Capitulo 1

El misterioso
movimiento del senor
Brown

Temia que el mundo que me rodeaba pudiera
empezar en cualquier momento a moverse,
a deformarse, primero lenta y luego brus-
camente, a disgregarse, a transformarse, a
perder todo sentido.

ERNESTO SABATO, Sobre héroes vy
tumbas.

1.1. Un poco de historia

Esta historia comienza en el laboratorio de un botéani-
co escocés llamado Robert Brown. Nacido en 1773 en
Montrose, Escocia, Brown fue un meticuloso botdnico
conocido por su trabajo de documentacién de la flora
australiana, asi como por hacer la primera referencia al
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nucleo celular en unos estudios sobre la estructura mi-
croscépica de las orquideas.!

En uno de sus estudios de 1827, con el conciso ti-
tulo A brief account of microscopical observations made
in the months of June, July and August, 1827, on the
particles contained in the pollen of plants; and on the ge-
neral existence of active molecules in organic and inorga-
nic bodies, Brown observé bajo el microscopio granos de
polen sumergidos en agua, encontrando que no estaban
en reposo sino que manifestaban un extrano movimien-
to zigzagueante.? En palabras del fisico-quimico premio
Nobel Jean Perrin, cada particula “[...] en lugar de
hundirse con regularidad, se acelera con un movimien-
to extremadamente agitado y totalmente aleatorio |...].
Cada particula gira de acd para alld, se eleva, se hunde y
se vuelve a elevar, sin que jamds tienda al reposo”.? En
la figura 1.1 se puede observar la representacién grafica
que hizo Perrin del movimiento de particulas coloidales
de 0,52 micrémetros de radio. Cada punto representa la
posicién de una particula cada 30 segundos.

En un principio no se le dio demasiada importancia
a lo que desde entonces comenzé a llamarse movimiento
browniano. De hecho, el propio Brown parecia otorgar-
le mas importancia al cambio de forma que sufrfan las
particulas de polen a lo largo de sus trayectorias.

El movimiento browniano comenzo a ser objeto de in-
terés cuando pasé del &mbito de la boténica al de la fisica.
A finales del siglo XVIII y principios del XIX tenfa lu-
gar una ardua disputa acerca de la naturaleza atémico-
molecular de la materia. Los “atomistas”, encabezados
por James Clerk Maxwell y Ludwig Boltzmann habfan

'Brown (1814, 1866).
?Este estudio aparece también en Brown (1866).
3Perrin (1909).
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Figura 1.1: Movimiento browniano de particulas en sus-
pensién

conseguido explicar las propiedades termodindmicas de
los gases en términos de su estructura molecular, pero
los “energicistas”, entre los cuales podemos citar a Ernst
Mach y Pierre Duhem, rechazaban la hipétesis atémico-
molecular argumentando que una hipétesis como la de
unos constituyentes microscopicos invisibles con un mo-
vimiento incesante también invisible carecia de garantias
cientificas.* La controversia cesé (a favor de los atomis-
tas) con la intervencién de un joven empleado de la Ofi-
cina de Patentes de Berna, de nombre Albert y apellido
Finstein.

4 Algo parecido ocurre en la actualidad con la teorfa de super-
cuerdas. La descripcién de las particulas elementales como vibra-
ciones de cuerdas de tamano increiblemente pequeno y préctica-
mente imposibles de ser detectadas experimentalmente, ha llevado
a muchos fisicos a pensar que sobrepasa los limites del conocimiento
cientifico.
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En 1905, su annus mirabilis, Albert Einstein publi-
c6 tres articulos que cambiarfan el desarrollo de toda
la fisica, dando lugar a la Teoria Especial de la Rela-
tividad, la Teorfa Cudntica y, sin saberlo, a las Finan-
zas Matemdticas modernas.” En el articulo relativo al
movimiento browniano ya aparecian algunas de las ca-
racteristicas asociadas al concepto matematico actual. En
concreto, demostré que el nimero de particulas en sus-
pension por unidad de volumen era solucién de la llamada
ecuacion del calor.® Esta ecuacién describe la evolucién
de la temperatura en cada punto de un cuerpo a lo largo
del tiempo. La misma ecuacién es satisfecha por la den-
sidad de probabilidad asociada a algunos casos de pro-
cesos matemdticos conocidos como difusiones, de los que
hablaremos més adelante y de los cuales el movimiento
browniano es un caso particular.

