
Capítulo 1

El misterioso
movimiento del señor
Brown

Temía que el mundo que me rodeaba pudiera
empezar en cualquier momento a moverse,
a deformarse, primero lenta y luego brus-
camente, a disgregarse, a transformarse, a
perder todo sentido.

ERNESTO SABATO, Sobre héroes y
tumbas.

1.1. Un poco de historia

Esta historia comienza en el laboratorio de un botáni-
co escocés llamado Robert Brown. Nacido en 1773 en
Montrose, Escocia, Brown fue un meticuloso botánico
conocido por su trabajo de documentación de la �ora
australiana, así como por hacer la primera referencia al
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núcleo celular en unos estudios sobre la estructura mi-
croscópica de las orquídeas.1

En uno de sus estudios de 1827, con el conciso tí-
tulo A brief account of microscopical observations made
in the months of June, July and August, 1827, on the
particles contained in the pollen of plants; and on the ge-
neral existence of active molecules in organic and inorga-
nic bodies, Brown observó bajo el microscopio granos de
polen sumergidos en agua, encontrando que no estaban
en reposo sino que manifestaban un extraño movimien-
to zigzagueante.2 En palabras del físico-químico premio
Nobel Jean Perrin, cada partícula �[. . . ] en lugar de
hundirse con regularidad, se acelera con un movimien-
to extremadamente agitado y totalmente aleatorio [. . . ].
Cada partícula gira de acá para allá, se eleva, se hunde y
se vuelve a elevar, sin que jamás tienda al reposo�.3 En
la �gura 1.1 se puede observar la representación grá�ca
que hizo Perrin del movimiento de partículas coloidales
de 0;52 micrómetros de radio. Cada punto representa la
posición de una partícula cada 30 segundos.
En un principio no se le dio demasiada importancia

a lo que desde entonces comenzó a llamarse movimiento
browniano. De hecho, el propio Brown parecía otorgar-
le más importancia al cambio de forma que sufrían las
partículas de polen a lo largo de sus trayectorias.
El movimiento browniano comenzó a ser objeto de in-

terés cuando pasó del ámbito de la botánica al de la física.
A �nales del siglo XVIII y principios del XIX tenía lu-
gar una ardua disputa acerca de la naturaleza atómico-
molecular de la materia. Los �atomistas�, encabezados
por James Clerk Maxwell y Ludwig Boltzmann habían

1Brown (1814, 1866).
2Este estudio aparece también en Brown (1866).
3Perrin (1909).
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Figura 1.1: Movimiento browniano de partículas en sus-
pensión

conseguido explicar las propiedades termodinámicas de
los gases en términos de su estructura molecular, pero
los �energicistas�, entre los cuales podemos citar a Ernst
Mach y Pierre Duhem, rechazaban la hipótesis atómico-
molecular argumentando que una hipótesis como la de
unos constituyentes microscópicos invisibles con un mo-
vimiento incesante también invisible carecía de garantías
cientí�cas.4 La controversia cesó (a favor de los atomis-
tas) con la intervención de un joven empleado de la O�-
cina de Patentes de Berna, de nombre Albert y apellido
Einstein.

4Algo parecido ocurre en la actualidad con la teoría de super-
cuerdas. La descripción de las partículas elementales como vibra-
ciones de cuerdas de tamaño increíblemente pequeño y práctica-
mente imposibles de ser detectadas experimentalmente, ha llevado
a muchos físicos a pensar que sobrepasa los límites del conocimiento
cientí�co.
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En 1905, su annus mirabilis, Albert Einstein publi-
có tres artículos que cambiarían el desarrollo de toda
la física, dando lugar a la Teoría Especial de la Rela-
tividad, la Teoría Cuántica y, sin saberlo, a las Finan-
zas Matemáticas modernas.5 En el artículo relativo al
movimiento browniano ya aparecían algunas de las ca-
racterísticas asociadas al concepto matemático actual. En
concreto, demostró que el número de partículas en sus-
pensión por unidad de volumen era solución de la llamada
ecuación del calor.6 Esta ecuación describe la evolución
de la temperatura en cada punto de un cuerpo a lo largo
del tiempo. La misma ecuación es satisfecha por la den-
sidad de probabilidad asociada a algunos casos de pro-
cesos matemáticos conocidos como difusiones, de los que
hablaremos más adelante y de los cuales el movimiento
browniano es un caso particular.
Nuestra siguiente etapa en este camino hacia el con-

