

Mastering Mobile Application Development

2nd Edition

Learning iOS and Android Side-By-Side

Jonathan Engelsma and Hans Dulimarta

2021

Mastering Mobile Application Development - 2nd Edition: Learning iOS and Android Side-
By-Side
by Jonathan Engelsma and Hans Dulimarta

© 2021 Jonathan Engelsma and Hans Dulimarta. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written per-
mission of the authors.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the in-
formation contained herein.

This book is for sale at http://leanpub.com/mobile-app-dev

This version was published on 2021–01–18 (a5889b4).

http://leanpub.com/mobile-app-dev

For Mieke and Liana
who have been patient with us.

Contents

Preface ix

1 IDE 1
1.1 Mobile Development Overview . 1
1.2 iOS and Android Contrasted . 3
1.3 Development Environment . 5
1.4 Xcode . 6

1.4.1 Interface Builder . 7
1.4.2 Integrated Debugger and Simulators . 9
1.4.3 Tools and Frameworks for Testing . 10
1.4.4 Xcode Documentation . 10
1.4.5 Managing Third Party Components with CocoaPods 11

1.5 Android Studio . 12
1.5.1 Layout Editor . 15
1.5.2 Gradle . 17
1.5.3 Managing SDKs . 18
1.5.4 Android Emulators . 22
1.5.5 Test Framework and Debugger . 25
1.5.6 Managing Libraries . 27
1.5.7 Android Support Libraries . 27
1.5.8 Upgrading to Android Studio 4.0 . 28

2 Writing Your First Mobile App 29
2.1 Traxy App Overview . 29
2.2 Writing Our First Mobile App . 34

2.2.1 Platform Similarities . 36
2.3 Your Initial iOS App . 36

2.3.1 Creating a Project in Xcode . 37
2.3.2 Laying out the screen in Interface Builder . 40
2.3.3 Adding Outlets and IBActions . 45
2.3.4 Internationalization . 51

2.4 Your Initial Android App . 58
2.4.1 Creating a Project in Android Studio . 58
2.4.2 Laying out the screen in Layout Editor . 63
2.4.3 Renaming the Activity and Validating the Login Form 68
2.4.4 View Animations . 72
2.4.5 String Resource Editor . 73

iii

iv CONTENTS

2.4.6 Internationalization . 75
2.4.7 Source Code Revision Control . 76

3 Mobile App Architectures 77
3.1 Mobile Software Architecture . 77

3.1.1 Process State Transitions . 78
3.1.2 Mobile Resource Constraints . 79
3.1.3 Application State Transitions . 80
3.1.4 Application Process: a Home for UIViewController/Activity 82
3.1.5 Java Virtual Machine . 82

3.2 Architectural Choice . 83
3.2.1 Model View Presenter . 85
3.2.2 Model-View-ViewModel . 85

3.3 Lifecycles . 86
3.4 Android Manifest . 88
3.5 Android Architecture Components . 90

4 Scene Transitions 93
4.1 Overview . 93
4.2 Fleshing out Traxy for Login and User Signup . 94
4.3 Scene transitions in iOS . 94

4.3.1 Adding new view controllers to the storyboard 96
4.3.2 Adding new UIViewController classes . 98
4.3.3 Establishing the identity of view controllers in Interface Builder 100
4.3.4 Adding segues in Interface Builder . 102
4.3.5 Completing the view controller implementations 107
4.3.6 View Controller Lifecycles . 113

4.4 Scene Transitions in Android . 116
4.4.1 Adding New Activity Classes . 117
4.4.2 App Bar Menu Items . 123
4.4.3 Using Android Intents . 124
4.4.4 Android Activity Stack . 128
4.4.5 Finalize SignUpActivity and MainActivity 128
4.4.6 Handling MainActivity Logout Menu . 129
4.4.7 Navigation Graphs . 130
4.4.8 Adding ViewModel . 138
4.4.9 Implicit Intents . 140
4.4.10 Unresolved Intents . 141

5 User Interfaces 143
5.1 Laying out Mobile User Interfaces . 144

5.1.1 UI Styles and Themes . 145
5.2 Layout and Styling on iOS . 146

5.2.1 Auto Layout Overview . 147
5.2.2 Introducing Auto Layout Constraints in Interface Builder 150
5.2.3 Adding Auto Layout to Traxy . 157
5.2.4 Styling in iOS . 160

CONTENTS v

5.2.5 Adding Styling to the Traxy App . 160
5.3 Layout and Styling in Android . 164

5.3.1 Which Layout? . 167
5.3.2 Login Screen in LinearLayout . 174
5.3.3 Login Screen in ConstraintLayout . 175
5.3.4 Laying out the Login Screen . 177
5.3.5 Applying Model-View-ViewModel . 181
5.3.6 Styling/Theme in Android . 182
5.3.7 Introduction to Material Theme . 185

6 Collections of Data 189
6.1 Introduction . 189

6.1.1 Challenge 1: List does not fit on the screen! . 191
6.1.2 Challenge 2: Where’s the data? . 191
6.1.3 A Framework for Rendering Lists . 192

6.2 Implementing Table Views in iOS . 195
6.2.1 Where’s the Data? . 195
6.2.2 UITableView Overview and Some Housekeeping 195
6.2.3 Implementing UITableViewDataSource . 198
6.2.4 Partitioning a Table View into Sections . 203
6.2.5 Making it Pretty via a Custom Cell and UITableViewDelegate 204

6.3 Android RecyclerView . 209
6.3.1 Adapters and View Holders . 212
6.3.2 Your First RecyclerView . 213
6.3.3 Using ViewModel With RecyclerView . 225
6.3.4 Event Handling . 226
6.3.5 Custom CoordinatorLayout.Behavior 229

7 Libraries 233
7.1 Use or Produce? . 233

7.1.1 Traxy New Feature . 234
7.1.2 Using Google Places API . 235
7.1.3 Enhancing Traxy with Third Party Libraries 236

7.2 Integrating Third Party Libraries in Xcode . 237
7.2.1 Using CocoaPods to Manage External Libraries 237
7.2.2 Enhancing Traxy . 239

7.3 Library Management in Android . 246
7.3.1 Using Data Generator . 249
7.3.2 Google Play Services Libraries . 250
7.3.3 Using Google Places API . 252
7.3.4 Resolving Version Conflicts . 260

8 Cloud Datastore Integration 263
8.1 Mobile Backend . 263

8.1.1 Creating a New Firebase Project . 265
8.1.2 Firebase Authentication . 266
8.1.3 Firebase Realtime Database . 267

vi CONTENTS

8.1.4 Firebase Listeners . 268
8.1.5 Firebase Cloud Firestore . 269

8.2 Integrating Firebase with iOS . 270
8.2.1 Using Firebase Authentication for User Management 271
8.2.2 Using Firebase Cloud Firestore as a Cloud Backend 277

8.3 Firebase in Android . 282
8.3.1 Repository . 284
8.3.2 Logging Out . 286
8.3.3 Storing Data Into Firebase Cloud Firestore . 288
8.3.4 Retrieving Data From Cloud Firestore . 292
8.3.5 Kotlin Coroutines for Firebase . 295

9 Working With Multimedia 297
9.1 Personal Media Players . 297

9.1.1 Codecs: Media Data Compressors . 298
9.1.2 The Need for Caching . 299
9.1.3 Privacy Concerns . 299
9.1.4 Enhancements to Traxy . 299

9.2 Multimedia in iOS . 302
9.2.1 Working with UITableViewController . 302
9.2.2 Presenting Action Sheets . 304
9.2.3 Working with Multimedia on iOS . 304
9.2.4 Capturing Photos and Videos . 306
9.2.5 Uploading Media to Firebase . 315
9.2.6 Downloading and Displaying Captured Photos and Videos 325

9.3 Multimedia in Android . 338
9.3.1 Expandable FABs . 341
9.3.2 Taking Thumbnails . 344
9.3.3 Taking Full-Size Photos . 346
9.3.4 Selecting Photos from Gallery . 354
9.3.5 Uploading Media Files to Cloud Storage . 354
9.3.6 Recording Videos and Playback . 360
9.3.7 Media Streaming with ExoPlayer 2.x . 377

10 Working With Audio 379
10.1 Working with Audio in iOS . 380

10.1.1 Audio Capture and Playback . 380
10.1.2 Saving Audio Journal Entries to Firebase . 386
10.1.3 Adding a Segue to AudioViewController . 388

10.2 Audio Processing in Android . 395
10.2.1 Recording Audio . 395
10.2.2 Audio Playback . 407
10.2.3 Audio Focus . 410

CONTENTS vii

11 Networking 413
11.1 Accessing Web APIs in Mobile Apps . 413

11.1.1 Network Programming Challenges . 414
11.1.2 General Guidelines for Networking in Mobile Apps 416
11.1.3 Web API Data Representations . 418
11.1.4 Extending Traxy With Weather Data . 419

11.2 Networking on iOS . 421
11.2.1 Performing HTTP Requests From iOS . 421
11.2.2 Processing JSON Representations in iOS . 423
11.2.3 Extending Traxy with Weather Data From the Open Weather Web API 424

11.3 Networking on Android . 434
11.3.1 HTTP Requests Using OkHttp3 . 434
11.3.2 HTTP Requests Using Retrofit . 438

12 User Interface 443
12.1 UI Navigation . 443

12.1.1 Tabbed Applications . 443
12.1.2 Grid Layouts . 445
12.1.3 Extending the Traxy User Interface . 445

12.2 Tabs and Collections on iOS . 446
12.2.1 Adding Tabs to Traxy . 446
12.2.2 Handling Authentication and Refactoring Out Common Code 449
12.2.3 Customizing UITabBarController to Handle Authentication 450
12.2.4 Adding the Calendar Tab . 454
12.2.5 Adding Cover Photo Selection . 456

12.3 Tabs and Grid Layouts on Android . 474
12.3.1 Pager Adapter . 475
12.3.2 Update The Navigation Graph . 476
12.3.3 Adding Tabs . 477
12.3.4 Enhancing MainFragment . 478
12.3.5 Completing MonthlyFragment . 481
12.3.6 Adding Calendar . 481
12.3.7 Handling the Edit Button . 483
12.3.8 Querying and Displaying Photos . 488
12.3.9 Selecting Cover Photo . 490
12.3.10 Calendar Decorator . 493
12.3.11 Bottom Navigation . 495

13 Location and Maps 499
13.1 Location Aware Apps . 499

13.1.1 Location Sensing Technologies . 501
13.1.2 Privacy Considerations . 504
13.1.3 Adding Location and Maps to Traxy . 504

13.2 Maps and Location on iOS . 504
13.2.1 Displaying and Interacting with Maps . 506

13.3 Maps and Location on Android . 513

viii CONTENTS

13.3.1 Adding Maps to Traxy . 513
13.3.2 Handling Map Interactions . 516
13.3.3 Where am I? . 517
13.3.4 Mocked Locations in Android Studio . 520

A Learning Swift 523
A.1 Language Overview . 523
A.2 Variable Declarations . 525
A.3 Strings . 526
A.4 Collection Types . 527
A.5 Control Flow . 528
A.6 Functions . 530
A.7 Closures . 532
A.8 Tuples . 534
A.9 Optionals . 535
A.10 Objects . 538

A.10.1 Enums . 538
A.10.2 Structs . 539
A.10.3 Classes . 540

A.11 Protocols . 541
A.12 Extensions . 541
A.13 Further Study . 542

B Learning Kotlin 543
B.1 Inheritance and Overrides . 543

B.1.1 Constructors . 545
B.1.2 Static Members . 547
B.1.3 Data Class . 548
B.1.4 Implementing an Interface . 548
B.1.5 Child Class Constructor . 548

B.2 Variable Declarations . 548
B.3 Nullable Types and the Elvis Operator . 549

B.3.1 Using lateinit . 550
B.4 Lambda Expressions . 550
B.5 Control Structures . 551

B.5.1 Generalized “Switch” . 552
B.6 Functions . 552
B.7 Java Setters and Getters . 553
B.8 Java Setters and Getters . 554

Preface

Hundreds of books have been written on iOS and Android since the debut of these platforms some
10 years ago. Many of them are well-written by very capable authors. This leads to the inevitable
question, why write another?

