N\

OO Q)

A

O O

A

—

Licenseld under|Creati

—

You'll find inside

e A structured collection of architectural patterns with hundreds of NoUML diagrams.
e Technology-agnostic knowledge distilled from a multitude of sources.
e Deconstruction of software architecture into its basic principles.

Opentowork

| am looking for a good job. Embedded or high load C / C++. B2B from Ukraine. | can
gather a team.

This book needs examples

Several readers told me that the patterns and principles should be illustrated with
examples of their use in real-world systems. | cannot write them on my own because the
scope of the book is much wider than my professional experience.

I am looking for both inline explanations about individual patterns (see blocks with gray
background scattered throughout this book) and for one or two introductory case studies that
will detail internal workings and evolution of complex real-world software to show how
patterns are used in practice and promote the book to the duplex league.

Please consider sharing your experience as a co-author of a future version of this book.

https://en.wikipedia.org/wiki/Architectural_pattern
https://martinfowler.com/bliki/DuplexBook.html
https://tvtropes.org/pmwiki/pmwiki.php/Main/GenreDeconstruction

Short table of contents

About this book
Metapatterns

Modules and complexity
Forces, asynchronicity and distribution
Four kinds of software
Arranging communication
Monolith

Shards

Layers

Services

Pipeline

Middleware

Shared Repository
Proxy

Orchestrator

Combined Component
Layered Services
Polyglot Persistence

Backends for Frontends (BFF)
Service-Oriented Architecture (SOA)
Hierarchy

Plugins

Hexagonal Architecture
Microkernel

Mesh

Comparison of architectural patterns
Ambiguous patterns

Architecture and product life cycle

Real-world inspirations for architectural patterns
The heart of software architecture

Appendix A. Acknowledgements.

Appendix B. Books referenced.

Appendix C. Copyright.
Appendix D. Disclaimer.
Appendix E. Evolutions.

Appendix F. Format of a metapattern.
Appendix G. Glossary.

Appendix H. History of changes.
Appendix |. Index of patterns.

About this book

When | was learning programming, there was Gang of Four. The book promised to teach
software design, and it did to an extent with the case study provided. However, the patterns
it described were merely random tools which had little in common. After several years,
having reinvented Hexagonal Architecture along the way, | learned about Pattern-Oriented
Software Architecture. The series had many more intriguing patterns, and promised to
provide a system of patterns or a pattern language, but failed to build an intuitive whole.
Then there were specialized books with Domain-Driven Design and Microservices patterns.
There was the Software Architecture Patterns primer by Mark Richards. Its simplicity felt
great, but it had only 5 architectural styles, while his next book, Fundamentals of Software
Architecture, dived too deeply into practical details and examples to be easily grasped.

Now, having leisure thanks to the war, burnout, unemployment and depression | have
had a chance to collect architectural patterns from multiple sources and build a taxonomy of
architectures. My goal was to write the very book | lacked in those early years: a shallow but
intuitive overview of all the software and system architectures as used in practice, their
properties and relations. | hope that it will be of some help both to novice programmers as a
kind of a primer on the principles of high-level software design and to adept architects by
reminding them of the big picture outside of their areas of expertise.

The book is mostly technology-agnostic. It does not answer practical questions like
“Which database should | use?” Instead it inclines towards the understanding of “When
should | use a shared database?” Any specific technologies are-easy-te-geegle can be found
overthe-tnternet somewhere in the Noosphere.

This book started as a rather small project to prove that patterns can be intuitively
classified (These nightmarish creatures can be felled! They can be beaten!) but grew into a
multifaceted compendium of a hundred or so architectures and architectural patterns. It is
grounded in the idea that software and system architecture evolves naturally, as opposed to
being scientifically planned. Thus, the architectures may exhibit fractal features, just like
those in biology — merely because the set of guidelines and forces remains the same for
most systems that range from low-end embedded devices to world-wide financial networks.
Moreover, in some cases we can see the same patterns applied to hardware design.

The idea of unifying software and system architecture is heretical. | am well aware of
that. Still, the industry is in the early stage of alchemy these days: the same things are sold
under multitudes of names, being remarketed or reinvented every decade. If this book
manages to provide rules of thumb, similar to those of biology (a bat is a mammal, thus it
should run on all four, while ostriches, as birds, must fly to Europe each spring), | will be
happy with that. Science makes progress funeral by funeral.

The latest version of the book is available for free on GitHub and LeanPub. As there is
no one who has practiced all the known architectures, it will be full of mistakes. | rely on your
goodwill to correct them and improve the text. Critical reviews are warmly welcome: please
write an email or contact me on LinkedIn.

https://en.wikipedia.org/wiki/Design_Patterns
https://www.oreilly.com/content/software-architecture-patterns/
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://en.wikipedia.org/wiki/Pattern-Oriented_Software_Architecture
https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://www.linkedin.com/in/denyspoltorak/
mailto:descri@gmail.com
https://leanpub.com/metapatterns
https://github.com/denyspoltorak/publications/blob/main/ArchitecturalMetapatterns

Structure of the book

The first chapter explains the main idea which makes this book different from others. The
following chapters in the first part touch on several general topics that are referenced
throughout the book.

The next four parts iterate over metapatterns (clusters of closely related architectural
patterns), starting with the simplest one, namely Monolith, then heading towards more
complex systems that may be derived from Monolith by repeatedly dissecting it with
interfaces. Each chapter describes a group of related patterns that share benefits and
drawbacks, adds in a few references to books and websites, and summarizes the ways the
patterns can be transformed into other architectures. The format of these chapters is
described in Appendix F.

The sixth part of the book is analytics — the fruits of the pattern classification from the
earlier parts.

Finally, there are appendices. Appendix B is the list of the books referenced, Appendix E
contains detailed evolutions of patterns and Appendix | is the index of the patterns found in
the book.

Diagrams

This book makes heavy use of diagrams — to the extent that it can be treated as a kind of
visual novel. As it is mostly made of patterns, and each pattern is an island, it must not be
read sequentially — instead, the reader is advised to use the plentiful cross-links to open
whatever (if any) content found to be intriguing and check the corresponding diagram. If it
gets your attention, you may read the text below it. If you like the text, you may scroll up or
down to see if there are more funny diagrams nearby.

