

 2

Chapter 12.3.

Test a Repository

A Repository has methods that talk to the database, so in this case, we have

some choices: if you are using a Cloud Provider, you can pay for a test database

with much smaller power capabilities and use that in your PDO configuration.

You can set up another database locally, or you can use Docker to create a

container with postgres in it and run your integration tests against that.

I will do the second one this time, if you want to follow along, you should create

another database inside DBngin: Posgres, version 16.2, named ani-merged-

test.

Of course, we need to run our migrations against that database, or if your

project is really small you can just write down the SQL statements from your

migration files and execute it manually against your test db. I will do this because

this is a demo, but this is not good practice in the real world.

After this, we will have a setup we can run our tests against. Never run your

integration tests against your development database.

We want to have our PDO configured before each test: we can do this with the

setUp() method of the TestCase class. That code will run before each of the tests.

And we can use the tearDown() to run some code after each of the tests. In this

method, we want to execute a DELETE FROM statement to get a clean slate every

time.

 3

File: ./tests/Repository/AnimationPostgreSQLRepositoryTest.php

class AnimationPostgreSQLRepositoryTest extends TestCase
{
 private PDO $pdo;
 private AnimationRepositoryInterface $animations;

 protected function setUp(): void
 {
 $dsn = sprintf(
 "pgsql:host=%s;port=%s;dbname=%s;user=%s;password=%s;sslmode=%s",
 "localhost",
 "5432",
 "ani-merged-test",
 "postgres",
 "postgres",
 "disable",
);

 $options = [
 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
 PDO::ATTR_EMULATE_PREPARES => false,
];

 $this->pdo = new PDO($dsn, options: $options);
 $this->animations = new AnimationPostgreSQLRepository($this->pdo);
 }

 protected function tearDown(): void
 {
 $this->pdo->query("DELETE FROM animations;");
 }

 public function testInsertAndGet(): void
 {
 $title = 'Naruto';
 $year = 2002;
 $season = 'Autumn';
 $genres = ['shonen', 'action', 'ninja'];

 $animation = Animation::fromRequest([
 'title' => $title,
 'year' => $year,
 'season' => $season,
 'genres' => $genres,
]);

 $animation = $this->animations->insert($animation);

 $returnedAnimation = $this->animations->get($animation->getId());

 4

 $this->assertSame($title, $returnedAnimation->getTitle());
 $this->assertSame($year, $returnedAnimation->getYear());
 $this->assertSame(Season::AU, $returnedAnimation->getSeason());
 $this->assertSame($genres, $returnedAnimation->getGenres());
 }
}

Here you can see how I structured this test:

• The fields that you would need in every test (PDO and the AnimationRepository

implementation) should be a private property of your Test class

• We can initialize these in the setUp() method

• We don’t forget to delete the records from the animations table of our ani-

merged-test database in the tearDown() method

• Then I test both the insert() and the get() method of the interface here

• I set up the variables so that I can test against them. I use the fromRequest()

helper as if they were coming from the client

• Then I use the id generated by the database and given back by the insert()

method to pass into the get() method

• Lastly, I can just assert as many cases as I want

Of course in a real-world situation, you would write more tests for the insert()

and get() as well, for example, you could write a test to see if the Exceptions are

properly thrown or not. And of course, you would cover the other methods as well.

 5

Chapter 13.2.

Optimistic Locking

We are going to prevent the data race with the version field. We need to be

cautious in the update() Controller action because we are first retrieving the

resource, then updating it, making a data race possible.

But we also made sure to always update the version to be equal to version +

1 each time we call the (now) PATCH route.

So if 2 users retrieve the resource at the same time, one of them has to do the

update first. This means that the other user just can check the version column in

the database and if it’s already incremented, we refuse the update operation from

this user.