Nuestra siguiente etapa en este camino hacia el con-
cepto de movimiento browniano que se usa en la actuali-
dad pasa por otro genio, en este caso de las matematicas,
llamado Norbert Wiener. Nacido en Missouri en 1894,
Wiener era hijo de Leo Wiener, un inmigrante ruso de
origen judio. Hecho a sf mismo, Leo pasé de ganarse la
vida como vendedor ambulante a ser profesor de lengua y
literatura eslava en Harvard. Su confianza en la capacidad
de progresion del ser humano se reflejaba en su concep-
to de la educacion, reflejado en un articulo en American

®Los tres articulos pueden encontrarse traducidos al castellano
en Stachel (2004).

6En el caso unidimensional, que es el que estudié Einstein ori-
ginalmente, si el nimero de particulas por unidad de longitud es
v = f(z,t), tenemos que % = Dg%, donde el coeficiente de di-
fusién D viene dado por D = R—NTﬁ, siendo R la constante de los
gases perfectos, T' la temperatura absoluta, N el nimero de Avo-
gadro, k el coeficiente de viscosidad y P el radio de las particulas

consideradas esféricas.
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Magazine, de julio de 1911, en el que se podia leer lo
siguiente:

“El profesor Leo Wiener, de la Universidad de Har-
vard [...], cree que el secreto del desarrollo mental pre-
coz radica en un adiestramiento temprano |[...]. Es padre
de cuatro hijos cuyas edades van desde los cuatro a los
dieciséis anos, y ha tenido el valor de manifestar sus con-
vicciones transforméndolos en objeto de un experimento
educativo. Los resultados han sido asombrosos, especial-
mente en el caso de su hijo mayor, Norbert”. Ya sea como
resultado de tal “experimento” o como resultado de un
talento innato en su hijo, el caso es que Norbert Wiener
se convirtié en un nino prodigio. A los once anos in-
gresé en el Tufts College donde se gradué en matematicas
tres anos después. Tras diversas idas y venidas, Wiener
acabé doctorandose en Harvard con una tesis sobre logica
matemadtica. Sus estudios de postdoctorado lo llevaron a
Europa, donde estudié bajo la tutela de algunos de las
mds grandes mentes de la época, como Bertrand Rus-
sell, G. H. Hardy o David Hilbert. La impresién que de-
j6 el wunderkinder Wiener en Russell puede apreciarse
claramente en una carta que éste dirigié a un amigo: “Al
nino le han adulado y se cree Dios Todopoderoso. Se ha
establecido una constante competicién entre él y yo en
torno al punto de a quién de los dos corresponde el en-

senar”.”

Ya como profesor del MIT y dentro de su estudio de
la Teorfa de la Medida, Wiener dedicé sus esfuerzos a
ampliar el concepto de medida para pasar de la medida
de un conjunto de puntos a la de un conjunto de trayec-
torias. Como matemdtico que gustaba de relacionar las
matemadticas con los fenémenos fisicos, Wiener se sentia

"Bertrand Russell a Lucy Donnelly, 19 de octubre de 1913, cita-
do en Grattan-Guiness (1974).



