

Modern Application Development with PHP

Tom Oram

This book is for sale at http://leanpub.com/modern-application-development-with-php

This version was published on 2015-01-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 - 2015 Tom Oram

http://leanpub.com/modern-application-development-with-php
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Tom Oram by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Checkout out Modern Application Development in PHP, a book on current PHP development
practices.

The suggested hashtag for this book is #ModernAppDevInPHP.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ModernAppDevInPHP

http://twitter.com
https://twitter.com/search?q=%23ModernAppDevInPHP
https://twitter.com/search?q=%23ModernAppDevInPHP

This book is dedicated to my mother Lesley Robinia. You inspired and supported me with
everything I have done. Miss you mum!

9th May 1950 - 26th October 2014

Contents

Preface . 1
Source Code . 2
Discussing Book Content . 2
Getting in Contact . 2
Thanks . 2

Prerequisites . 3

Terms and Conventions . 4
Some Terms . 4
Conventions . 5

The Development Environment . 6
Requirements . 6
Vagrant . 6

Getting up to Speed with PHP . 10
Namespaces . 10
Typehints . 12
Front Controllers . 16
Standards . 19
Docblocks . 20
The Autoloader . 21
Composer . 23
Keeping Logic and Display Code Separate . 29
Coding Style . 30

Methodologies, Techniques and Tools . 33
Object Oriented Programming (OOP) . 33
Design Patterns . 42
Value Objects & Immutability . 42
Entities . 47
Dependency Injection (DI) & Inversion of Control (IoC) 48
The SOLID Principles . 54

CONTENTS

Functional Programming (FP) . 55
Command Query Separation (CQS) . 61
Naming . 62
Refactoring . 66
Object Calisthenics . 67
Automated Testing . 68
Test Driven Development (TDD) . 69
Behaviour Driven Development (BDD) . 69
Uncle Bob’s Clean Code . 69
Domain Driven Design (DDD) . 70
Command Query Responsibility Segregation (CQRS) . 70
Agile . 72
User Stories . 72

An Introduction to Testing and TDD . 74
Types of Test . 74
The Double Feedback Loop . 80
Given, When, Then . 80
Acceptance Testing with Behat . 82
Mink . 92
Unit Testing with PHPSpec . 92
Test Doubles . 106
Katas . 116

Building the Application . 117

Getting Started . 118
The Application . 118
Creating the Project . 119
The First Story . 120
Application Structure . 121
Scenario: View an empty list of recipes . 122
Scenario: View a list with 1 recipe . 130
Scenario: Recipes are sorted by rating . 145
Tidying Up . 149
What Next? . 155

Preface
I have been working professionally with PHP since 2000. In that time I have seen it grow from a basic
scripting language which allowed you to hack your ideas together in version 3, to something that
resembled a fully featured language in version 4, through to actually becoming that fully featured
language in version 5.

One of the fantastic features of PHP is that it’s so easy to get up and running quickly; you can easily
add some dynamic elements to your existing HTML page with very little knowledge or experience.
However, this is also a problem. Since anyone can start piecing together snippets of PHP code to get
something to work, there are many people out there who are writing bad PHP code as they have
never learnt how to program properly. Badly written code is often broken, very hard to add new
functionality to, hard to maintain and rarely scalable.

In this book I hope to incorporatemany programmingmethodologies, techniques and tools and apply
them in the context of PHP to create a well designed application. These include Object Oriented
Programming, Design Patterns, elements from Domain Driven Design, Refactoring, The SOLID
Principals, Test Driven Development and Behaviour Driven Development. If these are all new to
you, then this will be quite a ride.

I do not intend to cover any of these topics extensively. There are already many great books and
resources covering all of them already and written by far cleverer people than myself. Therefore, I
encourage you to read and learn more about all these subjects further. This book should, however,
provide a great introduction to many of these methodologies, techniques and tools and show you
how to get started quickly using them with PHP.

This book aims to introduce you to what you need to start building a well designed, manageable,
and extensible medium size PHP application. The approach and process of working throughout this
book should also fit very well into an Agile process of working. However, it will only deal with the
actual development and architecture of the project rather than the full planning, communication
and team management aspects included in the Agile way of working.

The architecture of the application we will be building in this book is a fairly common approach.
It will not be based on any frameworks, but we will make use of some later on to see how
frameworks can be very useful tools. In my mind this is how modern frameworks should be used.
This architecture and approach to PHP application design is one we often use at the company I work
for and is a tried and tested approach.

So finally, who is this book for? Firstly this is not an introduction to PHP. I assume you are already
familiar with the language; you should be able to use classes and at least understand what an
interface is. You have probably built at least one medium scale application but may not really know
a lot about software design principles. If you have less experience than this you may struggle to keep

Preface 2

up. If you have more then there may be less to be learnt from this book but hopefully it will still be
helpful.

Source Code

The example source code for this book is included as part of the Leanpub purchase. You can download
it via your Leanpub Dashboard¹.

Discussing Book Content

I have created a Google Group which can be used by readers of this book to discuss the ideas and
content. This group can be found at:

https://groups.google.com/forum/#!forum/modern-application-development-in-php

Getting in Contact

I’d love to hear from you! Whether it’s about something in the book which you didn’t understand,
think I could improve or didn’t agree with, or if you’d like to share how you do things differently,
or even just to talk about software design in general then please get in touch.

You can find me on:

Twitter: @tomphp Email: tom@x2k.co.uk Skype: x2kmusic

Thanks

Many people have contributed to the creation of this book, as well as to my journey to get to this
point of creating it. I would like to say thanks to:

My parents for inspiring and encouraging me to do positive things in my life. My collegues Felix and
Rob for our daily debates and mutual encouragement to develop our skills further. John and Jamie
for employing me in this industry and John for all his mentoring. George and Ollie for engaging
with lengthy technical phone calls. Matthew for his inspiration and support to create this book. Rob,
Felix, Lowri, Loki, Peter, Lee and Steph for pointing out errors and typos.

¹https://leanpub.com/dashboard

https://leanpub.com/dashboard
https://leanpub.com/dashboard

Prerequisites

This section of the book makes sure you have all the knowledge and tools which will be needed
to progress through the rest of the book. It will cover a lot of topics briefly; the idea is to give you
enough information on each topic for you to progress through this book, however, each topic is
pretty deep so I don’t want to try and cover any of them completely. Many of them also have great
books covering that topic exclusively and I encourage you to learn more about each of them yourself.

Terms and Conventions
Some Terms

Before getting started, I’d just like to introduce a few terms which I’ll be using in this book. If you’re
used to reading about software development and architecture, then these may seem quite obvious.
But if this is you’re first real entry point into these topics, then it’s probably useful to point these
out now.

Stakeholder

When I talk about the stakeholder, I’m referring to the person (or persons) responsible for requesting
the features you have to build into the application. If you’re a freelancer and you’re building a
application for one of your clients, or if you work for a development company and you’re working
on a team building an application for one of the company’s clients, then the client is the stakeholder.
If your working in-house at a company, and you’re developing software for the employees, and
the management team are telling you what needs to be built: then the management team are the
stakeholders.

Basically, the stakeholders are the people who will pay you or your company if you build what they
want. They choose what features are needed, and you have to keep them happy!

Domain

The domain is the real world process or environment which you are trying to translate into software.
If you are building an e-commerce application, then the domain is the sales process.

Every project’s domain will be unique. The sales process of a small manufacturer with 10 products
will be different to that of a company selling thousands of products from multiple warehouses.

The domain is considered to be the problem space. This is because it contains the problems which
you need to solve in order to model it in software.

Domain Model

The domain model is the solutions to the domain’s problems, it is considered to be the solutions
space. The domain model is the core of your application and it models just the domain. It does not
include the User Interface, the Database Layer, a Framework, API requests; it is a pure model of the
data and logic in the domain.

A bit later on I’ll introduce Domain Driven Design which is a process that holds the design of the
domain model at utmost importance when creating software.

Terms and Conventions 5

Conventions

In this book I will often instruct you to run commands in the terminal. Whenever I show a command
to be run, it will be in fixed width text and preceded by a ‘$’ symbol, like this:

1 $ ls -l

When executing the command, do not include the $ symbol. For the example above, simply type ls
-l into the terminal window, then press the Enter key on your keyboard.

Other times I will show the output of a command executed in the terminal. In this case I’ll use the
same fixed with font, but there will be no preceding $, like so:

1 total 13640

2 -rw-rw-r-- 1 tom tom 142 Aug 20 23:49 LICENSE.md

3 drwxrwxr-x 4 tom tom 4096 Oct 18 14:15 manuscript

4 -rw-rw-r-- 1 tom tom 956 Aug 20 23:56 README.md

5 -rw-rw-r-- 1 tom tom 13952786 Sep 24 22:25 tags

Finally, there are times where I’ll show the command and the output in one block of text. The
commands will be preceded by the $ symbol, and the output will be in the lines which followwithout
the $ symbol:

1 $ ls -l

2 total 13640

3 -rw-rw-r-- 1 tom tom 142 Aug 20 23:49 LICENSE.md

4 drwxrwxr-x 4 tom tom 4096 Oct 18 14:15 manuscript

5 -rw-rw-r-- 1 tom tom 956 Aug 20 23:56 README.md

6 -rw-rw-r-- 1 tom tom 13952786 Sep 24 22:25 tags

Everything else should hopefully be self explanatory.

Next we’ll look at the tools you will need to work through this book.

The Development Environment
First up I will be using a Linux system in all my examples, therefore most of the content in terms
of using the command line and configuration should translate directly if you’re a Mac OS X user. If
you’re a Windows user things may be a bit different but shouldn’t be too hard to work out.

Requirements

The only real requirement for working through this book is that you are using PHP 5.5 or above and
the SQLite extension. Throughout this book we will be using PHP both from the command line and
in a webserver environment.

Install PHP and SQLite on Ubuntu easily by running:

1 $ sudo apt-get install php5-cli php5-sqlite

When working in a web environment I will be using a tool called Vagrant, which runs the
development environment in a virtual machine on the computer. This removes the need to set up and
configure a webserver (and database servers) directly on the development computer. This is the way
I would recommend working. However, if you do want to manually set up the relevant webserver
and database servers on your development machine then you can do that, but you’ll have to work
that out yourself.

Vagrant

Vagrant is a neat little tool. It allows many developers working on the same project to run a local
copy of the project’s environment easily without having to install all the project’s dependencies on
their development machines. It does this by building and running a virtual machine from a config
file included in the project.

Vagrant itself simply instructs a virtualisation provider on what type of virtual machine to create
and then uses a configuration automation system to configure that virtual machine.

Different providers, such as VMWare, are available for use with Vagrant but I will be using
VirtualBox.

Also, different configuration automation systems, such as Chef and Puppet, can be used with
Vagrant. I am choosing to use Ansible just because I prefer the syntax.

The Development Environment 7

Installing

In order to use Vagrant you will need to install:

• Vagrant²
• VirtualBox³
• Ansible⁴

I recommend that you install both Vagrant and VirtualBox by downloading the distribution packages
directly from their websites so you get the current versions.

With Ansible, you need to make sure you have an up to date version. On Ubuntu I tend to install it
via Rodney Quillo’s PPA⁵ since it’s more up to date than the version in the Software Center.

Creating a Vagrant Config for PHP Development

Once you have Vagrant, VirtualBox and Ansible installed, it’s time to build a Vagrant configuration.

It’s not hard to build a Vagrant config file by hand, or to build the config automation scripts.
However, it is a bit tedious, takes some learning, and is not really something this book intends
to cover. Luckily there are some fantastic online tools available which make this process a lot easier.
Since we want to build a PHP development environment and we’re going to use Ansible. We will
use a fantastic tool called Phansible⁶ to create our config for us.

Phansible

First, open http://www.phansible.com/ in your browser. You will see a form asking questions about
the development environment that you want to create. For this example choose the following
options:

Options Value

Operating System Ubuntu Trusty Tahr (14.04) 64
Name VagrantExample
IP Address 192.168.5.10
Memory 512
Shared Folder ./
Webserver Apache + PHP5
PHP Version 5.6

²http://www.vagrantup.com/
³http://www.virtualbox.org/
⁴http://www.ansible.com/
⁵https://launchpad.net/~rquillo/+archive/ubuntu/ansible
⁶http://www.phansible.com/

http://www.vagrantup.com/
http://www.virtualbox.org/
http://www.ansible.com/
https://launchpad.net/~rquillo/+archive/ubuntu/ansible
http://www.phansible.com/
http://www.vagrantup.com/
http://www.virtualbox.org/
http://www.ansible.com/
https://launchpad.net/~rquillo/+archive/ubuntu/ansible
http://www.phansible.com/

The Development Environment 8

You can use a different local IP address if you want, but remember it, since we’ll need to use it
shortly.

Ignore the Database and Package settings for now, and finally choose an appropriate Timezone.

Next, click the Generate button at the bottom of the form, and save the generated .zip file to your
hard drive. I saved my file to /home/tom/Downloads/phansible_VagrantExample.zip.

Creating the Project

Now that we have generated the Vagrant configuration, let’s create a PHP project and add the
Vagrant configuration to it.

At your terminal, cd to where ever you want to create your project:

1 $ cd /home/tom/Projects

Next, create a directory for your new project, and cd into it:

1 $ mkdir VagrantExample

2 $ cd VagrantExample

Now create a file inside this directory called index.php, and add the following content, using your
favourite IDE or text editor:

index.php

1 <?php

2

3 echo 'Hello wonderful World!';

Next, unpack the contents of the Vagrant configuration .zip file that we downloaded from the
Phansible website earlier,

1 $ unzip /home/tom/Downloads/phansible_VagrantExample.zip

Finally, while still inside the project’s directory and with your computer connected to the Internet,
run:

The Development Environment 9

1 $ vagrant up

This may take some time, and you may be prompted to enter your password to allow Vagrant to
sudo to update some config files. Just be patient.

When it is done, open your browser and enter the IP address we selected earlier into the location
bar like so:

http://192.168.5.10/

If all has gone to plan you should see Hello wonderful World! displayed on the page! Success! -
we have created a PHP development environment for our project without installing or configuring
a webserver on our local machine.

Once you have marvelled in the glory of Vagrant you can shut down the virtual machine by running
the following command at your terminal:

1 $ vagrant halt

Shutting Down
I have found that if I forget to shutdown my virtual machines before I try to shut down my
computer, it hangs during the shut down process. If you have a solution to this problem I’d
love to hear it!

Getting up to Speed with PHP
As I said previously, this book assumes you are already familiar with PHP. In this chapter I will
quickly cover a few newer additions to PHP, as well as a few tools and techniques which you will
need to know about to continue with this book.

I don’t intend to go into anything in too much depth. It will contain just enough information the
things we will be using. Therefore, I encourage you to research them further yourself.

Namespaces

If namespaces are new to you then the easiest analogy I can think of is that they are like folders
for your code. Using them means you can have 2 or more classes with the same name in different
namespaces - in the same way that you can have 2 or more files with the same name in different
folders.

Without covering all the details of PHP namespaces here, I will quickly cover the aspects of them
which we will be using.

Firstly, in order to define a class inside a specific namespace, you use the namespace statement on
the first line of the file containing the class. Like so:

Class defined inside namespace

1 <?php

2

3 namespace MyApp\Entity;

4

5 class Contact

6 {

7 // ...

8 }

This defines the class Contact inside the Entity namespace which is inside the MyApp namespace.
Namespaces are separated by backslashes.

To use a class inside code which in the same namespace, you can simply refer to it by name:

Getting up to Speed with PHP 11

Using a class defined in the current namespace

1 <?php

2

3 namespace MyApp\Entity;

4

5 $contact = new Contact();

To use a class inside code in a different namespace, you can refer to it by its Fully Qualified Class
Name (FQCN). Like so:

Referencing a class by its FQCN

1 <?php

2

3 namespace MyApp;

4

5 $contact = new \MyApp\Entity\Contact();

You can also refer to a class in a sub-namespace relative to the current namespace. Like so:

Referencing a class by its relative namespace

1 <?php

2

3 namespace MyApp;

4

5 $contact = new Entity\Contact();

Finally, you can pull a class from a different namespace into scope with the use statement. Add this
at the top of the file just after the namespace statement. This is the way I prefer in most situations -
here’s an example:

Getting up to Speed with PHP 12

The use statement

1 <?php

2

3 namespace MyApp;

4

5 use MyApp\Entity\Contact;

6

7 $contact = new Contact();

One final thing: if you want to use a class from one namespace in another namespace which already
has a class with the same name in it, then you can rename the one you’re importing with the as

keyword. Like so:

Aliasing an imported class

1 <?php

2

3 namespace MyApp\Form;

4

5 use MyApp\Entity\Contact as ContactEntity;

6

7 class Contact

8 {

9 public function __construct(ContactEntity $entity)

10 {

11 // ...

12 }

13

14 // ...

15 }

It’s all pretty simple really right? That’s everything you’ll need to know about namespaces to
continue with this book. However, if you do want to learn more about them, then the full
documentation for PHP namespaces can be found in the manual⁷.

Typehints

PHP is a dynamically typed language. It has a few basic, scalar types:

⁷http://php.net/manual/en/language.namespaces.php

http://php.net/manual/en/language.namespaces.php
http://php.net/manual/en/language.namespaces.php

Getting up to Speed with PHP 13

Scalar types in PHP

1 <?php

2

3 42; // integer

4

5 12.5; // float or double

6

7 'abc123'; // string

8

9 false; // boolean

It also has arrays, callables, resources and any user defined classes or interfaces, which are all also
types.

Being a dynamically typed language means that a variable or function argument can contain any
type of value at any time (this also goes for function return types):

Dynamic typing example

1 <?php

2

3 function fn($p)

4 {

5 return $p;

6 }

7

8 class C1

9 {

10 }

11

12 class C2

13 {

14 }

15

16 $x = 42; // $x contains an integer

17

18 $x = 12.5; // now $x contains a float

19

20 $y = fn(123); // $p in fn() contains an integer and $y contains an integer

21

22 $y = fn(false); // $p in fn() contains a boolean and $y contains a boolean

23

Getting up to Speed with PHP 14

24 $c = new C1(); // $c contains a C1 instance

25

26 $c = new C2(); // $c contains a C2 instance

In contrast: in a statically typed language a variable, function argument or return value can only
ever be the type it is defined to contain. If another type is assigned it will either cause an error, or it
will get converted. Here’s a C++ version of the last example:

Static typing example (in C++)

1 int fn(int p) {

2 return p;

3 }

4

5 class C1 {

6 };

7

8 class C2 {

9 };

10

11 int main() {

12 int x = 42; // x contains an integer

13

14 x = 12.5; // x contains 12, it keeps only the integer part

15

16 y = fn(123); // p in fn() contains an integer and y contains an integer

17

18 y = fn(false); // p in fn() contains 0 and y contains 0

19

20 C1 *c = new C1(); // c contains a C1 instance

21

22 c = new C2(); // this is an error as c can only contains instances of C1

23 }

Statically typed languages have great benefits. Because you always know what type everything is,
there’s never a chance of you doing something to a variable which is not allowed to be done the type
it contains. On the other hand, dynamically typed languages let you get on and do things quickly
and without having to worry about how to work with type constraints.

Since static typing does have benefits, PHP introduced typehints on function arguments. Typehints
allow you to specify exactly what user defined type a function accepts for each parameter; PHP will
throw an InvalidArgumentException exception if the wrong type is given:

Getting up to Speed with PHP 15

PHP typehint example

1 <?php

2

3 class C1

4 {

5 }

6

7 class C2

8 {

9 }

10

11 function fn(C1 $c)

12 {

13 }

14

15 fn(new C1()); // works perfectly

16

17 fn(new C2()); // error

18

19 fn(5); // error

Frustratingly PHP does not allow typehints for scalar types or function return values (yet).

However, even though PHP is a dynamically typed language you should still strive to keep your
typing sensible. This means that if you create a variable that contains a specific type, you should try
not to reuse it by assigning a new value of a different type to it. Also, don’t call methods on objects
if they are not in the typehinted interface. If you do PHP will produce be an error but it’s really not
good practice:

Mis-using an interface in PHP

1 <?php

2

3 interface Fooer

4 {

5 public function doFoo();

6 }

7

8 class FooBar implements Fooer

9 {

10 public function doFoo()

11 {

Getting up to Speed with PHP 16

12 }

13

14 public function doBar()

15 {

16 }

17 }

18

19 function performAction(Fooer $f)

20 {

21 // This is fine, doFoo() is defined in the Fooer interface

22 $f->doFoo();

23

24 // Don't do this, $f is a Fooer and doBar() is not defined

25 // in the Fooer interface

26 $f->doBar();

27 }

28

29 performAction(new FooBar());

Throughout this book I will be writing PHP code as if I’m writing in a statically typed language
90% of the time - using typehint whenever possible. However, PHP is still a dynamic language and
some times it’s helpful to take advantage of this; whenever I do this I will point it out and explain
my reason for choosing to do so.

Front Controllers

The front controller is a design pattern for web applications which involves creating a single entry
point into your application. It requires you to configure your webserver to redirect all requests to a
single PHP script which then processes the request and decides what content to display.

Let’s take a look at an example:

The Traditional Approach

First, let’s look at the traditional approach of using PHP. Create 2 files inside an empty folder, the
first one we’ll call page1.php:

Getting up to Speed with PHP 17

page1.php

1 <?php

2

3 echo 'You are on page 1';

And the second one we’ll call page2.php

page2.php

1 <?php

2

3 echo 'You are on page 2';

Next open a terminal and cd into the directory containing these files, Now, use the following
command to start up PHP’s built in webserver:

1 $ php -S localhost:8080

Now if you open your browser and go to http://localhost:8080/page1.php then you will see You
are viewing page 1. If you then go to http://localhost:8080/page2.php you will see You are

viewing page 2.

When you are done, press CTRL+C in your terminal to stop the webserver.

This is the approach that you normally first learn when starting out with PHP. There’s nothing
wrong with this approach, but, in general using a front controller is better so let’s take a look at that.

Single Entry Point

Create a new folder and this time create a single file called index.php containing:

index.php

1 <?php

2

3 echo 'You are looking at: ' . $_SERVER['REQUEST_URI'];

Then, in the terminal cd to this new directory. This time start the PHP built in webserver with the
name of the file we want to use as the application entry point. Like so:

Getting up to Speed with PHP 18

1 $ php -S localhost:8080 index.php

Again open your browser and visit http://localhost:8080/page1 and you will see You are

looking at: /page1, and again go tohttp://localhost:8080/page2 and you will see You are

looking at: /page2.

So, as you can see, anything you type after the http://localhost:8080 is redirected to the
index.php file, and you can use the $_SERVER superglobal to get the actual URI requested.

