MODERN CLOUD

"INFRASTRUCTURE

-AS-CODE
FOR DEVELOPERS

SALIELIM

Modern Cloud
Infrastructure-as-Code for
Developers

Salie Lim

This book is for sale at
http://leanpub.com/modern-infrastructure-as-code

This version was published on 2023-03-25

ISBN 978-981-18-6971-6

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2021 - 2023 Salie Lim

http://leanpub.com/modern-infrastructure-as-code
https://leanpub.com/
https://leanpub.com/manifesto

Contents

1.0. Introduction
1.1. Who is this book for and prerequisites
1.2. What will we be learning?
1.3. What willyoubuild

2.0. The Big Picture - IaC, DevOps, Cloud and Beyond . .
2.1. Infrastructure-as-code IaC)
2.2. Developersand DevOps
2.3. Cloud Computing and Amazon Web Services (AWS)
24.Docker
2.5. Kubernetes (K8s)
26. Terraform L
2.7.GitHub Actions

3.0. Serverless Frontend
3.1. Why Serverless Frontend?
3.2. Infrastructure and Tools
3.3. Architecture
3.4. Getting Started L.
3.5. Code the Infrastructure
3.6. Deploy the Infrastructure
3.7.Integrate CI/CD
3.8. Built and Deployed

4.0. Serverless Application Programming Interface (API)
4.1. Why Serverless API?

N N U U W W W DN

O 0 oo &

21

CONTENTS

5.0.

6.0.

4.2, Infrastructureand Tools 21
4.3. Architecture 21
4.4.Getting Started L. 22
4.5. Code the Infrastructure 22
4.6. Deploy the Infrastructure 22
4.7. Built and Deployed 22
Scalable Container 23
5.1. Why Kubernetes and Amazon Elastic Kubernetes
Service? 23
5.2. Infrastructureand Tools 23
5.3. Architecture 23
5.4.Getting Started 24
5.5. Code the Infrastructure 24
5.6. Deploy the Infrastructure 24
5.7.Built and Deployed 24
Conclusion 25
6.1. What you havelearnt 25

6.2. Projectsrecap. oL 25

1.0. Introduction

1.1. Who is this book for and
prerequisites

This book is for software engineers and web developers wanting
to explore emerging cloud technologies. It does not matter if you
are a seasoned front-end, back-end or full-stack engineer, this book
is for those who want to dip their toes in the infrastructure, cloud
and DevOps world. With this book you will learn how to deploy
and scale your web application.

This book will also assume that you have little knowledge of cloud
technologies and guide you through the basics of Amazon Web Ser-
vices (AWS), Docker, Kubernetes, GitHub Actions and Terraform.
Feel free to skip to the exercises if you have basic knowledge about
cloud tools and dive straight into building infrastructure with AWS
and Terraform.

1.2. What will we be learning?

In this book we will be introducing the concepts of IaC, DevOps
and Cloud Computing. After we gain an understanding of Cloud
concepts, methodology and tools we will move on to building 3 of
the most common architectures we find in modern software and
infrastructure.

We will focus on building Amazon Web Services (AWS) infrastruc-
ture in the exercises in this book. However keep in mind that cloud
concepts are transferrable across the various cloud platforms.

1.0. Introduction 2

1.3. What will you build

In the end there will be three projects that you will build and
publish publicly.

First we will build a serverless frontend with AWS Simple Cloud
Storage (S3) and Amazon CloudFront.

Second, a serverless Application Programming Interface (API) with
Amazon Elastic Container Registry (ECR) and AWS Lambda.

Third, we will deploy scalable containers with Amazon Elastic
Kubernetes Service (EKS). We will be using Terraform as our IaC
tool throughout these exercises to codify our infrastructure.

Before we start building, let’s start by understanding IaC concepts,
tools and the role developers play in the world of DevOps.

2.0. The Big Picture - laC,
DevOps, Cloud and
Beyond

2.1. Infrastructure-as-code (laC)

We have entered the era of infrastructure-as-code (IaC). Since
infrastructure is now code, it is not separated from development
and becomes a function of it. IaC allow engineers to model infras-
tructure with code. Infrastructure is defined and codified in text
files. These files are then committed and version controlled in a
central Git repository.