The diagrams are NoUML and most of them belong to one of the following kinds:

(Client) (Client) (Client)
A

0}
\"4 System APIY
C Orchestrator) (Orchestrator
P00
(] (] [} Q
Q L Q L
e < S m =) S m
Q [<5) [} Q
n n N "
A/ \J \J \ V DB API V
(' Shared Database) (% D) (_ Shared Database)
Structural Diagram Sequence Diagram Dependency Diagram

Please refer to the following chapter for the legend and the system of coordinates.

Notation
e Pattern names are given in Title Case Italics and usually link to the pattern’s
definition.

The first mention of a term or a name of a pattern component is italicized.
Quotes and puns are in full italics.

e Book references are [BRACKETED] and link to the list of the books in Appendix B.

o Supplementary explanations are grayed-out.

Many patterns match terms of the common language — indeed, as a pattern is a
generalization of human experience, the more widespread a notion, the faster it is turned
into a pattern. Such general-use terms, e.g. layers, services or pipeline, are usually not
indicated in any way to preserve the overall readability.

The architectural religions

There are several schools of software architecture:
1. The believers in SOLID.

2. The followers of eight qualities, five views and as-many-as-one-gets certifications.
3. The aspirants to the nameless way of patterns.

In my opinion:

1. SOLID is a silver bullet that tends to produce a DDD-layered kind of Hexagonal
Architecture. It lacks the agility of pluralism found with evolutionary ecosystems.

2. Architectural frameworks are overcomplicated thus hard to understand and inflexible.

3. Patterns are like a kind of toolbox, the one which a mechanic is often seen carrying
around. A skilled craftsman knows best uses of his tools, and can invent new
instruments if something is missing in the standard toolset. However, the toolset's
size should be limited for the tools to be familiar to the practitioner and easily carried
around.

It is likely that those approaches are best used with systems of different sizes: SOLID is
aimed at stand-alone application design while the heavy frameworks and certifications suit
distributed enterprise architectures. In such a worldview patterns span everything in between
the two extremes.

Patterns of software architecture are abstract just like Plato’s Ideas or Forms in philosophy or classes in object-
oriented programming. There is only one instance of each given pattern, which is a general idea or a very high-
level blueprint for every implementation of the pattern ever seen in the code.

What's wrong with patterns

Too much information is no information or, as they say, what is not remembered never
existed. There are literally thousands of patterns described for software and system
architectures. Nobody knows them all and nobody cares to know them all (if you say you do,
you must have already read the Pattern Languages of Programs archives. Have you?
Neither have 1). Hundreds of patterns are generated yearly in just the conferences alone, not
to mention the books and software engineering websites. Old patterns get rebranded or
forgotten and reinvented. This is especially true for the discrepancy between the pattern
names in software architecture and system architecture. The new N-tier is just good old
Layers under the hood, isn't it?

This undermines the original ideas which brought in the patterns hype:

https://en.wikipedia.org/wiki/Theory_of_forms
https://datatracker.ietf.org/doc/html/rfc1925
https://datatracker.ietf.org/doc/html/rfc1925
https://hillside.net/index.php/past-plop-conferences
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Enterprise_architecture_framework#Types_of_enterprise_architecture_framework
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/SOLID

1. Patterns as a ubiquitous language. Nowadays similar, if not identical, patterns bear
different names, and some of them are too obscure to be ever heard of (see the
PLoP archives).

2. Patterns as a vessel for knowledge transfer. If an old pattern is reinvented or
plagiarized, most of the old knowledge is lost. There is no continuity of experience.

3. Pattern language as the ultimate architect’s tool. As patterns are re-invented, so are
pattern languages. At best, we have domain-specific or architecture-limited (DDD,
Microservices) systems of patterns. There is no single unified vision which pattern
enthusiasts of old promised to provide.

Have we been fooled?

TLDR

Compare Firewall and Response Cache. Both represent a system to its users and
implement generic aspects of the system’s behavior. Both are Proxies.

Take Saga Execution Component and APl Composer. Both are high-level services that
make a series of calls into an underlying system — they orchestrate it. Both are
Orchestrators.

It's that simple and stupid. We can classify architectural patterns.

https://microservices.io/patterns/index.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://hillside.net/index.php/past-plop-conferences
https://hillside.net/index.php/past-plop-conferences

Metapatterns

Is there a way to bring the patterns into order? They are way too many, some obscure,
others overly specialized.

We can try. On a subset. And the subset should be:

e Important enough to matter for the majority of programmers.

e Small enough to fit in one’'s memory or in a book.

e Complete enough to assure that we don’t miss anything crucial.

Is there such a set? | believe so.

Architectural patterns

[POSAL1] defines three categories of patterns:

e Architectural patterns which deal with the overall structure of a system and functions
of its components.
Design patterns which describe relations between objects.
Idioms which provide abstractions on top of a given programming language.

Architectural patterns are important by definition (Architecture is about the important
stuff. Whatever that is). Point 1 (importance) — checked.

Any given system has an internal structure. When its developers talk about architectural
style [POSA1] or draw structural diagrams that usually boils down to a compaosition of two or
three well-known architectural patterns. Choosing architectural patterns as the subject of our
study lets us feed on a large body of books and articles that describe similar designs over
and over again. Moreover, as soon as a system no longer follows the latest fashions, it is
widely advertised as a novelty (or its designers are labeled as old-fashioned and
shortsighted), thus we may expect to have heard of nearly all of the architectures which are
used in practice. Point 3 (completeness) — we have more than enough examples to analyze.

To organize a set of patterns we rely on the concept of

Design space

Design space [POSAL, POSAS] is a model that allocates a dimension for each choice
made while architecting the system. Thus it contains all the possible ways for a system to be
designed. The only trouble — it is multidimensional, maybe infinite, and the dimensions will
differ from system to system.

There is a workaround — we can use a projection from the design space into a 2- or 3-
dimensional space which we are more comfortable with. However, projection causes a loss
of information. Counterintuitively, that is good for us — similar architectures that differ in small
details become identical as soon as the dimensions they differ in disappear. If we could only
find 2 or 3 most important dimensions that apply equally well to each pattern in the set that
we want to research, that is architectural patterns, which cover all the known system
designs.

https://martinfowler.com/architecture/

Structure determines architecture

Systems tend to have an internal structure. Those that don't are derogatively called Big
Balls of Mud for their peculiar properties. Structure is all about components, their roles and
interactions. Many architectural styles, for example, Layers and Pipeline, are named after
their structures, while others, like Event-Driven Architecture, highlight some of its aspects,
hinting that it is the structure which determines principal properties of a system.

