
The Hundred-Page Guide to
the Core Mathematics of

Machine Learning

Essential Math for Data Science: A Practical Introduction
to Linear Algebra, Calculus, and Statistics with Python

and NumPy

PR

September 5, 2025

ii

iii

To those who aren’t afraid to look inside the black box.

iv

© 2024 PR
All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior written permission of
the publisher, except in the case of brief quotations embodied in critical

reviews and certain other noncommercial uses permitted by copyright law.

For permission r

vi

Notations

This book uses standard mathematical notation. The most common sym-
bols you will encounter are listed below for quick reference.

Symbol Meaning Example

a, η Scalars (single numbers). Learning rate
η = 0.01

v,x Vectors (lowercase, bold). Feature vector
x

X,W Matrices (uppercase, bold). Data matrix X
vi The i-th element of vector v. The third fea-

ture x3

R The set of all real numbers. w ∈ R
Rn An n-dimensional vector space. x ∈ Rn

Rm×n An m× n matrix of real numbers. X ∈ Rm×n

∇f The gradient of function f . ∇J(w)

vii

viii

Contents

Notations vii

Contents ix

1 Your Crash Course in ML Math 1
1.1 The Philosophy: Intuition Through Action 1

1.1.1 Building Intuition, Not Proving Theorems 1
1.1.2 Connecting Theory to Code 2

1.2 The Roadmap: A Tour of the Four Pillars 2
1.3 Your Toolkit: Setting Up a Minimal Environment 3

1.3.1 Installation . 3
1.3.2 Verifying Your Setup 3

I Linear Algebra for Data Science 5

2 Thinking in Vectors and Matrices 7
2.1 Vectors: The Atoms of Data 7

2.1.1 Representing a Single Data Point 7
2.1.2 The Geometric Intuition of Vectors 8

2.2 Matrices: The Structure of Datasets 9
2.2.1 Representing a Collection of Data 9
2.2.2 Implementing Data Structures in NumPy 9

2.3 Beyond Tables: Tensors for Complex Data 10

3 The Dot Product: The Heart of the Neuron 13
3.1 The Arithmetic: How to Calculate It 13

3.1.1 The Formula . 13
3.1.2 A Concrete Example 14
3.1.3 Implementation in NumPy 14

ix

x CONTENTS

3.2 The Geometry: What It Actually Means 15
3.3 The Application: The Heart of the Neuron 16

3.3.1 A Neuron in Code 17

4 Matrix Multiplication: The Language of Neural Networks 19
4.1 The Mechanics: Rules and Computation 19

4.1.1 The Shape Compatibility Rule 19
4.1.2 The Calculation: Rows times Columns 20
4.1.3 Implementation in NumPy 20

4.2 The Intuition: Matrices as Transformations 21
4.3 The Application: A Full Neural Network Layer 22

5 PCA: Dimensionality Reduction from Scratch 25
5.1 The Building Blocks: Variance and Covariance 25

5.1.1 Variance: Measuring Spread 26
5.1.2 Covariance: Measuring Relationship 26
5.1.3 The Covariance Matrix 27

5.2 The Magic: Eigenvectors and Eigenvalues 27
5.3 The PCA Algorithm: Step-by-Step 28

5.3.1 PCA in Code from Scratch 29

II Calculus and Optimization 31

6 Calculus: The Engine of Learning 33
6.1 The Derivative: A Measure of Instantaneous Slope 33
6.2 Numerical Differentiation: The Developer’s Approach . . . 35

6.2.1 Implementing the Numerical Derivative 35
6.3 The Application: Minimizing a Model’s Error 36

7 Gradient Descent: How Machines Actually Learn 39
7.1 From Derivative to Gradient 39

7.1.1 Partial Derivatives: Slope Along an Axis 40
7.1.2 The Gradient: Direction of Steepest Ascent 40

7.2 The Gradient Descent Algorithm 40
7.2.1 The Update Rule 41
7.2.2 A Complete Implementation in NumPy 41

8 Backpropagation: The Engine of Deep Learning 43
8.1 The Chain Rule: A Cascade of Influence 43

8.1.1 An Intuitive Example 44
8.2 Visualizing Backpropagation with Computation Graphs . . 44

8.2.1 The Forward Pass: Calculating the Loss 45

CONTENTS xi

8.2.2 The Backward Pass: Propagating the Gradient . . . 45
8.3 The Big Picture: Why Backpropagation is a Big Deal 45

8.3.1 Backpropagation in Code (Conceptual) 45

III Probability & Statistics for Programmers 49

9 Bayes’ Theorem: The Logic of Uncertainty 51
9.1 Conditional Probability: The Art of Asking "What If?" . . . 51

9.1.1 An Intuitive Example: The Medical Test 52
9.2 Bayes’ Theorem: A Recipe for Updating Beliefs 53
9.3 Application: The Naive Bayes Classifier 53

