordered list of values. For example, enum Letter { A,

B, C; }

Varargs
You can declare a method’s last parameter with an elipse (...) and it will be interpreted to
accept any number of parameters (including zero) and convert them into an array in your
method. For example, see the following code:

void printSpaced(Object… objects) { for (Object o : objects) out.print(o + “ “); }

Putting it all together, you have the following code (with output in comments):

1 printSpaced(Letter.A, Letter.B, Letter.C); // A B C

2 printSpaced(1, 2, 3); // 1 2 3

Concurrency utilities

These will be discussed in later chapters (ExecutorService and Future).

Java 1.6

Java 6 did not have as many big changes as Java 5, but it did add the following:

• Web Services - First-class support for writing XML web services.
• Scripting - the ability to plug-in scripting engines (for Javascript, Ruby, and Groovy for
example).

• Java DB (Apache Derby) is co-bundled in the JRE.
• JDBC 4.0 adds many feature additions like special support for XML as an SQL datatype and
better integration of Binary Large OBjects (BLOBs) and Character Large OBjects (CLOBs).

Java 5 & 6 7

• More Desktop APIs - SwingWorker, JTable, and more.
• Monitoring and Management - Jhat for forensic explorations of core dumps.
• Compiler Access - The compiler API opens up programmatic access to javac for in-process
compilation of dynamically generated Java code.

• Override interface methods - The @Override annotation can be used to declare you’re
overriding an interface method.

Java 7
As Oracle will no longer provide free updates to Java 6 (as of Feb. 2013), Java 7 is now the de-facto
standard version of Java. It is already in use in many production systems, so if you are currently
using Java 6, it’s time to upgrade. Java 7 has some performance benefits and new features¹¹ that
many programmers have been expecting for years.

Language Updates

The following features have been added to Java the language:

• Diamond Operator
• Strings in switch
• Automatic resource management
• Improved Exception handling
• Numbers with underscores

Diamond Operator

The Diamond Operator simplifies the declaration of generic classes. The generic types are inferred
from the definition of the field or variable. For example, in the following code, the second line is
now equivalent to the first in Java 7:

1 Map<String, List<Double>> nums = new HashMap<String, List<Double>> ();

2 Map<String, List<Double>> nums = new HashMap <> ();

Strings in Switch

You can now use Strings in switch statements. For example, the following code would compile and
work in Java 7:

¹¹http://openjdk.java.net/projects/jdk7/features/

http://openjdk.java.net/projects/jdk7/features/
http://openjdk.java.net/projects/jdk7/features/

Java 7 9

1 public static <T> Collection<T> makeNew(String type, Class<T> tClass) {

2 switch (type) {

3 case "set":

4 return new HashSet<>();

5 case "lset":

6 return new LinkedHashSet<>();

7 case "treeset":

8 return new TreeSet<>();

9 case "vector":

10 return new Vector<>();

11 case "array":

12 return new ArrayList<>();

13 case "deque":

14 case "queue":

15 case "list":

16 default:

17 return new LinkedList<>();

18 }

19 }

As seen above, Strings can now be used just like any primitive would in a switch statement.

Github Repo
You can find the source-code for these examples on github modern-java-examples¹².

Automatic resource management

The new Automatic resource management feature makes dealing with resources, such as files, much
easier. Before Java 7 you needed to explicitly close all open streams, causing some very verbose code.
Now you can just do the following:

¹²https://github.com/adamd/modern-java-examples

https://github.com/adamd/modern-java-examples
https://github.com/adamd/modern-java-examples

Java 7 10

1 public void writeWithTry() {

2 try (FileOutputStream fos = new FileOutputStream("books.txt");

3 DataOutputStream dos = new DataOutputStream(fos)) {

4 dos.writeUTF("Modern Java");

5 } catch (IOException e) {

6 // log the exception

7 }

8 }

Improved Exception handling

Improved Exception handling in Java 7 means that you can catch more than one exception in one
catch statement. Previously, you had to write a different catch block for each exception. This may
seem trivial, but will make Java development somewhat easier. Here’s an example of the new style:

1 public static Integer fetchURLAsInteger(String urlString) {

2 try {

3

4 URL url = new URL(urlString);

5 String str = url.openConnection().getContent().toString();

6 return Integer.parseInt(str);

7

8 } catch (NullPointerException | NumberFormatException | IOException e) {

9 return null;

10 }

11 }

The above code would fetch content from the given url and attempt to convert it to an Integer. If
anything goes wrong it returns null. Although this is a contrived example, similar situations do
occur in real code.