The Simplest Front Controller in the World

Next, let’s modify the index.php file to look like this:

index.php

1 <?php

2

3 switch ($_SERVER['REQUEST_URI']) {

4 case '/page1':

5 echo 'You are viewing page 1';

6 break;

7

8 case '/page2':

9 echo 'You are viewing page 2';

10 break;

11

12 default:

13 header('HTTP/1.0 404 Not Found');

14

15 echo '<html>'

16 . '<head><title>404 Not Found</title></head>'

17 . '<body><h1>404 Not Found</h1></body>'

18 . '</html>';

19 }

Now ifwe go to our browser and go to http://localhost:8080/page1 or http://localhost:8080/page2
then they work as expected. Also, going to http://localhost:8080/anything-else now shows a
404 message.

Obviously this is a pretty pointless and limiting front controller, but hopefully you now understand
the theory behind it.

Stop the webserver again by pressing CTRL+C in the terminal.

Getting up to Speed with PHP 19

Front Controllers using Apache

In order to use a front controller with Apache you need to tell it where to find the PHP script to be
used for the application entry point. As of Apache version 2.2.16, you can simply do this by adding
the following to the .htaccess file in your document root:

.htaccess

1 FallbackResource /index.php

Standards

As a language gets more powerful it often allows many ways and approaches to achieve the same
thing. Each person then has their own preferences of how they personally like to do things.

On one hand this is great: it allows programmers to be expressive and to write their code in the way
which best fits how they think, lay it out in they way which looks the most aesthetically pleasing
to them, and structure it in the way which they find easiest to navigate.

On the other hand this becomes a total nightmare: when you are working with several libraries, all
written by different programmers who each have their own way of doing all things. You have to
learn each of the different approaches to efficiently navigate and understand each author’s code.
Also, it may make it tricky for some of the libraries to happily interact with each other.

For the reasons just mentioned, programmers get together in groups and create standards, these are
a nice middle ground which everyone is mostly happy with. You’ll often find that you won’t agree
with everything defined in a standard, but by putting that to one side and accepting it you reap the
benefits of having your code being much more consistent with all the other users of the standard’s
code - as well as any tools which have been built to work with that standard.

PHP-FIG

Introducing PHP-FIG! PHP-FIG or the PHP Framework Interoperability Group is a group built up
of various key people in the PHP community who have got together and started to build some
standards for using PHP. Many PHP software projects have now adopted or are adopting many of
these standards. I fully recommend you do the same!

At the time of writing this there are 5 published standards:

Standard Description

PSR-0 Autoloading Standard
PSR-1 Basic Coding Standard
PSR-2 Coding Style Guide (implies PSR-1)
PSR-3 Logger Interface
PSR-4 Improved Autoloading (an extension to PSR-0)

Getting up to Speed with PHP 20

And a 3 more in discussion:

Standard Description

PSR-5 PHPDoc
PSR-6 Caching Interface
PSR-7 HTTP Message Interfaces

In this book I will be using PSR-0 or PSR-4 for all code (except in some small examples) and PSR-2
for coding style. I will explain a bit more about these in the next few sections.

For more Information on PHP-FIG visit the website⁸.

PHP The Right Way

PHP The Right Way⁹ is not a standard as such, it’s simply a website which lists lots of things about
how PHP should be used if you are serious about writing good code. It contains lots of fantastic
advice and I highly recommend studying it.

Docblocks

Docblocks are comments which contain annotations which can be added to your code to make
it possible to generate documentation about your codebase automatically. One such document
generation tool is phpDocumentor¹⁰. This can be fantastically useful if you are building a library
for others to use, since you can easily generate great API documentation using it.

There is however another use for it; we’ve already talked about typehints which, by enforcing the
types of function arguments, provide an extra level of documentation to people reading the code;
it helps them to understand it quicker. They also help IDEs provide auto completion functionality
while you’re writing the code. This is great, but so far PHP has only gone half way - as I said earlier
there are no typehints for function return values or for scalar types. Also, the type of a variable or
property cannot be defined. Therefore, I’ve made it a habit to document these by using PHPdoc tags.
I hope one day PHP will add more complete typehinting.

The format of docblocks are fairly standard now, but there’s work to fully standardise it with PSR-5.

Here’s a little example of how I’ll be using docblocks in the code in this book:

⁸http://www.php-fig.org/
⁹http://www.phptherightway.com/
¹⁰http://www.phpdoc.org/

http://www.php-fig.org/
http://www.phptherightway.com/
http://www.phpdoc.org/
http://www.php-fig.org/
http://www.phptherightway.com/
http://www.phpdoc.org/

Getting up to Speed with PHP 21

Using docblocks to annotate types

1 <?php

2

3 class Example

4 {

5 /** @var string */

6 private $name;

7

8 /** @var Email */

9 private $email;

10

11 /** @param string $name */

12 public function addCustomer($name, Email $email)

13 {

14 // ...

15 }

16

17 /** @return Customer[] */

18 public function getCustomers()

19 {

20 // ...

21 }

22 }

Docblocks allow you to add much more detail than I’ve shown here. You can give descriptions and
details for the file, the class, any variables, properties or parameters, etc. But since I don’t want to
generate an API document for this codebase, I’m only using it to specify the types which cannot be
specified directly in PHP.

The Autoloader

You have may have never created a PHP autoloader, you may have never ever heard of one, but
if you’ve every build an application using a recent PHP framework you have probably used one.
However, if you’re not aware of the autoloader and you’re including all your different classes and
functions by using PHP’s require, require_once, include and include_once statements, then you
need to STOP and read this section now!

The autoloader is a system in PHP where you can create a callback function that will be called if
you try to use a class which has not yet been defined. This callback receives the name of the class
trying to be used as a parameter. The function can then use the name to lookup and require the file
needed to provide the class definition.

Getting up to Speed with PHP 22

In order to use an autoloader callback you can either define a function called __autoloadwhich will
provide the autoloading logic. Or, you can use the more recent and more flexible spl_autoload_-
register function to register your autoloading function.

Now you know what an autoloader is there’s some good news: there’s no actual need to write the
autoloader function yourself, there’s a wonderful tool called Composer which can take care of that
for you. However, if you do want to look into autoloading in more detail you can read about it in
the manual¹¹.

PSR-0 - Autoloading Standard

Before talking about Composer I’d like to first introduce PSR-0. PSR-0 is a standard which was
designed to make it easy to find the files where given classes are defined.

The basic rules of PSR-0 are as follows:

• There is exactly one class defined per file.
• The file name is the same name (and case) as the name of the class defined inside it, with .php

appended to it.
• The file exists in a directory structure which fully matches the namespace in which the class
is defined.

The full PSR-0 specification can be read on the PHP-FIG website¹².

Example

A file located at /home/tom/projects/AutoloadExample/src/MyApp/Entity/Contact.php would
contain the following class definition:

PSR-0 compliant class

1 <?php

2

3 namespace MyApp\Entity;

4

5 class Contact

6 {

7 // ...

8 }

Whatever comes before the root namespace in the file path (in this case /home/tom/projects/AutoloadExample/src)
is not important, so long as the FQCN is mirrored in the folder structure up to the class name.

¹¹http://php.net/manual/en/language.oop5.autoload.php
¹²http://www.php-fig.org/psr/psr-0/

http://php.net/manual/en/language.oop5.autoload.php
http://www.php-fig.org/psr/psr-0/
http://php.net/manual/en/language.oop5.autoload.php
http://www.php-fig.org/psr/psr-0/

Getting up to Speed with PHP 23

PSR-4 - Improved Autoloading Standard

PSR-4 improves on the PSR-0 standard. It removes some old, obsolete features and allows a
namespace prefix to be defined. If your whole application exists under a single namespace this
remove the need of having a directory level for that namespace.

Using the previous PSR-0 example: if the prefix MyApp is chosen then the Contact class definition can
remain exactly the same, but the file is instead stored in /home/tom/projects/AutoloadExample/src/Entity/Contact.php.

Composer

Composer is a dependency manager for PHP. It allows you to specify all the libraries and tools that
your PHP project depends on in a simple JSON file. It will then fetch the correct versions of those
dependencies (and all their dependencies) into your project.

This means that it’s easy to distribute your project without including its 3rd party dependencies.
While making it very easy for users or developers working on the project to easily install them
themselves. It also makes it easy to quickly update to newer versions of dependencies.

Composer installs the dependencies locally to the project in a directory called vendor, rather than
installing them globally onto the system. This is a definite plus, as it means you can run many
projects on the same system, all working with different versions of their dependencies and without
getting in to a mess.

Now this is all very interesting, but you might have no intention of using any external libraries or
tools with your new project. So is Composer still useful?

The answer is most definitely yes:

• Firstly, there are lots of great development tools which can be installed via Composer. You
should be using these tool even if you don’t intend on using 3rd party libraries.

• Secondly, you may not intend on using 3rd party libraries but if you start off using Composer
from the beginning, you can always change your mind and add a dependency very easily later
on.

• Thirdly, Composer provides a nice and easy to set up autoloader for PHP. By simply adding
a few lines of JSON to your project, your autoloader is set up and ready to go.

While there are plenty of people out there who will have a good reason not to use Composer, in my
opinion if you don’t have one, then you should definitely be using it in your projects.

So, that’s a little intro on what Composer can do for you. You can find out about all its features and
settings in the documentation¹³ but, to save you the hassle of reading it all now let’s have a look at
a little example of the basics.

¹³https://getcomposer.org/

https://getcomposer.org/
https://getcomposer.org/

Getting up to Speed with PHP 24

Composer Example

Installing

The various installation options for Composer can be found on the website¹⁴.

You can either install a copy locally to your project which means your use it by running:

1 $./composer.phar

Or you can install it globally on your system and rename it to composer. I have done it this way so
on my system I run Composer by simply typing:

1 $ composer

If you have installed it differently from me you will need to adjust my instructions accordingly.

Setting up the Autoloader

To start off, create a new project directory and cd into it:

1 $ mkdir ComposerExample

2 $ cd ComposerExample

If you want to use Composer locally you’ll want to install it inside this directory now. However, if
you have installed it global already then you can just carry on.

Next up, create a file in the project folder called composer.json and add the following content:

composer.json

1 {

2 "autoload": {

3 "psr-0": {

4 "ComposerExample\\": "./src"

5 }

6 }

7 }

What we have told Composer to do here is set up its autoloader, to locate any classes in the
ComposerExample namespace, by using the PSR-0 file structure inside a directory in our project
called src.

Next, tell Composer to apply these settings with the following command (remember you will need
to adjust it if you have installed Composer locally):

¹⁴https://getcomposer.org/

https://getcomposer.org/
https://getcomposer.org/

Getting up to Speed with PHP 25

1 $ composer install

Once it has finished, you will notice it has created a new directory called vendor and another file
called composer.lock. If you’re are using a source control system like git (and you really should be!),
then you should instruct it to ignore the vendor directory from the repository. The composer.lock
file should be added to the repository though.

Next up, create a directory structure for our PSR-0 classes to go in:

1 $ mkdir -p src/ComposerExample

Then create a file called src/ComposerExample/HelloApplication.php with the following content:

src/ComposerExample/HelloApplication.php

1 <?php

2

3 namespace ComposerExample;

4

5 class HelloApplication

6 {

7 public function run()

8 {

9 echo "Hello beautiful World!\n";

10 }

11 }

Finally, create a file called run.php containing:

run.php

1 <?php

2

3 // Load up Composer's autoloader

4 require_once __DIR__ . '/vendor/autoload.php';

5

6 // This class will loaded automatically

7 $app = new \ComposerExample\HelloApplication();

8 $app->run();

Now to see it work run:

Getting up to Speed with PHP 26

1 $ php run.php

Ta da!

Composer also supports PSR-4. To use it instead simply use psr-4 in the composer.json. When doing
this everything in the src folder will have the prefix (ComposerExample) applied to the namespace
so the ComposerExample directory level would have to be removed.

Adding a Dependency

Next let’s dress it up a bit using a 3rd party library. I had a little hunt around for something interesting
to try and found Maxime Bouroumeau-Fuseau’s ConsoleKit library.

First up, let’s add it to the project as a dependency by updating our composer.json file to contain
the following:

composer.json

1 {

2 "require": {

3 "maximebf/consolekit": ">=1.0.0"

4 },

5 "autoload": {

6 "psr-0": {

7 "ComposerExample\\": "./src"

8 }

9 }

10 }

Then we tell Composer to download its new dependency by running:

1 $ composer update

This should download the ConsoleKit package, which will now be ready to use. Let’s update our
ComposerExample\HelloApplication class to look like this:

Getting up to Speed with PHP 27

src/ComposerExample/HelloApplication.php

1 <?php

2

3 namespace ComposerExample;

4

5 use ConsoleKit\Console;

6

7 class HelloApplication extends Console

8 {

9 public function run()

10 {

11 $console = new Console();

12 $console->addCommand('ComposerExample\\HelloCommand');

13 $console->run();

14 }

15 }

And let’s add a new class called ComposerExample\HelloCommand like so:

src/ComposerExample/HelloCommand.php

1 <?php

2

3 namespace ComposerExample;

4

5 use ConsoleKit\Command;

6 use ConsoleKit\Colors;

7

8 class HelloCommand extends Command

9 {

10 public function execute(array $args, array $options = array())

11 {

12 $this->writeln('Hello green World!', Colors::GREEN);

13 }

14 }

Now to try to run it:

1 $ php run.php hello

There we have it, we’ve simply added a dependency to our app and made use of it. Composer has
done all the hard work of downloading it and setting up the autoloader required to find it.

Getting up to Speed with PHP 28

Adding Development Tools

Composer’s require section lets you define the requirements your project needs to run. It also has
a require-dev section which is for dependencies which you want to use for development only -
testing tools for example.

CodeSniffer¹⁵ is a tool which checks that your code follows a given coding style, lets add it to our
project. To use it update the composer.json file to include the CodeSniffer development dependency:

composer.json

1 {

2 "require": {

3 "maximebf/consolekit": ">=1.0.0"

4 },

5 "require-dev": {

6 "squizlabs/php_codesniffer": "1.*"

7 },

8 "autoload": {

9 "psr-0": {

10 "ComposerExample\\": "./src"

11 }

12 }

13 }

Once again, tell Composer to update its dependencies by running:

1 $ composer update

After it has finished, CodeSniffer is ready to be used. When Composer installs any tools it will install
the executable files in a local directory, by default this directory is vendor/bin.

We can now run CodeSniffer by with the following command:

1 $ vendor/bin/phpcs --standard=psr2 src

If all the code in our src directory conforms to the PSR-2 coding style then CodeSniffer should have
completed without and errors.

To make life easier, your can add vendor/bin to your operating system’s PATH variable so you can
execute your tools more easily. On Linux you do this by adding the following to your .bashrc file
in your home directory:

PATH=./vendor/bin:$PATH

After you have done this you should be able to simple run:

¹⁵https://github.com/squizlabs/PHP_CodeSniffer

https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer

Getting up to Speed with PHP 29

1 $ phpcs --standard=psr2 src

Keeping Logic and Display Code Separate

PHP lets you easily mix text output (usually HTML) with your logic. This makes PHP a really useful
and powerful web templating language, but it also makes it very easy to write hideous code which
mixes application logic in with the HTML output like so:

Mixing logic and display code

1 <?php

2

3 $repository = new CustomerRepository();

4

5 ?>

6

7 <h1>List Customers</h1>

8

9 <?php

10

11 function escape($string)

12 {

13 return htmlentities($string);

14 }

15

16 if ($_POST['search']) {

17 try {

18 $customers = $repository->getMatching($_POST['search']);

19 } catch (LoadingException $e) {

20 die('The was an error');

21 }

22 }

23

24 if (count($customers)) { ?>

25 <table>

26 <thead>

27 <tr>

28 <th>Name</th>

29 <th>Email Address</th>

30 <th>Phone Number</th>

31 </tr>

32 </thead>

Getting up to Speed with PHP 30

33 <tbody>

34 <?php foreach ($customers as $customer) {

35 echo '<tr>';

36 echo '<td>' . escape($customer->name) . '</td>';

37 $customer->printEmail();

38 ?>

39 <td><?php echo escape($customer->phone); ?></td>

40 </tr>

41 <?php } ?>

42 </tbody>

43 </table>

44 <?php } else { ?>

45 <p>No customers found.</p>

46 <?php } ?>

I think we can all agree that is pretty ugly, but if it’s left to get out of control it can get a lot uglier!

The solution to this is to not mix your HTML and PHP code together and instead maintain a clear
separation between the two. This also allows designers to work on the user interface without have
to understand the codebase.

There are templating libraries for PHP such as Twig¹⁶ and Smarty¹⁷ which introduce their own
template tags for using in your HTML templates. You can also use PHP itself to do the templating,
but if you do you really should maintain the discipline of keeping logic and view code separate; it
may even be worth using different file extensions to keep it clear - .php for logic and .phtml for
HTML templates is often used.

The choice between using PHP or a dedicated templating library can often be down to who is going
to have access to modify the view templates. If your designers are in house, trustworthy and trained,
then using PHP can be the easiest approach. However, if you are out sourcing the design work to
people you trust less, then using a templating engine means they cannot compromise the security
of the application by adding bad PHP code into the templates.

Coding Style

Coding style is simply the way you layout and format your code. In the previous Standards section I
talked about how they were introduced to maintain a consistent approach to using a programming
language between many developers. Using a consistent coding style is one element of this.

Coding style standards define things like:

• How many spaces should be used to indent code.

¹⁶http://twig.sensiolabs.org/
¹⁷http://www.smarty.net/

http://twig.sensiolabs.org/
http://www.smarty.net/
http://twig.sensiolabs.org/
http://www.smarty.net/

Getting up to Speed with PHP 31

• If the opening brace for a function’s body goes on the same line as the function definition, or
on the line after.

• If variables be named using camelCase or snake_case
• etc.

As with all standards, it’s unlikely that you’ll find one which you agree with every bit of. Even so,
rather that creating your own perfect one which no one else uses, you should use a well used one
you like mostly.

At the moment the best one to use for PHP in my opinion is the one defined by PSR-2 as many
people have adopted it. All application code I present in this book will follow the PSR-2 standard -
with a couple of exceptions:

1. Unit Tests

When writing unit tests I follow PSR-2 apart from 2 elements - both regarding the method names
for the tests.

• Firstly, instead of using camelCase for test method names I use snake_case. This is because the
method names are sentences, and with snake_case it’s easier to separate the words visually
when reading it.

• Secondly I’ll omit the public access specifier as it’s the default in PHP and keeps the line
shorter with long test method names.

Unit test coding style example

1 <?php

2

3 namespace spec;

4

5 use PhpSpec\ObjectBehavior;

6

7 class ExampleSpec extends ObjectBehavior

8 {

9 function it_adds_2_numbers_together()

10 {

11 $this->add(5, 2)->shouldReturn(7);

12 }

13 }

Getting up to Speed with PHP 32

2. Template Code

When writing template code using PHP I prefer to keep it looking as close to HTML as possible. I
try to keep the code inside PHP tags to single expressions and I use the foreach :/endforeach, if
:/endif, etc. style of code blocks instead of using braces as I think they are easier to match up in
this context. Here’s an example:

Neat display template code example

1 <h1>List Customers</h1>

2

3 <?php if (count($customers)) : ?>

4 <table>

5 <thead>

6 <tr>

7 <th>Name</th>

8 <th>Email Address</th>

9 <th>Phone Number</th>

10 </tr>

11 </thead>

12 <tbody>

13 <?php foreach ($customers as $customer) : ?>

14 <tr>

15 <td><?php echo escape($customer->name); ?></td>

16 <td><?php echo escape($customer->email); ?></td>

17 <td><?php echo escape($customer->phone); ?></td>

18 </tr>

19 <?php endforeach; ?>

20 </tbody>

21 </table>

22 <?php else : ?>

23 <p>No customers found.</p>

24 <?php endif; ?>

Methodologies, Techniques and Tools
In this chapter I want to introduce the methodologies, techniques and tools incorporated in this
book. None of these are exclusive to PHP and therefore they are worth learning about regardless of
which language you’re developing in. Also, none of these are brand new to PHP - in fact any serious
PHP development company will be using at least some, if not all of these already. While some of
these are new and have been developed in recent years, many of them have been developed over
the last one, two or more decades.

As in the previous chapter, I don’t want to go into any real depth with any of these topics. I just
want to give a short introduction or primer on each subject. This should provide enough of an
understanding to work through this book, but as always, I do encourage you dig deeper into each
of the subjects yourself. I will provide references for each topic of good places to start looking when
you want to learn more.

Object Oriented Programming (OOP)

Sometimes I think there is a misconception that if you use classes in your code then you are doing
OOP. This is not the case. OOP is an approach to modelling which involves grouping your business
model down into objects, then grouping the related data and behaviours (methods) of these objects
in your code as classes. This style of programming can even be done in languages which have no
concepts of classes, and classes can be used ways which really don’t represent good OO code.

This is not a book on OO design but we will be using it extensively. I will be explaining my choices
for doing the things I do and as a result, if you’re coming in cold to the subject you will probably get
a good feel for OOP from this book alone. Even so I think this is a subject which you should study in
more detail. If you do already have some experience of OOP, but you’re not an expert, then I hope
you will really have a lot to gain from this book.

Before moving on I just want to quickly cover a couple of OO topics:

Encapsulation

Objects consist of state (their properties) and a public interface (all public methods and properties).
Generally there are rules as to what are the valid values for any object’s state. Encapsulation is
making state private so that it can only be changed via the public interface’s methods.

The point I want to make here is: that you should design your public methods so that there is no
way that the object can be put into an invalid state.

Let’s look at a couple of examples:

Methodologies, Techniques and Tools 34

Example 1

An object to represent an email address should not be able to contain a value which could not be
a valid email address. In this case it would make sense to throw an exception if the email address
provided does not look like a valid email address:

Well defined email address object example

1 <?php

2

3 class EmailAddress

4 {

5 /** @var string */

6 private $address;

7

8 /** @param string $address */

9 public function __construct($address)

10 {

11 if (strpos($address, '@') === false) {

12 throw new InvalidArgumentException(

13 'Email addresses must contain an @ symbol'

14);

15 }

16

17 $this->address = $address;

18 }

19

20 public function __toString()

21 {

22 return $this->address;

23 }

24 }

In the example above we chose the simple rule that “anything with an @ symbol in it could be an
email address”. Obviously in production code this would need to be more well defined.

If you study the code above you will find that there is no way that you can create an instance of
EmailAddress with an email address which does not contain an @ symbol. This is good design!

