

Modern Application Building with HTML and
Javascript

Joseph Bonds

This book is for sale at http://leanpub.com/modern-app-building

This version was published on 2017-10-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2017 Joseph Bonds

http://leanpub.com/modern-app-building
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Joseph Bonds by spreading the word about this book on Twitter!

The suggested tweet for this book is:

learn to build apps

The suggested hashtag for this book is #modernappbuilding.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#modernappbuilding

http://twitter.com
https://twitter.com/intent/tweet?text=learn%20to%20build%20apps
https://twitter.com/search?q=%23modernappbuilding
https://twitter.com/search?q=%23modernappbuilding

To my exceptionally tolerant friends and relatives

Contents

About This Book . 1
Javascript Is Now a General Purpose Application Building Language 1

About the Author . 3

Getting Started . 4
Questions? . 4
Machine . 4
Program Editor . 4
GIT . 4
Chrome Browser . 5
Node.js . 5
Express . 5
Heroku . 5
Download The Sample Applications . 5

File Editor Sample . 7
General Application (App) Requirements . 7
The Server Component . 7
Setting Up the Server Component . 7
The Server Code . 10
Server Code Commentary . 14
Server Summary . 16
Testing the Server . 16
The Client Code . 19
Local Storage . 26
XMLHttpRequest . 26
File upload . 27
Client Code Commentary . 27
Client Code Summary . 30
Testing the Application . 30
Test 1 File Editor Screen . 30
Test 2 “Up” button . 32
Click a file button . 33

CONTENTS

Test 3 Edit the content and write a new file . 34
Test 4 Edit and save a file . 35
Test 5 create a subdirectory . 38
Test 6 Delete a File . 40
Test 7 Delete a Directory . 41
Test 8 Download a File . 43
Test 9 Upload a File . 44
Build Your Own Application . 46
Load Your Application to the Server . 46

About This Book
Javascript Is Now a General Purpose Application
Building Language

Javascript entered the scene in the realm of building web pages enabling authors to add dynamic
effects to web pages. It has grown up to become a language capable of expressing the entire
application. Now in order to program an application that will run anywhere (any hardware, any
operating system) you need only know one procedural language (javascript), html, and css. No
longer is it necessary to know a different language, e. g. PHP, Java, Ruby, or Perl for server side
“backend” logic. That is the point of this book.

I will demonstrate in the book how to build an application using just javascript and html that will
run as a web page or local application (with no need for an internet connection. And you can run
it on a Windows machine, a Mac, or a Linux machine without changes. You can run it on mobile
devices, too.

Any application can be written this way, major number crunching, impressive graphics, data base
intensive applications.

No doubt, the legacy languages will survive for quite some time for various reasons. Seldom will
performance be the actual determinant. Javascript has become fast and is becoming faster as time
goes on.

This book deliberately emphasizes the minimalist basics. Using the techniques presented here will
enable development of sophisticated applications without the need to go far afield. Yes, you can
add various frameworks to simplify your life as a developer, but it is still all just javascript. If you
understand this book, you are well equipped to tackle the many frameworks that have evolved.

The code for the samples is available and is downloaded during the “Getting Started” chapter. You
may key it in yourself if doing so helps you to learn (recommended), but the downloaded code is
there for comparison if you get stuck on some stupid syntax error.

Node JS is used to implement server side code in this book. Most of the logic in the samples is
client side, the little server side code could easily be accomplished in PHP or any other server side
language.

I use Heroku as my web host. Heroku is developer friendly with free accounts for developers, and
friendly scaling to paid production traffic volumes. I encourage you to get an account so that you
may show off your accomplishments.

HTML5 is used to define the pages of the samples

About This Book 2

The book consists of three examples: a file editor, a chat window, and a graphics editor. The file
editor illustrates the relationship of a page’s html to the client side javascript and the server side
function. The chat window allows multiple clients to chat to illustrate how to implement multiple
client applications such as competitive game playing or collaboration. The graphics editor illustrates
how to draw grapics and animate them.

About the Author
I began programming in 1970. For many of you, this was way back in the dark ages, before PCs
and Macs, and way before Mobile anything. During all of this time I did system programming and
application development using a wide variety of programming languages, operating systems, and
tools. I was pretty much on the bleeding edge the whole time, eagerly learning new languages and
technologies as they happened. I expect this to continue and if anything accelerate. I expect the web
to be with us for some time to come, thus I expect the contents of this book to remain relevant for
a good while.

I have found programming to be terribly addictive. Google is my best friend. Despite receiving a
reasonable retirement income, I just cannot seem to quit programming. I guess it is somewhat like
playing video games. There is an objective and a burst of adrenaline when the objective is achieved.
Since most projects can be broken into a series of easily achievable objectives, the flow is constant.
I am just an adrenaline junky.

I hope you will forgive me if I should infect you with such an addiction. It has been a profitable one
for me. I wish you similar success.

– Joseph Bonds

danceswithdolphin@gmail.com

Getting Started
To use this book effectively to learn to develop applications, you will need a few tools: a machine, an
editor, a browser, etc. One of the good things about this approach is that you have a lot of latitude.

Questions?

I would encourage you to email any questions you have about this book to danceswithdol-
phin@gmail.com. Please place the word “book” in the subject.

Machine

You may choose to develop on just about any machine: Windows, Mac, Linux, Raspberry PI. I am
using a HPWindows 10 laptop as I write this and develop the sample applications. It all works pretty
much the same way on any of the other platforms. I suspect that most of my readers will be on either
Windows or OS X. I will endeavor to point out differences within the text where differences exist.

Program Editor

Your choice is somewhat contingent on your choice of platform. I personally use VIM which is
available on all the platforms. On Windows I use the GVIM variant. This is available for download
for a variety of platforms here1. Basically, any text editor will do. I have been using VIM for years
in the Linux and Windows environments. The handy features an editor should have are syntax
coloring, matching parenthesis and brace highlighting, search and replace, and differencing.

GIT

GIT is a version control system that has become insanely popular. You will use it in this book to
download the samples for this book and to push your projects to the heroku server if you wish to
share your application on-line so that you can show off your handiwork to others. You can download
it here2.

Signup for a free account at github.com3, you will need the credentials to download the sample code.

1http://www.vim.org
2http://git-scm.com
3https://github.com

http://www.vim.org/
http://git-scm.com/
https://github.com/
http://www.vim.org/
http://git-scm.com/
https://github.com/

Getting Started 5

Chrome Browser

Your web browser includes the javascript interpreter which will execute all of your client side logic. I
use Chrome to have access to an up to date version of HTML5 and javascript (which is still a rapidly
evolving language). The Chrome javascript engine is also at the heart of Node.js (see below) which
is the engine that drives server side logic and provides access to your file system. Thus by using
Chrome, you have the same engine driving both the client and server side logic. In theory, you can
use any recent version of another browser. But I prefer Chrome because it has built in developer
tools which are very useful in debugging your code. You can download chrome here4.

