MEDIOR PHP

The Next Step

JOSEPH KANYO

Chapter 12.3.

Test a Repository

A Repository has methods that talk to the database, so in this case, we have
some choices: if you are using a Cloud Provider, you can pay for a test database
with much smaller power capabilities and use that in your PDO configuration.

You can set up another database locally, or you can use Docker to create a
container with postgres in it and run your integration tests against that.

I will do the second one this time, if you want to follow along, you should create
another database inside DBngin: Posgres, version 16.2, named ani-merged-
test.

Of course, we need to run our migrations against that database, or if your
project is really small you can just write down the SQL statements from your
migration files and execute it manually against your test db. I will do this because
this is a demo, but this is not good practice in the real world.

After this, we will have a setup we can run our tests against. Never run your
integration tests against your development database.

We want to have our ppo configured before each test: we can do this with the
setUp () method of the TestCase class. That code will run before each of the tests.
And we can use the tearDown () to run some code after each of the tests. In this
method, we want to execute a DELETE FROM statement to get a clean slate every
time.

File: ./tests/Repository/AnimationPostgreSQLRepositoryTest.php

class AnimationPostgreSQLRepositoryTest extends TestCase
{

private PDO

private AnimationRepositoryInterface

protected function setUp(): void
{
= sprintf(
"pgsql:host=%s;port=%s;dbname=%s;user=%s;password=%s;sslmode=%s",
"localhost",
"5432",
"ani-merged-test",
"postgres”,
"postgres”,
"disable",

->pdo = new PDO(,)
->animations = new AnimationPostgreSQLRepository(->pdo)

}

protected function tearDown(): void

{
}

->pdo->query("DELETE FROM animations;")

public function testInsertAndGet(): void
{
= 'Naruto'
= 2002
= '"Autumn’
= ['shonen', 'action', 'ninja’'

= Animation:: fromRequest(
"title' => 5
'year' =>
‘season' =>
‘genres' =>

->animations->insert(

->animations->get(->getId())

->assertSame(, ->getTitle())
->assertSame(, ->getYear())

->assertSame(Season: : AU, ->getSeason())
->assertSame(, ->getGenres())

Here you can see how I structured this test:
e The fields that you would need in every test (PDO and the AnimationRepository
implementation) should be a private property of your Test class
¢ We can initialize these in the setUp () method

¢ We don't forget to delete the records from the animations table of our ani-
merged-test database in the tearDown () method

e Then I test both the insert () and the get () method of the interface here

e I set up the variables so that I can test against them. I use the fromRequest ()
helper as if they were coming from the client

e Then I use the id generated by the database and given back by the insert()
method to pass into the get () method

e Lastly, I can just assert as many cases as I want

Of course in a real-world situation, you would write more tests for the insert ()
and get () as well, for example, you could write a test to see if the Exceptions are
properly thrown or not. And of course, you would cover the other methods as well.

Chapter 13.2.

Optimistic Locking

We are going to prevent the data race with the version field. We need to be
cautious in the update() Controller action because we are first retrieving the
resource, then updating it, making a data race possible.

But we also made sure to always update the version to be equal to version +
1 each time we call the (now) PATCH route.

So if 2 users retrieve the resource at the same time, one of them has to do the
update first. This means that the other user just can check the version column in
the database and if it's already incremented, we refuse the update operation from
this user.

File: ./src/Repository/AnimationPostgreSQLRepository.php

#[\Overridel
public function update(Animation): Animation

{

= 'UPDATE animations
SET title = :title, year = :year, season = :season,
genres = :genres, version = version + 1
WHERE id = :id AND version = :version
RETURNING version'

= Arr:: toStr(->getGenres())

try {
->pdo->beginTransaction()

= ->pdo->prepare()
->execute(
"title' => ->getTitle(),
'year' => ->getYear(),
'season' => ->getSeason()->value,
'genres' => ,
'id' => ->getId(),
'version' => ->getVersion(),

->rowCount()
=== 0) {

new EditConflictException('edit conflict for animation')

->fetch()
=== false) {
new ReturningException('RETURNING version SQL failed')

->pdo->commit()
catch (ReturningException) {
->pdo->rollBack()
throw
} catch (Throwable) |
->pdo->rollBack()

throw new DatabaseException('animation update failed()',

)

->setVersion('version'])

return

Now we just need to add one more catch branch to the in the Controller:

File: ./src/Controller/AnimationController.php

public function update(
Request ,
Response
array

): Response

{

try {
= ->animations->update(
} catch (EditConflictException) {
return ->formatter->editConflict()
} catch (ReturningException|DatabaseException) {
return ->formatter->serverError(.

