Free sample questions

Question 1 part a (sorting)

- Question (Part A): Partially Sorted Heap Levels

“2 Problem Statement

We are given a binary heap (complete binary tree) that contains n elements.
The heap has the following special property:

e All even-numbered levels (level 0, 2, 4, ...) are sorted from left to right.

e All odd-numbered levels (level 1, 3, 5, ...) are not sorted in any way.

It is also known that the average value of all elements in the heap equals
n*100.

@ Task

Design the most efficient algorithm possible to sort all n elements of the heap
into non-decreasing order, given the above structure.

" Required Analysis

1. Describe the time complexity of your algorithm using asymptotic
notation (0, 0, Q).

2. Justify why the chosen algorithm is asymptotically optimal under the
given conditions.

] Output

Provide only the algorithm design and asymptotic analysis —
no implementation code is required.

lution ion 1

% Solution (Part A): Using the Bounded Average for Linear-Time Sorting
#2 Given Conditions
e The heap has n elements.

e All even levels are sorted; odd levels are not.

e The average value of all elements equals n*100.

Therefore, if all values are non-negative integers, the total sum is

2 a_i=n - n*066 = n*"01

e implying that the maximum possible value satisfies max = n”*101.

Hence, all keys lie within a polynomial range

0

IA

a_i < n*"o1

which allows the use of linear-time integer sorting.

¥£* Algorithm: Radix (LSD) or Counting Sort
We ignore the internal heap structure and exploit the bounded domain.

1. Representation.
Represent each integer a_i in base B = n (or equivalently, B =
27{rlog, n}).

Number of digits.
Since U = n*101, the number of base-B digits is

log_B(U) = log_n(n”101) = 101
2. — afixed constant.
3. Sorting process.
Perform LSD Radix Sort, where each pass uses a stable Counting Sort
on one digit.
o Each Counting Sort costs 0(n + B) = 0(n) (since B = n).
o Total number of passes = 101 (constant).

o Total running time: 0(101 - n) = 0(n).

4. Memory usage.
Each pass uses auxiliary arrays of size 0(B) = 0(n), so total space is
0(n).

EX Complexity Summary

Operation Time Space Notes

Counting Sort (per pass) 0(n) 0(n) Stable

101 passes total o(n) o(n) Constant factor

Final merged result o(n) — Sorted array
|= Correctness

e Counting Sort guarantees stable sorting within each digit.

e LSD Radix Sort preserves global nondecreasing order across all 101
digits.

e Since U is polynomially bounded and the number of passes is constant,
the final array is globally sorted in linear time.

I\, Edge Cases

e If negative integers exist, shift all keys by +|min| to make them
non-negative, or sort positive and negative parts separately, each in
linear time, and merge.

e If keys are non-integers, Radix/Counting does not apply directly —
revert to the O(n log n) comparison-based method.

Final Result

Under the assumption of non-negative integer keys with an average value of
n*100,
the key domain is polynomially bounded (U = n*101), so:

Total sorting time: ©O(n)

Total space: o(n)

This is asymptotically optimal for integer sorting and strictly better than the
O(n log n) bound of comparison-based methods.

Question 1 part b (sorting)

Z= Question: Sorted Dynamic Array with Partial Sorting

“2 Problem Statement

We maintain a sorted dynamic array that supports element insertions.
Initially, the array is empty and has a fixed capacity of 1.

Each insertion works as follows:

1. If there is free space, the new element is inserted into the array in its
correct sorted position.

2. If the array becomes full after the insertion:
o Sort the newly inserted right half of the array.
o Merge the right half with the already sorted left half.
o Double the array’s capacity.

o Copy all elements into the new larger array.

J- Operations

e insert(x) —inserts element x into the sorted dynamic array, following
the above rules.

@ Required Analysis

1. Find the worst-case time complexity of a single insertion operation.

2. Determine the total time complexity for performing n insertions starting
from an empty array.

I Expected Output

Express both results using asymptotic notation (0, 0, Q) and provide clear
justification for the growth rate.

Solution question 1 part b

% Solution: Sorted Dynamic Array with Partial Sorting

Assumptions & Invariant
¢ We maintain an array with capacity C (starting at 1), sizet (0 = t = C).
e Invariant between rebuilds:

o Thelefthalf [.. LC/2.-1] is sorted.

o Therighthalf [.C/2, .. t-1] contains the recently appended
elements (not necessarily sorted).

e When the array becomes full (t = C), we finish sorting the current block
and rebuild.

¥ Algorithm: insert(x)
1. If t < C (has room):
o append x to position t.
o t -t + 1.

o (No shifting; we do not maintain global sortedness
continuously—only at rebuilds.)