Node.js

As mentioned above, your server side logic will be executed by the javascript engine within node.
Node consists of three parts: node, npm, and the Node.js Command prompt. Node is the javascript
engine. Npm is the node package manager. Node.js command prompt is the command window
within which you issue node, npm, and native commands. As of this writing, the most recent version
of node (v6.11.1) does not include a separate command component. For windows, you simply use
the “cmd” shell. Node may be downloaded at https://nodejs.org5.

Express

Express is a npm package which provides web server functionality to node. I will detail the express
installation in the sample program. It is installed within the Node.js Command prompt with the npm
install command.

Heroku

Heroku is a web hosting provider which provides free web hosting to newbies. If your application
becomes insanely popular, you may become a paid subscriber and scale up the number of servers
running your code to meet your demand. Heroku is here6.

Download The Sample Applications

Open the Node.js Command Window. On Windows 10, type “cmd” in the “Ask me anything” box.
Select “Node.js command prompt” or “Command Prompt” (v6.11.1).

4https://www.google.com/chrome/browser/desktop/index.html
5https://nodejs.org
6https://heroku.com

https://www.google.com/chrome/browser/desktop/index.html
https://nodejs.org/
https://heroku.com/
https://www.google.com/chrome/browser/desktop/index.html
https://nodejs.org/
https://heroku.com/

Getting Started 6

Now create or select a directory on your machine where you want the sample

username). “mysample” is the name of the subdirectory to be created for the cloned project. You will
be prompted for your Github user name and password.

• Then, at the “Node.js command prompt”, type the following:

cd Documents

git clone https://github.com/danceswithdolphin/Modern-App-Building-Examples.gi\

t mysample

cd mysample

node server.js

• Your output should look something like this:

C:\Users\joe>cd Documents

C:\Users\joe\Documents>git clone https://github.com/danceswithdolphin/Modern-\

App-Building-Examples.git mysample

Cloning into 'mysample'...

remote: Counting objects: 452, done.

remote: Compressing objects: 100% (323/323), done.

Receiving objects: 82% (371/452) 419 (delta 75) eceiving objects: 81%\

(367/452)

Receiving objects: 100% (452/452), 346.32 KiB | 0 bytes/s, done.

Resolving deltas: 100% (86/86), done.

Checking connectivity... done.

C:\Users\joe\Documents>cd mysample

C:\Users\joe\Documents\mysample>node server.js

Node app is running on port 5000

When you see “\” at the end of a line of code, this line and the following line should be
joined and interpreted as one long line, leaving out the “\”.

Open your browser and type “localhost:5000” to view the application window. You are now running
the application off-line in your browser. At this point you can play with the sample application to
your hearts content. You may skip forward to the testing sections in the following chapters and run
the tests here to develop an understanding of the applications. Explore the source code to see how
much of it makes sense intuitively.

In the following chapters we will build the apps in another directory step by step.

At the end of the book you will understand how to build applications with these tools.

File Editor Sample
General Application (App) Requirements

An application (app) should be capable of the following:

1. Presenting a user interface (UI) to the app user which can display information to the user,
accept information from the user, and provide app navigation to the user (button clicks, etc).

2. Retrieve information (from a file system, a database, etc.).
3. Store information (in a file system, a database, etc.).
4. Maintain state information (“remember”) the user’s prior responses).

This example illustrates all of this and may be run offline (with no internet connection, on laptops
and desktops which use a variety of operating systems and hardware) or online from a webserver
as a browser app on a mobile device, laptop, or desktop.

The Server Component

In any case, this app has a server component. This server component runs on the laptop or desktop
for offline use or run on the server for online use. The server component provide access to file
systems and databases and possibly other resources of the host.

Setting Up the Server Component

We will first setup the server component of this application, later we will implement the user
interface for the application.

First create a directory for your project.

• Open the Command PromptWindow. Create a new directory to contain the project. I used the
following commands to create the directory “mysample” in my home directory and a “public”
subdirectory for static assets and a subdirectory “data” of “public” for data files:

File Editor Sample 8

md mysample

cd mysample

md public

cd public

md data

cd ..

• Then initialize your project with the “npm init” command:

npm init

• You may simply hit enter to answer all the questions presented. This updates the package.json
file in your directory. Now, to install express, enter the following command:

npm install express --save

• The “–save” option adds an entry for express in the package dependences of package.json.
Your directory is now prepared to contain the elements of your applications, which we will
add to this directory and subdirectories.

• Your Command Prompt window should look something like this at this point:

C:\Users\joe>md mysample

C:\Users\joe>cd mysample

C:\Users\joe\mysample>md public

C:\Users\joe\mysample>cd public

C:\Users\joe\mysample\public>md data

C:\Users\joe\mysample\public>cd ..

C:\Users\joe\mysample>npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See `npm help json` for definitive documentation on these fields

and exactly what they do.

Use `npm install <pkg> --save` afterwards to install a package and

save it as a dependency in the package.json file.

Press ^C at any time to quit.

name: (mysample)

version: (1.0.0)

description:

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

File Editor Sample 9

About to write to C:\Users\joe\mysample\package.json:

{

"name": "mysample",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

"author": "",

"license": "ISC"

}

Is this ok? (yes)

C:\Users\joe\mysample>npm install express --save

mysample@1.0.0 C:\Users\joe\mysample

`-- express@4.14.1

+-- accepts@1.3.3

| +-- mime-types@2.1.14

| | `-- mime-db@1.26.0

| `-- negotiator@0.6.1

+-- array-flatten@1.1.1

+-- content-disposition@0.5.2

+-- content-type@1.0.2

+-- cookie@0.3.1

+-- cookie-signature@1.0.6

+-- debug@2.2.0

| `-- ms@0.7.1

+-- depd@1.1.0

+-- encodeurl@1.0.1

+-- escape-html@1.0.3

+-- etag@1.7.0

+-- finalhandler@0.5.1

| +-- statuses@1.3.1

| `-- unpipe@1.0.0

+-- fresh@0.3.0

+-- merge-descriptors@1.0.1

+-- methods@1.1.2

+-- on-finished@2.3.0

| `-- ee-first@1.1.1

+-- parseurl@1.3.1

+-- path-to-regexp@0.1.7

+-- proxy-addr@1.1.3

File Editor Sample 10

| +-- forwarded@0.1.0

| `-- ipaddr.js@1.2.0

+-- qs@6.2.0

+-- range-parser@1.2.0

+-- send@0.14.2

| +-- destroy@1.0.4

| +-- http-errors@1.5.1

| | +-- inherits@2.0.3

| | `-- setprototypeof@1.0.2

| +-- mime@1.3.4

| `-- ms@0.7.2

+-- serve-static@1.11.2

+-- type-is@1.6.14

| `-- media-typer@0.3.0

+-- utils-merge@1.0.0

`-- vary@1.1.0

npm WARN mysample@1.0.0 No description

npm WARN mysample@1.0.0 No repository field.

C:\Users\joe\mysample>

The Server Code

Using your text editor, key the following code into a file “server.js” in your application directory
(“mysample” above).