}

return ->formatter
~>writeISON(->asJson(),

Chapter 16.1.

Redis Integration

Why do we need redis? It is an in-memory database that is fast but also writes
to disc and it has built-in support for forgetting records after a set amount of
time, which makes it optimal for using it as a cache, and in our case for a rate
limiter.

We use it because our different child processes don't share their memory, since
each HTTP request runs against a copy of our index.php on a newly created
thread by the PHP-FPM, so if a client uses one of our routes for example 4 times
we want to remember that he made 4 requests quickly after each other.

If the client makes too many requests within a certain timeframe, we don't want
to allow the rRequest to be processed. But after some time we want to delete this
info from the Redis database so the client can try again (Redis forgetting
capabilities). This way we defend ourselves from request timing attacks and botnet
attacks.

We want to use some env wvariables so we can make these time values
configurable from the .env file.

You can make use of different types of logic when it comes to rate limiting, you
can make:

e A global rate limiter, that only counts the number of requests made to any
of your application's routes in a given timeframe

¢ alocal rate limiter, that counts requests per client basis, but it will summarize
all of the requests of a given client, so if the client makes 4 requests to 4
different routes, we will remember the number 4 only

¢ a local rate limiter, that counts requests per client basis again, but counts
these per route basis as well, so we remember how many requests each client
made to each route

So you can make it as configurable your business logic as you want. In this book,
I am going to make the second version, so we will remember each client by their
IP Address, but we won't differentiate between what route the request is made
to, and if the number for a given client exceeds our limit value, we send back a
429 Response.

Redis Database

You can use docker if you want, I am going to make use of the tools I have been
using so far: DBngin, and TablePlus. I will create a Redis server locally and I
name it personal_redis_server, it will run on port 6379 which is the standard
port for Redis.

Image: Dbngin UI

Launch on Login Open in menu bar

v Services

. personal_mysql_server &
MySQ 06 Edit database server

pe al_postgresql_server

SQL 16.2 : 5432

Pg
personal_redis_server
R personal_redis_server

Redis 7.0.0 : 6379 6379

Server will be restarted if

v Homebrew

: Socket
¢ colima e e at
= et path (optional)

Config Select a file.

dnsmasq

abase custom config fil

Automatically start service on Login

Cancel

That is it, at its most basic use we don't need a user and a password right now.

Predis

The next thing we need is a client so we can use Redis commands from the PHP
code. We will use the predis/predis library for this use case, which is a well-written
adapter for Redis in PHP.

$ valet composer require predis/predis

The next thing we need is to set some environmental variables:

¢ scheme: we will use TCP in this case, you can read the GitHub page for
different options and their use

e host: of course, where the Redis database is located, we will use localhost

e port: again, of course, we configured our server to run on port 6379

https://github.com/predis/predis

e requests: I am going to use this to configure the value that how many requests
a client can make in the given timeframe

e expiration: we use to define the timeframe we just mentioned

o storage_key_format: rRedis is a key-value database, so we want to have
unique keys, I will configure a sprintf () string here that expects one %s value
in it, which is the IP address of the client

Let's make these variables available in the .env and .env.example files, and set
the rules for them in the dotenv_rules.php file. Lastly let's also add them to our
app.php file so we can retrieve them with the Configuration object:

File: ./.env

REDIS_SCHEME=tcp
REDIS HOST=localhost
REDIS_PORT=6379
REDIS_REQUESTS=30

REDIS_EXPIRATION=60

REDIS_STORAGE_KEY_FORMAT=rate:%s:requests

File: ./.env.example

REDIS_SCHEME=tcp

REDIS_HOST=localhost

REDIS_PORT=6379

REDIS_REQUESTS=30

REDIS_EXPIRATION=60
REDIS_STORAGE_KEY_FORMAT=rate:%s:requests

File: ./config/dotenv_rules.php

return function (Dotenv) {

->required('REDIS_HOST')
->required('REDIS_PORT')
->required('REDIS_SCHEME')

->allowedValues(['tcp', 'tls'])
->required('REDIS_REQUESTS')
—>required('REDIS_EXPIRATION')
->required('REDIS_STORAGE_KEY_FORMAT')

File: ./config/app.php

return

'db' =>
‘pgsql’ =>

?
'redis' =>
'connection' =>
‘scheme' => '"REDIS_SCHEME'],
"host' => '"REDIS_HOST' |,
"port' => intval('"REDIS_PORT']),
?
‘config' =>
'requests' => intval('REDIS_REQUESTS']),
'expiration' => intval('REDIS_EXPIRATION']),
'storage_key_format' => '"REDIS _STORAGE KEY_FORMAT'],

The last thing in this chapter is that we register a ClientInterface from the
predis package so we can just inject it into our constructors:

File: ./config/bindings.php

return

ClientInterface::class => function(Configuration) {
return new Client(

"scheme' => ->get('db.redis.connection.scheme'),
"host' => ->get('db.redis.connection.host'),
"port' => ->get('db.redis.connection.port'),

You can read the predis docs and also set up a password and a user to make it
more safe, but for an example, this will do.

