

Copyright Page

Mastering Proxmox VE 9: Building Enterprise Clusters with Ceph Storage

© 2025 Akoley Aristide Bekroundjo

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in

any form or by any means, including photocopying, recording, or other electronic or mechanical

methods, without the prior written permission of the publisher, except in the case of brief

quotations embodied in reviews, academic references, or other non-commercial uses permitted by

copyright law.

For permission requests, write to:

EC INTELLIGENCE

La Marina Casablanca, Tour Océanes 3 Bureau 03 Rez-de-Jardin

Casablanca, Maroc

Website: https://ecintelligence.ma

ISBN (Paperback): 9798299298017

Printed in the United States of America

Proxmox is a trademark of Proxmox Server Solutions GmbH.

Ceph is a trademark of Red Hat, Inc.

This publication is an independent work and is not affiliated with or endorsed by Proxmox Server

Solutions GmbH, Red Hat, Inc., or any of their affiliates.

https://ecintelligence.ma/

 Preface

iv

Preface

Purpose of the Book

The goal of Mastering Proxmox VE 9: Building Enterprise Clusters with Ceph Storage is to guide

IT professionals through the deployment, configuration, and optimization of Proxmox VE in

production-ready environments. While Proxmox is often associated with small or mid-sized labs,

this book demonstrates how it can scale to support enterprise-grade infrastructures by integrating

advanced clustering and Ceph storage features.

This book is designed to bridge the gap between initial installation and real-world, highly available

deployments. It provides both the conceptual understanding and practical tools required to build

resilient clusters with confidence.

Audience

This book is written for:

• System Administrators managing virtualization environments.

• Architects designing scalable and fault-tolerant clusters.

• DevOps Engineers who need automation and integration with modern toolchains.

• Students and Enthusiasts seeking to learn virtualization and distributed storage hands-on.

No prior Proxmox experience is strictly required, but readers should be familiar with Linux

administration, networking concepts, and basic virtualization.

What Readers Will Learn

By following the chapters, readers will gain knowledge and skills in:

• Deploying Proxmox VE 9 from scratch.

• Building clusters with multiple nodes.

• Integrating and managing Ceph storage.

• Configuring High Availability (HA) for virtual machines and containers.

• Using advanced networking, fencing, and replication.

• Monitoring and troubleshooting complex environments.

• Automating deployments with Ansible and CLI tools.

 Preface

v

How the Book Is Structured

The book is divided into ten core chapters, each building upon the previous one.

• Early chapters introduce installation, networking, and cluster basics.

• Midway, the focus shifts to Ceph storage integration, scaling clusters, and HA strategies.

• Later chapters cover automation, performance optimization, and troubleshooting.

• Supporting sections, such as the Appendix and Glossary, provide quick references and

advanced tools.

 Preface

vi

How to Use This Book

Lab Setup Requirements

To follow the examples in this book, you will need:

• At least three physical or virtual servers with 16 GB RAM, multi-core CPUs, and local

storage.

• A 10 GbE network (recommended) for cluster and Ceph traffic.

• Proxmox VE 9 ISO image and access to the Proxmox repositories.

• Optional: SSDs or NVMe devices to simulate high-performance Ceph clusters.

Style Conventions

• Code blocks are shown in monospaced text with grey background.

• Important notes highlight crucial details for production deployments.

• Tables and diagrams summarize configurations, commands, and architectures.

• Commands are written for Debian-based Linux (as Proxmox is based on Debian).

Beginner vs. Advanced Content

• Beginner-friendly explanations are included in the first half of each chapter.

• Advanced topics, such as NVMe-oF gateways, CRUSH map tuning, and fencing

mechanisms, are introduced later in the book.

• Readers may skip directly to advanced sections if they already have experience with

Proxmox basics.

 Preface

vii

Intellectual Property Notice

Proxmox is a trademark of Proxmox Server Solutions GmbH.

Ceph is a trademark of Red Hat, Inc.

This book is an independent publication. It has not been authorized, sponsored, or otherwise

approved by Proxmox Server Solutions GmbH, Red Hat, Inc., or any of their affiliates.

All trademarks, logos, and brand names used in this book are the property of their respective

owners. They are used in an editorial manner with the sole purpose of accurately describing the

software platforms discussed.

The author and publisher make no claim of ownership over these trademarks.

 Preface

viii

Acknowledgments

I would like to thank the many professionals and students who provided feedback and insights

during the creation of this book. Special thanks to the team at EC INTELLIGENCE for their

continued support in both technical validation and project delivery. This book is also dedicated to

the broader open-source community, whose contributions make Proxmox and Ceph powerful

technologies accessible to all.

 Preface

ix

About the Author

Akoley Aristide Bekroundjo is a Cloud Architect, trainer, and founder of EC

INTELLIGENCE, a company dedicated to helping enterprises build modern IT infrastructures.

With more than a decade of hands-on experience, he has designed and deployed Proxmox, Ceph,

OpenStack, and OpenShift clusters for organizations across Africa, Europe, and the Americas.

Aristide has also delivered professional training to hundreds of engineers, administrators, and

architects, bridging the gap between open-source innovation and enterprise-class requirements. His

mission is to make high-availability, scalable, and secure infrastructures accessible to companies of

all sizes.

When he is not teaching or architecting complex environments, he shares his insights through

books, articles, and technical videos, always aiming to translate advanced concepts into clear,

actionable knowledge.

📬 Connect with the Author

LinkedIn: linkedin.com/in/akoley-bekroundjo

https://www.linkedin.com/in/akoley-bekroundjo

Table of Contents

PREFACE ... III

CHAPTER 1: INTRODUCTION TO PROXMOX VE 9 1
1.1 What is Proxmox VE? ... 1
1.2 Why Choose Proxmox VE for Virtualization ... 4
1.3 Understanding the Architecture.. 8
1.4 New Features in Proxmox VE 9 ... 17
1.5 Book Overview and Lab Environment ... 26
Summary .. 34

CHAPTER 2: BUILDING YOUR VIRTUALIZATION LAB 37
2.1 Lab Architecture Overview ... 37
2.2 Preparing the KVM Host ... 39
2.3 Designing the Network Infrastructure ... 41
2.4 Installing Proxmox VE Nodes .. 45
2.5 Preparing Storage for Ceph .. 56
2.6 Lab Management Commands .. 61
Lab Validation Checklist .. 63
Summary .. 63

CHAPTER 3: CREATING A PROXMOX VE CLUSTER 65
3.1 Cluster Concepts and Requirements .. 65
3.2 Network Configuration for Clustering .. 68
3.3 Creating the Initial Cluster .. 70
3.4 Adding Nodes to the Cluster .. 75
3.5 Verifying Cluster Health ... 79
Summary .. 83

CHAPTER 4: ADVANCED CLUSTER FEATURES... 85
4.1 Configuring High Availability ... 85
4.2 Cluster-wide Firewall Configuration .. 94
4.3 Resource Management ... 99
4.4 Backup Strategies ... 103
4.5 Monitoring and Maintenance ... 106
Summary .. 110

CHAPTER 5: UNDERSTANDING CEPH ARCHITECTURE 113
5.1 Ceph Components Overview ... 113
5.2 CRUSH Maps and Data Distribution ... 116
5.3 Planning Your Ceph Deployment .. 119
5.4 Network Requirements for Ceph ... 122
5.5 Performance Considerations .. 124
Summary .. 127

CHAPTER 6: DEPLOYING CEPH ON PROXMOX VE 129

 Table of Contents

xii

6.1 Preparing Nodes for Ceph ... 129
6.2 Initial Ceph Configuration via Web Wizard ... 136
6.3 Creating Monitors and Managers ... 137
6.4 Adding OSDs ... 141
6.5 Configuring Ceph Networks ... 143
6.6 Creating Storage Pools .. 144
6.7 Integrating with Proxmox VE ... 147
6.8 Ceph Monitoring .. 149
Summary .. 151

CHAPTER 7: ADVANCED CEPH CONFIGURATION 153
7.1 Creating and Managing Pools ... 153
7.2 CephFS Configuration .. 155
7.3 RBD for VM Storage.. 159
7.4 Performance Tuning .. 161
7.5 Erasure Coding ... 163
7.6 Custom CRUSH Rules ... 165
7.7 Troubleshooting Common Issues .. 167
7.8 Monitoring Ceph Health .. 169
Summary .. 175