1 // server.js

2 // load the things we need

3 var express = require('express');

4 var app = express();

5 var fs = require("fs");

6 var path = require('path');

7

8

9 var fileName = "";

10 var dirName = "";

11 var mydata = "";

12 var subtasks = 0;

13 var subdirs = [];

14 var files = [];

15 function f_stats_complete (res, subdirs, files) {

16 res.send('?subdirs='+subdirs+'&files='+files);

File Editor Sample 11

17 }

18 function createCallback (_fullpath, _res) {

19 return function (err, stats) {

20 if (err) {

21 console.log('fs.stat err='+err);

22 } else if (stats.isDirectory()) {

23 subdirs.push(_fullpath);

24 } else if (stats.isFile()) {

25 files.push(_fullpath);

26 }

27 if (--subtasks === 0) {

28 f_stats_complete (_res, subdirs, files);

29 }

30 }

31 }

32

33 app.set('port', (process.env.PORT || 5000));

34

35 // set the view engine to ejs

36 app.set('view engine', 'ejs');

37 app.use(express.static(__dirname + '/public'));

38

39 app.get('/xhr-stat',function(req,res){

40 fileName=req.query.filename;

41 fs.stat(fileName,(err,stats) => {

42 res.send('?err='+err+'&stats='+JSON.stringify(stats));

43 });

44 });

45

46 app.get('/xhr-unlink-file', function(req, res){

47 fileName=req.query.filename;

48 fs.unlink(fileName, (err) => {

49 if (err) throw err;

50 res.send('deleted '+ fileName + ' successfully');

51 });

52 });

53

54 app.get('/xhr-write', function(req, res){

55 fileName=req.query.filename;

56 mydata=req.query.mydata;

57 fs.open(fileName, 'w', (err,fd) => {

58 if (err) {

File Editor Sample 12

59 console.log('err.code='+err.code);

60 console.log('err='+err);

61 if (err.code === 'ENOENT'){

62 console.log('error='+err);

63 res.send('error=ENOENT')

64 } else {

65 throw err;

66 }

67 }

68 else {

69 mydata = mydata.replace(/[\r]/gm,'');

70 fs.writeFile(fd, mydata, (err, data) => {

71 if (err) throw err;

72 fs.close(fd, (err) => {

73 if (err) throw err;

74 });

75 res.send('written successfully');

76 });

77 }

78 });

79 });

80

81 app.get('/xhr-read', function(req, res){

82 fileName=req.query.filename;

83 fs.open(fileName, 'r', (err,fd) => {

84 if (err) {

85 if (err.code === 'ENOENT'){

86 res.send('error=ENOENT')

87 } else {

88 res.send('error='+err);

89 }

90 } else {

91 fs.readFile(fd, (err, data) => {

92 if (err) throw err;

93 mydata = data.toString();

94 fs.close(fd, (err) => {

95 if (err) throw err;

96 });

97 res.send(mydata);

98 });

99 };

100 });

File Editor Sample 13

101 });

102

103 app.get('/xhr-mkdir', function(req, res){

104 dirName=req.query.dirname;

105 fs.mkdir(dirName, (err) => {

106 if (err) {

107 res.send('?error='+err);

108 } else {

109 res.send();

110 }

111 });

112 });

113

114 app.get('/xhr-rmdir', function(req, res){

115 dirName=req.query.dirname;

116 fs.rmdir(dirName, (err) => {

117 if (err) {

118 res.send('?error='+err);

119 } else {

120 res.send('OK');

121 }

122 });

123 });

124

125 app.get ('/xhr-readdir', function(req,res){

126 if (req.query.dirname) {

127 dirName=req.query.dirname;

128 subdirs=[];

129 files=[];

130 fs.readdir(dirName, (err,data) => {

131 if (err) {

132 if (err.code === 'ENOENT'){

133 res.send('error=ENOENT')

134 } else {

135 console.log('error='+err)

136 res.send('error='+err);

137 throw err;

138 }

139 } else {

140 var arrLength=data.length;

141 subtasks = arrLength;

142 if (subtasks === 0){

File Editor Sample 14

143 res.send('error=no entries in directory');

144 }

145 for (var i =0; i < arrLength; i++) {

146 var fullpath=dirName+path.sep+data[i];

147 var stats = null;

148 fs.stat(fullpath, createCallback (fullpath, res));

149 }

150 }

151 });

152 } else {

153 res.send('error=dirname missing from xhr-readdir parameters');

154 }

155 });

156

157 app.listen(app.get('port'), function() {

158 console.log('Node app is running on port', app.get('port'));

159 });

Server Code Commentary

Lines 3-6 load the required modules into the javascript engine. The node require function loads
a module to make the functionality of the module available to the code which follows. More
information on node modules may be found here7. Require may be used to load code from various
sources, packages installed with NPM, core modules provided with node, modules you have written
yourself, etc.

Express provides a lot of functionality: it establishes a web server which can listen for http requests
on a port, it serves static assets such as your html and images, and it provides a routing mechanism
to code in your file.

Line 4 creates an object “app” for your webserver. This allows the following code to refer to the
webserver.

Line 5, creates your node file system object, which permits your code to access your machine’s file
system. The node file system api is documented here8.

Line 6, creates a path object. We use this only to discover the proper path separator to use between
directory names for the underlying operating system. I. E. ‘\’ for Windows, ‘/’ for everyone else.

Lines 9-14 declare global variables which will be used in the following code.

Line 15-17 define a function “f_stats_complete” which will be called asnchronously when all the
entries in a directory have been classified as files or subdirectories. The first parameter is the response

7https://nodejs.org/docs/v0.4.1/api/modules.html
8https://nodejs.org/api/fs.html

https://nodejs.org/docs/v0.4.1/api/modules.html
https://nodejs.org/api/fs.html
https://nodejs.org/docs/v0.4.1/api/modules.html
https://nodejs.org/api/fs.html

File Editor Sample 15

object captured at the time createCallback was called. The second and third parameters, subdirs and
files, are arrays of subdirectories and files that are used by the client side logic to build the user
interface.

Lines 18-31 is a factory which generates unnamed functions which are used as asynchronous
callbacks for file system stat calls which are made for all the entries in a directory. This factory
method of creating callbacks utilizes the concept of closures to preserve the values of the parameters
of createCallBack until the events occur.

Line 33 sets the port that the express webserver should listen to for incoming http requests. In a server
environment such as Heroku, this is taken from an environment variable provided by the service
provider, else in a development environment, such as your laptop, a constant of 5000 is assigned.

Line 36 sets the view engine to “ejs”, embedded javscript. This is not utilized in this example, but is
useful if your application uses templating. The other choice is “jade”.

Line 37 sets the subdirectory from which static assets, such as html and images, javascript, and
images are served. References to assets are relative to this subdirectory. Thus html files would be
served from C:\Users\joe\mysample\public.

Lines 39-44 illustrate the “routing” feature of express which associates http requests with javascript
code. A http get request for “/xhr-stat” will execute the unnamed function defined here. The
parameters provided to the unnamed function, “req” and “res” are objects used by express to
encapsulate the http request and the http response, respectively.

Line 40 the file name to be “stat”ed is retrieved from the request.