Both of us have both taught and developed on these platforms since they appeared, and also
have worked on their predecessors (Java MicroEdition, Symbian, etc.) Over the years, we’ve made
a number of observations. First, becoming proficient on either Android or iOS involves a steep
learning curve. Apple and Google help address this by providing large and comprehensive sets
of how-to guides and reference documentation. Second, while distinct in terms of programming
languages, frameworks and basic vocabulary, these platforms actually have more in common than
initially appears. Third, while developers tend to specialize on one or the other, it is not unusual
for mobile app developers to become proficient on both platforms over time, as many production
apps have both iOS and Android implementations.

Often we find ourselves in situations where we will be explaining a concept on one of the plat-
forms to a student or developer in terms of what they already know about the other platform.
Similarly, we will have students in one of our courses in which we are teaching iOS tell us they
just got assigned to a new project at work involving Android or vice versa. At one point we at-
tempted to teach a semester course in mobile app development teaching both Android and iOS
at the same time. We soon realized that other than a few scattered blog posts, there was very
little instructional material available that explored the platforms side-by-side in a comparative
manner. Though we personally were proficient on both platforms, we had not spent enough time
organizing our thoughts and materials in a way that would allow the learner to efficiently bridge
concepts that related across the platforms, and simultaneously call out situations where a funda-
mentally different approach was called for due to intrinsic differences. Instead, our lessons tended
to quickly diverge into the details and nomenclature of the specific platform and any conceptual
overlap was completely obfuscated and lost to the students. The net result was that students spent
an enormous amount of effort learning a little bit about both platforms.

These experiences and observations led us to the conclusion that we could do much better if we
organized our thoughts and intentionally created a grand tour of both platforms that iteratively led
the student from concept to concept in a logical manner, calling out the similarities and differences
along the way. This vision, followed by a lot of discussion and hard work (and encouragement
from students and colleagues!) has resulted in the book that you now hold in your hands.

Our approach is to imagine a fictitious yet non-trivial app that is clearly representative of the
many apps consumers currently use daily on their smartphones. Studying how this app is im-
plemented on both iOS and Android in a logical step-by-step iterative fashion, exploring various
facets of the platforms as we go. Each chapter therefore focuses on one a single key aspect of
modern mobile apps and begins with a discussion of the concept itself, and a discussion of the
commonalities and potential differences in iOS and Android, pertaining to that particular topic.

ix

x PREFACE

Once the concepts have been fleshed out at a conceptual level, we then introduce concrete exam-
ples of how those features are implemented on both iOS and Android.

This comparative approach to learning a software-related topic is not without precedent. For
many years accredited university computer science programs have offered courses in program-
ming languages. These courses typically survey a variety of programming language principles,
constructs, models, and styles, and illustrate them with concrete examples from a variety of pro-
gramming languages. A common learning objective is to help the students understand program-
ming language principles that lay beyond the mere syntax, and recognize the concept when it
appears again in perhaps an entirely different syntax. Armed with these insights, the student
not only learns to write better code in a particular language, but can also rapidly assimilate and
learn new languages. For example, a student who has been exposed to lambdas in Ruby and who
understand how Ruby implements such constructs, and when they are appropriate to use, will im-
mediately recognize and understand closure expressions when they encounter them for the first
time in Swift.

Given the enormous demand for mobile apps and the rapid pace in which iOS and Android
are evolving (not mention the platforms that will soon appear on the horizon.) we believe this
comparative approach that intentionally calls out concepts in a way that transcends the imple-
mentation details will serve the student aspiring to be a professional mobile app developer well.
We believe this approach is also germane to the professional developer who is struggling to keep
up with the constant avalanche of new mobile implementation frameworks, concepts, and in some
cases even entirely new programming languages!

Hence our intended audience consists of both the university level computer science student, as
well as the practicing professional developer. We believe this approach will help the mobile app
newbie with no prior knowledge of mobile application development become rapidly proficient on
both iOS and Android, and well-prepared to rapidly assimilate whatever their mobile app devel-
opment futures may hold. We also believe this approach is an excellent way for the experienced
developer who is already proficient on either iOS or Android and would like to become proficient
on the other. By bridging the knowledge they already have to the other platform, they will quickly
orient themselves and become productive.

For the newbie, this book can be read in a couple of ways. You could simply read through the
entire book, and exploring both platforms as you go. Alternatively, you could also read just the
conceptual portion of each chapter, and then focus on the code examples of the platform you are
most interested in learning. Once you’ve completed the book in that manner, you could go back
and study the coding examples of the remaining platform.

For readers who are already proficient on one of the platforms, be sure to read through the
conceptual discussion at the beginning of each chapter and then dig deeper into the code examples
of the platform you are less proficient with.

Prerequisite Knowledge

General

We don’t intend for this book to be an introduction to programming. We assume the reader has al-
ready attained a reasonable level of programming proficiency. We also assume readers have prior
experience using a modern integrated development environment for editing, compiling, running,

xi

and debugging code. It would also be helpful, though not required, for the reader to have some
experience with a modern source code version control tool such as git.

Swift

Beginning in 2014, Swift has become Apple’s flagship language for all of their product lines, grad-
ually replacing the Objective-C that preceded it. We expect many of our readers will not have prior
experience with the Swift programming language. Nevertheless, we are not going to spend a lot
of time teaching you Swift. Instead, we’re going to point you to the many really excellent learning
materials that are already available online. That said, take a look at Appendix A in the back of the
book. We’ve provided a whirlwind tour of the language in which we call out some of the essen-
tial Swift concepts that you’ll need to master in order to start writing iOS apps. Appendix A also
provides a list of helpful online learning resources for coming up to speed in the Swift language.

The good news is that Swift is a modern programming language that can be readily learned
by anyone who is already proficient in another language. If you have prior iOS experience using
Objective-C, the news is really good in that everything you know about the iOS frameworks is still
apropos, just the syntactic sugar is different.

Kotlin

Prior to 2017, Java was the lingua franca of the Android developer. Given its popularity as a teach-
ing language in university computer science programs, as well as its wide adoption in industry,
the odds are very high that you’ve already done your share of bit flipping in this language. At
Google I/O 2017, Google announced that Kotlin would be the primary programming language
for developing Android applications.

Once again, if your Kotlin experience is limited, we’d suggest you google yourself up some
online tutorials and get started. At minimal, you’ll need to be proficient in the following areas:

• Using inheritance for writing a (child) class by extending an (abstract) parent class and over-
riding the parent methods in the child class

• Writing a class that implements a given interface

• Using Kotlin data classes

• Extension methods

• Writing lambda expressions

• Operator overloading

• Coroutines

Take a look at Appendix B for a slightly more detailed look at some of the Kotlin concepts
you’ll need to be proficient with.

xii PREFACE

Example Source Code

All of the code examples in this book are available for you on github.com:
https://github.com/gvsucis/mobile-app-dev-book-2ndEdition
The Android sample code is written in Kotlin version 1.4.x., and the iOS sample code is written

in Swift version 5.3.x.
The above repository contains two sub-repositories, one for Android and one for iOS. In the

sub-respositories, the final snapshot from each chapter is available in buildable project form for
each chapter as a branch with the name chXX, where XX can be replaced with the chapter of
interest from Chapter 01 to Chapter 13. We would encourage you to work on the code examples
on your own, but keep a clone of the official code somewhere on your hard disk for reference when
needed.

If you find any errors or typos in this book, please do us a favor and report them by creating
an issue in the above GitHub project. If you include a chapter and page number in your entry, that
will be very helpful. Thank you in advance.

A Note on Coding Conventions

A somewhat dated practice among Java programmers is to explicitly add the object reference this
when referring to instance variables or methods. This practice was beneficial primarily in improv-
ing the readability of the code, but also triggered auto-completion in the Eclipse IDE that was
widely used at the time. Today, modern IDEs such as XCode and Android Studio completely
eliminate the need for this with syntax highlighting that clearly differentiates between local and
instance variables as well as more proactive auto-completion features. For this reason, most style
guides today for modern object-oriented languages specifically recommend against this practice.

In the code examples in this book, we’ve intentionally adopted this practice simply to improve
the readability of the code in printed form. For example, we often show a method of a class or a
small fragment of code without the entire class context. Hence, we believe this practice will help
the reader better understand the code examples printed in the book. So for Java code examples,
we will explicitly prepend the this reference to instance variables in our code, and in Swift code
example we will do the same with the self reference.

Acknowledgments

A huge thank you is due to former graduate student Moe Azuz who dedicated many hours to
designing the screens for the Traxy app that is used as an example in this book, and also read
through the manuscript and providing us a significant amount of thought provoking feedback. We
would also like to thank our GVSU colleague Szymon Machajewski who reviewed our manuscript
and also provided many helpful comments along the way.

Thanks also to the many GVSU students enrolled in our mobile apps courses over the past
couple of years who also played a huge role in both inspiring and shaping this book. In particular,
we want to thank the following students who were especially helpful to us during this project:
Alvaro Ardila, Nicolas Arias, Thomas Bailey, Josiah Campbell, Joshua Eldbridge, Roland Heusser,
Kent Sinclair, Cindy Vannoy, and David Whitters.

https://github.com/gvsucis/mobile-app-dev-book-2ndEdition

xiii

Finally, we’re grateful to Amy Zevenbergen of Studio10 Design for the nifty and fitting cover
design.

xiv PREFACE

—You must take the first step. The first steps
will take some effort, maybe pain. But after that,
everything that has to be done is real-life move-
ment.

Ben Stein

2
Writing Your First Mobile App

Chapter Objectives

After reading this chapter you should be able to

• Write your first “Hello World” style app.

• Write an app that supports interaction with the user.

As you read your way through this book, you will incrementally learn the Android and iOS
platforms side by side. Our goal is to help the reader understand the commonalities of these two
mobile application platforms, as well as some of the areas in which they differ. The main vehicle
that will serve to guide our learning of these two software platforms will be a vacation journaling
application we have named Traxy. The Traxy app allows users to create a multimedia journal of
their vacation experiences. Before we start start looking at implementation details, let’s take a few
moments and explore the functionality of the proposed Traxy app.

2.1 Traxy App Overview
On its main screen, the Traxy app will allow the user to manage past, present and future trip
journals. However, since we eventually want to be able to support features that allow users to
share and collaborate on journals, we first need to somehow identify each user. Hence, the initial
screen the user will see is a login screen, with an alternate signup screen that will allow us to
onboard new users who have downloaded and used the app for the very first time as shown in
Figure 2.1.

Notice that both the iOS and Android version of the app display a row of three tabs labeled
”Trips”, ”Calendar”, and ”Map”, respectively. This tabbed organization of the screens in Traxy is

29

30 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

a fairly common approach in both iOS and Android. It gives the end user a high level of view of
all the functionality or various use cases supported within the app.

(a) (b) (c) (d)

Figure 2.1: a) iOS login screen. b) iOS signup screen. c) Android login screen. d) Android signup
screen.

Once the user is logged into the app, he will be presented with the app’s main screen as shown
in Figure 2.2. In this case, it is a list of of vacation journals, grouped by current vacations, future
vacations and past vacations. On the journal list screen, the user can tap on a vacation journal
entry to view / edit it, or they can tap on the plus button in the upper right to create a new
vacation journal.

When the user taps on the plus button, the journal editor screen is displayed. The user can
describe the vacation destination as well as the anticipated start / end dates. Once the new journal
is fully described, the user can save it and return to the journal list screen. Eventually when the
user has entered photo entries within a journal, the journal editor will display them and allow the
user to select one to be the journal’s cover photo. After a journal has been created, the user can
edit the journal information by tapping the button labeled ”Edit” in the lower left hand corner of
the journal’s cover image.