Example 2

Now consider implementing a collection of words which maintains a count of how many words it
contains. This collection class will have 2 properties: the list of words and the count. In order to add
words to the collection we must add the word to the list and increment the count. First let’s try this
with 2 separate methods:

Methodologies, Techniques and Tools 35

Bad state consistency example

1 <?php

2

3 class WordCollection

4 {

5 /** @var string[] */

6 private $words = [];

7

8 /** @var int */

9 private $count = 0;

10

11 /** @param string $word */

12 public function addWord($word)

13 {

14 $this->words[] = $word;

15 }

16

17 public function incrementCounter()

18 {

19 $this->count++;

20 }

21

22 /** @return string[] */

23 public getWords()

24 {

25 return $this->words;

26 }

27

28 /** @return int */

29 public getNumberOfWords()

30 {

31 return $this->count;

32 }

33 }

Now you can probably see what’s wrong with that straight away, but let me explain for complete-
ness. Take the following code:

Methodologies, Techniques and Tools 36

1 <?php

2

3 $collection = new WordCollection();

4

5 $collection->addWord('hello');

6 $collection->incrementCounter();

It looks OK and $collection is left in a valid state at the end right? But is it always in a valid state?
Look again:

1 <?php

2

3 $collection = new WordCollection();

4

5 // words in list = 0

6 // counter = 0

7

8 $collection->addWord('hello');

9

10 // words in list = 1

11 // counter = 0

12 // Oh dear!

13

14 $collection->incrementCounter();

15

16 // words in list = 1

17 // counter = 1

There’s a point in the middle where the state of the object is invalid, we do fix it in the next line of
code but what if a developer forgot to increment the counter? It could lead to a nasty bug!

The solution is simple - design the class so it can never be put into an invalid state:

Good state consistency example

1 <?php

2

3 class WordCollection

4 {

5 /** @var string[] */

6 private $words = [];

7

8 /** @var int */

Methodologies, Techniques and Tools 37

9 private $count = 0;

10

11 /** @param string $word */

12 public function addWord($word)

13 {

14 $this->words[] = $word;

15

16 // increment the counter when the word is added

17 $this->count++;

18 }

19

20 /** @return string[] */

21 public getWords()

22 {

23 return $this->words;

24 }

25

26 /** @return int */

27 public getNumberOfWords()

28 {

29 return $this->count;

30 }

31 }

SORTED!

Inheritance vs. Composition

Inheritance is a very useful and powerful tool in OOP but it’s often misused. The most common
misuse of inheritance is using it to bring common functionality into 2 unrelated classes.

An example could be:

A bird and an aeroplane both fly, so it might seem reasonable to inherit both a Bird class and an
Aeroplane class from a FlyingThing superclass:

Methodologies, Techniques and Tools 38

Misused Inheritance

1 <?php

2

3 abstract class FlyingThing

4 {

5 public function startFlying()

6 {

7 // ...

8 }

9

10 // ...

11 }

12

13 class Bird extends FlyingThing

14 {

15 }

16

17 class Aeroplane extends FlyingThing

18 {

19 }

There are a few reasons why this is a problem:

Firstly, we only have single inheritance in PHP which means we can’t extend from more than
one super class. Birds can communicate with each other and aeroplanes (well the pilots) can
communicate with each other too. If we wanted to add a CommunicatingThing class then we couldn’t
inherit from it as well as FlyingThing (without creating a horrible CommunicatingFlyingThing class
instead).

Next up, birds start flying by flapping their wings whereas an aeroplane is propelled by its engines.
Now we have 2 different types of FlyingThing. The same goes for communicating: birds do it by
tweeting and aeroplanes do it by radio.

Finally, we’ve categorised birds and aeroplanes, which are 2 very different things, together as flying
things and communicating things - which we’ve had to make up. A much more sensible category
for an aeroplane might be a vehicle, and for a bird maybe an animal.

So how to fix it? So far we’ve been talking about is a relationships; a bird is a flying thing. Inheritance
is all about is a relationships, but we also have has a relationships. What might be better would be if
we said “a bird has a flight system” or “an aeroplane has a communication system”. When talking
about has a relationships we are talking about composition. With this in mind Let’s take a look at a
better example of how to model this:

Methodologies, Techniques and Tools 39

Using composition

1 <?php

2

3 class FlightSystem

4 {

5 public function startFlying()

6 {

7 // ...

8 }

9

10 // ...

11 }

12

13 class CommunicationSystem

14 {

15 /** @param string $message */

16 public function sendMessage($message)

17 {

18 // ...

19 }

20

21 // ...

22 }

23

24 class Bird

25 {

26 /** @var FlightSystem */

27 private $flightSystem;

28

29 /** @var CommunicationSystem */

30 private $communicationSystem;

31

32 public function __construct()

33 {

34 $this->flightSystem = new FlightSystem();

35 $this->communicationSystem = new CommunicationSystem();

36 }

37

38 public function startFlying()

39 {

40 $this->flightSystem->startFlying();

41 }

Methodologies, Techniques and Tools 40

42

43 /** @param string $message */

44 public function sendMessage($message)

45 {

46 $this->communicationSystem->setMessage($message);

47 }

48 }

49

50

51 class Aeroplane

52 {

53 /** @var FlightSystem */

54 private $flightSystem;

55

56 /** @var CommunicationSystem */

57 private $communicationSystem;

58

59 public function __construct()

60 {

61 $this->flightSystem = new FlightSystem();

62 $this->communicationSystem = new CommunicationSystem();

63 }

64

65 public function startFlying()

66 {

67 $this->flightSystem->startFlying();

68 }

69

70 /** @param string $message */

71 public function sendMessage($message)

72 {

73 $this->communicationSystem->setMessage($message);

74 }

75 }

What’s more, once we start to realise that a bird’s flight system is very different from an aeroplane’s,
then we can start having different flight systems which can still be instructed to start flying in the
same way by making use of an interface:

Methodologies, Techniques and Tools 41

Flexible flight systems

1 interface FlightSystem

2 {

3 public function startFlying();

4 }

5

6 class FlappingFlightSystem implements FlightSystem

7 {

8 public function startFlying()

9 {

10 // ...

11 }

12 }

13

14 class PropelledFlightSystem implements FlightSystem

15 {

16 public function startFlying()

17 {

18 // ...

19 }

20 }

21

22 class Bird

23 {

24 // ...

25

26 public function __construct()

27 {

28 $this->flightSystem = new FlappingFlightSystem();

29 // ...

30 }

31

32 // ...

33 }

34

35 class Aeroplane

36 {

37 // ...

38

39 public function __construct()

40 {

41 $this->flightSystem = new PropelledFlightSystem();

Methodologies, Techniques and Tools 42

42 // ...

43 }

44

45 // ...

46 }

The general rule here is: determine if you are really modelling an is a relationship or a has a
relationship. Don’t bend your model to fit your code, rather make your code fit the model. When
done properly you should find you actually use inheritance pretty rarely.

Design Patterns

Design Patterns are tried and tested solutions to various problems programmers often face. There’s
several common design patterns which are very well known, these are called things like the visitor
pattern and the strategy pattern.

The de facto resource on this subject is the book titled Design Patterns: Elements of Reusable Object-
Oriented Software by the Gang of Four[ˆthe-gang-of-four]. Robert C. Martin says this book is
“probably the most important book in software engineering which has been written in the last 30
years”. This book is definitely a must read for all programmers. However, you can also find all the
common design patterns listed and explained on Wikipedia¹⁸.

If you’d prefer to learn about Design Patterns from a PHP point of view then Brandon Savage has
written a book on the subject called Practical Design Patterns in PHP¹⁹.

I’m not going to go into any more details on design patterns here, I just wanted you to know what
they are for now. As we work though this book we will be using various design patterns, and as they
come up I shall point out which one we are using and explain the choice to do so.

Value Objects & Immutability

When we say something is immutable we mean that its value is fixed and can not be changed. This
means a class is either mutable or immutable depending on whether its public interface contains
methods which change its internal state. Let’s see an example of each:

¹⁸http://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list
¹⁹http://practicaldesignpatternsinphp.com/

http://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list
http://practicaldesignpatternsinphp.com/
http://en.wikipedia.org/wiki/Software_design_pattern#Classification_and_list
http://practicaldesignpatternsinphp.com/

Methodologies, Techniques and Tools 43

Mutable email address class

1 <?php

2

3 class MutableEmailAddress

4 {

5 /** @var string */

6 private $address;

7

8 /** @var string */

9 public function __construct($address)

10 {

11 $this->address = $address;

12 }

13

14 /** @var string */

15 public function setAddress($address)

16 {

17 $this->address = $address;

18 }

19

20 public function __toString()

21 {

22 return $this->address;

23 }

24 }

Immutable email address class

1 <?php

2

3 class ImmutableEmailAddress

4 {

5 /** @var string */

6 private $address;

7

8 /** @var string */

9 public function __construct($address)

10 {

11 $this->address = $address;

12 }

13

Methodologies, Techniques and Tools 44

14 public function __toString()

15 {

16 return $this->address;

17 }

18 }

We call immutable classes value objects. This is because an instance of a given class represents a
value and only that value. In the same way that we can say 5 will always be 5, we can say that
an ImmutableEmailAddress object containing the email address bill@microsoft.com will always
contain the email address bill@microsoft.com - therefore this object represents the value of that
email address.

Value objects are used to make the type of things explicit and should be used to classify anything
which can be classified:

An Example

Instead of using a float for temperate use a Temperature value object - even if it simply contains
a single float value. You might however also want to store the unit (Fahrenheit or Celsius) in
the Temperature object - a value object can contain more than 1 scalar value. Also, the unit of
temperature is classifiable itself, therefore make that a value object too.

Your value objects should only be able to be created with valid values, we don’t want anyone to be
able to create a temperature of “30 degrees hotness“. This should be enforced in the class definition!

For completeness, let’s look a good implementation of what we’ve just discussed:

Temperature; a good use of value objects

1 <?php

2

3 class TemperatureUnit

4 {

5 const CELSIUS = 'c';

6 const FAHRENHEIT = 'f';

7

8 /** @var string */

9 private $value;

10

11 /** @param string $value */

12 public function __construct($value)

13 {

14 $this->assertValueIsValid($value);

15

Methodologies, Techniques and Tools 45

16 $this->value = $value;

17 }

18

19 /** @return string */

20 public function getValue()

21 {

22 return $this->value;

23 }

24

25 private function assertValueIsValid($value)

26 {

27 if (!in_array($value, [self::CELSIUS, self::FAHRENHEIT])) {

28 throw new InvalidArgumentException(

29 'A temperature unit must be celsius or fahrenheit'

30);

31 }

32 }

33 }

34

35 class Temperature

36 {

37 /** @var float */

38 private $degrees;

39

40 /** @var TemperatureUnit */

41 private $unit;

42

43 /** @param float $degrees */

44 public function __construct($degrees, TemperatureUnit $unit)

45 {

46 $this->degrees = $degrees;

47 $this->unit = $unit;

48 }

49

50 /** @return float */

51 public function getDegrees()

52 {

53 return $this->degrees;

54 }

55

56 /** @return TemperatureUnit */

57 public function getUnit()

Methodologies, Techniques and Tools 46

58 {

59 return $this->unit;

60 }

61 }

The benefits

There are several benefits to using value objects:

Confidence

With a value object you know that it can’t change unexpectedly. Using our MutableEmailAddress
class from earlier consider the following code:

Unexpected change of value

1 <?php

2

3 function sendEmail(MutableEmailAddress $address)

4 {

5 mail($address->getValue(), 'Hello', '...');

6 $address->setValue('steve@apple.com');

7 }

8

9 function logEmailSent(MutableEmailAddress $address)

10 {

11 echo "A message was sent to " . $address->getValue();

12 }

13

14 $address = new MutableEmailAddress('bill@microsoft.com');

15

16 sendEmail($address); // send email to bill@microsoft.com

17 logEmailSent($address); // but logs "A message was sent to steve@apple.com"

Looking at just the last 3 lines of code in the example, you would expect the message would get sent
to Bill and the log message would reflect that, but it doesn’t!

If we had used an ImmutableEmailAddress object instead then the $address->setValue('steve@apple.com');
line of code would not have been allowed and would have caused an error. Therefore, we could be
certain that our last 3 lines of code would work as expected.

Methodologies, Techniques and Tools 47

Consistency

If we create a function that takes a Temperature as an argument we can be sure that the value we
get is a valid Temperature. We don’t need to write any defensive code to check that the unit is valid
or that degrees are specified as a floating point value, because all that has been taken care of in the
class definitions of our value objects.

Documentation

When you open a file and look at the code, it’s much easier to know the type of a parameter that
was typehinted in the method argument list. This is really a benefit of typehints rather than of value
objects. However, by using value objects abundantly you will have more types to typehint for.

Entities

Entities make up an important part of the business model of most applications. Unlike value objects
they aremutable. They are also the objects which are often persisted and make up the ongoing state
of the application.

Entities have identities. They can have all their properties changed but they continue to maintain
the same identity through out their lifetime. A simple analogy of an entity object is a person,
they can change their name but they are still the same person. This means that the equality of
entities determined by the equality of their identities - unlike value objects the equality of their
other properties are not important when determining equality.

Here’s a simple example of what a simple entity class make look like:

Example entity class

1 <?php

2

3 class Customer

4 {

5 /** @var CustomerId */

6 private $id;

7

8 /** @var PersonName */

9 private $name;

10

11 /** @var EmailAddress */

12 private $email;

13

14 public function __construct(

15 CustomerId $id,

Methodologies, Techniques and Tools 48

16 PersonName $name,

17 EmailAddress $email

18) {

19 $this->id = $id;

20 $this->name = $name;

21 $this->email = $email;

22 }

23

24 public function changeName(PersonName $newName)

25 {

26 $this->name = $newName;

27 }

28

29 public function changeEmail(EmailAddress $newAddress)

30 {

31 $this->email = $newAddress;

32 }

33

34 /** @return CustomerId */

35 public function getId()

36 {

37 return $this->id;

38 }

39

40 /** @return Name */

41 public function getName()

42 {

43 return $this->name;

44 }

45

46 /** @return EmailAddress */

47 public function getEmail()

48 {

49 return $this->email;

50 }

51 }

Dependency Injection (DI) & Inversion of Control (IoC)

Dependency Injection is simply explained by saying: if you have a class that relies on another class,
rather than letting it create that other class internally, inject the dependency into it.

Methodologies, Techniques and Tools 49

Example without dependency injection:

No dependency injection example

1 <?php

2

3 class Foo

4 {

5 public function doFoo()

6 {

7 // ...

8 }

9 }

10

11 class Bar

12 {

13 /** @var Foo */

14 private $fooer;

15

16 public function __construct()

17 {

18 /*

19 * Bar is in control of creating a Foo.

20 *

21 * As a result bar can only ever use a Foo and never a subtype of

22 * Foo.

23 *

24 * This is known as "tight coupling" because Bar can not exist without

25 * Foo

26 */

27 $this->fooer = new Foo();

28 }

29

30 public function doBar()

31 {

32 $this->fooer->doFoo();

33 }

34 }

Example with dependency injection:

Methodologies, Techniques and Tools 50

Dependency injection example

1 <?php

2

3 class Foo

4 {

5 public function doFoo()

6 {

7 // ...

8 }

9 }

10

11 class Bar

12 {

13 /** @var Foo */

14 private $fooer;

15

16 /**

17 * The Foo must be injected into the instances of Bar.

18 *

19 * It is also possible to inject a subtype of Foo.

20 */

21 public function __construct(Foo $fooer)

22 {

23 $this->fooer = $fooer

24 }

25

26 public function doBar()

27 {

28 $this->fooer->doFoo();

29 }

30 }

That’s it, Dependency Injection is as easy as that, but why do it?

Substituting Behaviour

By injecting dependencies you’re promoting the development of flexible and reusable code. Since
you can not only can you inject the dependent type but also any subtype. This makes it possible
to extend your code without actually modifying it - by simply injecting a different subtype of a
dependency.

Methodologies, Techniques and Tools 51

Example

Take this simple email address printer:

Email printer using dependency injection

1 <?php

2

3 class EmailAddress

4 {

5 /** @var string */

6 private $address;

7

8 /** @param string $address */

9 public function __construct($address)

10 {

11 $this->address = (string) $address;

12 }

13

14 public function __toString()

15 {

16 return $this->address;

17 }

18 }

19

20 interface EmailAddressRenderer

21 {

22 /** @return string */

23 public function render(EmailAddress $email);

24 }

25

26 class PlainTextRenderer implements EmailAddressRenderer

27 {

28 public function render(EmailAddress $email)

29 {

30 return (string) $email;

31 }

32 }

33

34 class EmailAddressPrinter

35 {

36 /** @var EmailAddressRenderer */

37 private $renderer;

38

Methodologies, Techniques and Tools 52

39 public function __construct(EmailAddressRenderer $renderer)

40 {

41 $this->renderer = $renderer;

42 }

43

44 public function printAddress(EmailAddress $address)

45 {

46 echo $this->renderer->render($address) . "\n";

47 }

48 }

To use our class we’d simply write something like this:

Email printer example use

1 <?php

2

3 $address = new EmailAddress('bill@microsoft.com');

4

5 $printer = new EmailAddressPrinter(new PlainTextRenderer());

6

7 $printer->printAddress($address);

This works great! But then we’re told we need to print out the email address on a web page as a
mailto link. Since we’ve injected our EmailAddressRenderer into the printer rather than letting
the printer create it, we can now inject anything which implements the EmailAddressRenderer

interface.

Let’s add a HTMLRenderer:

HTML email address renderer

1 <?php

2

3 class HTMLRenderer implements EmailAddressRenderer

4 {

5 public function render(EmailAddress $email)

6 {

7 return sprintf('%1$s', htmlentities($email));

8 }

9 }

Our code to make use of this would now look like this:

Methodologies, Techniques and Tools 53

HTML email printer example use

1 <?php

2

3 $address = new EmailAddress('bill@microsoft.com');

4

5 $printer = new EmailAddressPrinter(new HTMLRenderer());

6

7 $printer->printAddress($address);

Simples! Notice how in order to change the way it behaves we have not altered the original code in
any way, instead we’ve simply extended it. Here we’ve written our code in such a way that even
though the printer uses a renderer, it does not have control over how that renderer is created. Instead
it is uses the one given. This is known as inversion of control.

Inversion Of Control

We’ve just seen an example of inversion of control so we know what it is. But again, what is it useful
for?

Well…

• Using it creates extensible code.
• It removes the need for your business model to know about implementation details such as:
how things are displayed or how messages are sent. Instead, it allows those details to be
plugged in; this is often done using the Adapter²⁰ design pattern.

• It allows your code to be easily tested as small, independent units. This is possible through
the use of test doubles.

Testing

Each class in your codebase may depend on on other classes, each of which may then depend on
even more classes. As your codebase grows, testing anything becomes quite hard as you need create
all the dependencies of the class you are trying to test. Also, each of these dependencies will have
their own dependencies which will need to be created as well. In this situation tests get very complex
and also fragile; if you were to change anything then lots of your tests could break, and it could take
a long time to get them passing again.

By using dependency injection, inversion of control and interfaces, you get code which doesn’t
depend on fixed dependencies but rather on abstractions (the interface) of the dependency. When
your code is written like this your dependencies are considered to be loosely coupled.

²⁰http://en.wikipedia.org/wiki/Adapter_pattern

http://en.wikipedia.org/wiki/Adapter_pattern
http://en.wikipedia.org/wiki/Adapter_pattern

Methodologies, Techniques and Tools 54

When your dependencies are loosely coupled you can create test doubles. These are very simple and
predictable versions of a class’s dependencies. These can be injected into the class instead of the real
dependencies, allowing the class to be tested in isolation. We’ll look at this in more detail in the next
chapter.

Dependency Injection Containers (DIC) & Service Managers

These are tools which can manage the creation of objects and ensure that the required dependencies
get injected into them on creation. I’m not going to talk about these here but will cover them in
more detail when we need to use one.

All I will add now is that there are many DIC and Service Manager libraries available should you
ever decide you need one.

The SOLID Principles

The SOLID Principles are the first 5 principles from a list compiled by Robert C. Martin of Principles
of Object Oriented Design²¹. These 5 principles are:

Single Responsibility Principle (SRP)
A class should only have a single responsibility - don’t create classes which do a lot of different
things.

Open Closed Principle (OCP)
Your application should be open for extension but closed for modification. We saw an example
of this in action in the Dependency Injection section.

Liskov Substitution Principle (LSP)
This states objects can be replaced by subtypes of themselves and the program should still
work. What this means is: when you extend a class you should make sure its public interface
still behaves in the expected way, making it possible to use the class in place of its parent
anywhere in the program.

Interface Segregation Principle (ISP)
This principle states that if something has a dependency but only uses a subset of that
dependency’s public interface, then that subset should be made into a separate interface. The
new interface then becomes the dependency.

Dependency Inversion Principle (DIP)
Classes should not depend on other concrete classes, but rather on abstractions (i.e. abstract
classes and interfaces). Again, we looked at this earlier on in the email printer example.

²¹http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Methodologies, Techniques and Tools 55

More in-depth details can be found on Robert Martin’s article: Principles of OOD²².

If you stick to these principles you will create fantastically modular, extensible and testable code.

Functional Programming (FP)

History

PHP is naturally heavily biased towards the imperative programming²³ paradigm. Imperative
programs are basically sequences of statements which are executed in order, changing the program
state they run. The imperative style of programming has been the most popular style for several
decades now.

There are however other paradigms, one of which is functional programming²⁴. Functional Pro-
gramming pre-dates Imperative Programming, but Imperative Programming still won the popularity
race up until recently. Once it stopped being possible for computer CPUs to get any faster,
the manufacturers decided to start adding more cores instead. So rather than trying to have
a single thread of instructions executing faster and faster, we have multiple threads executing
simultaneously.

The imperative style of programming is very well suited towards single threads of execution because
statements always run in the correct order. With multiple threads however, one thread might run
faster than another, and if they are both trying to read and change the same state then there’s no
guarantee that it will happen in the right order. To make this work using imperative programming
you need to introduces locks to keep track of and synchronise how the threads are interacting with
the shared state. This is tricky and is not fun to do!

The functional style of programming, makes this a lot simpler. You can tell the computer to execute
2 different functions in 2 different threads and be sure that they will behave as expected, and not
conflict with each other. For this reason, functional programming and functional programming
languages are gaining a lot of popularity at themoment. Also, many imperative languages are adding
more and more functional style features.

So What is Functional Programming?

Functional programming has its roots in lambda calculus²⁵, and is based on the idea that whenever
you call a given function with the same set of arguments, you will always get the same result. Some
other aspects of functional programming are:

• Functions have no side effects - they never modify or read global/persistent state. These are
considered pure functions.