2. Ift = C (trigger rebuild):

o LetL := A[@ .. C/2-1] (already sorted by the previous
rebuild), R := A[C/2 .. C-1] (unsorted block just filled).

o Sort R by any comparison sort: 0((C/2) log(C/2)) = 6(C log
C).

o Merge L and sorted R into a single sorted array of size C: (C).

o Allocate new array of capacity 2C and copy the C sorted elements:
0(C).

o SetC — 2C, tremainsC/2 + C/2 = C after the merge-copy
(array is now globally sorted again, left half will serve as the next
“frozen” sorted prefix).

After each rebuild, the entire prefix of length t is sorted; between

rebuilds, only the left half is sorted, and we accumulate unsorted
elements in the right half until the next rebuild.

#2 Correctness Sketch

e Base: Initially C=1, after first rebuild (if any), the array of length C is fully
sorted.

e Maintenance: Between rebuilds, the left half remains untouched (thus
sorted). New items are appended to the right half.

e Rebuild step: Sorting R and merging with L yields a globally sorted array
of length C.

e Progress: Capacity doubles; hence rebuilds are finite and happen at
sizes 1,2,4,8, ...

5 Complexity Analysis

e Single insertion (non-rebuild): 0(1) (pure append).
e Single insertion that triggers rebuild at capacity C:

o Sorting the right half: 9(C log C)

o Merging halves: 6(C)

o Alloc+copy to capacity 2C: ©(C)

o Worst case: 0(C log C) (dominated by the sort).

Total for n insertions (starting empty):
Rebuilds occur at capacities 1, 2, 4, .., 2*k = n. The cumulative cost is

2_{i=0}"{ilog, n.} ©(2%1i - i) = O(n log n).

e Non-rebuild inserts contribute 0(n) and are dominated.

Amortized per insertion:

O(n log n) / n = 6(log n).

s® Final Results (Asymptotics)

e Worst-case time of a single insert: ©(C log C) when it triggers a
rebuild at capacity C.

e Total time for ninserts: ©(n log n).

e Amortized time per insert: ©(log n).

Question 1 part c (sorting)

== Question (Part C): Dynamic Sorted Array — Alternative Construction

“2 Problem Statement
We wish to build a dynamic sorted array using the following algorithm:

1. Each time a new element x is inserted, it is simply appended to the end
of the array.

2. The left half of the array is always assumed to be sorted, while the right
half contains the newly inserted unsorted elements.

3. For each newly inserted element x, we perform a binary search on the
left (sorted) half to find the position where x should appear in sorted
order.

4. We then store an auxiliary field in x that records this target position.

5. Once the array becomes full, we double its capacity, and for each
element in the right half, we move it to the position indicated by its
stored index.

6. Any remaining empty locations in the left half are filled in place with the
corresponding elements during the copy process.

@ Required Tasks

1. Determine whether this algorithm always produces a correctly sorted
dynamic array once the array becomes full.

2. Ifitis correct, prove its correctness formally and analyze the total time
complexity for n insertions.

3. Ifitis not correct, provide a counterexample that shows the failure,
explain why it occurs, and propose a modification that fixes the
algorithm while keeping it as efficient as possible.

I Expected Output

Provide a clear proof or counterexample, supported by asymptotic analysis (0,
0, 0), and discuss the resulting time complexity of all n insertions.

Solution question 1 part ¢

% Solution (Part C): Dynamic Sorted Array — Alternative Construction

Y Claim Check: The Proposed Algorithm Is Not Correct

Counterexample. Consider capacity C = 4 at the moment it becomes full.
Left (sorted) half: [2, 100].
Right (unsorted) half (in arrival order): [60, 50].

Both 60 and 50 fall—by binary search over the left half—into the same target
interval (2, 100). If we only “store” that interval/position and later place both
according to their stored positions without ordering them relative to each
other, we may realize the final layout [2, 60, 50, 100], which is not sorted.
Therefore, the algorithm does not guarantee a sorted array upon expansion.

X Fix That Makes It Correct
To ensure correctness while keeping the same spirit:

1. Interval assignment: For each element in the right half, compute its
target interval (via binary search over the left half).

2. Intra-interval ordering: Before the rebuild, sort the elements of the right
half (globally, or per-interval buckets).

3. Stable merge by intervals: Rebuild by stable merging each left-half
segment with its corresponding (now sorted) right-half elements.

This guarantees that within every interval the relative order is ascending, and
concatenating the intervals yields a globally sorted array.

Correctness (Sketch)

e The left half is sorted by invariant.

e After sorting the right half (globally or per-interval), all elements mapped
to a given interval are in nondecreasing order.

o A stable merge of each interval’s left-half elements with its right-half
elements preserves sortedness within the interval.

e Concatenating intervals in left-to-right order yields a fully sorted array.
v

¥ Time Complexity for n Insertions
We analyze rebuilds at capacities 1, 2, 4, 8, .., 2"k = n.

e At capacity C:

o Sorting the right half (= C/2 items): ((C/2) - log(C/2)) =
0(C log C)

o Stable merging halves: 6(C)
o Allocating new array of size 2C and copying: 0(C)

o Total per rebuild: (C log C) (dominated by sorting)
e Summation over rebuilds:

Y i=0 to Llog2n10(2i - i) = O(nlogn)..
e Non-rebuild insertions: 0(1) each; total 0(n) and dominated.