When the user taps anywhere on the cover of a journal on the main screen, a list of all the entries
the user has made in the journal is displayed in descending date order (e.g newest entries at the
top) as shown in Figure 2.4. Notice that in the date header for the entries, the weather conditions
for the date and locality the entry was made is displayed. That information will be retrieved from
a remote weather service.

From the journal entries screen, if the add button (lower right floating action bar button on An-
droid, and upper right bar button on iOS) is tapped the user can proceed to add a variety of entry
types, including a text entry, photo or video entry via the camera, photo or video entry from the
user’s previously captured photos and videos, and audio entries. These options, as presented in
the iOS and Android versions of the app are shown in Figure 2.5.

Photo and video entries can be captured within the camera via the device’s camera or by se-
lecting them from the device’s library of previously captured images, as shown in Figure 2.6.

Once an entry has been made, the user has the opportunity to caption it, set the date, and

2.1. TRAXY APP OVERVIEW 31

(a) (b)

Figure 2.2: a) iOS main screen listing the set of journals. b) Android main screen listing the set of
journals.

(a) (b)

Figure 2.3: a) iOS journal editor screen. b) Android journal editor screen

32 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

(a) (b)

Figure 2.4: a) iOS journal entries screen. b) Android journal entries screen

(a) (b)

Figure 2.5: a) iOS add journal entry options. b) Android add journal entry options.

2.1. TRAXY APP OVERVIEW 33

(a) (b) (c) (d)

Figure 2.6: a) Capturing a photo or video on iOS. b) Selecting an existing photo or video on iOS. c)
Capturing a photo or video on Android. d) Selecting an existing photo or video on Android.

location as shown in Figure 2.7. Note that once the user confirms the entry the data (including
the media attachment) will get stored in a cloud database. If the user were to login on a different
device, all of their journals will be immediately available.

(a) (b)

Figure 2.7: a) Journal entry confirmation on iOS. b) Journal entry confirmation on Android.

Audio entries can be captured by using the device’s microphone. Users can playback the cap-
tured audio entry before saving it as shown in Figure 2.8.

Selecting the calendar tab in our Traxy app reveals the calendar view shown in Figure 2.9. On
the top one third of the screen a calendar is displayed. The user can interactively swipe left and
right to change the month that is displayed. Any journal whose range of dates from start to end
falls on any day within the displayed month is shown below the calendar in the same format as

34 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

(a) (b)

Figure 2.8: a) Creating an audio journal entry on iOS. b) Creating an audio journal entry on An-
droid.

the first tab. The idea of this view is to let a user quickly locate a journal based on its date.
Finally, selecting the map tab in our Traxy app reveals the map view shown in Figure 2.10. A

map is displayed and annotated with a pin for every journal that has been recorded. If the user
taps on a pin, the title of the journal is displayed, and a tap on that will send us off to the list of
entries within that journal. The map, when initially displayed is zoomed into the minimal level
that will contain all of the pins. The motivation for this tab is to let a user quickly locate a journal
based on where they recorded it. While entries within a journal may be tagged with a multiplicity
of locations, when we create a new journal for the first time we will tag it with the general vicinity
that the entries will be recorded.

You will implement the Traxy app as you work through the remaining chapters of this book.
We will start small and iteratively flesh out the app on both iOS and Android until we have it fully
functional on both platforms. Let’s roll up our sleeves and write our first app for both iOS and
Android.

2.2 Writing Our First Mobile App

We will begin our exploration of Android and iOS by implementing a simple approximation of
the login screen described in the previous section. True to tradition, we will first focus on a “hello
world” form of app in which we will get a welcome message up on the screen consisting of a
textual label and our Traxy logo in the form of an image. Once that has been accomplished we will
extend our implementation by making it interactive. In particular, we will add text entry fields
to collect the user’s email address, and password, along with a button that when submitted will
execute code that validates what was entered by checking that a properly formatted email address
entered, and the correct password. Assuming the data was entered properly, our app will print a

2.2. WRITING OUR FIRST MOBILE APP 35

(a) (b)

Figure 2.9: a) The calendar tab on iOS. b) The calendar tab on Android.

(a) (b)

Figure 2.10: a) The map tab on iOS. b) The map tab on Android.

36 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

success message to the console. If there were any input errors, we will display a simple dialog that
reports the error to the user.

For now, we won't worry too much about getting the screens to look nice like they do in the
previous section. The goal here is to basically get the information up on the screen so it is visible
to the user, and to be able to allow the interactions described above. In a future chapter will we
will dig into the details of how to get the screens to layout properly on the respective platforms.

Upon completion of this chapter, you will have a basic understanding of how to get a simple
single screen interactive application running on both Android and iOS.

2.2.1 Platform Similarities
Despite the fact that they are entirely different software stacks, both Android and iOS share some
common techniques in organizing the overall structure of a mobile application.

• There is a clear decoupling between code that implements the application logic and the user
interface design.

– Both platforms adopt XML to codify user interface specifications.

– In Android the user interface of each screen is defined in one XML layout file, while iOS
employs both individual layout files (.XIB) and interconnected UI views in a storyboard
(.storyboard).

• iOS developers write application logic in classes derived from UIViewController. An-
droid developers write application logic in classes derived from Activity.

• User interface elements in iOS are derived from UIView and Android user interface elements
are derived from either View or ViewGroup.

• Both platforms support mixed-language programming. Android developers can write code
in Java or Kotlin and iOS supports both Objective-C and Swift.

• Both XCode and Android Studio require you to enter a unique identifier (bundle identifier
in iOS and package name in Android). If you plan to publish your app to either App Store
or Google Play Store, the identifier must be unique within the respective store.

2.3 Your Initial iOS App
By default, iOS applications are authored according to the ubiquitous model-view-controller (MVC)
architectural pattern. We will discuss MVC in more detail in a later chapter, so at this early stage of
our investigation we will simply introduce our application’s view, i.e., the visual components that
appear on the screen and allow the user to interact, and its controller - the code that gets executed
when the user interacts with the application. For example, if a button is displayed by the view, we
might associate code with it that will get executed when the button is pressed.

In iOS application views are normally created using Xcode’s Interface Builder. Interface Builder
is a sort of what-you-see-is-what-you-get interactive view editor that allows the developer to de-
velop non-trivial hierarchies of views from a palette of common customizable user interface con-
trols, defined by Apple. In addition to determining what user interface controls will be utilized by

2.3. YOUR INITIAL IOS APP 37

a particular screen, Interface Builder also provides the developer with the ability to constrain how
the components will be actually laid out on the screen at run-time.

Controllers in iOS are created by introducing a subclass of the UIViewController class or
one of its derivatives defined in the UIKit framework. The code can be written in either Objective-
C or the Swift programming languages.

2.3.1 Creating a Project in Xcode
Let’s begin by creating a new single view application within Xcode. Once Xcode is started, a
welcome dialog is displayed, as shown in Figure 2.11. Initiate the creation of a new project by
clicking on the ”Create a new Xcode project” option in the lower left of the dialog. Alternately,
you can use the File New Project... selection on Xcode’s application menu to initiate the creation
of a new project.

Figure 2.11: The Xcode welcome dialog.

Once project creation is initiated, Xcode will present a variety of template options, as shown in
Figure 2.12. Since Xcode serves as the common IDE for all of Apple’s product line (iOS, watchOS,
macOS, and tvOS) it is important that you select iOS in the upper left of the dialog, prior to select-
ing a project template style. Finally, select the Single View Application style and then proceed to
click the blue Next button.

Once a template has been selected, Xcode presents a number of options in the new project
options dialog, as shown in Figure 2.13. Set the Product Name to TraxyApp. You can use your
free developer account for your team (or use a paid account if you have one). If you haven’t
registered for an Apple develop account (free or paid) then for the Team field just select None.
This will allow you to run your app on a simulator, but you won’t be able to run on a physical iOS
device until you register for a developer account.

The value you provide in the Organization Name field will be used in the boilerplate code
header comments Xcode places at the top of each source file you create in the project. You can
always go back and change this later.

The Organization Identifier will be combined with your Product Name to form what is known
as the app’s Bundle Identifier. The Bundle Identifier is important in that it will uniquely identify
your app in the Apple iTunes App Store if you eventually publish it. The convention is to set your

38 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.12: The Xcode project template selection dialog provides a variety of application styles to
create. Note that we have iOS selected in the upper left of the dialog.

Organization Identifier to your organization’s reversed Internet domain. This is a convention
very similar to creating unique package names in your Java source code. Since we are faculty
in Grand Valley State University’s computer science department, we’re using our department’s
reverse Internet domain: edu.gvsu.cis.

In this book, all of our iOS coding will be done in the Swift programming language. In partic-
ular, we will be using Swift 5.1, Apple’s current version of this rapidly evolving language.

We will be implementing the Traxy app’s user interface via a conventional storyboard. Another
option here that we will not look at is SwiftUI. Apple introduced SwiftUI with Xcode 11 in 2019.
It is a new framework that uses a declarative approach to defining an iOS app’s user interface. So
we’ll set the User Interface option to Storyboard.

Figure 2.13: The Xcode project template selection dialog provides a variety of application styles to
create.

Finally, check the Unit and UI Test options, so that you can eventually introduce some test
automation to your project. You can now proceed to the next step by clicking the Next button in
the lower left hand corner of the dialog.

2.3. YOUR INITIAL IOS APP 39

Figure 2.14: The final step of project creation in Xcode is to specify the directory in which the
project folder will be created.

The last step in project creation is to specify to Xcode where the project folder is to be located
on your local drive. Make sure you select the Source Control checkbox towards the bottom of the
dialog. This will cause Xcode to place your project under git control. Even if you are working
solo and not part of a larger development team, managing your source code with git has many
advantages. If you aren’t already proficient with git, we strongly encourage you to add it to your
list of technologies to learn. A good starting point is Git online documentation[1] where you can
find free books and videos. Once you’ve navigated to the directory that will contain your project
directory, go ahead and press the Create button in the lower left to complete the creation of your
new project.

At this point, you’ve created a runnable single view iOS application and the Xcode IDE has
loaded the newly created project as shown in Figure 2.15. You can confirm that the app is runnable,
by clicking on the Build and Run button in the upper left hand corner of Xcode (it looks like a play
button). Alternately, you can run the app by selecting Product Run from the Xcode application
menu, or the key sequence + R . Your app is not very interesting at all, as once it launches in
the emulator you will simply see a blank white screen.

If you select the top most item in the project explorer on the left (labeled ”TraxyApp”), and
the TraxyApp target as shown in Figure 2.15, you’ll noticed a field labeled ”Devices” under the
Deployment Info settings in the middle of the page.

The Devices field allows you to select one or more of three options:

• iPhone - indicates your app will target the various iPhone form factors.

• iPad - indicates your app will target iPadOS.

• Mac - indicates your app will target MacOS. .

The choice you make for the Devices field will have ramifications if you publish in the App
Store. For example, if you choose iPhone, then it will only show up in the App Store when users
are on an iPhone. Unless iPad users deliberately override the default search settings to allow for
iPhone apps to show up, your app will be invisible. If you select iPad, then the app will only be

https://git-scm.com/doc

40 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

visible and installable for users browsing the store with an iPad. However, if you select iPhone and
iPad, it will be available to iPhone and iPad users, with layouts specifically implemented for these
two different form factors. Modern versions of MacOS can also run iOS/iPadOS apps. However,
do be aware that more is involved than simply checking the MacOS option here on the settings
screen!

Go ahead and select only iPhone for your device setting. Do pay attention when making this
decision in general, as it does impact the shape the app will take once published. For example, if
you launch a universal app on the App Store, Apple will not allow you to publish a future version
of the app that only supports only the iPhone or only the iPad.

Figure 2.15: The new Traxy app has been created and loaded in Xcode, and we are ready to start
customizing it.