6  Capitulo 1. El misterioso movimiento del Sr. Brown

atraido por el movimiento browniano y decidié aplicar
sus nuevas investigaciones a obtener una medida apro-
piada para las trayectorias brownianas, conocida poste-
riormente como medida de Wiener. En uno de sus tra-
bajos relacionados con este tema, Wiener aborda el estu-
dio del movimiento browniano estudiando directamente
las trayectorias, en lugar del nimero de particulas por
unidad de volumen como hizo Einstein.® En dicho articu-
lo de 1923, Wiener presenta las caracteristicas matemaéti-
cas mds importantes del movimiento browniano: los des-
plazamientos de las particulas son independientes de su
historia previa y su distribucién de probabilidad es nor-
mal. Abundaremos mas tarde en la explicaciéon de estos
conceptos cuando tratemos la definicién precisa desde un
punto de vista matemadtico del movimiento browniano,
también llamado proceso de Wiener desde la aportacion
de este. Aunque esta iltima forma es mdas usada en
articulos de matemadticas puras, en trabajos relacionados
con las finanzas matemadticas se suele seguir utilizando el
término movimiento browniano y yo adoptaré este tltimo
enfoque.

Antes de llegar a la moderna definicién de movimiento
browniano, necesitamos algo de equipaje matemaético.

1.2. Procesos estocasticos

Suponga que usted invierte en acciones cotizadas en la
Bolsa de Madrid y tiene como costumbre consultar, a las
12:00 AM de cada dia, sus cotizaciones. Coincidird conmi-
go en que, antes de realizar dicha consulta, es imposible
determinar con total certeza la cotizacién que aparecerd
en su monitor. Este tipo de experimentos son conoci-
dos como experimentos aleatorios porque su resultado no

SWiener (1923).
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puede ser conocido con antelacién con total seguridad.
Dicho resultado dependera del estado de la naturaleza que
se dé, es decir, de las cantidades ofertadas y demandas
de la accién en los instantes anteriores a las 12:00 AM.
La magnitud numérica que medimos en un experimen-
to aleatorio (en nuestro ejemplo la cotizacién) se conoce
como variable aleatoria. Ejemplos de variables aleatorias
son el resultado de un lanzamiento de dados o la tempe-
ratura que habrd manana en un determinado momento
del dfa.

En ocasiones tenemos informacién acerca de la pro-
babilidad de que la variable aleatoria esté dentro de un
rango determinado a través de lo que se conoce como
densidad de probabilidad. Por ejemplo, consideremos la
figura 1.2, que representa el porcentaje de personas de
un determinado pafs cuya altura estd en un determinado
intervalo.

Si escogemos al azar un ciudadano de dicho pafs, lo
méds probable es que su altura se encuentre alrededor de
los 175 cm y serfa bastante improbable encontrar a al-
guien cuya altura rondase los 150 cm.

Fenémenos como este de la estatura y otros muchos
se pueden aproximar bastante bien por la funcion de den-
sidad normal o gaussiana, llamada asi en honor a Carl
Friedrich Gauss (1777-1855), el llamado Principe de las
Matemaéticas. Para el ejemplo anterior de las alturas ten-
drfamos la funcién de densidad gaussiana de la figura 1.3
conocida también por su forma como campana de Gauss.

Las distribuciones gaussianas vienen determinadas
por dos parametros, que las identifican totalmente y las
diferencian unas de otras. Estos son su media y su va-
rianza (o su raiz cuadrada llamada desviacion tipica). La
media se refiere al valor de la variable al que corresponde
una mayor altura en la campana de Gauss y que la divide
en dos mitades iguales. En el ejemplo anterior la media
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Figura 1.2: Histograma de alturas

estd entre 170 y 175 cm. La varianza no puede ser deter-
minada a simple vista como la media, pero nos informa de
cudnto de extendida estd la gréfica. Varianzas grandes se
corresponden con graficas muy anchas mientras que va-
rianzas pequenas se refieren a curvas muy picudas y con-
centradas en torno a la media. Dicho de otra forma, si la
varianza es pequena, la probabilidad de encontrar valores
de la variable muy alejados de la media (en las colas) es
muy baja, siendo més alta si la varianza es grande. Otra
propiedad importante de cualquier densidad de proba-
bilidad, no exclusiva de las normales, consiste en que la
probabilidad de que la variable tome un valor menor que
uno determinado coincide con el drea comprendida entre
el eje horizontal y la curva a la izquierda de dicho valor.
Como la probabilidad de que la variable tome un valor
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Figura 1.3: Ajuste a la densidad normal