cepto de movimiento browniano que se usa en la actuali-
dad pasa por otro genio, en este caso de las matemáticas,
llamado Norbert Wiener. Nacido en Missouri en 1894,
Wiener era hijo de Leo Wiener, un inmigrante ruso de
origen judío. Hecho a sí mismo, Leo pasó de ganarse la
vida como vendedor ambulante a ser profesor de lengua y
literatura eslava en Harvard. Su con�anza en la capacidad
de progresión del ser humano se re�ejaba en su concep-
to de la educación, re�ejado en un artículo en American

5Los tres artículos pueden encontrarse traducidos al castellano
en Stachel (2004).

6En el caso unidimensional, que es el que estudió Einstein ori-
ginalmente, si el número de partículas por unidad de longitud es
� = f (x; t), tenemos que @f

@t = D @2f
@x2 , donde el coe�ciente de di-

fusión D viene dado por D = RT
N

1
6�kP , siendo R la constante de los

gases perfectos, T la temperatura absoluta, N el número de Avo-
gadro, k el coe�ciente de viscosidad y P el radio de las partículas
consideradas esféricas.
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Magazine, de julio de 1911, en el que se podía leer lo
siguiente:
�El profesor Leo Wiener, de la Universidad de Har-

vard [. . . ], cree que el secreto del desarrollo mental pre-
coz radica en un adiestramiento temprano [. . . ]. Es padre
de cuatro hijos cuyas edades van desde los cuatro a los
dieciséis años, y ha tenido el valor de manifestar sus con-
vicciones transformándolos en objeto de un experimento
educativo. Los resultados han sido asombrosos, especial-
mente en el caso de su hijo mayor, Norbert�. Ya sea como
resultado de tal �experimento�o como resultado de un
talento innato en su hijo, el caso es que Norbert Wiener
se convirtió en un niño prodigio. A los once años in-
gresó en el Tufts College donde se graduó en matemáticas
tres años después. Tras diversas idas y venidas, Wiener
acabó doctorándose en Harvard con una tesis sobre lógica
matemática. Sus estudios de postdoctorado lo llevaron a
Europa, donde estudió bajo la tutela de algunos de las
más grandes mentes de la época, como Bertrand Rus-
sell, G. H. Hardy o David Hilbert. La impresión que de-
jó el wunderkinder Wiener en Russell puede apreciarse
claramente en una carta que éste dirigió a un amigo: �Al
niño le han adulado y se cree Dios Todopoderoso. Se ha
establecido una constante competición entre él y yo en
torno al punto de a quién de los dos corresponde el en-
señar�.7

Ya como profesor del MIT y dentro de su estudio de
la Teoría de la Medida, Wiener dedicó sus esfuerzos a
ampliar el concepto de medida para pasar de la medida
de un conjunto de puntos a la de un conjunto de trayec-
torias. Como matemático que gustaba de relacionar las
matemáticas con los fenómenos físicos, Wiener se sentía