2.3.2 Laying out the screen in Interface Builder

Let’s go ahead and customize the screen that gets displayed, and turn it into a sort of ”hello
world” app. You will accomplish this by editing the project’s storyboard. Over in Xcode’s project
explorer, displayed on the left hand side of the window by default, you will see a file named
Main.storyboard. If we select that file, Interface Builder will open up in the main body of the IDE
as shown in Figure 2.16. At the moment, your storyboard contains only a single scene. This scene
will serve as your initial login screen. You want to greet the user with a nice warm welcome, so
dress up the scene with some additional welcoming information. In particular, add a UILabel
with welcome text, and a UIImageView displaying the Traxy logo.

Use the key sequence + + L to display Interface Builder’s library of user interface com-
ponents. To find the label and image view components, scroll through the components displayed
in the library dialog. Alternately, you can simply start typing the name of the component you are

2.3. YOUR INITIAL IOS APP 41

Figure 2.16: Selecting the Main.storyboard file in the Xcode project explorer opens up Interface
Builder, allowing us to edit our app’s view(s).

looking for in the search field at the top of the dialog as shown in Figure 2.17. Once you find the
UI control of interest, simply select and drag it over into the Interface Builder scene.

Don’t worry about getting your interface layout to work on a variety of different screen sizes.
We will take that up in a later chapter when we talk about AutoLayout, Xcode’s constraint-based
layout system. Instead, simply assume a particular screen size and make sure you run the same
sized simulator when you test your app. Looking back at Figure 2.16 notice right under the scene
on the bottom of the Interface Builder editor it reads ”View as: iPhone 11”. As long as
you run the app on the iPhone 11 simulator, you should be able to get your layout to work with
minimum fuss, which is exactly what you want at this stage.

NOTE

The devices that show up on the View as setting in Interface Builder de-
pends on the version of Xcode you have installed. The important thing
to note is that when you layout your scene, just make sure you run it on
the same simulator (or device) that you are laying out the interface on in
Interface Builder. In a later chapter we will study Auto Layout, Apple’s
constraint-based layout mechanism that helps us define user interfaces that
look good on all iOS devices.

With that in mind, drag a label over into the scene and center it towards the top of the scene in
Interface Builder. You will notice that Interface Builder provides blue alignment guides informing
you when the label is center, as shown in Figure 2.18a. After dropping the label, go ahead and

42 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.17: You can scroll through the Xcode object library pane to find UI controls, or you can
use the search field at the top of the dialog to limit the controls displayed.

double click on it and change the text to read "Welcome to" as shown in Figure 2.18b. You may
have to re-center the label after changing the text.

In addition to interacting with a UI control directly when it’s dropped into a scene, you can
also select a control in the Interface Builder editor, and once selected use the Attribute Inspector
pane, which by default appears on the right hand side of the IDE (alternate keyboard shortcut is

+ + 4). For example, you can change the text on the label you just dropped into the scene
by selecting it and then changing the appropriate text field in the Attribute Inspector, as shown in
Figure 2.19.

Next, we would like to display the official Traxy logo centered under the ”welcome” label you
just added. You will follow a very similar approach, only this time instead of dragging a label
from the object library pane, you will find an Image View object and drag it into the scene, as
shown in Figure 2.22. Since your app’s logo won’t change frequently, go ahead and add an image
asset directly to your application. To accomplish this, select the Assets.xcassets file in Xcode’s
project explorer on the left, as shown in Figure 2.20. Having the project’s asset catalog opened, you
can add an image to the project, by clicking on the small + button at the bottom of the image list
which is displayed vertically, just to the right of the project explorer. Initially, you will only see a
single entry in this list named AppIcon, which is a placeholder for the launch icon that was added
when the project was created. On the + button’s popup menu, select the New Image Set option.
A new entry will be added to the asset list, just under the AppIcon. Change its name to logo by
clicking on the default name Image. The final step in adding an image asset is to go to Finder on
your Mac, browse to your logo image, and drag it over to the 2x slot for the logo image. Upon
completion, your asset catalog, should look like Figure 2.21.

Image sets consist of multiple image sizes in order to optimize presentation on the various
screens used by different iOS products. For example, the larger iPhone screens (e.g. iPhone 6/7
Plus) will utilize the 3x image, and all other high resolution iPhone devices (iPhone 4, 5/5S, 6/6S,
7) will use the 2x image sizes. The 1x images would be used by standard definition devices (e.g.
non-retina display models prior to iPhone 4), but since the current version of iOS does not run
on those devices, and very few are still in use,we typically will not supply the 1x version of the
images. Eventually, before submission to the App Store, we’d want to create the 3x version of our

2.3. YOUR INITIAL IOS APP 43

Figure 2.18: a) Drag and drop a label into the scene, centering it towards the top. b) After dropping
the label, double click on it to change the text to ”Welcome to”.

logo by producing a copy of the 2x images scaled to 3 times what the standard resolution image. So
for example, if our 2x image was 100 X 100, the 1x version would be 50 X 50 and the 3x version 150
X 150. Given this, you obviously would want to start your image design in the highest resolution
needed, or better yet use a vector image format so you can scale up or down as needed.

In order to get the logo to show up in your login scene, you need to return to the storyboard
and set it to be the default image on the image view you added previously. After opening the
Main.storyboard file, make sure the UIImageView is selected. Over to the right in the Attribute
Inspector, the image view’s attributes are displayed. Clicking on the drop down in the Image field,
you can now see that the logo you just added is an option, as shown in Figure 2.22. Go ahead and
select the logo, and immediately the scene is updated to display the logo. Depending on the size
of your image view, the aspect ratio of the image might seem incorrect as displayed. To correct
this you can set the Content Mode setting in the Attribute Inspector to Aspect Fit.

You now have a fully functional ”hello world” app! You are now ready to run the app. Make
sure the simulator device you select in the upper left hand corner of the IDE (just to the right of
the Run/Stop buttons) matches the device you layed your interface out on in Interface Builder.
For example, as you can see from the figures above, we used the iPhone 11 so we would want to
test on a simulator that has the same screensize as the iPhone 11. Now go ahead and press
+ R to run the app, and check your handiwork. If you did everything correctly, in a moment
the simulator will be running and you will see the Traxy app display its nice warm welcome, as
shown in Figure 2.23.

44 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.19: Properties of UI controls dropped into a scene can be manipulated by selecting the
control, and then editing the properties in the Attribute Inspector pane displayed on the right.

Let’s extend the login screen with a user name text field (email address) a password text field,
and a button to submit the user’s credentials once entered. You can accomplish this the same way
you added the welcome label and logo image. First, locate the UITextField in the Xcode object
library. It is labeled as ”Text Field” in the library. Once located, drag two of these controls out onto
the scene under the logo. Accept the default height, but do drag out the horizontal edges so that
they are standard distances from the leading and trailing edges of the screen. Interface Builder
shows the standard distance from the edge of the screen by displaying blue alignment guides on
the four sides of the screen when you drag near them. Finally, add a UIButton that the user can
tap to submit their login credentials. These are labeled as ”Button” in the Xcode object library.
Drag one onto the scene and center it with standard vertical distance under the second text field
you added. Again, the standard distance will show up as a blue alignment guide once you drag
the button into the proper position.

The first text field under the logo will serve as the email entry field, and the second the pass-
word. Somehow you have to let the user know what each field is for. Unlike your typical desktop
computer, phones have very limited screen real estate. A common convention is to label input
fields, using the fields themselves. This can be accomplished in iOS by selecting the text fields in
Interface Builder and then using the Attribute Inspector on the right to set its Placeholder attribute
as desired. For your two text fields, set the placeholders to ”Enter email” and ”Enter password”,
respectively. While you are editing the placeholder for the text fields, it would be worthwhile to
take a look at some of the additional attributes available for the UITextField that allow you to
further customize the field’s behavior. For both of the text fields, set the ”Clear Button” attribute
to ”Appears while editing”. This will give you a convenient way to clear out the field in one tap.
Under the Text Input Traits section of the Attribute Inspector set the ”Content Type” to ”Email

2.3. YOUR INITIAL IOS APP 45

Figure 2.20: Image assets can be added to the project, by selecting the Assets.xcassets file in the
Xcode project explorer.

Address” and ”Password”, respectively. By setting the ”Content Type” you are indicating the se-
mantic meaning of the field, which helps iOS exploit auto-fill opportunities on behalf of the user.
iOS has a special keyboard tailored for email address entry, so on the email text field, set the ”Key-
board Type” attribute to ”E-mail Address”. Leave the ”Keyboard Type” attribute of the password
field to ”Default”, but do check the ”Secure Text Entry” box toward the bottom of the text field
attributes pane. This will cause the field to not display the password as it is typed. In addition,
check the ”Auto-enable Return Key” checkbox for both fields. This will make the keyboard’s re-
turn key inactive until text has been entered. Figure 2.24 shows the final attribute settings for the
two text fields.

Your final task in completing the simple login form is to change the button’s text label from
the default ”Button” to the text ”Sign In”. This can be accomplished either by double clicking on
the button in the scene or by simply selecting the button and then using the Attribute Inspector to
change the label text. The completed login form is shown in Figure 2.25.

2.3.3 Adding Outlets and IBActions

Thus far, you’ve used Interface Builder to develop the login view for your app. Now we would like
to add some basic validation logic that makes sure a valid email address has been entered, along
with the correct password. In the MVC pattern, it is the controller’s responsibility to handle user
interactions with the view. As was mentioned previously, on iOS that means we need to introduce
a new class that extends the UIViewController class. When we created our single view Traxy
app, Xcode introduced a new class in Swift called ViewController which you can find in the
Project Explorer. You need to somehow establish the fact that when the ”Sign In” button is pressed,

46 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.21: The assets catalog after adding our logo image set.

a method implemented in Swift by the view controller will get executed. Since you’ve defined
your view in Interface Builder, you will initiate that process within Interface Builder as well via
Xcode’s Assistant Editor. Assuming your Main.storyboard is currently open and displayed, enter
the Assistant Editor by clicking on the button labeled with horizontal lines on the top right of the
Interface Builder toolbar as shown in Figure 2.26. Select Assistant from the popup menu pane.
The Assistant Editor view will split the main area of the Xcode IDE into two areas. On the left
side will be Interface Builder and on the right side your code editor. By default, whatever you
select in Interface Builder will automatically load the associated Swift code of the selected view
controller. Every scene in your storyboard represents at least one model-view-controller triad.
Since you created the application using Xcode’s project creation wizard, it automatically created
a scene in the storyboard, generated a controller named ViewController and associated it with
the view contained within the scene. You can confirm this is the case by clicking on its title bar
of the scene of interest within the storyboard, and then displaying the ”Identity Inspector” pane
on the right hand side of the Xcode window (alternate keyboard shortcut is + + 3). You
will notice that the class field is set to ViewController which is the Swift class associated with
the login scene1 At this point, if you select the login scene, the Swift code of ViewController
will be automatically displayed on the right. You can also manually override this behavior by
clicking on the ”Automatic” label right above the code editor pane and changing it to ”Manual”
and navigating to the source file you want displayed.

In order to associate a button touch event to code in your controller, while holding the Control
key (ctrl) click and drag from the button over to the code pane on the right and release the mouse
button when you see a label ”Insert Outlet, Action or Outlet Collection” display in the location

1The Class field may be hidden by default. If this is the case, click on the show button to the right of the Custom Class
label to display it.

2.3. YOUR INITIAL IOS APP 47

Figure 2.22: You can assign images in your asset catalog to image views in your scenes by selecting
the image view and then choosing the image over in the Attribute Inspector on the right.

you’d like to place the code to handle the button touch event. Upon release, a small dialog window
is displayed. Set the ”Connection” field to ”Action”, ”Name” field to ”signupButtonPressed”, and
”Type” to UIButton. Once the dialog looks like the one in Figure 2.27 go ahead and press the
connect button. This will automatically stub out a method in ViewController that looks like
this:

Swift
1 @IBAction func signupButtonPressed(_ sender: UIButton) {
2 }

Methods that can be wired up to events generated by controls specified in Interface Builder are
commonly referred to as actions. The @IBAction is simply a directive that informs the tooling that
signupButtonPressed is a valid candidate for wiring up UI events to from Interface Builder.