menor que infinito es uno, el drea total entre la curva
y el eje horizontal vale uno. Se suele llamar distribucion
normal estdndar a aquella que posee media cero y va-
rianza uno. Para realizar cédlculos de probabilidades con
la distribucién normal, se suele tomar como referencia la
distribucién normal estandar, ya que sus valores estdn
tabulados.

Volviendo a nuestro ejemplo de las cotizaciones bur-
sdtiles, como el lector conocerd bien, el interés de un in-
versor en bolsa no se centra exclusivamente en conocer el
precio de las acciones de su cartera en un momento de-
terminado. Le interesa principalmente conocer su evolu-
cién en el tiempo. Si damos todos los posibles valores que
puede tomar una variable aleatoria con el tiempo para to-
dos los posibles estados de la naturaleza, estamos dando
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lo que se conoce como proceso aleatorio o mas comun-
mente proceso estocdstico. Para cada valor fijo del estado
de la naturaleza tendremos un posible camino del proceso
aleatorio. Asi pues, la grafica de la cotizaciéon del IBEX
35 durante cinco anos mostrada en la figura 1.4, es un
ejemplo de un camino de un proceso estocdstico.

b d
11.000

Figura 1.4: Gréfico con la serie histérica del IBEX 35

Lo representado en el anterior grafico es una de las
posibles trayectorias de dicho proceso, la correspondiente
al estado de la naturaleza que se dio en la realidad. Si el
estado de la naturaleza hubiese sido distinto (por ejem-
plo, si la evolucién de la economia espanola durante ese
periodo de tiempo hubiese sido diferente), el camino efec-
tivo seguido por el proceso estocéstico habria sido otro.

Si usted todavia no ha arrojado a un lado el libro, es
que estd preparado para conocer el concepto matemaético
moderno de movimiento browniano.
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1.3. El movimiento browniano

Un movimiento browniano o proceso de Wiener uni-
dimensional, W, es un proceso estocastico que cumple:

1. Es continuo.

2. El incremento que sufre desde un instante a otro es
independiente de su historia previa.

3. Dicho incremento es una variable aleatoria gaus-
siana de media cero y varianza igual al tamano del
intervalo temporal considerado.

Antes de avanzar conviene profundizar en la defini-
cién. El término unidimensional se refiere a que estamos
considerando que el movimiento se va a realizar en una
sola direccién, pero en los dos sentidos, por ejemplo, ha-
cia arriba y hacia abajo. Una forma grafica de considerar
la evolucién temporal de un movimiento browniano uni-
dimensional es imaginar que se puede representar por un
sismograma (figura 1.5).

Asi, el valor en cada instante del movimiento brow-
niano vendra dado por la altura de la linea del sismogra-
ma. Los incrementos de W corresponderdn a movimientos
hacia arriba del l4piz, mientras que las disminuciones se
corresponderfan con movimientos hacia abajo. La evolu-
ciéon temporal de W vendra dada por el desplazamiento
del papel del sismégrafo (figura 1.6).

La continuidad del proceso en el primer apartado de
la definicién se refiere a que la gréfica del sismégrafo no
tiene “saltos” y se lleva a cabo sin que se levante el l4piz
del papel. La propiedad del segundo apartado consiste en
que el movimiento browniano se “refresca” al llegar a ca-
da punto de su trayectoria y sus desplazamientos futuros
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Figura 1.5: Sismograma

no tienen nada que ver con el camino ya recorrido. Insis-
tiremos algo més adelante en esta caracterfstica conocida
como propiedad de Markov.

