ENTERPRISE VIRTUALIZATION

MASTERING
PROXMOX VE 9

Building Enterprise Clusters with Ceph Storage

[Enterprise Edition - Version 9.0 j

Bekroundjo Akoley Aristide Q

Copyright Page

Mastering Proxmox VE 9: Building Enterprise Clusters with Ceph Storage
© 2025 Akoley Aristide Bekroundjo

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in
any form or by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of brief
quotations embodied in reviews, academic references, or other non-commercial uses permitted by
copyright law.

For permission requests, write to:

EC INTELLIGENCE

La Marina Casablanca, Tour Océanes 3 Bureau 03 Rez-de-Jardin

Casablanca, Maroc

Website: https://ecintelligence.ma

ISBN (Paperback): 9798299298017

Printed in the United States of America

Proxmox is a trademark of Proxmox Server Solutions GmbH.

Ceph 1s a trademark of Red Hat, Inc.

This publication 1s an independent work and 1s not affiliated with or endorsed by Proxmox Server
Solutions GmbH, Red Hat, Inc., or any of their affiliates.

https://ecintelligence.ma/

Preface

Preface

Purpose of the Book

The goal of Mastering Proxmox VE 9: Building Enterprise Clusters with Ceph Storage 1s to guide
IT professionals through the deployment, configuration, and optimization of Proxmox VE in
production-ready environments. While Proxmox is often associated with small or mid-sized labs,
this book demonstrates how it can scale to support enterprise-grade infrastructures by integrating
advanced clustering and Ceph storage features.

This book 1s designed to bridge the gap between initial installation and real-world, highly available
deployments. It provides both the conceptual understanding and practical tools required to build

resilient clusters with confidence.

Audience

This book 1s written for:
e System Administrators managing virtualization environments.
e Architects designing scalable and fault-tolerant clusters.
o DevOps Engineers who need automation and integration with modern toolchains.
¢ Students and Enthusiasts seeking to learn virtualization and distributed storage hands-on.

No prior Proxmox experience is strictly required, but readers should be famihar with Linux

administration, networking concepts, and basic virtualization.

What Readers Will Learn

By following the chapters, readers will gain knowledge and skills n:
e Deploying Proxmox VE 9 from scratch.
e Building clusters with multiple nodes.
e Integrating and managing Ceph storage.
e Configuring High Availability (HA) for virtual machines and containers.
e Using advanced networking, fencing, and replication.
e Monitoring and troubleshooting complex environments.

e Automating deployments with Ansible and CLI tools.

v

Preface

How the Book Is Structured

The book is divided into ten core chapters, each building upon the previous one.

Early chapters introduce installation, networking, and cluster basics.
Midway, the focus shifts to Ceph storage integration, scaling clusters, and HA strategies.
Later chapters cover automation, performance optimization, and troubleshooting.

Supporting sections, such as the Appendix and Glossary, provide quick references and
advanced tools.

Preface

How to Use This Book

Lab Setup Requirements

To follow the examples in this book, you will need:

At least three physical or virtual servers with 16 GB RAM, multi-core CPUs, and local
storage.

A 10 GbE network (recommended) for cluster and Ceph traffic.
Proxmox VE 9 ISO image and access to the Proxmox repositories.

Optional: SSDs or NVMe devices to simulate high-performance Ceph clusters.

Style Conventions

Code blocks are shown in monospaced text with grey background.
Important notes highlight crucial details for production deployments.
Tables and diagrams summarize configurations, commands, and architectures.

Commands are written for Debian-based Linux (as Proxmox 1s based on Debian).

Beginner vs. Advanced Content

Begimner-friendly explanations are included in the first half of each chapter.

Advanced topics, such as NVMe-oF gateways, CRUSH map tuning, and fencing
mechanisms, are introduced later in the book.

Readers may skip directly to advanced sections if they already have experience with

Proxmox basics.

Preface

Intellectual Property Notice

Proxmox is a trademark of Proxmox Server Solutions GmbH.
Ceph is a trademark of Red Hat, Inc.

This book is an independent publication. It has not been authorized, sponsored, or otherwise
approved by Proxmox Server Solutions GmbH, Red Hat, Inc., or any of their afhliates.

All trademarks, logos, and brand names used in this book are the property of their respective
owners. They are used in an editorial manner with the sole purpose of accurately describing the

software platforms discussed.

The author and publisher make no claim of ownership over these trademarks.

Vil

Preface

Acknowledgments

I would like to thank the many professionals and students who provided feedback and insights
during the creation of this book. Special thanks to the team at EC INTELLIGENCE for their
continued support in both technical validation and project delivery. This book is also dedicated to
the broader open-source community, whose contributions make Proxmox and Ceph powerful
technologies accessible to all.

Vil

Preface

About the Author

Akoley Aristide Bekroundjo is a Cloud Architect, trainer, and founder of EC
INTELLIGENCE, a company dedicated to helping enterprises build modern I'T infrastructures.
With more than a decade of hands-on experience, he has designed and deployed Proxmox, Ceph,
OpenStack, and OpenShift clusters for organizations across Alrica, Europe, and the Americas.

Aristide has also delivered professional training to hundreds of engineers, administrators, and
architects, bridging the gap between open-source innovation and enterprise-class requirements. His
mission 1s to make high-availability, scalable, and secure infrastructures accessible to companies of
all sizes.

When he 1s not teaching or architecting complex environments, he shares his sights through
books, articles, and technical videos, always aiming to translate advanced concepts into clear,
actionable knowledge.

& Connect with the Author

LinkedIn: linkedin.com/in/akolev-bekroundjo

X

https://www.linkedin.com/in/akoley-bekroundjo

Table of Contents

PREFACKEuttiiiitieiitieiitieissiessssieeueeesaeiessaeeesssseessssesssssesssssesssasensssssssnssassnssansnns 11T
CHAPTER 1: INTRODUCTION TO PROXMOX VE 9 ...cccuveevrrreerereeeeeecreeanns 1
1.1 What 1S PrOXIMOX VEPueeieicieirieesteeseeesseeeiseeessseessssessssssssessssssesssssssssssssssssssssnss 1
1.2 Why Choose Proxmox VE for Virtualization.......c..ceeeeereeseeseeseessessesseessessessessesssanns 4
1.3 Understanding the ArChiteCHIIE.ceeceeeeerceerseerseasserssesssesssesssesssesssesssesssesssesssssssens 8
1.4 New Features in Proxmox VE ... iceicctcctecneeesceesceesseeessesesssesssssssssenns 17
1.5 Book Overview and Lab Environment...........ccceceeeeveecsreeesreeeereeessreessreesssaeessasenes 26
SUITIINIATY c..eeveeveereereeeeeseessesseeseessesessesssessessessesssassessessessssssessessasssessessessssssessessessessenns 34
CHAPTER 2: BUILDING YOUR VIRTUALIZATION LAB.......cccccvveeenuunnnnnee. 37
2.1 Lab ArchiteCtire OVEIVIEW........ccevveeersercrraresseessseessreesssaeessasesssnesssassssassssasssssnsssnns 37
2.2 Preparing the KVM HOSLccccueeeureeereceennrecnennersnnrssnrserssssssssssssssssssssssssssssssssens 39
2.3 Designing the Network INfrastrtiCtiure. ... e eeueeeeeeeeeeeeceecereeeeeeeeeeeeeseeeseeeeeeseens 41
2.4 Installing ProxXmox VE NOAESccceeevveeerrererrreersreecrreeesreeessseesseesssecsssaesssaessssnsssnns 45
2.5 Preparing Storage fOr CePh...cueeceeerseeersnerssaeessnessrsesssanesssnessssesssaessrsesssssesssnsssnns 56
2.6 Lab Management COmMIMANScceeereerseerseessecssecssnsssnsssnessnsssnsssnsssnsssnsssnsssnsssnses 61
Lab Validation CheckIisteceereerseeseeseesaessecserseeseessessassaesasssessassasssessessassasssessasssssssnes 63
SUITIIINIATY .vveerveerreerreesseesseesseessecsseessnessecssnessessssessasssnssssssnsssnsssnsssnsssnsssnsssnsssnsssnsssnsssness 63
CHAPTER 3: CREATING A PROXMOX VE CLUSTER.......cccceeeeeuueeeeecnneannnen 65
3.1 Cluster Concepts and REQUITEIMENLScevveeerseeersacersarersanessaresssnesssaessrassssasessanesnns 65
3.2 Network Configuration for CIUSLETIIGcccvereeereeeereeseesseeeeseassessessessasssessessassaasns 68
3.3 Creating the INitial CHISLET.....cccveeeerrerrerrerseesrrarerssereeessesssssessssssesssssssssssssssens 70
3.4 Adding Nodes t0 the CHUSLETcceeererrerrersrereesrrsrerserseessesssesssssssesssssssssssssssens 75
3.5 Verifying Cluster Health........ccceeueeeereeneeneeseereeneninseessesessessesssessessessasssessesseessesns 79
SUIIITIATY ... veeverersereesessessesesessessessesessessessessssessassestesessessassessssessessassesessessessessssassasanes 83
CHAPTER 4: ADVANCED CLUSTER FEATURES........ccccceeenuueeeeenneeececsnnneeens 85
4.1 Configuring High Availabilitycccceceeceeseeseeseeseessrsenssnssessessesssessessessssssessessesssasns 85
4.2 Cluster-wide Firewall ConfigUratiOn.......coevereveererersnrersnrsssarsssanesssnssssassssansssansssnns 94
4.3 Resource ManagemeENLeeeeeeerereerssnereessnnrersssneeesssanesssssnsesssssnesssssnnssssssnssssssanes 99
4.4 BaCKUD SLrALEGIES ...eereeerererererererssersserasersserssesssssssesssesssnsssessnsssesssasssasssnsssnsssnsssens 103
4.5 Monitoring and MaINIENANCEeeereeeerrrersrrersnnessanesssnsssrassssassssssessasssssnssssassssasesss 106
SUITIINIATY ...ceevenrenrereereeenreeeseesseenresessesssensassessessesssesessnssssssessesssssssssesssssnsssessessnesnssness 110
CHAPTER 5: UNDERSTANDING CEPH ARCHITECTURE.........ccoervennenen 113
5.1 Ceph Components OVEIVIEWc.ccceeeeeererereseresereserssnsssnssssssssssssssssssssssssssssssanssns 113
5.2 CRUSH Maps and Data DiStriDUtON. ...cccceeeereeerserersneesseessseesssenessesessssssssessssens 116
5.3 Planning Your Ceph DePIOYIMENLccceereereeeeeseeseeseesnssensenssessessessssssassessesssasses 119
5.4 Network Requirements for Cephccceeveereeeeeseeseeseeerinsensesssessessessssssessesseessesnes 122
5.5 Performance ConSIAETAtioNSccceeeeceeseeseesseessesssesssesssesssssssssssssssssssssssssssassns 124
SUITIINALY ...ccevenrenrereereeenreeessereeensessessesseessassessessesssesesssssssssessssssssssssesssssnsssessssssesnssness 127