I am not the first person to reach such a conclusion. Metapatterns — clusters of patterns
of similar structure — were defined shortly after the first collections of design patterns had
appeared but they never made a lasting impact on software engineering. | believe that the
approach was applied prematurely to analyze the [GoF] patterns, which make quite a
random and incomplete subset of design patterns, resulting in an overgeneralization. | intend
to plot structures of all the architectural patterns | encounter, group patterns of identical
structure together into metapatterns, draw relations between the metapatterns, and maybe
show how a system’s structure determines its properties. Quite an ambitious plan for a short
book, isn't it?

Our set of architectural patterns is still not known to be complete, is not small and,
moreover, the way structural diagrams are drawn differs from source to source — we cannot
compare them unless we make up a universal system of coordinates.

The system of coordinates

Inventing a generic coordinate system to fit any pattern’s representation, from [terator
[GoF] to Half-Sync/Half-Async [POSAZ2], may be too hard, but we surely can find something
for architectural patterns, as all of them share the scope, namely the system as a whole.
Which dimensions an implementation of a system would usually be plotted along?

1. Abstractness — there are high-level use cases and low-level details. A single highly

abstract operation unrolls into many lower-level ones: Python scripts run on top of a
C runtime and assembly drivers; orchestrators call APl methods of services, which
themselves run SQL queries towards their databases which are full of low-level
computations and disk operations.

2. Subdomain — any complex system manages multiple subdomains. An OS needs to
deal with a variety of peripheral devices and protocols: a video card driver has very
little resemblance to an HDD driver or to the TCP/IP stack. An enterprise has multiple
departments, each operating a software that fits its needs.

3. Sharding — if several instances of a module are deployed, and that fact is an integral
part of the architecture, we should represent the multiple instances on our structural
diagram.

We'll draw the abstractness axis vertically with higher-level modules positioned towards

the upper side of the diagram, the subdomain axis horizontally, and sharding diagonally.
Here is an (arbitrary) example of such a diagram:

https://en.wikipedia.org/wiki/Iterator_pattern
http://www.laputan.org/mud/
http://www.laputan.org/mud/
https://softwareresearch.net/fileadmin/user_upload/Documents/publications/conference_proceedings/C010.pdf

N ;
(7)) r Crantand
% Frontend TR e,)
g - Alogical group -
5 l l l
< => Asynchronous
Reverse Proxy) message
u /|'|\ = => Optional message
V ’ :::::> Event stream
Backend
Method call or
Domain RPC
Model :
: .S 2-way
: ORM <= communication
: y . Use cases are green
:(OLTPDB) : ———
. . Domain logic is blue
O Generic code is white
& bdomai
é\‘?} Subdomain Data is grey
cers T

(A structural diagram for CORS, adapted from Udi Dahan'’s article, to introduce the notation)

Map and reduce

Now that we have the generic coordinates which seem to fit any architectural pattern, we
can start mapping our set of architectural patterns into that coordinate system — the process
of reducing the multidimensional design space to the few dimensions of structural diagrams
which we were looking for. Then, after filtering out minor details, our hundred or so of
published patterns should yield a score of clusters of geometrically equivalent diagrams —
just because there are very few simple systems that one can draw on a plane before
repeating oneself. Each of the clusters will represent an architectural metapattern — a
generalization of architectural patterns of similar structure and function.

Let's return for a second to our requirements for classifying a set of patterns. The
importance (point 1) of architectural patterns was proved before. The reasonable size of the
resulting classification (point 2) is granted by the existence of only a few simple 2D or 3D
shapes (metapatterns). The completeness of the analysis (point 3) comes from, on one
hand, the geometrical approach which makes any blank spaces (possible geometries with
no known patterns) obvious, and on the other — from the large sample of architectural
patterns which we are classifying.

Godspeed!

An example of metapatterns

Let's consider the following structure:

https://udidahan.com/2009/12/09/clarified-cqrs/

There are several LJ L) Every high-level
high-level ... _ component

s communicates

with th
... and one low-level) low I;vél ((a)ne
component

It features two (or more in real life) high-level modules that communicate with/via a
lower-level module. Which patterns does it match?

e Middleware — a software that provides means of communication between other
components.

Shared Database — a space for other components to store and exchange data.
Model-View-Controller — a platform-agnostic business logic with customized means

of input and output.

\'4

<] Service A
| Service B
Service A
Service B

Model

(Middleware) (Shared Database)

My idea of grouping patterns by structure seems to have backfired — we got three distinct
patterns that have similar structural diagrams. The first two of them are related — both
implement indirect communication, and their distinction is fading as a Middleware may
feature a persistent storage for messages while a table in a Shared Database may be used
to orchestrate services. The third one is very different — primarily because the bulk of its
code, that is its business logic, resides in the lower layer, leaving the upper-level
components a minor role.

Notwithstanding, each of the patterns we found is a part of a distinct cluster:

e Middleware is also known as (Message) Broker [POSAL, POSA4, EIP, MP] and is an
integral part of Message Bus [EIP], Service Mesh [ESA], Event Mediator [ESA],
Enterprise Service Bus [ESA] and Space-Based Architecture [SAP, ESA].

e Shared Database is a kind of Shared Repository [POSA4] (Shared Memory, Shared
File System), and the foundation for Blackboard [POSAl, POSA4], Space-Based
Architecture [SAP, ESA], and Service-Based Architecture [ESA].

e Model-View-Controller [POSAL, POSA4] is a special kind of Hexagonal Architecture
(aka Ports and Adapters, Onion Architecture and Clean Architecture) which itself is
derived from Plugins [PEAA] (Addons, Plug-In Architecture [ESA], or the misnomer
Microkernel Architecture [SAP, ESA]).

Our touching on a single geometry of structural diagrams revealed a web of 20 or so

pattern names that spreads all around. With such a pace there is a hope of exploring the
whole fabric which is known as pattern language [GoF, POSAL, POSA2, POSA5].

There are three lessons to learn:
e The distribution of business logic is a crucial aspect of structural diagrams.
e Metapatterns are interrelated in multiple ways, forming a pattern language.

e Each metapattern includes several well-established patterns.