CHAPTER 8: VIRTUAL MACHINE MANAGEMENT 177
Chapter Overview ... 177
8.1 Understanding QEMU/KVM in Proxmox VE ... 177
8.2 Creating Production VMs ... 179
8.3 Live Migration with Shared Storage .. 183
8.4 VM Templates and Cloning ... 185
8.5 Cloud-Init Integration ... 188
8.7 Performance Optimization ... 200
8.8 High Availability Configuration .. 202
8.9 Resource Management and Limits ... 206
8.10 Best Practices for Production Workloads .. 208
Chapter Summary .. 211

CHAPTER 9: CONTAINER MANAGEMENT ... 215
Chapter Overview ... 215
9.1 LXC Containers Overview ... 215
9.2 Container Deployment ... 217
9.3 Resource Management ... 223
9.4 Container Networking .. 225
9.5 Security Considerations .. 227
9.6 High Availability Configuration .. 230
9.7 Container Templates and Rapid Deployment .. 231
9.8 Practical Use Cases ... 233
9.9 Container Backup and Restore ... 235
9.10 Troubleshooting Common Issues .. 237
Summary .. 238

CHAPTER 10: AUTOMATION AND INTEGRATION 241
Chapter Overview ... 241

 Table of Contents

xiii

10.1 Proxmox API Overview ... 241
10.2 Ansible Integration ... 245
10.3 Terraform Deployments .. 259
10.4 CI/CD Pipelines ... 264
10.5 Monitoring Integration ... 269
Summary .. 275

APPENDIX ... 279

GLOSSARY ... 283

FURTHER READING / RESOURCES ... 285

INDEX .. 287

Chapter 1: Introduction to Proxmox VE 9

The landscape of IT infrastructure has undergone a fundamental transformation over the past

decade. Organizations of all sizes are seeking virtualization solutions that provide enterprise-grade

capabilities without the complexity and cost traditionally associated with such platforms. In this

evolving ecosystem, Proxmox Virtual Environment (VE) has emerged as a compelling alternative,

offering a unique combination of power, flexibility, and accessibility that challenges the established

order of proprietary virtualization platforms.

This chapter provides a comprehensive introduction to Proxmox VE 9, exploring not just what it is,

but why it represents a paradigm shift in how we approach virtualization. We'll examine the

architectural decisions that make Proxmox VE both powerful and approachable, understand its

position in the modern infrastructure stack, and explore the groundbreaking features introduced in

version 9 that address long-standing enterprise requirements.

1.1 What is Proxmox VE?

To understand Proxmox VE, we must first recognize that it is not merely another hypervisor

or virtualization tool. Rather, it represents a complete virtualization management platform that

seamlessly integrates multiple virtualization technologies, storage systems, networking capabilities,

and management tools into a cohesive whole. This integration is what sets Proxmox VE apart from

solutions that require administrators to cobble together various components to achieve similar

functionality.

The Evolution of Virtualization Platforms

The journey of virtualization technology has been marked by several distinct phases. Initially,

virtualization was the domain of mainframes, where resource partitioning was essential for multi-

tenant operations. The x86 virtualization revolution, sparked by VMware in the late 1990s, brought

these capabilities to commodity hardware. However, as virtualization became mainstream, two

distinct challenges emerged:

1. Complexity: Enterprise virtualization platforms became increasingly complex, requiring

specialized knowledge and significant resources to deploy and maintain.

2. Cost: Licensing models for commercial virtualization platforms often represented a

significant portion of IT budgets, particularly for small to medium enterprises.

Proxmox VE emerged from the recognition that open-source technologies had matured to the

point where they could provide enterprise-grade virtualization capabilities without these traditional

barriers. By leveraging the best of open-source virtualization technologies and wrapping them in a

unified management layer, Proxmox VE democratizes access to advanced virtualization features.

Chapter 1: Introduction to Proxmox VE 9

2

Core Virtualization Technologies

At its heart, Proxmox VE integrates two complementary virtualization approaches, each suited

to different use cases:

KVM (Kernel-based Virtual Machine)

KVM represents the pinnacle of Type-1 hypervisor technology in the Linux ecosystem. Unlike

Type-2 hypervisors that run as applications on top of a host operating system, KVM transforms the

Linux kernel itself into a hypervisor. This architectural approach provides several critical

advantages:

• Performance: By operating at the kernel level, KVM can achieve near-native performance

for guest operating systems. The hypervisor overhead is minimal, typically less than 3% for

most workloads.

• Hardware Integration: KVM leverages hardware virtualization extensions (Intel VT-x and

AMD-V) to provide hardware-assisted virtualization. This includes support for nested page

tables (EPT/NPT), which significantly reduces the overhead of memory management in

virtualized environments.

• Security Isolation: Each KVM virtual machine runs as a separate Linux process, benefiting

from the robust security model of the Linux kernel. This includes SELinux/AppArmor

integration, memory protection, and process isolation.

• Device Support: Through QEMU (Quick Emulator), KVM can emulate a wide range of

hardware devices, from legacy ISA devices to modern PCIe controllers. This flexibility

allows running virtually any x86-based operating system.

LXC (Linux Containers)

While KVM provides full system virtualization, LXC offers a different approach through OS-

level virtualization. This technology, which shares conceptual similarities with Docker but predates

it, provides isolated Linux environments without the overhead of running separate kernels:

• Resource Efficiency: LXC containers share the host kernel, eliminating the memory and

CPU overhead associated with running multiple kernel instances. A typical LXC container

might consume as little as 10MB of RAM for a minimal Linux environment.

• Instant Startup: Without the need to boot a separate kernel, LXC containers can start in

milliseconds rather than the seconds or minutes required for traditional VMs.

• Native Performance: Since containers run on the host kernel, there's no virtualization

overhead for system calls or hardware access. This makes them ideal for I/O-intensive

applications.

• Density: The reduced overhead allows running hundreds or even thousands of containers

on a single host, far exceeding what's practical with full virtualization.

Chapter 1: Introduction to Proxmox VE 9

3

The Proxmox VE Integration Layer

What transforms these individual technologies into a comprehensive platform is the Proxmox

VE integration layer. This layer consists of several key components:

Web-based Management Interface

The Proxmox VE web interface represents more than just a GUI; it's a complete management

console that provides:

• Multi-node Management: A single interface can manage an entire cluster, providing a

unified view of all resources regardless of their physical location.

• Real-time Monitoring: Live statistics for CPU, memory, network, and storage usage across

all nodes and guests, with historical data for trend analysis.

• Integrated Console Access: Both noVNC and SPICE protocols are supported for

accessing guest consoles directly through the web browser, eliminating the need for

separate client software.

• Task Management: All operations are executed as background tasks with full logging,

allowing administrators to track the status and history of all actions.

RESTful API

Every feature available in the web interface is backed by a comprehensive RESTful API. This

design philosophy ensures:

• Automation First: Any task that can be performed through the GUI can be automated via

the API, enabling infrastructure-as-code approaches.

• Language Agnostic: The REST API can be consumed by any programming language or

tool that supports HTTP, from simple shell scripts using curl to sophisticated orchestration

platforms.

• Complete Documentation: The API is self-documenting, with schema definitions and

examples available for every endpoint.

Proxmox Cluster File System (pmxcfs)

One of the most innovative aspects of Proxmox VE is its cluster file system. Unlike traditional

shared storage approaches, pmxcfs provides:

• Configuration Synchronization: All cluster configuration is automatically replicated across

nodes in real-time using Corosync's reliable multicast protocol.

• Version Control: Built-in versioning allows tracking configuration changes and rolling back

if needed.

• High Performance: The entire configuration database is kept in RAM on each node,

providing microsecond access times for configuration queries.

Chapter 1: Introduction to Proxmox VE 9

4

• Fault Tolerance: The distributed nature ensures that configuration remains available even

if multiple nodes fail, as long as quorum is maintained.

Understanding the Architecture Through Comparison

To fully appreciate Proxmox VE's architectural approach, it's instructive to compare it with

other virtualization models. Consider the following architectural diagram that illustrates how

Proxmox VE differs from traditional virtualization stacks:

Figure 1 Architecture Stack Comparison

This integrated approach eliminates the complexity of managing multiple software components

while providing a more cohesive and efficient system.

