Mastering Django: Projects for Beginners

A Beginner's Journey to Django Mastery: Projects and Beyond

Aditya Dhandi
© 2024 Aditya

Also by Aditya Dhandi

e Python Course - Learn Python From Scratch :

Index

Chapter 1: Introduction

Chapter 2: Setting up a development environment

17

Chapter 3: Views and Templates

39

Chapter 4: Admin, Models, and Databases

59

Chapter 5: Working with Static Files

69

Chapter 6: Forms and User Input

91

Chapter 7: User Account

Chapter 8: Custom User Model

Chapter 9: User Authentication

Chapter 10: Bootstrap

Chapter 11: Password Change and Reset

Chapter 12: Email

Chapter 13: The Job Listing App

Chapter 14: Permissions and Authorization

Chapter 15: Conclusion

121
137
147
157
165
177
183
204
215

Chapter 1: Introduction

Welcome to the immersive world of “Mastering Django: Projects for Beginners”—a book that places
projects at the core of your journey into web development using the powerful Django web framework.

This book is meticulously crafted to be hands-on, ensuring your comprehension through an abundance
of examples and exercises in every chapter. Whether you're delving into the content sequentially or
employing it as a targeted reference, consider this book your steadfast companion on your Django
expedition.

Whether you're on the brink of creating a personal project, launching a startup, or simply navigating the
expansive realm of web development, Django stands as your ideal companion. With “Projects for
Beginners” serving as your navigator, you'll swiftly evolve into a developer capable of crafting impactful
web applications that leave a lasting imprint on the digital landscape.

Brace yourself to convert your aspirations in web development into tangible achievements as we
commence our exciting Django adventure together!

Just as our approach mirrors the successful structure of “Projects for Beginners”, where you construct
progressively intricate web applications, from a humble "Hello, World" app to a sophisticated Job Listing
application with advanced features—forms, user accounts, custom user models, email integration,
foreign keys, authorization, permissions, and beyond—you can expect a similar journey in “Mastering
Django: Projects for Beginners”.

By the final pages of this book, you'll emerge with the confidence to create your own Django projects
from scratch, armed with the latest best practices in web development. Django, a free, open-source web
framework written in Python and embraced by millions of developers worldwide, seamlessly caters to
both beginners and advanced programmers.

While robust enough for the largest websites globally—Instagram, Pinterest, Bitbucket, Disqus—Django
remains flexible, making it an excellent choice for early-stage startups and personal projects.

This book is a living document, regularly updated to align with the latest versions of Django(4.0) and
Python (3.11x). We adopt Pipenv, the officially recommended package manager by Python.org, for
handling Python packages and virtual environments.

Throughout our exploration, we adhere to modern best practices from the Django, Python, and web
development communities, placing a strong emphasis on thorough testing—a fundamental aspect of
building robust and scalable applications. So, let's embark on this journey, leveraging the collective
wisdom and experiences of the web development community to master the art of Django.

What You'll Learn

In the upcoming sections, I'll guide you through the Django framework in a systematic manner. We'll
initiate by configuring your development environment and initiating your inaugural Django project.
Following this, we'll delve into subjects such as models and databases, views and templates, and the
fundamental principles required to construct a web application from the ground up.

We'll explore aspects like forms, authentication, and user management, ensuring the functionality of
your application while prioritizing security and user-friendliness. As you advance, you'll confront more
intricate subjects such as working with static and media files, employing class-based views, navigating
the Django ORM, conducting tests, debugging, and executing deployment.

I'll provide you with the tools and insights essential for crafting your unique application, and we'll also
investigate supplementary functionalities, including real-time capabilities.

Upon completing this resource, you'll not only possess a robust understanding of Django but also the
assurance to initiate your web development endeavors. Armed with adept practices and optimization
techniques, you'll be prepared to fabricate efficient, scalable, and secure web applications.

What is Django

Django is a high-level, open-source web framework for building web applications using the Python
programming language.

It follows the Model-View-Controller (MVC) architectural pattern, which is often referred to as Model-
View-Template (MVT) in Django's context.

Django's primary goal is to simplify and speed up the process of developing web applications by
providing a robust set of tools and conventions for common web development tasks.

Here are some key features and components of Django:

o ORM (Object-Relational Mapping): Django includes a powerful ORM that allows developers to
define their data models using Python classes. These models are then translated into database
tables, and developers can interact with the database using Python code, rather than writing
SQL queries directly.

o Admin Interface: Django comes with an automatic admin interface, which can be customized to
manage your application's data models. This is especially helpful for content management and
administrative tasks.

e URL Routing: Django uses a URL dispatcher to map URLs to views. This allows for clean and
flexible URL routing, making it easy to define how different parts of your application respond to
different URL patterns.

e Template Engine: Django has a template engine that allows developers to define the structure
and layout of HTML pages in a clean and efficient way, separating the presentation layer from
the business logic.

e Authentication and Authorization: Django provides built-in tools for user authentication and
authorization, making it straightforward to add user accounts and manage permissions.

e Security: Django includes various built-in security features to help developers protect their
applications against common web vulnerabilities, such as cross-site scripting (XSS) and SQL
injection.

e Middleware: Django allows you to define middleware components that can process requests
and responses globally, enabling tasks like authentication, logging, and more.

e Forms and Validation: Django provides a forms framework that simplifies the creation and
handling of HTML forms, including form validation.

o Database Support: Django supports multiple databases, including PostgreSQL, MySQL, SQLite,
and Oracle, allowing developers to choose the database that best suits their needs.

e REST Framework: While not part of Django core, the Django REST framework is a popular third-
party package for building robust RESTful APIs using Django.

e Community and Ecosystem: Django has a large and active community, which means there are
many reusable packages and extensions available to help streamline development.

Django's "batteries-included" philosophy means it comes with many built-in features, which can
accelerate development while maintaining best practices. It's an excellent choice for building a wide
range of web applications, from simple websites to complex, data-driven platforms.

Why Django

Why choose Django as your trusty steed on the vast and ever-evolving journey of web development? In
a digital world filled with countless frameworks and tools, Django shines as a beacon of innovation,
practicality, and sheer magic. Here's why Django is the sorcerer's stone of web development:

e Pythonic Elegance: Django is built on Python, a language known for its readability and simplicity.
This means you'll spend less time deciphering cryptic code and more time crafting your web
applications. With Django, you're working in a programming language that feels like poetry.

e Batteries Included: Django doesn't just offer a web framework; it comes fully equipped with a
treasure trove of tools and utilities. From an admin panel for data management to
authentication and security features, Django provides everything you need to create robust web
applications without the hassle of piecing together numerous third-party libraries.

e Rapid Development: Django follows the "Don't Repeat Yourself" (DRY) principle. It automates
many common development tasks, allowing you to focus on what makes your application
unique. This accelerated development process means you can bring your ideas to life faster than
ever before.

e Scalability and Flexibility: Django is not just for small projects. It scales seamlessly, making it
suitable for both startups and large enterprises. Its modular architecture allows you to use only
the components you need, providing flexibility to tailor your development stack.