El tercer punto nos dice que los incrementos de W
a partir de cualquier instante son impredecibles (consti-
tuyen una variable aleatoria), pero que todos los incre-
mentos “hacia arriba” compensan en cierto modo a to-
dos los que van “hacia abajo” dando media cero. Que
la varianza sea igual al intervalo de tiempo quiere de-
cir que cuanto méas tiempo dejemos pasar, mayor es la
probabilidad de encontrar incrementos mayores (la cam-
pana de Gauss se va ensanchando). Esta propiedad lleva
a un “esparcimiento” de los caminos conforme va pasan-
do el tiempo como puede apreciarse en la figura 1.7, en la
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Figura 1.6: Trayectoria de un movimiento browniano

que se muestran distintas trayectorias de un movimiento
browniano.

Aunque la analogia con el sismégrafo sigue siendo va-
lida en lo fundamental, si los terremotos siguieran la mis-
ma, distribucién que el movimiento browniano, después
de iniciado el sefsmo, en la mayorfa de las ocasiones, la
sacudida del terremoto en lugar de amortiguarse, jirfa
incrementdndose m&s y mds con el tiempo!

1.4. Propiedades del movimiento
browniano

A continuacién, enunciamos y exploramos con cier-
to detalle algunas propiedades del movimiento brow-
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Figura 1.7: Distintas trayectorias de un movimiento
browniano

niano. Las dos primeras corresponden a caracteristicas
matematicas del proceso estocdstico propiamente dicho.
Las restantes se refieren a los caminos del proceso.

1. El movimiento browniano es un proceso de
Markov. Un proceso estocdstico es de Markov si
dado el valor del proceso en un instante dado no
depende de su historia previa. Como Dori en Bus-
cando a Nemo, el proceso sélo “conoce” su valor
actual en cada instante, pero no “recuerda” como
llegé hasta alli.

Como ejemplo de proceso de Markov considere un
juego de dados en el que la puntuacién en cada par-
tida se obtiene como el maximo de los resultados
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obtenidos al lanzar un dado un nimero de veces
igual a la puntuacién de la partida anterior. Asi,
por ejemplo, se comenzaria tirando el dado una so-
la vez. Si el resultado es 2, esa serd la puntuacién
de la primera partida. En la siguiente partida el ju-
gador tirarfa el dado dos veces. Si los resultados son
3 vy b5, entonces su puntuacién en la segunda partida
serfa b, y en la siguiente partida tiraria el dado 5
veces. El proceso estocdstico definido por la pun-
tuacién en cada partida es de Markov porque la
probabilidad de cada resultado en una partida se
puede obtener a partir, exclusivamente, de la pun-
tuacion de la partida inmediatamente anterior. Si
dicha probabilidad dependiera de partidas anterio-
res, el proceso no serfa de Markov.

2. El movimiento browniano es una martingala.
Supongamos que conocemos toda la historia de un
cierto proceso hasta un momento determinado. Al
valor promedio que tendrd el proceso en un instante
futuro cualquiera, estimado con dicha informacién,
se le conoce como esperanza condicionada del pro-
ceso. Pues bien, si dicha esperanza condicionada
coincide con el valor actual del proceso, entonces el
proceso es una martingala. Es decir, una martingala
es un proceso estocdstico para el cual la mejor esti-
macién que podemos hacer de su valor futuro, con
la informacién que tenemos hasta un cierto instan-
te, es que se quede como estd. Conocida la historia
del proceso, todos los posibles caminos futuros “ha-
cia arriba” cuentan lo mismo que todos los posibles
caminos “hacia abajo”. En el ambito de los juegos
de azar, una martingala es lo que conocemos como
un “juego limpio”.