What does that mean

Chemistry has the periodic table. Biology has the tree of life. This book strives towards
building something of that kind for software and systems architecture. You can say “That
makes no sense! Chemistry and biology are empirical sciences while software architecture
isn't!” Is it?

https://en.wikipedia.org/wiki/Tree_of_life_(biology)
https://en.wikipedia.org/wiki/Periodic_table

Hexagonal Architecture

0
§ (Input) (OutpuD
... g —
Use cases § o 5 —» Method call
£S5 o]
»u O <
8 <—> Messaging
Core
:::::::::::D Data stream
,, Domain
Data Y boundary
(DB) (LibX) 1LibY)
& g
> Subdomain
2
Hexagonal
Architecture

Trust no one. Protect your code from external dependencies.
Known as: Hexagonal Architecture, or originally as Ports and Adapters.
Variants:
By placement of adapters:
e Adapters on the external component’s side.
e Adapters on the core side.
Examples — Hexagonal Architecture:
e Hexagonal Architecture / Ports and Adapters,
e DDD-Style Hexagonal Architecture [LDDD] / Onion Architecture / Clean Architecture.
Examples — Separated Presentation:
e (Layered) Model-View-Presenter (MVP), Model-View-Adapter (MVA), Model-View-
ViewModel (MVVM), Model 1 (MVC1), Document-View [POSA1],
e (Pipelined) Model-View-Controller (MVC) [POSAL, POSA4] / Action-Domain-
Responder (ADR) / Resource-Method-Representation (RMR) / Model 2 (MVC2) /
Game Development Engine.
Structure: A monolithic business logic extended with a set of (adapter, component) pairs
that encapsulate external dependencies.
Type: Implementation.
Benefits Drawbacks
Isolates business logic from external Suboptimal performance
dependencies
Facilitates the use of stubs/mocks for testing The vendor-independent interfaces must be
and development designed before the start of development
Allows for qualities to vary between the
external components and the business logic
The programmers of business logic don't

https://slideplayer.com/slide/12426213/
https://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/
https://herbertograca.com/2018/08/31/resource-method-representation/
https://github.com/pmjones/adr#action-domain-responder
https://github.com/pmjones/adr#action-domain-responder
https://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/
https://herbertograca.com/2017/08/17/mvc-and-its-variants/#model-view-view_model
https://herbertograca.com/2017/08/17/mvc-and-its-variants/#model-view-view_model
https://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html#MVA-Model-View-Adapter
https://herbertograca.com/2017/08/17/mvc-and-its-variants/#model-view-presenter
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://herbertograca.com/2017/09/28/clean-architecture-standing-on-the-shoulders-of-giants/
https://herbertograca.com/2017/09/21/onion-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://herbertograca.com/2017/09/14/ports-adapters-architecture/

need to learn any external technologies

References:. Herberto Graca’s chronicles is the main collection of patterns from this
chapter. Hexagonal Architecture has the original article and a brief summary of its layered
variant in [LDDD]. Most of the Separated Presentation patterns are featured on Wikipedia
and there are collections of them from Martin Fowler, Anthony Ferrara and Derek Greer.

Hexagonal Architecture is a variation of Plugins that aims for total self-sufficiency of
business logic. Any third-party tools, whether libraries, services or databases, are hidden
behind adapters [GoF] that translate the external module’s interface into a service provider
interface (SPI) defined by the core module and called port. The core’s business logic
depends only on the ports that its developers defined — a perfect use of dependency
inversion — and manipulates interfaces that were designed in the most convenient way. The
benefits of this architecture include the core’s cross-platform nature, easy development and
testing with stubs or mocks, support for event replay and protection from vendor lock-in. It
also allows for replacement of any external library at late stages of the project. The flexibility
is paid for with a somewhat longer system design stage and lost optimization opportunities.
There is also a high risk to design a leaky abstraction — an SPI that looks generic but whose
contract matches that of the component it encapsulates, making it much harder than
expected to change the component’s vendor.

Stubs and mocks are fest doubles — simplistic replacements for real-world components. They are used to run the
business logic in isolation — without the need to deploy any heavyweight libraries or services the logic may
depend upon. A stub supports a single usage scenario in a single test case while a mock is more generic — its
behavior is programmed on a per test basis.

Performance

Hexagonal Architecture is a strange beast performance-wise. The generic interfaces
(ports) between the core and adapters stand in the way of whole-system optimization and
may add context switching. Still, at the same time, each adapter concentrates all the vendor-
specific code for its external dependency, which makes the adapter a perfect single place for
aggressive optimization by an expert or consultant who is proficient with the adapted third-
party software but does not have time to learn the details of your business logic. Thus, some
opportunities for optimization are lost while others emerge.

In rare cases the system may benefit from direct communication between the adapters.
However, that requires several of them to be compatible or polymorphic, in which case your
Hexagonal Architecture may in fact be a kind of shallow Hierarchy. Examples include a
service that uses several databases which are kept in sync through Change Data Capture
(CDC) or a telephony gateway that interconnects various kinds of voice devices.

https://martinfowler.com/bliki/TestDouble.html
https://www.dremio.com/wiki/change-data-capture/
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Vendor_lock-in
https://stackoverflow.com/questions/3459287/whats-the-difference-between-a-mock-stub
https://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/
https://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html
https://martinfowler.com/eaaDev/uiArchs.html
https://alistair.cockburn.us/hexagonal-architecture/
https://herbertograca.com/2017/07/03/the-software-architecture-chronicles/

... to improve
You can have o performance
a data stream Wi-Fi Router |-------- through
between -, bypassing the
adapters ... TN + * core logic
‘?1?:’:1:::9
WAN LAN
PON Wi-Fi

Dependencies

Each adapter breaks the dependency between the core that contains business logic and
an adapted component. This makes all the system’s components mutually independent —
and easily interchangeable and evolvable — except for the adapters themselves, which are

small enough to be rewritten as need arises.
s Output 2

An adapter
depends on
interfaces of
its adaptee
and the core

As the
result, the
Core oo core does
not depend
It breaks the on anything
dependency
of the core on
the adapted
component DB m LibY
Applicability

Hexagonal Architecture benefits:

e Medium-sized or larger components. The programmers don’t need to learn details of
external technologies and may concentrate on the business logic instead. The code
of the core becomes smaller as all the details of managing external components are
moved into their adapters.