Numbers with underscores

Numbers with underscores is exactly what you think. Humans have a hard time reading long streams
of numbers, so Java 7 allows you to put underscores in numeric literals to make them easier to
understand. For example, three million would be written as follows:

1 int lemmings = 3_000_000;

Java 7 11

Fork/Join

There are new Java concurrency APIs (JSR 166y) referred to as the Fork-join framework. It is
designed for tasks that can be broken down and takes advantage of multiple processors. The core
classes are the following (all located in java.util.concurrent):

• ForkJoinPool: An ExecutorService for running ForkJoinTasks and managing and monitoring
the tasks.

• ForkJoinTask: This represents the abstract task that runs within the ForkJoinPool.
• RecursiveTask: This is a subclass of ForkJoinTask whose compute method returns some value.
• RecursiveAction: This is a subclass of ForkJoinTask whose compute method does not return
any value.

As an example of using this framework, let’s find the sum of 2000 integers. This is a trivial example
but will hopefully demonstrate proper use of the ForkJoin framework.

In this example we will divide the array of integers in half and assign each half to a RecursiveTask.
If the array size is less than 20 elements then we assign it to another RecursiveTask that computes
the sum of the array.

Here is the RecursiveTask for computing the sum:

1 class SumCalculatorTask extends RecursiveTask<Integer>{

2 int [] numbers;

3 SumCalculatorTask(int[] numbers){

4 this.numbers = numbers;

5 }

6

7 @Override

8 protected Integer compute() {

9 int sum = 0;

10 for (int i : numbers){

11 sum += i;

12 }

13 return sum;

14 }

15 }

The compute method has to be overridden with the actual task to be performed. In the above case
its iterate through the elements of the array and return the computed sum.

We create a RecursiveTask for dividing the array into two parts and assign each part to another
RecursiveTask for further dividing. We continue dividing the array and stop dividing when the
array has less than 20 elements.

Java 7 12

1 class NumberDividerTask extends RecursiveTask<Integer>{

2 int [] numbers;

3 NumberDividerTask(int [] numbers){

4 this.numbers = numbers;

5 }

6

7 @Override

8 protected Integer compute() {

9 int sum = 0;

10 List<RecursiveTask<Integer>> forks = new ArrayList<>();

11 if (numbers.length > 20){

12 NumberDividerTask task1 =

13 new NumberDividerTask(Arrays

14 .copyOfRange(numbers, 0, numbers.length/2));

15 NumberDividerTask task2 =

16 new NumberDividerTask(Arrays

17 .copyOfRange(numbers, numbers.length/2, numbers.length));

18 forks.add(task1);

19 forks.add(task2);

20 task1.fork();

21 task2.fork();

22 } else {

23 SumCalculatorTask sumCalcTask = new SumCalculatorTask(numbers);

24 forks.add(sumCalcTask);

25 sumCalcTask.fork();

26 }

27 //Combine the result from all the tasks

28 for (RecursiveTask<Integer> task : forks) {

29 sum += task.join();

30 }

31 return sum;

32 }

33 }

The above NumberDividerTask spawns either two other NumberDividerTask’s or a SumCalculatorTask.
Each task keeps a track of the sub-tasks it has created. At the end of the task we wait for all the tasks
in the forks list to finish by invoking the join() method and compute the sum of those values
returned from the sub-tasks.

To invoke the above defined tasks we make use of ForkJoinPool and create a NumberDividerTask
task by giving it the array whose sum we wish to compute.

Java 7 13

1 public class ForkJoinTest {

2 static ForkJoinPool forkJoinPool = new ForkJoinPool();

3 public static final int LENGTH = 2000;

4

5 public static void main(String[] args) {

6 int [] numbers = new int[LENGTH];

7 // Create an array with some values.

8 for(int i=0; i<LENGTH; i++){

9 numbers[i] = i * 2;

10 }

11 int sum = forkJoinPool.invoke(new NumberDividerTask(numbers));

12

13 System.out.println("Sum: "+sum);

14 }

15 }

After running the above code the output should be: Sum: 3998000.