1.2 Why Choose Proxmox VE for Virtualization

The decision to adopt a virtualization platform extends far beyond technical specifications. It

encompasses considerations of cost, support, ecosystem, and long-term viability. Proxmox VE

addresses each of these concerns in ways that challenge traditional assumptions about enterprise

virtualization.

Chapter 1: Introduction to Proxmox VE 9

5

Economic Considerations

The economic argument for Proxmox VE is compelling, but it extends beyond the obvious

benefit of free software. Consider the total cost of ownership (TCO) for a typical virtualization

deployment:

Traditional Commercial Platform Costs:

• Base hypervisor licensing: $3,000-$5,000 per CPU socket

• Management software: $5,000-$50,000 depending on scale

• Advanced features (vMotion, HA, replication): Additional per-VM or per-CPU costs

• Annual support and maintenance: 20-25% of license costs

• Required training and certification: $3,000-$5,000 per administrator

Proxmox VE Cost Structure:

• Software licenses: $0

• Optional support subscription: €90-€874 per year per physical CPU

• Training: Community resources available at no cost

• Advanced features: All included in base installation

For a typical small to medium enterprise with 3 hosts, each with 2 CPU sockets, the first-year cost

difference can exceed $50,000, with similar savings recurring annually.

Feature Parity and Beyond

One might assume that a free, open-source platform would lag behind commercial offerings in

features. However, Proxmox VE not only matches but in many cases exceeds the capabilities of

proprietary platforms:

Storage Flexibility

While commercial platforms often require specific storage hardware or additional licensing for

advanced storage features, Proxmox VE provides native support for:

• Local Storage: LVM, LVM-thin, directory-based, ZFS

• Network Storage: NFS, CIFS/SMB, iSCSI (both kernel and user-mode), GlusterFS

• Distributed Storage: Ceph RBD and CephFS with full integration

• Advanced Features: Thin provisioning, snapshots, clones, and live storage migration

included at no additional cost

Networking Capabilities

Chapter 1: Introduction to Proxmox VE 9

6

The networking stack in Proxmox VE leverages the full power of Linux networking, providing:

• Software-Defined Networking: Native integration with Open vSwitch for advanced

switching features

• VLAN Support: Full 802.1Q VLAN tagging and trunking

• Bonding: Multiple bonding modes for redundancy and performance

• Advanced Routing: Full support for static and dynamic routing protocols

• Firewall: Integrated datacenter-wide firewall with granular rule management

High Availability Without Complexity

Unlike commercial solutions that require separate clustering software or management platforms,

Proxmox VE includes:

• Integrated HA Stack: Based on proven technologies (Corosync, Pacemaker)

• Automatic Failover: VMs automatically restart on healthy nodes if a host fails

• Fencing Support: Multiple fencing methods to ensure data integrity

• No Additional Licensing: HA features available for unlimited VMs

Open Standards and Vendor Independence

The commitment to open standards in Proxmox VE provides strategic advantages that extend

beyond cost savings:

No Vendor Lock-in

Every component of Proxmox VE uses standard, open formats:

• VM disks use standard qcow2, raw, or VMDK formats

• Configuration files are human-readable text

• Network configurations use standard Linux networking

• APIs follow REST principles with JSON data formats

This approach ensures that:

• Migration to or from other platforms remains possible

• Integration with third-party tools is straightforward

• Custom automation and tooling can be developed without proprietary SDKs

Community and Ecosystem

The Proxmox VE ecosystem demonstrates the power of open-source collaboration:

Chapter 1: Introduction to Proxmox VE 9

7

• Active Community: Over 170,000 registered forum members contributing knowledge and

solutions

• Third-party Integration: Extensive ecosystem of backup solutions, monitoring tools, and

automation platforms

• Transparent Development: Public bug tracker and roadmap ensure visibility into future

development

• Regular Updates: Predictable release cycle with long-term support versions

Performance Characteristics

Performance is often cited as a concern when considering open-source solutions. However,

extensive benchmarking reveals that Proxmox VE often outperforms commercial alternatives:

Virtualization Overhead

Independent benchmarks consistently show:

• KVM CPU overhead: <2% for most workloads

• Memory overhead: 300-500MB per VM for KVM, <50MB for LXC

• I/O performance: Within 5% of bare metal with proper configuration

• Network performance: Line-rate performance with SR-IOV or virtio

Scalability Metrics

Real-world deployments demonstrate impressive scalability:

• Clusters with 30+ nodes in production

• Single nodes running 200+ VMs or 1000+ containers

• Storage pools exceeding 1PB

• Networks handling 100Gbps+ aggregate throughput

Security Architecture

Security in Proxmox VE is built on the proven foundation of Linux security models, enhanced

with virtualization-specific protections:

Multi-layered Security Model

Chapter 1: Introduction to Proxmox VE 9

8

Figure 2 Proxmox VE Security Architecture

Compliance and Auditing

For organizations with compliance requirements:

• Comprehensive audit logging of all actions

• Integration with external authentication systems (LDAP, AD)

• Support for encryption at rest and in transit

• Regular security updates through Debian security team

1.3 Understanding the Architecture

A deep understanding of Proxmox VE's architecture is essential for designing, deploying, and

maintaining effective virtualization infrastructure. This section explores the technical underpinnings

that make Proxmox VE both powerful and reliable.

The Hypervisor Layer in Detail

The hypervisor layer in Proxmox VE represents a sophisticated integration of multiple

technologies, each carefully chosen and configured for optimal performance and reliability.

Chapter 1: Introduction to Proxmox VE 9

9

KVM Architecture Deep Dive

KVM's integration into the Linux kernel provides unique advantages that distinguish it from

monolithic hypervisor designs. When a system boots Proxmox VE, the following initialization

sequence occurs:

1. Kernel Module Loading: The kvm.ko module loads, along with processor-specific

modules (kvm-intel.ko or kvm-amd.ko)

2. Hardware Feature Detection: The system queries CPU capabilities including:

o Virtualization extensions (VMX/SVM)

o Extended Page Tables (EPT/NPT)

o Virtual Processor Identifiers (VPID)

o Posted Interrupts support

3. QEMU Process Architecture: Each VM runs as a QEMU process with:

o Dedicated memory allocation

o CPU thread per vCPU

o I/O threads for disk and network operations

o Monitor thread for management operations

The relationship between these components can be visualized as:

Chapter 1: Introduction to Proxmox VE 9

10

Figure 3 KVM Guest VM Architecture

Memory Management in KVM

One of the most critical aspects of virtualization performance is memory management. KVM

employs several sophisticated techniques:

Transparent Huge Pages (THP): By default, KVM attempts to use 2MB or 1GB huge pages instead

of standard 4KB pages. This reduces:

• TLB (Translation Lookaside Buffer) pressure

• Page table walk overhead

• Memory management overhead

Kernel Same-page Merging (KSM): For environments running multiple similar VMs, KSM can:

• Identify identical memory pages across VMs

• Merge them into a single copy-on-write page

• Potentially save 20-60% of memory in VDI environments

Memory Ballooning: The virtio-balloon driver allows dynamic memory management:

• Host can request VMs to release unused memory

• Memory can be redistributed to VMs under pressure

Chapter 1: Introduction to Proxmox VE 9

11

• Automatic balancing based on VM activity

NUMA Optimization: For multi-socket systems, KVM provides:

• NUMA-aware memory allocation

• vCPU pinning to specific NUMA nodes

• Optimal memory access patterns for large VMs

LXC Architecture and Implementation

While KVM provides full system virtualization, LXC offers a fundamentally different approach

that's particularly relevant for Linux workloads:

Container Isolation Mechanisms

LXC leverages multiple Linux kernel features to provide isolation:

1. Namespaces: Provide isolated views of system resources

o PID namespace: Separate process trees

o Network namespace: Isolated network stacks

o Mount namespace: Independent filesystem views

o User namespace: UID/GID mapping

o UTS namespace: Separate hostnames

o IPC namespace: Isolated inter-process communication

2. Control Groups (cgroups): Resource limitation and accounting

o CPU shares and quotas

o Memory limits and accounting

o I/O bandwidth and IOPS limits

o Device access control

3. Security Modules: Additional security layers

o AppArmor profiles for application confinement

o SELinux contexts for mandatory access control

o Seccomp filters for system call filtering

The complete isolation model can be represented as:

Chapter 1: Introduction to Proxmox VE 9

12

Figure 4 LXC Container Isolation Model

Storage Architecture in Depth

The storage architecture in Proxmox VE represents one of its greatest strengths, providing flexibility

that matches or exceeds commercial solutions while maintaining simplicity of management.