Para ilustrar el concepto de martingala considere-
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mos un juego que consiste en realizar tiradas de una
moneda con sus caras etiquetadas con +1 y —1. El
jugador comienza con una puntuacion inicial de 1
y el resultado del juego tras cada tirada consiste en
multiplicar lo que salga en la moneda por la suma
de todas las puntuaciones anteriores y sumarlo a
la puntuacién anterior. Por ejemplo, si el jugador
obtiene en las tres primeras tiradas —1, +1 y +1,
respectivamente, las puntuaciones seran:

a) Inicial: 1
b)

c¢) Tras la segunda tirada: 0 +1 x (1+0) =1
d) Tras la tercera tirada: 1 +1x (1+0+1) =3

Tras la primera tirada: 1 —1x1 =0

El proceso estocdstico determinado por las puntua-
ciones del juego tras cada tirada es una martin-
gala, ya que conocido el resultado hasta una tirada
concreta, por ejemplo, el de la tercera que es 3,
hay la misma probabilidad de que aumente en dos
unidades y de que disminuya esa misma cantidad,
siendo la esperanza condicionada igual al valor ac-
tual de 3.

El ejemplo de proceso de Markov del apartado 1 no
es una martingala, ya que si el resultado de una par-
tida es 1, en la siguiente tirarfa el dado una sola vez
y la esperanza condicionada del resultado siguien-
te serfa mayor que 1. Por otra parte, el ejemplo de
martingala del apartado 2 no es de Markov, ya que
el resultado de cada tirada depende de todos los
resultados anteriores.

Como acabamos de ver, existen procesos de Markov
que no son martingalas, de la misma forma que exis-
ten martingalas que no son de Markov, los dos con-
ceptos son independientes.
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3. Los caminos del movimiento browniano no

son diferenciables en ningiin punto. Desde mi
punto de vista esta es la propiedad m&s asombrosa
del movimiento browniano y merece la pena dete-
nerse con calma para disfrutar de ella.
El lector recordard de sus estudios de Geometria
Elemental el concepto de tangente a una curva co-
mo aquella recta que toca a la curva en un solo
punto y que tiene la misma “inclinaciéon” que la
curva en dicho punto (figura 1.8).

Figura 1.8: Tangente a una curva

Las curvas “suaves” tienen tangente en todos sus
puntos y se dice que son diferenciables. Sin embar-
go, podemos dibujar curvas en el plano que tengan
“picos” en los que no es posible trazar una tan-
gente, ya que en ellos el concepto de inclinacién no
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estd bien definido. Mirando a las graficas anteriores
del movimiento browniano es evidente que estdn
“llenas” de tales picos. De hecho, ya Jean Baptiste
Perrin se refirié a las trayectorias del movimien-
to browniano en estos términos: “Las trayectorias
son confusas y complicadas, cambian de direccién
con tanta frecuencia y rapidez que es imposible
seguirlas [...]. Es imposible fijar una tangente, inclu-
so aproximadamente, y nos recuerda las funciones
continuas sin derivada de los mateméticos”.? Pues
bien, como ya parece evidente, los caminos del mo-
vimiento browniano son muy irregulares y presen-
tan “picos” en abundantes puntos. ;Pero en cudn-
tos? La respuesta es en todos. Todos los puntos de
una trayectoria de movimiento browniano son pun-
tos de cambio brusco de direccién. Parece increible
pensar en una gréfica con esta propiedad, pero asi
son las matemadticas. De hecho, esta propiedad es el
contenido de un teorema debido a Zigmund, Wiener
y Paley que apareci6 en 1933 en un articulo con el
escueto titulo: “Notas sobre funciones aleatorias”.!’
Esta espectacular propiedad no es exclusiva de
las trayectorias del movimiento browniano. Veamos
dos ejemplos més.