e Community and Documentation: Django boasts a vibrant and supportive community of
developers, readily available to answer questions and provide guidance. Its extensive
documentation serves as a treasure map, guiding you through every corner of the framework.

e Security Enchanted: Security is a paramount concern in the digital realm, and Django takes it
seriously. The framework comes equipped with built-in defenses against common web
vulnerabilities, such as SQL injection and cross-site scripting (XSS). This means you can focus on
building your application while Django guards it against malicious sorcery.

e Battle-Tested and Trusted: Django has been used to power countless websites, from small
personal blogs to major platforms like Instagram and Pinterest. Its track record speaks to its
reliability and scalability.

e Versatile Ecosystem: Django's ecosystem extends beyond web development. It offers tools and
libraries for tasks like creating RESTful APIs with the Django REST framework, building real-time
applications with Django Channels, and integrating with other Python packages for data
analysis, machine learning, and more.

e Open Source Magic: Django is open source, meaning it's free to use and has a community that
continually contributes to its improvement. This open nature encourages innovation and
ensures that Django remains relevant and up-to-date.

e Future-Proof: Django evolves with the ever-changing landscape of web development. Its
maintainers and community work tirelessly to keep it in sync with modern practices and
technologies, making it a reliable choice for the long haul.

In summary, Django isn't just a web framework; it's an enchanting toolkit for web sorcerers. With its
Pythonic elegance, comprehensive features, and strong community support, Django empowers
developers to create web applications that are not only functional but truly magical. So, embrace the
Django magic, and let your web development journey begin!

Django Vs Flask

Django and Flask are both popular Python web frameworks, but they have different philosophies, use
cases, and levels of complexity. The choice between Django and Flask depends on your project
requirements and your development preferences. Here's a comparison of Django and Flask:

Django:

Philosophy: Django follows the "batteries-included" philosophy, which means it provides a
comprehensive set of tools and features for web development out of the box. It includes an ORM, an
admin interface, authentication, and more.

Complexity: Django is a high-level framework that enforces a specific project structure and follows the
Model-View-Controller (MVC) architectural pattern, which is often referred to as Model-View-Template
(MVT) in Django's context. This makes it suitable for complex, large-scale web applications where a lot
of built-in functionality is required.

Built-in Features: Django includes many built-in features like an admin interface, user authentication,
database migrations, and an ORM. This can save time and effort for developers.

Learning Curve: Due to its comprehensive nature, Django can have a steeper learning curve for
beginners. However, it provides clear guidelines and conventions for development, which can be
beneficial in the long run.

Community and Ecosystem: Django has a large and active community, along with a rich ecosystem of
third-party packages and extensions.

Use Cases: Django is often chosen for large-scale, data-driven applications, content management
systems (CMS), and projects that require a lot of built-in functionality.

Here are some popular websites and platforms that use Django:

Instagram

Pinterest

The Washington Post
Eventbrite

Disqus

NASA

Bitbucket

Mozilla Support

10

® The Onion

e The Guardian

® Prezi

e Mahalo
Flask:

Philosophy: Flask follows the "micro" framework philosophy, which means it provides the basic tools
and leaves many decisions to the developer. The flask is minimalistic and lightweight.

Complexity: Flask is simpler and more flexible compared to Django. It doesn't impose a specific project
structure or architecture, allowing developers to choose their preferred components and libraries.

Extensibility: Flask is highly extensible and allows developers to add only the components they need.
This results in more control and flexibility but also requires more decisions on the developer's part.

Learning Curve: Flask has a lower learning curve, making it a good choice for beginners or projects that
need to be developed quickly.

Community and Ecosystem: Flask has a vibrant community and a range of extensions, but its ecosystem
is not as extensive as Django's.

Use Cases: Flask is often chosen for smaller to medium-sized projects, RESTful APIs, microservices, and
projects where developers want more control over the components they use.

In summary, Django is a full-featured framework with a lot of built-in functionality, making it suitable for
complex and feature-rich applications. Flask, on the other hand, is lightweight and flexible, giving
developers more control over the components they use, making it a great choice for smaller projects or
when simplicity and customizability are priorities. The choice between the two depends on the specific
needs of your project and your development preferences.

11

Why this Book

"Mastering Django: Projects for Beginners " serves as your indispensable companion for honing the
skills of web development using Django. Whether you're new to programming or making a transition
from another framework, this book is tailored to meet your educational requirements.

Key Features:

Structured Learning Path: Follow a meticulously designed curriculum that seamlessly guides you from
fundamental concepts to advanced Django topics, ensuring a well-paced learning experience.

Hands-On Examples: Immerse yourself in real-world examples and practical exercises that solidify your
grasp of Django fundamentals. These hands-on activities make intricate concepts understandable and
applicable.

Comprehensive Coverage: Delve into the complete Django ecosystem, covering the spectrum from
crafting dynamic web applications to understanding databases, authentication, and deployment. Gain a
comprehensive understanding of full-stack development.

Problem-Solving Approach: Develop the skills to address common challenges encountered by
developers. Detailed explanations and solutions empower you to navigate obstacles independently.

Embark on your Django development journey confidently with "Django Fundamentals." This book

provides you with the skills and knowledge necessary to construct robust web applications. Unleash the
potential of Django and commence the creation of dynamic, scalable, and secure websites today.

12

Book layout

In this book, you'll encounter various code examples, which we'll identify using the following
conventions:

This is Python code
print("Hello, World")

To keep things concise, we'll represent unchanged, pre-existing code with dots (...) when, for instance,
we're making updates within a function:

def this is my function:
print("Completed")

Throughout the book, we'll also use the command line console extensively. Commands will be preceded
by a > symbol, following the traditional Unix style:

command prompt

> echo "Hello World"

The resulting output of a command will be presented without the > symbol:

command prompt

"Hello World"

To simplify comprehension, we'll often display both the command and its output together:

command prompt
> echo "Hello World"
Hello World

For the complete source code of all examples, please refer to the official GitHub repository.

13

A Brief Overview of Python

Before we dive headfirst into Django's enchanting world, it's essential to have a basic understanding of
the magic wand we'll be wielding—Python. If you're already familiar with Python, consider this a quick
refresher; If you're new to it, please have some understanding of Python.

What Is Python?

Python is a versatile, high-level programming language celebrated for its simplicity and legibility. Think
of Python as a versatile spellbook, packed with readable and expressive spells (code) that can
accomplish a wide range of tasks. It's a language that emphasizes clean and concise code, making it an
ideal choice for beginners and seasoned developers alike.

Python's Philosophy
Python follows a set of guiding principles known as "The Zen of Python" or "PEP 20." some of these
guiding principles include:
e Readability counts: Code should be easy to read and understand.
e Simple is better than complex: Python encourages simplicity in code design.
® There should be one-- and preferably only one --obvious way to do it: Python promotes a single,
clear way of accomplishing tasks.

