

Free sample questions

Question 1 part a (sorting)

Question (Part A): Partially Sorted Heap Levels

Problem Statement

We are given a binary heap (complete binary tree) that contains n elements. The heap has the following special property:

- All even-numbered levels (level 0, 2, 4, ...) are sorted from left to right.
- All odd-numbered levels (level 1, 3, 5, ...) are not sorted in any way.

It is also known that the average value of all elements in the heap equals n^{100} .

Task

Design the most efficient algorithm possible to sort all n elements of the heap into non-decreasing order, given the above structure.

Required Analysis

1. Describe the time complexity of your algorithm using asymptotic notation (O , Θ , Ω).
2. Justify why the chosen algorithm is asymptotically optimal under the given conditions.

Output

Provide only the algorithm design and asymptotic analysis — no implementation code is required.

solution question 1 part a

❖ Solution (Part A): Using the Bounded Average for Linear-Time Sorting

Given Conditions

- The heap has n elements.
- All even levels are sorted; odd levels are not.
- The average value of all elements equals n^{100} .

Therefore, if all values are non-negative integers, the total sum is

$$\sum a_i = n \cdot n^{100} = n^{101}$$

- implying that the maximum possible value satisfies $\max \leq n^{101}$.

Hence, all keys lie within a polynomial range

$$0 \leq a_i \leq n^{101}$$

which allows the use of linear-time integer sorting.

Algorithm: Radix (LSD) or Counting Sort

We ignore the internal heap structure and exploit the bounded domain.

1. Representation.

Represent each integer a_i in base $B = n$ (or equivalently, $B = 2^{\lceil \log_2 n \rceil}$).

Number of digits.

Since $U \leq n^{101}$, the number of base-B digits is

$$\log_B(U) = \log_n(n^{101}) = 101$$

2. — a fixed constant.

3. Sorting process.

Perform LSD Radix Sort, where each pass uses a stable Counting Sort on one digit.

- Each Counting Sort costs $O(n + B) = O(n)$ (since $B = n$).
- Total number of passes = 101 (constant).
- Total running time: $O(101 \cdot n) = O(n)$.

4. Memory usage.

Each pass uses auxiliary arrays of size $O(B) = O(n)$, so total space is $O(n)$.

Complexity Summary

Operation	Time	Space	Notes
Counting Sort (per pass)	$O(n)$	$O(n)$	Stable
101 passes total	$O(n)$	$O(n)$	Constant factor
Final merged result	$O(n)$	—	Sorted array

Correctness

- Counting Sort guarantees stable sorting within each digit.
- LSD Radix Sort preserves global nondecreasing order across all 101 digits.

- Since U is polynomially bounded and the number of passes is constant, the final array is globally sorted in linear time.

⚠ Edge Cases

- If negative integers exist, shift all keys by $+|\min|$ to make them non-negative, or sort positive and negative parts separately, each in linear time, and merge.
- If keys are non-integers, Radix/Counting does not apply directly — revert to the $\Theta(n \log n)$ comparison-based method.

✓ Final Result

Under the assumption of non-negative integer keys with an average value of n^{100} ,

the key domain is polynomially bounded ($U \leq n^{101}$), so:

Total sorting time: $\Theta(n)$

Total space: $\Theta(n)$

This is asymptotically optimal for integer sorting and strictly better than the $\Theta(n \log n)$ bound of comparison-based methods.

Question 1 part b (sorting)

Question: Sorted Dynamic Array with Partial Sorting

Problem Statement

We maintain a sorted dynamic array that supports element insertions. Initially, the array is empty and has a fixed capacity of 1.

Each insertion works as follows:

1. If there is free space, the new element is inserted into the array in its correct sorted position.
2. If the array becomes full after the insertion:
 - o Sort the newly inserted right half of the array.
 - o Merge the right half with the already sorted left half.
 - o Double the array's capacity.
 - o Copy all elements into the new larger array.

Operations

- `insert(x)` – inserts element `x` into the sorted dynamic array, following the above rules.

Required Analysis

1. Find the worst-case time complexity of a single insertion operation.
2. Determine the total time complexity for performing `n` insertions starting from an empty array.

Expected Output

Express both results using asymptotic notation (Θ , \mathcal{O} , Ω) and provide clear justification for the growth rate.

Solution question 1 part b

❖ Solution: Sorted Dynamic Array with Partial Sorting

✓ Assumptions & Invariant

- We maintain an array with capacity C (starting at 1), size t ($0 \leq t \leq C$).
- Invariant between rebuilds:
 - The left half $[0 \dots \lfloor C/2 \rfloor - 1]$ is sorted.
 - The right half $[\lfloor C/2 \rfloor \dots t-1]$ contains the recently appended elements (not necessarily sorted).
- When the array becomes full ($t = C$), we finish sorting the current block and rebuild.

⚙ Algorithm: `insert(x)`

1. If $t < C$ (has room):
 - append x to position t .
 - $t \leftarrow t + 1$.
 - (No shifting; we do not maintain global sortedness continuously—only at rebuilds.)
2. If $t = C$ (trigger rebuild):
 - Let $L := A[0 \dots C/2-1]$ (already sorted by the previous rebuild), $R := A[C/2 \dots C-1]$ (unsorted block just filled).
 - Sort R by any comparison sort: $\Theta((C/2) \log(C/2)) = \Theta(C \log C)$.