²²http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
²³http://en.wikipedia.org/wiki/Imperative_programming
²⁴http://en.wikipedia.org/wiki/Functional_programming
²⁵http://en.wikipedia.org/wiki/Lambda_calculus

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Lambda_calculus
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Lambda_calculus

Methodologies, Techniques and Tools 56

• There is no assignment - once a variable has been initialised with a value it will always be
that value.

• Functions can accept other functions as arguments and return new functions. These are known
as higher order functions.

I’m not going to go much deeper into functional programming in this book, I only really want to
show what pure functions are. I will be applying some functional programming knowledge during
the building of our application but I’m not going to highlight it too much.

Pure Functions

As previously mentioned, pure functions are functions which have no side effects. Let’s look at some
examples of pure functions:

All these functions will always return the same value when given the same arguments. And they
never alter persistent state:

Pure functions

1 <?php

2 function add($a, $b)

3 {

4 return $a + $b;

5 }

6

7 function fahrenheitToCelsius($fahrenheit)

8 {

9 return ($fahrenheit - 32) / 1.8;

10 }

11

12 function applyTwiceAndAdd(callable $fn, $value)

13 {

14 return $fn($value) + $fn($value);

15 }

The following functions are not pure. If called twice with the same arguments the result may not be
the same:

Methodologies, Techniques and Tools 57

Impure functions

1 <?php

2 $counter = 0;

3

4 function incrementCounter()

5 {

6 global $counter;

7

8 $counter++;

9 }

10

11 function getCount()

12 {

13 global $counter;

14

15 return $counter;

16 }

17

18 function getCountAndIncrement()

19 {

20 global $counter;

21

22 return $counter++;

23 }

24

25 function threeTimesRand($max)

26 {

27 return 3 * rand(0, $max);

28 }

29

30 function readFile($filename)

31 {

32 return file_get_contents($filename);

33 }

Now some functional programming languages do not have assignment statements to allow the
changing of the value of a variable - but PHP does! It is possible to make use of this inside a function,
while still providing a functionally pure interface to it:

Methodologies, Techniques and Tools 58

Pure function with local state

1 <?php

2

3 function applyNTimesAndAdd(callable $fn, $n, $value)

4 {

5 $total = 0;

6

7 for ($count = 0; $count < $n; $count++) {

8 $total += $fn($value);

9 }

10

11 return $total;

12 }

While applyNTimesAndAdd does have internal state, it is never persisted beyond each execution of the
function. Therefore, this can still be considered a pure function - even though the implementation
uses imperative code.

Now lets move this theory inside objects. Obviously we can have methods which are pure functions:

Methods as pure functions

1 <?php

2

3 class RandomFunctions

4 {

5 public function add($a, $b)

6 {

7 return $a + $b;

8 }

9

10 public function fahrenheitToCelsius($fahrenheit)

11 {

12 return ($fahrenheit - 32) / 1.8;

13 }

14

15 public function applyTwiceAndAdd(callable $fn, $value)

16 {

17 return $fn($value) + $fn($value);

18 }

19 }

Methodologies, Techniques and Tools 59

Of course this hasn’t really achieved much other than grouping some functions together.

However, as soon as methods start to make use of properties, they can no longer be considered as
pure functions. This is because the properties persist beyond method calls:

Impure methods

1 <?php

2

3 class Counter

4 {

5 private $counter = 0;

6

7 public function incrementCounter()

8 {

9 $this->counter++;

10 }

11

12 public function getCount()

13 {

14 return $this->counter;

15 }

16

17 public function getCountAndIncrement()

18 {

19 return $this->counter++;

20 }

21 }

Since the behaviour of the methods in the Counter class now depends on the $counter property,
none of the methods in the class could be considered pure.

Now thinking back to the applyNTimesAndAdd function, can we do something similar in the context
of an object? Take a look at this example and consider whether you think it behaves in a functional
way:

Methodologies, Techniques and Tools 60

1 <?php

2

3 class ResultAdder

4 {

5 private $fn;

6

7 private $total;

8

9 private $value;

10

11 public function applyNTimesAndAdd(callable $fn, $n, $value)

12 {

13 $this->fn = $fn

14 $this->total = 0;

15 $this->value $value;

16

17 for ($count = 0; $count < $n; $count++) {

18 $this->applyFunction();

19 }

20

21 return $this->total;

22 }

23

24 private function applyFunction()

25 {

26 $fn = $this->fn;

27

28 $fn($this->value);

29 }

30 }

What do you think? If you study it carefully you will notice that: even though properties are being
used inside the class, every time a method in the public interface is invoked, the properties are
being reset. This means that the applyNTimesAndAddmethod does indeed appear to be working in a
functional way.

Classes like this one are often created by the use of the Replace Method with Method Object²⁶
refactoring.

²⁶http://refactoring.com/catalog/replaceMethodWithMethodObject.html

http://refactoring.com/catalog/replaceMethodWithMethodObject.html
http://refactoring.com/catalog/replaceMethodWithMethodObject.html

Methodologies, Techniques and Tools 61

Learn More About FP

Learning a functional programming language is not only fascinating, but it also gives you a whole
new set of tools which you can apply in any language. Also, as we’re get more and more cores in
our computers, it’s going to become increasingly important over the next few years! So, if you’re
not already familiar with functional programming I really recommend taking a look at it in the not
so distant future - it will be a very rewarding experience!

There are many resources on functional programming which can be easily found. Two notable ones
are:

Structure and Interpretation of Computer Programs (SICP)
This is one of the most recommended text books covering functional programming. It was
written by MIT professors Harold Abelson & Gerald Jay Sussman with Julie Sussman, and
was formerly used there as a text book. It can also be read for free online²⁷.

Functional Programming in PHP²⁸
This is a much easier book to read, written by Simon Holywell. It introduces functional
programming to PHP programmers, along with some useful functional libraries which are
available for PHP.

Command Query Separation (CQS)

Command Query Separation is more or what the name implies:

Methods are classified as either commands or a queries (but not both). A command is a method
which changes the state of the object. Whereas, a query is a method which returns a value from the
object. Also, a command must not return a value, and a query must not change the object’s state.

Let’s take another quick look at the Counter class we made earlier:

Command Query Separation Example

1 <?php

2

3 class Counter

4 {

5 /** @var int */

6 private $counter = 0;

7

8 /**

9 * This method is a COMMAND since it updates the state

²⁷http://mitpress.mit.edu/sicp/
²⁸http://www.functionalphp.com/

http://mitpress.mit.edu/sicp/
http://www.functionalphp.com/
http://mitpress.mit.edu/sicp/
http://www.functionalphp.com/

Methodologies, Techniques and Tools 62

10 * and doesn't return a value.

11 */

12 public function incrementCounter()

13 {

14 $this->counter++;

15 }

16

17 /**

18 * This method is a QUERY since it returns a value

19 * but does not alter the object's state.

20 *

21 * @return int

22 */

23 public function getCount()

24 {

25 return $this->counter;

26 }

27

28 /**

29 * This method alerts the state and returns a value so it

30 * is not a separate COMMAND or QUERY.

31 *

32 * Such methods should be avoided.

33 *

34 * @return int

35 */

36 public function getCountAndIncrement()

37 {

38 return $this->counter++;

39 }

40 }

CQS means we can repeatedly query our object (to make assertions, display, or what ever other
reason), while being confident that we are not inadvertently making changes to its state in the
process. Generally, with the objects inside your model this is a good approach to try to adhere to.

What might seem an exception to this rule is, methods working in a functional way. However, since
the state they modify is not used again, it does not actually break this rule.

Naming

Whenwriting code, you have to decide on the names of many things. These include variables, classes
and methods. Choosing the names of these carefully, makes the difference between code which is

Methodologies, Techniques and Tools 63

easily understandable, and which is completely indecipherable.

When choosing names, make them descriptive, so that the intent of your code is clear. If your code is
well written and the names are chosen well, there should be no need for any comments in your code.
Robert C. Martin goes as far as saying that choosing to adding a comment to your code, is accepting
that you have failed as a programmer to solve the problem clearly. That does sound a bit harsh, but
the underlying message is that your code should be self descriptive. It’s OK to use comments when
something cannot be made clear in code, but those situations should be very, very rare!

One very simple rule for naming is: use nouns for variable and class names and use verbs for method
names. It’s not quite as black and white as that, but it’s a very good place to start.

For some more interesting talk on naming I thoroughly recommend having a read of Mathias
Verraes’ blog²⁹.

Make Method Names Describe Intent

When creating methods, make the intent of the method’s purpose clear in terms of the business
language.

Say for example: a customer moves house and needs to have their address updated in the system.
What might seem like an obvious approach would be to add a setAddress method to the Customer
class. This works but it’s not as informative as it could be. A better method name might be
‘moveHouse’.

So far so good, but what if the customer’s address was entered into the system incorrectly and it
just needs to be amended? Does it make sense to call moveHouse to update it? Of course not! So we
add a amendPostalAddress method also:

Good method names

1 <?php

2

3 class Customer

4 {

5 /** @var string */

6 private $name;

7

8 /** @var EmailAddress */

9 private $emailAddress;

10

11 /** @var PostalAddress */

12 private $postalAddress;

13

²⁹http://verraes.net/

http://verraes.net/
http://verraes.net/

Methodologies, Techniques and Tools 64

14 /** @param string $name */

15 public function __construct(

16 $name,

17 EmailAddress $emailAddress

18 PostalAddress $postalAddress

19) {

20 $this->name = $name;

21 $this->emailAddress = $emailAddress;

22 $this->postalAddress = $postalAddress;

23 }

24

25 public function moveHouse(PostalAddress $newAddress)

26 {

27 $this->postalAddress = $newAddress;

28 }

29

30 public function amendPostalAddress(PostalAddress $amendedAddress)

31 {

32 $this->postalAddress = $amendedAddress;

33 }

34

35 /** @return string */

36 public function getName()

37 {

38 return $this->name;

39 }

40

41 /** @return EmailAddress */

42 public function getEmailAddress()

43 {

44 return $this->emailAddress;

45 }

46 }

This is definitely more descriptive, but it’s essentially 2 methods which do the same thing - surely
there’s no point in that you might think. But there is! The 2 action are actually 2 separate tasks, by
separating them we make it very clear to anyone reading the code that there are 2 different events
which result in the change of a customer’s address data. This also makes it possible to easily extend
the system: say, for example, we are told that emails should be sent to the customer when their
address changes:

• When they move house, we need to send them an email congratulating them on moving into
a new home.

Methodologies, Techniques and Tools 65

• When amending the address, we just want to notify them that their details have been updated.

Because we’ve separated the 2 actions, this is very easy to add on. For this example let’s use the
Decorator pattern³⁰³¹:

Emailing decorator

1 <?php

2

3 class NotifyingCustomerDecorator extends Customer

4 {

5 /** @var Customer */

6 private $customer;

7

8 /** @var Mailer */

9 private $mailer;

10

11 public function __construct(Customer $customer, Mailer $mailer)

12 {

13 $this->customer = $customer;

14 $this->mailer = $mailer;

15 }

16

17 public function moveHouse(PostalAddress $newAddress)

18 {

19 $this->customer->moveHouse($newAddress);

20

21 $this->mailer->send(

22 $this->customer,

23 'Congratulations on moving into your new house!',

24 '...'

25);

26 }

27

28 public function amendPostalAddress(PostalAddress $newAddress)

29 {

30 $this->customer->amendPostalAddress($newAddress);

31

32 $this->mailer->send(

³⁰http://en.wikipedia.org/wiki/Decorator_pattern
³¹The reason I chose to use the Decorator pattern here instead of just extending Customer was just to introduce the pattern. The actual reason

why you would choose to use this pattern, would be if you wanted to wrap the Customer class when extensions which could be stacked on top of
each other.

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

Methodologies, Techniques and Tools 66

33 $this->customer,

34 'We have updated your details on our system',

35 '...'

36);

37 }

38

39 /** @return string */

40 public function getName()

41 {

42 return $this->customer->getName();

43 }

44

45 /** @return EmailAddress */

46 public function getEmailAddress()

47 {

48 return $this->customer->getEmailAddress();

49 }

50 }

Pretty neat huh? Once again we have easily extended the system to add new functionality, without
modifying the existing code. Therefore, we are obeying the Open Closed Principle.

Refactoring

Refactoring is the process of restructuring your code without changing its external behaviour. The
purpose of refactoring is to try to make the code easier to understand, manage and extend. As
programmers, we should be refactoring all the time while we write our code.

While you can get quite a long way refactoring your code by just using common sense, all the
common refactorings have been named and catalogued. To learn more about refactoring I don’t
think there’s any better recommendation than to read Martin Fowler’s book titled Refactoring.

Also, much like with design patterns, lots of information can be found about the different
refactorings online. In fact, Martin Fowler also has website called http://refactoring.com/ which
has a catalogue of refactorings³² on it.

As I write this book I’ll be refactoring all the example code as I go. Sadly you’ll often not get to see
this process as the book will just contain the finished, refactored result. That said you will see the
code evolve throughout the book as functionality is added, and that will include some refactoring.
I’ll also cover it a bit more in the next chapter.

³²http://refactoring.com/catalog/

http://refactoring.com/catalog/
http://refactoring.com/catalog/

Methodologies, Techniques and Tools 67

Object Calisthenics

Object Calisthenics is an idea suggested by Jeff Bay in The ThoughtWorks Anthology book. It consists
of 9 rules to help write better Object Oriented code.

These rules are:

Only One Level Of Indentation Per Method
Code with multiple indents gets tricky to read and follow. Also, there’s a greater chance of
having to scroll the page to the right which is a nuisance. This can be avoided by extracting
methods and using guard clauses.

Don’t Use The ELSE Keyword
There are some cases where else can be useful, but more often than not you can find a neater
way. This again, produces code which is easier to read.

Wrap All Primitives And Strings
This pretty much means: use value objects instead of scalar types in PHP. As I’ve already said,
this is particularly useful in PHP when combined with typehinting. Always question the use
of a scalar property in a domain object.

First Class Collections
Rather than having arrays properties in your classes, create a collection object. Quite often
there are actions which you want to apply across a collection, these actions really belong
as part of the collection rather than the containing class. Doing this also makes collections
reusable.

One Dot Per Line
In PHP this should really be Two Arrows Per Line since we use -> instead of ., and the $this->
must be used inside methods to access things in class scope. What this rule actually means
is - don’t call methods on objects returned from other methods - creating a chain of method
calls like so: $this->getX()->doY()->doZ(). This rule ties in very tightly with the Law of
Demeter³³.

Don’t Abbreviate
Use descriptive names for everything, so other people (or yourself in 6 months time) reading
the code can clearly understand its intent. This ties in with the previous Naming section.

Keep All Entities Small
Simply put - don’t let your classes get to long. If they are starting to get big then there are
probably more classes inside which can be extracted out.

³³http://en.wikipedia.org/wiki/Law_of_Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

Methodologies, Techniques and Tools 68

No Classes With More Than Two Instance Variables
Nice idea but a bit extreme in my opinion! Still it’s worth keeping in mind as if you’re adding
lots of properties to your classes, then are probably some composite types hiding in there
which should be extracted.

No Getters/Setters/Properties
The idea here is to tell the class to perform an action and let it get on with it; rather than
getting values out, changing them and setting them again - often referred to as tell, don’t
ask³⁴. Sometimes a getter or setter is needed, but always try your best to find a better way.

I can’t say I stick to all of these rules 100% of the time. But, by trying to follow them as much as
possible, you will write much cleaner and more manageable, Object Oriented code.

For more details on these rules take a look at William Durand’s blog post titled Object Calisthenics³⁵.

Also, Guilherme Blanco’s slides on the subject³⁶ are worth a look if you want to see the rules applied
in PHP.

Automated Testing

Automated tests are simply tests which can be run to confirm the logic in your program is behaving
as expected.

Automated test can be:

• Test code which executes and verifies the code being tested.
• Scripts written in a test language, which executes and verifies the code via a testing framework.
• Code which automates interaction with the user interface or API.
• Scripts written in a test language, which automate interaction with the user interface or API
via a testing framework.

There are different types of test. These are categorised depending on what they are testing. For
example you have:

Name Purpose

Unit Tests Test small, isolated units of code.
Integration Tests Test the way that several units of code work together.
Acceptance Tests Tests which prove to the stakeholder that the required

functionality has been implemented.

³⁴http://martinfowler.com/bliki/TellDontAsk.html
³⁵http://williamdurand.fr/2013/06/03/object-calisthenics/
³⁶http://www.slideshare.net/guilhermeblanco/object-calisthenics-applied-to-php

http://martinfowler.com/bliki/TellDontAsk.html
http://martinfowler.com/bliki/TellDontAsk.html
http://williamdurand.fr/2013/06/03/object-calisthenics/
http://www.slideshare.net/guilhermeblanco/object-calisthenics-applied-to-php
http://martinfowler.com/bliki/TellDontAsk.html
http://williamdurand.fr/2013/06/03/object-calisthenics/
http://www.slideshare.net/guilhermeblanco/object-calisthenics-applied-to-php

Methodologies, Techniques and Tools 69

Tests provide confidence in your codebase, and confidence in the ability to add to and modify the
code. Also, when refactoring, tests let you know that you haven’t made a mistake and broken the
logic. When adding new or modifying existing functionality, tests give you confidence that you
haven’t broken a different feature in the process.

Tests are great! You should have them! One often cited argument for not writing tests, is the extra
time is takes to write them. What people who say this don’t know about, is all the debugging time
it saves. Also, if you use TDD then the process of creating the tests is not separate from the writing
of the code, so it’s not an extra task which has to be done.

Test Driven Development (TDD)

I’m going to be very brief here as the next chapter is going to go into it in much more depth.

Simply put, Test Driven Development is a discipline which involves using the tests to guide what
production code is actually written - rather than writing the code, then working out how to test it.
Through this process, TDD encourages you to write much cleaner and more modular code than you
might write without it. It also gives you much higher confidence in the coverage of your test suite.

If you’re new to TDD and want to start learning how to apply it, then the next chapter will get you
started. Also, someone really worth checking out is Chris Hartjes aka The Grumpy Programmer -
he preaches TDD to PHP programmers, has written a great book called The Grumpy Programmer’s
Guide to Building Testable Applications to PHP³⁷, and has videos available from http://grumpy-
learning.com/

Behaviour Driven Development (BDD)

Behaviour Driven Development is an extension to TDD. It uses testing tools which encourage the
language used in the tests to be written in a declarative way - conveying intent from a business
perspective. Throughout this book we will be using BDD extensively.

Uncle Bob’s Clean Code

Robert C. Martin, aka Uncle Bob, is a very outspoken and published programmer who has strong
ideals about how high quality code should be written. His books include:

• Clean Code: A Handbook of Agile Software Craftsmanship
• The Clean Coder: A Code of Conduct for Professional Programmers
• Agile Software Development, Principles, Patterns, and Practices

³⁷https://leanpub.com/grumpy-testing

https://leanpub.com/grumpy-testing
https://leanpub.com/grumpy-testing
https://leanpub.com/grumpy-testing

Methodologies, Techniques and Tools 70

He also has a fantastic video series called Clean Code³⁸.

Through his books and videos he covers all the topics we’ve looked at in this chapter in a lot more
depth. If you really want to improve the way you work he is definitely someone to whom you should
be paying attention.

Domain Driven Design (DDD)

Domain Driven Design is much more than how to write code. It includes the full process from
understanding the business (domain), to translating that into software. As the name implies, DDD’s
driving factor is the domain (the business we are modelling), and the fact that as developers we
have to accept that no one understands the domain as much as the domain experts (the people who
understand and use the business we are modelling). When doing DDD we do not try to squeeze the
domain we are modelling into our software development world’s terms. Rather, we aim to transfer
the domain language into our software’s code.

The first stage of DDD, is sitting down with the domain experts and starting to learn about their
domain. During this time, we start to crate a ubiquitous language. This is made up of the words
and phrases that we can use to discuss the domain in the domain expert’s terms. This ubiquitous
language should then be used in all following discussions, as well as being transferred into the actual
source code of the application.

While DDD is about the full process, from analysing and understanding the domain through to
actually modelling it, there is a certain style of code and set of design patterns which it makes use
of. These include use of value objects, entities, aggregates, the repository pattern and more.

Since DDD has a far broader scope than just the writing of the code, this book doesn’t really cover
it in any depth. However, the code produced in this book is heavily influence by this style of design.

If you really want to understand DDD, you want to start off by reading Eric Evans’ book Domain-
Driven Design.

Another person to keep an eye on regarding this subject in the PHP community is Mathias Verraes³⁹.

Command Query Responsibility Segregation (CQRS)

A lot of the techniques I have talked about have about so far, have been about building a rock solid
domain model which cannot be broken by creating objects in invalid states. All these careful checks
are very important when state is being changed and manipulated. However, often we just want to
view the state. In this circumstance the construction of a complex domain model may be considered
unnecessarily computationally expensive. For this reason we could consider a bomb proof domain
model to be optimised for change.

³⁸http://cleancoders.com/
³⁹http://verraes.net/

http://cleancoders.com/
http://verraes.net/
http://cleancoders.com/
http://verraes.net/

Methodologies, Techniques and Tools 71

Now consider this: most web applications have far more hits where state is just viewed, than they
do when state is being updated. Take a basic web shop, you view tens of pages of search results, lists,
products and reviews, before adding the product you want to the cart then checking out. Here the
adding to the cart and checkout processes are the parts which actually update state, all the browsing
actions are read only. We could assume that maybe only 1 in 5 hits change state, and we’ve already
established that building a complex model for reading only is overly expensive. This is where CQRS
comes in.

Before I explain CQRS let me introduce one more point about application architecture. I’ve already
introduced how a robust domain model is the key, central part to an application. However, I’ve
not said how it is interacted with. On top of the domain layer you might typically build a layer of
application service, use case or transaction classes, which talk to the domain model to perform a
specific action.

As an example, you might have a ChangeCustomersEmail transaction which loads up a Customer

entity from the storage, changes the email address, then stores it. You might also might have a
ListCustomers transaction which returns a list of customers on the system.

Now let’s say the site is getting busy and growing, and it’s getting slower and slower. It needs to
scale, but how? Well since it’s running on a domain model which is optimised for changing, and
we also know that most hits are read only, it would make sense to make those actions optimised
for reading. To do this you could separate out all transactions which are read only, and instead of
building a complicated model from a complex data store for them. You could create a thin read layer,
which reads it’s information from a version of the data store which is optimised for the required
queries. The result of this is you would have some transactions which modify state by talking to the
complex domain model and updating the master data store. We call these commands. Then you have
another set of transactions, which read from a denormalised version of the data store, to display the
information quickly for reading only. We call these queries.