7Bertrand Russell a Lucy Donnelly, 19 de octubre de 1913, cita-
do en Grattan-Guiness (1974).
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atraído por el movimiento browniano y decidió aplicar
sus nuevas investigaciones a obtener una medida apro-
piada para las trayectorias brownianas, conocida poste-
riormente como medida de Wiener. En uno de sus tra-
bajos relacionados con este tema, Wiener aborda el estu-
dio del movimiento browniano estudiando directamente
las trayectorias, en lugar del número de partículas por
unidad de volumen como hizo Einstein.8 En dicho artícu-
lo de 1923, Wiener presenta las características matemáti-
cas más importantes del movimiento browniano: los des-
plazamientos de las partículas son independientes de su
historia previa y su distribución de probabilidad es nor-
mal. Abundaremos más tarde en la explicación de estos
conceptos cuando tratemos la de�nición precisa desde un
punto de vista matemático del movimiento browniano,
también llamado proceso de Wiener desde la aportación
de este. Aunque esta última forma es más usada en
artículos de matemáticas puras, en trabajos relacionados
con las �nanzas matemáticas se suele seguir utilizando el
término movimiento browniano y yo adoptaré este último
enfoque.
Antes de llegar a la moderna de�nición de movimiento

browniano, necesitamos algo de equipaje matemático.

1.2. Procesos estocásticos

Suponga que usted invierte en acciones cotizadas en la
Bolsa de Madrid y tiene como costumbre consultar, a las
12:00 AM de cada día, sus cotizaciones. Coincidirá conmi-
go en que, antes de realizar dicha consulta, es imposible
determinar con total certeza la cotización que aparecerá
en su monitor. Este tipo de experimentos son conoci-
dos como experimentos aleatorios porque su resultado no

8Wiener (1923).



1.2. Procesos estocásticos 7

puede ser conocido con antelación con total seguridad.
Dicho resultado dependerá del estado de la naturaleza que
se dé, es decir, de las cantidades ofertadas y demandas
de la acción en los instantes anteriores a las 12:00 AM.
La magnitud numérica que medimos en un experimen-
to aleatorio (en nuestro ejemplo la cotización) se conoce
como variable aleatoria. Ejemplos de variables aleatorias
son el resultado de un lanzamiento de dados o la tempe-
ratura que habrá mañana en un determinado momento
del día.
En ocasiones tenemos información acerca de la pro-

babilidad de que la variable aleatoria esté dentro de un
rango determinado a través de lo que se conoce como
densidad de probabilidad. Por ejemplo, consideremos la
�gura 1.2, que representa el porcentaje de personas de
un determinado país cuya altura está en un determinado
intervalo.
Si escogemos al azar un ciudadano de dicho país, lo

más probable es que su altura se encuentre alrededor de
los 175 cm y sería bastante improbable encontrar a al-
guien cuya altura rondase los 150 cm.
Fenómenos como este de la estatura y otros muchos

se pueden aproximar bastante bien por la función de den-
sidad normal o gaussiana, llamada así en honor a Carl
Friedrich Gauss (1777-1855), el llamado Príncipe de las
Matemáticas. Para el ejemplo anterior de las alturas ten-
dríamos la función de densidad gaussiana de la �gura 1.3
conocida también por su forma como campana de Gauss.
Las distribuciones gaussianas vienen determinadas

por dos parámetros, que las identi�can totalmente y las
diferencian unas de otras. Estos son su media y su va-
rianza (o su raíz cuadrada llamada desviación típica). La
media se re�ere al valor de la variable al que corresponde
una mayor altura en la campana de Gauss y que la divide
en dos mitades iguales. En el ejemplo anterior la media
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Figura 1.2: Histograma de alturas

está entre 170 y 175 cm. La varianza no puede ser deter-
minada a simple vista como la media, pero nos informa de
cuánto de extendida está la grá�ca. Varianzas grandes se
corresponden con grá�cas muy anchas mientras que va-
rianzas pequeñas se re�eren a curvas muy picudas y con-
centradas en torno a la media. Dicho de otra forma, si la
varianza es pequeña, la probabilidad de encontrar valores
de la variable muy alejados de la media (en las colas) es
muy baja, siendo más alta si la varianza es grande. Otra
propiedad importante de cualquier densidad de proba-
bilidad, no exclusiva de las normales, consiste en que la
probabilidad de que la variable tome un valor menor que
uno determinado coincide con el área comprendida entre
el eje horizontal y la curva a la izquierda de dicho valor.
Como la probabilidad de que la variable tome un valor
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Figura 1.3: Ajuste a la densidad normal