En el siglo XIX comenzé a correr entre los
matematicos la conjetura de que toda gréfica con-
tinua era diferenciable salvo en puntos aislados.
Aunque, segin parece, Bolzano en 1834 presen-
té una funcién continua pero no diferenciable en
ningin punto, el ejemplo mds conocido que ha lle-
gado hasta nuestros dias de funcién continua y no
diferenciable en ningin punto es la llamada funcion

9Cita de Perrin en Paley y Wiener (1934).
0Ppaley, Wiener y Zygmund (1933).
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de Weierstrass, cuya grafica hemos representado en
la figura 1.9.1'Otro ejemplo curioso de grafica con-

Figura 1.9: Funcién de Weierstrass

tinua sin tangente en ningiin punto es la llamada
curva de Koch. Esta curva fue propuesta por Helge
von Koch en 1904 y su propésito queda perfecta-
mente reflejado en el titulo de su articulo: “Acerca
de una curva continua que no posee tangentes y
obtenida por los métodos de la geometria elemen-
tal”. El proceso de construccién de la curva de Koch
se puede dar en forma de un sencillo algoritmo:

a) Se parte de un segmento horizontal de lon-

ULa funcion de Weierstrass viene dada por f(z) =
>0 b cos (a"mz), donde a es un entero positivo impar, 0 < b < 1
yab>1+ 37”
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gitud determinada. Se divide en tres partes
iguales y se retira la parte central. Sobre ella
se construye a modo de “tienda de campana”
un angulo formado por dos segmentos de la
misma longitud que el que hemos quitado.

b) El mismo procedimiento del apartado anterior
se repite para cada segmento de los que se han
formado.

c¢) Se vuelve a repetir el apartado b).

Los primeros 5 pasos de la construccién de la curva
de Koch se pueden apreciar, desde arriba hacia abajo, en
la figura 1.10.

., Cudntos pasos se requieren para acabar de construir
la curva de Koch? Pues sélo infinitos. La curva de Koch es
el resultado de repetir este proceso sin fin. Si en lugar de
comenzar con un segmento se comienza con un triangulo
equildtero, el resultado es el (mds bonito) copo de nieve
de Koch (fig. 1.11).Aparte de su belleza y de su impor-
tancia matemadtica, una de las caracteristicas interesantes
de la curva de Koch es que se puede estudiar con méto-
dos elementales. Por ejemplo, no es dificil demostrar que
la longitud total de la curva es infinita.!? M4s atn, si se
considera el copo de nieve de Koch, tenemos una curva
cerrada de longitud infinita dentro de un &rea finita.

4. Propiedad de escalado. Consideremos un movi-
miento browniano que toma en el instante cero el
valor cero, es decir, un movimiento browniano es-
tandar (véase la figura 1.6). Supongamos que esta-
mos mirando a la trayectoria del movimiento desde

12Gi tomamos la longitud del segmento inicial igual a 1, la suce-
sién que da las longitudes de la curva tras cada paso es 1, 4/3,
16/9,..., por tanto, la longitud de la curva de Koch vendra dada

por lim,, (%)n =0
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Figura 1.10: Curva de Koch

el inicio hasta los 9 segundos. ;Tendra el mismo
aspecto que la trayectoria desde el origen hasta 1
segundo? La respuesta es no, porque sabemos que la
varianza de los incrementos es proporcional al tiem-
po (el efecto de “esparcimiento” del que hablamos
antes). Para que tenga el mismo aspecto, es decir,
para que siga siendo un movimiento browniano, hay
que multiplicar su valor por 3 = /9. En esto con-
siste la propiedad de escalado, si dividimos el tiem-
po de un movimiento browniano por un nidmero
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Figura 1.11: El copo de nieve de Koch

positivo, el proceso resultante es un movimiento
browniano si lo multiplicamos por la raiz cuadrada
de ese mismo nimero.

Las propiedades anteriores del movimiento browniano
nos permiten calificarlo como objeto fractal, en el sentido
de ser una figura geométrica irregular y autosemejante,
cualidades que comparte con la funcién de Weierstrass y
la curva de Koch.!? La piedra de toque para determinar

I3E] término fractal fue acufiado por Benoit Mandelbrot, déndole
el significado de “forma geométrica quebrada o fragmentada que
puede ser separada en partes, cada una de las cuales es (al menos
aproximadamente) una copia reducida del total.”(Mandelbrot,
1997).
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si una figura geométrica puede ser considerada “oficial-
mente” como fractal es que se verifique que su dimension
de Haussdorf o dimension fractal sea mayor que su di-
mension topoldgica. No se asuste por las palabrejas, lo
explicaremos en términos sencillos.