Python's Strengths
Python's versatility extends to various domains:
e Web Development: Django and Flask are popular Python frameworks for building web
applications.
e Data Science: Python is a go-to choice for data analysis, machine learning, and scientific
computing, with libraries like NumPy, Pandas, and sci-kit-learn.
e Automation: Python's simplicity makes it perfect for scripting tasks, automating repetitive
actions, and working with APIs.
e Game Development: Pygame allows you to create 2D games with Python.
e Scripting: It's often used for writing scripts to automate tasks on servers and in system
administration.

Python Syntax
Python uses a clean and minimalistic syntax. Here's an example:

This is a Python comment
def greet(name):
message = "Hello, " + name + "!"

print(message)

greet("Alice")

14

In Python, indentation (whitespace) is significant, and code blocks are defined by colons and indentation
levels.

Data Types
Python supports various data types, including

Integers (int)

Floating-point numbers (float)
Strings (str)

Lists (list)

Dictionaries (dict)

Booleans (bool)

Tuples (tuple)

Sets (set)

Control Structures
Python provides control structures like loops and conditionals. Here's an example:

for i in range(5):
if i % 2 ==
print(i,"is even")
else:
print(i,"is odd")

Functions

You can define functions in Python to encapsulate blocks of code for reuse
def add(x, y):
return x + vy

result = add(3, 5)

Libraries and Modules
Python's power extends through its vast library ecosystem. You can import and use modules such as
math, random, and others to extend Python's capabilities.

Your Python Toolkit

As you embark on your Django journey, Python will be your trusty wand. You'll cast spells (write code)
with it to create the magic of web applications. Don't worry if you're new to Python; we'll guide you
through the incantations and reveal the secrets of Django along the way. So, let's step into Python's
mystical world together.

Python Resources

15

If you are new to Python, you can learn Python from the following books:
e Python Crash Course
e Think Python
e The Hitchhiker’s Guide to Python

16

Chapter 2: Setting up a development environment

This chapter guides on configuring your computer effectively for working on Django projects. We begin
with an overview of the command line and utilize it to install the latest versions of both Django (4.0),
and Python (3.11). Subsequently, we delve into topics such as virtual environments, git, and working
with a text editor.

By the conclusion of this chapter, you will be well-prepared to create and modify Django projects with
ease.

The Command Line
The command line is a potent, text-based interface to your computer. As developers, we will utilize it
extensively throughout this guide for installing and configuring each Django project.

On a Mac, you can access the command line via a program called Terminal, located at
/Applications/Utilities.

To find it, open a new Finder window, navigate to the Applications folder, scroll down to open the
Utilities folder, and double-click the Terminal application.

For Windows users, there is an integrated command line program called Command Prompt. From here
on, when we mention the "command line," we mean opening a new console on your computer using

Terminal.

To get the command line, go to the search box of your system and type cmd. You will see something like
this:

17

All Apps Documents Web More ¥

Best match

j Command Prompt
App

Apps
~ 1 Node.js command prompt

~] x86 Native Tools Command Prompt
for VS 2022

~ 1 Install Additional Tools for Node.js
Search the web

cmd - See more search results

cmd run as administrator

cmd commands

cmd prompt

cmd ipconfig

cmder

cmdb

cmd administrator

0
o
0
0
0
0
0
0
0

Command Prompt
App

Open

Run as administrator
Open file location
Unpin from taskbar

Pin to Start

Just click on Command Prompt to open the command line.

18

Command Prompt

Microsoft Windows [Version 10.0.19045.3693]
(c) Microsoft Corporation. All rights reserved.

C:\Users\pc>

While there are numerous commands available, we primarily use five commands in Django
development:

e CD (change down a directory)

e CD.. (change up a directory)

¢ DIR (list files in your current directory)

¢ MKDIR (make directory)

e ECHO> (create a new file)

Open your command line and try them out. The ">" symbol represents our command line prompt for
Windows and $ for Mac, and all commands in this guide should be typed after the ">" prompt.

For example, assuming you are on a window, let's change into our Desktop directory:
command prompt

Now, let's create a new directory folder using 'mkdir,' navigate into it, and add a new file named

'index.html,’:
command prompt

> mkdir django_apps

> cd django_apps
> echo> index.html

19

Next, use "dir" to list all the current files in our directory. You will see that there is just the newly created
"index.html":
command prompt
> dir
12/12/2023 07:46 AM <DIR>
12/12/2023 07:46 AM <DIR>

12/12/2023 07:46 AM 13 index.html
1 File(s) 13 bytes
2 Dir(s) 5,406,769,152 bytes free

Advanced developers can efficiently navigate their computers using the keyboard and command line.
With practice, using the command line approach is often faster than using a mouse.

While this book provides step-by-step instructions, you do not need to be an expert on the command
line. However, developing command-line skills is beneficial for any professional software developer over
time.

Two recommended free resources for further study are the Command Line Crash Course and the
Codecademy Course on the Command Line.

Install Python 3 on Mac OS X

While Python 2 comes pre-installed on Mac computers by default, Python 3 is not included. You can

verify this by entering the following command in your command line console and pressing Enter:
mac command prompt

S python --version

Python 2.7.15

To check if Python 3 is already installed, you can run the same command using python3 instead of
python:
mac command prompt

S python3 --version

If your computer displays a version number like 3.7.x (any version of 3.7 or higher), then Python 3 is
already installed.
However, if you encounter an error, you'll need to install Python 3 manually. Here are the steps:

First, install Apple's Xcode package:
mac command prompt

S xcode-select —-install

Follow the on-screen instructions to complete the installation. Xcode is a large program, so it may take
some time.

20

Next, install the package manager Homebrew using the following command:
mac command prompt

S /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Confirm that Homebrew is correctly installed by running:
mac command prompt
S brew doctor

If you receive a message indicating that your system is ready to brew, you're good to go.
Now, let's install the latest version of Python 3:

mac command prompt
S brew install python3

Confirm the Python 3 installation by running:
mac command prompt

S python3 --version

Python 3.11.0

To launch a Python 3 interactive shell, which allows you to run Python commands directly, simply type
the following in your command line:
mac command prompt

S python3

You should see a prompt like:

mac command prompt
Python 3.X.X (default, Month Day Year, HH:MM:SS)
[GCC X.X.X] on darwin

Type "help", "copyright", "credits" or "license" for more information.

To exit the Python 3 interactive shell at any time, press Control+d (the “Control” and “d” keys
simultaneously).
Remember that you can still use Python 2 on your system if needed.

Install Python 3 on Windows
To check if Python is already installed on your Windows system and, if not, to install it, follow these
steps:

Step 1: Check if Python is already installed

Press Win + R on your keyboard to open the Run dialog.
Type cmd and press Enter to open the Command Prompt.
In the Command Prompt, type python --version or python -V and press Enter.

21

If Python is already installed, you'll see the installed version number (e.g., Python 3.8.3).
If Python is not installed, you'll likely see an error message.

Step 2: Download Python (if not already installed)

Open your web browser and go to the official Python website at
https://www.python.org/downloads/windows/.