Line 41 invokes the file system stat function passing the file name and a function to be executed
asynchronously on completion. The completion event passes an error object and a stats object to the
completion function. The “()⇒ {}” construct is an es6 arrow function definition. The arrow function
definition is a new shorthand notation for anonymous function definition. Though arrow functions
and anonymous functions are similar, there are some differences in scoping and interpretation. I
suggest googling “javascript arrow function” to develop an understanding of this esoterica.

Line 42 sends the html response back to the requestor. Note that the string sent back looks like a
html query, i.e. url?parm1=val1&parm2=val2. A good explanation of JSON embedded in a good es5
javascript book is here9.

Lines 46-52 is the handler for a request to delete (unlink) a file. This and the following handlers are
so similar to the one above that I do not feel compelled to labor the detailed explanation.

Lines 54-79 is the handler for a write request. Something new here is the “throw” statement which
displays the unexpected error on the console in the Command Prompt window.

Lines 81-101 is the read file handler. The ENOENT error code indicates that the file does not exist
during the open. Open errors are sent back to the client as an “error=” clause in the query string
since these errors are likely to actually be encountered and the client should be able to respond
sensibly. The entire content of the file is read into a buffer and passed as the data parameter to the

9http://speakingjs.com/es5/ch22.html

http://speakingjs.com/es5/ch22.html
http://speakingjs.com/es5/ch22.html

File Editor Sample 16

asynchronous callback of the read. This buffer is converted to a string which is sent back to the
client after the file is closed.

Lines 103-112 is the handler for creating a new directory. If an error is encountered it is sent to the
client.

Lines 114-123 is the handler for removing a directory. If an error is encountered, it is sent to the
client.

Lines 125-155 handles a request to read a directory and builds arrays of the files and subdirectories
contained within it. This it accomplishes by launching fs.stat calls for each entries with callbacks
created by createCallback above.

Lines 157-159 starts the server. Line 158 logs the message announcing the port it is running on.

Server Summary

The bulk of the server code are response functions that are “routed” from http urls by express. For
example “http://localhost:5000/xhr-read” is routed to the function defined beginning at line 81. Each
of the response functions accepts a request parameter “req”, and a “response” parameter “res”. Each
response function retrieves information from the request parameter which elaborates the details of
the desired action. The response function processes by executing the desired action by invoking “fs”
file system calls. Finally the response function sends the response with “res.send”. The “xhr-“ prefix
is intended to signal that the client will be utilizing XMLHttpRequest to invoke it. The server we
just built will permit us to build an application that is capable of browsing directories, reading and
writing text files, creating directories, and deleting directories and files.. It illustrates the nature of
asynchronous processing which is so central to the Node philosophy. This server can be be reused as
the heart of a large class of web applications that require reading and writing host files and serving
html resources.

Testing the Server

Serving an HTML Page

Place a simple html page in the public subdirectory of your project. For example, “hello.html”.

1 <h1>Hello, World</h1>

• Navigate to your project in the Command Prompt window and start the server:

File Editor Sample 17

C:\Users\joe>cd mysample

C:\Users\joe\mysample>node server.js

Node app is running on port 5000

Now open a Chrome browser window and key “localhost:5000/hello.html” in the Chrome Address
bar and hit the enter key. You should see:

Now key “localhost:5000/xhr-write?filename=public/data/x.txt&mydata=xxxxxxx” in the Chrome
Address bar and hit the enter key. You should see:

File Editor Sample 18

Now key “localhost:5000/xhr-read?filename=public/data/x.txt” in the Chrome Address bar and hit
the enter key. You should see:

Note that filename is relative to the project directory. Thus the file just written and read is
C:\Users\joe\mysample\public\data\x.txt.

The other xhr functions can be similarly tested.

File Editor Sample 19

Here we will proceed to build the sample applications user interface as a client web page which will
exercise the the remaining functions.

The Client Code

With your text editor, key the following file “fileeditor.html” and save it in your public directory

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 <meta name="viewport" content="width=device-width, initial-scale=2">

6 <title>File Editor</title>

7 <style>

8 body {font-size:large;}

9 button {font-size:large;}

10 .button {font-size:large;}

11 input {font-size:large;}

12 textarea {font-size:large;}

13 </style>

14 <script>

15 window.onerror = function (errorMsg, url, lineNumber, column, errorObj) {

16 alert('Error: ' + errorMsg + ' Script: ' + url + ' Line: ' + lineNumber

17 + ' Column: ' + column + ' StackTrace: ' + errorObj);

18 }

19

20 var responseText = [];

21 var errors = [];

22 var subdirs = [];

23 var subdirsi = '';

24 var files = [];

25 var innerhtml='';

26 var filesep='\\';

27 var the_text = '';

28

29 function handleFileSelect(evt) {

30 var upfiles = evt.target.files; // FileList object

31 var f = upfiles[0];

32 var reader = new FileReader();

33 reader.onload = (function(theFile) {

34 return function(e) {

File Editor Sample 20

35 document.getElementById('textarea').value = e.target.result;

36 document.getElementById('file_name').value = document.getElementById('dir_name'\

37).value + '/' + escape(f.name);

38 f_save();

39 // f_write();

40 };

41 })(f);

42 reader.readAsText(f);

43 }

44

45

46 function f_download() {

47 var myfile=document.getElementById("file_name").value;

48 myfile = myfile.replace('public/', '');

49 innerhtml = 'Download';

50 document.getElementById("download_div").innerHTML = innerhtml;

51 document.getElementById("download").click();

52 }

53

54 function f_up() {

55 var mydir = document.getElementById("dir_name").value;

56 var i = mydir.lastIndexOf('/');

57 if (i > 0) {

58 mydir = mydir.substring(0,i);

59 } else {

60 mydir = '/';

61 }

62 document.getElementById("dir_name").value = mydir;

63 f_save();

64 f_load();

65 }

66

67 function f_write(){

68 var myfile=document.getElementById("file_name").value;

69 var mydata=document.getElementById("textarea").value;

70 var params="filename="+myfile+"&mydata="+encodeURIComponent(mydata);

71 var url="xhr-write?"+params;

72 var http=new XMLHttpRequest();

73 http.open("GET", url, true);

74 http.onreadystatechange = function()

75 {

76 if(http.readyState == 4 && http.status == 200)

File Editor Sample 21

77 {

78 responseText = http.responseText;

79 responseText = responseText.replace(/\\/g,'/');

80 var urlParams = new URLSearchParams (responseText);

81 if (urlParams.has('error')) {

82 document.getElementById("response").innerHTML = responseText;

83 } else {

84 f_load();

85 }

86 }

87 }

88 http.send(null);

89 }

90

91 function f_makedir(){

92 var mydir=document.getElementById("dir_name").value;

93 var params="dirname="+mydir;

94 var url="xhr-mkdir?"+params;

95 var http=new XMLHttpRequest();

96 http.open("GET", url, true);

97 http.onreadystatechange = function()

98 {

99 if(http.readyState == 4 && http.status == 200)

100 {

101 responseText = http.responseText;

102 var urlParams = new URLSearchParams (responseText);

103 if (urlParams.has('error')) {

104 document.getElementById("response").innerHTML =urlParams.get('error');