File: ./src/Repository/AnimationPostgreSQLRepository.php

/**
 * @throws DatabaseException
 * @throws ReturningException
 * @throws EditConflictException
 */
#[\Override]
public function update(Animation $animation): Animation
{
 // We allow the UPDATE if the version is not changed
 $sql = 'UPDATE animations
 SET title = :title, year = :year, season = :season,
 genres = :genres, version = version + 1
 WHERE id = :id AND version = :version
 RETURNING version';

 $genres = Arr::toStr($animation->getGenres());

 try {
 $this->pdo->beginTransaction();

 // Add new bound value here
 $stmt = $this->pdo->prepare($sql);
 $stmt->execute([
 'title' => $animation->getTitle(),
 'year' => $animation->getYear(),
 'season' => $animation->getSeason()->value,
 'genres' => $genres,
 'id' => $animation->getId(),
 'version' => $animation->getVersion(),
]);

 6

 // if 0 rows were updated, there was a conflict with version
 // throw new custom Exception
 $rowsAffected = $stmt->rowCount();
 if ($rowsAffected === 0) {
 throw new EditConflictException('edit conflict for animation');
 }

 $data = $stmt->fetch();
 if ($data === false) {
 throw new ReturningException('RETURNING version SQL failed');
 }

 $this->pdo->commit();
 } catch (ReturningException $ex) {
 $this->pdo->rollBack();
 throw $ex;
 } catch (Throwable $ex) {
 $this->pdo->rollBack();

 throw new DatabaseException('animation update failed()',
 previous: $ex);
 }

 $animation->setVersion($data['version']);

 return $animation;
}

Now we just need to add one more catch branch to the in the Controller:

File: ./src/Controller/AnimationController.php

public function update(
 Request $request,
 Response $response,
 array $args
): Response
{
 // …
 try {
 $animation = $this->animations->update($animation);
 } catch (EditConflictException) {
 return $this->formatter->editConflict($response);
 } catch (ReturningException|DatabaseException $e) {
 return $this->formatter->serverError($response, $request, $e);
 }

 return $this->formatter
 ->writeJSON($response, $animation->asJson(), envelope: 'anime');
}

 7

Chapter 16.1.

Redis Integration

Why do we need Redis? It is an in-memory database that is fast but also writes

to disc and it has built-in support for forgetting records after a set amount of

time, which makes it optimal for using it as a cache, and in our case for a rate

limiter.

We use it because our different child processes don't share their memory, since

each HTTP request runs against a copy of our index.php on a newly created

thread by the PHP-FPM, so if a client uses one of our routes for example 4 times

we want to remember that he made 4 requests quickly after each other.

If the client makes too many requests within a certain timeframe, we don't want

to allow the Request to be processed. But after some time we want to delete this

info from the Redis database so the client can try again (Redis forgetting

capabilities). This way we defend ourselves from request timing attacks and botnet

attacks.

We want to use some env variables so we can make these time values

configurable from the .env file.

You can make use of different types of logic when it comes to rate limiting, you

can make:

• A global rate limiter, that only counts the number of requests made to any

of your application's routes in a given timeframe

• a local rate limiter, that counts requests per client basis, but it will summarize

all of the requests of a given client, so if the client makes 4 requests to 4

different routes, we will remember the number 4 only

• a local rate limiter, that counts requests per client basis again, but counts

these per route basis as well, so we remember how many requests each client

made to each route

So you can make it as configurable your business logic as you want. In this book,

I am going to make the second version, so we will remember each client by their

IP Address, but we won't differentiate between what route the request is made

to, and if the number for a given client exceeds our limit value, we send back a

429 Response.

 8

Redis Database

You can use docker if you want, I am going to make use of the tools I have been

using so far: DBngin, and TablePlus. I will create a Redis server locally and I

name it personal_redis_server, it will run on port 6379 which is the standard

port for Redis.

Image: Dbngin UI

That is it, at its most basic use we don't need a user and a password right now.