CHAPTER 6: DEPLOYING CEPH ON PROXMOX VE......ccocnniinniuniussasanncns 129

Table of Contents

6.1 Preparing NOdes fOr CePhc.ceveeeeeeeeseeseeseenensinsensessessensesssessessessesssessssssssssssans 129
6.2 Initial Ceph Configuration via Web Wizard...........ccceeerrerrersseessesssesssesssenssensnens 136
6.3 Creating Monitors and Managersccceeeeeeeeeeseeseessesassesseassassassessesssassesssssssssans 137
6.4 AddING OSDS...c.ueeeuieeereereeneeseeseesseasesseeseessassasssesesssessasssassassassasssssssssassssssassassans 141
6.5 Configuring Ceph NEIWOTKSccceeeeeeeeseeseeseesessaesenssessassessesssassassessesssassssssasssssans 143
6.6 Creating Storage POOIS.....cccveeeeeerreceeecerecerereeereecreenseessess s s sessseesseessnsssesssasssesssnns 144
6.7 Integrating with ProXmoxX VEccceeeeieriecieceteceeirenireessesssesssesssesssesssesssesssesssens 147
6.8 CePhl MODILOTIIG .. .ceeveeeecnrenreresessasansasessassassasasessassassnsssassasssssressessassnssssssessassness 149
1010011171 o SR 151
CHAPTER 7: ADVANCED CEPH CONFIGURATION.......ccccveeueeureraneesneenns 153
7.1 Creating and Managing POOISccccceecereeerecrecrecnrrnrrnrrnrrenrrenrrersseessenssenssenssens 153
7.2 CephFS CONfIGUIAtION.....ccerveerreereeesreessessaeeraessanssasssasssasssasssasssasssnsssasssasssasssnsssase 155
7.3 RBID fOI VIV SEOTAZE. ..ecerveerveereeeraeesneessessanssanssasssasssasssasssasssasssasssasssasssnsssasssasssas 159
7.4 Performance TUNINGceereeersseecrsaeessseessnressanesssnesssnessrassssassssssessasesssssssssssssssens 161
7.5 Frasure COUINg......coveerreereeereeereecsaecsaesssessaessaesssesssesssessnsssnessasssasssasssasssnsssasssasssase 163
7.6 CUStOIL CRUSH RULES.....ccveereereerniereereereeseessessessasssessessessasssessessassassssssssssssassess 165
7.7 Troubleshooting ComIMOI ISSUESceceereerueeueereesarsaesaersersenssesressessasssessesessassaess 167
7.8 Monitoring Ceph Healthcccevvevueeueereereesercnrrensersenrenseesenssessessessesssessessessasssens 169
SUITIINIATY ...eeeveeveeneereerseeseeeesseseeseessessessessssssessessesseesesssessessessesssessessessesssessassesssessensans 175
CHAPTER 8: VIRTUAL MACHINE MANAGEMENTcccccccvveeerrrnreecnnneen 177
CRAPIET OVETVIEW......cceeereerenraerenereerenressessessasssesssssssasssssssssssssssssssssssssssssssssssens 177
8.1 Understanding QEMU/KVM in Proxmox VE.........oviicincencenreeceecceeeceennens 177
8.2 Creating Production VMS.......cicceeerecrecreceecrnnennsesssesssesssesssesssesssesssesssesssesssens 179
8.3 Live Migration with Shared StOTage.......cceceereeereeervesrnessaeeraessanssanssasssassasssasssasssae 183
8.4 VM Templates and ClONINGccevveerreeerseressancesanesssaessrassssansssssessanesssasssrasssasess 185
8.5 Cloud-Init INtegratiONi..cceeersseerssecersacersscersaressancssanesssnessrasssrassssssessasessssssssasssrasess 188
8.7 Performance OPHIMIZAtION........cerseerseerseesseesaesssessanssasssasssassrassasssasssasssasssasssasssase 200
8.8 High Availability CONAGUIAtIONvecerreeerserersancesacessnessraeessancsssnessanesssaessssessranens 202
8.9 Resource Management and LIMItscceceeeeeeecrecreceecerrnnrnssnsressesssesssenssenssens 206
8.10 Best Practices for Production Workloadscceeeeeeveeecreeecneeeeneceneeccseeecseeeens 208
Chapter SUMIMATYccceceeeeerresereseresenesneesseesssesseasssssssssssssasessnssasssssssasssasssasssasssssssens 211
CHAPTER 9: CONTAINER MANAGEMENTccccceeerrueeecesneeecccsnnaeeecsnnnenes 215
CRaper OVEIVIEW......ccceeeererererasereerasesasasesssasssasasssssssssssssssasssssssssssssssssssssssssssssssssssens 215
9.1 LXC CoNtaiNers OVETVIEWcccceeerreeersererseresssaeesssssssessssasssssassssssssssssssssssssssssssssss 215
9.2 Container DePlOYMENL........cceeereeerrceresereseresnrsserssesssesssnsssesssesssesssesssesssasssasssesssens 217
9.3 Resource ManagemeENLeeeeeercereeressnreersnnerssssnnessssnesssssanesssssnsesssssnsessssanssssses 223
9.4 ContaiNEr NEtWOIKINGccerrvrerereeerrerersnrersnrsssanessanesssnssssnssssassssssssssnssssnsssrnssssanesss 225
9.5 Security CODNSIAETALONS ...eeeeeereeereeerseessrsssnesasssasssasssasssnsssasssasssasssasssnsssnsssassrassrass 227
9.6 High Availability CONfIUIAtIONccecererserersnnerrneernessrarsssansssssessanssssnessrnessranesss 230
9.7 Container Templates and Rapid Deployment........cccereereeeeesessenseeseessessessensenssens 231
9.8 PractiCal USE CaSES...cecurerererererereseeeseeesseesseessesssesssesssasssssssssssessasssssssssssasssasssasssans 233
9.9 Container Backup and RESIOTE.......ccceereereereereeseeseessessessensenssessessessesssessesseesesssans 235
9.10 Troubleshooting ComMmON ISSUEScceeerereeercreseraserasnnarenssenssenssesssesssesssesssesssens 237
SUITIINATY c.eereereeeereereenseeseaseessessasseeseessassasseessessassasssessassessassssssassassassssssassassasssassassans 238
CHAPTER 10: AUTOMATION AND INTEGRATION.......ccccecveeeerurneeecsnneene 241
CRAPLET OVEIVIEW...ccereereereereersessaeseeseassessasseaseassessassesseassassasssassassassassssssassassssssassassans 241

X1l

Table of Contents

10.1 ProxXmox AP OVEIVIEWcccceeceereeceeseeseesansssesssesssnsssesssssssssssesssesssssssessssssses 241
10.2 ADSIDlE INTEGrAtiON ...cceeueererereerseeseeseasnsesesssesssesssesssnsssesssesssssssesssesssesssessssnsses 245
10.3 Terraform DeplOYIMENLScccceceeerceeesseecsseeesseeesseseeseesssessssssssssssssssssssssssssassses 259
10.4 CI/CD PIPEHNES ...ceeeereeererreeressaessesssesssessaesssesssesssesssesssesssssssessasssasssasssasssssssans 264
10.5 Monitoring INEEGTatiONcccceeeeseeerseeesssecssssessessssesessssessssssssssssssssssssssssssssssassses 269
1010011171 o SR 275
APPENDIXccotitiiiiiiiisieetetttieeiesissnaeetetieieesassnsaseseeseseessssnnsasessesesssssnsnnsaseresesasans 279
GLOSSARYceetiiiiiitttieessttieee sttt eesteseesssses e sesnasaeeesnssassessnsseesssnnssseassasasenassnneae 283
FURTHER READING / RESOURCES........cccrueerierrieneeueereersecseesseenseaeeaeesnennes 285
INDEXoeeiiiiiiieeeeiiieeeieeeiaeeeeesseeeaessssaseesesnnsaeenssnssseesssnsseesssnnsasesssssascasssnnsassssnnns 287

X1l

Chapter 1: Introduction to Proxmox VE 9

The landscape of I'T infrastructure has undergone a fundamental transformation over the past
decade. Organizations of all sizes are seeking virtualization solutions that provide enterprise-grade
capabilities without the complexity and cost traditionally associated with such platforms. In this
evolving ecosystem, Proxmox Virtual Environment (VE) has emerged as a compelling alternative,
offering a unique combination of power, flexibility, and accessibility that challenges the established

order of proprietary virtualization platforms.

This chapter provides a comprehensive introduction to Proxmox VE 9, exploring not just what it 1s,
but why it represents a paradigm shift in how we approach virtualization. We'll examine the
architectural decisions that make Proxmox VE both powerful and approachable, understand its
position in the modern infrastructure stack, and explore the groundbreaking features mtroduced in
version 9 that address long-standing enterprise requirements.