105 }

106 else

107 {

108 f_load();

109 }

110 }

111 }

112 http.send(null);

113 }

114

115 function f_select_file (selfile) {

116 document.getElementById("response").innerHTML = '';

117 document.getElementById("file_name").value = selfile;

118 window.localStorage["filename"] = selfile;

File Editor Sample 22

119 var url = "xhr-read";

120 var params = "filename=" + selfile;

121 var http=new XMLHttpRequest();

122 http.open("GET", url+"?"+params, true);

123 http.onreadystatechange = function()

124 {

125 if(http.readyState == 4 && http.status == 200)

126 {

127 document.getElementById("textarea").value = http.responseText;

128 }

129 }

130 http.send(null);

131 }

132

133 function f_delete_dir () {

134 document.getElementById("response").innerHTML = '';

135 var seldir = document.getElementById("dir_name").value;

136 var url = "xhr-rmdir";

137 var params = "dirname=" + seldir;

138 var http=new XMLHttpRequest();

139 http.open("GET", url+"?"+params, true);

140 http.onreadystatechange = function()

141 {

142 if(http.readyState == 4 && http.status == 200)

143 {

144 f_load();

145 }

146 }

147 http.send(null);

148 }

149

150 function f_delete_file () {

151 document.getElementById("response").innerHTML = '';

152 var selfile = document.getElementById("file_name").value;

153 var url = "xhr-unlink-file";

154 var params = "filename=" + selfile;

155 var http=new XMLHttpRequest();

156 http.open("GET", url+"?"+params, true);

157 http.onreadystatechange = function()

158 {

159 if(http.readyState == 4 && http.status == 200)

160 {

File Editor Sample 23

161 document.getElementById("response").innerHTML = "deleted/loading";

162 f_load();

163 }

164 }

165 http.send(null);

166 }

167

168 function f_select_subdir (subdir) {

169 window.localStorage['dirname'] = subdir;

170 document.getElementById("dirs_div").innerHTML = 'There are no subdirectories';

171 document.getElementById("files_div").innerHTML = 'There are no files in this d\

172 irectory';

173 f_load();

174 }

175

176 function f_readdir () {

177 var dirname=window.localStorage['dirname'];

178 document.getElementById("dirs_div").innerHTML = 'Working, Please Wait....';

179 document.getElementById("files_div").innerHTML = '';

180 var url = "xhr-readdir";

181 var params = "dirname=" + dirname;

182 var http=new XMLHttpRequest();

183 http.open("GET", url+"?"+params, true);

184 http.onreadystatechange = function() {

185

186 if (http.readyState == 4 && http.status == 200)

187 {

188 responseText = http.responseText;

189 responseText = responseText.replace(/\\/g,'/');

190 var urlParams = new URLSearchParams (responseText);

191 if (urlParams.has('error')) {

192 document.getElementById("dirs_div").innerHTML = responseText;

193 } else {

194 innerhtml = 'Subdirectories: ';

195 if (urlParams.has('subdirs')){

196 subdirs = urlParams.get('subdirs');

197 subdirs=subdirs.split(",");

198 var n = subdirs.length;

199 if (n > 0 && subdirs[0] > '') {

200 for (var i = 0; i< n; i++) {

201 subdirsi = subdirs[i];

202 innerhtml += '<button type="button" onclick="f_select_subdir(\''+subdirsi\

File Editor Sample 24

203 +'\');return false">'+subdirs[i]+'</button>';

204 }

205 } else {

206 innerhtml += "There are no subdirectories";

207 }

208 } else {

209 innerhtml += "There are no subdirectories";

210 }

211 document.getElementById("dirs_div").innerHTML = innerhtml;

212

213

214 if (urlParams.has('files')){

215 innerhtml='Files: ';

216 files = urlParams.get('files');

217 files = files.split(",");

218 n = files.length;

219 if (n > 0 && files[0] > '') {

220 for (var i= 0; i < n; i++) {

221 filesi = files[i];

222 innerhtml += '<button type="button" onclick="f_select_file(\''+fil\

223 esi+'\');return false">' + files[i] + '</button>';

224 }

225 } else {

226 innerhtml += 'There are no files in this directory';

227 }

228 } else {

229 innerhtml += 'There are no files in this directory';

230 }

231 document.getElementById("files_div").innerHTML = innerhtml;

232

233

234 }

235 } else if (http.readyState == 4 && http.status == 0)

236 {

237 document.getElementById("dirs_div").innerHTML = 'Subdirectories: There a\

238 re no subdirectories';

239 document.getElementById("files_div").innerHTML = 'Files: There are no files in \

240 this directory';

241 }

242 }

243 http.send(null);

244 }

File Editor Sample 25

245

246 function f_load () {

247 document.getElementById("response").innerHTML = '';

248 if (window.localStorage["dirname"] !== undefined) {

249 document.getElementById("dir_name").value =window.localStorage["dirname"];

250 } else {

251 window.localStorage["dirname"] = document.getElementById("dir_name").value;

252 }

253 if (window.localStorage["filename"] !== undefined) {

254 document.getElementById("file_name").value =window.localStorage["filename"];

255 } else {

256 window.localStorage["filename"] = document.getElementById("file_name").value\

257 ;

258 }

259 f_readdir();

260 document.getElementById('upfilesid').addEventListener('change', handleFileSelect\

261 , false);

262 }

263

264 function f_save () {

265 window.localStorage["dirname"]=document.getElementById("dir_name").value;

266 window.localStorage["filename"]=document.getElementById("file_name").value;

267 }

268 </script>

269 </head>

270 <body onload="f_load();">

271 <h1>File Editor</h1>

272 Directory: <input type="text" size="80" id="dir_name" value="public/data" class=\

273 "button">

274 <button type="button" onclick="f_save();f_load();" class="button">Load</button>

275 <button type="button" onclick="f_up();" class="button">Up</button>

276 <button type="button" onclick="f_makedir();" class="button">Create Subdirectory<\

277 /button>

278 <button type="button" onclick="f_delete_dir();" class="button">Delete directory<\

279 /button>

280

281 <div id="dirs_div">

282 </div>

283 <div id="files_div">

284 </div>

285 <div id="text_area">

286 <textarea id="textarea" rows="18" cols="97" class="button"></textarea>

File Editor Sample 26

287 </div>

288 File: <input type="text" class="button" size="80" id="file_name" value="">

289 <button type="button" onclick="f_save();f_write();" class="button">Write</button>

290 <button type="button" onclick="f_delete_file();" class="button">Delete</button><\

291 br>

292

293 <button type="button" onclick="f_download();" class="button">Download</button>

294 <div id="response"></div>

295 <div style="visibility:hidden;" id="download_div"></div>

296 Upload: <input type="file" class="button" id="upfilesid" name="upfiles[]" />

297 </body>

298 </html>

Local Storage

This example used html5 local storage to maintain state; that is to remember the user’s input from
screen to screen and session to session. Thus we dodge all the issues surrounding “cookies”, session
identifiers, etc. Local Storage is an object automatically maintained by the browser as a window
object (in a mysterious location on your client’s file system). It is accessed as a normal javascript ob-
ject. Thus you may set or get the value associated with “mykey” as window.localStorage[“mykey”].
The implementation of local storage varies a bit from browser to browser, but I think you can count
on being able to store up to 5 megabytes of data this way on all modern browsers. More information
on this feature is available here10.