Cross-platform development. The core is naturally cross-platform as it does not
depend on any (platform-specific) libraries.

Long-lived products. Technologies come and go, your product remains. Always be
ready to change the technologies it uses.

Unfamiliar domain. You don't know how much load you'll need your database to
support. You don’'t know if the library you selected is stable enough for your needs.
Be prepared to replace vendors even after the public release of your product.
Automated testing. Stubs and mocks are great for reducing load on test servers. And
stubs for the SPIs which you wrote yourself are easy as a pie.

Zero bug tolerance. SPls allow for event replay. If your business logic is

deterministic, you can reproduce your user’s bugs in your office.

Hexagonal Architecture is not good for:

Small components. If there is little business logic, there is not much to protect, while
the overhead of defining SPIs and writing adapters is high compared to the total
development time.

Write-and-forget projects. You don't want to waste your time on long-term
survivability of your code.

Quick start. You need to show the results right now. No time for good architecture.
Low latency. The adapters slow down communication. This is somewhat alleviated
by creating direct communication channels between the adapters to bypass the core.

Relations

C

Client) C Client) C Client)
N

1 ||

\"4 \"4 ‘
(Input) (Output) (Input) (Output)
\/ (— \-

i v

(Tasks)

Core \

(Domain)

(pbe) (Lb) (oe) (Lb)

Monolithic Layered Modular
Hexagonal Hexagonal Hexagonal
Architecture Architecture Architecture

Hexagonal Architecture:

Is a kind of Plugins.

May be a shallow Hierarchy.

Implements Monolith or Layers.

Extends Monolith, Layers or, rarely, Services with one or two layers of services.
The MVC family of patterns is also derived from Pipeline.

http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
https://stackoverflow.com/questions/3459287/whats-the-difference-between-a-mock-stub

Variants by placement of adapters

One possible variation in a distributed or asynchronous Hexagonal Architecture is the

deployment of adapters, which may reside adjacent to the core or with the components they
adapt:

Adapters on the external component side

C Client)

.. one
When the 3 message to
adapters are on the adapter
the adapted # Core - translates into
components' g e several calls
sides ... 7 7 q to the external
component

If your team owns the component adapted, the adapter may be placed next to it. That
usually makes sense because a single domain message (in the terms of your business logic)

tends to unroll into a series of calls to an external component. The fewer messages you
send, the faster your system is.

This resembles Sidecar [DDS] and Open Host Service [DDD].

Adapters on the core side

)
< @)
If you don't @ 3 ... you need
= S
own the - Gt toadapt
external ~ 2 S them on
components :) ——/ your side
y Y
~ The Shared Database)

Sometimes you need to adapt an external service which you don’t control. In that case
the only real option is to place its adapter together with your core logic. In theory, the adapter

can be deployed as a separate component, maybe in a Sidecar [DDS], but that may slow
down communication.

This approach resembles Ambassador [DDS] and Anticorruption Layer [DDD].

https://docs.google.com/document/d/1hzBn-RzzNDcArAWcvXaXgw2nl6O_ryDKE51Xve18zOs/edit?pli=1&tab=t.0#heading=h.ko68gfp4bjq0
https://docs.google.com/document/d/1hzBn-RzzNDcArAWcvXaXgw2nl6O_ryDKE51Xve18zOs/edit?pli=1&tab=t.0#heading=h.d9s7thhgp6q9

Examples — Hexagonal Architecture

Hexagonal Architecture protects business logic from all its dependencies. It is simple and
unambiguous. It does not come in many shapes:

Hexagonal Architecture, Ports and Adapters

A cu
Hexagonal
Architecture f .. by employing
protects its core adapters that
logic from input -------- Core translate between

sources and

_ foreign and native
infrastructure ... -

interfaces

Just like MVC it is based on, the original Hexagonal Architecture (Ports and Adapters)
does not care about the contents or structure of its core — it is all about isolating the core
from the environment. The core may have layers or modules or even plugins inside, but the
pattern has nothing to say about them.

DDD-Style Hexagonal Architecture, Onion Architecture, Clean
Architecture

(REST APD C]SON APD

(REST APD (JSON APD (REST APD (JSON APD

Application) (Application) (Application)

s \E gy \F:
Domain Servi :es)
Domain Domain Vs

Domain ModeD

ST ie D @ < 17] % K D
Sy (€ ¥3 S whE v H Sy [E ¥ Ve
Repository (Infra) Repository Infra Repository (Infra)
(Database) (Pub/Sub) (Database) (Pub/Sub) (Database) (Pub/Sub)

Puristic DDD Pragmatic DDD Onion
Approach Approach Architecture

As Hexagonal Architecture built upon the DDD’s idea of isolating business logic with
Adapters, it was quickly integrated back into DDD [LDDD]. However, as Ports and Adapters

https://alistair.cockburn.us/hexagonal-architecture/
https://en.wikipedia.org/wiki/Domain-driven_design

appeared later than the original DDD book, there is no universal agreement on how the thing
should work:

The cleanest way is for the domain layer to have nothing to do with the database —
with this approach the application asks the repository (the database adapter) to
create aggregates (domain objects), then executes its business actions on the
aggregates and tells the repository to save the changed aggregates back to the
database.

Others say that in practice the logic inside an aggregate may have to read additional
information from the database or even depend on the result of persisting parts of the
aggregate. Thus it is the aggregate, not the application, which should save its
changes, and the logic of accessing the database leaks into the domain layer.

Onion Architecture, one of early developments of Hexagonal Architecture and DDD,
always splits the domain layer into a domain model and a domain services. The
domain model layer contains classes with business data and business logic, which
are loaded and saved by the domain services layer just above it. And the upper
application services layer drives use cases by calling into both domain services and
domain model.

There is also Clean Architecture which seems to generalize the approaches above
without delving into practical details — thus the way it saves its aggregates remains a
mystery.

Examples — Separated Presentation

Separated Presentation protects business logic from a dependency on presentation

(interactions with the system'’s user via a window, command line, or web page). There is a
great variety of such patterns, commonly known as Model-View-Controller (MVC)
alternatives. They are derived from Hexagonal Architecture by omitting every component not
directly involved in user interactions and make three structurally distinct groups:

Bidirectional flow — the view (user-facing component) both receives input and
produces output and there is often an explicit adapter between it and the main
system, resulting in Layers.