Now that you have a method in which to implement the form validation logic, how do you
access the text input entered in the two text fields? Clearly, we need some way to access these
controls from our Swift code. This is accomplished using outlets. Outlets are simply references in
our Swift code to components (UI controls, layout constraints, etc.) that were populated in a scene
via Interface Builder. You can create outlets in the controller in the same manner you just created
the action for the button. While holding ctrl click on the email address field, and drag over to the
code pane on the right. Leave the ”Connection” field set to the default ”Outlet” and then simply
set the ”Name” field to emailField, leaving all other fields to default. Repeat this process for the
password field, only set the ”Name” field to passwordField. Upon completion, the following
outlet definitions will have been added to ViewController.

48 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.23: Our initial ”hello world” app is complete, as shown running in the iPhone 11 simula-
tor.

Swift
1 @IBOutlet weak var emailField: UITextField!
2 @IBOutlet weak var passwordField: UITextField!

Notice that these fields are defined as implicitly unwrapped UITextField optionals. This is
safe in that these fields will never be set to nil, as they will be automatically populated by UIKit
when the view hierarchy is loaded from the storyboard.

NOTE

It is possible to manually remove an outlet connection in Interface Builder,
while leaving the declaration intact in the code. This happens frequently to
novice iOS developers, and manifests itself by a mysterious crash at run-
time! A quick way to confirm that all the outlets in your source file are in
fact properly connected to elements in the view is to select the scene in In-
terface Builder and display the Connection Editor pane on the right side of
the IDE by pressing the button labeled with a right arrow in a circle (alter-
nate keyboard shortcut is + + 6).

Now that you have references to the text fields, go ahead and implement the validation logic in
signupButtonPressed. Checking if the password field is correct is easiest, so implement that as
shown in Listing 4. We’re basically just checking to see if the pattern ”traxy” appears somewhere

2.3. YOUR INITIAL IOS APP 49

Figure 2.24: The Attribute Inspector settings for a) the email address field and b) the password
field.

in the password, regardless of case. Eventually you will of course have to wire this up to a real
password authentication service, but this is a reasonable approximation that meets our purposes
for now.

Swift
1 var pwOk = false
2 if let pw = self.passwordField.text {
3 if pw.lowercased().range(of: "traxy") != nil {
4 pwOk = true
5 }
6 }
7 if !pwOk {
8 print("Password is invalid")
9 }

Listing 4: Validating that the password field contains the string ”traxy”.

Next, tackle the email address validation. After a bit of investigation in Apple’s developer
documentation which can be accessed by pressing Window Documentation and API Reference from the
Xcode application menu (alternate keyboard shortcut + + 0), we learn that we can use a
regular expression and a class named NSPredicate to come up with a reasonable solution shown
in Listing 5 .

There are still some a couple of things you can add to the implementation to make the login
form behave more properly. For example, when the user taps the Return key at the moment,

50 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.25: A simple login screen for the Traxy app.

nothing happens! It would be desirable to automatically transition to the password field when
the return key is tapped in the email field. Furthermore, it would be nice if tapping the return
key in the password field, automatically calls the action associated with the SignIn button. Finally,
when editing text on an iOS app, it is common to dismiss the keyboard whenever the user taps
somewhere outside of a text field.

To handle the Return key behavior, you need to have the scene’s view controller behave as the
delegate of the UITextField controls. The delegation pattern is used extensively within the iOS
frameworks. What is happening here is that your UITextField controls are essentially delegat-
ing various events to the controller that is managing them. To establish this, you can implement
a Swift extension of the ViewController class that implements the UITextFieldDelegate
protocol. (If you need to brush up on Swift extensions check out Appendix A in the back of the
book.) You can dismiss the keyboard when tapping outside of a text field, by adding a
UITapGestureRecognizer to the scene’s parent view. Listing 6 contains the complete code
found in the ViewController.swift file after implementing these features.

In the viewDidLoad method add a tap gesture recognizer to the scene’s containing parent
view. You must also explicitly set the view controller instance to be the delegate of both text fields.
The actual delegated behavior takes the form of an extension to the ViewController class that
implements the UITextFieldDelegate protocol which you can find at the end of the listing.
Whenever the Return key is pressed on one of the two fields, the textFieldShouldReturn
delegate method gets called. If pressed in the email field, we call the becomeFirstResponder
method on the password field. This essentially gives input focus to the password field. If Return

2.3. YOUR INITIAL IOS APP 51

Figure 2.26: Activating the Assistant Editor view when in a storyboard is a little tricky in recent
versions of Xcode. To activate, simply click the little hamburger like menu on the right or the
Interface Builder tool bar.

is pressed in the password field we simply invoke our field validation logic that we broke out into
its own method. This is the same code we invoke if the signup button is tapped.

At this point you can go ahead and build / run the application and confirm that the various
features you implemented are working correctly. You can view the output of the print statements
in the debug pane displayed towards the bottom of the Xcode window as shown in Figure 2.28.

2.3.4 Internationalization
The vibrant application ecosystems established by Google and Apple means that even indepen-
dent developer can launch an app and become an international business concern (e.g. sell soft-
ware in markets beyond the developer’s home country). The application ecosystems take care
of collecting payments from your end users in their native currency, and converting it your local
concurrency and depositing it into your bank account.

However, that does mean that you can no longer assume your end users speak the same lan-
guage you do. Happily it is fairly easy to internationalize both iOS and Android applications.
Let’s take a look at how you can internationalize the login screen you have just created.

First, select the top level TraxyApp in the project explorer, and in the editor area, make sure the
TraxyApp project is selected as well. At the bottom of the info tab you will see the Localizations
section at the bottom, as shown in Figure 2.29. To add a localization click on the + button on the
bottom. On the list of languages on the popup menu, select a language that you wish to support,
and then click the Finish button on the dialog that is displayed.

If you successfully added a localization to the project, on your project explorer you will see that
you can now expand the Main.storyboard, and arranged hierarchically you will see the storyboard

52 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.27: Using the assistant editor to add an IBAction to the sign in button.

file itsef (labeled base) as well as a Main.strings file labeled with the language you chose, as shown
in Figure 2.30.

In our example, we added a strings file for the Dutch (Nederlands) language, so if we click on
the Main.strings file labeled Dutch you will see system defined values for all the English string
literals that appear in the storyboard, as is shown in Listing 8. Go ahead and open the equivalent
file in your project and change the strings on the right hand of the assignment statements to their
equivalent in whatever language you chose. In our example, we chose Dutch, so we’re going to
modify the file as shown in Listing 9. Be absolutely certain that you do not modify the system
generate identifier on the left side of the equal signs.

To see the evidence of our handiwork, go ahead to your iOS simulator and under the Settings
app and set the language to the language you chose previously under the General ! Language &
Region ! iPhone Language screen. Next, build and run the app again, and you will see that your
app conveniently uses the correct strings. Depending on the length of the translated string, you
may need to resize your button!

This approach can be used to internationalize any string data within your storyboard. How-
ever, sometimes the strings shown in views are actually created within our code. For example,
your app prints out the status of the form validation on the console. We could just as well be
displaying that on the app screen, so how would we localize strings within our code?

To do this, you will need to manually create your own strings file to handle any strings created
within the code. Go to File New File... and select ”Strings File” in the Resource section. Click the
Next button, name the file Localizable.strings, and click the Save button. Open the file, and using
the exact same syntax we used for the storyboard strings file, go ahead and define every string
literal your code will be dealing with. For the current app, Listing 10 shows the definition of the
three string literals we use in the code. As before, a Dutch language version of this file would also

2.3. YOUR INITIAL IOS APP 53

Swift
1 var emailOk = false
2 if let email = self.emailField.text {
3 let regex = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}"
4

5 let emailPredicate = NSPredicate(format:"SELF MATCHES %@", regex)
6 emailOk = emailPredicate.evaluate(with: email)
7 }
8 if !emailOk {
9 print("Invalid email address")

10 }

Listing 5: Validating that the email field is in the proper format.

have to be added for completeness. You’ll find the complete solution online in the sample code.
Next, in order to get the code to use the strings defined in the string localization files, we need

to replace each string literal "foo" with a call to the initializer of NSLocalizedString. For
example, our previous code:

Swift
1 print("Invalid password")

now becomes:
Swift

1 print(NSLocalizedString("Invalid password", comment: ""))

Finally, in order to localize the strings file we just added, we need to select it in the project
explorer, and then over on the far right in the File Inspector pane, click on the Localize... button.
From the drop down, select English, and continue. The File Inspector pane will now be updated
to show a list of all localizations in the project to-date. Make sure the checkbox is selected for each
localization you intend to provide a string localization file for. If you do not provide a localization
for a particular language, the app will default to the base strings when a device is configured for
that particular language.

Having completed our initial iOS implementation of a basic login screen, let’s take a look at
how you can accomplish the functional equivalence with the Android SDK.

54 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.28: When the app is ran in the simulator, the output data generated by the print statement
in the field validation logic get printed in the Debug pane on the bottom of the Xcode window.

Figure 2.29: To internationalize the app, you need to add additional localizations on the Project
Info screen.

2.3. YOUR INITIAL IOS APP 55

iOS
1 import UIKit
2

3 class ViewController: UIViewController {
4 @IBOutlet weak var emailField: UITextField!
5 @IBOutlet weak var passwordField: UITextField!
6

7 override func viewDidLoad() {
8 super.viewDidLoad()
9

10 // dismiss keyboard when tapping outside of text fields
11 let detectTouch = UITapGestureRecognizer(target: self, action:
12 #selector(self.dismissKeyboard))
13 self.view.addGestureRecognizer(detectTouch)
14

15 // make this controller the delegate of the text fields.
16 self.emailField.delegate = self
17 self.passwordField.delegate = self
18 }
19

20 @objc func dismissKeyboard() {
21 self.view.endEditing(true)
22 }
23

24 func validateFields() -> Bool {
25 var pwOk = false
26 if let pw = self.passwordField.text {
27 if pw.lowercased().range(of: "traxy") != nil {
28 pwOk = true
29 }
30 }
31 if !pwOk {
32 print("Invalid password")
33 }
34

35

36 var emailOk = false
37 if let email = self.emailField.text {
38 let regex = "[A-Z0-9a-z._%+-]+@[A-Za-z0-9.-]+\\.[A-Za-z]{2,}"
39 let emailPredicate = NSPredicate(format:"SELF MATCHES %@", regex)
40 emailOk = emailPredicate.evaluate(with: email)
41 }
42 if !emailOk {
43 print("Invalid email address")
44 }
45 return emailOk && pwOk
46 }
47

48 @IBAction func signupButtonPressed(_ sender: UIButton) {
49 if self.validateFields() {
50 print("Congratulations! You entered correct values.")
51 }
52 }

Listing 6: ViewController.swift: Part 1

56 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

iOS
54

55 extension ViewController : UITextFieldDelegate {
56 func textFieldShouldReturn(_ textField: UITextField) -> Bool {
57 if textField == self.emailField {
58 self.passwordField.becomeFirstResponder()
59 } else {
60 if self.validateFields() {
61 print("Congratulations! You entered correct values.")
62 }
63 }
64 return true
65 }
66 }

Listing 7: ViewController.swift: Part 2

Figure 2.30: Once you’ve added a localization to your project, you can add translations for any
string literals in your storyboard.

2.3. YOUR INITIAL IOS APP 57

Swift
1 /* Class = "UITextField"; placeholder = "Enter email"; ObjectID = "bqb-Lx-VuR"; */
2 "bqb-Lx-VuR.placeholder" = "Enter email";
3

4 /* Class = "UILabel"; text = "Welcome to"; ObjectID = "kYz-t7-Aga"; */
5 "kYz-t7-Aga.text" = "Welcome to";
6

7 /* Class = "UITextField"; placeholder = "Enter password"; ObjectID = "v9n-4m-KUv"; */
8 "v9n-4m-KUv.placeholder" = "Enter password";
9

10 /* Class = "UIButton"; normalTitle = "Sign In"; ObjectID = "wKR-bb-zl5"; */
11 "wKR-bb-zl5.normalTitle" = "Sign In";

Listing 8: Original English version of the string literals defined in the storyboard.