Predis

The next thing we need is a client so we can use Redis commands from the PHP

code. We will use the predis/predis library for this use case, which is a well-written

adapter for Redis in PHP.

$ valet composer require predis/predis

The next thing we need is to set some environmental variables:

• scheme: we will use TCP in this case, you can read the GitHub page for

different options and their use

• host: of course, where the Redis database is located, we will use localhost

• port: again, of course, we configured our server to run on port 6379

https://github.com/predis/predis

 9

• requests: I am going to use this to configure the value that how many requests

a client can make in the given timeframe

• expiration: we use to define the timeframe we just mentioned

• storage_key_format: Redis is a key-value database, so we want to have

unique keys, I will configure a sprintf() string here that expects one %s value

in it, which is the IP address of the client

Let's make these variables available in the .env and .env.example files, and set

the rules for them in the dotenv_rules.php file. Lastly let's also add them to our

app.php file so we can retrieve them with the Configuration object:

File: ./.env

...
Redis
REDIS_SCHEME=tcp
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_REQUESTS=30
We let 30 requests/user
REDIS_EXPIRATION=60
For 60 seconds (1 min)
REDIS_STORAGE_KEY_FORMAT=rate:%s:requests
For me the key would look like rate:127.0.0.1:requests

File: ./.env.example

...
Redis, same as in .env
REDIS_SCHEME=tcp
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_REQUESTS=30
REDIS_EXPIRATION=60
REDIS_STORAGE_KEY_FORMAT=rate:%s:requests

File: ./config/dotenv_rules.php

return function (Dotenv $dotenv) {
 // ...
 // Redis
 $dotenv->required('REDIS_HOST');
 $dotenv->required('REDIS_PORT');
 $dotenv->required('REDIS_SCHEME')
 ->allowedValues(['tcp', 'tls']);
 $dotenv->required('REDIS_REQUESTS');
 $dotenv->required('REDIS_EXPIRATION');
 $dotenv->required('REDIS_STORAGE_KEY_FORMAT');
};

 10

File: ./config/app.php

// ...
return [
 // ...
 'db' => [
 'pgsql' => [
 // ...
],
 'redis' => [
 'connection' => [
 'scheme' => $_ENV['REDIS_SCHEME'],
 'host' => $_ENV['REDIS_HOST'],
 'port' => intval($_ENV['REDIS_PORT']),
],
 'config' => [
 'requests' => intval($_ENV['REDIS_REQUESTS']),
 'expiration' => intval($_ENV['REDIS_EXPIRATION']),
 'storage_key_format' => $_ENV['REDIS_STORAGE_KEY_FORMAT'],
],
],
],
];

The last thing in this chapter is that we register a ClientInterface from the

predis package so we can just inject it into our constructors:

File: ./config/bindings.php

// ...
return [
 // ...
 // (Redis) Database
 ClientInterface::class => function(Configuration $config) {
 return new Client([
 'scheme' => $config->get('db.redis.connection.scheme'),
 'host' => $config->get('db.redis.connection.host'),
 'port' => $config->get('db.redis.connection.port'),
]);
 },
];

You can read the predis docs and also set up a password and a user to make it

more safe, but for an example, this will do.

 11

Chapter 19.1.

Different Authentication Techniques

Important: For all authentication methods that we’re describing in this chapter,

it’s assumed that your API only communicates with clients over HTTPS.

Authorization: Basic

The HTTP protocol itself comes with a basic authentication system. We send in an

Authorization header with the Request object. After the Authorization: you

need to type the Basic word to denote the type of authentication you want to use.

Yes, in the HTTP protocol itself, authorization and authentication are often

confused, for example, the 401 status code should be Unauthenticated instead

of Unauthorized.

After the Basic, you need to have the base64 encoded string of your

credentials, that are in the username:password format. So a valid example

would be:

Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l

Its advantage lies in its simplicity, it is supported out-of-the-box in most

programming languages, web browsers, and tools such as curl or wget.