menor que in�nito es uno, el área total entre la curva
y el eje horizontal vale uno. Se suele llamar distribución
normal estándar a aquella que posee media cero y va-
rianza uno. Para realizar cálculos de probabilidades con
la distribución normal, se suele tomar como referencia la
distribución normal estándar, ya que sus valores están
tabulados.
Volviendo a nuestro ejemplo de las cotizaciones bur-

sátiles, como el lector conocerá bien, el interés de un in-
versor en bolsa no se centra exclusivamente en conocer el
precio de las acciones de su cartera en un momento de-
terminado. Le interesa principalmente conocer su evolu-
ción en el tiempo. Si damos todos los posibles valores que
puede tomar una variable aleatoria con el tiempo para to-
dos los posibles estados de la naturaleza, estamos dando
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lo que se conoce como proceso aleatorio o más común-
mente proceso estocástico. Para cada valor �jo del estado
de la naturaleza tendremos un posible camino del proceso
aleatorio. Así pues, la grá�ca de la cotización del IBEX
35 durante cinco años mostrada en la �gura 1.4, es un
ejemplo de un camino de un proceso estocástico.

Figura 1.4: Grá�co con la serie histórica del IBEX 35

Lo representado en el anterior grá�co es una de las
posibles trayectorias de dicho proceso, la correspondiente
al estado de la naturaleza que se dio en la realidad. Si el
estado de la naturaleza hubiese sido distinto (por ejem-
plo, si la evolución de la economía española durante ese
periodo de tiempo hubiese sido diferente), el camino efec-
tivo seguido por el proceso estocástico habría sido otro.

Si usted todavía no ha arrojado a un lado el libro, es
que está preparado para conocer el concepto matemático
moderno de movimiento browniano.
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1.3. El movimiento browniano

Un movimiento browniano o proceso de Wiener uni-
dimensional, W , es un proceso estocástico que cumple:

1. Es continuo.

2. El incremento que sufre desde un instante a otro es
independiente de su historia previa.

3. Dicho incremento es una variable aleatoria gaus-
siana de media cero y varianza igual al tamaño del
intervalo temporal considerado.

Antes de avanzar conviene profundizar en la de�ni-
ción. El término unidimensional se re�ere a que estamos
considerando que el movimiento se va a realizar en una
sola dirección, pero en los dos sentidos, por ejemplo, ha-
cia arriba y hacia abajo. Una forma grá�ca de considerar
la evolución temporal de un movimiento browniano uni-
dimensional es imaginar que se puede representar por un
sismograma (�gura 1.5).
Así, el valor en cada instante del movimiento brow-

niano vendrá dado por la altura de la línea del sismogra-
ma. Los incrementos deW corresponderán a movimientos
hacia arriba del lápiz, mientras que las disminuciones se
corresponderían con movimientos hacia abajo. La evolu-
ción temporal de W vendrá dada por el desplazamiento
del papel del sismógrafo (�gura 1.6).
La continuidad del proceso en el primer apartado de

la de�nición se re�ere a que la grá�ca del sismógrafo no
tiene �saltos�y se lleva a cabo sin que se levante el lápiz
del papel. La propiedad del segundo apartado consiste en
que el movimiento browniano se �refresca�al llegar a ca-
da punto de su trayectoria y sus desplazamientos futuros
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Figura 1.5: Sismograma

no tienen nada que ver con el camino ya recorrido. Insis-
tiremos algo más adelante en esta característica conocida
como propiedad de Markov.