Unidirectional flow — the controller receives input while the view produces output,

forming a kind of Pipeline.
Hierarchical with multiple models, discussed in the Hierarchy chapter.

All of them aim at making the business logic presentation-agnostic (thus cross-platform
and developed by an independent team), but differ in their complexity, flexibility and best use

cases.

https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html

Model-View-Presenter (MVP), Model-View-Adapter (MVA), Model-
View-ViewModel (MVVM), Model 1 (MVC1), Document-View

(View) The presenter
PRl + A : translates between
. . the view's and the

The view is a
platform-specific Ul
that receives user
actions and shows

model's formats

information :
and logic
The model is a “ The view and
platform-agnostic -------- * Model / presenter make a
application core. platform-dependent
RN presentation layer

MVP-style patterns pass user input and output through one or more presentation layers.
Each pattern includes:

e View — the interface exposed to users.

e An optional intermediate layer that translates between the view and model. It is the

component which differentiates the patterns, both in name and function.

e Model — the whole system'’s business logic and infrastructure, now independent from

the method of presentation (CLI, Ul or web).

Document-View [POSA1] and Model 1 (MVC1) skip the intermediate layer and connect
the view directly to the model (document). These are the simplest Separated Presentation
patterns for Ul and web applications, correspondingly.

In a Model-View-Presenter (MVP), the presenter (Supervising Controller) receives input
from the view, interprets it as a call to one of the model’'s methods, retrieves the call’s results
and shows them in the view, which is often completely dumb (Passive View). A complex
system may feature multiple view-presenter pairs, one per Ul screen.

A Model-View-Adapter (MVA) is quite similar to MVP, but it chooses the adapter on a per
session basis while reusing the view. For example, an unauthorized user, a hormal user, and
an admin would access the model through different adapters that would show them only the
data and actions available with their permissions.

A Model-View-ViewModel (MVVM) uses a stateful intermediary (ViewModel or
Presentation Model) which resembles a Response Cache, Materialized View, Reporting
Database or Read Model of CORS - it stores all the data shown in the view in a form which
is convenient for the view to bind to. Changes in the view are propagated to the ViewModel
which translates them into requests to the underlying application (the true model). Changes
in the model (independent or resulting from user actions) are propagated to the ViewModel
and, eventually, to the view.

All those patterns exploit modern OS or GUI frameworks’ widgets which handle and
process mouse and keyboard input, thus removing the need for a separate (input) controller
(see below).

https://martinfowler.com/eaaDev/PresentationModel.html
https://herbertograca.com/2017/08/17/mvc-and-its-variants/#model-view-view_model
https://blog.ircmaxell.com/2014/11/alternatives-to-mvc.html#MVA-Model-View-Adapter
https://martinfowler.com/eaaDev/PassiveScreen.html
https://martinfowler.com/eaaDev/SupervisingPresenter.html
https://herbertograca.com/2017/08/17/mvc-and-its-variants/#model-view-presenter
https://martinfowler.com/eaaDev/SeparatedPresentation.html
https://stackoverflow.com/questions/796508/what-is-the-actual-difference-between-mvc-and-mvc-model2
https://mvc.givan.se/papers/Twisting_the_Triad.pdf
https://en.wikipedia.org/wiki/Data_binding

D= L = : User types
Every screen (V'eXVX) (C V'e‘:"Y DE . diffel)'/?n
. IOl D] : e
hé\I/SIIDtS own v s v Y S el adapters
-F pair ‘f‘~€3resenter)9 . @resenter\b : @dapterﬁ) @dapter@
R /ﬁ\ RER /ﬁ\ /l’l\ /ﬁ\
\"4 A4 A4
Model Model
MVP with MVA with
Multiple Screens User Types
Use cases
- . are in the
(View) -Vlew .
The 1 l ! view
ViewModel \ J
stores data ---------- {{ ViewModel) The model
bound to the I Document is domain
- - "
Document-
MVVM View Model 1

Model-View-Controller (MVC), Action-Domain-Responder (ADR),
Resource-Method-Representation (RMR), Model 2 (MVC2), Game
Development Engine

The controller receives
keyboard and mouse
inputs and interprets

them as user requests

The view shows
updates and
notifications to
the users

The view and
controller make a
platform-specific

user interface

The model is the
platform-agnostic
business logic

When your presentation’s input and output diverge (raw mouse movement vs 3D
graphics in Ul, HTTP requests vs HTML pages in websites), it makes sense to separate the
presentation layer into dedicated components for input and output.

Model-View-Controller (MVC) [POSAL, POSA4] allows for cross-platform development of
hand-crafted Ul applications (which was necessary before universal Ul frameworks
emerged) by abstracting the system’s model/ (its main logic and data, the core of Hexagonal
Architecture) from its user interface containing platform-specific controller (input) and view
(output):

e The controller translates raw input into calls to the business-centric model’s API. It

may also hide or lock widgets in the view when the model’s state changes.

e The model is the main Ul-agnostic application which executes controller's requests

and notifies the view and, optionally, controller when its data changes.

e Upon receiving a notification, the view reads, transforms, and presents to the user

the subset of the model’'s data which it covers.

Each widget on the screen may have its own model-view pair. The absence of an
intermediate layer between the view and model makes the view heavyweight as it has to
translate the model's data format into something presentable to users — the flaw addressed
by the MVP (3-layered) patterns discussed above.

Both Action-Domain-Responder (ADR) and Resource-Method-Representation (RMR)
are web layer patterns. An action (method) receives a request, calls into a domain
(resource) to make changes and retrieve data and brings the results to a responder
(representation) which prepares the return message or web page. ADR is technology-
agnostic while RMR is HTTP-centric.

Model 2 (MVC2) is a similar pattern from the Java world with integration logic
implemented in the controller.

A game development engine creates a higher-level abstraction over input from mouse /
keyboard / joystick and output to sound card / GPU while more powerful engines may also
model physics and character interactions. The role is quite similar to what the original MVC
did, with a couple of differences:

e Games often have to deal with the low-level and very chatty interfaces of hardware

components, thus the input and output are at the bottom side of the system diagram.

e The framework itself makes a cohesive layer, becoming a kind of Microkernel.

Another difference is that while MVC provides for changing target platforms by rewriting
its minor components (view and controller), you are very unlikely to change your game
framework — instead, it is the framework itself that makes all the platforms look identical to
your code.