This allows engineers to configure and manage complex cloud
infrastructures in an organised way. Without IaC, engineers will
have to connect to cloud providers or use web dashboards to
manually provision new resources. This manual workflow is prone
to mistakes, one may manually make changes to one environment
and forget to follow through on another. It also does not give the
team a holistic view of the application infrastructure.

Another advantage of IaC is the automatic adaptation to changes
in configuration, it allows infrastructure to scale up or down
depending on the web traffic, using auto-scaling features.

2.2. Developers and DevOps

DevOps is a set of practices that combines software development
(Dev) and IT operations (Ops). In the past, developers write code

2.0. The Big Picture - IaC, DevOps, Cloud and Beyond 4

and not manage infrastructure. The relationship between devel-
opers and infrastructure was distant. However with the rise of
DevOps, the developer-infrastructure relationship has evolved. In
DevOps, development and system infrastructure is closely inte-
grated, they function together to serve the continuous integration
and continuous deployment (CI/CD) pipeline. CI/CD bridges the
gap between development and application go-live by automating
building, testing and deployment of code.

Developers are increasingly expected to create, provision and man-
age cloud infrastructure for the web applications that they build.
This is on top of traditional developer practices such as writing
application code and unit tests, code reviews, and familiarity with
agile principles. The boundaries between the roles of software
developer and DevOps or systems engineer is dissolving. Whether
you are a Frontend, Backend or Full-Stack developer you will
probably need to administer cloud infrastructure at some point in
your career.

2.3. Cloud Computing and Amazon
Web Services (AWS)

Cloud computing is the delivery of computing services including
servers, storage, databases, networking and software over the in-
ternet. It enables fast innovation, flexible resources and economies
of scale. With the cloud, engineers can have access to large scale
computing capacity quickly and more cheaply than purchasing and
building physical servers.

AWS is a comprehensive cloud platform offering over 200 services
from basic compute storage and databases to emerging technologies
like machine learning and internet of things. It enables developers
to build web applications, APIs and much more in the cloud.

Some of the most popular AWS services includes Amazon S3,

2.0. The Big Picture - IaC, DevOps, Cloud and Beyond 5

Amazon EC2, AWS Lambda and Amazon Cloudfront. We will be
using all of these services in one way or another in the tutorials in
this book. AWS is currently the most widely adopted cloud service
provider. Microsoft Azure and Google Cloud are close competitors.

2.4. Docker

Docker is an open platform for developing, deploying, and running
applications. It enable developers to package and run an application
in an isolated environment called a container. A container is
lightweight and contains everything needed to run the application
without needing to rely on the host’s installations. Developers can
easily share containers via an image and be sure that everyone gets
the same container that runs the application in the same way.

Docker makes it easy for developers to manage the lifecycle of
your containers, package and ship applications, reducing the delay
between writing code and running it in production. Due to its
isolation and security, developers can also run multiple containers
simultaneously on their machine.

2.5. Kubernetes (K8s)

Kubernetes is an open-source system originally developed at
Google. It helps developers automate the deployment and scaling
of containerised applications by grouping containers for easy
management.

An advantage of using Kubernetes is that it allows your applications
to scale easily. It grows with your team and company to deliver
applications consistently without the complexity and without in-
creasing your infrastructure or devops team.

2.0. The Big Picture - IaC, DevOps, Cloud and Beyond 6

Another advantage of using KuberflexibilityYou can use Kuber-
netes locally, on-premises, in a hybrid architecture, or public cloud
infrastructure. It enables developers to build on a cloud agnostic
architecture, we can effortlessly move scalable applications across
different cloud providers, whether it is AWS, Google Cloud or
Microsoft Azure.

Some other container management features of Kubernetes include
automated rollouts and rollbacks, service discovery and load bal-
ancing, horizontal scaling and secret management.