XMLHttpRequest

This example uses XMLHttpRequest to transfer data between client and server. This allows us
to invoke the functions in our server above to read and write files to the servers file system.
This is an asynchronous protocol defined here11. In general this works as follows: a request is
constructed by calling the constructor XMLHttpRequest(), the open method is used to initialize
the request with the url and parameters, an anonymous unnamed function is assigned to the
request’s onreadystatechange property to handle the completion event, the request’s send method
transmits the request, the comletion event waits for the completion and processes the response.
XMLHttpRequest.readyState == 4means the request is done. http.status == 200means OK successful.

10https://www.w3schools.com/html/html5_webstorage.asp
11https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

https://www.w3schools.com/html/html5_webstorage.asp
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://www.w3schools.com/html/html5_webstorage.asp
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

File Editor Sample 27

File upload

Access to a local file for upload is achieved by html5 facility for selecting a file to upload and reading
the file. This is described here12. Reading client files this way is deemed secure because the user has
chosen the file.

Client Code Commentary

Line 1 Declares this file as a html5 document.

Line 2 The opening html tag.

Line 3 The opening head tag. The javascript script will be in the head section.

Line 4 The meta tag declares the character encoding of the file to be UTF-8.

Line 5 This meta tag defines the viewport width and initial scale.

Line 6 Sets the window title to “File Editor”.

Lines 7-13 CSS style rules setting font-size to “large”. This is particularly important for small screen
mobile devices.

Line 14 The beginning script tag. Javascript code follows.

Lines 15-18 Assign an unnamed function to the window’s error event. This will cause an alert popup
if an error occurs on the page. Useful debugging information is included in the popup.

Lines 20-27 The global variable declarations.

Lines 29-43 Defines an event listener as a named function handleFileSelect which is invoked when a
file is selected for uploading from the client’s machine. evt.target.files is an array of the client’s files
selected. A FileReader object is created which will populate the text area with the text read from
the selected file. The FileReaders load event occurs asynchronously. The contents of the text area
may then be written to the file system by updating the file-name text element and clicking the write
button. The FileReader is started on line 42. Also during the load event, the directory name and file
name from the Directory and File text fields are saved in local storage.

Lines 46-52 This code provides the ability to download the contents of a file which has been read
from the server and is being displayed in the text area. The filename in the file_name text elements
is the path to the file relative to the server’s application directory. HTML file names are relative to
the directory from which the page is displayed, i.e. “public”. Hence the “public” part of the path is
removed in line 48 before constructing an “<a” anchor element in lines 49-50. In line 51, the anchor
element is “click”ed and the file downloads.

12https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications

https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications

File Editor Sample 28

Lines 54-65 The up button provides access to the parent of the directory currently being displayed
by stripping the subdirectory at the end of the path displayed in the dir_name text element, saving
it in local storage, and reloading by calling f_load.

Lines 67-89 Implements theWrite buttonwhichwrites the contents of the textarea to the file specified
in the file_name text element. Line 70 constructs the parameters for the XMLHttpRequest. Note the
use encodeURIComponent to encode the data from the text area to insure proper transmission of
the data. Line 71 constructs the XMLHttpRequest. Line 72 initializes the request. Line 74 defines the
completion function. Line 76 waits for successful completion of the request. Line 84 invokes f_load
to return the screen to a waiting for action state. Line 88 fires the request.

Lines 91-113 Implements the Create Subdirectory button. The parameters and url for the XML-
HttpRequest are constructed in Lines 93 and 94. The XMLHttpRequest is constructed in line 95. The
request is initialized in line 96. The completion event is set in lines 97-111. The response from the
request is processed beginning in line 93. The response is processed as a URLSearchParams object
beginning in line 102. If the response has an error component, it is displayed in the response element
in the html document in line 104, else f_load prepares for the next user activity. Line 112 sends the
request to the server.

Lines 115-131 If the user clicks on one of the buttons created for the files displayed, the response
display is cleared in line 116, the file_name text field is set to the selected file and stored in
localStorage in line 117 and 118. The XMLHhttpRequest is setup to read the selected file in lines
119-121. The completion function in lines 123-129 displays the contents of the file in the textarea.
The XMLHttpRequest is sent in line 130.

Lines 133-148 Processes the Delete directory button.

Line 150-166 Processes the Delete button.

Lines 168-174 Processes a selected subdirectory button by initializing the dirs_div and files_div with
“there are no” messages, then invokes f_load to add buttons to these divs with the subdirectories
and files found for the selected directory.

Lines 176-244 The f_readdir funtion is invoked from the f_load function to display the entries in the
directory recorded in localStorage as buttons within the dirs_div and files_div divisions of the page.
It retrieves the directory name from localStorage in line 177. Then it sets up the XMLHttpRequest
xhr-readdir in lines 180-182. The request completion routine starting at 184 retrieves the response text
which is formatted as a URLSearch string, Line 189 changes backslashes to slashes (for Windows).
Line 190 constructs an URLSearchParams object from the response text. If there is an error parameter,
the error is displayed in the dirs_div division else the subdirs parameter is split at the commas into
an array at line 197. Within the for loop, a button is constructed with an onclick routine specified
as f_select_subdir with the parameter set to the subdirectory name at line 202. If there are no
subdirectorys, the innerhtml is set to “There are no subdirectories” at lines 206 and 209. At line
211 the innerhtml of dirs_div is set to the value accumulated above.

Starting at line 214, the files returned from the XMLHttpRequest are processed in a manner similar
to the subdirectories above. The innerhtml of the files_div is set at line 231.

File Editor Sample 29

At 235 a test for an error status (0), is made. If there is an error, “there are no” messages are displayed.

The XMLHttpRequest is sent at line 243.

Line 246-262 The f_load routine is invoked when the page is loaded and when a restart is desired
without reloading the page. The default dir_name is set from localStorage. If the dirname has a
value, the localStorage is set to that value. Similarly the default filename comes from localStorage
or localStorage is set from the screen.

Line 259, the population of the screen is started with f_readdir here.

Line 260 The upload file event listener is set here for the change event.

Line 264 The f_save routine saves the dir_name and file_name from the screen to localStorage.

Line 268 end of script, the html starts now.

Line 269 end of head tag.

Line 270 body tag with onload event specified as f_load.

Line 271 h1 heading tag for the screen.

Line 272 Text field dir_name default value “public/data”.

Line 274 “Load” button. Invoke f_save and f_load on click.

Line 275 “Up” button. Invoke f_up to go to parent directory.

Line 274 “Create Subdirectory” button. Invoke f_makedir.

Line 278 “Delete directory” button. Invoke f_delete_dir.

line 280 break tag. end of line.

Line 281 dirs_div div tag. The division where subdirectory buttons are displayed.