Final bounds:
e ninsertions: ©(n log n)
e Amortized per insertion: ©(1log n)

e Worst case for an insertion that triggers rebuild at capacity C: ©(C log
C)

® Summary

e As stated, the algorithm is incorrect (counterexample above).

e With the fix (sorting the right half and stable interval-wise merging), it
becomes correct with total insertion cost ®(n log n) and amortized
0(log n).

Question 2 part a (heaps)

- Section A — Formal Question

You are given a static binomial min-heap containing n elements.
No insertions or deletions are allowed.

Design a data structure that supports the following two operations efficiently:

1. increase(x, k) —
Given a pointer to a node x, add the value k to every key in the subtree
rooted at x.

2. Return(x) —
Given a pointer to a node x whose original key was Xx, return its current
key after all previous increase operations have been applied.

The goal is to achieve the lowest possible time complexity for both operations
while keeping the total memory usage within 0(n).

Solution question part a

@ Formal Solution — Using Only the Heap Structure

We are given a static binomial min-heap (no insertions or deletions).
We will not use any external data structures* — the solution works entirely
within the heap itself.

J Data Fields

Each node v in the heap stores:

e base[v]: its original key.

e parent|[v]: pointer to its parent node (naturally available in a binomial
heap).

e add[v]: alocal increment field, initially 0.

== Operation — increase(u, k)

Add k to every node in the subtree rooted at u.
We simply record this increment locally at u:
increase(u, k):

add[u] += k

Time: 0(1)

/> Operation — Return(x)
Return the current key of node x after all previous increase operations.
We accumulate the increments of all ancestors (including x itself):
Return(x):

sum — O

V « X

while v = null:

sum — sum + add[v]

v — parent[v]

return base[x] + sum

Time: 0(height) =0(1log n) in a binomial heap.
Space: 0(n) total (one add field per node).

Correctness

Each increase(u, k) conceptually adds k to all descendants of u.
For any node x, its logical key equals:

key(x) = base[x] + X add[a] over all ancestors a on the path
root -~ x (including x)

The Return(x) operation explicitly sums these contributions, producing the
exact updated key.

¥ Complexity Summary

Operation Time Space Description
increase(u, k) 0(1) 0(n) Adds k to all descendants lazily.
Return(x) 0(log n) o(n) Sums increments along path to

root.
%* Notes

e This solution uses only the parent pointers already available in a
binomial heap.

e No additional trees, segment structures, or index arrays are needed.

e Optional optimization: during traversal (e.g., inside Return), you may
“push” the accumulated add down to children to reduce future path
costs — without affecting asymptotic bounds.

Question 2 part b (heaps)

== Section B — Formal Question (decrease)

You are given the same static binomial min-heap from Section A (no
insertions, deletions, or melds).

The topology of the forest is fixed, and each node can be referenced by a
pointer.

Add support for the following operation, while keeping Return(x) from
Section A:

1. decrease(x, k) —
Given a pointer to a node x and a non-negative number k, subtract k
from the key of every node in the subtree rooted at x.

Requirements (no solution requested):

e Maintain correctness of Return(x) (it should return the current key of x
after any sequence of increase/decrease operations).

e Aim for the best possible asymptotic time bounds per operation under
0(n) total space.

e The binomial min-heap property must remain logically consistent with
the updated keys (you do not need to restructure the heap since the
topology is static).

e Clearly state the time and space complexities you achieve for decrease
and Return.

Solution question 2 part b
== Formal Solution — Using a Reduction Field and Subtree Splitting

We are given a static binomial min-heap (a forest of binomial trees).

We extend the previous solution to support the decrease(x, k) operation,
where we must subtract k from all nodes outside the subtree of x, while
keeping the structure itself unchanged.

¥+ Key Idea
Instead of explicitly visiting all nodes outside the subtree, we:

1. Split the heap into two parts:

o H_in: the subtree rooted at x (the “protected” part — no
decrease).

o H_out: the remaining forest (all other trees).

2. Maintain for each heap component (tree root) a reduction field
red[root] that represents the global decrease applied to that entire
component.

3. When we later merge the two parts, we correct the key of the protected
subtree’s root to preserve the real minimum order.

%1 Data Fields
Each root in the binomial forest stores:

e offset[root] — the total global shift (reduction or addition) applied to
all keys in its component.

e Each node keeps its usual:

o base[v] — original key,

o add[v] — lazy increment field (from Section A),

o parent[v] — pointer to parent node.