1.1 What is Proxmox VE?

To understand Proxmox VE, we must first recognize that it 1s not merely another hypervisor
or virtualization tool. Rather, it represents a complete virtualization management platform that
seamlessly integrates multiple virtualization technologies, storage systems, networking capabilities,
and management tools into a cohesive whole. This integration is what sets Proxmox VE apart from
solutions that require administrators to cobble together various components to achieve similar

functionality.

The Evolution of Virtualization Platforms

The journey of virtualization technology has been marked by several distinct phases. Initially,
virtualization was the domain of mainframes, where resource partitioning was essential for multi-
tenant operations. The x86 virtualization revolution, sparked by VMware in the late 1990s, brought
these capabilities to commodity hardware. However, as virtualization became mainstream, two

distinct challenges emerged:

1. Complexity: Enterprise virtualization platforms became increasingly complex, requiring
specialized knowledge and significant resources to deploy and maintain.

2. Cost: Licensing models for commercial virtualization platforms often represented a
significant portion of I'T budgets, particularly for small to medium enterprises.

Proxmox VE emerged from the recognition that open-source technologies had matured to the
point where they could provide enterprise-grade virtualization capabilities without these traditional
barriers. By leveraging the best of open-source virtualization technologies and wrapping them in a

unified management layer, Proxmox VE democratizes access to advanced virtualization features.

Chapter 1: Introduction to Proxmox VE 9

Core Virtualization Technologies

At its heart, Proxmox VE integrates two complementary virtualization approaches, each suited

to different use cases:
KVM (Kemel-based Virtual Machine)

KVM represents the pinnacle of Type-1 hypervisor technology in the Linux ecosystem. Unlike
Type-2 hypervisors that run as applications on top of a host operating system, KVM transforms the
Linux kernel itself into a hypervisor. This architectural approach provides several critical

advantages:

e Performance: By operating at the kernel level, KVM can achieve near-native performance
for guest operating systems. The hypervisor overhead i1s minimal, typically less than 3% for
most workloads.

e Hardware Integration: KVM leverages hardware virtualization extensions (Intel V'I'-x and
AMD-V) to provide hardware-assisted virtualization. This includes support for nested page
tables (KEPT/NPT), which significantly reduces the overhead of memory management in
virtualized environments.

e Security Isolation: Fach KVM virtual machine runs as a separate Linux process, benefiting
from the robust security model of the Linux kernel. This includes SELinux/AppArmor

Itegration, memory protection, and process isolation.

e Device Support: Through QEMU (Quick Emulator), KVM can emulate a wide range of
hardware devices, from legacy ISA devices to modern PCle controllers. This flexibility
allows running virtually any x86-based operating system.

LXC (Linux Containers)

‘While KVM provides full system virtualization, LLXC offers a different approach through OS-
level virtualization. This technology, which shares conceptual similarities with Docker but predates

it, provides 1solated Linux environments without the overhead of running separate kernels:

o Resource Efficiency: . XC containers share the host kernel, eliminating the memory and
CPU overhead associated with running multiple kernel instances. A typical LXC contamer
might consume as little as 10MB of RAM for a minimal Linux environment.

o Instant Startup: Without the need to boot a separate kernel, LXC containers can start in
milliseconds rather than the seconds or minutes required for traditional VMs.

e Native Performance: Since containers run on the host kernel, there's no virtualization
overhead for system calls or hardware access. This makes them ideal for I/O-intensive
applications.

e Density: The reduced overhead allows running hundreds or even thousands of containers
on a single host, far exceeding what's practical with full virtualization.

Chapter 1: Introduction to Proxmox VE 9

The Proxmox VE Integration Layer

What transforms these individual technologies into a comprehensive platform 1s the Proxmox
S

VE integration layer. This layer consists of several key components:

‘Web-based Management Interface

The Proxmox VE web interface represents more than just a GUI; it's a complete management

console that provides:

e Multi-node Management: A single interface can manage an entire cluster, providing a
unified view of all resources regardless of their physical location.

e Real-time Monitoring: Live statistics for CPU, memory, network, and storage usage across
all nodes and guests, with historical data for trend analysis.

e Integrated Console Access: Both noVINC and SPICE protocols are supported for
accessing guest consoles directly through the web browser, eliminating the need for
separate client software.

o Task Management: All operations are executed as background tasks with full logging,
allowing administrators to track the status and history of all actions.

RESTful APT

Every feature available in the web mterface 1s backed by a comprehensive RESTful API. This
design philosophy ensures:

Automation First: Any task that can be performed through the GUI can be automated via
the API, enabling infrastructure-as-code approaches.

Language Agnostic: The REST API can be consumed by any programming language or
tool that supports HT'TP, from simple shell scripts using curl to sophisticated orchestration
platforms.

Complete Documentation: The API is self-documenting, with schema definitions and
examples available for every endpoint.

Proxmox Cluster File System (pmxcfs)

One of the most innovative aspects of Proxmox VE 1s its cluster file system. Unlike traditional

shared storage approaches, pmxcfs provides:

Configuration Synchronization: All cluster configuration is automatically replicated across
nodes in real-time using Corosync's reliable multicast protocol.

Version Control: Built-in versioning allows tracking configuration changes and rolling back
if needed.

High Performance: The entire configuration database is kept in RAM on each node,
providing microsecond access times for configuration queries.

3

Chapter 1: Introduction to Proxmox VE 9

o Fault Tolerance: The distributed nature ensures that configuration remains available even
if multiple nodes fail, as long as quorum is maintained.

Understanding the Architecture Through Comparison

To fully appreciate Proxmox VE's architectural approach, it's instructive to compare it with
other virtualization models. Consider the following architectural diagram that illustrates how
Proxmox VE differs from traditional virtualization stacks:

Traditional Virtualization Stack Proxmox VE Integrated Stack

Management Software Proxmox VE Web GUI/API

Separate Storage Mgmt

Separate Network Mgmt

Separate HA Software

Hypervisor KVM / LXC

Hardware

Hardware

Figure 1 Architecture Stack Comparison

This integrated approach eliminates the complexity of managing multiple software components

while providing a more cohesive and efficient system.

1.2 Why Choose Proxmox VE for Virtualization

The decision to adopt a virtualization platform extends far beyond technical specifications. It
encompasses considerations of cost, support, ecosystem, and long-term viability. Proxmox VE
addresses each of these concerns in ways that challenge traditional assumptions about enterprise

virtualization.

Chapter 1: Introduction to Proxmox VE 9

Economic Considerations

The economic argument for Proxmox VE. 1s compelling, but it extends beyond the obvious
benefit of free software. Consider the total cost of ownership (T'CO) for a typical virtualization

deployment:
Traditional Commercial Platform Costs:
e Base hypervisor licensing: $3,000-$5,000 per CPU socket
e Management software: $5,000-$50,000 depending on scale
e Advanced features (vMotion, HA, replication): Additional per-VM or per-CPU costs
e Annual support and maintenance: 20-25% of license costs
e Required training and certification: $3,000-$5,000 per administrator
Proxmox VE Cost Structure:
e Software licenses: $0
e Optional support subscription: €90-€874 per year per physical CPU
e Training: Community resources available at no cost
o Advanced features: All included in base installation

For a typical small to medium enterprise with 3 hosts, each with 2 CPU sockets, the first-year cost

difference can exceed $50,000, with similar savings recurring annually.

Feature Parity and Beyond

One might assume that a free, open-source platform would lag behind commercial offerings in
features. However, Proxmox VE. not only matches but in many cases exceeds the capabilities of

proprietary platforms:
Storage Flexibility

While commercial platforms often require specific storage hardware or additional licensing for
advanced storage features, Proxmox VE. provides native support for:

e Local Storage: LVM, LVM-thin, directory-based, ZFS
e Network Storage: NFS, CIFS/SMB, i1SCSI (both kernel and user-mode), GlusterFS
¢ Distributed Storage: Ceph RBD and CephFS with full integration

e Advanced Features: Thin provisioning, snapshots, clones, and live storage migration
included at no additional cost

Networking Capabilities

Chapter 1: Introduction to Proxmox VE 9

The networking stack in Proxmox VE leverages the full power of Linux networking, providing:

e Software-Defined Networking: Native integration with Open vSwitch for advanced
switching features

e VLAN Support: Full 802.1Q VLAN tagging and trunking

¢ Bonding: Multiple bonding modes for redundancy and performance

e Advanced Routing: Full support for static and dynamic routing protocols

o Firewall: Integrated datacenter-wide firewall with granular rule management
High Availability Without Complexity

Unlike commercial solutions that require separate clustering software or management platforms,
Proxmox VE includes:

e Integrated HA Stack: Based on proven technologies (Corosync, Pacemaker)
e Automatic Failover: VMs automatically restart on healthy nodes if a host fails
¢ Fencing Support: Multiple fencing methods to ensure data integrity
e No Additional Licensing: HA features available for unlimited VMs

Open Standards and Vendor Independence

The commitment to open standards in Proxmox VE provides strategic advantages that extend

beyond cost savings:
No Vendor Lock-in
Every component of Proxmox VE uses standard, open formats:
e VM disks use standard qcow?2, raw, or VMDK formats
e Configuration files are human-readable text
e Network configurations use standard Linux networking
o APIs follow REST principles with JSON data formats
This approach ensures that:
e Migration to or from other platforms remains possible
e Integration with third-party tools 1s straightforward
e Custom automation and tooling can be developed without proprietary SDKs
Community and Ecosystem

The Proxmox VE ecosystem demonstrates the power of open-source collaboration:

(@)