El tercer punto nos dice que los incrementos de W
a partir de cualquier instante son impredecibles (consti-
tuyen una variable aleatoria), pero que todos los incre-
mentos �hacia arriba� compensan en cierto modo a to-
dos los que van �hacia abajo� dando media cero. Que
la varianza sea igual al intervalo de tiempo quiere de-
cir que cuanto más tiempo dejemos pasar, mayor es la
probabilidad de encontrar incrementos mayores (la cam-
pana de Gauss se va ensanchando). Esta propiedad lleva
a un �esparcimiento�de los caminos conforme va pasan-
do el tiempo como puede apreciarse en la �gura 1.7, en la
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Figura 1.6: Trayectoria de un movimiento browniano

que se muestran distintas trayectorias de un movimiento
browniano.
Aunque la analogía con el sismógrafo sigue siendo vá-

lida en lo fundamental, si los terremotos siguieran la mis-
ma distribución que el movimiento browniano, después
de iniciado el seísmo, en la mayoría de las ocasiones, la
sacudida del terremoto en lugar de amortiguarse, ¡iría
incrementándose más y más con el tiempo!

1.4. Propiedades del movimiento
browniano

A continuación, enunciamos y exploramos con cier-
to detalle algunas propiedades del movimiento brow-
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Figura 1.7: Distintas trayectorias de un movimiento
browniano

niano. Las dos primeras corresponden a características
matemáticas del proceso estocástico propiamente dicho.
Las restantes se re�eren a los caminos del proceso.

1. El movimiento browniano es un proceso de
Markov. Un proceso estocástico es de Markov si
dado el valor del proceso en un instante dado no
depende de su historia previa. Como Dori en Bus-
cando a Nemo, el proceso sólo �conoce� su valor
actual en cada instante, pero no �recuerda�como
llegó hasta allí.
Como ejemplo de proceso de Markov considere un
juego de dados en el que la puntuación en cada par-
tida se obtiene como el máximo de los resultados
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obtenidos al lanzar un dado un número de veces
igual a la puntuación de la partida anterior. Así,
por ejemplo, se comenzaría tirando el dado una so-
la vez. Si el resultado es 2, esa será la puntuación
de la primera partida. En la siguiente partida el ju-
gador tiraría el dado dos veces. Si los resultados son
3 y 5, entonces su puntuación en la segunda partida
sería 5, y en la siguiente partida tiraría el dado 5
veces. El proceso estocástico de�nido por la pun-
tuación en cada partida es de Markov porque la
probabilidad de cada resultado en una partida se
puede obtener a partir, exclusivamente, de la pun-
tuación de la partida inmediatamente anterior. Si
dicha probabilidad dependiera de partidas anterio-
res, el proceso no sería de Markov.

2. El movimiento browniano es una martingala.
Supongamos que conocemos toda la historia de un
cierto proceso hasta un momento determinado. Al
valor promedio que tendrá el proceso en un instante
futuro cualquiera, estimado con dicha información,
se le conoce como esperanza condicionada del pro-
ceso. Pues bien, si dicha esperanza condicionada
coincide con el valor actual del proceso, entonces el
proceso es unamartingala. Es decir, una martingala
es un proceso estocástico para el cual la mejor esti-
mación que podemos hacer de su valor futuro, con
la información que tenemos hasta un cierto instan-
te, es que se quede como está. Conocida la historia
del proceso, todos los posibles caminos futuros �ha-
cia arriba�cuentan lo mismo que todos los posibles
caminos �hacia abajo�. En el ámbito de los juegos
de azar, una martingala es lo que conocemos como
un �juego limpio�.