On the Python download page, you'll see the latest version of Python for Windows. Click on the
"Download Python X.X.X" button, where "X.X.X" is the version number (e.g., Python 3.9.6).

Step 3: Run the Python Installer

Once the installer is downloaded, locate the downloaded file (usually in your Downloads folder) and
double-click it to run the installer.

In the Python installer window, make sure to check the box that says "Add Python X.X to PATH." This
option is essential for easily running Python from the Command Prompt.

Click the "Customize installation" button if you want to customize the installation further. Otherwise,
you can proceed with the default settings.

Click the "Install Now" button to start the installation process.

Step 4: Wait for Installation to Complete

The installer will now install Python on your system. This may take a few moments.
Step 5: Verify Python Installation

After the installation is complete, go back to the Command Prompt by pressing Win + R, typing cmd, and
pressing Enter.

Type python --version or python -V again and press Enter.
If Python was installed successfully, you should see the version number you selected during installation.
Step 6: Test Python

You can also run a simple Python command to test if it's working. In the Command Prompt, type python
and press Enter. You should see a Python shell prompt (usually >>>).

22

You can type print("Hello, World!") and press Enter. You should see the output "Hello, World!" displayed
on the screen.

That's it! You've successfully installed Python on your Windows system and verified that it's working.
You can now start using Python for programming and scripting.

Install Python 3 on Linux
To check if Python is already installed on your Linux system and, if not, to To check if Python is already
installed on your Linux system and, if not, to install it, follow these steps::

Step 1: Check if Python is already installed
Open a terminal. You can usually do this by pressing Ctrl + Alt + T or by searching for "Terminal" in your
desktop environment's applications menu.

In the terminal, type the following command and press Enter:
terminal
python3 --version

If Python is already installed, you'll see the installed version number (e.g., Python 3.8.3).
If Python is not installed, you'll likely see an error message.

Step 2: Install Python (if not already installed)
Python is often pre-installed on many Linux distributions. However, if it's not installed, you can install it
using your system's package manager.

Ubuntu/Debian:
If Python is not already installed, open a terminal and run the following command to install Python 3:
terminal

sudo apt-get install python3

Fedora:
If Python is not already installed, open a terminal and run the following command to install Python 3:
terminal

sudo dnf install python3

CentOS/RHEL:
Python may not be pre-installed on some CentOS/RHEL systems. To install Python 3, open a terminal
and run the following command:
terminal
sudo yum install python3

N
w

Step 3: Verify Python Installation
After installing Python, you can verify the installation by running the following command in the terminal:
terminal

python3 --version

You should see the version number you installed.

Step 4: Test Python
You can also run a simple Python command to test if it's working. In the terminal, type:
terminal

python3

You should see a Python shell prompt (usually >>>).

You can type print("Hello, World!") and press Enter. You should see the output "Hello, World!" displayed
on the screen.

That's it! You've successfully installed Python on your Linux system and verified that it's working. If you
face any issues, please refer to the following blog:

If you face any issue, please refer to the following blog:
https://solarianprogrammer.com/2017/06/30/building-python-ubuntu-wsl-debian/

You can now start using Python for programming and scripting.
Virtual environments
Virtual environments are a fundamental and indispensable aspect of modern programming, particularly

in the context of Python development.

These environments are essentially isolated containers that house all the necessary software
dependencies required for a specific project.

Their significance lies in addressing the challenges posed by managing multiple projects with varying
software requirements on a single computer.

The primary reason for using virtual environments, as exemplified in Python programming, is to avoid
conflicts between different project dependencies.

In the absence of virtual environments, Python and related packages are typically installed globally on
the system.

24

This poses a significant issue when you need to work on multiple projects simultaneously, each having
its own set of software requirements.

For instance, imagine Project A relies on Django version 2.1, while Project B, developed a year earlier, is
still dependent on Django 1.10. Without virtual environments, managing such scenarios can become
exceedingly complex, but with their implementation, these issues are effortlessly resolved.

One of the key advantages of virtual environments is their ability to keep project dependencies neatly
isolated.

Each virtual environment acts as a self-contained ecosystem, allowing you to install and manage specific
versions of libraries, frameworks, and packages without affecting the global system environment.

This isolation ensures that changes made to one project's dependencies do not inadvertently impact
another project.

It provides a clean slate for each project, eliminating version conflicts and making it easier to maintain
and update software components without conflicts.

While, there are several tools available for creating virtual environments in Python, one prominent and
officially recommended option is Pipenv.

Introduced by renowned Python developer Kenneth Reitz in 2017, Pipenv has gained widespread
popularity due to its simplicity and robustness.

Pipenv operates in a manner akin to npm and yarn in the Node.js ecosystem. It uses a Pipfile to define
project dependencies and a Pipfile.lock to guarantee deterministic builds.

Determinism, in this context, means that every time you create a new virtual environment and install
dependencies using Pipenv, you will obtain precisely the same configuration.

This predictability is crucial for ensuring that your project behaves consistently across different
environments, and when collaborating with other developers.

Deterministic builds minimize the risk of unexpected issues arising from variations in dependency
versions, thereby enhancing project stability.

In practice, creating a new virtual environment for each Python project using Pipenv has become the
standard practice.

This approach ensures that projects remain self-contained, simplifying development, testing, and
deployment processes.

25

With the help of Pipenv, Python developers can effortlessly manage project-specific dependencies,
facilitating smoother project development and collaboration.

To get started with Pipenv, you can use the package manager pip, which is often installed alongside
Python 3. The following command demonstrates how to install Pipenv:
command prompt

> pip install pipenv

In conclusion, virtual environments are an essential tool in modern software development, offering
isolation and determinism that simplifies project management and ensures reliable and consistent
outcomes.

Python's Pipenv, in particular, has become a popular choice for managing virtual environments, making

it easier than ever to work on multiple projects with distinct dependencies while maintaining a clean
and predictable development environment.

26

Install Django

In this section, we will walk you through a series of commands used to set up a new Django project from
scratch. These commands will help you create a new project directory, install Django, and start a
development server.

Change Directory to Desktop:
command prompt

> cd Desktop

This command changes your current working directory to the Desktop. All the subsequent commands
will be executed in this location.

Create a Project Directory:
The next step is to create a directory where you will store all your Django projects. In this example, we

will create a directory called django_apps on your desktop.

You can replace the path with the location where you want to store your projects. Open your command
prompt (or terminal on macOS/Linux) and run the following commands:

command prompt

> mkdir django_projects

> cd django_projects

Here, we use the mkdir command to create a new directory called django_apps, and then we use cd to
change our current directory to django_ apps.

>mkdir myfirstproject

Here, we're creating a new directory called myfirstproject within your Desktop directory. This is where
your Django project will reside.

Change Directory to your Project Directory:
command prompt
>cd myfirstproject

You navigate into the myfirstproject directory that you just created. This is where you'll be working on
your Django project.

Activate a Virtual Environment:
command prompt
>pipenv shell

N
~

This command activates a virtual environment using Pipenv.