10

Chapter 19.1.

Different Authentication Techniques

Important: For all authentication methods that we’re describing in this chapter,

it’s assumed that your API only communicates with clients over HTTPS.

Authorization: Basic

The HTTP protocol itself comes with a basic authentication system. We send in an
Authorization header with the Request object. After the Authorization: you
need to type the Basic word to denote the type of authentication you want to use.

Yes, in the HTTP protocol itself, authorization and authentication are often
confused, for example, the 401 status code should be Unauthenticated instead
of Unauthorized.

After the Basic, you need to have the base64 encoded string of your
credentials, that are in the username:password format. So a valid example
would be:

Its advantage lies in its simplicity, it is supported out-of-the-box in most
programming languages, web browsers, and tools such as curl or wget.

Best used for APIs, where you don't have real users, but want to have an easy
authentication setup. For APIs, where you have real users, it is a bad fit and will
create lots of overhead. You can consider it if your API’s traffic is low.

Authorization: Bearer

This is also called token-based authentication. The process is the following:
e The client sends in a Request containing their credentials, typically the email
and the password

e The API verifies the credentials, then creates a token in a similar way we already
did with the user activation and sends it back

e Then in subsequent requests, when the client wants to access a restricted
resource, it sends in the Authorization Header in the following form:

11

e Then we validate the token and reject or allow the Request based on the

validation

Best used for APIs, where you store the client credentials, like ours. The downside
is that managing tokens can be quite complicated.

We can break down token-based authentication into further categories:
Stateful token authentication

Stateful means, that we need to manage the state of the token ourselves. Typically
this means, that you have a tokens database table where you manage the
expiration of your token. If you think about it, we already do something similar in
our API.

This is good because if some of the tokens get stolen, you can just delete the
corresponding database record from the tokens table, and you just revoke the
token, prohibiting further misuse. This approach gives us full control over the state
of the token.

Of course, the downside is that you need to manage the tokens on the server side,
but this is not an actual downside in most cases. We will use this approach for our
authentication system.

Stateless token authentication

This time the state of the token is encoded into the token itself. So we don't store
it in our database usually. This is often achieved with a JWT token.

The advantage is that the encoding and decoding of the tokens can be done in
memory, but it is really hard to revoke the token once stolen. And these tokens
are highly configurable, so there are lots of things to get wrong. You should always
use a well-established library for these instead of writing your own.

This approach is best used for delegated authentication, so in a microservice
architecture between your microservices, it can work great.

Token Types

JWT stands for JSON Web Token, which is the most common way for stateless
token implementation. But here are other, more reliable methods, like PASETO
tokens.

12

Resource: There is a really good paid video by Techschool on this topic. It tells
you everything you need to know about JWT and PASETO tokens.

The other types of things you usually hear are AccessTokens and IdTokens.
AccesToken is usually just a hash that you send in the Request header and it gives
you access to different resources, hence the name.

IdTokens on the other hand are usually JWT tokens that also have the information
of the User encoded in them and used for authentication, instead of authorization,
like access tokens.

Some RefreshTokens usually come together with AccessTokens and they give
you the ability to refresh the duration of the AccessToken once expired. They have
a longer expiration date. And they are not a typical hash, nor a JWT, but a so-
called opaque token, so a special kind of hash that the Authorization server, that
gave you the access -and refers token pairs, understands. But another system
won't understand this type of token.

Resource: If you are curious about these tokens, I recommend this free video

resource for watching.

Authorization: Key

We also have a so-called API key authentication. I like explaining it in a way
that this is the same as the stateful token approach, but without expiration.

So you have a database table, you generate an API key and send it to the user
after a successful registration. Then the user sends in this key in the
Authorization: header every time it wants to access a restricted resource.