== Operation — decreaseOutside(x, k)

1. Split the heap into:
o the subtree H_in rooted at x;

o the remaining forest H_out.

Apply the global decrease:
offset[H_out] -= k
2. (this conceptually subtracts k from all nodes outside the subtree).

3. When re-merging H_in and H_out:

o the root of H_in preserves its original offset (since it was not
decreased);

when linking two roots r1 and r2, always compare

key(r) = base[r] + add[r] + offset[root_of_tree(r)]

o so that comparisons remain consistent even under different
offsets.

/2 Operation — Return(x)
To return the current key of node x:

1. Start from x, follow parent pointers to its root r.

2. Accumulate along the path:
o alladd[v] values (as in Section A),

o plus the offset|[r] of the root.

Return:

key(x) = base[x] + X add[a] (ancestors a from root-x) +
offset[root(x)]

3.

Correctness

e The split ensures that only the complement of the subtree receives the
global decrease.

e Each tree root stores an offset that affects all its descendants uniformly.

e During merges, we perform a rebase step: when a tree with offset a
becomes a child of another tree with offset B, we keep the parent’s offset

as the unified value and store a lazy difference (a - B) at the losing
root, preserving logical consistency.

5 Complexities

Operation Time Description

increase(u, k) 0(1) As before — add to add[u].

decreaseOutside O0(log Split + offset update + merge.
(x, k) n)

Return(x) 0(log Sum of local adds + root offset.

n)

Space O(n) One offset per root, one add
per node.

¢ Summary
This approach:

o Keeps all logic inside the heap structure (no auxiliary trees or arrays).

e Handles both increase and decrease through small constant-size
fields (add, of fset).

e Preserves min-heap order automatically, since every comparison uses
base + add + offset.
Thus, decreaseOutside is supported in 0(log n) time with 0(n) total
space.

Question 3 part a (binary search trees)

Section A — Problem Statement (Sequence with
insert, get, shift)

@ Goal

Design a data structure that maintains an ordered sequence of elements and
supports the following operations efficiently.

% Universe & Notation

e The element domain is arbitrary (denote it by).

e Sequence length at any timeisn = 0.
e Indices are 1-based unless stated otherwise.

e LetA[1..n] denote the current sequence.

*“, Operations (to be supported)
e insertLast(x)
o Effect: Append element x € I to the end of the sequence.
o Post-state: Sequence becomes A[1..n] -x (lengthn — n+1).
e get(i)
o Input: Index i.
o Precondition: 1 = i = n.
o Output: Return the element A[i].
o No modification to the sequence.
e shift(i, x)
o Input: Index i, element x € Z.
o Precondition: 1 = i = n+1.

o Effect: Insert x at position i, shifting the current suffix A[i],
A[i+1], .., A[n] one step to the right.

o Post-state:

m Ifi = n:newsequenceis A[1..i-1] - x - A[i..n].

m Ifi = n+1:equivalent to insertLast(x).

o Length update: n — n+1.

' Required Performance Targets

e Each operation insertLast, get, shift mustrunin 0(log n) time
(worst-case or amortized; specify your chosen model).

e Space usage over n elements is 0(n).

e The interface must handle up to Q operations with the above bounds.

4 Correctness Requirements

e get (i) mustreturn exactly the element at logical position i after all
prior updates.

e shift(i, x) must preserve the relative order of all pre-existing
elements.

e Edge conditions must be validated (e.g., index bounds).

& Inputs & # Outputs (abstract API)

e Inputs: A sequence of operation calls of the forms

o insertLast(x)
o get(i)
o shift(i, x)

e Outputs: For each get (i) call, output exactly one element & X. Other
operations produce no output.

/" Notes & Conventions

e Duplicates are allowed: elements of >~ need not be distinct.

e The data structure should be generic over X (no assumptions on value
range).

e If you adopt amortized bounds, clearly state the potential argument or
accounting method (outside of this section).

. Robustness (Index Policy)

e If a call violates the precondition (e.g., i out of range), the behavior is
undefined or should raise an explicit error (choose and document one
policy).

Solution question 3 part a
@ Solution — Sequence with insertlLast, get,

shift

& Data Structure (High-Level)

Maintain the sequence in an implicit balanced binary tree (e.g., AVL or 2-3 tree)
where inorder yields the current order of elements.
Each node stores:

e val — the element,
e left, right — child pointers,

e size — number of elements in the subtree (order-statistics key).

Any worst-case balanced option is fine (AVL or 2-3). We describe
with AVL terminology; the same logic holds for a 2-3 tree.

i Invariants & Helpers

Invariants

e size(u) = size(u.left) + 1 + size(u.right)

e Inorder traversal equals the current sequence.