Chapter 1: Introduction to Proxmox VE 9

o Active Community: Over 170,000 registered forum members contributing knowledge and
solutions

o Third-party Integration: Extensive ecosystem of backup solutions, monitoring tools, and
automation platforms

e Transparent Development: Public bug tracker and roadmap ensure visibility into future
development

e Regular Updates: Predictable release cycle with long-term support versions

Performance Characteristics

Performance is often cited as a concern when considering open-source solutions. However,

extensive benchmarking reveals that Proxmox VE often outperforms commercial alternatives:
Virtualization Overhead

Independent benchmarks consistently show:
e KVM CPU overhead: <2% for most workloads
e Memory overhead: 300-500MB per VM for KVM, <60MB for LXC
e I/O performance: Within 5% of bare metal with proper configuration
e Network performance: Line-rate performance with SR-IOV or virtio
Scalability Metrics
Real-world deployments demonstrate impressive scalability:
e (Clusters with 30+ nodes in production
¢ Single nodes running 200+ VMs or 1000+ containers
e Storage pools exceeding 1PB

e Networks handling 100Gbps+ aggregate throughput

Security Architecture

Security in Proxmox VE is built on the proven foundation of Linux security models, enhanced

with virtualization-specific protections:

Multi-layered Security Model

Chapter 1: Introduction to Proxmox VE 9

Role-based access control (RBAC)

U

[Two-factor authentication support

API token management

VM/Container isolation

Network security policies

«J _J L _J

[Resource limits and quotas

Application Layer

Operating System SELinux/AppArmor integration

{ Firewall (iptables/nftables)]

Kernel security modules

[UEFI| Secure Boot support] [TPM integration]
Hardware Layer

Hardware security features

Figure 2 Proxmox VE Security Architecture
Compliance and Auditing
For organizations with compliance requirements:

e Comprehensive audit logging of all actions
e Integration with external authentication systems (LDAP, AD)
e Support for encryption at rest and in transit

e Regular security updates through Debian security team

1.3 Understanding the Architecture

A deep understanding of Proxmox VE's architecture 1s essential for designing, deploying, and
maintaining effective virtualization infrastructure. This section explores the technical underpinnings

that make Proxmox VE both powerful and reliable.

The Hypervisor Layer in Detail

The hypervisor layer in Proxmox VE represents a sophisticated integration of multiple
technologies, each carefully chosen and configured for optimal performance and reliability.

Chapter 1: Introduction to Proxmox VE 9

KVM Architecture Deep Dive

KVM's integration into the Linux kernel provides unique advantages that distinguish it from
monolithic hypervisor designs. When a system boots Proxmox VL, the following mitialization
sequence occurs:

1. Kernel Module Loading: The kvm.ko module loads, along with processor-specific
modules (kvm-intel.ko or kvim-amd.ko)

2. Hardware Feature Detection: The system queries CPU capabilities including:
o Virtualization extensions (VMX/SVM)
o Extended Page Tables (EPT/NPT)
o Virtual Processor Identifiers (VPID)
o Posted Interrupts support
3. QEMU Process Architecture: Each VM runs as a QEMU process with:
o Dedicated memory allocation
o CPU thread per vCPU
o I/O threads for disk and network operations
o Monitor thread for management operations

The relationship between these components can be visualized as:

Chapter 1: Introduction to Proxmox VE 9

Guest VM

QEMU Device Emulation

Network Storage Display Other
Devices Devices Devices Devices

KVM Module

Linux Kernel

Hardware (CPU, RAM, 1/O)

Figure 3 KVM Guest VM Architecture

Memory Management in KVM

One of the most critical aspects of virtualization performance is memory management. KVM
employs several sophisticated techniques:

Transparent Huge Pages (THP): By default, KVM attempts to use 2MB or 1GB huge pages instead
of standard 4KB pages. This reduces:

e TLB (Translation Lookaside Buffer) pressure

e Page table walk overhead

e Memory management overhead
Kernel Same-page Merging (KSM): For environments running multiple similar VMs, KSM can:

e Identify identical memory pages across VMs

e Merge them into a single copy-on-write page

e Potentially save 20-609% of memory in VDI environments

Memory Ballooning: The virtio-balloon driver allows dynamic memory management:

e Host can request VMs to release unused memory

e Memory can be redistributed to VMs under pressure

10

Chapter 1: Introduction to Proxmox VE 9

e Automatic balancing based on VM activity

NUMA Optimization: For multi-socket systems, KVM provides:
e NUMA-aware memory allocation
e vCPU pinning to specific NUMA nodes

e Optimal memory access patterns for large VMs

LXC Architecture and Implementation

While KVM provides full system virtualization, LXC offers a fundamentally different approach
that's particularly relevant for Linux workloads:

Container Isolation Mechanisms
LXC leverages multiple Linux kernel features to provide isolation:
1. Namespaces: Provide isolated views of system resources
o PID namespace: Separate process trees
o Network namespace: Isolated network stacks
o Mount namespace: Independent filesystem views
o User namespace: UID/GID mapping
o UTS namespace: Separate hostnames
o IPC namespace: Isolated inter-process communication
2. Control Groups (cgroups): Resource limitation and accounting
o CPU shares and quotas
o Memory limits and accounting
o I/O bandwidth and IOPS limits
o Device access control
3. Security Modules: Additional security layers
o AppArmor profiles for application confinement
o SELinux contexts for mandatory access control
o Seccomp filters for system call filtering

The complete isolation model can be represented as:

11

Chapter 1: Introduction to Proxmox VE 9

Host System

Container 1 Container 2
{ 3 d
PID PID
Network Network
Mount Mount
A\ _/ \ _/

{

CPU: 2 cores CPU: 1 core

RAM: 4GB RAM: 2GB

1/0: 100MB/s 1/0: 50MB/s
A\ \

Shared Kernel

Figure 4 LXC Container Isolation Model

Storage Architecture in Depth

The storage architecture in Proxmox VE represents one of its greatest strengths, providing flexibility

that matches or exceeds commercial solutions while maintaining simplicity of management.

Storage Abstraction Layer

The Proxmox VE storage model uses a plugin-based architecture that provides:

1. Uniform Interface: Regardless of the underlying storage type, all storage operations use the
same API
2. Storage Pools: Logical grouping of storage resources
3. Content Types: Differentiation between VM 1mages, containers, ISOs, templates, and
backups
4. Allocation Tracking: Automatic tracking of disk usage and ownership
Storage Plugin Architecture

Fach storage type 1s implemented as a plugin that must provide specific operations:

Simplified plugin interface
sub activate storage ({

Chapter 1: Introduction to Proxmox VE 9

Make storage available for use

sub deactivate storage ({
Cleanly disconnect storage

sub alloc image {
Allocate new disk image
return $volid;

sub free image {
Delete disk image

sub clone image {
Create linked clone if supported

sub create snapshot ({
Create point-in-time snapshot

}
File-based vs Block-based Storage

Understanding the distinction between file-based and block-based storage 1s crucial for optimal

deployment:
File-based Storage Characteristics:

e Flexibility in file naming and organization

e Easy backup and migration via file copy

e Support for any POSIX-compliant filesystem

e Potential for fragmentation over time

e Examples: Directory, NFS, CIFS, GlusterFS
Block-based Storage Characteristics:

e Better performance for random I/O

e Native snapshot support in most implementations

e More efficient space utilization

e Direct integration with VM block devices

e Examples: LVM, 1SCSI, Ceph RBD, ZFS zvols
Advanced Storage Features
Several storage backends provide advanced features that enable enterprise use cases:
Thin Provisioning: Supported by LVM-thin, ZFS, and Ceph

o Allocate storage on-demand as data i1s written

13

Chapter 1: Introduction to Proxmox VE 9

e Overcommit physical storage safely
e Monitor usage to prevent exhaustion
Snapshots and Clones: Implementation varies by storage type
o Copy-on-Write Snapshots: ZFS, Ceph, LVM-thin
e Linked Clones: ZFS, Ceph with RBD
¢ Qcow?2 Internal Snapshots: Directory, NFS, CIFS
Live Storage Migration: Move disks between storage pools without downtime
e Supported for most storage combinations
e Automatic format conversion if needed

e Bandwidth limiting to prevent network saturation

Network Architecture and SDN

The networking capabilities in Proxmox VE 9 have evolved to meet the demands of modern
software-defined infrastructure.

Traditional Linux Bridge Networking

The simplest networking configuration uses Linux bridges:

Physical Interface (eth0)

Linux Bridge (vmbro0)

Container1

Figure 5 Network bridge Topology

This model provides:

e Simple configuration

14

Chapter 1: Introduction to Proxmox VE 9

e Good performance for basic scenarios
e VLAN support via bridge VLAN filtering
e Suitable for most small to medium deployments

Open vSwitch Integration

For advanced networking requirements, Open vSwitch provides:

Physical Interfaces (eth0) Physical Interfaces (eth1)

OVS Bond (bond0)

VLAN100

Figure 6 OpenvSwitch Bond Topology

Capabilities include:

e TFlow-based forwarding

e Advanced VLAN handling

o Network virtualization overlays

e Integration with SDN controllers
e Traffic shaping and QoS

Software-Defined Networking (SDN) in Proxmox VE 9
The new SDN framework introduces powerful abstractions:
Zones: Logical network segments

e Simple: Isolated layer 2 networks

e VLAN: Traditional VLAN-based segmentation

15

Chapter 1: Introduction to Proxmox VE 9

e QmQ: Provider bridging for service providers

e VXLAN: Overlay networks for multi-site deployments

e LEVPN: BGP-based overlays for large-scale deployments
VNets: Virtual networks within zones

e Subnet management with IPAM

e DHCP integration

e DNS configuration

¢ Gateway management

SDN Fabrics: New 1n version 9

e Automated underlay configuration
¢ Dynamic routing protocol support
e Multi-path networking

e Simplified spine-leaf deployments

Cluster Architecture and Distributed Systems

The cluster architecture in Proxmox VE represents a masterclass in distributed systems design,
providing high availability without the complexity typically associated with such systems.