Of course, there are different ways of implementing it, usually the user can
generate it themselves and even put different permissions inside such key, but
the basics are the same. An example would be:

13

https://www.youtube.com/watch?v=nBGx-q52KAY&list=PLy_6D98if3ULEtXtNSY_2qN21VCKgoQAE&index=20
https://www.youtube.com/watch?v=M4JIvUIE17c
https://www.youtube.com/watch?v=M4JIvUIE17c

Oauth 2.0 /OpenlID Connect

Important: Oauth 1.0 is deprecated, don't use it!

The main flow of this is the following:

¢ When you want to authenticate a request, you redirect the user to an
‘authentication and consent’ form hosted by the identity provider

e If the user consents, then the identity provider sends your API an
authorization code

e Your API then sends the authorization code to another endpoint provided by the
identity provider. They verify the authorization code, and if it's valid they will
send you a JSON response containing an ID token

e This ID token is itself a JWT. You need to validate and decode this JWT to get
the actual user information, which includes things like their email address,
name, birth date, timezone, etc

¢ Now that you know who the user is, you can then implement a stateful or
stateless authentication token pattern so that you don’t have to go through the
whole process for every subsequent request

This is the so-called Authorization CodeFlow, and there are more ways you can
implement it, but this is the most general way.

The main advantage of this is that you don’t store user information, the identity
provider does. You redirect the user to Google or Facebook, which is an identity
provider as well, and then Google sends an authorization code to our API. We then
sent it back to Google to see if the code was valid and we did not get it from a
hacker posing as Google. Then Google sends us a JWT IdToken that has the
information of the user and now we have an authenticated user.

The first thing to mention here is that OAuth 2.0 is not an authentication
protocol, and you shouldn’t use it for authenticating users. The oauth.net website
has a great article explaining this, and I highly recommend reading it.

If you want to implement authentication checks against a third-party identity
provider, you should use OpenID Connect (which is built directly on top of OAuth
2.0).

So Oauth 2.0 In itself is an authorization protocol, so it would give you an
AccessToken that enables you to access resources. By combining it with OpenId
Connect we can receive an IdToken with the User info instead and authenticate
the user. Important distinction.

14

https://oauth.net/
https://oauth.net/articles/authentication/
https://openid.net/connect/

Resource: So here is a last resource for you if you want to take a deeper dive
into this protocol.

As I mentioned, we will implement a token-based stateful authentication
in the next chapters, because we already have most parts of this in place.

15

https://www.youtube.com/watch?v=t18YB3xDfXI

Chapter 21.1.

CORS Example

We can simulate a front-end app easily. For example, you can download Visual
Studio Code, then the Live Server extension needs to be installed.

Then in the bottom right corner of your new code editor, you will see a Go Live
button that will serve the current folder. So we can just create an index.html

file in a simple directory and put this code in there:
File: ./index.html

html

lang="en"

charset="UTF-8"
name="viewport" content="width=device-width, initial-scale=1.0"

FE Test

id="output"

document.addEventListener('DOMContentLoaded’,

fetch("http://ani-merged.test/v1/ping").then(

(response) {
response.text().then((text) {

document.getElementByld("output").innerHTML = text;
D;

(err) {
document.getElementByld("output").innerHTML = err;

16

https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

e We use the fetch() function to request our API ping endpoint. By default, this
ends a GET request, but it’s also possible to configure this to use different HTTP

methods and add custom headers. We'll explain how to do that later

e The fetch () method works asynchronously and returns a promise. We use the
then () method on the promise to set up two callback functions: the first
callback is executed if fetch () is successful, and the second is executed if there
is a failure

e In our ‘successful’ callback we read the response body with the
response. text () and used the
document.getElementById ("output") .innerHTML to replace the contents of
the <div id="output"></div> element with this response body

e In the ‘failure’ callback we replace the contents of the <div
id="output"></div> element with the error message

e This logic is all wrapped up in the
document.addEventListener ('\DOMContentLoaded’, function () {..}), which
essentially means that fetch () won't be called until the user’s web browser has
completely loaded the HTML document

Image: FE Test App

The first thing is that the headers demonstrate that the request was sent to our
API, which processed the request and returned a successful 200 ok response to
the web browser containing all our standard response headers. To re-iterate: the
request itself was not prevented by the same-origin policy — it’s just that the
browser won't let JavaScript see the response.

17

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.javascripttutorial.net/es6/javascript-promises/

Image: FE Test App

© GET f ani-m.. ping
101 el 127.0

2000K (2

HTTP1A

The second thing is that the web browser automatically sets an origin header on
the request to show where the request originates from (highlighted by the red line
above).

18

	Test a Repository
	Optimistic Locking
	Redis Integration
	Different Authentication Techniques
	CORS Example