Swift
1 /* Class = "UITextField"; placeholder = "Enter email"; ObjectID = "bqb-Lx-VuR"; */
2 "bqb-Lx-VuR.placeholder" = "E-mailadres";
3

4 /* Class = "UILabel"; text = "Welcome to"; ObjectID = "kYz-t7-Aga"; */
5 "kYz-t7-Aga.text" = "Welkom bij";
6

7 /* Class = "UITextField"; placeholder = "Enter password"; ObjectID = "v9n-4m-KUv"; */
8 "v9n-4m-KUv.placeholder" = "Wachtwoord";
9

10 /* Class = "UIButton"; normalTitle = "Sign In"; ObjectID = "wKR-bb-zl5"; */
11 "wKR-bb-zl5.normalTitle" = "Inloggen";

Listing 9: Dutch language version of the string literals defined in the storyboard.

Swift
1 "Congratulations! You entered correct values." = "Congratulations! You entered correct
2 values.";
3 "Invalid password" = "Invalid password";
4 "Invalid email address" = "Invalid email address";

Listing 10: Contents of your Localizable.strings file will define each string literal referenced in
your code.

58 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

2.4 Your Initial Android App

The basic building blocks of an Android app consist of four different components: Activities,
Services, Content Providers, and Broadcast Receivers. For the moment, we will focus only on the
Activity class and its subclasses. As the framework evolves, this class undergoes enhancements
via subclassing. One of the important enhancements is the introduction of Material Design at the
time Android reached API Level 21 (Lollipop) in 2014. Unfortunately, widgets released before that
API level cannot display elements designed for Material Design. To address this issue, the Android
team released several libraries, collectively known as the Android Support Library. One of the
design goals of the Support Library is to provide backward compatibility for Android devices
running lower API levels.

The Material Design guidelines stipulate use of app bar for branding, navigation, and app-
specific actions. To enable app bar, you should start using AppCompatActivity in place of the
traditional Activity class. This is the default for new projects created in Android Studio. An-
other important feature implemented by the AppCompat library is widget tinting to allow consis-
tent theming using material color palette.

Readers with prior iOS programming experience may start to think that Android Activity class
is analogous to iOS UIViewController. They both share several common tasks:

1. handle the lifecycle of activity/view controller

2. handle events from UI widgets

3. transfer control to another activity/view controller

However, unlike iOS that provides additional specialized classes (UITableViewController,
UINavigationController, etc.), Android provides no such specialized subclasses.2

2.4.1 Creating a Project in Android Studio

Let’s start Android Studio to create our first Android app. The welcome screen is shown in Fig-
ure 2.31. Select the “Start a new Android Studio project”.

The next dialog, shown in Figure 2.32, is a multi-tabbed dialog, one tab per available target
device. At the time of this writing, Android Studio has a tab on the dialog for each of the following
five options:

• Phone and Tablet

• Wear OS

• TV

• Android Auto

• Android Things

2The Activity class indeed has a number of subclasses. But within the context of our discussion, we imply Activity to
be the newer AppCompatActivity class, which has no specialized subclasses except for the deprecated ActionBarActivity.

2.4. YOUR INITIAL ANDROID APP 59

Figure 2.31: Android Studio’s welcome screen. Note that if there was a previous history of projects
that had been created or opened, the dialog would be split with a scrollable list of previous projects
on the left.

We will select the Phone and Tablet option, which should be the default view when the dialog
opens. An app needs at least one activity in order to run, so our new project dialog displays a
variety of different types of activities that could be created. We will select the “Empty Activity”
option3 and then tap on the “Next” button to continue.

The next dialog screen (Figure 2.33) lets you to configure the project you are creating by en-
tering the application name, package name, project location, programming language and minimal
API level. Among these five pieces of information, pay attention to what you enter for the package
name. The convention is to use an Internet domain in reverse order, in that the package name is
used to uniquely identify the app once it is submitted to the Google Play Store for distribution.
It is equivalent to the bundle identifier in an iOS app. The application name is a human readable
text, but the package name becomes the Java package name in code.

For our first app, we will create a new project with the following information

• Name: Traxy

• Package name: edu.gvsu.cis.traxy

• Save Location: a file path of your choice

• Language: Kotlin

• Minimum SDK: API 24: Android 7.0 (Nougat)

If you are planning to publish the app to the Google Play Store, the package name must be
unique among all the apps in the Google Play Store ecosystem. Once a package name is chosen
and your app is published to the Google Play Store, any future updates must be released under the

3This activity becomes the main entry point of our application.

60 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.32: Android Studio’s Starter Activity dialog.

same package name. The common practice is to use a reverse domain name for package names,
so they are guaranteed to be unique.

The APK (Android Package) built for each target device can be customized to use different API
level. The dialog screen in Figure 2.33 allows you to select the lowest SDK that will be supported
by your app. We will select API 24 (Nougat). Lowering the API level makes your app available
to users whose mobile device still runs older versions of Android, but also prevents your app
from incorporating features supported by more recent SDKs. For each selected Minimum SDK the
dialog shows the percentage of devices that are active on the Google Play Store. Android Studio
calculates this number based on the analytics collected by the Google Play Store by actual devices
visiting the store. By the time you see the actual number on your own Android Studio installation,
expect to see a higher number than what you see in Figure 2.33, as more users upgrade to newer
Android versions.

Pressing the “Help Me Choose” link shows the new features included in the selected API level.
See Figure 2.34. The list of features shown on this informational dialog should be interpreted as
incremental updates to the previous (lower) API levels.

Among many other files, the following two new files are added to your project.

1. A Kotlin class MainActivity.kt that extends AppCompatActivity (Listing 11). Despite
using Kotlin for out implementation, Android Studio organizes the source file(s) under the
java folder. Notice that the parent activity is a class in the AndroidX library.

2. The layout file (res/layout/activity_main.xml) is an XML that describes the layout
of the associated UI screen.

The Activity class MainActivity contains only one method onCreate() which is one of
the lifecycle callback functions in Android. The setContentView() call loads the layout file

2.4. YOUR INITIAL ANDROID APP 61

Figure 2.33: Android Studio’s new project dialog.

(res/layout/activity_main.xml) and renders it on screen.
Kotlin

1 package edu.gvsu.cis.traxy
2

3 import androidx.appcompat.app.AppCompatActivity
4 import android.os.Bundle
5

6 class MainActivity : AppCompatActivity {
7

8 override fun onCreate(savedInstanceState: Bundle?) {
9 super.onCreate(savedInstanceState)

10 setContentView(R.layout.activity_main)
11 }
12 }

Listing 11: Starter Activity Class: MainActivity.kt

62 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.34: API Level distribution percentages

2.4. YOUR INITIAL ANDROID APP 63

Running the app

Let’s run the app and confirm that we do have a runnable app on either a connected device or an
emulator. Refer to Section 1.5.4 if you need to create a new emulator.

NOTE

Bu sure to create a virtual device with Play Store enabled.

Use the top menu Run Run app or press ctrl + R . You will see what the app is currently de-
signed for: an empty screen with white background and an action/navigation bar at the top and
a ”hello world” greeting. This is a relatively uninteresting app at this point, but its an app never-
theless, that we can build and run without further modification. Let’s focus now on constructing
the initial login screen for our Traxy app on Android.

2.4.2 Laying out the screen in Layout Editor

Figure 2.35: Traxy Login Screen

The final presentation of the login screen that we want to
achieve at the end of this chapter looks like screenshot in Fig-
ure 2.35. It displays the following widgets:

• A TextView to show the text “Welcome to Traxy”.

• An ImageView for the top image, our official Traxy logo.

• Two EditText (text fields) widgets for entering the
email and password values.

• A ”Sign In” Button

All these widgets are placed horizontally centered one be-
low another. For our first Android app, we’re going to assume
that it will run on a Pixel 2 Android device only. We will mock
it up specifically for this device in the layout editor and make it
look approximately like the screen in Figure 2.35. In later chap-
ters, we’ll dig deeper into Android layouts and study how we
can get our layouts to look good on any Android device.

Before diving deeper into the details of our app’s layout,
there are some basic concepts to be aware of. For example,
every widget in an Android XML layout file must specify the
layout_width and layout_height attributes which can
take one of the following values:

• wrap_content: this widget takes as little space as
needed, just enough to render its content.

• match_parent: this widget takes as much space as its
parent

64 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

• A (numerical) dimension: this widget is constrained to
use exactly the specified dimension.

With that background, go ahead and open the XML layout file activity main.xml and note
that Android Studio layout editor shows the canvas in two different modes: Design and Blueprint
as shown in Figure 2.36. The upper left panel is a scrollable list of widgets available for your
design. The lower left panel shows the component tree of widgets. Items in the component tree
can be rearranged by dragging them to a desired location. To add new widgets to the current
design you can drag them either to the main canvas or to the component tree. Dragging a widget
directly into the component tree is a preferred technique when the widget being inserted is a child
of a specific parent ViewGroup.

NOTE

Android Studio provides incremental search in many of its panels (besides
the editor panel). Just start typing the first few letters of the item you are
looking for, if the current context is searchable, the keystrokes will navigate
you through the searchable items. For instance, place the mouse inside the
Pallette panel of the layout editor. Start typing these three letters: R, E, C,
it should take you to the RecyclerView widget.

Figure 2.36: Layout Editor

We can now begin designing the login screen. Simply drag the desired widgets from the palette
to their approximate position, relative to the containing parent view. On the layout editor’s tool
bar, be sure to select the Pixel 2 device. Later, if you run the app on a Pixel 2 virtual device, it
should look exactly how it does in the layout editor.

Using Figure 2.35 as our visual guide, let’s begin by deleting the “Hello World”: select the
TextView under the component tree panel and press the “Delete” key on your keyboard or select
”Delete” from the context menu (use right-click to show the context menu).

2.4. YOUR INITIAL ANDROID APP 65

Now add a TextView widget onto the layout editor canvas. As the widget is dragged towards
the center top of the screen you can snap the widget to the vertical guide. In the property editor (to
the right of the canvas) set the text to “Welcome to”, set its text appearance to AppCompat.Large,
and its text style to Bold.

Our next step is to insert an ImageView to display the Traxy logo, but first we need to add our
logo image to the project. Expand the res folder under the project panel. (If res/drawable already
exists in your project, skip this step and continue to the next step for downloading a JPG/PNG
image). Right click on the res folder and select new Android Resource Directory . Select the Resource
Type to drawable. After completion of this step, you will find a new subdirectory res/drawable.
Download the image file you want to use as the logo to this directory.

NOTE

If necessary, rename the image file so it contains nothing else but alphabet-
ical and underscore characters.

Next, drag an ImageView below the welcome text and center it horizontally as best you can.
When prompted for the source image, select the image just downloaded. Use the search box at the
top of the dialog window to narrow down the list of available resources as shown in Figure 2.38.
Under the properties panel to the right of the campus, change the image view’s scaleType to fit-
Center so the source image is scaled while retaining its original aspect and centered inside the
provided rectangular area.

Figure 2.37: Creating a new resource directory

When a widget is selected in the Component Tree panel, the layout editor canvas should show
all the constraints attached to the widget as “spring-like” connectors. For instance, Figure 2.39
shows both the left and right sides of the textview constrained to the containing parent. On the

66 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.38: Selecting an image source

upper right corner you also see a red exclamation mark that indicates missing constraints. Click
the icon to reveal the details of these errors: both the text view and the image view are missing
a vertical constraint. This means that they may be rendered at incorrect positions. To add the
missing vertical constraints:

• Select the text view and then click the blue plus icon in the “Constraint Widget” to the right
(in the Attributes panel). By default this will add a zero-width vertical gap between the text
view and the containing parent. You can change the gap distance by selecting a value from
the drop-down menu

• Repeat the same step to the image view to add the missing vertical constraint.