A virtual environment is an isolated environment for your project, ensuring that your project's
dependencies don't interfere with other Python projects on your system.

You'll notice that your command prompts changes to include the virtual environment name, in this case,
(myfirstproject).

Install Django:
command prompt

> pip install django

With the virtual environment activated, you install Django using the pip package manager. This step
ensures that your project has Django available as a dependency.

Start a New Django Project:
command prompt

> django-admin startproject myfirstproject .

Here, you use the django-admin command to create a new Django project named myfirstproject. The .
at the end specifies that the project should be created in the current directory.

This command sets up the initial structure for your Django project.

Run the Development Server:
command prompt

> python manage.py runserver

Finally, you use the manage.py script provided by Django to start the development server. This server
allows you to preview your Django project locally.

The server will be accessible http://127.0.0.1:8000/.

You can open a web browser and visit the provided URL to see the default Django welcome page,
indicating that your project is up and running.

28

< C ® 127.00.1:8000 e % % = 0@ :

django View release notes for Django 4.2

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.

Q Django Documentation <> Tutorial: A Polling App 22 Django Community

These commands are the initial steps to create a Django project and start developing your web
application.

As you continue your journey with Django, you'll use additional commands to create apps, define

models, and build the functionality of your web application.

Understanding the Django Project Structure
In this section, we'll dive deep into the Django project structure, unveiling the various files and
directories that make up a Django project.

Understanding the project structure is crucial for any Django developer, as it forms the foundation of
your web application.

Let's embark on this journey to explore the inner workings of a Django project.
Overview
A Django project is organized into a well-defined directory structure that follows the "Django way" of

development.

This structure encourages modularity, clean code, and separation of concerns.

29

Before we delve into the details, let's take a look at the high-level overview of a typical Django project
directory:

myproject/
|—myproject/
| |—_init_.py
| |-—settings.py
| |—ur|s.py
| —wsgi.py
|——manage.py
—app1/
F—app2/

Let's break down each of these components step by step.
The Project Directory

myproject/
The outermost directory, often named after your project, contains all the project-related files and
directories.

The project name is user-defined and may vary from one project to another. It's good practice to choose
a name that reflects the purpose of your project.

myproject/__init__.py
This empty file is required to tell Python that this directory should be treated as a Python package. It's
often empty but can contain package-level initialization code if necessary.

myproject/settings.py
The heart of your Django project, this file holds all the project settings. You'll configure your database,
installed apps, middleware, authentication settings, and much more in this file.

myproject/urls.py
This file defines the URL patterns for your project and serves as a roadmap for how incoming requests
are routed to the appropriate view functions within your apps.

myproject/wsgi.py
This file is used for deploying your Django application on a production server. It serves as an entry point
for the WSGI (Web Server Gateway Interface) server to communicate with your Django app.

The manage.py Script

30

The manage.py script is a powerful tool that simplifies various tasks related to your Django project.

You can use it to create database tables, run development servers, create superusers, and much more.
The manage.py script is a Python script that interacts with your project's settings.

The Apps
Django encourages a modular approach to development. Each logical component of your project is
encapsulated within a Django app.

These apps can be reused across projects, fostering code reusability.

Examples of apps include user authentication, blog functionality, or an e-commerce system. You can
create your apps using the Python manage.py startapp app_name command.

Understanding the Django project structure is the first step in becoming a proficient Django developer.

In the next section, we'll delve into configuring your project settings and kickstart your Django journey!

31

FlowChart

Designing a comprehensive flowchart for the entire Django framework can pose a challenge due to its
modular and adaptable characteristics. Presented here is a simplified flowchart that delineates the
fundamental request-response cycle within a Django application. It is essential to note that this
representation provides a high-level overview, while the actual flow includes additional intricacies and
interactions.

User makes a request

URL Routing (urls.py)

View Function (views.py)

Model Access (models.py)

Template Rendering (templates/)

HTTP Response to User

End of Request-Response Cycle

€E€E€EEEKX

User Initiates Request: The process commences when a user triggers an HTTP request within the Django
application, typically through actions like clicking a link, submitting a form, or engaging in other
interactive elements.

URL Routing (urls.py): Django utilizes the defined URL patterns in the urls.py file to ascertain which view
function should handle the incoming request.

View Processing (views.py): The view function takes charge of processing the request, engaging with
models if necessary, and determining the data to be presented. Subsequently, it produces an HTTP
response.

32

Model Interaction (models.py): If database interaction is required, the view communicates with model
classes specified in models.py. This involves tasks such as creating, retrieving, updating, or deleting data
in the database.

Template Rendering (templates/): To generate dynamic content, the view employs template rendering.
Templates, comprised of HTML files with embedded Django template language syntax, enable the
incorporation of dynamic data.

User Receives HTTP Response: The rendered template becomes part of an HTTP response, which is
dispatched back to the user's browser. The response may contain HTML, JSON, or other content types
based on the nature of the request.

Conclusion of Request-Response Cycle: The cycle concludes, and the user observes the outcome of
their request in their browser.

It's important to acknowledge that this depiction is a simplified overview, and real-world scenarios may
involve additional components, middleware, and configurations in the overall process.

Here is an example:

Django, a Python web framework known for fostering rapid development and adhering to a clean,
pragmatic design philosophy, follows the Model-View-Template (MVT) architectural pattern, a variation
of the traditional Model-View-Controller (MVC) pattern. Here's a simplified breakdown of Django's
functioning:

Models:

Within Django, a model takes the form of a Python class representing a database table, with each class
attribute corresponding to a field in the respective table.

Models serve to define the structure of data and provide an abstraction layer for interacting with the
database.

Django employs an Object-Relational Mapping (ORM) system, enabling interaction with the database
through Python code rather than direct SQL queries.

Views:

Views in Django play a crucial role in handling user requests and delivering corresponding responses.
They take input from users in the form of HTTP requests, interact with required data (often through
models), and subsequently generate responses, which may manifest as HTML pages, JSON, or other
formats. Views encapsulate the application's business logic and manage the flow of data within the
framework.

Templates:

33

Templates in Django manage the presentation logic by dynamically generating HTML based on data
supplied by views. Utilizing a distinct syntax, templates enable the embedding of Python-like code
directly within HTML for seamless integration of dynamic content.

URLs and Routing:
Within Django, a URL routing mechanism is employed to link URLs to specific views.

In the urls.py file, you establish patterns that align with particular URLs and link them to their
corresponding views.

Settings and Configuration:

Django employs a settings module to store configuration parameters for your project, encompassing
aspects like database settings, middleware, and more.

These configurations are housed in the settings.py file within your project.
Middleware:

Middleware components serve to globally process requests and responses, either before they reach the
view or after they leave it.

Instances of middleware include authentication middleware, security middleware, and others.

Django furnishes a toolkit and established conventions that simplify the construction of web
applications, fostering code reusability, modularity, and maintainability. Adhering to these conventions
and patterns allows developers to concentrate on feature development, rather than grappling with low-
level intricacies.

34

Install Git
In the world of web development, managing your project's codebase is essential.