Line 283 files_div div tag. The division where file buttons are displayed for files within the directory.

Line 285 text_area div tag.

Line 286 textarea tag. The text area in which the selected file contents is displayed and edited. Line
288 The File text area displays the name of the file in the text area. It may be edited to write to a
new file.

Line 289 The Write button to write the text in the textarea to the file specified in the File text area.
Invokes f_save and f_write.

line 290 The Delete button. Deletes the file specified in the File Text area. Invokes f_delete_file.

Line 293 The Download button. Invokes f_download.

Line 295 The hidden download division. The download button works by creating a hidden download
anchor button and programmatically clicking it.

Line 296 the Upload element. This permits the browsing for a file to upload to the host.

File Editor Sample 30

Line 294 Response div. Displays error responses.

Line 297 end of body tag.

line 298 end of html tag.

Client Code Summary

The client code above illustrates how to use XMLHttpRequest to invoke our “xhr-“ response routines
of our server, how to define and access html text and textarea fields, and how to upload and download
text files.

Testing the Application

• Navigate to your project in the Command Prompt window and start the server:

C:\Users\joe>cd mysample

C:\Users\joe\mysample>node server.js

Node app is running on port 5000

Now open a Chrome browser window and key “http://localhost:5000/fileeditor.html” in the Chrome
Address bar and hit the enter key. You should see:

Test 1 File Editor Screen

File Editor Sample 31

The Directory Name entry box.

This box governs much of the operations of this application. The value in this box is “remembered”
in local storage from invocation to invocation. Thus on invocation, the screen will look very similar
to the last session for this client. The subdirectories and files of this directory are shown below. If
you would like to see a different directory, you may key the path here and click the “Load” button”.
The path is relative to the application directory, absolute paths may also be entered here if you have
access to the directory.

The Directory Commands buttons

The “Load” button allow you to view a different directory by first entering the desired path in
the Directory Name entry box. The “Up” button allows you to view the parent directory of the
currently displayed directory. The “Create Subdirectory” button allows you to create a subdirectory
after modifying the Directory Name entry box with the path of the desired new directory. The
“Delete directory” button permits you to delete the displayed directory.

The Subdirectories display area

The subdirectories of the current directory are displayed here as buttons. Clicking one of these makes
that subdirectory the current directory. If there are no subdirectories in the current directory, the
message “There are no subdirectories” appears in this area.

The Files display area

The names of the files in the current directory are displayed as buttons. Clicking one of the buttons,
loads the contents of the file into the Text Area below where it may be edited.

The Text Area

This area displays contents of the current file and may be edited.

The File Name entry box

This displays the name of the current file and may be modified to copy the file. This file name is
also saved in local storage so that it is “remembered” from session to session.

The File Commands buttons

The “Write” button writes the contents of the Text Area to the file currently in the File Name entry
box. The “delete” button deletes the file.

File Editor Sample 32

The Upload and Download Buttons

These buttons may be used to upload files from the client’s machine and to download files to the
client’s machine.

Test 2 “Up” button

Click the “Up” Directory Command Button.

You should see

File Editor Sample 33

Click a file button

Click “public/hello.html”. You should see

File Editor Sample 34

Test 3 Edit the content and write a new file

File Editor Sample 35

Test 4 Edit and save a file

File Editor Sample 36

File Editor Sample 37

File Editor Sample 38

Test 5 create a subdirectory

File Editor Sample 39

File Editor Sample 40

Test 6 Delete a File

File Editor Sample 41

Test 7 Delete a Directory

File Editor Sample 42

File Editor Sample 43

Test 8 Download a File

File Editor Sample 44

Test 9 Upload a File

File Editor Sample 45

The selected file has been uploaded and is now displayed in the text area. You may now write the
file to your file system. Fill in the path and file name click write.

File Editor Sample 46

Build Your Own Application

You may reuse the server and roll your own client to implement your own application at this point
using the techniques you have learned building the sample.

Load Your Application to the Server

Congratulations, you are now an application developer. The following chapters will add a few more
tools to your tool chest. I would encourage you to continue learning, perhaps by pursuing the various
frameworks for javascript development, mastering graphics packages, etc.

• Now push your application to the server, using the following commands (jrb-sampleapp is
your choice of heroku application name):

heroku login

heroku create jrb-sampleapp

git add .

git commit -m "initial commit"

git push heroku master

• This should look something like this:

C:\Users\joe\Dropbox\jrb-sampleapp>heroku login

Enter your Heroku credentials:

Email: danceswithdolphin@gmail.com

Password: **********

Logged in as danceswithdolphin@gmail.com

C:\Users\joe\Dropbox\jrb-sampleapp>heroku create jrb-sampleapp

Creating jrb-sampleapp... done

https://jrb-sampleapp.herokuapp.com/ | https://git.heroku.com/jrb-sampleapp.git

C:\Users\joe\Dropbox\jrb-sampleapp>git add .

warning: LF will be replaced by CRLF in backup/public/chat.html.bak.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/data/foo.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/data/footies.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/foo - Copy.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/foo.txt.

The file will have its original line endings in your working directory.

File Editor Sample 47

warning: LF will be replaced by CRLF in backup/public/footies.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/index.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/root/package.json.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in package.json.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/chat.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/data/downloaded.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/images/screenandfish.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/index.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay2.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay2.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay3.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/cutedolphin.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/framed_screen.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/simple_animation.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in server.js.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in svgs/cutedolphin.svg.

The file will have its original line endings in your working directory.

C:\Users\joe\Dropbox\jrb-sampleapp>git commit -m "initial commit"

[master (root-commit) e3500de] initial commit

warning: LF will be replaced by CRLF in backup/public/chat.html.bak.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/data/foo.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/data/footies.txt.

The file will have its original line endings in your working directory.

File Editor Sample 48

warning: LF will be replaced by CRLF in backup/public/foo - Copy.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/foo.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/footies.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/public/index.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in backup/root/package.json.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in package.json.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/chat.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/data/downloaded.txt.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/images/screenandfish.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/index.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay2.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay2.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgplay3.html.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/cutedolphin.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/framed_screen.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in public/svgs/simple_animation.svg.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in server.js.

The file will have its original line endings in your working directory.

warning: LF will be replaced by CRLF in svgs/cutedolphin.svg.

The file will have its original line endings in your working directory.