Helper primitives (both 0(log n) worst case):

e split(T, k) = returns (L,R) where L holds the first k elements

(positions 1. .k), and R holds the rest (k+1. .). Structure remains
balanced.

e join(A,B) = concatenation preserving order: inorder is exactly
inorder(A) - inorder(B); structure remains balanced.

Order-statistics query (kth) in 0(log n)

kth(T, k):
let L = size(T.left)
if == L+1: return T.val

if k <= L: return kth(T.left, k)

else: return kth(T.right, k - L - 1)

== Operation insertLast(x) — Append

Idea: Concatenate a single-node tree at the end.

T « join(T, node(x))

e Correctness: By join, the inorder becomes previous sequence followed
by x.

e Time: 0(log n).

2 Operation get(i) — Access by index
Idea: Order-statistics descent using subtree sizes.

return kth(T, i)

e Correctness: By the definition of kth, we return exactly the element at
logical position 1i.

e Time: 0(log n).

? Operation shift(i, x) — Insert at position i

Goal: Insert x before the current element at position i (1-based). If 1 = n+1,
this is exactly insertLast(x).

Using split/join:

(L, R) « split(T, i-1) // L: positions 1..i-1, R:
positions i..n

X — node(x) // single-node tree

T ~ join(join(L, X), R)

e Correctness:

o splitisolates the prefix A[1..i-1] from the suffix A[i..n].

o Concatenating L, X, then R yields the sequence A[1..i-1] - x -
A[i..n].

e Time: 0(log n) for one split and two join calls.

Correctness Argument (Sketch)

e Structure: The implicit tree stores only local sizes; inorder order is
preserved by construction.

e split soundness: For any k, the inorder of the left result is the first k
elements; the right result is the remaining suffix. No elements are

duplicated or lost.

e join soundness: Inorder of join(A, B) is exactly concatenation of their
inorders; no reordering occurs.

e Operations:

o insertlLast is a direct concatenation — append is correct.

o get follows the unique path determined by subtree sizes —
returns the element at index.

o shift uses split at i-1 then concatenates a singleton before
the old suffix — inserts at the desired position and preserves
relative order.

5 Complexity

e Each primitive split/ join/kth runsin 0(log n) worst case (AVL
height or 2-3 height is ©(log n)).

e Therefore:

o insertLast —0(log n)
o get—0(log n)

o shift —0(log n) (one split + two join)

Space is 0(n) for n elements (balanced tree nodes), plus 0(1) auxiliary per
operation.

If persistent (copy-on-write) nodes are used, each update allocates only
0(log n) new nodes while sharing the rest.

Edge Policy
e Indices are 1-based.

e Precondition checks (recommended):

IA
>

o get(i):require1 = i
o shift(i,x):require1 s i = n+1.

o On violation: raise a well-defined error.

7/ Notes

e You may implement split/join directly for AVL or leverage a 2-3 tree
where concatenation and splitting are particularly natural; both give the
same asymptotic guarantees.

e This section provides the solution design only (no code).

Question 3 part b (binary search trees)

Section A — Problem Statement (Sequence with
insertLast, get, Duplicate)

@ Goal

Design a data structure that maintains an ordered sequence and supports
efficient append, random access by index, and interval duplication.

%’ Universe & Notation

e Element domain: arbitrary Z.
e Sequence length: n = 0.

e Indices are 1-based.

e Current sequence: A[1..n].

e For1 = i = j = n, denote the contiguous block by A[i..j].

“., Operations to Support

e insertLast(x)
o Effect: Append x € X to the end of the sequence.
o Post-state:A — A - x,lengthn — n+1.
e get(k)
o Input: index k.
o Precondition: 1 = k = n.

o Output: Return A[k].

o No modification to the sequence.
e Duplicate(i, j)
o Input:indicesi, jwith1 = i = j = n.

o Effect: Insert a second copy of the block A[i..j] immediately
after position j.

o Formally: After the operation,

A — A[1..i-1] - A[i..j] - A[i..j] - A[j+1..n]
andn - n + (j - i+ 1).

"4 Correctness Requirements

e get(k) returns exactly the element located at logical position k after all
prior updates.

e Duplicate(i, j) places two consecutive copies of the pre-state block

A[i..j] atpositionsi..j and j+1..j+(j-1i+1) in the post-state, while
preserving the relative order of all other elements.

e Multiple operations must compose correctly on the evolving sequence.

'/ Performance Targets

e Each operation must run in 0(log n) time (worst-case or amortized;
specify the chosen model elsewhere).

e Space over n elements: 0(n).

e Additional space per update call (metadata / restructuring): 0(log n).

. Preconditions & Edge Policy

e insertLast(x): always valid.

e get(k):require1 = k = n.
e Duplicate(i, j):require1 = i = j = n.

e On violation: behavior is undefined or raise a well-specified error
(choose one policy).

e Cornercasestobe handled:1i = 1,j = n,i = j.