You need a system that allows you to keep track of changes, collaborate with other developers

seamlessly, and ensure that your Django web applications are always in a reliable state.

This is where Git comes into play.

What is Git?
Git is a distributed version control system that helps you track changes in your codebase. It was created

by Linus Torvalds in 2005 and has since become an indispensable tool for software development. Git is

particularly valuable in the Django ecosystem for several reasons:

Version Control: Git allows you to track every change made to your project, making it easy to
roll back to previous states or identify when and why a particular change was made.

Collaboration: When working on a Django project with a team, Git enables smooth
collaboration. Multiple developers can work on the same codebase simultaneously without
interfering with each other's work.

Branching and Merging: Git's branching and merging capabilities are powerful tools for
managing different features or bug fixes in isolation. You can develop new features in separate
branches and then merge them into the main codebase when they are ready.

Backup and Recovery: Git provides a secure and efficient way to back up your project. If
something goes wrong, you can always revert to a known working state.

Open Source: Git is open source and widely adopted, which means a vast community of
developers continually improves and supports it.

Installing Git
Before you can start using Git with your Django project, you'll need to install it on your development

machine. Here's how to do it:

On Windows:
Visit the official Git website at https://git-scm.com/.

Download the Windows installer and run it.

Follow the installation wizard's instructions, accepting the default settings unless you have a specific

reason to change them.

35

After installation, open the Git Bash terminal that comes with Git, or use your preferred terminal if
you're more comfortable with that.

On macOS:
If you have Homebrew installed, you can install Git by running the following command in your terminal:
mac command prompt

brew install git

If you don't use Homebrew, you can download the macOS Git installer from https://git-
scm.com/download/mac and follow the installation instructions.

Once installed, open your terminal, and Git should be available for use.

On Linux (Ubuntu/Debian):
Open a terminal.

Run the following command to install Git:
Terminal

sudo apt-get update

sudo apt-get install git

After installation, Git will be ready to use in your terminal.

Verifying the Installation

To verify that Git has been installed successfully, open your terminal and run the following command:
Terminal

S git --version

If Git is installed correctly, you should see the installed version displayed in the terminal.

Congratulations! You now have Git installed on your system and are ready to start using it to manage
your Django projects more effectively. In the following chapters, we'll explore how to initialize a Git
repository, make commits, create branches, and collaborate with others using Git.

Text Editors

Text Editors and Setting Up Visual Studio Code for Django.

A text editor is a software application that allows you to create, edit, and manage the code that makes
up your Django projects. Choosing the right text editor is crucial as it significantly impacts productivity
and coding experience. In this chapter, we'll explore what text editors are, recommend a few popular
ones, and guide you through the process of downloading and installing Visual Studio Code (VS Code), a
widely used and versatile text editor for Django development.

36

What Are Text Editors?

Text editors are software tools designed specifically for working with plain text files, including code files
written in programming languages like Python, HTML, CSS, and JavaScript. They provide an environment
for developers to write, edit, and organize code efficiently. Unlike full-fledged integrated development
environments (IDEs), text editors are lightweight and flexible, making them an excellent choice for web
development with Django.

Why Do You Need a Text Editor?
Here are some reasons why you need a text editor for Django development:

e Code Writing: Text editors are optimized for writing code, offering features like syntax
highlighting, auto-indentation, and code completion that make coding faster and more accurate.

e Customization: Text editors are highly customizable, allowing you to install extensions and
configure settings to suit your development workflow and coding style.

o Lightweight: Text editors are generally less resource-intensive than IDEs, making them more
responsive, especially on older computers.

e Versatility: Text editors are not limited to Django development; you can use them for various
programming tasks and languages.

Now, let's dive into one of the most popular text editors for Django development: Visual Studio Code (VS
Code).

Visual Studio Code (VS Code)

Visual Studio Code, often referred to as VS Code, is a free and open-source text editor developed by
Microsoft. It has gained immense popularity among developers due to its extensibility, powerful
features, and a large community of users and extensions.

Downloading and Installing VS Code
Here's how you can download and install VS Code:

Visit the Official Website: Open your web browser and go to the official Visual Studio Code website at
https://code.visualstudio.com/.

Download for Your Platform: VS Code is available for Windows, macOS, and Linux. Click on the download
link corresponding to your operating system.

Install VS Code:

37

Windows: Once the installer is downloaded, run it and follow the installation wizard's instructions.

macOS: Locate the downloaded file in your Downloads folder, double-click it, and follow the installation
instructions.

Linux: Depending on your distribution, you may need to follow specific installation instructions.

Refer to the VS Code documentation for details.

Launch VS Code: After installation, you can launch VS Code from your system's application launcher or
by running the code command in your terminal (Linux).

Basic Configuration: Upon first launch, you can customize VS Code to your liking by installing extensions
and adjusting settings. VS Code will guide you through this process.

Recommended VS Code Extensions for Django Development
To enhance your Django development experience with VS Code, consider installing the following
extensions:

e Python: Provides Python language support, including syntax highlighting, debugging, and code
completion.

e Django: Offers Django-specific features like template language support and code snippets.

e Pylance: Enhances Python support in VS Code, providing advanced features like type checking
and code analysis.

e GitLens: Improves Git integration within VS Code, helping you manage version control
effectively.

With your VS Code installation and extensions set up, you're well-prepared to embark on your Django
development journey.

In the upcoming chapters, we'll delve deeper into using VS Code for Django projects and explore various
aspects of web development with this powerful framework.

Occasionally, you may observe incorrect Python code indentation due to width constraints on this page.
To rectify this issue, kindly copy the code and paste it into a text editor such as VS Code. Doing so should
result in the correct indentation.

38

Chapter 3: Views and Templates

Creating a New Django Project

In this chapter, we will go through the process of setting up our development environment and creating
our first Django project.

By the end of this chapter, we will have a basic understanding of how to create a Django project and run
it locally.

Step 1: Creating a Project Directory
The first step is to establish a directory where we can store all our Django projects. In this example, we
will create a directory named "django_projects" on our desktop.

You can replace the path with your preferred location for storing your projects.
Now, open the command prompt (or terminal on macOS/Linux) and execute the following commands:
command prompt

> cd Desktop
> mkdir django_projects

> cd django_projects

Here, we use the mkdir command to create a new directory called "django_projects," and then we use
cd to change our current directory to "django_projects."

Step 2: Creating a Django Application Directory
Within the "django_projects" directory, we need to establish a directory for our specific Django project.
Let's name it "newspaper_app."

Execute the following commands:
command prompt

> mkdir newspaper_app

> cd newspaper_app

Once again, we use the mkdir command to create a new directory called "newspaper_app," and then we
use cd to change our current directory to "newspaper_app."

Step 3: Setting Up a Virtual Environment

Now, it's time to set up a virtual environment for our Django project.

A virtual environment is an isolated environment that allows us to install packages and dependencies
separately for each project, ensuring that project-specific dependencies don't interfere with each other.
We will use pipenv, a popular tool for managing virtual environments and dependencies.