Supongamos que podemos coger (fisicamente) un ca-
mino browniano y estirarlo todo lo que queramos. En
algin momento acabard convertido en una recta, que co-
mo es sabido tiene una sola dimensién. Asf pues, diremos
que la dimensién topolégica de una trayectoria brownia-
na es 1. Sin embargo si la devolvemos a su estado inicial,
vemos que de alguna forma, por su irregularidad, “ocu-
pa” o “llena” mas parte del plano que una recta. Esto
es lo que mide la dimensién fractal, curvas con dimen-
sién fractal algo superior a 1 ocupardn poco méds que
una recta y curvas con dimensién fractal cercana a 2
ocuparan casi todos los puntos del plano. Pues bien, la
dimensién fractal de cualquier trayectoria browniana es
exactamente 1,5, as{ que podemos aceptar las trayecto-
rias de movimiento browniano como auténticos fractales.
Ademads, el movimiento browniano supera en “fractali-
dad” a la curva de Koch, que tiene dimensién fractal
1,2618."* Completando el podio de esta competicién en-
tre fractales, y con la medalla de oro, aparece la curva de
Hilbert. Los primeros pasos de su construccién aparecen
en la figura 1.12.

La curva de Hilbert tiene dimensién topolégica 1 y

dimensién fractal 2, es decir, pasa por todos los puntos
del cuadrado.

4La dimensién fractal de la curva de Koch (y de su copo de
nieve) es exactamente ig—é.

»He excluido de esta competicién a la funcién de Weierstrass
debido a que, hasta donde yo conozco, no hay un valor exacto
para su dimensién fractal, sélo hay una cota inferior de valor 22111‘: 3
(Falconer, 2003). También hemos dejado de mencionar otras curvas
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Figura 1.12: Construccién de la curva de Hilbert

Para poner fin a este apartado dedicado a las sor-
prendentes propiedades del movimiento browniano, ex-
pondremos otra propiedad que, aunque de menos entidad
matemadtica, no es menos alucinante.

5. Un movimiento browniano estandar cambia
infinitas veces de signo entre el instante cero
y cualquier otro instante posterior. Si usted
pone en marcha un movimiento browniano estandar
y lo detiene en cualquier instante posterior, al mirar
a su grafica, ya habrd atravesado el eje horizon-
tal correspondiente al valor cero una infinidad de
veces. Ademds, no importa lo rdpido que pare el
reloj, nunca conseguird hacer finito ese niimero de
cambios de signo.

continuas que llenan el plano como la curva de Peano (anterior en
el tiempo a la de Hilbert) y la curva de Gosper.
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1.5. Bibliografia del capitulo

Acerca de los trabajos cientificos de Brown puede con-
sultarse Brown (1866). Una biografia cldsica de Einstein
que ademds profundiza bastante en su produccién cien-
tifica es Pais (1984). Otra biograffa, también en caste-
llano, de Wiener y Von Neumann es Heims (1986), de
la que he extraido la mayor parte del material biografi-
co de Norbert Wiener. Es dificil encontrar bibliografia
a nivel divulgativo relacionada con procesos estocdsti-
cos y movimiento browniano (jese es uno de los obje-
tivos de este libro!). Para aproximaciones técnicas véase,
por ejemplo, Morters y Peres (2010) o Karatzas y Shreve
(1991). Un libro de nivel algo més asequible y que puede
ser usado como una introduccién a estos conceptos es
Klebaner (2005). Otra buena referencia en espanol es
Martinez y Villalén (2003). Sobre fractales, la referencia
clésica es Mandelbrot (1997).