Best used for APIs, where you don’t have real users, but want to have an easy

authentication setup. For APIs, where you have real users, it is a bad fit and will

create lots of overhead. You can consider it if your API’s traffic is low.

Authorization: Bearer

This is also called token-based authentication. The process is the following:

• The client sends in a Request containing their credentials, typically the email

and the password

• The API verifies the credentials, then creates a token in a similar way we already

did with the User activation and sends it back

• Then in subsequent requests, when the client wants to access a restricted

resource, it sends in the Authorization Header in the following form:

 12

Authorization: Bearer <token>

• Then we validate the token and reject or allow the Request based on the

validation

Best used for APIs, where you store the client credentials, like ours. The downside

is that managing tokens can be quite complicated.

We can break down token-based authentication into further categories:

Stateful token authentication

Stateful means, that we need to manage the state of the token ourselves. Typically

this means, that you have a tokens database table where you manage the

expiration of your token. If you think about it, we already do something similar in

our API.

This is good because if some of the tokens get stolen, you can just delete the

corresponding database record from the tokens table, and you just revoke the

token, prohibiting further misuse. This approach gives us full control over the state

of the token.

Of course, the downside is that you need to manage the tokens on the server side,

but this is not an actual downside in most cases. We will use this approach for our

authentication system.

Stateless token authentication

This time the state of the token is encoded into the token itself. So we don’t store

it in our database usually. This is often achieved with a JWT token.

The advantage is that the encoding and decoding of the tokens can be done in

memory, but it is really hard to revoke the token once stolen. And these tokens

are highly configurable, so there are lots of things to get wrong. You should always

use a well-established library for these instead of writing your own.

This approach is best used for delegated authentication, so in a microservice

architecture between your microservices, it can work great.

Token Types

JWT stands for JSON Web Token, which is the most common way for stateless

token implementation. But here are other, more reliable methods, like PASETO

tokens.

 13

Resource: There is a really good paid video by Techschool on this topic. It tells

you everything you need to know about JWT and PASETO tokens.

The other types of things you usually hear are AccessTokens and IdTokens.

AccesToken is usually just a hash that you send in the Request header and it gives

you access to different resources, hence the name.

IdTokens on the other hand are usually JWT tokens that also have the information

of the User encoded in them and used for authentication, instead of authorization,

like access tokens.

Some RefreshTokens usually come together with AccessTokens and they give

you the ability to refresh the duration of the AccessToken once expired. They have

a longer expiration date. And they are not a typical hash, nor a JWT, but a so-

called opaque token, so a special kind of hash that the Authorization server, that

gave you the access -and refers token pairs, understands. But another system

won’t understand this type of token.

Resource: If you are curious about these tokens, I recommend this free video

resource for watching.

Authorization: Key

We also have a so-called API key authentication. I like explaining it in a way

that this is the same as the stateful token approach, but without expiration.

So you have a database table, you generate an API key and send it to the user

after a successful registration. Then the user sends in this key in the

Authorization: header every time it wants to access a restricted resource.

Of course, there are different ways of implementing it, usually the user can

generate it themselves and even put different permissions inside such key, but

the basics are the same. An example would be:

Authorization: Key <token>

https://www.youtube.com/watch?v=nBGx-q52KAY&list=PLy_6D98if3ULEtXtNSY_2qN21VCKgoQAE&index=20
https://www.youtube.com/watch?v=M4JIvUIE17c
https://www.youtube.com/watch?v=M4JIvUIE17c

 14

Oauth 2.0 /OpenID Connect

Important: Oauth 1.0 is deprecated, don’t use it!