39

Run the following command:
command prompt
> pipenv shell

This command creates and activates a virtual environment named 'newspaper' for our project. You can
replace 'newspaper' with your preferred name. Once activated, any packages installed will be isolated
within this environment.

Step 4: Installing Django
Now that we have our virtual environment set up, we can proceed to install Django.
Run the following command:

command prompt

> pip install django

This command installs Django within our virtual environment, making it available for our project.

Step 5: Creating a Django Project
With Django installed, we can now create a new Django project.
Run the following command:

command prompt
> django-admin startproject newspaper_project .

Here, we use django-admin to initiate a new Django project named "newspaper_project." The "." at the
end specifies that the project should be created in the current directory. This command generates the
basic structure and files needed for a Django project.

Step 6: Running the Development Server
Finally, let's start the development server to see our Django project in action.
If the server is already running, stop it using Control+C. Then, enter the command "python manage.py
runserver" in the command line:
command prompt

> python manage.py runserver

This command launches the Django development server, and we should see output indicating that the
server is running.

We can now open a web browser and visit http://127.0.0.1:8000/ to view our new Django project's
welcome page.

40

< C @ 127.0.0.1:8000

django

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs

Q Django Documentation <> Tutorial: A Polling App

e % » 0@ :

otes for Django 4.2

22 Django Community

Congratulations! we've successfully set up our Django development environment, created a new

project, and started the development server.

Creating a New App - The News App

Creating an app in a Django project is a fundamental step in structuring and organizing our web

application.

Django, a high-level Python web framework, is renowned for its adherence to the "Don't Repeat

Yourself" (DRY) principle and employs the "Model-View-Controller" (MVC) architectural pattern, known

as "Model-View-Template" (MVT) in Django.

Benefits of Creating Apps:

e Modularity and Reusability: Django apps are modular components that encapsulate specific

functionality within our web application. This modular approach simplifies code organization

and encourages reusability across different projects.

e Separation of Concerns: Apps enable the separation of different aspects of our application, such

as user authentication, blog posts, or e-commerce features. This separation enhances code

clarity and organization.

41

e Code Organization: Django enforces a structured directory layout within each app, aiding
developers in locating and working with different parts of the application. This structure
includes directories for models, views, templates, static files, and more.

e Collaboration: When collaborating in a team, dividing our project into apps promotes teamwork
by allowing team members to focus on different app components, minimizing conflicts in a
shared codebase.

e Scalability: Django apps are designed for scalability. As our project grows, we can effortlessly
introduce new apps to manage additional features without disrupting the existing codebase.

e Reusable Apps: Django's ecosystem offers a wide array of third-party apps and packages that
can be seamlessly integrated to add common functionalities, saving valuable development time.

e Testing and Maintenance: Apps can be individually tested, simplifying issue identification and
resolution. This modular approach also streamlines maintenance efforts, as specific apps can be
updated or replaced without affecting the entire project.

e Encapsulation and Isolation: Apps provide a level of encapsulation and isolation, allowing for
the independent management of dependencies, templates, and static files for each app.

Exiting the Running Server:

To exit the currently running server, follow these steps:
Open the command window.

Press Control + C.

Creating a new Django app named 'news':
To create a new Django app named 'news,' execute the following command:
command prompt

> python manage.py startapp news.

In Django, an app is a modular component that encapsulates a specific functionality within the
application. In this case, we are creating the 'news' app to manage news-related content in our
newspaper application.

Configuring installed apps
To configure our Django project's installed apps, we need to work with the INSTALLED_APPS list located
in the settings.py file. This list determines which applications are active within our project.

Occasionally, you may observe incorrect Python code indentation due to width constraints on this page.
To rectify this issue, kindly copy the code and paste it into a text editor such as VS Code. Doing so should
result in the correct indentation.

settings.py
INSTALLED_APPS = [

42

'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes"’,
‘django.contrib.sessions’,
‘django.contrib.messages’,
‘django.contrib.staticfiles",
‘news', # Add the 'news' app here.

This list includes core Django functionality with prefixes like django.contrib, offering features such as an
admin interface, authentication, content types, sessions, and message handling. We can include or
exclude these apps based on our project's needs.

Additionally, we can include custom apps like 'news' in the INSTALLED APPS list. This indicates that
we've either created a 'news' app ourselves or included one created by someone else, and we want to
integrate it into our project.

Adding an app to INSTALLED_APPS, allows Django to recognize and use it within our project. This step is
crucial for organizing our project's functionality into manageable and scalable components, known as

apps.

The 'news' app likely contains models, views, and templates designed for handling news articles or
related content. Including it in INSTALLED _APPS ensures Django can recognize and utilize these
components.

Before proceeding, let's open Visual Studio Code (VS Code) and select the appropriate interpreter. It is
crucial to choose the correct interpreter as, since we have already downloaded Django and other
dependencies in the virtual environment. Therefore, we need to instruct VS Code on where to locate
and interpret the code.

So we have to point the interpreter to our virtual environment.

Select Python Interpreter:
e Open the Command Palette by pressing Ctrl+Shift+P.
e Type and select "Python: Select Interpreter."
o Alist of detected Python interpreters will be displayed. Choose the one we want to use for our
project.

Manually Specify Interpreter Path (Optional):
e If the interpreter we want to use is not automatically detected, we can manually specify the
interpreter path.
e Open the Command Palette (Ctrl+Shift+P) and type "Python: Select Interpreter."

43

e Choose "Enter interpreter path", and provide the path to our Python interpreter executable.

% File Edit Selection --- &« £ newspaper_app [= X
@ EXPLORER @ settings.py X <> base.html <> index.html @ models.py @ admin.py >y @D -
v OPEN EDITORS newspaper_project > %® settings.py >
X %@ settings.py newspaper... 25 - -
<> base.html templates 26 # SECURITY WARNING: don't run with debug turned on in production!
<> index.html templates 27 DEBUG = True
28

@ models.py news

% admin.py news iz BLuOnEROSYE =) —
@ apps.py news - -
<> about.html templates 32 # Application definition
"# LH'[S.py newspaper_proj... 33
@ urls.py news 34 INSTALLED_APPS = [
- 35 'django.contrib.admin’,
V7 RRIEPIAEYA 36 'django.contrib.auth’,
@ _init_.py 37 'django.contrib.contenttypes’,
@ asgipy 38 'django.contrib.sessions’,
@ settings.py 39 'dj@ango.contm}b.messege?‘,
e 40 ‘django.contrib.staticfiles’,
41 'news', # Add the 'news' app here.
® wsgi.py 42 1
> OUTLINE 43
S TIMELINE 44 MIDDLEWARE = [

X ®oAo ®Wo Ln39,Col 5 Spaces:4 UTF-8 CRLF {& Python 3.11.3 (newspaper_app-MXY5u0q2": Pipenv)

After completing these steps, if the server is already running, stop it using Control+C. Then, enter the
command "python manage.py runserver" in the command line:

command prompt

> python manage.py runserver

This step reloads the server with the news app and URL configurations, enabling us to define views and
templates for the 'news' app, and access it through the development server.