2.6. Terraform

Terraform is an IaC tool that enable developers to create, modify,
version and destroy infrastructure using code. Components such as
compute instances, storage, networking, databases and DNS entries
can be managed using Terraform.

Developers can use Terraform language to write infrastructure
in human-readable and declarative configuration files. These files
provides an infrastructure resources blueprint that developers can
version, share, and reuse. It allows us to apply complex changesets
to infrastructure with minimal manual configuration.

Terraform is a cloud-agnostic tool which provides engineers with
additional flexibility. It allows us to integrate with multiple cloud
providers and orchestrate resources outside the AWS ecosystem. It
is advantageous for our IaC tool to have multi-provider utility as it
enables multi or hybrid cloud knowledge transfer.

Terraform builds a resource graph, creating and updating non-
dependent resources in parallel. This makes Terraform very ef-
ficient at building resources. Terraform also has Drift Detection
features, it able to resolve inconsistencies, refreshing to a correct
state of the infrastructure even if a developer manually edited
infrastructure in the cloud console.

2.0. The Big Picture - IaC, DevOps, Cloud and Beyond 7

There are other alternative IaC tools like AWS Cloud Formation,
Ansible and Chef. Terraform is however the most widely used
tool. We will be using Terraform in all of the example architecture
deployment in the book as it is easy-to-use and understand.

2.7. GitHub Actions

GitHub Actions makes it easy for engineers to automate software
application workflows with CI/CD pipelines. It enables developers
to build, test, and deploy code right from GitHub.

You can codify CI/CD workflows with GitHub Action events like
push, issue creation, or a new release. The most common use case
for GitHub Actions is triggering tests and builds to run once a
developer commits his or her code to Git or opens a pull request.

It is also used for deploying to any cloud, create tickets in Jira, or
even publish a package to npm, the possibilities are endless with
millions of open source libraries available on GitHub.

3.0. Serverless Frontend

3.1. Why Serverless Frontend?

Serverless allows us to run frontend web applications and services
without the need to provision or configure servers, AWS does all
the heavy lifting for you so that you can focus on coding. There are
several advantages of going serverless. It allows your application to
scale automatically, there is no need to provision multiple servers
to keep up with the traffic. It is also cost-effective, you do not have
to pay for idle capacity and there is no charge when your code is
not running.

3.2. Infrastructure and Tools

Amazon Simple Storage Service (Amazon S3)

Amazon S3 is an object storage service. This service is highly
scalable, durable, secure and available. Developers can use S3 to
store all types of data for a range of use cases, such as websites,
mobile applications, big data and even backup and archiving. It is
easy-to-use and cost-efficient.

We will be using Amazon Simple Storage Service (S3) to host
the web application’s static web resources such as HTML, CSS,
JavaScript, images and more.

Amazon CloudFront

Amazon CloudFront is a fast content delivery network (CDN)
service. It allows your web application to be connected via the
AWS network backbone all over the world, so that your web
application can be secure, performant, and highly available. Some

3.0. Serverless Frontend 9

of CloudFront’s feature includes encryption and HTTPS support. It
can be integrated with AWS Web Application Firewall and Amazon
Route 53 to protect against web attacks. It also works seamlessly
with any AWS origin, such as Amazon S3 and Amazon EC2.

Amazon CloudFront will be used as our fast content delivery net-
work (CDN) provider to deliver the frontend website to customers
globally with low latency and high transfer speeds.

Terraform
Terraform is our tool of choice to manage and deploy the infrastruc-
ture using code.

GitHub Actions
We will use GitHub Actions to automate software CI/CD work-
flows.

3.3. Architecture

Amazon CloudFront sitting in front of S3. Optionally, Route 53
is used for routing:

—
— l T
Amazon Amamn
CloudFront
o - '/
Li-
Amazon
~ Route 53

L] \ AWS Cloud j

Serverless Frontend Architecture

3.0. Serverless Frontend 10

3.4. Getting Started

We need to create a new React web application and have Terraform
CLI installed.