Every widget : (View) (View) : C Client ") Action
has its own | . parses
................. J,

V-Cparr v | l| CA@O@_»(R%&H der}\\ requests
Modéi' : t "Responder
,,,,,,,,,,,,, produces
e _ Domain . output
MVC with Multiple R
Widgets ADR / RMR
= The game
Controller (clent) [:.~"">""f.,:'*ﬂ::;_-éame J ________ COd?
includes use -. R customizes
case logic I behavior
Scene Game objects
i { """"""""""" . The
Modelisthe (q > Rodel) Framework Q . framework

domain logic : Q; . models
+ * Drlver Dnver the game
(Database) Mouse Kbd Sound GPU g
world

Model 2 Gamedev Engine

https://slideplayer.com/slide/12426213/
https://stackoverflow.com/questions/796508/what-is-the-actual-difference-between-mvc-and-mvc-model2
https://herbertograca.com/2018/08/31/resource-method-representation/
https://github.com/pmjones/adr#action-domain-responder
https://discussions.unity.com/t/unity3d-architecture/565787
https://github.com/pmjones/adr/blob/master/MVC-MODEL-2.md
https://martinfowler.com/eaaDev/uiArchs.html#ModelViewController

Summary

Hexagonal Architecture isolates a component’s business logic from its external
dependencies by inserting adapters between them. It protects from vendor lock-in and
allows for late changes of third-party components but requires all the APIs to be designed
before programming can start and often hinders performance optimizations

Appendix B. Books referenced.

DDD - Domain-Driven Design: Tackling Complexity in the Heart of Software. Eric
Evans. Addison-Wesley (2003). (Most of these patterns are also well-described in [LDDD])

DDIA - Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable, and Maintainable Systems. Martin Kleppmann. O’Reilly Media, Inc. (2017).

DDS - Designing Distributed Systems: Patterns and Paradigms for Scalable,
Reliable Services. Brendan Burns. O'Reilly Media, Inc. (2018).

DEDS - Designing Event-Driven Systems: Concepts and Patterns for Streaming
Services with Apache Kafka. Ben Stopford. O’Reilly Media, Inc. (2018).

EIP — Enterprise Integration Patterns. Gregor Hohpe and Bobby Woolf. Addison-
Wesley (2003).

FSA — Fundamentals of Software Architecture: An Engineering Approach. Mark
Richards and Neal Ford. O’'Reilly Media, Inc. (2020).

GoF — Design Patterns: Elements of Reusable Object-Oriented Software. Erich
Gamma, Richard Helm, Ralph Johnson, and John Viissides. Addison-Wesley (1994).

LDDD - Learning Domain-Driven Design: Aligning Software Architecture and
Business Strategy. Vlad Khononov. O’'Reilly Media, Inc. (2021). (Duplicates [DDD] thus |
marked as [LDDD] only patterns not covered by [DDD])

MP — Microservices Patterns: With Examples in Java. Chris Richardson. Manning
Publications (2018).

PEAA — Patterns of Enterprise Application Architecture. Martin Fowler. Addison-
Wesley Professional (2002).

POSAL - Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal.
John Wiley & Sons, Inc. (1996).

POSA2 — Pattern-Oriented Software Architecture Volume 2: Patterns for Concurrent
and Networked Objects. Douglas C. Schmidt, Michael Stal, Hans Rohnert, Frank
Buschmann. John Wiley & Sons, Inc. (2000).

POSAS3 — Pattern-Oriented Software Architecture Volume 3: Patterns for Resource
Management. Michael Kircher, Prashant Jain. John Wiley & Sons, Inc. (2004).

POSA4 - Pattern-Oriented Software Architecture Volume 4: A Pattern Language for
Distributed Computing. Frank Buschmann, Kevlin Henney, Douglas C. Schmidt. John Wiley
& Sons, Ltd. (2007).

POSAS — Pattern Oriented Software Architecture Volume 5; On Patterns and Pattern
Languages. Frank Buschmann, Kevlin Henney, Douglas C. Schmidt. John Wiley & Sons,
Ltd. (2007).

SAHP — Software Architecture: The Hard Parts: Modern Trade-Off Analyses for
Distributed Architectures. Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak
Dehghani. O'Reilly Media, Inc. (2021).

SAP - Software Architecture Patterns. Mark Richards. O’Reilly Media, Inc. (2015).
(All of the architectures referenced here are in [ESA] as well, but [SAP] is free)

Appendix I. Index of patterns.

Action-Domain-Responder (ADR)
Actors (architecture)

Actors (as Mesh)

Actors (backend)

Actors (embedded systems)

Actors (scope)

Adapter

Addons

Aggregate Data Product Quantum (Data Mesh)
Ambassador

Anticorruption Layer

APl Composer

API| Gateway

API Gateway (as Orchestrator)
APl Gateway (as Proxy)

API Rate Limiter

API Service (adapter)

API Throttling

Application Layer (Orchestrator)

Application Service

Aspects (Plugins)

Atomically Consistent Saga

Automotive SOA (as Service-Oriented Architecture)
AUTOSAR Classic Platform (as Microkernel)
Backend for Frontend (adapter)

Backends for Frontends (BFF)

Batch Processing

Big Ball of Mud

Blackboard

Bottom-Up Hierarchy
Broker (Middleware)

Broker Topology Event-Driven Architecture
Bus of Buses

Cache (read-through)

Cache-Aside

Caching Layer

Cell (WSO2 definition)

Cell Gateway (WSO2 Cell-Based Architecture)
Cell Router (Amazon Cell-Based Architecture)
Cell-Based Architecture (WSQO2 version)
Cell-Based Microservice Architecture (WSO2 version)
Cells (Amazon definition)

Choreographed Event-Driven Architecture

Choreographed Two-Layered Services

Clean Architecture
Cluster (group of services)

Combined Component

Command Query Responsibility Segregation (CQRS)
Composed Message Processor

Configuration File

Configurator
Container Orchestrator

Content Delivery Network (CDN)
Control (Orchestrator)

Controller (Orchestrator)
Coordinator (Saga)

CQRS View Database

Create on Demand (temporary instances)
Data Archiving

Data Domain

Data File

Data Grid (Space-Based Architecture)
Data Lake

Data Mesh

Data Product Quantum (DPQ)

