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Notations

This book uses standard mathematical notation. The most common sym-
bols you will encounter are listed below for quick reference.

Symbol Meaning Example

a, η Scalars (single numbers). Learning rate
η = 0.01

v,x Vectors (lowercase, bold). Feature vector
x

X,W Matrices (uppercase, bold). Data matrix X
vi The i-th element of vector v. The third fea-

ture x3

R The set of all real numbers. w ∈ R
Rn An n-dimensional vector space. x ∈ Rn

Rm×n An m× n matrix of real numbers. X ∈ Rm×n

∇f The gradient of function f . ∇J(w)
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Chapter 1

Your Crash Course in ML Math

Welcome. If you’re reading this, you are likely a developer, an analyst,
or a curious professional who has witnessed the transformative power of
Machine Learning. You’ve seen the "black box" in action: you feed it data,
and it produces incredible results. But that’s also the problem. It feels like
a magic trick, and you know that the real power lies not in using the trick,
but in understanding how it works.

This book is the key. It is a guided tour designed to strip away the
intimidating academic jargon and reveal the elegant, intuitive ideas at the
heart of machine learning.

1.1 The Philosophy: Intuition Through Action

Before we dive in, let’s establish the core philosophy that guides this book.

1.1.1 Building Intuition, Not Proving Theorems

Our primary goal is not to train you as a research mathematician. We
are here to help you become an effective machine learning engineer and
data scientist. Therefore, we will focus on building a deep and functional
intuition for the mathematical concepts.

Imagine learning to cook. You could start by studying the molecular
chemistry of the Maillard reaction, or you could start by learning that
searing a steak at high heat makes it taste delicious. Both are valid forms
of knowledge, but the second one gets you cooking. It builds your intuition.
This book is your cookbook.

1



2 CHAPTER 1. YOUR CRASH COURSE IN ML MATH

1.1.2 Connecting Theory to Code

Every concept we introduce will be immediately grounded in a practical
context. We will constantly ask: "Why do we need this?" and "How can
I implement this in code?" This approach ensures that you are not just
learning abstract ideas, but building a tangible skillset.

Key Idea

The workflow for each topic in this book is designed to build a
robust mental model:
Concept→ Intuition→ Application→ Code
We start with the mathematical idea, build a visual or conceptual
understanding, see where it’s used in machine learning, and finally,
implement it with Python.

1.2 The Roadmap: A Tour of the Four Pillars

Our journey is structured into four logical parts. Each part builds on the
last, taking us from the basic representation of data to the construction of
functioning machine learning models from scratch.

Part 1: Lin-
ear Algebra
(The Lan-

guage of Data)

Part 2: Calculus
(The Engine
of Learning)

Part 3: Probability
(The Science

of Uncertainty)

Part 4: ML
Projects

(Putting It
All Together)

Figure 1.1: The Four-Part Learning Progression of This Book.
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1.3 Your Toolkit: Setting Up a Minimal Environ-
ment

As developers, we learn best by writing code. All concepts in this book are
paired with examples using Python, the lingua franca of data science. We
will rely on a few essential libraries, which form the standard toolkit for
nearly every data scientist:

• NumPy: The absolute foundation of the scientific Python ecosystem.
It provides the n-dimensional array object that is the workhorse for
all numerical data.

• Matplotlib: The primary tool for plotting and visualization. Seeing
your data is a critical step in understanding it and communicating
your results.

• SciPy: A library built on NumPy that provides more specific scientific
and statistical functions we will use in later chapters.

1.3.1 Installation

Installation is simple. Open your terminal or command prompt and run
this one command:

1 pip install numpy matplotlib scipy

Listing 1.1: Installing the required Python libraries via pip.

1.3.2 Verifying Your Setup

To confirm your setup, run this small script. It creates your first Vector
using NumPy. If it runs without any errors, you are fully equipped for the
journey ahead.

1 import numpy as np
2

3 # A NumPy array is how we represent a mathematical
vector

4 my_first_vector = np.array ([2024 , 3, 14])
5

6 print("Setup successful!")
7 print("Your first vector is:", my_first_vector)

Listing 1.2: Verifying your NumPy installation.
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With our goals set, our map laid out, and our tools ready, it’s time to
take our first step into the language of data.



Part I

Linear Algebra for Data
Science
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Chapter 2

Thinking in Vectors and Ma-
trices

If data is the new oil, then linear algebra is the refinery. It is the mathemat-
ical framework that allows us to take raw, often messy, information—user
profiles, pixel values from an image, words in a sentence—and refine it
into a structured, elegant form that algorithms can process. Without the
language of linear algebra, modern machine learning would not exist. It is
that fundamental.

In this chapter, we will learn to see data not as rows in a spreadsheet,
but as points and arrows in a high-dimensional space. This geometric
perspective is the key to building a deep intuition for how machine learn-
ing algorithms work. We will then translate this powerful intuition into
concrete, practical code using Python’s indispensable library, NumPy.

2.1 Vectors: The Atoms of Data

The most fundamental data structure in linear algebra is the Vector. Every-
thing else—datasets, images, batches of data—is built upon it.

2.1.1 Representing a Single Data Point

Let’s start with a single Sample. Imagine we are building a model to
predict house prices. For one specific house, we have collected two pieces
of information, or Features: its size (1,500 sq. ft.) and the number of
bedrooms (3). In the world of linear algebra, we represent this single
house as a vector.

7



8 CHAPTER 2. THINKING IN VECTORS AND MATRICES

A vector is an ordered list of numbers. In mathematics, we often write
it vertically in brackets:

vhouse =

[
1500
3

]
This vector lives in a 2-Dimensional space (denoted as R2), where the
first axis represents the "size" feature and the second axis represents the
"bedrooms" feature.

2.1.2 The Geometric Intuition of Vectors

The real power of vectors comes from their geometric interpretation. We
can think of our house vector as two things simultaneously:

1. A point in a 2D space at the coordinates (1500, 3).

2. An arrow pointing from the origin (0, 0) to that point.

This dual interpretation is crucial. Thinking of data as points helps us
imagine clusters and decision boundaries. Thinking of them as arrows (or
directions) helps us understand concepts like similarity and transforma-
tion.

Feature 1: Size (in 500 sq. ft.)

Feature 2: Bedrooms

1 2 3

1

2

3

v =

[
1500
3

]Point (1500, 3)

Figure 2.1: Visualizing a single house as both a point and a vector (arrow)
in a 2D feature space. (The size feature is scaled down for plotting.)

This is the first great leap of abstraction in machine learning: every
Sample in your dataset can be thought of as a single vector in a high-
dimensional space. An e-commerce user with 100 features isn’t just a
row in a table; they are a point in a 100-dimensional space.
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