Storage Abstraction Layer

The Proxmox VE storage model uses a plugin-based architecture that provides:

1. Uniform Interface: Regardless of the underlying storage type, all storage operations use the

same API

2. Storage Pools: Logical grouping of storage resources

3. Content Types: Differentiation between VM images, containers, ISOs, templates, and

backups

4. Allocation Tracking: Automatic tracking of disk usage and ownership

Storage Plugin Architecture

Each storage type is implemented as a plugin that must provide specific operations:

Simplified plugin interface

sub activate_storage {

Chapter 1: Introduction to Proxmox VE 9

13

 # Make storage available for use

}

sub deactivate_storage {

 # Cleanly disconnect storage

}

sub alloc_image {

 # Allocate new disk image

 return $volid;

}

sub free_image {

 # Delete disk image

}

sub clone_image {

 # Create linked clone if supported

}

sub create_snapshot {

 # Create point-in-time snapshot

}

File-based vs Block-based Storage

Understanding the distinction between file-based and block-based storage is crucial for optimal

deployment:

File-based Storage Characteristics:

• Flexibility in file naming and organization

• Easy backup and migration via file copy

• Support for any POSIX-compliant filesystem

• Potential for fragmentation over time

• Examples: Directory, NFS, CIFS, GlusterFS

Block-based Storage Characteristics:

• Better performance for random I/O

• Native snapshot support in most implementations

• More efficient space utilization

• Direct integration with VM block devices

• Examples: LVM, iSCSI, Ceph RBD, ZFS zvols

Advanced Storage Features

Several storage backends provide advanced features that enable enterprise use cases:

Thin Provisioning: Supported by LVM-thin, ZFS, and Ceph

• Allocate storage on-demand as data is written

Chapter 1: Introduction to Proxmox VE 9

14

• Overcommit physical storage safely

• Monitor usage to prevent exhaustion

Snapshots and Clones: Implementation varies by storage type

• Copy-on-Write Snapshots: ZFS, Ceph, LVM-thin

• Linked Clones: ZFS, Ceph with RBD

• Qcow2 Internal Snapshots: Directory, NFS, CIFS

Live Storage Migration: Move disks between storage pools without downtime

• Supported for most storage combinations

• Automatic format conversion if needed

• Bandwidth limiting to prevent network saturation

Network Architecture and SDN

The networking capabilities in Proxmox VE 9 have evolved to meet the demands of modern

software-defined infrastructure.

Traditional Linux Bridge Networking

The simplest networking configuration uses Linux bridges:

Figure 5 Network bridge Topology

This model provides:

• Simple configuration

Chapter 1: Introduction to Proxmox VE 9

15

• Good performance for basic scenarios

• VLAN support via bridge VLAN filtering

• Suitable for most small to medium deployments

Open vSwitch Integration

For advanced networking requirements, Open vSwitch provides:

Figure 6 OpenvSwitch Bond Topology

Capabilities include:

• Flow-based forwarding

• Advanced VLAN handling

• Network virtualization overlays

• Integration with SDN controllers

• Traffic shaping and QoS

Software-Defined Networking (SDN) in Proxmox VE 9

The new SDN framework introduces powerful abstractions:

Zones: Logical network segments

• Simple: Isolated layer 2 networks

• VLAN: Traditional VLAN-based segmentation

Chapter 1: Introduction to Proxmox VE 9

16

• QinQ: Provider bridging for service providers

• VXLAN: Overlay networks for multi-site deployments

• EVPN: BGP-based overlays for large-scale deployments

VNets: Virtual networks within zones

• Subnet management with IPAM

• DHCP integration

• DNS configuration

• Gateway management

SDN Fabrics: New in version 9

• Automated underlay configuration

• Dynamic routing protocol support

• Multi-path networking

• Simplified spine-leaf deployments

Cluster Architecture and Distributed Systems

The cluster architecture in Proxmox VE represents a masterclass in distributed systems design,

providing high availability without the complexity typically associated with such systems.

Corosync Cluster Stack

At the heart of Proxmox VE clustering lies Corosync, which provides:

1. Reliable Group Communication: Ensures all nodes have consistent cluster state

2. Membership Management: Tracks which nodes are active and reachable

3. Quorum Calculation: Prevents split-brain scenarios

4. Virtual Synchrony: Guarantees message ordering across all nodes

Cluster Communication Patterns

Chapter 1: Introduction to Proxmox VE 9

17

Figure 7 Cluster communication Pattern

Distributed Configuration Management

The Proxmox Cluster File System (pmxcfs) provides:

1. Real-time Replication: Configuration changes propagate within milliseconds

2. Consistency Guarantees: All nodes see the same configuration

3. Automatic Conflict Resolution: Timestamps and version vectors prevent conflicts

4. Local Caching: Each node maintains a complete copy in RAM

Resource Scheduling and Load Balancing

The cluster scheduler considers multiple factors:

• Current resource utilization (CPU, RAM, storage)

• Network topology and latency

• Storage availability and performance

• Administrator-defined policies

• Historical performance data

1.4 New Features in Proxmox VE 9

The release of Proxmox VE 9 on August 5, 2025, marks a watershed moment in the platform's

evolution. This version addresses long-standing enterprise requirements while introducing

innovative features that position Proxmox VE at the forefront of virtualization technology.

Chapter 1: Introduction to Proxmox VE 9

18

Foundation Updates: Building on Debian 13 "Trixie"

The decision to base Proxmox VE 9 on Debian 13 "Trixie" provides immediate benefits:

Kernel 6.14.8 Enhancements

The new kernel brings substantial improvements:

1. Hardware Support:

o PCIe 5.0 with speeds up to 32 GT/s per lane

o DDR5 memory controller optimizations

o Intel Sapphire Rapids and AMD Genoa CPU features

o Enhanced GPU passthrough for NVIDIA and AMD

2. Performance Optimizations:

o Core scheduling for better CPU security

o Improved NUMA balancing algorithms

o Enhanced memory tiering support

o Optimized interrupt handling for high-speed networks

3. Security Features:

o Kernel Control Flow Integrity (CFI)

o Enhanced randomization of kernel structures

o Improved mitigation for speculative execution vulnerabilities

Component Version Matrix

Component Proxmox VE 8.x Proxmox VE 9.0 Key Improvements

Kernel 6.2.x 6.14.8 PCIe 5.0, DDR5, Security

QEMU 8.0.x 10.0.2 Performance, Migration

LXC 5.0.x 6.0.4 Cgroup v2, Security

ZFS 2.1.x 2.3.3 RAID-Z expansion

Ceph Reef 18.x Squid 19.2.3 Performance, Features

Revolutionary Storage Features

The storage enhancements in Proxmox VE 9 address critical enterprise requirements that

have long been pain points for organizations with existing storage infrastructure.

Snapshots for Thick-Provisioned LVM: A Game Changer

Chapter 1: Introduction to Proxmox VE 9

19

The implementation of snapshots for thick-provisioned LVM storage represents a

fundamental shift in how Proxmox VE handles traditional enterprise storage. This feature is

particularly significant for organizations with substantial investments in:

• Fibre Channel SANs from vendors like EMC, NetApp, or HPE

• iSCSI arrays that don't support thin provisioning

• Existing LVM-based storage infrastructure

Technical Implementation:

The snapshot mechanism uses a volume chain approach:

Figure 8 LVM Snapshot Volume Chain

Each snapshot captures the state at a point in time, with new writes going to a new volume:

1. Creating a Snapshot:

Chapter 1: Introduction to Proxmox VE 9

20

Internal process flow

1. Pause VM I/O briefly

2. Create new LVM volume

3. Update QEMU backing chain

4. Resume VM I/O

Total pause time: <100ms

2. Storage Efficiency:

o Only changed blocks consume additional space

o Metadata tracking via qcow2 format

o Automatic cleanup of unused blocks

3. Performance Characteristics:

o Minimal impact on running VMs

o Sequential read performance maintained

o Small penalty for random writes due to COW

ZFS RAID-Z Expansion: Long-Awaited Flexibility

The ability to expand RAID-Z vdevs addresses a limitation that has existed since ZFS's

inception. This feature, arriving with ZFS 2.3.3, fundamentally changes capacity planning for ZFS

deployments:

Expansion Process:

Before expansion: 4-disk RAID-Z1

tank ONLINE 0 0 0

 raidz1-0 ONLINE 0 0 0

 sda ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 sdd ONLINE 0 0 0

Add new disk to existing RAID-Z

zpool attach tank raidz1-0 sde

After expansion: 5-disk RAID-Z1

tank ONLINE 0 0 0

 raidz1-0 ONLINE 0 0 0

 sda ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

Considerations:

• Rebalancing happens automatically in the background

Chapter 1: Introduction to Proxmox VE 9

21

• Existing data is redistributed across all disks

• Pool remains online throughout the process

• New capacity becomes available immediately

Advanced Networking with SDN Fabrics

The SDN Fabrics feature transforms Proxmox VE into a platform capable of building

complex network topologies that previously required dedicated network hardware or specialized

software.