Para ilustrar el concepto de martingala considere-
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mos un juego que consiste en realizar tiradas de una
moneda con sus caras etiquetadas con +1 y �1. El
jugador comienza con una puntuación inicial de 1
y el resultado del juego tras cada tirada consiste en
multiplicar lo que salga en la moneda por la suma
de todas las puntuaciones anteriores y sumarlo a
la puntuación anterior. Por ejemplo, si el jugador
obtiene en las tres primeras tiradas �1, +1 y +1,
respectivamente, las puntuaciones serán:

a) Inicial: 1

b) Tras la primera tirada: 1� 1� 1 = 0
c) Tras la segunda tirada: 0 + 1� (1 + 0) = 1
d) Tras la tercera tirada: 1 + 1� (1 + 0 + 1) = 3

El proceso estocástico determinado por las puntua-
ciones del juego tras cada tirada es una martin-
gala, ya que conocido el resultado hasta una tirada
concreta, por ejemplo, el de la tercera que es 3,
hay la misma probabilidad de que aumente en dos
unidades y de que disminuya esa misma cantidad,
siendo la esperanza condicionada igual al valor ac-
tual de 3.
El ejemplo de proceso de Markov del apartado 1 no
es una martingala, ya que si el resultado de una par-
tida es 1, en la siguiente tiraría el dado una sola vez
y la esperanza condicionada del resultado siguien-
te sería mayor que 1. Por otra parte, el ejemplo de
martingala del apartado 2 no es de Markov, ya que
el resultado de cada tirada depende de todos los
resultados anteriores.
Como acabamos de ver, existen procesos de Markov
que no son martingalas, de la misma forma que exis-
ten martingalas que no son de Markov, los dos con-
ceptos son independientes.
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3. Los caminos del movimiento browniano no
son diferenciables en ningún punto. Desde mi
punto de vista esta es la propiedad más asombrosa
del movimiento browniano y merece la pena dete-
nerse con calma para disfrutar de ella.
El lector recordará de sus estudios de Geometría
Elemental el concepto de tangente a una curva co-
mo aquella recta que toca a la curva en un solo
punto y que tiene la misma �inclinación� que la
curva en dicho punto (�gura 1.8).

Figura 1.8: Tangente a una curva

Las curvas �suaves� tienen tangente en todos sus
puntos y se dice que son diferenciables. Sin embar-
go, podemos dibujar curvas en el plano que tengan
�picos� en los que no es posible trazar una tan-
gente, ya que en ellos el concepto de inclinación no
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está bien de�nido. Mirando a las grá�cas anteriores
del movimiento browniano es evidente que están
�llenas�de tales picos. De hecho, ya Jean Baptiste
Perrin se re�rió a las trayectorias del movimien-
to browniano en estos términos: �Las trayectorias
son confusas y complicadas, cambian de dirección
con tanta frecuencia y rapidez que es imposible
seguirlas [...]. Es imposible �jar una tangente, inclu-
so aproximadamente, y nos recuerda las funciones
continuas sin derivada de los matemáticos�.9 Pues
bien, como ya parece evidente, los caminos del mo-
vimiento browniano son muy irregulares y presen-
tan �picos�en abundantes puntos. ¿Pero en cuán-
tos? La respuesta es en todos. Todos los puntos de
una trayectoria de movimiento browniano son pun-
tos de cambio brusco de dirección. Parece increíble
pensar en una grá�ca con esta propiedad, pero así
son las matemáticas. De hecho, esta propiedad es el
contenido de un teorema debido a Zigmund, Wiener
y Paley que apareció en 1933 en un artículo con el
escueto título: �Notas sobre funciones aleatorias�.10

Esta espectacular propiedad no es exclusiva de
las trayectorias del movimiento browniano. Veamos
dos ejemplos más.
En el siglo XIX comenzó a correr entre los
matemáticos la conjetura de que toda grá�ca con-
tinua era diferenciable salvo en puntos aislados.
Aunque, según parece, Bolzano en 1834 presen-
tó una función continua pero no diferenciable en
ningún punto, el ejemplo más conocido que ha lle-
gado hasta nuestros días de función continua y no
diferenciable en ningún punto es la llamada función