61 files changed, 3170 insertions(+)

create mode 100644 .gitignore

create mode 100644 Procfile

create mode 100644 arrayplay.js

File Editor Sample 49

create mode 100644 backup/public/chat.html

create mode 100644 backup/public/chat.html.bak

create mode 100644 backup/public/chats/slim pickings.txt

create mode 100644 backup/public/chats/x.txt

create mode 100644 backup/public/chats/y.txt

create mode 100644 backup/public/data/cashflow.txt

create mode 100644 backup/public/data/foo.txt

create mode 100644 backup/public/data/foot.txt

create mode 100644 backup/public/data/footie.txt

create mode 100644 backup/public/data/footies.txt

create mode 100644 backup/public/data/test.txt

create mode 100644 backup/public/data/x.txt

create mode 100644 backup/public/fileeditor - Copy (2).html

create mode 100644 backup/public/fileeditor - Copy.html

create mode 100644 backup/public/fileeditor.html

create mode 100644 backup/public/filelist - Copy.html

create mode 100644 backup/public/filelist.html

create mode 100644 backup/public/foo - Copy.txt

create mode 100644 backup/public/foo.txt

create mode 100644 backup/public/footies.txt

create mode 100644 backup/public/index.html

create mode 100644 backup/public/upload.html

create mode 100644 backup/root/.gitignore

create mode 100644 backup/root/Procfile

create mode 100644 backup/root/package.json

create mode 100644 backup/root/server - Copy.js

create mode 100644 backup/root/server.js

create mode 100644 listassignment.js

create mode 100644 package.json

create mode 100644 public/backup/fileeditor.html

create mode 100644 public/chat.html

create mode 100644 public/chats/Diary.txt

create mode 100644 public/data/downloaded.txt

create mode 100644 public/fileeditor.html

create mode 100644 public/graphicseditor.html

create mode 100644 public/horse.mp3

create mode 100644 public/horse.ogg

create mode 100644 public/image_with_path.svg

create mode 100644 public/images/cutedolphin.png

create mode 100644 public/images/screenandfish.svg

create mode 100644 public/index.html

create mode 100644 public/listassignment.html

File Editor Sample 50

create mode 100644 public/listassignment.js

create mode 100644 public/mouseplay.html

create mode 100644 public/svgplay.svg

create mode 100644 public/svgplay2.html

create mode 100644 public/svgplay2.svg

create mode 100644 public/svgplay3.html

create mode 100644 public/svgs/arc.svg

create mode 100644 public/svgs/cutedolphin.svg

create mode 100644 public/svgs/framed_screen.svg

create mode 100644 public/svgs/mdn_animatemotion_example.svg

create mode 100644 public/svgs/simple_animation.svg

create mode 100644 public/twirlly.html

create mode 100644 public/twirlly.svg

create mode 100644 public/whinny.html

create mode 100644 server.js

create mode 100644 svgs/cutedolphin.svg

C:\Users\joe\Dropbox\jrb-sampleapp>git push heroku master

Counting objects: 66, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (53/53), done.

Writing objects: 100% (66/66), 97.91 KiB | 0 bytes/s, done.

Total 66 (delta 7), reused 0 (delta 0)

remote: Compressing source files... done.

remote: Building source:

remote:

remote: -----> Node.js app detected

remote:

remote: -----> Creating runtime environment

remote:

remote: NPM_CONFIG_LOGLEVEL=error

remote: NPM_CONFIG_PRODUCTION=true

remote: NODE_VERBOSE=false

remote: NODE_ENV=production

remote: NODE_MODULES_CACHE=true

remote:

remote: -----> Installing binaries

remote: engines.node (package.json): unspecified

remote: engines.npm (package.json): unspecified (use default)

remote:

remote: Resolving node version 6.x via semver.io...

remote: Downloading and installing node 6.10.2...

File Editor Sample 51

remote: Using default npm version: 3.10.10

remote:

remote: -----> Restoring cache

remote: Skipping cache restore (new runtime signature)

remote:

remote: -----> Building dependencies

remote: Installing node modules (package.json)

remote: jrb-sampleapp@1.0.0 /tmp/build_b4968d8bfa1d70bfba5ee733138424b8

remote: +-- express@4.15.2

remote: +-- accepts@1.3.3

remote: ¦ +-- mime-types@2.1.15

remote: ¦ ¦ +-- mime-db@1.27.0

remote: ¦ +-- negotiator@0.6.1

remote: +-- array-flatten@1.1.1

remote: +-- content-disposition@0.5.2

remote: +-- content-type@1.0.2

remote: +-- cookie@0.3.1

remote: +-- cookie-signature@1.0.6

remote: +-- debug@2.6.1

remote: ¦ +-- ms@0.7.2

remote: +-- depd@1.1.0

remote: +-- encodeurl@1.0.1

remote: +-- escape-html@1.0.3

remote: +-- etag@1.8.0

remote: +-- finalhandler@1.0.1

remote: ¦ +-- debug@2.6.3

remote: ¦ +-- unpipe@1.0.0

remote: +-- fresh@0.5.0

remote: +-- merge-descriptors@1.0.1

remote: +-- methods@1.1.2

remote: +-- on-finished@2.3.0

remote: ¦ +-- ee-first@1.1.1

remote: +-- parseurl@1.3.1

remote: +-- path-to-regexp@0.1.7

remote: +-- proxy-addr@1.1.4

remote: ¦ +-- forwarded@0.1.0

remote: ¦ +-- ipaddr.js@1.3.0

remote: +-- qs@6.4.0

remote: +-- range-parser@1.2.0

remote: +-- send@0.15.1

remote: ¦ +-- destroy@1.0.4

remote: ¦ +-- http-errors@1.6.1

File Editor Sample 52

remote: ¦ ¦ +-- inherits@2.0.3

remote: ¦ +-- mime@1.3.4

remote: +-- serve-static@1.12.1

remote: +-- setprototypeof@1.0.3

remote: +-- statuses@1.3.1

remote: +-- type-is@1.6.15

remote: ¦ +-- media-typer@0.3.0

remote: +-- utils-merge@1.0.0

remote: +-- vary@1.1.1

remote:

remote:

remote: -----> Caching build

remote: Clearing previous node cache

remote: Saving 2 cacheDirectories (default):

remote: - node_modules

remote: - bower_components (nothing to cache)

remote:

remote: -----> Build succeeded!

remote: -----> Discovering process types

remote: Procfile declares types -> web

remote:

remote: -----> Compressing...

remote: Done: 13.8M

remote: -----> Launching...

remote: Released v3

remote: https://jrb-sampleapp.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy... done.

To https://git.heroku.com/jrb-sampleapp.git

* [new branch] master -> master

C:\Users\joe\Dropbox\jrb-sampleapp>

You should now be able to enter “http://jrb-sampleapp.herokuapp.com” in the url bar of chrome and
see your application in action.

Congratulations, you are now an application programmer.

	Table of Contents
	About This Book
	Javascript Is Now a General Purpose Application Building Language

	About the Author
	Getting Started
	Questions?
	Machine
	Program Editor
	GIT
	Chrome Browser
	Node.js
	Express
	Heroku
	Download The Sample Applications

	File Editor Sample
	General Application (App) Requirements
	The Server Component
	Setting Up the Server Component
	The Server Code
	Server Code Commentary
	Server Summary
	Testing the Server
	The Client Code
	Local Storage
	XMLHttpRequest
	File upload
	Client Code Commentary
	Client Code Summary
	Testing the Application
	Test 1 File Editor Screen
	Test 2 ``Up'' button
	Click a file button
	Test 3 Edit the content and write a new file
	Test 4 Edit and save a file
	Test 5 create a subdirectory
	Test 6 Delete a File
	Test 7 Delete a Directory
	Test 8 Download a File
	Test 9 Upload a File
	Build Your Own Application
	Load Your Application to the Server