Corosync Cluster Stack
At the heart of Proxmox VE clustering lies Corosync, which provides:
1. Relable Group Communication: Ensures all nodes have consistent cluster state
2. Membership Management: Tracks which nodes are active and reachable
3. Quorum Calculation: Prevents split-brain scenarios
4. Virtual Synchrony: Guarantees message ordering across all nodes

Cluster Communication Patterns

Chapter 1: Introduction to Proxmox VE 9

Legend:
Heartbeat
Config Syno
State Update
Canfig Sync Config Sync
N VN Y E——
‘ Heartbeat Heartheat
Node A J Node B Node C J

P State Update
- Heartbeat

[Totem Ring Protocol J

Figure 7 Cluster communication Pattern

Distributed Configuration Management
The Proxmox Cluster File System (pmxcfs) provides:
1. Real-time Replication: Configuration changes propagate within milliseconds
2. Consistency Guarantees: All nodes see the same configuration
3. Automatic Conflict Resolution: Timestamps and version vectors prevent conflicts
4. Local Caching: Fach node maintains a complete copy in RAM
Resource Scheduling and Load Balancing
The cluster scheduler considers multiple factors:
e Current resource utilization (CPU, RAM, storage)
e Network topology and latency
e Storage availability and performance
e Administrator-defined policies

e Historical performance data

1.4 New Features in Proxmox VE 9

The release of Proxmox VE 9 on August 5, 2025, marks a watershed moment in the platform's
evolution. This version addresses long-standing enterprise requirements while introducing
mnovative features that position Proxmox VE at the forefront of virtualization technology.

17

Chapter 1: Introduction to Proxmox VE 9

Foundation Updates: Building on Debian 13 "Trixie"

The decision to base Proxmox VE 9 on Debian 13 "Trixie" provides immediate benefits:
Kernel 6.14.8 Enhancements
The new kernel brings substantial improvements:
1. Hardware Support:
o PCle 5.0 with speeds up to 32 G'T/s per lane
o DDRS5 memory controller optimizations
o Intel Sapphire Rapids and AMD Genoa CPU features
o Enhanced GPU passthrough for NVIDIA and AMD
2. Performance Optimizations:
o Core scheduling for better CPU security
o Improved NUMA balancing algorithms
o Enhanced memory tiering support
o Optimized mterrupt handling for high-speed networks
3. Security Features:
o Kernel Control Flow Integrity (CFI)

o Enhanced randomization of kernel structures

o Improved mitigation for speculative execution vulnerabilities

Component Version Matrix
Component Proxmox VE 8.x Proxmox VL 9.0 Key Improvements
Kernel 6.2.x 6.14.8 PCle 5.0, DDRY, Security
QEMU 8.0.x 10.0.2 Performance, Migration
LXC 5.0.x 6.0.4 Cgroup v2, Security
ZFS 2.1.x 2.3.3 RAID-Z expansion
Ceph Reef 18.x Squid 19.2.3 Performance, Features

Revolutionary Storage Features

The storage enhancements in Proxmox VE 9 address critical enterprise requirements that

have long been pain points for organizations with existing storage infrastructure.

Snapshots for Thick-Provisioned LVM: A Game Changer

18

Chapter 1: Introduction to Proxmox VE 9

The implementation of snapshots for thick-provisioned LVM storage represents a
fundamental shift in how Proxmox VE handles traditional enterprise storage. This feature 1s

particularly significant for organizations with substantial investments in:
e Fibre Channel SANs from vendors like EMC, NetApp, or HPE
e 1SCSI arrays that don't support thin provisioning

e Existing LVM-based storage infrastructure
Technical Implementation:

The snapshot mechanism uses a volume chain approach:

LVM Snapshot Volume Chain

Original Volume (Active)

Snapshot 1 (Read-only) Point in time capture

“ D
Snapshot 2 (Read-only) Point in time capture

A)

c D
Active writes go here

Creating a Snapshot Process:

1. Pause VM /O briefly

2. Create new LVM volume

3. Update QEMU backing chain
4. Resume VM /O

Figure 8 LVM Snapshot Volume Chain

Each snapshot captures the state at a point in time, with new writes going to a new volume:

1. Creating a Snapshot:

19

Chapter 1: Introduction to Proxmox VE 9

Internal process flow
1. Pause VM 1/O briefly
2. Create new LLVM volume
3. Update QEMU backing chain
4. Resume VM I/O
Total pause time: <I00ms
2. Storage Efficiency:
o Only changed blocks consume additional space
o Metadata tracking via qcow2 format
o Automatic cleanup of unused blocks
3. Performance Characteristics:
o Minimal impact on running VMs
o Sequential read performance maintained
o Small penalty for random writes due to COW
ZFS RAID-Z Expansion: Long-Awaited Flexibility

The ability to expand RAID-Z vdevs addresses a limitation that has existed since ZFS's

inception. This feature, arriving with ZFS 2.3.3, fundamentally changes capacity planning for ZFS

deployments:
Expansion Process:

Before expansion: 4-disk RAID-Z1
tank ONLINE 0 0 0
raidz1l-0 ONLINE 0 0 0
sda ONLINE 0 0 0
sdb ONLINE 0 0 0
sdc ONLINE 0 0 0
sdd ONLINE 0 0 0

Add new disk to existing RAID-Z
zpool attach tank raidzl-0 sde

After expansion: 5-disk RAID-Z1

tank ONLINE 0 0 0

raidz1l-0 ONLINE 0 0 0

sda ONLINE 0 0 0

sdb ONLINE 0 0 0

sdc ONLINE 0 0 0

sdd ONLINE 0 0 0

sde ONLINE 0 0 0
Considerations:

e Rebalancing happens automatically in the background

20

Chapter 1: Introduction to Proxmox VE 9

e Existing data is redistributed across all disks
e Pool remains online throughout the process

e New capacity becomes available immediately

Advanced Networking with SDN Fabrics

The SDN Fabrics feature transforms Proxmox VE into a platform capable of building
complex network topologies that previously required dedicated network hardware or specialized
software.

Understanding SDN Fabrics
SDN Fabrics provide automated configuration of underlay networks for complex topologies:

Spine-Leaf Architecture with SDN Fabrics

AT A
Leaf 1 Leaf 2
- -
Y \ 4
VMs VMs

Figure 9 Spine-Leaf Architecture with SDN Fabrics

Key Capabilities:
1. Dynamic Routing Integration:
o OSPF for traditional IP routing
o BGP for large-scale deployments

o OpenFabric for automatic topology discovery

2. Automated Configuration:

21

Chapter 1: Introduction to Proxmox VE 9

o Template-based deployment
o Automatic IP assignment
o Route propagation without manual intervention
3. Use Cases:
o Ceph Networks: Full-mesh connectivity between storage nodes
o EVPN Underlays: Foundation for overlay networks
o Multi-Site Connectivity: Stretched clusters across locations

Configuration Example:

fabric: ceph-mesh
type: open-fabric
asn: 65000
nodes:

- name: nodel
router-id: 10.0.0.1
interfaces:

- eth2: 10.0.0.1/24

- name: node2
router-id: 10.0.0.2
interfaces:

- eth2: 10.0.0.2/24
auto-mesh: true

High Availability Evolution: Affinity Rules

The new HA affinity rules system represents a complete reimagining of how Proxmox VE
handles resource placement in clusters. This feature addresses complex requirements for both

performance optimization and compliance.
Node Affinity: Controlling VM Placement
Node affinity rules allow precise control over where VMs run:

Rule Types:

Chapter 1: Introduction to Proxmox VE 9

Rule Types

VM must run on specified nodes (hard
requirement)

Preferred VM should run on nodes if possible (soft)

Forbidden VM must not run on specified nodes

Figure 10 HA Affinity Rules Types

Resource Affinity: Managing VM Relationships
Resource affinity defines relationships between VMs:
1. Affinity Groups (Keep Together):
o Database and application tiers on same node
o Reduces network latency
o Improves cache efficiency
2. Anti-Affinity Groups (Keep Apart):
o Redundant services on different nodes
o Compliance with failure domain requirements
o Load distribution across infrastructure
Migration from HA Groups
Existing HA groups are automatically converted to affinity rules:
Old HA Group Configuration
group: db-servers
nodes nodel, node?2
restricted 1
Converted to Affinity Rule
affinity-rule: db-servers
type: node-required

nodes: nodel,node?2
vms: 101,102,103

23

Chapter 1: Introduction to Proxmox VE 9

Modernized Mobile Interface

The complete rewrite of the mobile interface using Rust and the Yew framework represents
Proxmox's commitment to modern development practices and superior user experience.

Architecture Benefits:

1. Performance:
o Compiled WebAssembly for near-native speed
o Minimal JavaScript overhead
o Efficient DOM updates

2. Reliability:
o Type-safe code prevents runtime errors
o Memory safety guarantees from Rust
o Comprehensive error handling

3. User Experience:
o Responsive design adapts to screen size
o Touch-optimized controls
o Offline capability for basic operations

Key Features:

Mobile Interface Capabilities

24

Chapter 1: Introduction to Proxmox VE 9

Mobile Interface Capabilities

P Start/Stop VMs

'©) Restart Containers

Il View Resource Usage

Basic Configuration

~| Task Management

Figure 11 Mobile Interface Capabilities

Enhanced Monitoring and Metrics

The new metrics system provides unprecedented visibility into system behavior, essential for

troubleshooting and capacity planning.
Pressure Stall Information (PSI)
PSI metrics reveal when systems are under resource pressure:
CPU Pressure: some=12.5% full=2.1%
|— "some": At least one task delayed

L—"full": All non-idle tasks delayed

Memory Pressure: some=8.3% full=0.5%
|— Indicates memory allocation delays

L— Critical for identifying OOM risks

Chapter 1: Introduction to Proxmox VE 9

I/O Pressure: some=15.2% full=3.8%
|— Storage subsystem bottlenecks
L Helps identify slow storage

ZFS ARC Visibility

The ZFS ARC (Adaptive Replacement Cache) metrics integration provides:

Node Memory Usage
- Total: 64 GB
- Used: 45 GB
| | VMs/CTs: 32 GB
| |—7ZFS ARC: 10 GB
| - System: 3 GB
L— Free: 19 GB

This visibility helps administrators:

e Right-size ZFS ARC limits

e Understand memory pressure sources

e Optimize overall memory allocation

1.5 Book Overview and Lab Environment

This book is structured as a journey from foundational concepts to advanced deployment

scenarios. Fach chapter builds upon previous knowledge while introducing new concepts and

techniques. The hands-on approach ensures that theoretical knowledge 1s immediately reinforced

through practical application.