That’s it, CQRS is all about splitting your application in half. One half is optimised for updating,
the other for reading. There is more to CQRS regarding scaling across multiple servers, but what we
have just talked about is the main gist of it from the software architecture point of view.

In this book we will not be building a full CQRS implementation (maybe that could be the sequel).
However, I do feel that it is worthwhile making the distinction between the command and query
transactions in our application. My reason for this is, that without the extra effort of building a full
CQRS solution, we still make it clear which transactions change state. Should the day come that the
application needs to be scaled up in a big way and the decision to implement CQRS is taken, this
will make it just that little bit easier.

If you want to learn more about CQRS there’s a few great articles by Greg Young in the documents
section of http://cqrs.wordpress.com/

Methodologies, Techniques and Tools 72

Agile

Agile is an approach to software development which is embodied in methodologies such as Extreme
Programming (XP)⁴⁰ and SCRUM⁴¹. It accepts the fact that, getting from the stakeholder’s idea to
the final product, is not something that can be set as a rigid path from the beginning. As the project
progresses, the stakeholder’s ideas evolve and technical challenges might affect the way the project
progresses.

With agile development, the stakeholder is heavily involved with the development process, and
the project is broken down into manageable sized tasks. The stakeholder prioritises the tasks, then
the development team works in small bursts of time, to get the tasks completed and delivered to the
stakeholder - in order of priority. In XP these bursts of time are called iterations, whereas in SCRUM
they’re known as sprints. After each iteration/sprint, the stakeholder and development team review
what has been done and decide what to tackle next.

Agile is about the approach to work and the idea that things can change as they develop. In this
book I won’t be discussing this any further, but I will be presenting the code examples as if we’re
working in an Agile environment. What this means is: the code I present in an earlier chapter may
well change, be replaced or even be deleted in a later chapter. The reason for this is that I don’t
just want to present an application architecture as an end product of the book. Rather, I want to go
through the process of how we get to that point.

A great book to check out on Agile style development is Kent Beck’s Extreme Programming
Explained.

User Stories

A user story is a short description of one of the tasks that a user will do when interacting with the
system:

A customer can view their previous orders.

These are created as part of the planning and analysis process. They are often written on small
cards called story cards. Acceptance tests are then decided on for a story, then that feature can be
implemented.

One thing to note is that a story is not a specification! It’s intentionally vague and it’s purpose is to
exist as a request for conversation. When it is time to implement a story, the team (which includes
the stakeholder) should discuss the story and decide on the details - this will result in the generation
of the acceptance tests. For the purpose of this book, I’ll provide the story and tests as though this
conversation has already taken place, I’ll do this for each part of the application we implement.

⁴⁰http://en.wikipedia.org/wiki/Extreme_programming
⁴¹http://en.wikipedia.org/wiki/Scrum_(software_development)

http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Scrum_(software_development)
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Scrum_(software_development)

Methodologies, Techniques and Tools 73

Creating user stories is not something I will be covering. For this I really recommend Mike Cohn’s
rather fantastic book on the subject: User Stories Applied.

An Introduction to Testing and TDD
In this chapter I’m going to introduce some testing tools which we will be using, as well as give a
brief introduction to TDD. This is an optional chapter so if you’re already familiar with these tools
and TDD then feel free to skip it. However, if you are new to TDD, or have not been doing it for
long, then this chapter is definitely worth reading.

Like most of the things I’ve covered so far, this chapter is just here to serve as a brief introduction. It
aims to give you what you will need to work through the rest of this book. As always, I recommend
you research further in to everything covered here - there are many wonderful resources available.

Types of Test

The 2 main types of test which we will be using during the process of building our application are:
acceptance tests and unit tests.

Acceptance Tests

Acceptance tests are high level tests which confirm to the developer and the stakeholder, that the
required features have been implemented and are working properly. Since these tests are about
producing the features that the stakeholder requests, they are ideally producedwith the stakeholder’s
presence and input and in a form which they can understand.

A typical example might be to write something down like this:

Listing customers when there are none will return an empty list
Given there are no customers

When I ask to list customers

Then I should get an empty list

These simple rules could then be converted easily into automated tests using any assert based test
framework, like so:

An Introduction to Testing and TDD 75

xUnit style acceptance test example:

1 function test_that_listing_customers_when_there_are_none_will_return_an_empty_li\

2 st()

3 {

4 // Given there are no customers

5 $customerRepository = new CustomerRepository();

6 $customerRepository->clear();

7

8 // When I ask to list customers

9 $lister = new CustomerLister($customerRepository);

10 $customers = $lister->listCustomers();

11

12 // Then I should get an empty list

13 $this->assertEquals([], $customers);

14 }

This works. The comments are there to explain the test in terms the stakeholder can understand,
and the code checks the conditions are met. That said, it does mix up the stakeholder’s language
with the programmer’s, and it relies on the comments being present and correct. Therefore, if you
are working with the stakeholder to produce acceptance tests, then there is a better tool for the job.
It’s called Cucumber, and in PHP it’s implemented by a tool called Behat⁴².

Cucumber scripts are tests written in a language that the stakeholder can read and write in also.
Tests are grouped as features, which are a collection of scenarios. These scenarios look very much
like the original test rules we started with:

Behat acceptance test example

1 Feature: List customers

2 In order to view a list of customers on the system

3 As an administrator

4 I need to be able to see lists of the customers information

5

6 Scenario: Listing customers when there are none will return an empty list

7 Given there are no customers

8 When I ask to list customers

9 Then I should get an empty list

The language used in the Behat tests can include any phrases that you want. The meanings of these
phases (called snippets) are then implemented in PHP in classes know as contexts. Here’s an example:

⁴²http://behat.org/

http://behat.org/
http://behat.org/

An Introduction to Testing and TDD 76

Behat context example

1 <?php

2

3 use Behat\Behat\Tester\Exception\PendingException;

4 use Behat\Behat\Context\SnippetAcceptingContext;

5 use Behat\Gherkin\Node\PyStringNode;

6 use Behat\Gherkin\Node\TableNode;

7

8 /**

9 * Behat context class.

10 */

11 class FeatureContext implements SnippetAcceptingContext

12 {

13 /**

14 * @var CustomerRepository

15 */

16 private $customerRepository;

17

18 /**

19 * @var mixed

20 */

21 private $result;

22

23 /**

24 * Initializes context.

25 *

26 * Every scenario gets its own context object.

27 * You can also pass arbitrary arguments to the context constructor through

28 * behat.yml.

29 */

30 public function __construct()

31 {

32 $this->customerRepository = new CustomerRepository();

33 }

34

35 /**

36 * @Given there are no customers

37 */

38 public function thereAreNoCustomers()

39 {

40 $this->customerRepository->clear();

41 }

An Introduction to Testing and TDD 77

42

43 /**

44 * @When I ask to list customers

45 */

46 public function iAskToListCustomers()

47 {

48 $lister = new CustomerLister($this->customerRepository);

49 $this->result = $lister->listCustomers();

50 }

51

52 /**

53 * @Then I should get an empty list

54 */

55 public function iShouldGetAnEmptyList()

56 {

57 if ([] !== $this->result) {

58 throw new Exception('Result was not an empty array.');

59 }

60 }

61 }

The different snippets can then be reused in other scenarios and features.

In this book, I will be providing the features for each new bit of functionality that we add. We’ll
then use Behat to run the tests.

Unit Tests

Unit tests are for the development team’s benefit. They are not written with the stakeholder’s help;
in fact they may event not know they exist. Instead, they are created by the developer as the code
is written, and they test little bits of code as isolated units. A unit is a small piece of code which
performs a specific task. Often, we treat each class as a unit, but there are situations where multiple
classes, or a subsection of a single class, could be considered a unit. Saying that, PHPSpec (the main
tool we will be using for unit testing) does enforce that each class is a unit. As a result, this will be
the way that we shall mostly be working.

When doing TDD, the tests are actually written before each new bit of code is written. This process,
when used properly, actually influences what code is written. Sometimes producing surprisingly
elegant solutions.

There are 2 main types of unit testing tools, these are: xUnit style tools and BDD style tools.

An Introduction to Testing and TDD 78

xUnit Frameworks

xUnit test tools are call so because each language has at least one of these tools available and they
are generally named SomethingUnit (e.g. JUnit for Java, CppUnit for C++). The origin of these names
comes from Smalltalk’s SUnit, which was created by Kent Beck and was the first testing framework
of this kind. Of course, PHP has such a framework, and as expected it is called PHPUnit. PHPUnit is
probably PHP’s most well used unit testing framework and was created by Sebastian Bergmann.

xUnit frameworks are based on assertions. Each framework provides a set of available assertion
functions. These are used to check that the results our code produces are what we expect. Some
examples of the assertions functions available in PHPUnit are:

PHPUnit assertions example

1 $this->assertEquals(7, $subject->getValue());

2 $this->assertSame($expectedOwner, $subject->getOwner());

3 $this->assertFalse($subject->isBroken());

4 $this->assertTrue($subject->isWonderful());

5 $this->assertNull($subject->getNothing());

6 // ...

A full list of PHPUnit’s assertions can be found in Appendix A⁴³ of the manual.

While we will not be using PHPUnit as the main unit testing framework in this book, we will be
making use of it at some point for certain tests. We will also make use if its assertion library in our
Behat Contexts for simplicity.

BDD Frameworks

The second type of unit testing frameworks are BDD spec frameworks. These are used in a very
similar way to xUnit frameworks, but the language used in a bit different. Instead of asserting a
test’s expectations, they are described using the word should. The idea is that the tests describe the
functionality of a unit, rather than just check it’s functionality. I will be using PHPSpec⁴⁴ which is a
great, but highly opinionated, BDD unit testing tool for PHP.

Using PHPSpec, the assertions we looked at for PHPUnit would written like this instead:

⁴³https://phpunit.de/manual/current/en/appendixes.assertions.html
⁴⁴http://www.phpspec.net/

https://phpunit.de/manual/current/en/appendixes.assertions.html
http://www.phpspec.net/
https://phpunit.de/manual/current/en/appendixes.assertions.html
http://www.phpspec.net/

An Introduction to Testing and TDD 79

PHPSpec tests example

1 $this->getValue()->shouldReturn(7);

2 $this->getOwner()->shouldReturn($expectedOwner);

3 $this->shouldNotBeBroken();

4 $this->shouldBeWonderful();

5 $this->getNothing()->shouldReturn(null);

The first difference you should notice is that they simply read as better sentences than the PHPUnit
assertions.

There is a second difference though: assertions allow you to assert the values of anything. Whereas,
PHPSpec’s should* methods only work on return values from the unit being tested or on test double
methods. This means that you are much more limited in how you can test with PHPSpec, however,
this is not necessarily a bad thing: it forces you to write good code and I like this (it’s not for everyone
though).

Red, Green, Refactor: The TDD Unit Testing Process

When doing TDD, there is a process that defines the order in which things should be done. This
order is known as Red, Green, Refactor:

Red Red means that when we run our test suite we see a failing test. This is the first step in writing
code: write a failing test. The test we write should be next smallest step we can take in our
implementation which will cause the test suite to fail. Once the test is written, you must run
the test suite and you must see it fail.

Green
The green step is making the failing test pass. In order to do this you only write the smallest
amount of code needed to make the failing test pass. Then we run the test suite again and
see that all tests pass.

Refactor
The refactor step is the point at which the code can, and should, be refactored. No functionality
should be altered here, you simply tidy up the code. After any refactorings have been made,
you must run the test suite to make sure you’ve not broken anything.

After the Refactor step you go back to the Red step and write the next failing test. This process is
repeated until the solution is complete.

An Introduction to Testing and TDD 80

The Red, Green, Refactor Cycle

I will run though a demonstration of this process shortly in the Unit Testing With PHPSpec section.

The Double Feedback Loop

Acceptance tests and unit tests support the development process in a double feedback loop.
Acceptance tests come from the stakeholder in order of priority. The developers then implement
the features using unit tests with the red, green, refactor cycle, until the acceptance tests pass. At
this point, the feature can be delivered to the stakeholder and the next set of acceptance tests will
be produced.

The Double Feedback Loop

Given, When, Then

We’ve already seen the use of these 3 words earlier in the Acceptance Tests section. However, these
3 steps apply to all types of tests. The given part sets up the preconditions, the when part performs

An Introduction to Testing and TDD 81

the action being tested, and the then part checks the result. Whenever you are writing a test, it is a
good idea to maintain clear grouping into these 3 stages.

We’ve seen this in Behat already. It’s highlighted and enforce by the Cucumber language. Now lets
take a look an example in a PHPUnit and a PHPSpec test:

Given, When, Then example using PHPUnit
1 // Inside AgeCalcuatorTest

2 function test_calculate_the_age_of_a_customer()

3 {

4 // Given there is a customer whose date of birth is 1982-03-15

5 // And today is 2014-09-03

6 $customer = new Customer('customer name', Date::fromDate('1982-03-15'));

7 $today = Date::fromDate('2014-09-03');

8

9 // When I calcuate the age of the customer

10 $calculator = new AgeCalculator($today);

11 $age = $calculator->calculateAge($customer);

12

13 // Then the result should be 32

14 $this->assertEquals(32, $age);

15 }

Given, When, Then example using PHPSpec
1 // Inside AgeCalcuatorSpec

2 function it_can_calculate_the_age_of_a_customer()

3 {

4 // Given there is a customer whose date of birth is 1982-03-15

5 // And today is 2014-09-03

6 $customer = new Customer('customer name', Date::fromDate('1982-03-15'));

7 $this->beConstructedWith(Date::fromDate('2014-09-03'));

8

9 // When I calcuate the age of the customer

10 $age = $calculator->calculateAge($customer);

11

12 // Then the result should be 32

13 $age->shouldBe(32);

14 }

The comments are not actually necessary, and it’s also fine to compound the various expressions
(particularly the when and then) but the point is not to mix up the order of these stages. I like to use
vertical whitespace to separate the setting up of the preconditions, from the tests. A more condensed
version of the PHPSpec example would be:

An Introduction to Testing and TDD 82

Condensed Given, When, Then example using PHPSpec

1 // Inside AgeCalcuatorSpec

2 function it_can_calculate_the_age_of_a_customer()

3 {

4 $customer = new Customer('customer name', Date::fromDate('1982-03-15'));

5 $this->beConstructedWith(Date::fromDate('2014-09-03'));

6

7 $calculator->calculateAge($customer)->shouldReturn(32);

8 }

I think that looks pretty neat and is very easy to read and understand what is supposed to happen.

Acceptance Testing with Behat

We’ve already seen Behat and what Cucumber tests look like. Now let’s have a go at setting up a
project using them. To start off create a new folder for the project and cd into it:

1 $ mkdir behat-example

2 $ cd behat-example

Next up, let’s add Behat to the project. We’ve already seen how to set up the composer.json file but
there is a simpler way: instead, we can create the composer.json, add Behat to it, and run composer

update, all in one command like so:

1 $ composer require behat/behat:3.* --dev

Once it has finished, Behat will be installed in the project and the behat command will be available
to us. Next, we need to tell Behat to initialise the project - to do this simply run:

1 $ behat --init

This command creates a directory called features. This is where we’ll put the tests. It also creates
directory inside features called bootstrap, which contains a file called FeatureContext.php. This
is the default context, and is where we can add our snippets.

Now let’s add a feature by creating a file called features/list-books.feature:

An Introduction to Testing and TDD 83

features/list-books.feature

1 Feature: List books

2 In order to list books

3 As a reader

4 I must be able to view a list of all books stored on the system

5

6 Scenario: Display an empty list

7 Given there are no books

8 When I list all books

9 Then I should see an empty list

Next, run Behat:

1 $ behat

This should produce the following output:

1 Feature: List books

2 In order to list books

3 As a reader

4 I must be able to view a list of all books stored on the system

5

6 Scenario: Display an empty list # features/list-books.feature:6

7 Given there are no books

8 When I list all books

9 Then I should see an empty list

10

11 1 scenario (1 undefined)

12 3 steps (3 undefined)

13 0m0.03s (9.00Mb)

14

15 --- FeatureContext has missing steps. Define them with these snippets:

16

17 /**

18 * @Given there are no books

19 */

20 public function thereAreNoBooks()

21 {

22 throw new PendingException();

23 }

An Introduction to Testing and TDD 84

24

25 /**

26 * @When I list all books

27 */

28 public function iListAllBooks()

29 {

30 throw new PendingException();

31 }

32

33 /**

34 * @Then I should see an empty list

35 */

36 public function iShouldSeeAnEmptyList()

37 {

38 throw new PendingException();

39 }

This is Behat saying that it doesn’t understand the snippets which we have used in the test. It also
gives some template code which can be copied and pasted into our feature context to implement
these snippets. We could do that, but we can actually get Behat to do this for us by running:

1 $ behat --append-snippets

If you look in features/bootstrap/FeatureContext.php after this command has run, you will see
the template code has been added for the 3 new snippets. At this point we can run Behat again:

1 $ behat

This time it informs us that the first snippet has no content and needs to be implemented (the others
have been skipped). Let’s implement the first snippet.

Update features/bootstrap/FeatureContext.php so that it looks like this:

An Introduction to Testing and TDD 85

features/bootstrap/FeatureContext.php

1 <?php

2

3 use Behat\Behat\Tester\Exception\PendingException;

4 use Behat\Behat\Context\SnippetAcceptingContext;

5 use Behat\Gherkin\Node\PyStringNode;

6 use Behat\Gherkin\Node\TableNode;

7

8 use BehatExample\BookList;

9

10 /**

11 * Behat context class.

12 */

13 class FeatureContext implements SnippetAcceptingContext

14 {

15 /**

16 * @var BookList

17 */

18 private $bookList;

19

20 /**

21 * Initializes context.

22 *

23 * Every scenario gets its own context object.

24 * You can also pass arbitrary arguments to the context constructor through

25 * behat.yml.

26 */

27 public function __construct()

28 {

29 $this->bookList = new BookList();

30 }

31

32 /**

33 * @Given there are no books

34 */

35 public function thereAreNoBooks()

36 {

37 $this->bookList->clear();

38 }

39

40 /**

41 * @When I list all books

An Introduction to Testing and TDD 86

42 */

43 public function iListAllBooks()

44 {

45 throw new PendingException();

46 }

47

48 /**

49 * @Then I should see an empty list

50 */

51 public function iShouldSeeAnEmptyList()

52 {

53 throw new PendingException();

54 }

55 }

You can try running Behat again, but it will fail since there is no BookList class. To create this
quickly set up the autoloader by updating the composer.json to look like this:

composer.json

1 {

2 "require-dev": {

3 "behat/behat": "3.*"

4 },

5 "autoload": {

6 "psr-0": {

7 "BehatExample\\": "src/"

8 }

9 }

10 }

Next, create the directory for the source code and update Composer:

1 $ mkdir -p src/BehatExample

2 $ composer update

Then, create the BookList class:

An Introduction to Testing and TDD 87

src/BehatExample/BookList.php

1 <?php

2

3 namespace BehatExample;

4

5 class BookList

6 {

7 public function clear()

8 {

9 }

10 }

Running Behat at this point, will show the first snippet passing and inform that the second snippet
needs to be implemented. Let’s implement the last 2 snippets at once: update the features/bootstrap/FeatureContext.php
to contain the following:

features/bootstrap/FeatureContext.php

1 <?php

2

3 use Behat\Behat\Tester\Exception\PendingException;

4 use Behat\Behat\Context\SnippetAcceptingContext;

5 use Behat\Gherkin\Node\PyStringNode;

6 use Behat\Gherkin\Node\TableNode;

7

8 use BehatExample\BookList;

9

10 /**

11 * Behat context class.

12 */

13 class FeatureContext implements SnippetAcceptingContext

14 {

15 /**

16 * @var BookList

17 */

18 private $bookList;

19

20 /**

21 * @var mixed

22 */

23 private $result;

24

An Introduction to Testing and TDD 88

25 /**

26 * Initializes context.

27 *

28 * Every scenario gets its own context object.

29 * You can also pass arbitrary arguments to the context constructor through

30 * behat.yml.

31 */

32 public function __construct()

33 {

34 $this->bookList = new BookList();

35 }

36

37 /**

38 * @Given there are no books

39 */

40 public function thereAreNoBooks()

41 {

42 $this->bookList->clear();

43 }

44

45 /**

46 * @When I list all books

47 */

48 public function iListAllBooks()

49 {

50 $this->result = $this->bookList->getBooks();

51 }

52

53 /**

54 * @Then I should see an empty list

55 */

56 public function iShouldSeeAnEmptyList()

57 {

58 if ([] !== $this->result) {

59 throw new Exception('Result was incorrect.');

60 }

61 }

62 }

Again, we’ve not implemented BookList::getBooks() so let’s do that too:

An Introduction to Testing and TDD 89

src/BehatExample/BookList.php

1 <?php

2

3 namespace BehatExample;

4

5 class BookList

6 {

7 public function clear()

8 {

9 }

10

11 /** @return array */

12 public function getBooks()

13 {

14 return [];

15 }

16 }

Run Behat and see the test pass:

1 $ behat

2 Feature: List books

3 In order to list books

4 As a reader

5 I must be able to view a list of all books stored on the system

6

7 Scenario: Display an empty list

8 Given there are no books

9 When I list all books

10 Then I should see an empty list

11

12 1 scenario (1 passed)

13 3 steps (3 passed)

14 0m0.01s (9.10Mb)

Before we move on, let’s quickly add another test to the feature by appending the following to
features/list-books.feature:

An Introduction to Testing and TDD 90

features/list-books.feature

1 Scenario: Books are listed in alphabetical order

2 Given there is a book called "Domain Driven Design" by "Eric Evans"

3 And there is a book called "Refactoring" by "Martin Fowler"

4 And there is a book called "Design Patterns" by "The Gang of Four"

5 When I list all books

6 Then I should see:

7 | title | author |

8 | Design Patterns | The Gang of Four |

9 | Domain Driven Design | Eric Evans |

10 | Refactoring | Martin Fowler |

Again, if you run Behat it will say that there are new, unknown snippets. As before, add these by
running:

1 $ behat --append-snippets

Open up features/bootstrap/FeatureContext.php again, and update the 2 new methods which
have been added to the class, so that they look like this:

features/bootstrap/FeatureContext.php

1 /**

2 * @Given there is a book called :title by :author

3 */

4 public function thereIsABookCalledBy($title, $author)

5 {

6 $this->bookList->add($title, $author);

7 }

8

9 /**

10 * @Then I should see:

11 */

12 public function iShouldSee(TableNode $table)

13 {

14 if ($table->getHash() !== $this->result) {

15 throw new Exception('Result was incorrect.');

16 }

17 }

Finally, update BehatExample\BookList to contain a working implementation:

An Introduction to Testing and TDD 91

src/BehatExample/BookList.php

1 <?php

2

3 namespace BehatExample;

4

5 class BookList

6 {

7 /** @var array */

8 private $books = [];

9

10 public function clear()

11 {

12 $this->books = [];

13 }

14

15 /**

16 * @param string $title

17 * @param string $author

18 */

19 public function add($title, $author)

20 {

21 $this->books[] = [

22 'title' => $title,

23 'author' => $author

24];

25 }

26

27 /** @return array */

28 public function getBooks()

29 {

30 $list = $this->books;

31

32 usort($list, function ($a, $b) {

33 return $a['title'] > $b['title'];

34 });

35

36 return $list;

37 }

38 }

Then run Behat to see the tests pass:

An Introduction to Testing and TDD 92

1 $ behat

2 Feature: List books

3 In order to list books

4 As a reader

5 I must be able to view a list of all books stored on the system

6

7 Scenario: Display an empty list

8 Given there are no books

9 When I list all books

10 Then I should see an empty list

11

12 Scenario: Books are listed in alphabetical order

13 Given there is a book called "Domain Driven Design" by "Eric Evans"

14 And there is a book called "Refactoring" by "Martin Fowler"

15 And there is a book called "Design Patterns" by "The Gang of Four"

16 When I list all books

17 Then I should see:

18 | title | author |

19 | Design Patterns | The Gang of Four |

20 | Domain Driven Design | Eric Evans |

21 | Refactoring | Martin Fowler |

22

23 2 scenarios (2 passed)

24 8 steps (8 passed)

25 0m0.02s (9.15Mb)

Mink

AUTHOR NOTE: Coming soon…

The Mink Context

AUTHOR NOTE: Coming soon…

Which Language to use in Interface Tests

AUTHOR NOTE: Coming soon…

Unit Testing with PHPSpec

Now let’s take a look at unit testing. We’ll use PHPSpec for this. As we work through building
the application in the next section of this book, I’ll be showing the process of acceptance testing.