Understanding SDN Fabrics

SDN Fabrics provide automated configuration of underlay networks for complex topologies:

Spine-Leaf Architecture with SDN Fabrics

Figure 9 Spine-Leaf Architecture with SDN Fabrics

Key Capabilities:

1. Dynamic Routing Integration:

o OSPF for traditional IP routing

o BGP for large-scale deployments

o OpenFabric for automatic topology discovery

2. Automated Configuration:

Chapter 1: Introduction to Proxmox VE 9

22

o Template-based deployment

o Automatic IP assignment

o Route propagation without manual intervention

3. Use Cases:

o Ceph Networks: Full-mesh connectivity between storage nodes

o EVPN Underlays: Foundation for overlay networks

o Multi-Site Connectivity: Stretched clusters across locations

Configuration Example:

fabric: ceph-mesh

 type: open-fabric

 asn: 65000

 nodes:

 - name: node1

 router-id: 10.0.0.1

 interfaces:

 - eth2: 10.0.0.1/24

 - name: node2

 router-id: 10.0.0.2

 interfaces:

 - eth2: 10.0.0.2/24

 auto-mesh: true

High Availability Evolution: Affinity Rules

The new HA affinity rules system represents a complete reimagining of how Proxmox VE

handles resource placement in clusters. This feature addresses complex requirements for both

performance optimization and compliance.

Node Affinity: Controlling VM Placement

Node affinity rules allow precise control over where VMs run:

Rule Types:

Chapter 1: Introduction to Proxmox VE 9

23

Figure 10 HA Affinity Rules Types

Resource Affinity: Managing VM Relationships

Resource affinity defines relationships between VMs:

1. Affinity Groups (Keep Together):

o Database and application tiers on same node

o Reduces network latency

o Improves cache efficiency

2. Anti-Affinity Groups (Keep Apart):

o Redundant services on different nodes

o Compliance with failure domain requirements

o Load distribution across infrastructure

Migration from HA Groups

Existing HA groups are automatically converted to affinity rules:

Old HA Group Configuration

group: db-servers

 nodes node1,node2

 restricted 1

Converted to Affinity Rule

affinity-rule: db-servers

 type: node-required

 nodes: node1,node2

 vms: 101,102,103

Chapter 1: Introduction to Proxmox VE 9

24

Modernized Mobile Interface

The complete rewrite of the mobile interface using Rust and the Yew framework represents

Proxmox's commitment to modern development practices and superior user experience.

Architecture Benefits:

1. Performance:

o Compiled WebAssembly for near-native speed

o Minimal JavaScript overhead

o Efficient DOM updates

2. Reliability:

o Type-safe code prevents runtime errors

o Memory safety guarantees from Rust

o Comprehensive error handling

3. User Experience:

o Responsive design adapts to screen size

o Touch-optimized controls

o Offline capability for basic operations

Key Features:

Mobile Interface Capabilities

Chapter 1: Introduction to Proxmox VE 9

25

Figure 11 Mobile Interface Capabilities

Enhanced Monitoring and Metrics

The new metrics system provides unprecedented visibility into system behavior, essential for

troubleshooting and capacity planning.

Pressure Stall Information (PSI)

PSI metrics reveal when systems are under resource pressure:

CPU Pressure: some=12.5% full=2.1%

├─ "some": At least one task delayed

└─ "full": All non-idle tasks delayed

Memory Pressure: some=8.3% full=0.5%

├─ Indicates memory allocation delays

└─ Critical for identifying OOM risks

Chapter 1: Introduction to Proxmox VE 9

26

I/O Pressure: some=15.2% full=3.8%

├─ Storage subsystem bottlenecks

└─ Helps identify slow storage

ZFS ARC Visibility

The ZFS ARC (Adaptive Replacement Cache) metrics integration provides:

Node Memory Usage

├─ Total: 64 GB

├─ Used: 45 GB

│ ├─ VMs/CTs: 32 GB

│ ├─ ZFS ARC: 10 GB

│ └─ System: 3 GB

└─ Free: 19 GB

This visibility helps administrators:

• Right-size ZFS ARC limits

• Understand memory pressure sources

• Optimize overall memory allocation

1.5 Book Overview and Lab Environment

This book is structured as a journey from foundational concepts to advanced deployment

scenarios. Each chapter builds upon previous knowledge while introducing new concepts and

techniques. The hands-on approach ensures that theoretical knowledge is immediately reinforced

through practical application.

Learning Path and Book Structure

The book follows a carefully designed learning path that mirrors real-world deployment scenarios:

Progressive Complexity Model

Chapter 1: Introduction to Proxmox VE 9

27

Figure 12 Progressive Complexity Model

Part I: Foundation (Chapters 1-3)

This section establishes the groundwork:

• Chapter 1: Comprehensive introduction to Proxmox VE architecture and capabilities

• Chapter 2: Detailed lab environment setup with KVM nested virtualization

• Chapter 3: First node installation and initial configuration

Learning outcomes:

• Understand Proxmox VE's position in the virtualization landscape

• Configure a complete lab environment

• Perform basic installation and setup

Part II: Building the Cluster (Chapters 4-6)

Clustering transforms standalone nodes into a unified platform:

• Chapter 4: Creating and managing multi-node clusters

• Chapter 5: Implementing high availability and advanced features

• Chapter 6: Storage architecture and integration options

Learning outcomes:

• Design and implement resilient clusters

• Configure automatic failover

• Understand storage abstraction layers

Part III: Implementing Ceph Storage (Chapters 7-10)

The Ceph section represents the book's technical apex:

• Chapter 7: Deep dive into Ceph architecture and concepts

• Chapter 8: Step-by-step Ceph deployment on Proxmox VE

• Chapter 9: Advanced configuration and performance tuning

Chapter 1: Introduction to Proxmox VE 9

28

• Chapter 10: Operational procedures and maintenance

Learning outcomes:

• Master distributed storage concepts

• Deploy production-ready Ceph clusters

• Optimize performance for various workloads

Part IV: Production Deployment (Chapters 11-13)

Transitioning from lab to production:

• Chapter 11: Virtual machine lifecycle management

• Chapter 12: Container deployment and orchestration

• Chapter 13: Automation and integration strategies

Learning outcomes:

• Manage complex VM environments

• Implement container strategies

• Automate routine operations

Part V: Best Practices and Troubleshooting (Chapters 14-15)

Ensuring long-term success:

• Chapter 14: Security hardening and compliance

• Chapter 15: Troubleshooting methodologies and tools

Learning outcomes:

• Implement security best practices

• Diagnose and resolve complex issues

• Optimize for specific workloads

Chapter 1: Introduction to Proxmox VE 9

29

Lab Environment Architecture

The lab environment is designed to provide a realistic yet accessible platform for learning Proxmox

VE. Using nested virtualization on a single physical host, we create a complete three-node cluster

with full Ceph integration.