Views
Creating Our First View
To create our first view, follow these steps:
Go to the 'news/views.py' file.
Paste the following code:
news/views.py
We're creating a view function, which is like a handler for web requests.
First, we import some tools from Django that we need for our view.

from django.http import HttpResponse # A class for creating HTTP responses

Now, let's define our view function. It's called newsView, and it takes a
'request’ as its parameter.

44

def newsView(request):

Inside the function, we're keeping things simple. We're just returning an
HTTP response.

In this case, it's a response saying 'Hello, World!'

return HttpResponse('Hello, World!")

The HttpResponse class is what we're using to send a response back to whoever made a request to our
web application.Our newsView function is quite straightforward. When someone accesses a specific URL
in our web app, this function gets called.

It doesn't do anything fancy; it just responds with 'Hello, World!". Views are fundamental to web
applications, as they handle user requests, execute logic, interact with the database, and generate
responses. In more complex applications, this function might interact with a database, render dynamic
web pages, or do a lot of other cool things.

But for now, it's keeping it simple and just saying hi!

Urls

Setting Up URL Routing in Django for our Newspaper App
In this section, we'll delve into Django's URL routing mechanism, which enables us to connect URLs to
view functions.

Creating an 'urls.py' File for the 'news' App:

To create an empty 'urls.py' file within the 'news' app directory, use the following command:
command prompt

>echo >news/urls.py

The 'urls.py' file for the 'news' app defines URL patterns and routing. URL mappings link views to specific
URLs, which dictate the displayed content.

In Django, URL routing directs incoming requests to view functions, enabling the creation of dynamic
and interactive web applications.

news/urls.py
We start by importing the necessary module for handling URL patterns in Django.

45

from django.urls import path

Next, we import the 'newsView' function from the 'views' module of the current
Django app (denoted by the dot).

from .views import newsView

Now, we define a variable called ‘'urlpatterns'. This variable will hold a list
of URL patterns for our Django app.

urlpatterns = [

Inside the 1list, we use the 'path' function to define a URL pattern.

The first argument ('') represents the URL path. An empty string ('') means
this pattern matches the root URL.

The second argument ('newsView') is the view function that will be called
when this URL pattern is matched.

The third argument ('home') is a unique name given to this URL pattern,
which can be used to reference it later in the code.

path('', newsView, name='home")

In simpler terms:

Importing Modules:
We're importing the necessary tools from Django to handle URL routing (path) and importing our
newsView function.

URL Patterns List:
We create a list called urlpatterns to store our URL patterns.

Defining a URL Pattern:
We use the path function to define a URL pattern.
e The first argument " means this pattern matches the root URL (e.g., http://example.com/).
e The second argument newsView is the function that will be executed when this URL is visited.
e The third argument name='home' is a name we give to this pattern, which helps us reference it
later in the code.

46

This code essentially says, "Hey Django, when someone visits the root URL of our app, call the newsView

function, and we'll call this pattern 'home".

urls.py in the newspaper_app

newspaper_projects/urls.py
This line imports the admin module from the django.contrib package.
from django.contrib import admin

This line imports the path and include functions from the django.urls package.
from django.urls import path, include

This is a list called urlpatterns, which is used to define the URL patterns for
our Django project.
urlpatterns = [

This line maps the URL 'admin/' to the Django admin site. When we go to
'/admin/', we access the admin interface.

path('admin/', admin.site.urls),

This line maps the root URL ('') to the 'news.urls' module.

It means that any request to the root URL of our project will be handled by
the URLs defined in the 'news.urls' module.

This is a way to organize and modularize our URL patterns.

path('', include('news.urls')),

So, in summary, this code sets up the URL patterns for a Django project. It includes the default admin
interface at '/admin/' and delegates any other URL patterns to be handled by the URLs defined in the
'news.urls' module. This modular approach makes it easier to manage and organize our project's URL
structure.

URL routing in Django is essential for creating well-organized, maintainable, and scalable web
applications. It segregates the logic of handling different URLs into distinct views, enhancing code
modularity. By associating URLs with views, we can ensure that each page of our website is managed by
the appropriate function, facilitating the creation of complex web applications.

Furthermore, it permits the reuse of apps across different projects, as their URL patterns can be
included wherever needed.After completing these steps, if the server is already running, stop it using

Control+C. Then, enter the command "python manage.py runserver" in the command line:

command prompt

> python manage.py runserver

47

This command starts the Django development server.

« > C ® 127.0.0.1:8000

Hello, World!

48

Templates

Creating a 'template’ Directory:

To begin, let's create a 'template' directory in the project's root directory. This directory will serve as the
storage space for HTML templates, which are essential for rendering web pages in our Django
application.

To create this directory, use the following command:
command prompt

>mkdir template

Creating an 'index.html' File:

Now, let's create an empty 'index.html' file within the 'template’ directory.HTML templates define the
structure and layout of web pages in a Django application. This file will be populated with HTML code
later.

Execute the following command to create the 'index.html' file:
command prompt

>echo> template/index.html

Configuring Templates:

Moving forward, let's delve into the TEMPLATES setting in Django.This setting plays a crucial role in
determining how Django handles the rendering of HTML templates for our views. It's essential for
building the user interface of our web application.

Now, let's define the path to our templates file in settings.py.

settings.py
from pathlib import Path
import os

import os: Import the Python os module at the beginning of your settings.py file. The os module is
essential for handling operating system-related tasks. Placing the import statement at the top of the file
ensures that all subsequent code can make use of the os module.

Now, let’s update the TEMPLATES section in settings.py.
Here's the relevant portion of the code:

settings.py

TEMPLATES = [
{

Other templates settings...

49

'DIRS': [os.path.join(BASE_DIR, 'templates')], # This line specifies
the template directory path.

Other templates settings...
s

In this code snippet, we are primarily focusing on the 'DIRS' key within the template settings dictionary.
This key points to a list of directories where Django should search for template files.Storing templates in
a dedicated 'templates' directory helps maintain project organization and aligns with best practices for
Django development.

Properly configuring INSTALLED_APPS and templates is a foundational step in setting up a Django
project, enabling the development of robust and maintainable web applications.

Creating a Basic View:
In Django, views are responsible for handling incoming requests, processing data if necessary, and
returning an appropriate response.

Let's begin by creating a simple view that displays the homepage of our website.To create views in
Django, define Python classes. In our views.py file, we should have a structure similar to the following:

news/views.py
We're importing a class named TemplateView from the django.views.generic
module.
from django.views.generic import TemplateView

We're defining a new class called HomePageView, and it's inheriting from
TemplateView.
class HomePageView(TemplateView):

Here, we're setting a property of the class called template_name.

This property tells Django which HTML template to use when rendering this
view.

In this case, it's set to 'index.html', so Django will look for a file
named 'index.html".

template _name = 'index.html'

In simpler terms:
e We import a special class called TemplateView from Django that helps in rendering HTML
templates.

50