React Application

Start a simple react application using Create React App is an offi-
cially supported way to create single-page React applications. You
can get started by following the instructions here, https://create-
react-app.dev/docs/getting-started".

After Create React App is created, create a folder named infras-
tructure in the root directory of the application folder.

v IAC-SERVERLESS-FRONTEND [} B O &
> .github
> infrastructure
> public
> src

= .gitignore

{} package.json
README.md

tsconfig.json
yarn.lock

Application folder

Terraform CLI

We will be using the Terraform CLI in this tutorial and throughout
the book. Install it by identifying the most suited installation
method on Install Terraform Documentation® and following the
instructions.

3.5. Code the Infrastructure

Note that you can find all the code in this tutorial at
https://github.com/salielim/infrastructure-as-code/tree/main/iac-

"https://create-react-app.dev/docs/getting-started
*https://learn.hashicorp.com/tutorials/terraform/install-cli

https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://create-react-app.dev/docs/getting-started
https://learn.hashicorp.com/tutorials/terraform/install-cli

0 N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

3.0. Serverless Frontend 11

serverless-frontend

Let’s now create our first Terraform file, variables.tf in the
infrastructure directory. In this file we define all the variables
we will be using to build our infrastructure using code.

variable "project_key" {

description = "Project name or key."
}
variable "s3_bucket_name" {
description = "The name of the bucket"f
default = "iac-serverless-frontend"
}
variable "s3_bucket_env" {
description = "The AWS S3 bucket environment name."
}
variable "aws_region" {
description = "The AWS region to create resources in."
default = "ap-southeast-2"

variable "aws_access_key" {
description = "The AWS access key."

variable "aws_secret_key" {

description = "The AWS secret key."

Create a second Terraform variables file in the same directory is
and name it terraform.tfvars. This file is specifies the values to
the variables you defined in the previous step.

O O W N

g s W N

0 N O O B W N =

11
12
13

3.0. Serverless Frontend 12

project_key = "lac-serverless-frontend"
aws_access_key = "XXXXXXXXXXX"
aws_secret_key = "XXXXXXXXXXX"

aws_region = "ap-southeast-2"
s3_bucket_name = "iac-serverless-frontend"
s3_bucket_env = "development"

The third Terraform file we will create in the same directory is
provide.tf. This file contains information about our provider, AWS
and its’ configurations including keys and region.

provider "aws" {
access_key = var.aws_access_key
secret_key = var.aws_secret_key

region = var.aws_region

Next, we will start defining the S3 Bucket that we will use to store
the static resources in s3-bucket.tf . Here we defined the bucket
permissions of public read only. We also defined index.html as the
entry point to the website.

resource "aws_s3_bucket" "site-s3-bucket" {
bucket = var.s3_bucket_name
acl = "public-read"
policy = data.aws_iam_policy_document.s3-website-policy\

.json
website {
index_document = "index.html"
error_document = "index.html"
}
}

resource "aws_s3_bucket_public_access_block" "site-s3-acc\

14
15
16
17
18
19

0 N O O B W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24

3.0. Serverless Frontend 13

ess-control" {
bucket = aws_s3_bucket.site-s3-bucket.id

block_public_acls = true

ignore_public_acls = true

Then, we define our CloudFront resource in cloudfront.tf . We
define the entry point to the website once again and some ptoons
on the default cache behaviour.

resource "aws_cloudfront_distribution" "site-cloudfront-d\
istribution" {

enabled true

default_root_object = "index.html"

default_cache_behavior {

allowed_methods ["GET", "HEAD"]
cached_methods = ["GET", "HEAD"]
target_origin_id

var .s3_bucket_name

viewer_protocol_policy "redirect-to-https"
forwarded_values {

query_string = false

cookies {

forward = "all"

}
origin {
domain_name = aws_s3_bucket.site-s3-bucket.bucket_reg\
ional_domain_name
origin_id = var.s3_bucket_name
}
restrictions {
geo_restriction {

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

3.0. Serverless Frontend 14

restriction_type = "none"

}
viewer_certificate {

cloudfront_default_certificate = true

}

custom_error_response {

error_code = 404
error_caching_min_ttl = 86400
response_page_path = "/index.html"
response_code = 200

resource "aws_iam_policy" "cloudfront-invalidate-paths" {
name = "cloudfront-invalidate-paths"
description = "Used by CI pipelines to delete cached pa\
ths"

policy = jsonencode({
Version = "2012-10-17",
Statement = [

{
Sid = "VisualEditorQ@",
Effect = "Allow",
Action = "cloudfront:Createlnvalidation",
Resource = "*"
}

1))

Finally, define the common tags under locals in data.tf and add in
the IAM policy document for S3 resources.