Physical Host Requirements

The physical host, designated as "lab1", serves as the foundation:

Minimum Specifications:

┌─────────────────────────────────┐

│ CPU: 8+ cores with VT-x/AMD-V │

│ RAM: 64GB (96GB recommended) │

│ Storage: 500GB SSD │

│ Network: Gigabit Ethernet │

│ OS: Ubuntu 22.04 LTS │

└─────────────────────────────────┘

Recommended Specifications:

┌─────────────────────────────────┐

│ CPU: 16+ cores, dual socket │

│ RAM: 128GB ECC │

│ Storage: 1TB NVMe + 2TB SSD │

│ Network: 10Gb Ethernet │

│ OS: Ubuntu 22.04 LTS │

└─────────────────────────────────┘

Nested Virtualization Configuration

Enabling nested virtualization requires specific configuration:

Intel systems

echo "options kvm_intel nested=1" > /etc/modprobe.d/kvm.conf

AMD systems

echo "options kvm_amd nested=1" > /etc/modprobe.d/kvm.conf

Verify nested virtualization

cat /sys/module/kvm_intel/parameters/nested

Y

KVM and libvirt Setup

The complete virtualization stack installation:

Install KVM and management tools

apt update

apt install -y qemu-kvm libvirt-daemon-system \

 libvirt-clients bridge-utils virt-manager

Install Open vSwitch for advanced networking

apt install -y openvswitch-switch

Chapter 1: Introduction to Proxmox VE 9

30

Add user to libvirt group

usermod -aG libvirt $USER

Verify installation

virsh version

systemctl status libvirtd

ovs-vsctl show

Network Design and Implementation

The network architecture simulates a production environment with proper segmentation:

Network Topology Overview

Figure 13 Lab Network Topology Overview

Management Network (10.10.0.0/16)

Purpose and configuration:

• External connectivity via NAT

• Management access to Proxmox VE nodes

• Software updates and internet access

<network>

 <name>management</name>

 <bridge name="management"/>

 <forward mode="nat" dev='eno1'/>

 <ip address="10.10.0.1" netmask="255.255.0.0">

 <dhcp>

 <range start="10.10.1.1" end="10.10.254.254"/>

 </dhcp>

 </ip>

</network>

Access Network (s1accessnet)

Chapter 1: Introduction to Proxmox VE 9

31

Multi-purpose network with VLAN segregation:

• VLAN 20: Ceph public network (client access)

• VLAN 21: Proxmox cluster communication (Corosync)

<network>

 <name>s1accessnet</name>

 <forward mode='bridge'/>

 <bridge name='s1accessnet'/>

 <virtualport type='openvswitch'/>

</network>

Open vSwitch configuration:

Create OVS bridge

ovs-vsctl add-br s1accessnet

Configure VLANs

ovs-vsctl set port s1accessnet tag=20,21

Verify configuration

ovs-vsctl show

Cluster Network (s1clusternet)

Dedicated Ceph cluster traffic:

• VLAN 22: Ceph OSD replication

• Isolated from other traffic

• High bandwidth, low latency

<network>

 <name>s1clusternet</name>

 <forward mode='bridge'/>

 <bridge name='s1clusternet'/>

 <virtualport type='openvswitch'/>

</network>

Virtual Node Specifications

Each Proxmox VE node is carefully configured to support both learning and realistic workloads:

Resource Allocation

Per Node Configuration:

┌─────────────────────────────────┐

│ vCPUs: 8 cores │

│ RAM: 16GB │

│ System Disk: 150GB (virtio) │

│ OSD Disks: 3 x 50GB (virtio) │

│ Network: 3 x virtio NICs │

│ Display: VNC (unique ports) │

└─────────────────────────────────┘

Chapter 1: Introduction to Proxmox VE 9

32

Aggregate Cluster Resources:

┌─────────────────────────────────┐

│ Total vCPUs: 24 cores │

│ Total RAM: 48GB │

│ Total Storage: 900GB │

│ Ceph Raw Capacity: 450GB │

│ Usable Capacity: ~150GB (3x) │

└─────────────────────────────────┘

VM Creation Commands

The virt-install commands create properly configured VMs:

Node 1 creation

virt-install --name s1proxmox01 \

 --ram 16384 \

 --disk path=/var/lib/libvirt/images/s1proxmox01.img,size=150 \

 --vcpus 8 \

 --network network:management \

 --network bridge=s1accessnet,\

 mac=52:54:00:31:7d:87,\

 virtualport_type=openvswitch,\

 model=virtio,driver.name=vhost \

 --network bridge=s1clusternet,\

 mac=52:54:00:46:59:08,\

 virtualport_type=openvswitch,\

 model=virtio,driver.name=vhost \

 --console pty,target_type=serial \

 --cdrom /path/to/proxmox-ve-9.0.iso \

 --graphics vnc,listen=0.0.0.0,port=6401,keymap=fr

Add OSD disks post-installation

virsh attach-disk s1proxmox01 \

 --source /var/lib/libvirt/images/s1proxmox01-osd1.img \

 --target vdb --persistent --size 50

virsh attach-disk s1proxmox01 \

 --source /var/lib/libvirt/images/s1proxmox01-osd2.img \

 --target vdc --persistent --size 50

virsh attach-disk s1proxmox01 \

 --source /var/lib/libvirt/images/s1proxmox01-osd3.img \

 --target vdd --persistent --size 50

Lab Exercise Structure

Each chapter includes structured exercises designed to reinforce learning:

Exercise Types

Chapter 1: Introduction to Proxmox VE 9

33

1. Guided Labs: Step-by-step instructions

o Clear objectives

o Detailed procedures

o Expected outcomes

o Verification steps

2. Challenge Labs: Problem-solving scenarios

o Business requirements

o Technical constraints

o Multiple valid solutions

o Real-world applicability

3. Troubleshooting Labs: Diagnostic exercises

o Simulated failures

o Systematic diagnosis

o Resolution procedures

o Prevention strategies

Example Exercise Format

Lab 3.1: Initial Proxmox VE Installation

──

Objective: Install Proxmox VE on first node

Prerequisites:

- VM s1proxmox01 created and powered on

- Access to VNC console (10.10.0.1:6401)

- Proxmox VE 9.0 ISO mounted

Estimated Time: 45 minutes

Steps:

1. Connect to VNC console

2. Select "Install Proxmox VE"

3. Configure installation:

 - Disk: /dev/vda (150GB)

 - Country/Timezone: Your location

Chapter 1: Introduction to Proxmox VE 9

34

 - Password: Strong password

 - Email: admin@lab.local

 - Network:

 - IP: 10.10.10.101/24

 - Gateway: 10.10.0.1

 - DNS: 10.10.0.1

Verification:

- Web UI accessible at https://10.10.10.101:8006

- Login successful with root credentials

- All services running: systemctl status

Common Issues:

- Network misconfiguration: Check IP/Gateway

- DNS resolution: Verify /etc/resolv.conf

- Service failures: Review systemctl logs

Summary

This chapter has provided a comprehensive introduction to Proxmox VE 9, covering its

architecture, capabilities, and the significant enhancements in the latest release. We've explored why

Proxmox VE represents a compelling alternative to traditional virtualization platforms and outlined

the learning journey ahead.

The lab environment we'll build provides a realistic platform for mastering Proxmox VE without

requiring extensive hardware resources. Through hands-on exercises and real-world scenarios, you'll

develop the skills needed to deploy and manage production Proxmox VE infrastructure.

Key Takeaways

• Proxmox VE integrates KVM and LXC virtualization with enterprise management features

• Version 9.0 introduces critical features for enterprise adoption, including LVM snapshots

and SDN fabrics

• The platform provides cost-effective virtualization without sacrificing capabilities

• Open standards ensure no vendor lock-in and future flexibility

• Our lab environment simulates production scenarios using nested virtualization

Chapter 1: Introduction to Proxmox VE 9

35

What's Next

In Chapter 2, we'll dive into the practical aspects of building your lab environment. You'll learn to:

• Configure Ubuntu 22.04 as a virtualization host

• Set up KVM with nested virtualization support

• Create Open vSwitch networks with VLAN tagging

• Deploy the three Proxmox VE virtual nodes

• Prepare the infrastructure for cluster creation

Prepare to transform your physical server into a complete virtualization lab that will serve as your

learning platform throughout this book. The journey from concept to implementation begins now.

Chapter 2: Building Your Virtualization Lab

In this chapter, we transition from theory to practice, building a complete virtualization lab that

will serve as our learning environment throughout this book. Using KVM (Kernel-based Virtual

Machine) on a physical host, we'll create a sophisticated nested virtualization setup that accurately

simulates a production Proxmox VE deployment. This hands-on approach ensures you gain

practical experience with every aspect of Proxmox VE, from initial installation through advanced

clustering and storage configuration.