An Introduction to Testing and TDD 93

However, I will not be showing the process of unit testing in the examples (except in certain
circumstances where there is something to learn from it). The reason for this is, that it would be
a long winded, pointless and excessive process to document, and it would detract from the topic of
this book. That said, all the example code will have been written using the full TDD process, and you
should do the same. This also means, that all the example code for this book will contain complete
unit tests which you can study for yourself.

Since we’re not going to be highlighting the unit testing process when building the application, we’ll
go through an example now to get familiar with the process.

Example

For our TDD example we’ll create an algorithm which finds the greatest common divisor of 2
numbers.

Setup

Let’s start by creating a new project:

1 $ mkdir phpspec-example

2 $ cd phpspec-example

And configure Composer for the project:

composer.json

1 {

2 "require-dev": {

3 "phpspec/phpspec": "2.*@dev"

4 },

5 "autoload": {

6 "psr-0": {

7 "PhpspecExample\\": "src/"

8 }

9 }

10 }

1 $ composer install

Now we can start the TDD Cycle:

First of all, we’ll tell PHPSpec to create a new Spec file. To do this run:

An Introduction to Testing and TDD 94

1 $ phpspec desc PhpspecExample\\GreatestCommonDivisorFinder

This will create a test file called spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php.
To run it use:

1 $ phpspec run --format=pretty

PHPSpec will say it can’t find the PhpspecExample\GreatestCommonDivisorFinder class and offer
to create it, say Yes and run will create it and run the tests again. This time the test should pass.

Output Formatting
The --format=pretty option is not necessary. I have added it because it produces nice
output which I can paste into this book.

There are other formats available, these are: progress (the default), html, pretty, junit and
dot.

At this point 2 files have been created for us. The test:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 <?php

2

3 namespace spec\PhpspecExample;

4

5 use PhpSpec\ObjectBehavior;

6 use Prophecy\Argument;

7

8 class GreatestCommonDivisorFinderSpec extends ObjectBehavior

9 {

10 function it_is_initializable()

11 {

12 $this->shouldHaveType('PhpspecExample\GreatestCommonDivisorFinder');

13 }

14 }

And the class we are going to implement:

An Introduction to Testing and TDD 95

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 <?php

2

3 namespace PhpspecExample;

4

5 class GreatestCommonDivisorFinder

6 {

7 }

The it_is_initializable test has served it’s purpose now so you can remove that from the test.

Red

Now we need to think what the simplest condition we can test is, which will make progress towards
the final goal.

Let’s start with the condition that when both numbers are the same, then that number is the greatest
common divisor.

Add the following test to the spec file:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_the_number_if_both_values_are_that_number()

2 {

3 $this->findGreatestDivisor(5, 5)->shouldReturn(5);

4 }

Now we have to see this fail, so run:

1 $ phpspec run --format=pretty

Again PHPSpec says that the findGreatestDivisor method does not exist and offers to create it.
Say yes, this will add the empty method to PhpspecExample\GreatestCommonDivisorFinder and
run it again. At this point you should see some red:

An Introduction to Testing and TDD 96

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 x returns the number if both values are that number

6 expected [integer:5], but got null.

7

8 ---- failed examples

9

10 PhpspecExample/GreatestCommonDivisorFinder

11 10 x returns the number if both values are that number

12 expected [integer:5], but got null.

13

14

15 1 specs

16 1 examples (1 failed)

17 11ms

This tells us that the test was expecting the value 5 to be returned, but null was returned instead.
Time to make make this test go green…

Green

Remember that in the green stage, we must only add the smallest amount of code to make the test
pass. In this case all we need to do is return the value 5. Update the PhpspecExample\GreatestCommonDivisorFinder::findGreatestDivisor()
method and re-run the tests:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 public function findGreatestDivisor($a, $b)

2 {

3 return 5;

4 }

This time we see the green result:

An Introduction to Testing and TDD 97

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6

7

8 1 specs

9 1 examples (1 passed)

10 9ms

Refactor

This is the point when we do our refactoring. However, right now there’s not much to refactor, so
let’s move straight on to the next failing test.

Red

For this next test, let’s check that when the first number is a divisor of the second number, then the
first number should be returned. To do this add the following test:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_the_first_number_if_it_is_a_divisor_of_the_second()

2 {

3 $this->findGreatestDivisor(3, 9)->shouldReturn(3);

4 }

Now run PHPSpec to see red:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 x returns the first number if it is a divisor of the second

7 expected [integer:3], but got [integer:5].

8

9 ---- failed examples

10

11 PhpspecExample/GreatestCommonDivisorFinder

12 15 x returns the first number if it is a divisor of the second

An Introduction to Testing and TDD 98

13 expected [integer:3], but got [integer:5].

14

15

16 1 specs

17 2 examples (1 passed, 1 failed)

18 12ms

The first test continues to pass, but the second one does not since our implementation currently only
returns the integer 5.

Green

Again, using the smallest change possible, we can easily change this to green by just returning the
first number:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 public function findGreatestDivisor($a, $b)

2 {

3 return $a;

4 }

Now when running PHPSpec we see that both tests are successfully passing:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7

8

9 1 specs

10 2 examples (2 passed)

11 11ms

Refactor

There’s still nothing to refactor yet. So on to the next failing test…

Red

Let’s now try the previous test the other way around: when the second number is a divisor of the
first, the second number should be returned.

An Introduction to Testing and TDD 99

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_the_second_number_if_it_is_a_divisor_of_the_first()

2 {

3 $this->findGreatestDivisor(9, 3)->shouldReturn(3);

4 }

Run PHPSpec again (you have to see it fail!):

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 x returns the second number if it is a divisor of the first

8 expected [integer:3], but got [integer:9].

9

10 ---- failed examples

11

12 PhpspecExample/GreatestCommonDivisorFinder

13 20 x returns the second number if it is a divisor of the first

14 expected [integer:3], but got [integer:9].

15

16

17 1 specs

18 3 examples (2 passed, 1 failed)

19 13ms

Green

To make this one pass we can simply return the smaller of the two numbers:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 public function findGreatestDivisor($a, $b)

2 {

3 return min($a, $b);

4 }

Yet again, we run the tests and see the successful results:

An Introduction to Testing and TDD 100

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8

9

10 1 specs

11 3 examples (3 passed)

12 10ms

Refactor

Still nothing to refactor so let’s move on…

Red

How about if there’s no common divisor other than then number 1? Let’s write a test for that:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_1_if_there_is_no_greater_divisor()

2 {

3 $this->findGreatestDivisor(3, 5)->shouldReturn(1);

4 }

As always, run the tests and see it fail:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8 25 x returns 1 if there is no greater divisor

9 expected [integer:1], but got [integer:3].

10

11 ---- failed examples

12

An Introduction to Testing and TDD 101

13 PhpspecExample/GreatestCommonDivisorFinder

14 25 x returns 1 if there is no greater divisor

15 expected [integer:1], but got [integer:3].

16

17

18 1 specs

19 4 examples (3 passed, 1 failed)

20 13ms

Green

This one is a tiny bit more complicated. To solve it let’s say that if the lower of the 2 numbers is not
a factor of one of the numbers, then return 1:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 public function findGreatestDivisor($a, $b)

2 {

3 $divisor = min($a, $b);

4

5 if ($a % $divisor !== 0 || $b % $divisor !== 0) {

6 $divisor = 1;

7 }

8

9 return $divisor;

10 }

Run the tests:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8 25 ✓ returns 1 if there is no greater divisor

9

10

11 1 specs

12 4 examples (4 passed)

13 11ms

So far, so good!

An Introduction to Testing and TDD 102

Refactor

Finally, something to refactor! There is a duplication of the logic to check if the $divisor variable
is a factor of a variable. Let’s extract it out with the extract method⁴⁵ refactoring like so:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 <?php

2

3 namespace PhpspecExample;

4

5 class GreatestCommonDivisorFinder

6 {

7 private $divisor;

8

9 public function findGreatestDivisor($a, $b)

10 {

11 $this->divisor = min($a, $b);

12

13 if (!$this->divisorIsFactorOf($a) || !$this->divisorIsFactorOf($b)) {

14 $this->divisor = 1;

15 }

16

17 return $this->divisor;

18 }

19

20 private function divisorIsFactorOf($target)

21 {

22 return $target % $this->divisor === 0;

23 }

24 }

Now run the tests to make sure they still pass:

⁴⁵http://refactoring.com/catalog/extractMethod.html

http://refactoring.com/catalog/extractMethod.html
http://refactoring.com/catalog/extractMethod.html

An Introduction to Testing and TDD 103

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8 25 ✓ returns 1 if there is no greater divisor

9

10

11 1 specs

12 4 examples (4 passed)

13 11ms

Red

OK. Next let’s try a divisor that is not 1, or either of the numbers themselves:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_a_divisor_of_both_numbers()

2 {

3 $this->findGreatestDivisor(6, 9)->shouldReturn(3);

4 }

Watch the test fail:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8 25 ✓ returns 1 if there is no greater divisor

9 30 x returns a divisor of both numbers

10 expected [integer:3], but got [integer:1].

11

12 ---- failed examples

13

14 PhpspecExample/GreatestCommonDivisorFinder

15 30 x returns a divisor of both numbers

An Introduction to Testing and TDD 104

16 expected [integer:3], but got [integer:1].

17

18

19 1 specs

20 5 examples (4 passed, 1 failed)

21 14ms

Green

We actually only have to make a very small change here to make this pass: we simply change the
if to a while, and decrement the divisor in the loop:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 public function findGreatestDivisor($a, $b)

2 {

3 $this->divisor = min($a, $b);

4

5 // leanpub-insert-start

6 while (!$this->divisorIsFactorOf($a) || !$this->divisorIsFactorOf($b)) {

7 $this->divisor--;

8 }

9 // leanpub-insert-end

10

11 return $this->divisor;

12 }

Run the tests:

1 $ phpspec run --format=pretty

2

3 PhpspecExample\GreatestCommonDivisorFinder

4

5 10 ✓ returns the number if both values are that number

6 15 ✓ returns the first number if it is a divisor of the second

7 20 ✓ returns the second number if it is a divisor of the first

8 25 ✓ returns 1 if there is no greater divisor

9 30 ✓ returns a divisor of both numbers

10

11

12 1 specs

13 5 examples (5 passed)

14 11ms

An Introduction to Testing and TDD 105

Everything has passed! And, if you study the code you should see we’ve reached a final solution to
find the greatest common divisor or 2 numbers.

If you really want to double check it, you could add this extra test, but it will pass straight away:

spec/PhpspecExample/GreatestCommonDivisorFinderSpec.php

1 function it_returns_the_greatest_divisor_of_both_numbers()

2 {

3 $this->findGreatestDivisor(12, 18)->shouldReturn(6);

4 }

Refactor

Looking at the code that we’ve produced, I’d say it’s pretty neat already, and doesn’t require any
additional refactoring. Maybe we could just add some docblocks for type information.

The Result

Here is this final result. A complete solution to our original problem, achieved by TDD:

src/PhpspecExample/GreatestCommonDivisorFinder.php

1 <?php

2

3 namespace PhpspecExample;

4

5 class GreatestCommonDivisorFinder

6 {

7 /** @var int */

8 private $divisor;

9

10 /**

11 * @param int $a

12 * @param int $b

13 *

14 * @return int

15 */

16 public function findGreatestDivisor($a, $b)

17 {

18 $this->divisor = min($a, $b);

19

20 while (!$this->divisorIsFactorOf($a) || !$this->divisorIsFactorOf($b)) {

21 $this->divisor--;

An Introduction to Testing and TDD 106

22 }

23

24 return $this->divisor;

25 }

26

27 /**

28 * @param int $target

29 *

30 * @return bool

31 */

32 private function divisorIsFactorOf($target)

33 {

34 return $target % $this->divisor === 0;

35 }

36 }

Test Doubles

I’ve already mentioned test doubles, and how they can be used to help test units of code in isolation
by replacing the unit’s dependencies. Now let’s take a look at how this is actually done.

Types of Test Doubles

Test doubles take on different forms depending on how the are used. Each of these different types
are used to solve a different problem. Let’s take a look at the different types.

Dummy

A dummy is the simplest test double. It simply serves as a place holder for a dependency. It’s
essentially an empty class which implements the dependency’s interface. Dummies are used when
the unit being tested has a required dependency, but the dependency is not needed for the
functionality being tested.

An Introduction to Testing and TDD 107

Dummy test double example

1 /**

2 * Method to be tested.

3 *

4 * @param number $a

5 * @param number $b

6 *

7 * @return number

8 */

9 public function addValues(Writer $writer, $a, $b)

10 {

11 $writer->write("Adding $a and $b");

12

13 return $a + $b;

14 }

15

16 /**

17 * The test.

18 *

19 * Here we only want to test the addition takes place and don't care

20 * about the writer. However, the writer is required, so we provide a dummy in

21 * its place.

22 */

23 function test_dummy()

24 {

25 $writer = new DummyWriter();

26 $examples = new Examples();

27

28 $this->assertEquals(5, $examples->addValues($writer, 2, 3));

29 }

30

31 /**

32 * The dummy writer.

33 *

34 * No functionality is requried, it just needs to implement the Writer

35 * interface.

36 */

37 final class DummyWriter implements \Writer

38 {

39 public function write($string)

40 {

41 }

An Introduction to Testing and TDD 108

42 }

Stub

A stub is the next simplest test double. It simply returns constant values from the methods in the
public interface. Stubs are used to isolate the unit under test, from the complexity of its dependency,
or for testing an interface or abstract class which has no implementation available.

Stub test double example

1 /**

2 * The method being tested.

3 *

4 * @return int

5 */

6 public function doubleInput(Reader $reader)

7 {

8 return $reader->readInt() * 2;

9 }

10

11 /**

12 * The test.

13 *

14 * We don't want to use a real Reader to check the logic, so we use a stub

15 * which returns a constant value, which we can reliably check.

16 */

17 function test_stub()

18 {

19 $reader = new StubReader();

20 $examples = new Examples();

21

22 $this->assertEquals(14, $examples->doubleInput($reader));

23 }

24

25 /**

26 * The stub reader.

27 *

28 * There is no logic in a stub, it simply returns constant values.

29 */

30 final class StubReader implements Reader

31 {

32 public function readInt($src = self::STDIN)

33 {

An Introduction to Testing and TDD 109

34 return 7;

35 }

36 }

Fake

A fake contains logic which emulates a simplified and reliable version of the dependency. Fakes are
used when the dependency is suitably complex, that a stub is not powerful enough.

Fake test double example

1 /**

2 * The method being tested.

3 *

4 * Here Reader::readInt() is called multiple times with different parameters.

5 */

6 public function addFromInputAndFile(Reader $reader, $filename)

7 {

8 return $reader->readInt(Reader::STDIN) + $reader->readInt($filename);

9 }

10

11 /**

12 * The test.

13 *

14 * We're using a fake as we want different values to be returned depending

15 * on the parameters provided.

16 */

17 function test_fake()

18 {

19 $reader = new FakeReader();

20 $examples = new Examples();

21

22 $this->assertEquals(

23 7,

24 $examples->addFromInputAndFile($reader, 'file.txt')

25);

26 }

27

28 /**

29 * The fake reader.

30 *

31 * Here we return a 2 if the reader is instructed to read from STDIN, otherwise

32 * it returns 5.

An Introduction to Testing and TDD 110

33 */

34 final class FakeReader implements Reader

35 {

36 public function readInt($src = self::STDIN)

37 {

38 return $src == self::STDIN ? 2 : 5;

39 }

40 }

Mock

Amock is like a fake, but unlike a fake mocks are aware that they are part of a test suite. Rather than
being just a simplified implementation of the dependency’s interface, they contain testing related
logic and code.

When crafting test doubles by hand the situation for creating amock comes up very rarely. However,
as we’ll see in a moment, test doubles can be created automatically using mocking frameworks. In
this case all test doubles are technicallymocks, regardless of the actual way they are being used. For
this reason, the term mock is often used interchangeably with test double.

Spy

A spy is a type ofmock which records the actions which have been performed on it. After executing
the code under test, a spy can be asked if it was interacted with as expected. Spies are used to verify
a dependency has be used in the correct way.

Spy test double example

1 /**

2 * Method being tested.

3 *

4 * @param number $a

5 * @param number $b

6 *

7 * @return number

8 */

9 public function addValues(Writer $writer, $a, $b)

10 {

11 $writer->write("Adding $a and $b");

12

13 return $a + $b;

14 }

15

An Introduction to Testing and TDD 111

16 /**

17 * The test.

18 *

19 * This time, we want to make sure that the writer was instructed to write a

20 * message.

21 */

22 function test_spy()

23 {

24 $writer = new SpyWriter();

25 $examples = new Examples();

26

27 $examples->addValues($writer, 2, 3);

28

29 $this->assertTrue(

30 $writer->hasWriteBeenCalledWith('Adding 2 and 3'),

31 '$writer->write("Adding 2 and 3") should have been called'

32);

33 }

34

35 /**

36 * The spy write test double.

37 *

38 * The spy records the message that the write function was called with.

39 */

40 final class SpyWriter implements \Writer

41 {

42 private $message;

43

44 public function write($message)

45 {

46 $this->message = $message;

47 }

48

49 /**

50 * @param string $message

51 *

52 * @return bool

53 */

54 public function hasWriteBeenCalledWith($message)

55 {

56 return $this->message == $message;

57 }

An Introduction to Testing and TDD 112

58 }

Expectations

Expectations serve a similar purpose to spies, except rather than recording what methods have been
called so they can be checked later, the methods required to be called are defined first. Not all
mocking framework’s provide both spies and expectations, but generally they will support at least
one of these features.

The one thing which using expectations does, is mix up the given, when, then order. For this reason,
I prefer to use spies when possible.

Mocking Frameworks

There are many mocking frameworks available for PHP. PHPUnit has one built in, PhpSpec uses
one called Prophecy⁴⁶, and there are others available too. The main reasons for using a different
framework are, either because it provides some extra features, or because they produce tests which
you think are easier to understand.

Some examples of other mocking frameworks are Mockery⁴⁷, Phake⁴⁸ and Facebook’s FBMock⁴⁹.

Now, let’s quickly take a look at the previous test double examples, this time using PHPUnit’s and
PHPSpec’s Prophecy framework’s mocking facilities.

PHPUnit

PHPUnit’s built in mocking facilities are quite verbose, and often considered to not be the easiest
to read. It also doesn’t support spies, so you have to use expectations. For these reasons, alternative
mocking frameworks are often chosen when working with PHPUnit.

Here’s the examples with PHPUnit:

⁴⁶https://github.com/phpspec/prophecy
⁴⁷https://github.com/padraic/mockery
⁴⁸http://phake.readthedocs.org/en/latest/
⁴⁹https://github.com/facebook/FBMock

https://github.com/phpspec/prophecy
https://github.com/padraic/mockery
http://phake.readthedocs.org/en/latest/
https://github.com/facebook/FBMock
https://github.com/phpspec/prophecy
https://github.com/padraic/mockery
http://phake.readthedocs.org/en/latest/
https://github.com/facebook/FBMock

An Introduction to Testing and TDD 113

tests/MockExampleTest.php

1 <?php

2

3 namespace tests;

4

5 use Examples;

6 use Reader;

7

8 class MockExampleTest extends \PHPUnit_Framework_TestCase

9 {

10 function test_dummy()

11 {

12 $examples = new Examples();

13

14 $writer = $this->getMock('Writer');

15

16 $this->assertEquals(5, $examples->addValues($writer, 2, 3));

17 }

18

19 function test_stub()

20 {

21 $examples = new Examples();

22

23 $reader = $this->getMock('Reader');

24

25 $reader->expects($this->any())

26 ->method('readInt')

27 ->will($this->returnValue(7));

28

29 $this->assertEquals(14, $examples->doubleInput($reader));

30 }

31

32 function test_fake()

33 {

34 $examples = new Examples();

35

36 $reader = $this->getMock('Reader');

37

38 $reader->expects($this->at(0))

39 ->method('readInt')

40 ->with($this->equalTo(Reader::STDIN))

41 ->will($this->returnValue(2));

An Introduction to Testing and TDD 114

42

43 $reader->expects($this->at(1))

44 ->method('readInt')

45 ->with($this->equalTo('file.txt'))

46 ->will($this->returnValue(5));

47

48 $this->assertEquals(

49 7,

50 $examples->addFromInputAndFile($reader, 'file.txt')

51);

52 }

53

54 function test_expectation()

55 {

56 $examples = new Examples();

57

58 $writer = $this->getMock('Writer');

59

60 $writer->expects($this->once())

61 ->method('write')

62 ->with($this->equalTo('Adding 2 and 3'));

63

64 $examples->addValues($writer, 2, 3);

65 }

66 }

PHPSpec & Prophecy

Prophecy is very much a part of PHPSpec. By using PHPSpec, you are choosing to use Prophecy
also. That said, Prophecy doesn’t have to be used with PHPSpec and can be used with other test
frameworks also.