Learning Path and Book Structure

The book follows a carefully designed learning path that mirrors real-world deployment scenarios:

Progressive Complexity Model

Chapter 1: Introduction to Proxmox VE 9

Foundation Clustering Storage Production

Concepts. Multi-node Ceph Real-world Performance
Install HA Setup Integration Workloads Security
Network Management Operations Automation Troubleshooting

Figure 12 Progressive Complexity Model

Part I: Foundation (Chapters 1-3)
This section establishes the groundwork:
e Chapter 1: Comprehensive introduction to Proxmox VE architecture and capabilities
e Chapter 2: Detailed lab environment setup with KVM nested virtualization
e Chapter 3: First node installation and nitial configuration
Learning outcomes:
e Understand Proxmox VE's position in the virtualization landscape
e Configure a complete lab environment
e Perform basic installation and setup
Part IT: Building the Cluster (Chapters 4-6)
Clustering transforms standalone nodes into a unified platform:
e Chapter 4: Creating and managing multi-node clusters
e Chapter 5: Implementing high availability and advanced features
o Chapter 6: Storage architecture and integration options
Learning outcomes:
e Design and implement resilient clusters
e Configure automatic failover
e Understand storage abstraction layers
Part III: Implementing Ceph Storage (Chapters 7-10)
The Ceph section represents the book's technical apex:
e Chapter 7: Deep dive into Ceph architecture and concepts
o Chapter 8: Step-by-step Ceph deployment on Proxmox VE

e Chapter 9: Advanced configuration and performance tuning

27

Chapter 1: Introduction to Proxmox VE 9

e Chapter 10: Operational procedures and maintenance
Learning outcomes:

e Master distributed storage concepts

e Deploy production-ready Ceph clusters

e Optimize performance for various workloads
Part IV: Production Deployment (Chapters 11-13)
Transitioning from lab to production:

e Chapter 11: Virtual machine lifecycle management

e Chapter 12: Container deployment and orchestration

e Chapter 13: Automation and integration strategies
Learning outcomes:

e Manage complex VM environments

¢ Implement container strategies

e Automate routine operations
Part V: Best Practices and Troubleshooting (Chapters 14-15)
Ensuring long-term success:

e Chapter 14: Security hardening and compliance

e Chapter 15: Troubleshooting methodologies and tools

Learning outcomes:
e Implement security best practices
e Diagnose and resolve complex issues

e Optimize for specific workloads

Chapter 1: Introduction to Proxmox VE 9

Lab Environment Architecture

The lab environment 1s designed to provide a realistic yet accessible platform for learning Proxmox
VE. Using nested virtualization on a single physical host, we create a complete three-node cluster
with full Ceph integration.

Physical Host Requirements
The physical host, designated as "labl", serves as the foundation:

Minimum Specifications:

CPU: 8+ cores with VT-x/AMD-V
RAM: 64GB (96GB recommended)
Storage: 500GB SSD

Network: Gigabit Ethernet

0S: Ubuntu 22.04 LTS

Recommended Specifications:

CPU: 16+ cores, dual socket
RAM: 128GB ECC

Storage: 1TB NVMe + 2TB SSD
Network: 10Gb Ethernet

0S: Ubuntu 22.04 LTS

Nested Virtualization Configuration

Enabling nested virtualization requires specific configuration:

Intel systems
echo "options kvm intel nested=1" > /etc/modprobe.d/kvm.conf

AMD systems
echo "options kvm amd nested=1" > /etc/modprobe.d/kvm.conf

Verify nested virtualization
cat /sys/module/kvm_intel/parameters/nested
Y

KVM and libvirt Setup
The complete virtualization stack installation:

Install KVM and management tools

apt update

apt install -y gemu-kvm libvirt-daemon-system \
libvirt-clients bridge-utils virt-manager

Install Open vSwitch for advanced networking
apt install -y openvswitch-switch

29

Chapter 1: Introduction to Proxmox VE 9

Add user to libvirt group
usermod -aG libvirt SUSER

Verify installation

virsh version

systemctl status libvirtd

ovs-vsctl show

Network Design and Implementation

The network architecture simulates a production environment with proper segmentation:

Network Topology Overview

management
liouirt
10.10.0.016

Physical Host (lab1)

Network Bridges.

s1accessnet
(ovs

VLANS 20,21

l

B —

sclustemet
(ovs)
VLAN 22

|

" VM: 51PM

J \s& s1proxmox02 /

J VM: g1proxmox03 j

eth2

VLAN 20: Geph Public Network

VLAN 21; Proxmox Cluster (Corosyne)
VLAN 22 Ceph Cluster Traflic (0D

¥CBUs: 8 coros
RAL: 16GB.

System Disk: 150GB pirtio)
05D Disks: 3 % S0GE (virtio)
Netwarlc: 3 x virlio NICs

atho wtht a2 ethd et eth2 etho amn
1P 101008101 1P: 10.10.10.102 1P 1010.10.103
VLAN Configuration Per Node Resources Cluster Total Resources.

Total vCPUS: 24 corce
Total RAM: 45GB

Totel Storage: 900GB

Ceph Raw Crpecity: 450GB

Usable Capaciy: ~150GB (3x repluation)

Management Network (10.10.0.0/16)

Purpose and configuration:

Figure 13 Lab Network Topology Overview

e External connectivity via NAT

e Management access to Proxmox VE nodes

e Software updates and internet access

<network>

<name>management</name>
<bridge name="management"/>

<forward mode="nat" dev='enol'/>
<ip address="10.10.0.1" netmask="255.255.0.0">

<dhcp>

<range start="10.10.1.1" end="10.10.254.254"/>

</dhcp>
</ip>
</network>

Access Network (slaccessnet)

30

Chapter 1: Introduction to Proxmox VE 9

Multi-purpose network with VLAN segregation:

e VLAN 20: Ceph public network (client access)

e VLAN 21: Proxmox cluster communication (Corosync)

<network>
<name>slaccessnet</name>
<forward mode='bridge'/>
<bridge name='slaccessnet'/>
<virtualport type='openvswitch'/>
</network>

Open vSwitch configuration:

Create OVS bridge
ovs-vsctl add-br slaccessnet

Configure VLANs
ovs-vsctl set port slaccessnet tag=20,21

Verify configuration
ovs-vsctl show

Cluster Network (s1clusternet)
Dedicated Ceph cluster traffic:
e VLAN 22: Ceph OSD replication

e Isolated from other traffic

e High bandwidth, low latency

<network>
<name>slclusternet</name>
<forward mode='bridge'/>
<bridge name='slclusternet'/>
<virtualport type='openvswitch'/>
</network>

Virtual Node Specifications

Fach Proxmox VE node is carefully configured to support both learning and realistic workloads:
Resource Allocation

Per Node Configuration:

vCPUs: 8 cores

RAM: 16GB

System Disk: 150GB (virtio)
OSD Disks: 3 x 50GB (virtio)
Network: 3 x virtio NICs
Display: VNC (unique ports)

31

Chapter 1: Introduction to Proxmox VE 9

Aggregate Cluster Resources:

Total vCPUs: 24 cores

Total RAM: 48GB

Total Storage: 900GB

Ceph Raw Capacity: 450GB
Usable Capacity: ~150GB (3x)

VM Creation Commands

The virt-install commands create properly configured VMs:

Node 1 creation
virt-install --name slproxmox01 \
-—ram 16384 \
--disk path=/var/lib/libvirt/images/slproxmox0l.img,size=150 \
-—vcpus 8 \
--network network:management \
--network bridge=slaccessnet, \
mac=52:54:00:31:7d:87, \
virtualport type=openvswitch,\
model=virtio,driver.name=vhost \
--network bridge=slclusternet, \
mac=52:54:00:46:59:08, \
virtualport type=openvswitch, \
model=virtio,driver.name=vhost \
--console pty,target type=serial \
-—cdrom /path/to/proxmox-ve-9.0.is0o \
--graphics vnc,listen=0.0.0.0,port=6401, keymap=£fr

Add OSD disks post-installation

virsh attach-disk slproxmox01 \
--source /var/lib/libvirt/images/slproxmox0l-osdl.img \
--target vdb --persistent --size 50

virsh attach-disk slproxmox01 \
--source /var/lib/libvirt/images/slproxmox0l-osd2.img \
--target vdc --persistent --size 50

virsh attach-disk slproxmox01 \
--source /var/lib/libvirt/images/slproxmox0l-osd3.img \
--target vdd --persistent --size 50

Lab Exercise Structure

Each chapter includes structured exercises designed to reinforce learning:

Exercise Types

32

Chapter 1: Introduction to Proxmox VE 9

1. Guided Labs: Step-by-step instructions
o Clear objectives
o Detailed procedures
o Expected outcomes
o Verification steps

2. Challenge Labs: Problem-solving scenarios
o Business requirements
o Technical constraints
o Multple valid solutions
o Real-world applicability

3. Troubleshooting Labs: Diagnostic exercises
o Simulated failures
o Systematic diagnosis
o Resolution procedures
o Prevention strategies

Example Exercise Format

Lab 3.1: Imiial Proxmox VE Installation

Objective: Install Proxmox VE on first node
Prerequisites:

- VM slproxmox01 created and powered on
- Access to VNC console (10.10.0.1:6401)
- Proxmox VE 9.0 ISO mounted

Estimated Time: 45 minutes
Steps:
1. Connect to VNC console
2. Select "Install Proxmox VE'
3. Conhgure mstallation:

- Disk: /dev/vda (150GB)

- Country/Timezone: Your location

33

Chapter 1: Introduction to Proxmox VE 9

- Password: Strong password
- Email: admin@Ilab.local
- Network:

-1P: 10.10.10.101/24

- Gateway: 10.10.0.1

- DNS: 10.10.0.1

Verification:

- Web UI accessible at https://10.10.10.101:8006
- Login successful with root credentials

- All services running: systemctl status

Common Issues:

- Network misconfiguration: Check IP/Gateway

- DNS resolution: Verify /etc/resolv.conf

- Service failures: Review systemctl logs

Summary

This chapter has provided a comprehensive mtroduction to Proxmox VE 9, covering its
architecture, capabilities, and the significant enhancements in the latest release. We've explored why
Proxmox VE represents a compelling alternative to traditional virtualization platforms and outlined

the learning journey ahead.