Although this is a simple example, the same concept could be applied to any “divide and conquer”
algorithm.

New IO (nio)

Java 7 adds several new classes and interfaces for manipulating files and file-systems. This new API
allows developers to access many low-level OS operations that were not available from the Java API
before, such as the WatchService and the ability to create links (in *nix operating systems).

The following list defines some of the most important classes and interfaces of the NIO API:

Files This class consists exclusively of static methods that operate on files, directories, or other types
of files.

FileStore
Storage for files.

FileSystem
Provides an interface to a file system and is the factory for objects to access files and other
objects in the file system.

FileSystems
Factory methods for file systems.

LinkPermission
The Permission class for link creation operations.

Java 7 14

Paths
This class consists exclusively of static methods that return a Path by converting a path string
or URI.

FileVisitor
An interface for visiting files.

WatchService
An interface for watching varies file-system events such as create, delete, modify.

A quick word on Watching

To watch a directory you would register a Path object with the WatchService, as follows:

1 import static java.nio.file.StandardWatchEventKinds.*;

2 // later on in some method...

3 Path path = Paths.get("/usr/local");

4 WatchService watchService = FileSystems.getDefault().newWatchService();

5 WatchKey watchKey = path.register(watchService, ENTRY_CREATE);

JVM Benefits

Java 7 adds some new features to the JVM, the language, and the runtime libraries.

The JVM has the following new features:

• Serviceability features (JRockit/hotspot convergence)
– Java Mission Control (monitor, manage, profile)
– Java Flight Recorder (profiling, problem analysis, debugging) (in progress)

• jdk introspection
– jcmd - list running java processes
– jcmd <pid> GC.class_histogram - size of classes

• Better garbage collection.

Performance Benefits

There are also Performance Benefits in the JVM and runtime libraries:

• Runtime compiler improvements.
• Sockets Direct Protocol (SDP)
• Java Class Libraries

Java 7 15

– Avoid contention in Date: changed from HashTable to ConcurrentHashMap
– BigDecimal improvements (CR 7013110)

• Crypto config. files updates, CR 7036252
– User land crypto for SPARC T4
– Adler32 & CRC32 on T-series

• String(byte[], string) and String.getBytes(String) 2-3x performance.
• HotSpot JVM

– updated native compilers -XX:+UseNUMA on Java 7 (Linux kernel 2.6.19 or later; glibc
2.6.1).

– Partial PermGen removal (full removal in JDK 8) -interned String moved to Java heap.
– Default Hashtable table size is 1009 increase size if needed -XX:StringTableSize=n

– Distinct class names: XX:+UnlockExperimentalVMOptions -XX:PredictedClassLoadCount=#

• Client library updates (Nimbus Look&Feel; JLayer; translucent windows, Optimized 2d
rendering)

• JDBC 4.1 updates (allow Connection, ResultSet, and Statement objects be used in try-with-
resources statement)

• JAXP 1.4.5 (Parsing) (bug fixes, conformance, security, performance)
• JAXB 2.2.3 (Binding)
• Asynchronous I/O in java.io for both sockes and files (uses native platform when available)
• x86 (intel) improved 14x over 5 processor releases (jdk5 jdk 6)
• JDK 7u4 faster than Java6 and JRockit.

Backwards Compatibility

There are some issues to watch out for when upgrading to Java 7 on a large project:

• More stringent bytecode verifier for Java 7 (only issue when doing bytecode modification;
work-around -XX:-UseSplitVerifier)

• Order of methods return from getMethods() has changed (not guaranteed to be in declaration
order)

	Table of Contents
	Introduction
	Always be learning
	Who is this book for?
	What is this book about?
	What this book is not about

	Tech Predictions
	Multi-core Processors are Commonplace
	Multi-touch Becomes Standard
	Linux has Arrived
	Smart Phones will be Old Hat

	Part I: Java
	Java
	History
	Open-ness
	The Java Ecosystem

	Java 5 & 6
	Java 1.5
	Java 1.6

	Java 7
	Language Updates
	Fork/Join
	New IO (nio)
	JVM Benefits
	Performance Benefits
	Backwards Compatibility