PHPSpec makes mocking exceptionally simple. You don’t need to call any special methods to create
a mock, rather you just provide a typehinted parameter to the test method, and PHPSpec will create
and inject the mock automatically.

Here’s the same examples with PHPSpec:

An Introduction to Testing and TDD 115

spec/ExamplesSpec.php

1 <?php

2

3 namespace spec;

4

5 use PhpSpec\ObjectBehavior;

6 use Reader;

7 use Writer;

8

9 class ExamplesSpec extends ObjectBehavior

10 {

11 function it_uses_mock_as_dummy(Writer $writer)

12 {

13 $this->addValues($writer, 2, 3)->shouldReturn(5);

14 }

15

16 function it_uses_mock_as_stub(Reader $reader)

17 {

18 $reader->readInt()->willReturn(7);

19

20 $this->doubleInput($reader)->shouldReturn(14);

21 }

22

23 function it_uses_mock_as_fake(Reader $reader)

24 {

25 $reader->readInt(Reader::STDIN)->willReturn(2);

26 $reader->readInt('file.txt')->willReturn(5);

27

28 $this->addFromInputAndFile($reader, 'file.txt')->shouldReturn(7);

29 }

30

31 function it_uses_mock_as_spy(Writer $writer)

32 {

33 $this->addValues($writer, 2, 3);

34

35 $writer->write('Adding 2 and 3')->shouldHaveBeenCalled();

36 }

37

38 function it_can_set_expectations_on_mocks(Writer $writer)

39 {

40 $writer->write('Adding 2 and 3')->shouldBeCalled();

41

An Introduction to Testing and TDD 116

42 $this->addValues($writer, 2, 3);

43 }

44 }

Katas

In order to develop and hone your programming skills, the concept of katas has become a popular
way to practice them. A kata (like a martial arts kata) is a sequence of steps which are performed
repeatedly in order to drill and perfect the skills and techniques which they contain.

Some popular katas are Prime Factors, The Bowling Game, String Calculator and Roman Numerals.
You can easily find the details and demonstrations of these katas in many languages with a quick
web search. That said Ciaran McNulty has put up excellent videos of the Prime Factors⁵⁰ and Roman
Numerals⁵¹ katas using PHPSpec on Vimeo. I think these are well worth a watch.

⁵⁰http://vimeo.com/74529780
⁵¹http://vimeo.com/88289877

http://vimeo.com/74529780
http://vimeo.com/88289877
http://vimeo.com/88289877
http://vimeo.com/74529780
http://vimeo.com/88289877

Building the Application

This is the main part of the book. Here we’ll work through the complete process of building a robust,
extensible and scalable application from scratch.

Getting Started
The Application

A brief description of the application we are going to build is as follows:

The aim is to produce a website, which allows users of the site to view and rate cocktail
recipes submitted by other users. They can also submit their own.

Any visitors to the site can view the list of recipes sorted by rating. However, a visitor
must register as a user, with a username, email and password, in order to rate or submit
recipes.

A recipe consists of the cocktail name, themethod and the list ofmeasured ingredients,
which consists of the ingredient and amount. The recipe must also keep track of the
user who submitted it.

Ratings will be star ratings, with users being able to rate a recipe with 1 to 5 stars.

Quantities can be entered as either millilitres (ml), fluid ounces (fl oz), teaspoons (tsp)
or just a number.

The cocktail ingredients available are limited to a selection which can only be added to
by an administrator.

Now we’ve got a basic understanding of the application we are going to build, let’s take a quick look
at the list of user stories. These are presented in order of priority.

• A visitor can view a list of recipes
• A visitor can view a recipe
• A visitor can register and become a user
• A visitor can login to become a user
• A user can rate a recipe
• A user can add a recipe
• An administrator can add an ingredient

We will proceed to implement each of these stories in order. This may seem like a very basic
application, but it will provide enough functionality to give a good example of how to start building
a well designed, extensible application. Also, because we will be emulating an agile process while
building the application, details and requirements may change as it progresses, and extra features
may be requested.

Getting Started 119

Creating the Project

Before jumping in, let’s quickly set up a project. Start by creating a directory to build the application
in:

1 $ mkdir cocktail-rater

2 $ cd cocktail-rater

Then add the following composer.json

composer.json

1 {

2 "require": {

3 "php": ">=5.5"

4 },

5 "require-dev": {

6 "behat/behat": "3.*",

7 "phpunit/phpunit": "4.2.*",

8 "phpspec/phpspec": "2.*@dev"

9 },

10 "autoload": {

11 "psr-4": {

12 "CocktailRater\\": "src/"

13 }

14 }

15 }

We’re using a PSR-4 autoloader here. Using PSR-4 means everything can exist in a CocktailRater
top level namespace, but we can avoid creating an extra directory level for it.

PHPSpec Version
You may have noticed that the PHPSpec requirement is for a development version. The
reason for this is: there are some features which we will be using which are not in the
stable release yet. When this changes I will update the book.

Now run Composer to install the test tools:

1 $ composer install

We can also configure it to format its output using the pretty formatter by default. That waywe don’t
need to put it on the command line every time we run it. To do this, create a file called phpspec.yml
with the following contents:

Getting Started 120

phpspec.yml

1 formatter.name: pretty

Finally, initialise Behat so we’re ready to start development:

1 $ behat --init

All done! Now we can start.

The First Story

Let’s look at the first story. Here’s the card:

A visitor can view a list of recipes

• Displays an empty list if there are no recipes
• Recipes display the name of the cocktail, the rating and the name of the user who
submitted it

• The list should be presented in descending order of rating

From this information, we can add the following feature file to the project:

features/visitors-can-list-recipes.feature

1 Feature: A visitor can view a list of recipes

2 In order to view a list of recipes

3 As a visitor

4 I need to be able get a list of recipes

5

6 Scenario: View an empty list of recipes

7 Given there are no recipes

8 When I request a list of recipes

9 Then I should see an empty list

10

11 Scenario: Viewing a list with 1 recipe

12 Given there's a recipe for "Mojito" by user "tom" with 5 stars

13 When I request a list of recipes

14 Then I should see a list of recipes containing:

15 | name | rating | user |

16 | Mojito | 5.0 | tom |

Getting Started 121

17

18 Scenario: Recipes are sorted by rating

19 Given there's a recipe for "Daquiri" by user "clare" with 4 stars

20 And there's a recipe for "Pina Colada" by user "jess" with 2 stars

21 And there's a recipe for "Mojito" by user "tom" with 5 stars

22 When I request a list of recipes

23 Then I should see a list of recipes containing:

24 | name | rating | user |

25 | Mojito | 5.0 | tom |

26 | Daquiri | 4.0 | clare |

27 | Pina Colada | 2.0 | jess |

If you try to run Behat with this feature, it will say that the context has missing steps. To add the
required snippets run:

1 $ behat --append-snippets

Now we can start working to get these scenarios to pass.

Application Structure

Before jumping straight into writing code, let’s just take a small moment to take a look at the
structure we plan to use to build the application.

Proposed Application Structure

Getting Started 122

The core part of the application will be the domain model, this will consist of our modelled
interpretation of the business rules. It will have no knowledge of how or where the data is stored, the
user interface or any non-business related implementation details. To achieve this level of separation
we’ll use inversion of control to let the other layers plug in to the domain layer.

Behind the domainmodel therewill be a storage implementation layer for our chosen storage system.
The storage system has not yet been decided so we’ll make use of SQLite until we have chosen which
one to use. The reasons for using SQLite are that, it allows the use of a database file without needing
to set up a database server, and it’s easier to use than writing our own file-based storage system.

In chapter 3 I introduced CQRS and stated that while we are not going to implement it in our
application, we will make a distinction between command and query interactions within the
application. Therefore, in front of the domain model we’ll have a layer of commands and queries.
All interactions with the domain model from the UI will go through these.

Finally, we’ll have the UI website. We’ll start off by mocking this up with some basic HTML, but as
our application becomes more complete, we can make use of a modern MVC⁵² framework. Again,
we won’t worry about which one until later on.

Scenario: View an empty list of recipes

Let’s start off by getting the first scenario to pass. As a quick reminder here it is:

View an empty list of recipes

1 Scenario: View an empty list of recipes

2 Given there are no recipes

3 When I request a list of recipes

4 Then I should see an empty list

We’re going to use TDD to create our code from the outside in. What I mean by this is: rather than
trying to build the model and then get it to do what we need it to do, we’ll start with what we want
it to do and let that help create the model.

Fleshing out the FeatureContext

Behat has already added the required snippet templates to the FeatureContext, so let’s try to pencil
in what we want to happen. Take a look at the code I have added first, then I’ll explain it:

⁵²The Model View Controller design pattern.

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Getting Started 123

features/bootstrap/FeatureContext.php

1 <?php

2

3 use Behat\Behat\Context\SnippetAcceptingContext;

4 use Behat\Behat\Tester\Exception\PendingException;

5 use Behat\Gherkin\Node\PyStringNode;

6 use Behat\Gherkin\Node\TableNode;

7 use CocktailRater\Application\Query\ListRecipes;

8 use CocktailRater\Application\Query\ListRecipesHandler;

9 use CocktailRater\Application\Query\ListRecipesQuery;

10 use CocktailRater\Application\Query\ListRecipesQueryHandler;

11 use CocktailRater\Testing\Repository\TestRecipeRepository;

12 use PHPUnit_Framework_Assert as Assert;

13

14 /**

15 * Behat context class.

16 */

17 class FeatureContext implements SnippetAcceptingContext

18 {

19 /** @var RecipeRepository */

20 private $recipeRepository;

21

22 /** @var mixed */

23 private $result;

24

25 /**

26 * Initializes context.

27 *

28 * Every scenario gets its own context object.

29 * You can also pass arbitrary arguments to the context constructor through

30 * behat.yml.

31 */

32 public function __construct()

33 {

34 }

35

36 /**

37 * @BeforeScenario

38 */

39 public function beforeScenario()

40 {

41 $this->recipeRepository = new TestRecipeRepository();

Getting Started 124

42 }

43

44 /**

45 * @Given there are no recipes

46 */

47 public function thereAreNoRecipes()

48 {

49 $this->recipeRepository->clear();

50 }

51

52 /**

53 * @When I request a list of recipes

54 */

55 public function iRequestAListOfRecipes()

56 {

57 $query = new ListRecipesQuery();

58 $handler = new ListRecipesHandler($this->recipeRepository);

59

60 $this->result = $handler->handle($query);

61 }

62

63 /**

64 * @Then I should see an empty list

65 */

66 public function iShouldSeeAnEmptyList()

67 {

68 $recipes = $this->result->getRecipes();

69

70 Assert::assertInternalType('array', $recipes);

71 Assert::assertEmpty($recipes);

72 }

73

74 /**

75 * @Given there's a recipe for :arg1 by user :arg2 with :arg3 stars

76 */

77 public function theresARecipeForByUserWithStars($arg1, $arg2, $arg3)

78 {

79 throw new PendingException();

80 }

81

82 /**

83 * @Then I should see a list of recipes containing:

Getting Started 125

84 */

85 public function iShouldSeeAListOfRecipesContaining(TableNode $table)

86 {

87 throw new PendingException();

88 }

89 }

The thinking I have used here goes something like this:

In order to list recipes we’ll create a query object, then somehowwe’ll process that query
to get the result. This process will involve fetching all existing recipes and returning the
result.

The first line of our test states: “Given there are no recipes”. We’re going to use the Repository
design pattern for the storing of objects. So, to make this test pass, we’ve got to ensure that
the Repository for storing recipes is empty. I’ve also stated that we’re not going to worry about
what storage system we will be using until later. So in the mean time, we can create a simple
test repository, which we’ll use to emulate the repository functionality. I’ve decided to name this
CocktailRater\Testing\Repository\TestRecipeRepository.

With this information, the first thing we need to do is create an instance of this repository. I’ve done
this in the beforeScenario method in the FeatureContext.

Annotations
You may have noticed that I’ve added @BeforeScenario to the docblock for this method.
This is known as an annotation and is required to inform Behat to run this method before
it runs each scenario.

Annotation strings in the docblock start with the @ symbol. Behat uses annotations for
several things - you will see that each snippet function has a @Given, @When or @Then

annotation. Again, this is not just a comment, but is actually required by Behat in order to
work.

Then, in the thereAreNoRecipes method, we clear the repository to ensure there are no recipes
currently stored.

The next line of the test states: “When I request a list of recipes”. For this we create the query object,
run it and store the result. I’ve decided that the running of the query will be done by a query handler,
and therefore, we’ll use the verb handle to run it. Also, we know that the query handler will need
to fetch recipes from the repository, so we pass this to the handler via the constructor. All this is put
into action in the iRequestAListOfRecipes method in the FeatureContext.

Finally, the last line of the test says: “Then I should see an empty list”. To make this pass, we’ll simple
check the value in the query result. In order to make a Behat snippet fail, it must throw an exception.

Getting Started 126

However, rather than writing our own checking methods, we can make use of the assert methods
provided by PHPUnit. For this test we’ve used 2 asserts, one to check the result is an array, and the
second to check it’s empty.

At this point, if you try to run Behat you’ll see PHP error messages saying we’ve referenced classes
which don’t exist. To fix this lets add the classes…

Writing the Code

The first line of the test requires the repository, and that it has a method called clear. Let’s start by
creating that:

src/Testing/Repository/TestRecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Testing\Repository;

4

5 use CocktailRater\Domain\Repository\RecipeRepository;

6

7 final class TestRecipeRepository

8 {

9 public function clear()

10 {

11 }

12 }

Final

You may have noticed the use of the final keyword. For now I’m just going to say that I
add this to my classes by default, this is not required but is my preference. I’ll explain the
reason for this a bit later on.

Next up let’s create the ListRecipesQuery. A query class will contain the parameters for the query.
In this case there are none, so the class simply looks like this:

Getting Started 127

src/Application/Query/ListRecipesQuery.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 final class ListRecipesQuery

6 {

7 }

Now for the interesting bit: the ListRecipesHandler. From looking at the FeatureContext, this
needs to take a repository as a constructor parameter, the query as a parameter to the handlemethod,
and return some object which has a getRecipes method.

Here we don’t want to depend on our test repository, so we’ll create an interface which will be used
in its place. For the return value, we’ll create a class called CocktailRater\Application\Query\ListRecipesResult.

Without further ado, here it is:

src/Application/Query/ListRecipesHandler.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 use CocktailRater\Domain\Repository\RecipeRepository;

6

7 final class ListRecipesHandler

8 {

9 public function __construct(RecipeRepository $repository)

10 {

11 }

12

13 /** @return ListRecipesResult */

14 public function handle(ListRecipesQuery $query)

15 {

16 return new ListRecipesResult();

17 }

18 }

At this point we’ve created all the classes that were referenced from the FeatureContext, but this
last one has just introduced 2 more: the RecipeRepository and the ListRecipesResult. Let’s add
them to the project also (this is what I was referring to when I said we’d work from the outside in):

Getting Started 128

src/Application/Query/ListRecipesResult.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 final class ListRecipesResult

6 {

7 /** @return array */

8 public function getRecipes()

9 {

10 return [];

11 }

12 }

src/Domain/Repository/RecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Domain\Repository;

4

5 interface RecipeRepository

6 {

7 }

The ListRecipesResult class simply returns an empty list from getRecipes. This is all it needs to
do to make the test pass.

The RecipeRepository interface currently has no methods. This is because the only method
currently existing in our test repository is clear, however this method is only relevant for the tests
so there is no requirement for it in the actual application.

Now there’s only one thing left to do. The ListRecipesHandler class requires a RecipeRepository to
be provided to the constructor, but in the FeatureContextwe’ve provided a TestRecipeRepository.
To make this work we need to make the test repository implement the interface:

Getting Started 129

src/Testing/Repository/TestRecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Testing\Repository;

4

5 use CocktailRater\Domain\Repository\RecipeRepository;

6

7 final class TestRecipeRepository implements RecipeRepository

8 {

9 public function clear()

10 {

11 }

12 }

At this point, we should be able to run Behat and see the first scenario pass:

1 $ behat

2 Feature: A visitor can view a list of recipes

3 In order to view a list of recipes

4 As a visitor

5 I need to be able get a list of recipes

6

7 Scenario: View an empty list of recipes

8 Given there are no recipes

9 When I request a list of recipes

10 Then I should see an empty list

11

12 Scenario: Viewing a list with 1 recipe

13 Given there's a recipe for "Mojito" by user "tom" with 5 stars

14 TODO: write pending definition

15 When I request a list of recipes

16 Then I should see a list of recipes containing:

17 | name | rating | user |

18 | Mojito | 5.0 | tom |

19

20 Scenario: Recipes are sorted by rating

21 Given there's a recipe for "Daquiri" by user "clare" with 4 stars

22 TODO: write pending definition

23 And there's a recipe for "Pina Colada" by user "jess" with 2 stars

24 And there's a recipe for "Mojito" by user "tom" with 5 stars

25 When I request a list of recipes

Getting Started 130

26 Then I should see a list of recipes containing:

27 | name | rating | user |

28 | Mojito | 5.0 | tom |

29 | Daquiri | 4.0 | clare |

30 | Pina Colada | 2.0 | jess |

31

32 3 scenarios (1 passed, 2 pending)

33 11 steps (3 passed, 2 pending, 6 skipped)

34 0m0.36s (9.95Mb)

Scenario: View a list with 1 recipe

We got the first scenario to pass without adding any real logic. To get the next one to pass we need
to start filling in some of the blanks that we’ve created.

Updating the FeatureContext

Just like last time, we can start by adding some content to our 2 remaining methods in the
FeatureContext. Here I’d just like to point out that you may find it easier to work with one at
a time, but for the sake of not making this book too long, I’m condensing the processes down a bit.

features/bootstrap/FeatureContext.php

1 <?php

2

3 use Behat\Behat\Context\SnippetAcceptingContext;

4 use Behat\Behat\Tester\Exception\PendingException;

5 use Behat\Gherkin\Node\PyStringNode;

6 use Behat\Gherkin\Node\TableNode;

7 use CocktailRater\Application\Query\ListRecipes;

8 use CocktailRater\Application\Query\ListRecipesHandler;

9 use CocktailRater\Application\Query\ListRecipesQuery;

10 use CocktailRater\Application\Query\ListRecipesQueryHandler;

11 use CocktailRater\Domain\CocktailName;

12 use CocktailRater\Domain\Rating;

13 use CocktailRater\Domain\Recipe;

14 use CocktailRater\Domain\User;

15 use CocktailRater\Domain\Username;

16 use CocktailRater\Testing\Repository\TestRecipeRepository;

17 use PHPUnit_Framework_Assert as Assert;

18

19 /**

Getting Started 131

20 * Behat context class.

21 */

22 class FeatureContext implements SnippetAcceptingContext

23 {

24 // ...

25

26 /**

27 * @Given there's a recipe for :name by user :user with :rating stars

28 */

29 public function theresARecipeForByUserWithStars($name, $user, $rating)

30 {

31 $this->recipeRepository->store(

32 new Recipe(

33 new CocktailName($name),

34 new Rating($rating),

35 new User(new Username($user))

36)

37);

38 }

39

40 /**

41 * @Then I should see a list of recipes containing:

42 */

43 public function iShouldSeeAListOfRecipesContaining(TableNode $table)

44 {

45 $callback = function ($recipe) {

46 return [

47 (string) $recipe['name'],

48 (float) $recipe['rating'],

49 (string) $recipe['user']

50];

51 };

52

53 Assert::assertEquals(

54 array_map($callback, $this->result->getRecipes()),

55 array_map($callback, $table->getHash())

56);

57 }

58 }

In theresARecipeForByUserWithStars we’re creating a new Recipe object. The Recipe needs a
name, rating and user, so we can add what we think look like sensible dependencies via the

Getting Started 132

constructor. We also store this new object in the repository.

In the iShouldSeeAListOfRecipesContaining method, we compare the results returned from the
query, with the table of expected results, using PHPUnit’s assertEquals. I’ve also used array_map

to ensure both arrays contain the same types since all values in Behat tables are strings.

Adding new Classes to the Model

Unit Tests
Before continuing I’d just like to point out that up until this point I’ve not created any
unit tests. From this point on I’ll be using them for all development in the domain model.
However, I won’t be showing them or the process of creating them, as it would take up too
many pages. However, they’re all available in the example code for the book if you want
to study them.