The lab environment we'll build provides a realistic platform for mastering Proxmox VE without
requiring extensive hardware resources. Through hands-on exercises and real-world scenarios, you'll
develop the skills needed to deploy and manage production Proxmox VE infrastructure.

Key Takeaways

e Proxmox VE integrates KVM and LXC virtualization with enterprise management features

e Version 9.0 introduces critical features for enterprise adoption, including LVM snapshots
and SDN fabrics

e The platform provides cost-effective virtualization without sacrificing capabilities
e Open standards ensure no vendor lock-in and future flexibility

e Our lab environment simulates production scenarios using nested virtualization

34

Chapter 1: Introduction to Proxmox VE 9

What's Next

In Chapter 2, we'll dive into the practical aspects of building your lab environment. You'll learn to:

o Configure Ubuntu 22.04 as a virtualization host

e Set up KVM with nested virtualization support

e (Create Open vSwitch networks with VLAN tagging
e Deploy the three Proxmox VE virtual nodes

e Prepare the infrastructure for cluster creation

Prepare to transform your physical server into a complete virtualization lab that will serve as your

learning platform throughout this book. The journey from concept to implementation begins now.

35

Chapter 2: Building Your Virtualization Lab

In this chapter, we transition from theory to practice, building a complete virtualization lab that
will serve as our learning environment throughout this book. Using KVM (Kernel-based Virtual
Machine) on a physical host, we'll create a sophisticated nested virtualization setup that accurately
simulates a production Proxmox VE deployment. This hands-on approach ensures you gain
practical experience with every aspect of Proxmox VE, from mitial installation through advanced

clustering and storage configuration.

2.1 Lab Architecture Overview

Before diving into the technical implementation, it's essential to understand the architecture
we're building. Our lab design mirrors real-world deployments while remaining feasible on a single
physical server. This approach provides authentic learning experiences without requiring expensive

hardware investments.

Understanding the Lab Design

Our lab architecture consists of several interconnected components that work together to

create a realistic virtualization environment:
Physical Host (lab1)
I—— Host Operating System: Linux (with KVM support)
I—— Hypervisor: KVM with QEMU
l— Network Virtualization: Open vSwitch
l— Management Tools: libvirt, virsh
L— Virtual Infrastructure
I— Management Network (10.10.0.0/16)
| L Gateway: 10.10.0.1
l— Node 1: slproxmox01 (10.10.44.1)
I— Node 2: s1proxmox02 (10.10.44.2)
|— Node 3: slproxmox03 (10.10.44.3)
l— OVS Networks
| l— slaccessnet (VLLANs 20, 21)
| L— slclusternet (VLAN 22)

Chapter 2: Building Your Virtualization Lab

L Support VM: Ubuntu Desktop 24.04

This nested virtualization approach—running Proxmox VE as virtual machines on top of KVM—
provides several advantages:

Flexibility: Easy to create, destroy, and reconfigure nodes without affecting physical hardware. This
1s particularly valuable when learning, as mistakes can be quickly corrected without lasting
consequences.

Cost-Effectiveness: A single physical server can simulate an entire cluster, dramatically reducing
hardware requirements while maintaining realistic behavior.

Snapshot Capability: The ability to snapshot entire nodes before major changes provides a safety
net for experimentation.

Network Isolation: Complete control over network topology without affecting production networks
or requiring physical network changes.

Resource Planning

Proper resource allocation 1s crucial for a functional lab environment. Here's our resource
distribution for the three-node cluster:

Per Proxmox VE Node:

e RAM: 16 GB
e vCPUs: 8 cores
e System Disk: 150 GB
e Ceph OSD Disks: 3 x 50 GB
Total Lab Requirements:
e RAM: 48 GB (nodes) + 8 GB (desktop) + 8 GB (host overhead) = 64 GB minimum
e CPU: 24 vCPUs + overhead (recommend 32+ physical cores)

e Storage: 450 GB (nodes) + 150 GB (Ceph) + 40 GB (desktop) = 640 GB minimum

Network Architecture and IP Addressing Plan:

Network VLAN Subnet Gateway Description
Management None 10.10.0.0/16 10.10.0.1 External access, Internet connectivity
Ceph Public 20 10.20.20.0/24 None Client access to Ceph storage
Proxmox Cluster 21 10.21.21.0/24 None Corosync cluster communication
Ceph Cluster 22 10.22.22.0/24 None OSD replication traffic

Node IP Assignments:

38

Chapter 2: Building Your Virtualization Lab

Node Management VLAN 20 (Ceph Public) VLAN 21 (Cluster) VLAN 22 (Ceph Cluster)
slproxmox01 10.10.44.1/16 10.20.20.1/24 10.21.21.1/24 10.22.22.1/24
slproxmox02 10.10.44.2/16 10.20.20.2/24 10.21.21.2/24 10.22.22.2/24
slproxmox03 10.10.44.3/16 10.20.20.3/24 10.21.21.3/24 10.22.22.3/24
Desktop VM DHCP N/A N/A N/A

Network Interface Mapping:

Node Interface Connected To Purpose

ens3 management Management network (vmbr0)
ens4 slaccessnet VLANSs 20 & 21 (vimbrl)
ensd slclusternet VLAN 22 (vinbr2)

2.2 Preparing the KVM Host

The foundation of our lab is a properly configured KVM host. This section covers the essential
preparations needed before deploying Proxmox VE nodes.

Installing Essential Packages

Start by mstalling the required virtualization packages:

Update system packages
sudo apt update && sudo apt upgrade -y

Install KVM and related tools

sudo apt install -y gemu-kvm libvirt-daemon-system libvirt-clients \
bridge-utils virt-manager virtinst cpu-checker

Verify KVM installation

kvm-ok

Expected output: INFO: /dev/kvm exists

Add your user to necessary groups
sudo usermod -aG libvirt,kvm $SUSER

Log out and back in for group changes to take effect

Enabling Nested Virtualization
Nested virtualization allows our Proxmox VE VMs to run their own virtual machines. This feature
must be explicitly enabled:

For Intel CPUs:

Check current status
cat /sys/module/kvm intel/parameters/nested

Chapter 2: Building Your Virtualization Lab

Persistent Configuration:

To ensure nested virtualization survives reboots:

Installing Open vSwitch

Open vSwitch (OVS) provides advanced networking features, including VILAN support, which 1s
crucial for our lab's network design:

Basic OVS Configuration:

40

Chapter 2: Building Your Virtualization Lab

2.3 Designing the Network Infrastructure

Network design 1s critical for a functional Proxmox VE cluster. Our lab implements a production-
like network topology using software-defined networking principles. To be realistic, we'll use
VLAN-capable vSwitches to segment different types of traffic, mirroring enterprise deployments.

Understanding the Network Architecture

Our lab uses three distinct networks, each serving specific purposes:
Network Overview:
1. management (10.10.0.0/16) - No VLAN

- NAT network for external/internet access

- Management access to nodes

- Gateway: 10.10.0.1

2. slaccessnet - VLAN-capable OVS bridge
- VLAN 20: Ceph Public Network (10.20.20.0/24)
- VLAN 21: Proxmox Cluster Network (10.21.21.0/24)

3. slclusternet - VLAN-capable OVS bridge

- VLAN 22: Ceph Cluster Network (10.22.22.0/24)
‘Why This Design?
This architecture provides several benefits:

1. Traffic Segregation: Different traffic types don't compete for bandwidth

2. Security: Cluster and storage traffic are isolated from management

3. Realistic Setup: Mirrors production environments with VLLAN segmentation
4. Performance: Dedicated networks prevent congestion

5. Learning Value: Hands-on experience with enterprise network design

VLAN Assignments and Purpose

Each VLAN serves a specific purpose in our cluster:

VLAN 20 - Ceph Public Network (10.20.20.0/24):

41

Chapter 2: Building Your Virtualization Lab

e Client access to Ceph storage
¢ Communication between Proxmox VE and Ceph monitors
e Storage API traffic
VLAN 21 - Proxmox Cluster Network (10.21.21.0/24):
e Corosync cluster communication
e High-priority, low-latency traffic
o Cluster state synchronization
e Migration traffic
VLAN 22 - Ceph Cluster Network (10.22.22.0/24):
e OSD-to-OSD replication traffic
e Recovery and rebalancing operations

e Isolated from client traffic for performance

Creating the Networks

Wel'll create each network using libvirt network definitions and Open vSwitch:
Step 1: Create the Management Network

First, create the network definition file:

cat > management.xml << 'EOF'
<network>
<name>management</name>
<bridge name="management"/>
<forward mode="nat" dev='enol'/>
<ip address="10.10.0.1" netmask="255.255.0.0">
</ip>
</network>
EOF