To add the missing horizontal constraints:

• Select the text view, and click on the bubble handle on the left edge of the widget. While
holding down the mouse button, drag over to the left edge of the parent. Do the same thing
with the bubble handle on the right edge of the text view widget, dragging to the right edge
of the parent. By default, this will center the text view horizontally.

• Repeat the same operation on the image view to center it horizontally.

2.4. YOUR INITIAL ANDROID APP 67

Figure 2.39: Constraints associated with widgets

Run the app to see the current screen design on a Android Pixel 2 emulator. This task can also
be invoked using either the top menu Run Run ’app’ or shortcut ctrl + R . Note that if you do not
yet have a Pixel 2 virtual device, you can create one with the AVD Manager which is available on
Android Studio’s Tools menu. If the app built and ran correctly, your screen should look similar
to Figure 2.40 (except for the image).

Figure 2.40: Partially Completed Traxy Login Screen

68 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Our next step is to add the two input fields and a button to validate the email and password.
Drag an e-mail TextField into the canvas below the image. Change its id to email and its
hint property to “Enter email”. The layout editor may automatically insert a vertical constraint
from the top edge of the email field to the top of the containing parent. This is not a preferred
constraint. Instead, we want a vertical gap between the logo and the email field. To delete existing
constraints, hover your mouse over the anchor point of the constraint until you see the tooltip
“Delete xxx constraint” and then click the tooltip. Next, drag a password TextField below the
email field. Change its id to password and its hint property to “Enter password”.

Finally, drag a button below the password field. Change the button’s text to “Sign In” and its
id to signin. Go ahead an center each of these widgets horizontally within the parent view and
spaced horizontally at 16dp, as you did the welcome test view and image previously.

Now if you run the app (ctrl + + R), you should see a screen that looks similar to Figure 2.35
on page 63.

2.4.3 Renaming the Activity and Validating the Login Form

Let’s add some code to perform basic verification of the email and password pair when the Signin
button is tapped. The completed code is provided in Listing 14. But let’s work it out step-by-step.

Our first step will be to rename our Activity and layout file to something more representative.
By default when we created the project, it gave us an activity MainActivity. Let’s rename that to
be LoginActivity. This is easily accomplished by finding the MainActivity class on the left
in the project explorer, right click on it (or ctrl -click on Macs) and select Refactor¿¿Rename from
the popup menu. This will change both the Kotlin file name as well as the class declaration and
any references to it in the code. Use the same approach to change the name of the layout under
the res directory from activity main to activity login.

The verification logic must implement the following tasks:

• Verify that both email and password fields are not empty

• The email entered follows common rules for a valid email (it includes an @ character and the
domain name contains at least one dot

• For now, we will accept the password only if it contains ”traxy” (case insensitive)

Any feedback to the user will be displayed using Android SnackBar. To use this class, we
need to import it. At the top of the LoginActivity.kt source file add the following important
statement to make the SnackBar class visible to your implementation.

Kotlin
1 import com.google.android.material.snackbar.Snackbar

2.4. YOUR INITIAL ANDROID APP 69

NOTE

Android Studio “Show Intention” (+ Enter) is a context-sensitive short-
cut that can help you resolve many different situations. For instance, as you
begin to use classes from the Android library, the editor may begin to flag
your code with syntax errors due to missing import. Use + Enter to fix
the error.

Obtaining References to UI Widgets

The login verification code requires a reference to the two text fields, so their text contents can be
verified and checked. The Activity class provides the method findViewById() to obtain a
reference to UI widgets with specific ID. Recall that the ID of the email input field in our layout
file is email. To obtain a reference to this field from our code, we would use the following code
snippet in onCreate()

Kotlin
1 val email = findViewById<EditText>(R.id.email);
2 val password = findViewById<EditText>(R.id.password);

• The android:id="@+id/email" attribute you find in the XML layout file becomes
R.id.email in our code. This technique of resource identification will be used frequently
throughout our code and applies to other resources too. For instance, a string resource whose
XML id is ‘msg‘ will be referred to in code as R.string.msg.

• The invocation of findViewById() must be done after the layout file is set for the activity
via setContentView() method call.

Adding a listener to the login button

The validation of the login form described above will occur when the signin button is tapped. The
button tap generates a click event that you can listen for in your Kotlin code. To setup an event
handling function on the signin button, you call the setOnClickListener function. In Kotlin,
the function can be passed as a lambda expression.

A lambda expression is essentially a concise syntax for an anonymous method. The syntax is so
concise that access modifier, parameter types, and return type may be omitted from the syntax as
long as the compiler is able to infer the details from the surrounding context. Lambda expressions
provide a convenient way for writing event listener classes making our code more concise and less
cluttered. Any Java/Kotlin interface that dictates only one method, such as: ActionListener,
OnClickListener, is a good candidate for a lambda expression substitution.

For instance, without lambda expressions the code for setting up the click listener for a button
would look like the snippet shown in Listing 12.

70 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Kotlin
1 val signin = findViewById<Button>(R.id.signin)
2

3 signin.setOnClickListener(object : View.OnClickListener{
4 override fun onClick(v: View?) {
5 /* code here */
6 }
7 })

Listing 12: Setting Up Click Listener Without Lambda Expressions

Using lambda expressions, the same code can be shortened as shown in Listing 13, where v is
the view that generated the click event, in this case a reference to the signin button.

Kotlin
1 val signin = findViewById<Button>(R.id.signin)
2

3 signin.setOnClickListener { v ->
4 /* code here */
5 }

Listing 13: Setting Up Click Listener Without Lambda Expressions

When working with lambda expressions in Kotlin, there are a number of shorthand notations
that help simplify the code even more without losing any semantic meaning.

For example, the setOnClickListener call whose original extended syntax looks like the
following

Kotlin
1 signin.setOnClickListener(v -> { /* code */ })

We can apply the following syntactical shorthand to simply our code:

1. Replace unused parameter v with an underscore. In this case, we can use the shorthand
because we will not be actually referring to the view reference in our expression. In Kotlin
and underscore can serve as a sort of ”I don’t need that” marker.

2. Place last lambda argument outside the function call parentheses. Since the lambda expres-
sion is the only argument we are passing the setOnClickListener method, we don’t need the
parenthesis. A similar trailing closure shorthand can be used on any method or function call
where the lambda expression is the last argument being sent.

Applying these shorthands, the code becomes:
Kotlin

1 signin.setOnClickListener { _ -> /* code */ }

The when control structure is a ”generalized” switch statement. You can use a when state-
ment to check for the three form validation conditions mentioned previously. Your code using the
when statement will be patterned as follows:

2.4. YOUR INITIAL ANDROID APP 71

Kotlin
1 signin.setOnClickListener { _ ->
2 when {
3 condition1 -> action1
4 condition2 -> action2
5 condition3 -> action3
6 else -> success_action
7 }
8 }

In this case, the else case will be executed whenever all three validation conditions are met. For
now, you will simply display a message briefly to the user to communicate information regarding
the validation of the input provided. Before API Level 21, Android developers would use the
Toast class to show short messages. SnackBar is now the Android preferred way to do the
same task. The make() method takes three arguments:

• The first argument is a reference to any widget on screen. At runtime SnackBar will use the
provided widget to search for the root ViewGroup of the current screen

• The second argument is obviously the message to display

• The third argument is the duration the message will stay visible before it automatically dis-
appears. The argument takes one of three symbolic values: LENGTH_SHORT, LENGTH_LONG,
or LENGTH_INDEFINITE.

With that background information on the Snackbar component, let’s take a look at how we
implement each of the three validation conditions. First, you need to validate that an email address
has been entered. You can implement that by simply checking if the string entered in the email
field has non-zero length.

Kotlin
1 emailStr.length == 0 ->
2 Snackbar.make(email, "You need to enter your email address",
3 Snackbar.LENGTH_SHORT).show()

The second condition checks to validate that the format of the string entered in the email field
is indeed a valid email address. You can use Java’s support for regular expressions to accomplish
this. After importing java.util.regex.Pattern at the top of your class, you can define the
following property:

Kotlin
1 val EMAIL_REGEX = Pattern.compile(
2 "[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,6}",
3 Pattern.CASE_INSENSITIVE)

If you aren’t familiar with regular expressions, you can go ahead and consult the Java Docs
for the Pattern class. Having defined the regular expression you can implement the second
condition of your when statement as follows:

Kotlin
1 !EMAIL_REGEX.matcher(emailStr).find() ->
2 Snackbar.make(email,"Enter a valid email address", Snackbar.LENGTH_LONG).show()

72 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

The third condition is to check that a valid password has been entered. For now, you can just
hard code the password to be ”traxy”. The condition is implemented as follows:

Kotlin
1 !passStr.contains("traxy") ->
2 Snackbar.make(password, "Incorrect Password", Snackbar.LENGTH_LONG).show()

Finally, if none of the three conditions are true, the form has been successfully validated, and
the user can be informed with the else clause of the when statement as follows:

Kotlin
1 else ->
2 Snackbar.make(email,"Login successfull", Snackbar.LENGTH_SHORT).show()

Now that you have the form validation functional, let’s take a look at a few fundamental tech-
niques to improve the usability of our interface, and the maintainability of our code. In particular,
we’ll look at how to introduce animations to make the user interface more intuitive, and how we
can extract any text the app displays from the code and facilitate the internationalization of our
software. That is, if somebody installs our app in a region of the globe that speaks a language
other than English, how can make sure the app presents any textual prompts into the user’s local
language?

2.4.4 View Animations

To make the user interface more appealing, you can add simple animations to your app. Android
provides two major techniques for animations: View Animations and Property Animations. You
will learn more about the details in a later chapter.

Let’s add a view animation to shake the “Sign In” button when the login attempt is rejected.
There are at least two different ways to implement this feature: programmatically in code or
declaratively in XML. We will use the latter.

Let’s create a new XML file shake.xml under the directory res/anim to specify the animation
details. You may have to create the directory first with New Android Resource Directory . Be sure to
select the “Resource Type” to anim on the next dialog. In a similar fashion, create the animation file
using New Animation Resource File . The shake animation is implemented by translating the target
view 15% to its left and right in the X direction for 200 milliseconds.

XML
1 <?xml version="1.0" encoding="utf-8"?>

2 <set xmlns:android="http://schemas.android.com/apk/res/android"
3 android:interpolator="@android:anim/cycle_interpolator"
4 android:repeatMode="reverse" android:duration="200">
5 <translate android:fromXDelta="-15%" android:toXDelta="+15%" />
6 </set>

To activate the animation in your code you can use the following snippet which should be used
in place of the SnackBar message.

Android
1 val shake = AnimationUtils.loadAnimation(this, R.anim.shake);
2 signin.startAnimation (shake);

2.4. YOUR INITIAL ANDROID APP 73

2.4.5 String Resource Editor

Android Studio’s lint tool can detect a variety or different issues and warn us about them. The
layout editor in particular can display lint errors, but you need to enable this feature as it is not
turned on by default when you install the software. Open Android Studio’s preferences dialog
and under Editor Layout Editor you will see an option labeled Show lint icons on design surface. Go
ahead and turn this option on, if it is not already.

In the component tree panel, you will notice that some of the widgets are flagged with a warn-
ing message (exclamation point in yellow triangle). By clicking on these icons the message pane
will show the details of the problem.

Most of these warnings are related to hardcoded rext warnings. To support internationaliza-
tion, Android decouples the textual data of string literals by defining them as a separate resource
object. The identity (android:id) of the string resource is then uses as a key to a lookup table
where the actual text is defined. Using multiple lookup tables (one per language or locale), one
XML layout file can be rendered differently at runtime using the selected locale/language setting
of the user device.

Figure 2.41: Extracting String Resource

To eliminate these warning messages, all string literals in the XML layout file must be extracted
into individual string resources:

• Select the warning message to fix and select the “Extract string resource” option. A new
dialog will showup (on the right of Figure 2.41). You can customize all the details in this
dialog. By default, the string resource will be saved into res/values/strings.xml.