Data Warehouse

Database Cache

Database Abstraction Layer (DBAL or DAL)

Dependency Inversion
Deployment Manager

Device Drivers

Direct Server Return

Dispatcher (Proxy)

Distributed Cache

Distributed Middleware

Distributed Monoalith

Distributed Runtime (client point of view)
Distributed Runtime (internals)
Document-View

Domain (Uber definition for WSO2-style Cell)
Domain-Driven Design (layers)
Domain-Oriented Microservice Architecture (DOMA)
Domain Services (scope)

Domain-Specific Language (DSL)
Edge Service

Embedded systems (layers)
Enterprise Service Bus (ESB)

Enterprise Service Bus (as Middleware)
Enterprise Service Bus (as Orchestrator)
Enterprise Service-Oriented Architecture

Enterprise SOA
Event Collaboration

Event-Driven Architecture (EDA)
Event Mediator

Event Mediator (as Middleware)
Event Mediator (as Orchestrator)
Event-Sourced View

Eventually Consistent Saga
External Search Index

FaaS

FaasS (pipelined)

Facade

Firewall

Flavors (Plugins)

Front Controller (query service of a pipeline)
Full Proxy

Function as a Service

Game Development Engine
Gateway (adapter)

Gateway Aggregation

Grid

Half-Proxy

Half-Sync/Half-Async

Hardware Abstraction Layer (HAL)

Hexagonal Architecture
Hexagonal Service

Hierarchical Model-View-Controller (HMVC)
Hierarchy

Historical Data

Hooks (Plugins)

Hypervisor

In-Depth Hierarchy
Ingress Controller

Instances

Integration Database

Integration Service

Integration Microservice

Interpreter

Layered Architecture

Layered Microservice Architecture (Backends for Frontends)
Layered Monolith

Layered Service

Layered Services (architecture)

Layers
Leaf-Spine Architecture

Load Balancer
MapReduce
Materialized View
Mediator

Memory Image

Mesh
Message Broker

Message Bus
Message Bus (as Middleware)

Message Translator (adapter)
Messaqing Grid (Space-Based Architecture)

Microgateway

Microkernel

Microkernel (Plugins)
Microkernel Architecture (Plugins)
Microservices (architecture)
Microservices (scope)
Middleware

Model 1 (MVC1)

Model 2 (MVC2)
Model-View-Adapter (MVA)
Model-View-Controller (MVC)
Model-View-Presenter (MVP)
Maodel-View-ViewModel (MVVM)
Modular Monolith

Modulith

Monolith

Monolithic Service

Multitier Architecture
Multi-Worker

Nanoservices (API layer)
Nanoservices (as runtime)
Nanoservices (pipelined)
Nanoservices (scope)
Nanoservices (SOA)

Native Data Product Quantum (sDPQ)
Nearline System

Network of Networks

N-Tier Architecture

Offline System
Onion Architecture

Open Host Service

Operating System

Operating System Abstraction Layer (OSAL or OAL)
Orchestrated Saga

Orchestrated Services

Orchestrated Three-Layered Services

Orchestrator

Orchestrator of Orchestrators

Partition

Peer-to-Peer Networks

Persistent Event Log
Pipeline

Pipes and Filters
Platform Abstraction Layer (PAL)

Plug-In Architecture

Plugins
Polyglot Persistence

Ports and Adapters

Pool (stateless instances)
Presentation-Abstraction-Control (PAC)
Proactor

Process Manager

Processing Grid (Space-Based Architecture)
Proxy

Published Language

Query Service

Rate Limiter
Reactor (multi-threaded)
Reactor (single-threaded)

(Re)Actor-with-Extractors

Read-Only Replica
Read-Through Cache
Reflection (Plugins)
Remote Facade

Replica

Replicated Cache

Replicated Stateless Services (instances)
Reporting Database

Repository

Request Hedging

Response Cache
Resource-Method-Representation (RMR)
Reverse Proxy

Saga Engine (Microkernel)
Saga Execution Component

Saga Orchestrator

Scaled Service

Scatter-Gather

Scheduler

Script

Segmented Microservice Architecture

Separated Presentation
Service-Based Architecture (architecture)

Service-Based Architecture (shared database)
Service Layer (Orchestrator)

Service Mesh

Service Mesh (as Mesh)

Service Mesh (as Middleware)

Service of Services

Service-Oriented Architecture (SOA)

Services

Services of Services

Sharding (persistent slices of data)
Sharding Proxy

Shards

Shared Database

Shared Databases (Polyglot Persistence)
Shared Event Store

Shared File System

Shared Memory

Shared Repository

Sidecar

Software Framework (Microkernel)
Source-Aligned Data Product Quantum (Data Mesh)

Space-Based Architecture (as Mesh)
Space-Based Architecture (as Middleware)
Specialized Databases

Spine-Leaf Architecture

Stamp Coupling

Strategy (Plugins)

Stream Processing

Three-Tier Architecture

Tiers

Top-Down Hierarchy

Transaction Script

Virtualizer

Work Queue

Workflow System

Workflow Owner (Orchestrator)
Wrapper Facade (Orchestrator)
Write-Behind Cache

Write-Through Cache

	You’ll find inside
	Opentowork
	This book needs examples
	Short table of contents
	About this book
	Structure of the book
	Diagrams
	Notation
	The architectural religions
	What’s wrong with patterns
	TLDR

	Metapatterns
	Architectural patterns
	Design space
	Structure determines architecture
	The system of coordinates
	Map and reduce
	An example of metapatterns
	What does that mean

	Hexagonal Architecture
	Performance
	Dependencies
	Applicability
	Relations
	Variants by placement of adapters
	Adapters on the external component side
	Adapters on the core side

	Examples – Hexagonal Architecture
	Hexagonal Architecture, Ports and Adapters
	DDD-Style Hexagonal Architecture, Onion Architecture, Clean Architecture

	Examples – Separated Presentation
	Model-View-Presenter (MVP), Model-View-Adapter (MVA), Model-View-ViewModel (MVVM), Model 1 (MVC1), Document-View
	Model-View-Controller (MVC), Action-Domain-Responder (ADR), Resource-Method-Representation (RMR), Model 2 (MVC2), Game Development Engine

	Summary

	Appendix B. Books referenced.
	Appendix I. Index of patterns.