9.3.1 The "Naive" Assumption 54
9.3.2 Training and Predicting with Naive Bayes 54
9.3.3 A Conceptual Implementation 55

10 Probability Distributions: Modeling Your Data 57
10.1 Random Variables and Probability Density Functions . . . 57
10.2 The Gaussian (Normal) Distribution 58

10.2.1 The Parameters: Mean and Standard Deviation . . 58
10.2.2 Why is the Gaussian so Important in Machine Learn-

ing? . 59
10.3 Working with Distributions in Python 59

11 The Bias-Variance Tradeoff: The Central Challenge of ML 61
11.1 Understanding Bias and Variance 61

11.1.1 Bias: The Error of Oversimplification 62
11.1.2 Variance: The Error of Overcomplication 62

11.2 The Tradeoff in Action: A Visual Guide 62
11.3 Diagnosing and Controlling the Tradeoff 63

11.3.1 A Concrete Example in Code 64

IV Hands-On Projects in Python 67

12 Project 1: Building Linear Regression from Scratch 69
12.1 Framing the Problem . 69
12.2 The Loss Function: Mean Squared Error (MSE) 70
12.3 The Optimization: Gradients for Gradient Descent 71
12.4 The Implementation: Linear Regression from Scratch . . . 72

xii CONTENTS

13 Project 2: Coding a Logistic Regression Classifier from Scratch 75
13.1 From Linear Output to Probability: The Sigmoid Function 76
13.2 A New Loss Function: Cross-Entropy 76
13.3 The Simplified Gradient 77
13.4 Implementation: Logistic Regression from Scratch 77

14 Beyond the Basics: Your Next Steps in AI and Data Science 83
14.1 Recapping Your Journey: The Four Pillars Revisited 83
14.2 From First Principles to High-Level Libraries 83
14.3 Your Roadmap from Here 84

14.3.1 Master the Practitioner’s Toolkit 84
14.3.2 Dive Deeper into the Theory 85
14.3.3 A Final Word of Encouragement 85

A Quick Reference and Cheat Sheets 87

Chapter 1

Your Crash Course in ML Math

Welcome. If you’re reading this, you are likely a developer, an analyst,
or a curious professional who has witnessed the transformative power of
Machine Learning. You’ve seen the "black box" in action: you feed it data,
and it produces incredible results. But that’s also the problem. It feels like
a magic trick, and you know that the real power lies not in using the trick,
but in understanding how it works.

This book is the key. It is a guided tour designed to strip away the
intimidating academic jargon and reveal the elegant, intuitive ideas at the
heart of machine learning.

1.1 The Philosophy: Intuition Through Action

Before we dive in, let’s establish the core philosophy that guides this book.

1.1.1 Building Intuition, Not Proving Theorems

Our primary goal is not to train you as a research mathematician. We
are here to help you become an effective machine learning engineer and
data scientist. Therefore, we will focus on building a deep and functional
intuition for the mathematical concepts.

Imagine learning to cook. You could start by studying the molecular
chemistry of the Maillard reaction, or you could start by learning that
searing a steak at high heat makes it taste delicious. Both are valid forms
of knowledge, but the second one gets you cooking. It builds your intuition.
This book is your cookbook.

1

2 CHAPTER 1. YOUR CRASH COURSE IN ML MATH

1.1.2 Connecting Theory to Code

Every concept we introduce will be immediately grounded in a practical
context. We will constantly ask: "Why do we need this?" and "How can
I implement this in code?" This approach ensures that you are not just
learning abstract ideas, but building a tangible skillset.

Key Idea

The workflow for each topic in this book is designed to build a
robust mental model:
Concept→ Intuition→ Application→ Code
We start with the mathematical idea, build a visual or conceptual
understanding, see where it’s used in machine learning, and finally,
implement it with Python.

1.2 The Roadmap: A Tour of the Four Pillars

Our journey is structured into four logical parts. Each part builds on the
last, taking us from the basic representation of data to the construction of
functioning machine learning models from scratch.

Part 1: Lin-
ear Algebra
(The Lan-

guage of Data)

Part 2: Calculus
(The Engine
of Learning)

Part 3: Probability
(The Science

of Uncertainty)

Part 4: ML
Projects

(Putting It
All Together)

Figure 1.1: The Four-Part Learning Progression of This Book.