• Use the same steps to fix the other warning messages.

String resources can also be applied to string literals in code, especially those strings that make
their way to the UI. For instance, the string literal in the following SnackBar message should be
extracted to a resource:

74 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Kotlin
1 SnackBar.make (email, "Email required", SnackBar.LENGTH_SHORT).make()

NOTE

Android Studio Intent menu (+ Enter) shows a list of relevant actions
depending on the current context of the cursor.

• Place the cursor within the string literal of a SnackBar message, then press + Enter

• Select the option “Extract String Resource”. When a dialog similar to Figure 2.41 shows up,
enter the resource name email_required and complete the rest of the dialog. Android
Studio should automatically update the SnackBar call to the following:

Kotlin
1 SnackBar.make (email, getString(R.string.email_required), SnackBar.LENGTH_SHORT)
2 .show();

If you did everything correctly, your final code should look like that shown in Listing 14. Hav-
ing extracted out all of the hard-coded strings, let’s now take a look at how easy Android Studio
makes it to add sets of language translations for our app. Whenever your app is installed on a
device, it will select the appropriate set of translations, based on the device’s locale setting. Mak-
ing sure you support the languages your users speak can have a significant impact on how many
users decide to install and user your app.

2.4. YOUR INITIAL ANDROID APP 75

Kotlin
1 package edu.gvsu.cis.traxy
2

3 import androidx.appcompat.app.AppCompatActivity
4 import android.os.Bundle
5 import android.view.animation.AnimationUtils
6 import android.widget.EditText
7 import com.google.android.material.snackbar.Snackbar
8 import kotlinx.android.synthetic.main.activity_main.*
9 import java.util.regex.Pattern

10

11 class LoginActivity : AppCompatActivity() {
12 val EMAIL_REGEX = Pattern.compile(
13 "[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,6}",
14 Pattern.CASE_INSENSITIVE)
15

16 override fun onCreate(savedInstanceState: Bundle?) {
17 super.onCreate(savedInstanceState)
18 setContentView(R.layout.activity_main)
19

20 val email = findViewById<EditText>(R.id.email)
21 val password = findViewById<EditText>(R.id.password)
22 signin.setOnClickListener { v ->
23 val emailStr = email.text.toString()
24 val passStr = password.text.toString()
25 val shake = AnimationUtils.loadAnimation(this, R.anim.shake)
26 when {
27 emailStr.length == 0 ->
28 Snackbar
29 .make(email, getString(R.string.email_requirred),
30 Snackbar.LENGTH_LONG)
31 .show()
32 !EMAIL_REGEX.matcher(emailStr).find() ->
33 Snackbar
34 .make(email, getString(R.string.invalid_email),
35 Snackbar.LENGTH_LONG)
36 .show()
37 !passStr.contains("traxy") ->
38 signin.startAnimation(shake)
39 // Snackbar
40 // .make(password, "Incorrrect Password",
41 // Snackbar.LENGTH_LONG)
42 // .show()
43

44 else ->
45 Snackbar.make(signin, getString(R.string.login_verified),
46 Snackbar.LENGTH_LONG).show()
47 }
48 }
49 }
50 }

Listing 14: The final complete implementation of LoginActivity.

2.4.6 Internationalization

76 CHAPTER 2. WRITING YOUR FIRST MOBILE APP

Figure 2.42: Adding a New Locale

If you plan to deploy the app to non-English speak-
ing users, it may be advisable to include other language
translations.

• Right click on res/values/strings.xml and
select “Open Translation Editors”. A dialog shown
in Figure 2.42 will show up.

• Press the globe button to see a list of locales and
select one of them to add a new locale. Each lo-
cale has a unique 2- or 3-letter identification (e,g,
no=Norwegian, ja=Japan, egy=Ancient Egyptian)

For instance if you choose Indonesian(in) as a new
translation, the translation editor adds a new column with a column title “Indonesian (in)” and all
Indonesian text translations be saved into a separate file res/values-in/strings.xml while
the default (English) strings are stored in res/values/strings.xml. Likewise, a Japanese
translation will be stored into res/values-ja/strings.xml. It is important to understand
that these files must use the same name (strings.xml)

NOTE

Android resource files are organized into sub-directories with predefined
suffixes to store different variations of the same resource. At run-time, the
Android framework uses these suffixes to resolve a resource name based
on the current configuration settings the user selects.

2.4.7 Source Code Revision Control
This is perhaps a good time to start maintaining your source code under a revision control software
such as git.

• Select the top menu VCS Enable Version Control Integration and select Git from the list

• After the action is confirmed, a new collapsible tab (Version Control) will show up at the
bottom. Open this tab to see more details.

• Press the tab labeled Commit on the left border of the screen (right under Project) to commit
the staged changes.

• Click on “Unversioned files” check box to add the files to Git staging index.

• Enter a commit message in the next dialog before pressing the Commit button.

	Preface
	IDE
	Mobile Development Overview
	iOS and Android Contrasted
	Development Environment
	Xcode
	Interface Builder
	Integrated Debugger and Simulators
	Tools and Frameworks for Testing
	Xcode Documentation
	Managing Third Party Components with CocoaPods

	Android Studio
	Layout Editor
	Gradle
	Managing SDKs
	Android Emulators
	Test Framework and Debugger
	Managing Libraries
	Android Support Libraries
	Upgrading to Android Studio 4.0

	Writing Your First Mobile App
	Traxy App Overview
	Writing Our First Mobile App
	Platform Similarities

	Your Initial iOS App
	Creating a Project in Xcode
	Laying out the screen in Interface Builder
	Adding Outlets and IBActions
	Internationalization

	Your Initial Android App
	Creating a Project in Android Studio
	Laying out the screen in Layout Editor
	Renaming the Activity and Validating the Login Form
	View Animations
	String Resource Editor
	Internationalization
	Source Code Revision Control

	Mobile App Architectures
	Mobile Software Architecture
	Process State Transitions
	Mobile Resource Constraints
	Application State Transitions
	Application Process: a Home for UIViewController/Activity
	Java Virtual Machine

	Architectural Choice
	Model View Presenter
	Model-View-ViewModel

	Lifecycles
	Android Manifest
	Android Architecture Components

	Scene Transitions
	Overview
	Fleshing out Traxy for Login and User Signup
	Scene transitions in iOS
	Adding new view controllers to the storyboard
	Adding new UIViewController classes
	Establishing the identity of view controllers in Interface Builder
	Adding segues in Interface Builder
	Completing the view controller implementations
	View Controller Lifecycles

	Scene Transitions in Android
	Adding New Activity Classes
	App Bar Menu Items
	Using Android Intents
	Android Activity Stack
	Finalize SignUpActivity and MainActivity
	Handling MainActivity Logout Menu
	Navigation Graphs
	Adding ViewModel
	Implicit Intents
	Unresolved Intents

	User Interfaces
	Laying out Mobile User Interfaces
	UI Styles and Themes

	Layout and Styling on iOS
	Auto Layout Overview
	Introducing Auto Layout Constraints in Interface Builder
	Adding Auto Layout to Traxy
	Styling in iOS
	Adding Styling to the Traxy App

	Layout and Styling in Android
	Which Layout?
	Login Screen in LinearLayout
	Login Screen in ConstraintLayout
	Laying out the Login Screen
	Applying Model-View-ViewModel
	Styling/Theme in Android
	Introduction to Material Theme

	Collections of Data
	Introduction
	Challenge 1: List does not fit on the screen!
	Challenge 2: Where's the data?
	A Framework for Rendering Lists

	Implementing Table Views in iOS
	Where's the Data?
	UITableView Overview and Some Housekeeping
	Implementing UITableViewDataSource
	Partitioning a Table View into Sections
	Making it Pretty via a Custom Cell and UITableViewDelegate

	Android RecyclerView
	Adapters and View Holders
	Your First RecyclerView
	Using ViewModel With RecyclerView
	Event Handling
	Custom CoordinatorLayout.Behavior

	Libraries
	Use or Produce?
	Traxy New Feature
	Using Google Places API
	Enhancing Traxy with Third Party Libraries

	Integrating Third Party Libraries in Xcode
	Using CocoaPods to Manage External Libraries
	Enhancing Traxy

	Library Management in Android
	Using Data Generator
	Google Play Services Libraries
	Using Google Places API
	Resolving Version Conflicts

	Cloud Datastore Integration
	Mobile Backend
	Creating a New Firebase Project
	Firebase Authentication
	Firebase Realtime Database
	Firebase Listeners
	Firebase Cloud Firestore

	Integrating Firebase with iOS
	Using Firebase Authentication for User Management
	Using Firebase Cloud Firestore as a Cloud Backend

	Firebase in Android
	Repository
	Logging Out
	Storing Data Into Firebase Cloud Firestore
	Retrieving Data From Cloud Firestore
	Kotlin Coroutines for Firebase

	Working With Multimedia
	Personal Media Players
	Codecs: Media Data Compressors
	The Need for Caching
	Privacy Concerns
	Enhancements to Traxy

	Multimedia in iOS
	Working with UITableViewController
	Presenting Action Sheets
	Working with Multimedia on iOS
	Capturing Photos and Videos
	Uploading Media to Firebase
	Downloading and Displaying Captured Photos and Videos

	Multimedia in Android
	Expandable FABs
	Taking Thumbnails
	Taking Full-Size Photos
	Selecting Photos from Gallery
	Uploading Media Files to Cloud Storage
	Recording Videos and Playback
	Media Streaming with ExoPlayer 2.x

	Working With Audio
	Working with Audio in iOS
	Audio Capture and Playback
	Saving Audio Journal Entries to Firebase
	Adding a Segue to AudioViewController

	Audio Processing in Android
	Recording Audio
	Audio Playback
	Audio Focus

	Networking
	Accessing Web APIs in Mobile Apps
	Network Programming Challenges
	General Guidelines for Networking in Mobile Apps
	Web API Data Representations
	Extending Traxy With Weather Data

	Networking on iOS
	Performing HTTP Requests From iOS
	Processing JSON Representations in iOS
	Extending Traxy with Weather Data From the Open Weather Web API

	Networking on Android
	HTTP Requests Using OkHttp3
	HTTP Requests Using Retrofit

	User Interface
	UI Navigation
	Tabbed Applications
	Grid Layouts
	Extending the Traxy User Interface

	Tabs and Collections on iOS
	Adding Tabs to Traxy
	Handling Authentication and Refactoring Out Common Code
	Customizing UITabBarController to Handle Authentication
	Adding the Calendar Tab
	Adding Cover Photo Selection

	Tabs and Grid Layouts on Android
	Pager Adapter
	Update The Navigation Graph
	Adding Tabs
	Enhancing MainFragment
	Completing MonthlyFragment
	Adding Calendar
	Handling the Edit Button
	Querying and Displaying Photos
	Selecting Cover Photo
	Calendar Decorator
	Bottom Navigation

	Location and Maps
	Location Aware Apps
	Location Sensing Technologies
	Privacy Considerations
	Adding Location and Maps to Traxy

	Maps and Location on iOS
	Displaying and Interacting with Maps

	Maps and Location on Android
	Adding Maps to Traxy
	Handling Map Interactions
	Where am I?
	Mocked Locations in Android Studio

	Learning Swift
	Language Overview
	Variable Declarations
	Strings
	Collection Types
	Control Flow
	Functions
	Closures
	Tuples
	Optionals
	Objects
	Enums
	Structs
	Classes

	Protocols
	Extensions
	Further Study

	Learning Kotlin
	Inheritance and Overrides
	Constructors
	Static Members
	Data Class
	Implementing an Interface
	Child Class Constructor

	Variable Declarations
	Nullable Types and the Elvis Operator
	Using lateinit

	Lambda Expressions
	Control Structures
	Generalized ``Switch''

	Functions
	Java Setters and Getters
	Java Setters and Getters