Define and start the network:

Define the network in libvirt
virsh net-define management.xml

Start the network
virsh net-start management

Enable autostart
virsh net-autostart management

Verify
virsh net-info management

Step 2: Create the Access Network (slaccessnet)

42

Chapter 2: Building Your Virtualization Lab

Create the OVS bridge:

Create the libvirt network definition:

Define and start the network:

Note: Well enable autostart after all networks are tested
Step 3: Create the Cluster Network (s1clusternet)
Create the OVS bridge:

Create the libvirt network definition:

Define and start the network:

Step 4: Verify All Networks

Check that all networks are properly created:

43

Chapter 2: Building Your Virtualization Lab

Name State Autostart Persistent
management active yes yes
slaccessnet active no yes
slclusternet active no yes

Verify OVS bridges
sudo ovs-vsctl show

Should show both slaccessnet and slclusternet bridges

Making Networks Persistent

To ensure networks survive host reboots:

Enable Autostart for Virtual Networks:

Set networks to autostart
virsh net-autostart slaccessnet
virsh net-autostart slclusternet

Verify autostart is enabled
virsh net-list --all

Create Systemd Service for OVS Bridges:

Create service to ensure OVS bridges are up

cat << '"EOF' | sudo tee /etc/systemd/system/ovs-lab-networks.service
[Unit]

Description=0VS Lab Networks for Proxmox

After=network.target openvswitch-switch.service
Requires=openvswitch-switch.service

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/ovs-vsctl --may-exist add-br slaccessnet
ExecStart=/usr/bin/ovs-vsctl --may-exist add-br slclusternet
ExecStart=/usr/bin/ip link set slaccessnet up
ExecStart=/usr/bin/ip link set slclusternet up
ExecStop=/usr/bin/ip link set slaccessnet down
ExecStop=/usr/bin/ip link set slclusternet down

[Install]
WantedBy=multi-user.target
EOF

Enable and start the service
sudo systemctl enable ovs-lab-networks.service

sudo systemctl start ovs-lab-networks.service

Check service status
sudo systemctl status ovs-lab-networks.service

44

Chapter 2: Building Your Virtualization Lab

Network Architecture Diagram

The complete network topology for our three-node cluster:

Physical Host (lab1)

slaccessnet (OVS Bridge) siclusternet (OVS Bridge)

WVLAN 20 - Ceph Public VLAN 21 - Proxmax Cluster WLAN 22 - Ceph Cluster
10.20.20.0:24 10.21.21.0/24 10.22.22.0/24

management (NAT)
10.10.0.0/18
Gateway: 10.10.0.1

s1proxmox01 s1 pmxmo‘;ﬁh\ s1praamox03
N ~~
= o~ |

: g ethi.2l [ethi 21 othi 21
[clhOJD‘H]‘M‘IJ [ch“ 20 1“202ﬂ [10.21.21.1] [cthl] 10,1“44_2] eth1.20: 1020 202] [1021212] [mhﬂ 1D1ﬂ443] [MM 20: 10.20.20. 3] [1021213]

othz.22: 10.22.22.1 oth2.22: 10.22.22.2 eth2.22: 10.22.22.3

Syslem Disk [0S0 Disk 1| (OSD Disk 2 3] System Disk 8D Disk 1[|OSD Disk 2| [0SD Disk 3| Syslem Disk [0S0 Disk 1| [0SD Disk 2| (OSD Disk 3|
150GB 50GB 50GE S50GB 150GB S50GB 50GB 50GB 150GB 50GB 50GB 50GB

l:l WLAN 20 Client access lo Ceph. Storage AP traffic WLAN 21: Corosyne cluster, HA traffic, Vi migration WLAN 22: OSD replization, recovery. rebalancing

Figure 14 Network Architecture Diagram

This network design ensures proper traffic 1solation while maintaining the flexibility needed for a
learning environment.

2.4 Installing Proxmox VE Nodes

With the infrastructure ready, we can now deploy our three Proxmox VE nodes. Fach mstallation
follows the same pattern but with unique network configurations.

Downloading Proxmox VE 9

First, obtain the Proxmox VE ISO image:

Create directory for ISOs
mkdir -p ~/iso

Download Proxmox VE 9.0 ISO (adjust version as needed)

cd ~/iso
wget https://www.proxmox.com/images/download/pve/iso/proxmox-ve 9.0-1.iso

45

Chapter 2: Building Your Virtualization Lab

Verify download (optional but recommended)
Check SHA256 sum from Proxmox website
sha256sum proxmox-ve 9.0-1.iso

Creating the First Node

Deploy the first Proxmox VE node using virt-install:

virt-install --name slproxmox01 \
--ram 16384 \
--disk path=/var/lib/libvirt/images/slproxmox01l.img, size=150 \
--vcpus 8 \
--network network:management \
—-network bridge=slaccessnet,mac=52:54:00:31:7d:87,virtualport_type=openvswitch,model=virtio,driver.name=vhost \
--network bridge=slclusternet,mac=52:54:00:46:59:08,virtualport type=openvswitch,model=virtio,driver.name=vhost \
--console pty,target_type=serial \
—--cdrom /home/vmsqcow2/images/proxmox-ve_9.0-1.iso \
--graphics vnc,listen=0.0.0.0,port=60100, keymap=£fr

Note: The VNC port (60100) will be used to access the mstaller graphical interface. You can
generate unique MAC addresses using:

date +%s | md5sum | head -c 6 | sed -e 's/\([0-9A-Fa-£f]\{2\}\)/\1:/g"' -e 's/\(.*\):$/\1/' | sed -e
's/”~/52:54:00:/"

Installation Walkthrough

After launching the virt-install command, you'll see output similar to:

WARNING No operating system detected, VM performance may suffer. Specify an OS with --os-variant for optimal results.
WARNING Unable to connect to graphical console: virt-viewer not installed. Please install the 'virt-viewer' package.
WARNING No console to launch for the guest, defaulting to --wait -1

Starting install...

Allocating 'slproxmox0l.img' | 150 GB 00:00:00
Domain installation still in progress.

Waiting for installation to complete.

Now, connect to the VNC console from your desktop machine using a VNC viewer (such as
TigerVNC, RealVNC, or TightVNC):

Step 1: Connect via VNC
e Open your VNC viewer application

e Connect to: <host-ip>:60100 (e.g., 10.10.0.1:60100)

EJ RealvNC Viewer - [m] X
File View Help

UNC CONNECT [10.10.0.1:60100] | & sgnin. ~

S5 Address book

e You should see the Proxmox VE mstaller boot screen

46

Chapter 2: Building Your Virtualization Lab

Step 2: Start Installation
e Press Enter on "Install Proxmox VE (Graphical)"

e The installer will load the graphical interface

a

Proxmox VE 9.9 (is0 release 1) - https://usy.oroxmox,com

X PROXMOX

Welcome to Proxmox Virtual Environment

Install Proxmox VE (Terninal U

Install Proxeox VE (Terninal UL, Serial Console)

Advanced

Step 3: License Agreement
e Read through the End User License Agreement

e Click 'T agree" to proceed

Proxmox VE Installer

END USER LICENSE AGREEMENT (EULA)
END USER LICENSE AGREEMENT (EULA) FOR PROXMOX VIRTUAL ENVIRONMENT (PROXMOX
Vel

&y using Proxmox VE software you aqree that you accept thiz EULA. and that you have read
a nd condst 2150 apphes for indiv half

of ot provide any right to Support Subscry

=oftw tenan Ploase review the

Agreeen ther @ EULA applhes t nox VE
nd any related update. source code and structure (the Programs). mgardiess of the

delivery mechanism,

regulatory requirements.

Step 4: Target Hard Disk Selection

e The nstaller will detect available disks
e Select /dev/sda (the 150GB disk we created)

e Leave the default options unless you need specific configurations

e (Click "Next"

47

	Copyright Page
	Preface
	Purpose of the Book
	Audience
	What Readers Will Learn
	How the Book Is Structured

	How to Use This Book
	Intellectual Property Notice
	Acknowledgments
	About the Author
	Table of Contents
	Chapter 1: Introduction to Proxmox VE 9
	1.1 What is Proxmox VE?
	The Evolution of Virtualization Platforms
	Core Virtualization Technologies
	The Proxmox VE Integration Layer
	Understanding the Architecture Through Comparison

	1.2 Why Choose Proxmox VE for Virtualization
	Economic Considerations
	Feature Parity and Beyond
	Open Standards and Vendor Independence
	Performance Characteristics
	Security Architecture

	1.3 Understanding the Architecture
	The Hypervisor Layer in Detail
	Storage Architecture in Depth
	Network Architecture and SDN
	Cluster Architecture and Distributed Systems

	1.4 New Features in Proxmox VE 9
	Foundation Updates: Building on Debian 13 "Trixie"
	Revolutionary Storage Features
	Advanced Networking with SDN Fabrics
	High Availability Evolution: Affinity Rules
	Modernized Mobile Interface
	Enhanced Monitoring and Metrics

	1.5 Book Overview and Lab Environment
	Learning Path and Book Structure
	Lab Environment Architecture
	Network Design and Implementation
	Virtual Node Specifications
	Lab Exercise Structure

	Summary
	Key Takeaways
	What's Next

	Chapter 2: Building Your Virtualization Lab
	2.1 Lab Architecture Overview
	Understanding the Lab Design
	Resource Planning

	2.2 Preparing the KVM Host
	Installing Essential Packages
	Enabling Nested Virtualization
	Installing Open vSwitch

	2.3 Designing the Network Infrastructure
	Understanding the Network Architecture
	VLAN Assignments and Purpose
	Creating the Networks
	Making Networks Persistent
	Network Architecture Diagram

	2.4 Installing Proxmox VE Nodes
	Downloading Proxmox VE 9
	Creating the First Node
	Installation Walkthrough