Let’s start off by adding the new classes to the model:

src/Domain/Recipe.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class Recipe

6 {

7 /** @param string $name */

8 public function __construct(CocktailName $name, Rating $rating, User $user)

9 {

10 }

11 }

src/Domain/CocktailName.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class CocktailName

6 {

7 /** @var string $value */

8 public function __construct($value)

Getting Started 133

9 {

10 }

11 }

src/Domain/Rating.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class Rating

6 {

7 /** @var float $value */

8 public function __construct($value)

9 {

10 }

11 }

src/Domain/User.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class User

6 {

7 /** @var string $username */

8 public function __construct(Username $username)

9 {

10 }

11 }

Getting Started 134

src/Domain/Username.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class Username

6 {

7 /** @param string $value */

8 public function __construct($value)

9 {

10 }

11 }

We also need to add the store method to the repository interface:

src/Domain/Repository/RecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Domain\Repository;

4

5 use CocktailRater\Domain\Recipe;

6

7 interface RecipeRepository

8 {

9 public function store(Recipe $recipe);

10 }

This also means that we need to add the method to the TestRecipeRepository:

src/Testing/Repository/TestRecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Testing\Repository;

4

5 use CocktailRater\Domain\Recipe;

6 use CocktailRater\Domain\Repository\RecipeRepository;

7

8 final class TestRecipeRepository implements RecipeRepository

9 {

Getting Started 135

10 public function store(Recipe $recipe)

11 {

12 }

13

14 public function clear()

15 {

16 }

17 }

Making the Scenario Pass

At this point, only the last line of the scenario should be failing. We’ve got the template of the model
laid out, so we just need to fill in the details. To start with, let’s take a look at how the query handler
will work:

src/Application/Query/ListRecipesHandler.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 use CocktailRater\Domain\Repository\RecipeRepository;

6

7 final class ListRecipesHandler

8 {

9 /** @var RecipeRepository */

10 private $repository;

11

12 public function __construct(RecipeRepository $repository)

13 {

14 $this->repository = $repository;

15 }

16

17 /** @return ListRecipesResult */

18 public function handle(ListRecipesQuery $query)

19 {

20 $result = new ListRecipesResult();

21

22 foreach ($this->repository->findAll() as $recipe) {

23 $result->addRecipe(

24 $recipe->getName()->getValue(),

25 $recipe->getRating()->getValue(),

26 $recipe->getUser()->getUsername()->getValue()

Getting Started 136

27);

28 }

29

30 return $result;

31 }

32 }

It’s quite simple really: it fetches all recipes from the repository, adds the details of each one to the
result object, then returns the result. This looks good, but we’ve got a bit of work to do to get it all
working. First up let’s update the classes in the domain model:

src/Domain/Recipe.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class Recipe

6 {

7 /** @var CocktailName */

8 private $name;

9

10 /** @var Rating */

11 private $rating;

12

13 /** @var User */

14 private $user;

15

16 /** @param string $name */

17 public function __construct(CocktailName $name, Rating $rating, User $user)

18 {

19 $this->name = $name;

20 $this->rating = $rating;

21 $this->user = $user;

22 }

23

24 /** @return CocktailName */

25 public function getName()

26 {

27 return $this->name;

28 }

29

30 /** @return Rating */

Getting Started 137

31 public function getRating()

32 {

33 return $this->rating;

34 }

35

36 /** @return User */

37 public function getUser()

38 {

39 return $this->user;

40 }

41 }

src/Domain/CocktailName.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 use Assert\Assertion;

6

7 final class CocktailName

8 {

9 /** @var string */

10 private $value;

11

12 /** @param string $value */

13 public function __construct($value)

14 {

15 Assertion::string($value);

16

17 $this->value = $value;

18 }

19

20 /** @return string */

21 public function getValue()

22 {

23 return $this->value;

24 }

25 }

Getting Started 138

src/Domain/Rating.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 use Assert\Assertion;

6 use CocktailRater\Domain\Exception\OutOfBoundsException;

7

8 final class Rating

9 {

10 /** @var float */

11 private $value;

12

13 /**

14 * @var float $value

15 *

16 * @throws OutOfBoundsException

17 */

18 public function __construct($value)

19 {

20 Assertion::numeric($value);

21

22 $this->assertValueIsWithinRange($value);

23

24 $this->value = (float) $value;

25 }

26

27 /** @return float */

28 public function getValue()

29 {

30 return $this->value;

31 }

32

33 /**

34 * @var float $value

35 *

36 * @throws OutOfBoundsException

37 */

38 private function assertValueIsWithinRange($value)

39 {

40 if ($value < 1 || $value > 5) {

41 throw OutOfBoundsException::numberIsOutOfBounds($value, 1, 5);

Getting Started 139

42 }

43 }

44 }

src/Domain/User.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class User

6 {

7 /** @var Username */

8 private $username;

9

10 /**

11 * @param string $username

12 *

13 * @return User

14 */

15 public static function fromValues($username)

16 {

17 return new self(new Username($username));

18 }

19

20 /** @var string $username */

21 public function __construct(Username $username)

22 {

23 $this->username = $username;

24 }

25

26 /** @return Username */

27 public function getUsername()

28 {

29 return $this->username;

30 }

31 }

Getting Started 140

src/Domain/Username.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 use Assert\Assertion;

6

7 final class Username

8 {

9 /** @var string */

10 private $value;

11

12 /** @param string $value */

13 public function __construct($value)

14 {

15 Assertion::string($value);

16

17 $this->value = $value;

18 }

19

20 /** @param */

21 public function getValue()

22 {

23 return $this->value;

24 }

25 }

In the domain model, we’ve started to make use of Benjamin Eberlei’s Assert⁵³ library. For this to
work we need to install the dependency with Composer by running:

1 $ composer require beberlei/assert:@stable

⁵³https://github.com/beberlei/assert

https://github.com/beberlei/assert
https://github.com/beberlei/assert

Getting Started 141

Using 3rd Party Libraries in the Domain Model
Adding a dependency to a 3rd party library is something that should not be done without
serious consideration. A better approach is to use Inversion of Control to make the model
depend on the library via a layer of abstraction. The Adapter⁵⁴ design pattern is a very
good tool for this job.

So, with that said, why am I using the Assert library from within the domain model? The
reason is: firstly it’s a well-used and stable library made up of utility methods which have
no side effects. Secondly, and more importantly, I’m using it in a way which adds, what
I think, is a missing feature in the PHP language: namely typehints for scalar types and
arrays.

There is an interesting discussion with Mathais Verraes on the DDDinPHP Google Group⁵⁵
about adding dependencies to 3rd party libraries to your domain model. However, the
bottom line here is: before doing this you should exercise extreme consideration of what
you are about to do.

One thing which may have caught your eye in the User class is the fromValues staticmethod. This is
known as a named constructor. It’s a way in which we can provide alternate constructors for classes,
and is one of the few valid uses of the static keyword. Since it maintains no state, and works in a
purely functional way, it is a safe use of static. At this point fromValues has only been used in the
unit tests, even so, I felt the neater tests were a good enough reason to add it.

Another thing we have done here, is restricted the value allowed for a rating to be between 1 and 5.
If it falls outside of this range, we throw an exception. The appropriate exception to be throw here
is PHP SPL’s OutOfBoundsException. However, rather than throw it directly, we’ve extended it so
that it can be tracked down as coming from our application. Let’s take a quick look at it:

src/Domain/Exception/OutOfBoundsException.php

1 <?php

2

3 namespace CocktailRater\Domain\Exception;

4

5 class OutOfBoundsException extends \OutOfBoundsException

6 {

7 /**

8 * @param number $number

9 * @param number $min

10 * @param number $max

11 *

12 * @return OutOfBoundsException

13 */

⁵⁴http://en.wikipedia.org/wiki/Adapter_pattern
⁵⁵https://groups.google.com/forum/#!msg/dddinphp/YGogT1NSbO0/u22c4dgoxdEJ

http://en.wikipedia.org/wiki/Adapter_pattern
https://groups.google.com/forum/#!msg/dddinphp/YGogT1NSbO0/u22c4dgoxdEJ
http://en.wikipedia.org/wiki/Adapter_pattern
https://groups.google.com/forum/#!msg/dddinphp/YGogT1NSbO0/u22c4dgoxdEJ

Getting Started 142

14 public static function numberIsOutOfBounds($number, $min, $max)

15 {

16 return new static(sprintf(

17 'The number %d is out of bounds, expected a number between %d and %d\

18 .',

19 $number,

20 $min,

21 $max

22));

23 }

24 }

Again you’ll notice the use of a named constructor. I think this is a really neat way to keep the
exception messages neat and tidy, and in a relevant place.

Next, let’s quickly update the ListRecipesResult class:

src/Application/Query/ListRecipesResult.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 final class ListRecipesResult

6 {

7 /** @var array */

8 private $recipes = [];

9

10 /**

11 * @param string $name

12 * @param float $rating

13 * @param string $username

14 */

15 public function addRecipe($name, $rating, $username)

16 {

17 $this->recipes[] = [

18 'name' => $name,

19 'rating' => $rating,

20 'user' => $username

21];

22 }

23

24 /** @return array */

Getting Started 143

25 public function getRecipes()

26 {

27 return $this->recipes;

28 }

29 }

Finally, we need to update the functionality of the repository to return the list of recipes stored:

src/Domain/Repository/RecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Domain\Repository;

4

5 use CocktailRater\Domain\Recipe;

6

7 interface RecipeRepository

8 {

9 public function store(Recipe $recipe);

10

11 /** @return Recipe[] */

12 public function findAll();

13 }

src/Testing/Repository/TestRecipeRepository.php

1 <?php

2

3 namespace CocktailRater\Testing\Repository;

4

5 use CocktailRater\Domain\Recipe;

6 use CocktailRater\Domain\Repository\RecipeRepository;

7

8 final class TestRecipeRepository implements RecipeRepository

9 {

10 /** @var Recipe[] */

11 private $recipes = [];

12

13 public function store(Recipe $recipe)

14 {

15 $this->recipes[] = $recipe;

16 }

Getting Started 144

17

18 public function findAll()

19 {

20 return $this->recipes;

21 }

22

23 public function clear()

24 {

25 }

26 }

As you can see, we’ve created an in-memory test repository. This is good enough for what we need
so far.

You can now run Behat and watch the second scenario pass.

1 $ behat

2 Feature: A visitor can view a list of recipes

3 In order to view a list of recipes

4 As a visitor

5 I need to be able get a list of recipes

6

7 Scenario: View an empty list of recipes

8 Given there are no recipes

9 When I request a list of recipes

10 Then I should see an empty list

11

12 Scenario: Viewing a list with 1 recipe

13 Given there's a recipe for "Mojito" by user "tom" with 5 stars

14 When I request a list of recipes

15 Then I should see a list of recipes containing:

16 | name | rating | user |

17 | Mojito | 5.0 | tom |

18

19 Scenario: Recipes are sorted by rating

20 Given there's a recipe for "Daquiri" by user "clare" with 4 stars

21 And there's a recipe for "Pina Colada" by user "jess" with 2 stars

22 And there's a recipe for "Mojito" by user "tom" with 5 stars

23 When I request a list of recipes

24 Then I should see a list of recipes containing:

25 | name | rating | user |

26 | Mojito | 5.0 | tom |

Getting Started 145

27 | Daquiri | 4.0 | clare |

28 | Pina Colada | 2.0 | jess |

29 Failed asserting that two arrays are equal.

30 --- Expected

31 +++ Actual

32 @@ @@

33 Array (

34 0 => Array (

35 + 0 => 'Mojito'

36 + 1 => 5.0

37 + 2 => 'tom'

38 +)

39 + 1 => Array (

40 0 => 'Daquiri'

41 1 => 4.0

42 2 => 'clare'

43)

44 - 1 => Array (

45 + 2 => Array (

46 0 => 'Pina Colada'

47 1 => 2.0

48 2 => 'jess'

49 -)

50 - 2 => Array (

51 - 0 => 'Mojito'

52 - 1 => 5.0

53 - 2 => 'tom'

54)

55)

56

57 --- Failed scenarios:

58

59 features/visitors-can-list-recipes.feature:18

60

61 3 scenarios (2 passed, 1 failed)

62 11 steps (10 passed, 1 failed)

63 0m0.05s (10.60Mb)

Scenario: Recipes are sorted by rating

You may have already noticed, that when you run Behat now most of our final scenario already
passes, The only thing which fails is the order in which the recipes are listed. To fix this we can go

Getting Started 146

straight into the ListRecipesHandler, and sort the recipes there:

src/Application/Query/ListRecipesHandler.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 use CocktailRater\Domain\Repository\RecipeRepository;

6 use CocktailRater\Domain\Recipe;

7

8 final class ListRecipesHandler

9 {

10 /** @var RecipeRepository */

11 private $repository;

12

13 public function __construct(RecipeRepository $repository)

14 {

15 $this->repository = $repository;

16 }

17

18 /** @return ListRecipesResult */

19 public function handle(ListRecipesQuery $query)

20 {

21 $result = new ListRecipesResult();

22

23 foreach ($this->getAllRecipesSortedByRating() as $recipe) {

24 $result->addRecipe(

25 $recipe->getName()->getValue(),

26 $recipe->getRating()->getValue(),

27 $recipe->getUser()->getUsername()->getValue()

28);

29 }

30

31 return $result;

32 }

33

34 private function getAllRecipesSortedByRating()

35 {

36 $recipes = $this->repository->findAll();

37

38 usort($recipes, function (Recipe $a, Recipe $b) {

39 return $a->isHigherRatedThan($b) ? -1 : 1;

Getting Started 147

40 });

41

42 return $recipes;

43 }

44 }

We also need to add new comparison methods to both the Recipe and Rating classes:

src/Domain/Recipe.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 use Assert\Assertion;

6

7 final class Recipe

8 {

9 // ...

10

11 /** @return bool */

12 public function isHigherRatedThan(Recipe $other)

13 {

14 return $this->rating->isHigherThan($other->rating);

15 }

16 }

src/Domain/Rating.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 use Assert\Assertion;

6 use CocktailRater\Domain\Exception\OutOfBoundsException;

7

8 final class Rating

9 {

10 // ...

11

12 /** @return bool */

13 public function isHigherThan(Rating $other)

Getting Started 148

14 {

15 return $this->value > $other->value;

16 }

17 }

That’s it, the first feature is done!

1 $ behat

2 Feature: A visitor can view a list of recipes

3 In order to view a list of recipes

4 As a visitor

5 I need to be able get a list of recipes

6

7 Scenario: View an empty list of recipes

8 Given there are no recipes

9 When I request a list of recipes

10 Then I should see an empty list

11

12 Scenario: Viewing a list with 1 recipe

13 Given there's a recipe for "Mojito" by user "tom" with 5 stars

14 When I request a list of recipes

15 Then I should see a list of recipes containing:

16 | name | rating | user |

17 | Mojito | 5.0 | tom |

18

19 Scenario: Recipes are sorted by rating

20 Given there's a recipe for "Daquiri" by user "clare" with 4 stars

21 And there's a recipe for "Pina Colada" by user "jess" with 2 stars

22 And there's a recipe for "Mojito" by user "tom" with 5 stars

23 When I request a list of recipes

24 Then I should see a list of recipes containing:

25 | name | rating | user |

26 | Mojito | 5.0 | tom |

27 | Daquiri | 4.0 | clare |

28 | Pina Colada | 2.0 | jess |

29

30 3 scenarios (3 passed)

31 11 steps (11 passed)

32 0m0.04s (10.48Mb)

Getting Started 149

Tidying Up

Now the feature is complete, let’s take a little look and see if there’s anything we can do to make
the code a bit better.

The main thing which needs to be improved here is chaining of methods in the query handler. We’ve
created have ugly lines of code like this:

1 $recipe->getUser()->getUsername()->getValue()

Big chains of method calls like this violate the Law of Demeter⁵⁶ which states: you should only
talk to your immediate friends. This means you should only call methods or access properties of
objects which are: properties of the current class, are parameters to the current method, or have
been created inside the method. This law is pretty much stating the same thing as the one dot per
line rule of Object Calisthenics. Note that PHP requires the use of $this-> to call methods and
access properties, so it’s actually two arrows per line.

So, how to this issue? One approach might be to ask the top level class (aggregate) to ask the next
level down to return the value, repeating down the hierarchy. Here’s an example:

1 class Recipe

2 {

3 // ...

4

5 public function getUsername()

6 {

7 return $this->user->getUsernameValue();

8 }

9 }

10

11 class User

12 {

13 // ...

14

15 public function getUsernameValue()

16 {

17 return $this->username->getValue();

18 }

19 }

However, if you’re going to do this for more than 2 or 3 values, the interface is going to start to
get pretty bloated. Another way might be to add a method to the Recipe class to return all its

⁵⁶http://en.wikipedia.org/wiki/Law_of_Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

Getting Started 150

values as an array or value object. There are other ways you could do this, but for this project let’s
use a combination of these 2 methods. If only 1 or 2 getters are required we’ll consider using them,
otherwise we’ll use a read method to return an object (I prefer objects to arrays because, even though
they require extra code, the content is well defined and they can be immutable, However, using an
array or object with public properties, might be appropriate for your project).

Exposing Recipe Values

With this in mind, let’s expose the contents of the Recipe class via a details value object. We do this
by creating 2 new classes, one for Recipe and one for User:

src/Domain/RecipeDetails.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class RecipeDetails

6 {

7 /** @var CocktailName */

8 private $name;

9

10 /** @var UserDetails */

11 private $user;

12

13 /** @var Rating */

14 private $rating;

15

16 public function __construct(

17 CocktailName $name,

18 UserDetails $user,

19 Rating $rating

20) {

21 $this->name = $name;

22 $this->user = $user;

23 $this->rating = $rating;

24 }

25

26 /** @return string */

27 public function getName()

28 {

29 return $this->name->getValue();

30 }

Getting Started 151

31

32 /** @return string */

33 public function getUsername()

34 {

35 return $this->user->getUsername();

36 }

37

38 /** @return float */

39 public function getRating()

40 {

41 return $this->rating->getValue();

42 }

43 }

src/Domain/UserDetails.php

1 <?php

2

3 namespace CocktailRater\Domain;

4

5 final class UserDetails

6 {

7 /** @var Username */

8 private $username;

9

10 public function __construct(Username $username)

11 {

12 $this->username = $username;

13 }

14

15 /** @return Username */

16 public function getUsername()

17 {

18 return $this->username->getValue();

19 }

20 }

And add the following method to User and Recipe:

Getting Started 152

CocktailRater/Domain/Recipe.php

1 /** @return RecipeDetails */

2 public function getDetails()

3 {

4 return new RecipeDetails(

5 $this->name

6 $this->user->getDetails(),

7 $this->rating

8);

9 }

CocktailRater/Domain/User.php

1 /** @return UserDetails */

2 public function getDetails()

3 {

4 return new UserDetails($this->username);

5 }

Then we can update our query handler to use these like so:

CocktailRater/Application/Query/ListRecipesHandler.php

1 /** @return ListRecipesResult */

2 public function handle(ListRecipesQuery $query)

3 {

4 $result = new ListRecipesResult();

5

6 foreach ($this->getAllRecipesSortedByRating() as $recipe) {

7 $details = $recipe->getDetails();

8

9 $result->addRecipe(

10 $details->getName(),

11 $details->getRating(),

12 $details->getUsername()

13);

14 }

15

16 return $result;

17 }

Getting Started 153

At this point, we can also remove getUsername from the User class and getName, getRating and
getUser from the Recipe class.

Already this is looking a lot neater, but we’re still violating the law of demeter at 2 levels in the
handler. Firstly, we’re calling getDetails on a Recipe objects which are not an immediate friends
of the handler (since they fetched from a repository). Secondly, we’re calling the get methods on the
details object returned from the Recipe objects. Considering this is happening just at the application
layer, I don’t really think this is the biggest crime and therefore could be left as is. That said, let’s
still try to tidy it up some more.

To do this, let’s get rid of all the calls to the getters on the details objects. We can do this by simply
passing in the details object to the result class constructor. The problem with this is that is adds a
dependency on the domain model from anywhere that a result object is used.When using a language
like Java, C++ or C#, this becomes something that really needs to be fixed, since separate packages
need to be able to be compiled and deployed independently. However, PHP doesn’t work like that
(maybe one day it will). Even so, it’s probably still good practice to work this way. Also, since we
don’t want any other layers which talk to the application, to create result objects, let’s make the result
into an interface. Then we can have a concrete result Data Transfer Object, which can know about
the details class. Because the dependency from outside is now on the interface only, it’s decoupled
form the domain.

Here’s the updated code:

src/Application/Query/ListRecipesResult.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 interface ListRecipesResult

6 {

7 /** @return array */

8 public function getRecipes();

9 }

Getting Started 154

src/Application/Query/ListRecipesResultData.php

1 <?php

2

3 namespace CocktailRater\Application\Query;

4

5 use Assert\Assertion;

6 use CocktailRater\Domain\RecipeDetails;

7

8 final class ListRecipesResultData implements ListRecipesResult

9 {

10 /** @var RecipeDetails[] */

11 private $recipes = [];

12

13 public function __construct(array $recipes)

14 {

15 Assertion::allIsInstanceOf($recipes, RecipeDetails::class);

16

17 $this->recipes = $recipes;

18 }

19

20 /** @return array */

21 public function getRecipes()

22 {

23 return array_map(

24 function (RecipeDetails $recipe) {

25 return [

26 'name' => $recipe->getName(),

27 'rating' => $recipe->getRating(),

28 'user' => $recipe->getUsername()

29];

30 },

31 $this->recipes

32);

33 }

34 }

Getting Started 155

CocktailRater/Application/Query/ListRecipesHandler.php

1 /** @return ListRecipesResult */

2 public function handle(ListRecipesQuery $query)

3 {

4 return new ListRecipesResultData(

5 array_map(function (Recipe $recipe) {

6 return $recipe->getDetails();

7 },

8 $this->getAllRecipesSortedByRating())

9);

10 }

That’s almost done! The handler is much neater. But we’ve still not quite conformed to the Law of
Demeter, because it still gets the recipe from the repository. In most circumstances, particularly in the
domain model, I’m very diligent about obeying the Law of Demeter. However, in this circumstance,
I feel we’ve done enough. A good exercise is, to consider how to obey it completely in the handler,
but for now I’m going to leave it as it is.

Have we gone too far?

You might be thinking to yourself that this is all a bit excessive. That we have an aggregate, which
returns a details value object, which is then copied into a results DTO, which looks almost the same
as the value object, and we have an extra interface to describe the result DTO. You might also think
that simply passing back the details value object from the handler would be sufficient. Or, that even
that would be too much, and the details class is overkill, and a simple associative array would have
done. You may even be thinking this looks far too much like Java.

If you are thinking any of these things you are right! None of this is necessary. But, depending on the
scale of the project, howmany people are going to be working with the code, the growth expectancy
of the project, and even the budget, this level of detail may be extremely valuable. What we’ve done
here is apply best practices, we’ve made the code as explicit and self documented as possible. As a
result future developers (and our future selves) will thank us for this.

What Next?

So far we’ve managed to get the first feature’s tests to pass. However, we’ve done it in quite an
isolated way by considering this single query on its own. In the next chapter we’ll quickly add the
second feature, then we can analyse the two to find similarities. We’ll then use this knowledge to
refactor what we have into a more generic form. After that we’ll try to display the application’s
output on a page.

	Table of Contents
	Preface
	Source Code
	Discussing Book Content
	Getting in Contact
	Thanks

	Prerequisites
	Terms and Conventions
	Some Terms
	Conventions

	The Development Environment
	Requirements
	Vagrant

	Getting up to Speed with PHP
	Namespaces
	Typehints
	Front Controllers
	Standards
	Docblocks
	The Autoloader
	Composer
	Keeping Logic and Display Code Separate
	Coding Style

	Methodologies, Techniques and Tools
	Object Oriented Programming (OOP)
	Design Patterns
	Value Objects & Immutability
	Entities
	Dependency Injection (DI) & Inversion of Control (IoC)
	The SOLID Principles
	Functional Programming (FP)
	Command Query Separation (CQS)
	Naming
	Refactoring
	Object Calisthenics
	Automated Testing
	Test Driven Development (TDD)
	Behaviour Driven Development (BDD)
	Uncle Bob's Clean Code
	Domain Driven Design (DDD)
	Command Query Responsibility Segregation (CQRS)
	Agile
	User Stories

	An Introduction to Testing and TDD
	Types of Test
	The Double Feedback Loop
	Given, When, Then
	Acceptance Testing with Behat
	Mink
	Unit Testing with PHPSpec
	Test Doubles
	Katas

	Building the Application
	Getting Started
	The Application
	Creating the Project
	The First Story
	Application Structure
	Scenario: View an empty list of recipes
	Scenario: View a list with 1 recipe
	Scenario: Recipes are sorted by rating
	Tidying Up
	What Next?