2.1 Lab Architecture Overview

Before diving into the technical implementation, it's essential to understand the architecture

we're building. Our lab design mirrors real-world deployments while remaining feasible on a single

physical server. This approach provides authentic learning experiences without requiring expensive

hardware investments.

Understanding the Lab Design

Our lab architecture consists of several interconnected components that work together to

create a realistic virtualization environment:

Physical Host (lab1)

├── Host Operating System: Linux (with KVM support)

├── Hypervisor: KVM with QEMU

├── Network Virtualization: Open vSwitch

├── Management Tools: libvirt, virsh

└── Virtual Infrastructure

 ├── Management Network (10.10.0.0/16)

 │ └── Gateway: 10.10.0.1

 ├── Node 1: s1proxmox01 (10.10.44.1)

 ├── Node 2: s1proxmox02 (10.10.44.2)

 ├── Node 3: s1proxmox03 (10.10.44.3)

 ├── OVS Networks

 │ ├── s1accessnet (VLANs 20, 21)

 │ └── s1clusternet (VLAN 22)

 Chapter 2: Building Your Virtualization Lab

38

 └── Support VM: Ubuntu Desktop 24.04

This nested virtualization approach—running Proxmox VE as virtual machines on top of KVM—

provides several advantages:

Flexibility: Easy to create, destroy, and reconfigure nodes without affecting physical hardware. This

is particularly valuable when learning, as mistakes can be quickly corrected without lasting

consequences.

Cost-Effectiveness: A single physical server can simulate an entire cluster, dramatically reducing

hardware requirements while maintaining realistic behavior.

Snapshot Capability: The ability to snapshot entire nodes before major changes provides a safety

net for experimentation.

Network Isolation: Complete control over network topology without affecting production networks

or requiring physical network changes.

Resource Planning

Proper resource allocation is crucial for a functional lab environment. Here's our resource

distribution for the three-node cluster:

Per Proxmox VE Node:

• RAM: 16 GB

• vCPUs: 8 cores

• System Disk: 150 GB

• Ceph OSD Disks: 3 × 50 GB

Total Lab Requirements:

• RAM: 48 GB (nodes) + 8 GB (desktop) + 8 GB (host overhead) = 64 GB minimum

• CPU: 24 vCPUs + overhead (recommend 32+ physical cores)

• Storage: 450 GB (nodes) + 150 GB (Ceph) + 40 GB (desktop) = 640 GB minimum

Network Architecture and IP Addressing Plan:

Network VLAN Subnet Gateway Description

Management None 10.10.0.0/16 10.10.0.1 External access, Internet connectivity

Ceph Public 20 10.20.20.0/24 None Client access to Ceph storage

Proxmox Cluster 21 10.21.21.0/24 None Corosync cluster communication

Ceph Cluster 22 10.22.22.0/24 None OSD replication traffic

Node IP Assignments:

 Chapter 2: Building Your Virtualization Lab

39

Node Management VLAN 20 (Ceph Public) VLAN 21 (Cluster) VLAN 22 (Ceph Cluster)

s1proxmox01 10.10.44.1/16 10.20.20.1/24 10.21.21.1/24 10.22.22.1/24

s1proxmox02 10.10.44.2/16 10.20.20.2/24 10.21.21.2/24 10.22.22.2/24

s1proxmox03 10.10.44.3/16 10.20.20.3/24 10.21.21.3/24 10.22.22.3/24

Desktop VM DHCP N/A N/A N/A

Network Interface Mapping:

Node Interface Connected To Purpose

ens3 management Management network (vmbr0)

ens4 s1accessnet VLANs 20 & 21 (vmbr1)

ens5 s1clusternet VLAN 22 (vmbr2)

2.2 Preparing the KVM Host

The foundation of our lab is a properly configured KVM host. This section covers the essential

preparations needed before deploying Proxmox VE nodes.

Installing Essential Packages

Start by installing the required virtualization packages:

Update system packages

sudo apt update && sudo apt upgrade -y

Install KVM and related tools

sudo apt install -y qemu-kvm libvirt-daemon-system libvirt-clients \

 bridge-utils virt-manager virtinst cpu-checker

Verify KVM installation

kvm-ok

Expected output: INFO: /dev/kvm exists

Add your user to necessary groups

sudo usermod -aG libvirt,kvm $USER

Log out and back in for group changes to take effect

Enabling Nested Virtualization

Nested virtualization allows our Proxmox VE VMs to run their own virtual machines. This feature

must be explicitly enabled:

For Intel CPUs:

Check current status

cat /sys/module/kvm_intel/parameters/nested

 Chapter 2: Building Your Virtualization Lab

40

Enable nested virtualization

echo "options kvm_intel nested=1" | sudo tee /etc/modprobe.d/kvm.conf

Reload the module

sudo modprobe -r kvm_intel

sudo modprobe kvm_intel

Verify the change

cat /sys/module/kvm_intel/parameters/nested

Should output: Y

For AMD CPUs:

Enable for AMD

echo "options kvm_amd nested=1" | sudo tee /etc/modprobe.d/kvm.conf

Reload the module

sudo modprobe -r kvm_amd

sudo modprobe kvm_amd

Persistent Configuration:

To ensure nested virtualization survives reboots:

Update initramfs

sudo update-initramfs -u

Verify after reboot

sudo reboot

After reboot:

cat /sys/module/kvm_intel/parameters/nested

Installing Open vSwitch

Open vSwitch (OVS) provides advanced networking features, including VLAN support, which is

crucial for our lab's network design:

Install Open vSwitch

sudo apt install -y openvswitch-switch

Verify installation

sudo ovs-vsctl show

Check service status

systemctl status openvswitch-switch

Basic OVS Configuration:

View OVS version

ovs-vsctl --version

List all bridges (initially empty)

ovs-vsctl list-br

Show detailed configuration

ovs-vsctl show

 Chapter 2: Building Your Virtualization Lab

41

2.3 Designing the Network Infrastructure

Network design is critical for a functional Proxmox VE cluster. Our lab implements a production-

like network topology using software-defined networking principles. To be realistic, we'll use

VLAN-capable vSwitches to segment different types of traffic, mirroring enterprise deployments.

Understanding the Network Architecture

Our lab uses three distinct networks, each serving specific purposes:

Network Overview:

1. management (10.10.0.0/16) - No VLAN

 - NAT network for external/internet access

 - Management access to nodes

 - Gateway: 10.10.0.1

2. s1accessnet - VLAN-capable OVS bridge

 - VLAN 20: Ceph Public Network (10.20.20.0/24)

 - VLAN 21: Proxmox Cluster Network (10.21.21.0/24)

3. s1clusternet - VLAN-capable OVS bridge

 - VLAN 22: Ceph Cluster Network (10.22.22.0/24)

Why This Design?

This architecture provides several benefits:

1. Traffic Segregation: Different traffic types don't compete for bandwidth

2. Security: Cluster and storage traffic are isolated from management

3. Realistic Setup: Mirrors production environments with VLAN segmentation

4. Performance: Dedicated networks prevent congestion

5. Learning Value: Hands-on experience with enterprise network design

VLAN Assignments and Purpose

Each VLAN serves a specific purpose in our cluster:

VLAN 20 - Ceph Public Network (10.20.20.0/24):

 Chapter 2: Building Your Virtualization Lab

42

• Client access to Ceph storage

• Communication between Proxmox VE and Ceph monitors

• Storage API traffic

VLAN 21 - Proxmox Cluster Network (10.21.21.0/24):

• Corosync cluster communication

• High-priority, low-latency traffic

• Cluster state synchronization

• Migration traffic

VLAN 22 - Ceph Cluster Network (10.22.22.0/24):

• OSD-to-OSD replication traffic

• Recovery and rebalancing operations

• Isolated from client traffic for performance

Creating the Networks

We'll create each network using libvirt network definitions and Open vSwitch:

Step 1: Create the Management Network

First, create the network definition file:

cat > management.xml << 'EOF'

<network>

 <name>management</name>

 <bridge name="management"/>

 <forward mode="nat" dev='eno1'/>

 <ip address="10.10.0.1" netmask="255.255.0.0">

 </ip>

</network>

EOF

Define and start the network:

Define the network in libvirt

virsh net-define management.xml

Start the network

virsh net-start management

Enable autostart

virsh net-autostart management

Verify

virsh net-info management

Step 2: Create the Access Network (s1accessnet)

 Chapter 2: Building Your Virtualization Lab

43

Create the OVS bridge:

Create Open vSwitch bridge

sudo ovs-vsctl add-br s1accessnet

Create the libvirt network definition:

cat > s1accessnet-network.xml << 'EOF'

<network>

 <name>s1accessnet</name>

 <forward mode='bridge'/>

 <bridge name='s1accessnet'/>

 <virtualport type='openvswitch'/>

</network>

EOF

Define and start the network:

Define the network

virsh net-define s1accessnet-network.xml

Start the network

virsh net-start s1accessnet

Note: We'll enable autostart after all networks are tested

Step 3: Create the Cluster Network (s1clusternet)

Create the OVS bridge:

Create Open vSwitch bridge

sudo ovs-vsctl add-br s1clusternet

Create the libvirt network definition:

cat > s1clusternet-network.xml << 'EOF'

<network>

 <name>s1clusternet</name>

 <forward mode='bridge'/>

 <bridge name='s1clusternet'/>

 <virtualport type='openvswitch'/>

</network>

EOF

Define and start the network:

Define the network

virsh net-define s1clusternet-network.xml

Start the network

virsh net-start s1clusternet

Step 4: Verify All Networks

Check that all networks are properly created:

List all networks

virsh net-list

Expected output:

 Chapter 2: Building Your Virtualization Lab

44

 Name State Autostart Persistent

--

 management active yes yes

 s1accessnet active no yes

 s1clusternet active no yes

Verify OVS bridges

sudo ovs-vsctl show

Should show both s1accessnet and s1clusternet bridges

Making Networks Persistent

To ensure networks survive host reboots:

Enable Autostart for Virtual Networks:

Set networks to autostart

virsh net-autostart s1accessnet

virsh net-autostart s1clusternet

Verify autostart is enabled

virsh net-list --all

Create Systemd Service for OVS Bridges:

Create service to ensure OVS bridges are up

cat << 'EOF' | sudo tee /etc/systemd/system/ovs-lab-networks.service

[Unit]

Description=OVS Lab Networks for Proxmox

After=network.target openvswitch-switch.service

Requires=openvswitch-switch.service

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/ovs-vsctl --may-exist add-br s1accessnet

ExecStart=/usr/bin/ovs-vsctl --may-exist add-br s1clusternet

ExecStart=/usr/bin/ip link set s1accessnet up

ExecStart=/usr/bin/ip link set s1clusternet up

ExecStop=/usr/bin/ip link set s1accessnet down

ExecStop=/usr/bin/ip link set s1clusternet down

[Install]

WantedBy=multi-user.target

EOF

Enable and start the service

sudo systemctl enable ovs-lab-networks.service

sudo systemctl start ovs-lab-networks.service

Check service status

sudo systemctl status ovs-lab-networks.service

 Chapter 2: Building Your Virtualization Lab

45

Network Architecture Diagram

The complete network topology for our three-node cluster:

Figure 14 Network Architecture Diagram

This network design ensures proper traffic isolation while maintaining the flexibility needed for a

learning environment.

2.4 Installing Proxmox VE Nodes

With the infrastructure ready, we can now deploy our three Proxmox VE nodes. Each installation

follows the same pattern but with unique network configurations.

Downloading Proxmox VE 9

First, obtain the Proxmox VE ISO image:

Create directory for ISOs

mkdir -p ~/iso

Download Proxmox VE 9.0 ISO (adjust version as needed)

cd ~/iso

wget https://www.proxmox.com/images/download/pve/iso/proxmox-ve_9.0-1.iso

 Chapter 2: Building Your Virtualization Lab

46

Verify download (optional but recommended)

Check SHA256 sum from Proxmox website

sha256sum proxmox-ve_9.0-1.iso

Creating the First Node

Deploy the first Proxmox VE node using virt-install:

virt-install --name s1proxmox01 \

 --ram 16384 \

 --disk path=/var/lib/libvirt/images/s1proxmox01.img,size=150 \

 --vcpus 8 \

 --network network:management \

 --network bridge=s1accessnet,mac=52:54:00:31:7d:87,virtualport_type=openvswitch,model=virtio,driver.name=vhost \

 --network bridge=s1clusternet,mac=52:54:00:46:59:08,virtualport_type=openvswitch,model=virtio,driver.name=vhost \

 --console pty,target_type=serial \

 --cdrom /home/vmsqcow2/images/proxmox-ve_9.0-1.iso \

 --graphics vnc,listen=0.0.0.0,port=60100,keymap=fr

Note: The VNC port (60100) will be used to access the installer graphical interface. You can

generate unique MAC addresses using:

date +%s | md5sum | head -c 6 | sed -e 's/\([0-9A-Fa-f]\{2\}\)/\1:/g' -e 's/\(.*\):$/\1/' | sed -e

's/^/52:54:00:/'

Installation Walkthrough

After launching the virt-install command, you'll see output similar to:

WARNING No operating system detected, VM performance may suffer. Specify an OS with --os-variant for optimal results.

WARNING Unable to connect to graphical console: virt-viewer not installed. Please install the 'virt-viewer' package.

WARNING No console to launch for the guest, defaulting to --wait -1

Starting install...

Allocating 's1proxmox01.img' | 150 GB 00:00:00

Domain installation still in progress.

Waiting for installation to complete.

Now, connect to the VNC console from your desktop machine using a VNC viewer (such as

TigerVNC, RealVNC, or TightVNC):

Step 1: Connect via VNC

• Open your VNC viewer application

• Connect to: <host-ip>:60100 (e.g., 10.10.0.1:60100)

• You should see the Proxmox VE installer boot screen

 Chapter 2: Building Your Virtualization Lab

47

Step 2: Start Installation

• Press Enter on "Install Proxmox VE (Graphical)"

• The installer will load the graphical interface

Step 3: License Agreement

• Read through the End User License Agreement

• Click "I agree" to proceed

Step 4: Target Hard Disk Selection

• The installer will detect available disks

• Select /dev/sda (the 150GB disk we created)

• Leave the default options unless you need specific configurations

• Click "Next"

	Copyright Page
	Preface
	Purpose of the Book
	Audience
	What Readers Will Learn
	How the Book Is Structured

	How to Use This Book
	Intellectual Property Notice
	Acknowledgments
	About the Author
	Table of Contents
	Chapter 1: Introduction to Proxmox VE 9
	1.1 What is Proxmox VE?
	The Evolution of Virtualization Platforms
	Core Virtualization Technologies
	The Proxmox VE Integration Layer
	Understanding the Architecture Through Comparison

	1.2 Why Choose Proxmox VE for Virtualization
	Economic Considerations
	Feature Parity and Beyond
	Open Standards and Vendor Independence
	Performance Characteristics
	Security Architecture

	1.3 Understanding the Architecture
	The Hypervisor Layer in Detail
	Storage Architecture in Depth
	Network Architecture and SDN
	Cluster Architecture and Distributed Systems

	1.4 New Features in Proxmox VE 9
	Foundation Updates: Building on Debian 13 "Trixie"
	Revolutionary Storage Features
	Advanced Networking with SDN Fabrics
	High Availability Evolution: Affinity Rules
	Modernized Mobile Interface
	Enhanced Monitoring and Metrics

	1.5 Book Overview and Lab Environment
	Learning Path and Book Structure
	Lab Environment Architecture
	Network Design and Implementation
	Virtual Node Specifications
	Lab Exercise Structure

	Summary
	Key Takeaways
	What's Next

	Chapter 2: Building Your Virtualization Lab
	2.1 Lab Architecture Overview
	Understanding the Lab Design
	Resource Planning

	2.2 Preparing the KVM Host
	Installing Essential Packages
	Enabling Nested Virtualization
	Installing Open vSwitch

	2.3 Designing the Network Infrastructure
	Understanding the Network Architecture
	VLAN Assignments and Purpose
	Creating the Networks
	Making Networks Persistent
	Network Architecture Diagram

	2.4 Installing Proxmox VE Nodes
	Downloading Proxmox VE 9
	Creating the First Node
	Installation Walkthrough