The main flow of this is the following:

• When you want to authenticate a request, you redirect the user to an

‘authentication and consent’ form hosted by the identity provider

• If the user consents, then the identity provider sends your API an

authorization code

• Your API then sends the authorization code to another endpoint provided by the

identity provider. They verify the authorization code, and if it’s valid they will

send you a JSON response containing an ID token

• This ID token is itself a JWT. You need to validate and decode this JWT to get

the actual user information, which includes things like their email address,

name, birth date, timezone, etc

• Now that you know who the user is, you can then implement a stateful or

stateless authentication token pattern so that you don’t have to go through the

whole process for every subsequent request

This is the so-called Authorization CodeFlow, and there are more ways you can

implement it, but this is the most general way.

The main advantage of this is that you don’t store user information, the identity

provider does. You redirect the user to Google or Facebook, which is an identity

provider as well, and then Google sends an authorization code to our API. We then

sent it back to Google to see if the code was valid and we did not get it from a

hacker posing as Google. Then Google sends us a JWT IdToken that has the

information of the user and now we have an authenticated user.

The first thing to mention here is that OAuth 2.0 is not an authentication

protocol, and you shouldn’t use it for authenticating users. The oauth.net website

has a great article explaining this, and I highly recommend reading it.

If you want to implement authentication checks against a third-party identity

provider, you should use OpenID Connect (which is built directly on top of OAuth

2.0).

So Oauth 2.0 In itself is an authorization protocol, so it would give you an

AccessToken that enables you to access resources. By combining it with OpenId

Connect we can receive an IdToken with the User info instead and authenticate

the user. Important distinction.

https://oauth.net/
https://oauth.net/articles/authentication/
https://openid.net/connect/

 15

Resource: So here is a last resource for you if you want to take a deeper dive

into this protocol.

As I mentioned, we will implement a token-based stateful authentication

in the next chapters, because we already have most parts of this in place.

https://www.youtube.com/watch?v=t18YB3xDfXI

 16

Chapter 21.1.

CORS Example

We can simulate a front-end app easily. For example, you can download Visual

Studio Code, then the Live Server extension needs to be installed.

Then in the bottom right corner of your new code editor, you will see a Go Live

button that will serve the current folder. So we can just create an index.html

file in a simple directory and put this code in there:

File: ./index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>FE Test</title>

 </head>

 <body>

 <div id="output"></div>

 </body>

 <script>

 document.addEventListener('DOMContentLoaded', function() {

 fetch("http://ani-merged.test/v1/ping").then(

 function (response) {

 response.text().then(function (text) {

 document.getElementById("output").innerHTML = text;

 });

 },

 function(err) {

 document.getElementById("output").innerHTML = err;

 }

);

 });

 </script>

</html>

https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

 17

• We use the fetch() function to request our API ping endpoint. By default, this

ends a GET request, but it’s also possible to configure this to use different HTTP

methods and add custom headers. We’ll explain how to do that later

• The fetch() method works asynchronously and returns a promise. We use the

then() method on the promise to set up two callback functions: the first

callback is executed if fetch() is successful, and the second is executed if there

is a failure

• In our ‘successful’ callback we read the response body with the

response.text() and used the

document.getElementById("output").innerHTML to replace the contents of

the <div id="output"></div> element with this response body

• In the ‘failure’ callback we replace the contents of the <div

id="output"></div> element with the error message

• This logic is all wrapped up in the

document.addEventListener(‘DOMContentLoaded’, function(){…}), which

essentially means that fetch() won’t be called until the user’s web browser has

completely loaded the HTML document

Image: FE Test App

The first thing is that the headers demonstrate that the request was sent to our

API, which processed the request and returned a successful 200 OK response to

the web browser containing all our standard response headers. To re-iterate: the

request itself was not prevented by the same-origin policy — it’s just that the

browser won’t let JavaScript see the response.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.javascripttutorial.net/es6/javascript-promises/

 18

Image: FE Test App

The second thing is that the web browser automatically sets an Origin header on

the request to show where the request originates from (highlighted by the red line

above).

	Test a Repository
	Optimistic Locking
	Redis Integration
	Different Authentication Techniques
	CORS Example