1.3. YOUR TOOLKIT: SETTING UP A MINIMAL ENVIRONMENT 3

1.3 Your Toolkit: Setting Up a Minimal Environ-
ment

As developers, we learn best by writing code. All concepts in this book are
paired with examples using Python, the lingua franca of data science. We
will rely on a few essential libraries, which form the standard toolkit for
nearly every data scientist:

• NumPy: The absolute foundation of the scientific Python ecosystem.
It provides the n-dimensional array object that is the workhorse for
all numerical data.

• Matplotlib: The primary tool for plotting and visualization. Seeing
your data is a critical step in understanding it and communicating
your results.

• SciPy: A library built on NumPy that provides more specific scientific
and statistical functions we will use in later chapters.

1.3.1 Installation

Installation is simple. Open your terminal or command prompt and run
this one command:

1 pip install numpy matplotlib scipy

Listing 1.1: Installing the required Python libraries via pip.

1.3.2 Verifying Your Setup

To confirm your setup, run this small script. It creates your first Vector
using NumPy. If it runs without any errors, you are fully equipped for the
journey ahead.

1 import numpy as np
2

3 # A NumPy array is how we represent a mathematical
vector

4 my_first_vector = np.array ([2024 , 3, 14])
5

6 print("Setup successful!")
7 print("Your first vector is:", my_first_vector)

Listing 1.2: Verifying your NumPy installation.

4 CHAPTER 1. YOUR CRASH COURSE IN ML MATH

With our goals set, our map laid out, and our tools ready, it’s time to
take our first step into the language of data.

Part I

Linear Algebra for Data
Science

5

Chapter 2

Thinking in Vectors and Ma-
trices

If data is the new oil, then linear algebra is the refinery. It is the mathemat-
ical framework that allows us to take raw, often messy, information—user
profiles, pixel values from an image, words in a sentence—and refine it
into a structured, elegant form that algorithms can process. Without the
language of linear algebra, modern machine learning would not exist. It is
that fundamental.

In this chapter, we will learn to see data not as rows in a spreadsheet,
but as points and arrows in a high-dimensional space. This geometric
perspective is the key to building a deep intuition for how machine learn-
ing algorithms work. We will then translate this powerful intuition into
concrete, practical code using Python’s indispensable library, NumPy.

2.1 Vectors: The Atoms of Data

The most fundamental data structure in linear algebra is the Vector. Every-
thing else—datasets, images, batches of data—is built upon it.

2.1.1 Representing a Single Data Point

Let’s start with a single Sample. Imagine we are building a model to
predict house prices. For one specific house, we have collected two pieces
of information, or Features: its size (1,500 sq. ft.) and the number of
bedrooms (3). In the world of linear algebra, we represent this single
house as a vector.

7

8 CHAPTER 2. THINKING IN VECTORS AND MATRICES

A vector is an ordered list of numbers. In mathematics, we often write
it vertically in brackets:

vhouse =

[
1500
3

]
This vector lives in a 2-Dimensional space (denoted as R2), where the
first axis represents the "size" feature and the second axis represents the
"bedrooms" feature.

2.1.2 The Geometric Intuition of Vectors

The real power of vectors comes from their geometric interpretation. We
can think of our house vector as two things simultaneously:

1. A point in a 2D space at the coordinates (1500, 3).

2. An arrow pointing from the origin (0, 0) to that point.

This dual interpretation is crucial. Thinking of data as points helps us
imagine clusters and decision boundaries. Thinking of them as arrows (or
directions) helps us understand concepts like similarity and transforma-
tion.

Feature 1: Size (in 500 sq. ft.)

Feature 2: Bedrooms

1 2 3

1

2

3

v =

[
1500
3

]Point (1500, 3)

Figure 2.1: Visualizing a single house as both a point and a vector (arrow)
in a 2D feature space. (The size feature is scaled down for plotting.)

This is the first great leap of abstraction in machine learning: every
Sample in your dataset can be thought of as a single vector in a high-
dimensional space. An e-commerce user with 100 features isn’t just a
row in a table; they are a point in a 100-dimensional space.

	Notations
	Contents
	Your Crash Course in ML Math
	The Philosophy: Intuition Through Action
	Building Intuition, Not Proving Theorems
	Connecting Theory to Code

	The Roadmap: A Tour of the Four Pillars
	Your Toolkit: Setting Up a Minimal Environment
	Installation
	Verifying Your Setup

	I Linear Algebra for Data Science
	Thinking in Vectors and Matrices
	Vectors: The Atoms of Data
	Representing a Single Data Point
	The Geometric Intuition of Vectors

	Matrices: The Structure of Datasets