& Inputs & & Outputs (abstract API)

e Inputs:
o insertLast(x)
o get(k)
o Duplicate(i, j)

e Outputs: For each get(k), output exactly one element € . Other
operations produce no direct output.

Solution question 3 part b
@2 Solution — Sequence with
insertlLast, get, Duplicate

=== Data Structure (Implicit Balanced Tree)

Maintain the sequence in an implicit balanced search tree (AVL or 2-3 tree)
where inorder equals the sequence order.
Each node stores:

e val — element from X.

e left, right — child pointers.

e size — number of elements in the subtree (order statistics).
(For AVL also keep height; for 2-3, node degree invariants.)

All updates use persistent path-copy (copy-on-write) so that large
blocks can be reused structurally without element-wise copying.

This guarantees that Duplicate(i, j) runsinO(log n) time and
uses only 0(log n) new nodes.

%* Core Primitives (Both 0(1log n) worst-case)

e split(T, k) —returns (L, R) where L contains the first k elements
(positions 1. .k) and R the rest (k+1. .n).
Implementation: descend by comparing k to size(1left); rebuild/rotate

(AVL) or split nodes (2-3) on the way back, updating size (and height
for AVL).

e join(A, B) — returns the concatenation whose inorder is exactly
inorder(A) - inorder(B).
Implementation:

o AVL.: if heights differ by 22, descend along the taller spine (right of
A or left of B), attach, then rebalance on the way up; if heights are

close, create a pivot root and rebalance.

o 2-3: standard concat: bubble a separator upward, perform local
splits/merges to maintain degrees 2-3.

e kth(T, k) — order-statistics search using size(left) to return the
element at position k.

All three primitives run in 0(1log n) and preserve balance invariants.

== Operation insertLast(x) — Append

Rule:
T « join(T, node(x))

e Correctness: join preserves order and places x after all current
elements.

e Time/ Space: 0(log n) time; 0(log n) new nodes by path-copy.

A2 Operation get (k) — Random Access
Rule (order statistics):
get(k):

let L = size(T.left)

if k == L+1: return T.val

if k <= L: descend into T.left with k

else: descend into T.right with k-L-1

e Correctness: unique path determined by subtree sizes.

e Time: 0(log n).

Operation Duplicate(i, j) — Interval Duplication

Goal: transform A into
A[1..i-1] - A[i..j] - A[i..j] - A[j+1..n].

Construction with split/join (no element copying):

1. (A1, C) — split(T, j) /A1 = A[1..j],C = A[j+1..n]

2. (L, M) — split(A1, i-1)//L = A[1..i-1],M = A[i..j]
3. T - join(join(L, M), join(M, C)) // same tree M used twice

e Correctness: by the join invariant, inorder becomes
inorder(L) - inorder(M) - inorder(M) - inorder(C),
i.e., exactly two consecutive copies of the pre-state block A[i..j].

e Persistence / Structural Sharing: M is a reused subtree (same pointer) in
both places; only 0(1log n) nodes are newly created along the touched
paths.

e Time/ Space: 0(log n) time (two split, three join); 0(log n) extra
nodes.

Correctness Sketch

e Split soundness: for any k, split (T, k) partitions inorder into prefix
1. .k and suffix k+1. .n without reordering or loss.

e Join soundness: join(A, B) preserves both internal orders and places
all of A before all of B.

e insertLast: direct concatenation with a singleton preserves append
semantics.

e get: subtree-size descent pinpoints position k.
e Duplicate: by composing the two invariants above, the post-state
equals

A[1..i-1] - A[i..j] - A[i..j] - A[j+1..n].

e Persistence: since nodes are not mutated in-place, reusing M twice is
safe; later updates affect only their own top-to-leaf paths.

1 Complexity
e insertlLast, get, Duplicate: 0(log n) time each.

e Space: 0(n) for the stored elements plus 0(log n) new nodes per
update (persistent path-copy).

e Bounds hold in the worst case for AVL/2-3 trees.

& Edge Handling
e Indices are 1-based.

e Preconditions:
o get(k) requires1 = k = n.

o Duplicate(i, j) requires1 = i

IA
—
IA
=2

e Corner cases:

o i = 1 (duplicate from start),
o j = n(duplicate to end),
o 1i = j (duplicate a single element).

All handled uniformly by the same split/join pipeline.

7/ Notes

e Either AVL (with explicit rotations) or 2-3 tree (degree-balanced) can be
used; both give the same asymptotic guarantees.

Question 3 part c (binary search tree)

| | Section C — Problem Statement (halve(i, j))

@ Goal

Extend the sequence data structure (from Sections A-B) with an operation that
removes one copy when a block appears twice consecutively.

% Universe & Notation
e Element domain: arbitrary Z.
e Sequence at any time: A[1. .n], indices are 1-based.

e For1 =i = 3j = n,letA[i..j] be the contiguous block from i to j
(inclusive).

e LetL = j - i + 1 denote the block length.