0o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22

O 00 N O O » W N =

3.0. Serverless Frontend 15

locals {
common_tags = {

Name = "${var.s3_bucket_name}"
Environment = "${var.s3_bucket_env}"
Project = "${var.project_key}"

data "aws_iam_policy_document" "s3-website-policy" {
statement {
actions = [
"s3:GetObject"
]
principals {
identifiers = ["*"]
type = "AwWS"
}
resources = |

"arn:aws:s3:::${var.s3_bucket_name}/*"

Don’t forget to add a . gitignore file if you are checking in the code
to Git.

dependencies
/node_modules
/.pnp

.pnp.Jjs

testing
/coverage

production

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3.0. Serverless Frontend 16

/build

misc

.DS_Store

.env.local
.env.development.local
.env.test.local
.env.production.local

npm-debug. log*
yarn-debug. log*
yarn-error.log*

Terraform
/infrastructure.*.tfvars
/infrastructure/*.tfstate
/infrastructure/*.tfstate.backup
/infrastructure/*.tfplan
/infrastructure/.terraform

/infrastructure/terraform.tfvars

3.6. Deploy the Infrastructure

In the infrastructure folder, run terraform init on the command
line to initialise a working directory containing Terraform config-
uration files. Followed by terraform plan to view a summary of
infrastructure changes and terraform apply to apply these changes.

When the infrastructure has been successfully implemented, go into
AWS console and have a look at the S3 and CloudFront resources
that was created by Terraform.

Find the newly created bucket and click on Properties, at the bottom
of the page you will find information about the static website. Copy
the Bucket website endpoint link, we will use this to access our

3.0. Serverless Frontend 17

website later on.

,,,

Navigate to CloudFront and you will see that a distribution has also
been created. Note the ID of the distribution, we will need this to
create our CI/CD pipeline in the next steps.

s [

3.7. Integrate Cl / CD

In this section we will create a . github/work flows folder. Inside the
folder, create a file named main.ym1, which will detail what happens
when code is committed to the repository.

Here we defined a GitHub action named Deploy Production which
builds the static React App and uploads the site resources to the
S3 Bucket and invalidates the index file in CloudFront so that the
latest site is served to users.

0o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

3.0. Serverless Frontend

name: Deploy Production
on: [push]

jobs:

build:
runs-on: ubuntu-latest
steps:
Clone the repo
- name: Clone repository
uses: actions/checkout@vi
Cache node modules
- name: Cache node modules
uses: actions/cache@v1
with:
path: node_modules
key: yarn-deps-${{ hashFiles('yarn.lock') }}
restore-keys: |
yarn-deps-${{ hashFiles('yarn.lock') }}
Build the static site
- name: Create static build
run: yarn install && yarn build
Upload the artifact for other stages to use
- name: Share artifact in github workflow
uses: actions/upload-artifact@vi

with:
name: build
path: build
deploy:

runs-on: ubuntu-latest

needs: build

steps:
Download the build artifact
- name: Get build artifact

18

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65

3.0. Serverless Frontend 19

uses: actions/download-artifact@vi
with:
name: build
Setup the AWS credentials
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentials@vil
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_I\
D }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_A\
CCESS_KEY }}
aws-region: ap-southeast-2
Copy the files from /build to s3 bucket
- name: Deploy static site to S3 bucket
run: aws s3 sync . s3://${{ secrets.S3_BUCKET_NAM\
E }} --delete
working-directory: build
Invalidate index file in Cloudfront (this forces \
edges to fetch the latest index.html)
- name: invalidate
uses: chetan/invalidate-cloudfront-action@master
env:
DISTRIBUTION: ${{ secrets.CLOUDFRONT_DISTRIBUTI\
ON_ID }}
PATHS: '/index.html'
AWS_REGION: ap-southeast-2
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_I\
D }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_A\
CCESS_KEY }}

We will need to add the variables we need to run the workflow in
GitHub secrets.