- Merge L and sorted R into a single sorted array of size C: $\Theta(C)$.
- Allocate new array of capacity $2C$ and copy the C sorted elements: $\Theta(C)$.
- Set $C \leftarrow 2C$, t remains $C/2 + C/2 = C$ after the merge-copy (array is now globally sorted again, left half will serve as the next “frozen” sorted prefix).

After each rebuild, the entire prefix of length t is sorted; between rebuilds, only the left half is sorted, and we accumulate unsorted elements in the right half until the next rebuild.

Correctness Sketch

- Base: Initially $C=1$, after first rebuild (if any), the array of length C is fully sorted.
- Maintenance: Between rebuilds, the left half remains untouched (thus sorted). New items are appended to the right half.
- Rebuild step: Sorting R and merging with L yields a globally sorted array of length C.
- Progress: Capacity doubles; hence rebuilds are finite and happen at sizes $1, 2, 4, 8, \dots$.

Complexity Analysis

- Single insertion (non-rebuild): $O(1)$ (pure append).
- Single insertion that triggers rebuild at capacity C:
 - Sorting the right half: $\Theta(C \log C)$
 - Merging halves: $\Theta(C)$

- Alloc+copy to capacity $2C$: $\Theta(C)$
- Worst case: $\Theta(C \log C)$ (dominated by the sort).

Total for n insertions (starting empty):

Rebuilds occur at capacities $1, 2, 4, \dots, 2^k \approx n$. The cumulative cost is

$$\sum_{i=0}^{\lfloor \log_2 n \rfloor} \Theta(2^i \cdot i) = \Theta(n \log n).$$

- Non-rebuild inserts contribute $\Theta(n)$ and are dominated.

Amortized per insertion:

$$\Theta(n \log n) / n = \Theta(\log n).$$

•

📌 Final Results (Asymptotics)

- Worst-case time of a single insert: $\Theta(C \log C)$ when it triggers a rebuild at capacity C .
- Total time for n inserts: $\Theta(n \log n)$.
- Amortized time per insert: $\Theta(\log n)$.

Question 1 part c (sorting)

Question (Part C): Dynamic Sorted Array – Alternative Construction

Problem Statement

We wish to build a dynamic sorted array using the following algorithm:

1. Each time a new element x is inserted, it is simply appended to the end of the array.

2. The left half of the array is always assumed to be sorted, while the right half contains the newly inserted unsorted elements.
3. For each newly inserted element x , we perform a binary search on the left (sorted) half to find the position where x should appear in sorted order.
4. We then store an auxiliary field in x that records this target position.
5. Once the array becomes full, we double its capacity, and for each element in the right half, we move it to the position indicated by its stored index.
6. Any remaining empty locations in the left half are filled in place with the corresponding elements during the copy process.

Required Tasks

1. Determine whether this algorithm always produces a correctly sorted dynamic array once the array becomes full.
2. If it is correct, prove its correctness formally and analyze the total time complexity for n insertions.
3. If it is not correct, provide a counterexample that shows the failure, explain why it occurs, and propose a modification that fixes the algorithm while keeping it as efficient as possible.

Expected Output

Provide a clear proof or counterexample, supported by asymptotic analysis (Θ , \mathcal{O} , Ω), and discuss the resulting time complexity of all n insertions.

Solution question 1 part c

✖ Solution (Part C): Dynamic Sorted Array – Alternative Construction

✖ Claim Check: The Proposed Algorithm Is Not Correct

Counterexample. Consider capacity $C = 4$ at the moment it becomes full.

Left (sorted) half: [2, 100].

Right (unsorted) half (in arrival order): [60, 50].

Both 60 and 50 fall—by binary search over the left half—into the *same* target interval (2, 100). If we only “store” that interval/position and later place both according to their stored positions *without ordering them relative to each other*, we may realize the final layout [2, 60, 50, 100], which is not sorted. Therefore, the algorithm does not guarantee a sorted array upon expansion.

🛠 Fix That Makes It Correct

To ensure correctness while keeping the same spirit:

1. Interval assignment: For each element in the right half, compute its target interval (via binary search over the left half).
2. Intra-interval ordering: Before the rebuild, sort the elements of the right half (globally, or per-interval buckets).
3. Stable merge by intervals: Rebuild by stable merging each left-half segment with its corresponding (now sorted) right-half elements.

This guarantees that within every interval the relative order is ascending, and concatenating the intervals yields a globally sorted array.

✓ Correctness (Sketch)

- The left half is sorted by invariant.

- After sorting the right half (globally or per-interval), all elements mapped to a given interval are in nondecreasing order.
- A stable merge of each interval's left-half elements with its right-half elements preserves sortedness within the interval.
- Concatenating intervals in left-to-right order yields a fully sorted array.

✓

⌚ Time Complexity for n Insertions

We analyze rebuilds at capacities $1, 2, 4, 8, \dots, 2^k \approx n$.