“., Operation to Support

e halve(i, j)
o Input:indicesi, jwith1 = i = j = n.

o Effect:

If the block A[i. . j] is immediately followed by an identical block of the same
length, i.e.

j+Ls=sn and A[i..j] = A[j+1 .. j+L],

m then replace the two consecutive copies by a single copy
of A[i..j].

Formally, in this case the post-state is
A - A[1..j] - A[j+L+1 .. n]
m andn - n - L.

m Otherwise (no immediate duplicate), no change is made to
A.

o No reordering or modification of any other elements occurs.

("4 Correctness Requirements

e When the precondition A[i..j] = A[j+1..j+L] holds, the
subsequence at positions i. . j in the pre-state appears exactly once at
positions i. . j in the post-state; elements originally at positions
j+L+1. .n shift left by L and preserve their relative order and values.

e When the precondition does not hold, the sequence remains bit-wise
identical to the pre-state.

e Equality of blocks is element-wise equality over Z.

" Performance Targets

e Eachcalltohalve(i, j) mustruninO(log n) time (worst-case or
amortized; specify your chosen model elsewhere).

e Additional space per operation: 0(1log n) (for auxiliary structure
maintenance).

e Total space over n elements: 0(n).

. Preconditions & Edge Policy

e Require1 = i = j = n.

e The duplicate-checkusesL = j - i + 1 and is meaningful only if j +
L = n; otherwise duplication cannot hold.

e Corner cases to handle explicitly:

o 1 = j (single-element duplication),
o j = n(duplication impossible; no change),
o 1 = 1 (duplication starting at the first element).

e If an index precondition is violated, behavior is undefined or should
raise a well-specified error (choose one consistent policy).

& Inputs & & Outputs (abstract API)

e Inputcall: halve(i, j)

e Output: No direct output (the sequence may be updated in place).

Solution question 3 part c

@ Deterministic Solution — insertLast, get,
Duplicate, halve(i, j)

& Data Structure (Deterministic, Persistent)

Maintain the sequence as an implicit balanced tree (AVL or 2-3 tree) whose
inorder equals the sequence order.
Each node stores:

e val —elementin X (only at leaves or single-element nodes, per your
variant),

e left, right — child pointers,

e size — number of elements in the subtree (order statistics),

e (AVL: also height; 2-3: node degree invariants).

Persistence (copy-on-write): updates never mutate existing nodes; along each
update, only the 0(1log n) nodes on the touched path are reallocated, and all
untouched subtrees are structurally shared.

We rely on node identity (pointer/reference equality of subtree roots) as an
exact, deterministic notion of “the same block”.

%, Core Primitives (all worst-case 0(1log n))

e split(T, k) -~ (L, R)
L contains positions 1. .k, R contains k+1. .. Implement by descending
with size(1left) and (AVL) rotations / (2-3) local splits; recompute
size (and height) on the way up.

e join(A, B) - T
Concatenation preserving order: inorder is exactly inorder(A) -
inorder(B). Implement by height/degree—aware glueing and
rebalancing.

e kth(T, k)
Order-statistics search via size(left) to return the element at index k.

These are deterministic and preserve balance invariants.

<= insertLast(x) — Append (0(log n))

T « join(T, node(x))

Correctness: x appears after all existing elements.

) get(k) — Random Access (0(log n))

Standard order-statistics descent using subtree sizes.

Duplicate(i, j) — Interval Duplication (0(log
n))

Let1 =i < j =nL =3 -1+ 1.Buildusingsplit/join with structural
sharing:

(A, C) = split(T, j) /1 A =A[1..7], C = A[j+1..n]
(LFT, M) = split(A, i-1) // LFT = A[1..i-1], M = A[i..]j]
T = join(join(LFT, M), join(M, C))

Key property (deterministic): because the structure is persistent, the second
copy of A[i..j] is the exact same subtree M (same root identity). No
elementwise copying occurs.

9% halve(i, j) — Deterministic Version (0(log n))

Intent: If the block A[1i..j] is immediately followed by an identical block of
the same length, keep one copy; otherwise, do nothing.

Deterministic criterion: use subtree identity (pointer/reference equality) — no
hashing.

LetL = j - i + 1.I1fj + L > n, duplication cannot hold = no-op.
Otherwise:

1. Isolate the two candidate blocks (three splits):

(A, R) = split(T, j + L) // A =[1..j+L], R =
[j+L+1..n]
(P, Q2) = split(A, j) // P =1[1..5], Q2 =

[j#1..j+L] (2nd block)

(LFT, M1) = split(P, i-1) // LFT = [1..i-1], M1 =
[i..]] (1st block)

Now the sequence is factored as: LFT | M1 | Q2 | R.