3.0. Serverless Frontend 20

Let’s make a commit to our web application repository to trigger
the CI/CD workflow. The Deploy Production actions of build and
deploy should both run successfully.

3.8. Built and Deployed

The build should be completed now, use the S3 public link
(e.g. http://iac-serverless-frontend.s3-website-ap-southeast-
2.amazonaws.com®) to access the deployed frontend application.

Now you have deployed a serverless frontend web application with
infrastructure-as-code. Next you may want to implement security
features. Notice that the website is currently not a secure domain.
An optional challenge you can do is to configure your CloudFront
distribution to use an SSL/TLS certificate.

*http://iac-serverless-frontend.s3-website-ap-southeast-2.amazonaws.com/

http://iac-serverless-frontend.s3-website-ap-southeast-2.amazonaws.com/
http://iac-serverless-frontend.s3-website-ap-southeast-2.amazonaws.com/
http://iac-serverless-frontend.s3-website-ap-southeast-2.amazonaws.com/

4.0. Serverless
Application
Programming Interface
(API)

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.1. Why Serverless API?

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.2. Infrastructure and Tools

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.3. Architecture

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-

http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code

4.0. Serverless Application Programming Interface (API) 22

infrastructure-as-code.

4.4. Getting Started

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.5. Code the Infrastructure

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.6. Deploy the Infrastructure

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

4.7. Built and Deployed

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code

5.0. Scalable Container

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.1. Why Kubernetes and Amazon
Elastic Kubernetes Service?

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.2. Infrastructure and Tools

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.3. Architecture

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code

5.0. Scalable Container 24

5.4. Getting Started

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.5. Code the Infrastructure

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.6. Deploy the Infrastructure

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

5.7. Built and Deployed

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

Configure kubectl

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code

6.0. Conclusion

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

6.1. What you have learnt

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

6.2. Projects recap

This content is not available in the sample book. The book
can be purchased on Leanpub at http://leanpub.com/modern-
infrastructure-as-code.

http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code
http://leanpub.com/modern-infrastructure-as-code

	Table of Contents
	1.0. Introduction
	1.1. Who is this book for and prerequisites
	1.2. What will we be learning?
	1.3. What will you build

	2.0. The Big Picture - IaC, DevOps, Cloud and Beyond
	2.1. Infrastructure-as-code (IaC)
	2.2. Developers and DevOps
	2.3. Cloud Computing and Amazon Web Services (AWS)
	2.4. Docker
	2.5. Kubernetes (K8s)
	2.6. Terraform
	2.7. GitHub Actions

	3.0. Serverless Frontend
	3.1. Why Serverless Frontend?
	3.2. Infrastructure and Tools
	3.3. Architecture
	3.4. Getting Started
	3.5. Code the Infrastructure
	3.6. Deploy the Infrastructure
	3.7. Integrate CI / CD
	3.8. Built and Deployed

	4.0. Serverless Application Programming Interface (API)
	4.1. Why Serverless API?
	4.2. Infrastructure and Tools
	4.3. Architecture
	4.4. Getting Started
	4.5. Code the Infrastructure
	4.6. Deploy the Infrastructure
	4.7. Built and Deployed

	5.0. Scalable Container
	5.1. Why Kubernetes and Amazon Elastic Kubernetes Service?
	5.2. Infrastructure and Tools
	5.3. Architecture
	5.4. Getting Started
	5.5. Code the Infrastructure
	5.6. Deploy the Infrastructure
	5.7. Built and Deployed

	6.0. Conclusion
	6.1. What you have learnt
	6.2. Projects recap