9Cita de Perrin en Paley y Wiener (1934).
10Paley, Wiener y Zygmund (1933).
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de Weierstrass, cuya grá�ca hemos representado en
la �gura 1.9.11Otro ejemplo curioso de grá�ca con-

Figura 1.9: Función de Weierstrass

tinua sin tangente en ningún punto es la llamada
curva de Koch. Esta curva fue propuesta por Helge
von Koch en 1904 y su propósito queda perfecta-
mente re�ejado en el título de su artículo: �Acerca
de una curva continua que no posee tangentes y
obtenida por los métodos de la geometría elemen-
tal�. El proceso de construcción de la curva de Koch
se puede dar en forma de un sencillo algoritmo:

a) Se parte de un segmento horizontal de lon-

11La función de Weierstrass viene dada por f(x) =P1
n=0 b

n cos (an�x), donde a es un entero positivo impar, 0 < b < 1
y ab > 1 + 3�

2 .
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gitud determinada. Se divide en tres partes
iguales y se retira la parte central. Sobre ella
se construye a modo de �tienda de campaña�
un ángulo formado por dos segmentos de la
misma longitud que el que hemos quitado.

b) El mismo procedimiento del apartado anterior
se repite para cada segmento de los que se han
formado.

c) Se vuelve a repetir el apartado b).

Los primeros 5 pasos de la construcción de la curva
de Koch se pueden apreciar, desde arriba hacia abajo, en
la �gura 1.10.
¿Cuántos pasos se requieren para acabar de construir

la curva de Koch? Pues sólo in�nitos. La curva de Koch es
el resultado de repetir este proceso sin �n. Si en lugar de
comenzar con un segmento se comienza con un triángulo
equilátero, el resultado es el (más bonito) copo de nieve
de Koch (�g. 1.11).Aparte de su belleza y de su impor-
tancia matemática, una de las características interesantes
de la curva de Koch es que se puede estudiar con méto-
dos elementales. Por ejemplo, no es difícil demostrar que
la longitud total de la curva es in�nita.12 Más aún, si se
considera el copo de nieve de Koch, tenemos una curva
cerrada de longitud in�nita dentro de un área �nita.

4. Propiedad de escalado. Consideremos un movi-
miento browniano que toma en el instante cero el
valor cero, es decir, un movimiento browniano es-
tándar (véase la �gura 1.6). Supongamos que esta-
mos mirando a la trayectoria del movimiento desde

12Si tomamos la longitud del segmento inicial igual a 1, la suce-
sión que da las longitudes de la curva tras cada paso es 1, 4=3,
16=9,. . . , por tanto, la longitud de la curva de Koch vendrá dada
por l��mn!1

�
4
3

�n
=1.
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Figura 1.10: Curva de Koch

el inicio hasta los 9 segundos. ¿Tendrá el mismo
aspecto que la trayectoria desde el origen hasta 1
segundo? La respuesta es no, porque sabemos que la
varianza de los incrementos es proporcional al tiem-
po (el efecto de �esparcimiento�del que hablamos
antes). Para que tenga el mismo aspecto, es decir,
para que siga siendo un movimiento browniano, hay
que multiplicar su valor por 3 =

p
9. En esto con-

siste la propiedad de escalado, si dividimos el tiem-
po de un movimiento browniano por un número
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Figura 1.11: El copo de nieve de Koch

positivo, el proceso resultante es un movimiento
browniano si lo multiplicamos por la raíz cuadrada
de ese mismo número.