2. Deterministic equality test (no probability):

IF root(M1) === root(Q2) // pointer/reference equality

// They are the exact same (shared) subtree created by
Duplicate

THEN
T - join(join(LFT, M1), R) // remove the second copy
ELSE

T « join(join(join(LFT, M1), Q2), R) // restore
original

Because nodes are immutable (persistent), root(M1) === root(Q2) iff the
two blocks are structurally the same object, which in this design arises exactly
when they were produced by a prior Duplicate and have not been modified.

Correctness (deterministic)

e Splits preserve order and partition the sequence into four consecutive
segments without loss.

e Pointer-equality is an exact, deterministic predicate for “same block”
under persistence.

e Joins preserve order; thus:

o Ifequal: M1 | Q2 replaced by M1 = post-stateis A[1..5]
A[j+L+1..n].

o If not equal: rejoining LFT | M1 | Q2 | Rrestores the original
sequence.

Complexity

e 3x split + 2x (or 3x) join = 0(log n) worst-case time;
e 0(log n) new nodes (path-copy) in persistence;

e Total space remains O(n).

Scope of the deterministic predicate

This halve(i, j) collapses exact duplicates that were created by the data
structure itself (via Duplicate) because only then the two blocks share the
same persistent subtree. Identical blocks formed by coincidental edits
elsewhere will not be collapsed (by design), preserving worst-case 0(log n)
deterministically and avoiding any probabilistic hashing.

	🧠 Problem Statement
	🎯 Task
	⏱️ Required Analysis
	📋 Output
	🧠 Given Conditions
	⚙️ Algorithm: Radix (LSD) or Counting Sort
	🧮 Complexity Summary
	🧾 Correctness
	⚠️ Edge Cases
	✅ Final Result
	🧠 Problem Statement
	⚙️ Operations
	🎯 Required Analysis
	⏱️ Expected Output
	✅ Assumptions & Invariant
	⚙️ Algorithm: insert(x)
	🧠 Correctness Sketch
	⏱️ Complexity Analysis
	📌 Final Results (Asymptotics)
	🎯 Required Tasks
	⏱️ Expected Output
	

	❌ Claim Check: The Proposed Algorithm Is Not Correct
	🛠️ Fix That Makes It Correct
	✅ Correctness (Sketch)
	⏱️ Time Complexity for n Insertions
	📌 Summary
	🧠 Formal Solution — Using Only the Heap Structure
	⚙️ Data Fields
	➕ Operation — increase(u, k)
	🔎 Operation — Return(x)
	✅ Correctness
	⏱️ Complexity Summary
	🧩 Notes
	➖ Section B — Formal Question (decrease)
	⚙️ Key Idea
	🏗️ Data Fields
	➕ Operation — decreaseOutside(x, k)
	🔎 Operation — Return(x)
	✅ Correctness
	⏱️ Complexities
	💡 Summary
	🎯 Goal
	🧩 Universe & Notation
	🔧 Operations (to be supported)
	⏱️ Required Performance Targets
	✅ Correctness Requirements
	📥 Inputs & 📤 Outputs (abstract API)
	📝 Notes & Conventions
	🔒 Robustness (Index Policy)
	📦 Data Structure (High-Level)
	🧰 Invariants & Helpers
	➕ Operation insertLast(x) — Append
	🔎 Operation get(i) — Access by index
	📍 Operation shift(i, x) — Insert at position i
	✅ Correctness Argument (Sketch)
	⏱️ Complexity
	🧪 Edge Policy
	📝 Notes
	🎯 Goal
	🧩 Universe & Notation
	🔧 Operations to Support
	✅ Correctness Requirements
	⏱️ Performance Targets
	🔒 Preconditions & Edge Policy
	📥 Inputs & 📤 Outputs (abstract API)
	🧱 Data Structure (Implicit Balanced Tree)
	🧩 Core Primitives (Both O(log n) worst-case)
	➕ Operation insertLast(x) — Append
	🔎 Operation get(k) — Random Access
	📀 Operation Duplicate(i, j) — Interval Duplication
	✅ Correctness Sketch
	⏱️ Complexity
	🔒 Edge Handling
	📝 Notes
	📗 Section C — Problem Statement (halve(i, j))
	🎯 Goal
	🧩 Universe & Notation
	🔧 Operation to Support
	✅ Correctness Requirements
	⏱️ Performance Targets
	🔒 Preconditions & Edge Policy
	📥 Inputs & 📤 Outputs (abstract API)
	📦 Data Structure (Deterministic, Persistent)
	🔧 Core Primitives (all worst-case O(log n))
	➕ insertLast(x) — Append (O(log n))
	🔎 get(k) — Random Access (O(log n))
	🧯 Duplicate(i, j) — Interval Duplication (O(log n))
	✂️ halve(i, j) — Deterministic Version (O(log n))
	Correctness (deterministic)
	Complexity
	Scope of the deterministic predicate