Las propiedades anteriores del movimiento browniano
nos permiten cali�carlo como objeto fractal, en el sentido
de ser una �gura geométrica irregular y autosemejante,
cualidades que comparte con la función de Weierstrass y
la curva de Koch.13 La piedra de toque para determinar

13El término fractal fue acuñado por Benoit Mandelbrot, dándole
el signi�cado de �forma geométrica quebrada o fragmentada que
puede ser separada en partes, cada una de las cuales es (al menos
aproximadamente) una copia reducida del total.�(Mandelbrot,
1997).
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si una �gura geométrica puede ser considerada �o�cial-
mente�como fractal es que se veri�que que su dimensión
de Haussdorf o dimensión fractal sea mayor que su di-
mensión topológica. No se asuste por las palabrejas, lo
explicaremos en términos sencillos.
Supongamos que podemos coger (físicamente) un ca-

mino browniano y estirarlo todo lo que queramos. En
algún momento acabará convertido en una recta, que co-
mo es sabido tiene una sola dimensión. Así pues, diremos
que la dimensión topológica de una trayectoria brownia-
na es 1. Sin embargo si la devolvemos a su estado inicial,
vemos que de alguna forma, por su irregularidad, �ocu-
pa� o �llena�más parte del plano que una recta. Esto
es lo que mide la dimensión fractal, curvas con dimen-
sión fractal algo superior a 1 ocuparán poco más que
una recta y curvas con dimensión fractal cercana a 2
ocuparán casi todos los puntos del plano. Pues bien, la
dimensión fractal de cualquier trayectoria browniana es
exactamente 1;5, así que podemos aceptar las trayecto-
rias de movimiento browniano como auténticos fractales.
Además, el movimiento browniano supera en �fractali-
dad� a la curva de Koch, que tiene dimensión fractal
1;2618.14 Completando el podio de esta competición en-
tre fractales, y con la medalla de oro, aparece la curva de
Hilbert. Los primeros pasos de su construcción aparecen
en la �gura 1.12.
La curva de Hilbert tiene dimensión topológica 1 y

dimensión fractal 2, es decir, pasa por todos los puntos
del cuadrado.15

14La dimensión fractal de la curva de Koch (y de su copo de
nieve) es exactamente ln 4

ln 3 .
15He excluido de esta competición a la función de Weierstrass

debido a que, hasta donde yo conozco, no hay un valor exacto
para su dimensión fractal, sólo hay una cota inferior de valor ln a

2+ln b
(Falconer, 2003). También hemos dejado de mencionar otras curvas
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Figura 1.12: Construcción de la curva de Hilbert

Para poner �n a este apartado dedicado a las sor-
prendentes propiedades del movimiento browniano, ex-
pondremos otra propiedad que, aunque de menos entidad
matemática, no es menos alucinante.

5. Un movimiento browniano estándar cambia
in�nitas veces de signo entre el instante cero
y cualquier otro instante posterior. Si usted
pone en marcha un movimiento browniano estándar
y lo detiene en cualquier instante posterior, al mirar
a su grá�ca, ya habrá atravesado el eje horizon-
tal correspondiente al valor cero una in�nidad de
veces. Además, no importa lo rápido que pare el
reloj, nunca conseguirá hacer �nito ese número de
cambios de signo.

continuas que llenan el plano como la curva de Peano (anterior en
el tiempo a la de Hilbert) y la curva de Gosper.
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1.5. Bibliografía del capítulo

Acerca de los trabajos cientí�cos de Brown puede con-
sultarse Brown (1866). Una biografía clásica de Einstein
que además profundiza bastante en su producción cien-
tí�ca es Pais (1984). Otra biografía, también en caste-
llano, de Wiener y Von Neumann es Heims (1986), de
la que he extraído la mayor parte del material biográ�-
co de Norbert Wiener. Es difícil encontrar bibliografía
a nivel divulgativo relacionada con procesos estocásti-
cos y movimiento browniano (¡ese es uno de los obje-
tivos de este libro!). Para aproximaciones técnicas véase,
por ejemplo, Mörters y Peres (2010) o Karatzas y Shreve
(1991). Un libro de nivel algo más asequible y que puede
ser usado como una introducción a estos conceptos es
Klebaner (2005). Otra buena referencia en español es
Martínez y Villalón (2003). Sobre fractales, la referencia
clásica es Mandelbrot (1997).