- At capacity C :
 - Sorting the right half ($\approx C/2$ items): $\Theta((C/2) \cdot \log(C/2)) = \Theta(C \log C)$
 - Stable merging halves: $\Theta(C)$
 - Allocating new array of size $2C$ and copying: $\Theta(C)$
 - Total per rebuild: $\Theta(C \log C)$ (dominated by sorting)
- Summation over rebuilds:
 $\sum_{i=0}^{\lfloor \log_2 n \rfloor} \Theta(2^i \cdot i) = \Theta(n \log n)$..
- Non-rebuild insertions: $O(1)$ each; total $O(n)$ and dominated.

Final bounds:

- n insertions: $\Theta(n \log n)$
- Amortized per insertion: $\Theta(\log n)$
- Worst case for an insertion that triggers rebuild at capacity C : $\Theta(C \log C)$

Summary

- As stated, the algorithm is incorrect (counterexample above).
- With the fix (sorting the right half and stable interval-wise merging), it becomes correct with total insertion cost $\Theta(n \log n)$ and amortized $\Theta(\log n)$.

Question 2 part a (heaps)

Section A — Formal Question

You are given a static binomial min-heap containing n elements.

No insertions or deletions are allowed.

Design a data structure that supports the following two operations efficiently:

1. **increase(x, k) —**

Given a pointer to a node x , add the value k to every key in the subtree rooted at x .

2. **Return(x) —**

Given a pointer to a node x whose original key was x , return its current key after all previous **increase** operations have been applied.

The goal is to achieve the lowest possible time complexity for both operations while keeping the total memory usage within $O(n)$.

Solution question part a

Formal Solution — Using Only the Heap Structure

We are given a static binomial min-heap (no insertions or deletions).

We will not use any external data structures** — the solution works entirely within the heap itself.

Data Fields

Each node v in the heap stores:

- $\text{base}[v]$: its original key.
- $\text{parent}[v]$: pointer to its parent node (naturally available in a binomial heap).
- $\text{add}[v]$: a local increment field, initially 0.

⊕ Operation — $\text{increase}(u, k)$

Add k to every node in the subtree rooted at u .

We simply record this increment locally at u :

$\text{increase}(u, k)$:

```
   $\text{add}[u] += k$ 
```

Time: $O(1)$

🔍 Operation — $\text{Return}(x)$

Return the current key of node x after all previous increase operations.

We accumulate the increments of all ancestors (including x itself):

$\text{Return}(x)$:

```
   $\text{sum} \leftarrow 0$   
  
   $v \leftarrow x$   
  
  while  $v \neq \text{null}$ :  
     $\text{sum} \leftarrow \text{sum} + \text{add}[v]$   
  
     $v \leftarrow \text{parent}[v]$ 
```

```
return base[x] + sum
```

Time: $O(\text{height}) = O(\log n)$ in a binomial heap.

Space: $O(n)$ total (one add field per node).

✓ Correctness

Each `increase(u, k)` conceptually adds k to all descendants of u .

For any node x , its logical key equals:

$\text{key}(x) = \text{base}[x] + \sum \text{add}[a]$ over all ancestors a on the path
 $\text{root} \rightarrow x$ (including x)

The `Return(x)` operation explicitly sums these contributions, producing the exact updated key.

⌚ Complexity Summary

Operation	Time	Space	Description
-----------	------	-------	-------------

<code>increase(u, k)</code>	$O(1)$	$O(n)$	Adds k to all descendants lazily.
-----------------------------	--------	--------	-------------------------------------

<code>Return(x)</code>	$O(\log n)$	$O(n)$	Sums increments along path to root.
------------------------	-------------	--------	-------------------------------------

❖ Notes

- This solution uses only the parent pointers already available in a binomial heap.

- No additional trees, segment structures, or index arrays are needed.
- Optional optimization: during traversal (e.g., inside `Return`), you may “push” the accumulated add down to children to reduce future path costs — without affecting asymptotic bounds.

Question 2 part b (heaps)

— Section B — Formal Question (`decrease`)

You are given the same static binomial min-heap from Section A (no insertions, deletions, or melds).

The topology of the forest is fixed, and each node can be referenced by a pointer.

Add support for the following operation, while keeping `Return(x)` from Section A:

1. `decrease(x, k)` —

Given a pointer to a node `x` and a non-negative number `k`, subtract `k` from the key of every node in the subtree rooted at `x`.

Requirements (no solution requested):

- Maintain correctness of `Return(x)` (it should return the current key of `x` after any sequence of `increase/decrease` operations).
- Aim for the best possible asymptotic time bounds per operation under $O(n)$ total space.
- The binomial min-heap property must remain logically consistent with the updated keys (you do not need to restructure the heap since the topology is static).
- Clearly state the time and space complexities you achieve for `decrease` and `Return`.

Solution question 2 part b

— Formal Solution — Using a Reduction Field and Subtree Splitting

We are given a static binomial min-heap (a forest of binomial trees).

We extend the previous solution to support the `decrease(x, k)` operation, where we must subtract k from all nodes outside the subtree of x , while keeping the structure itself unchanged.

Key Idea

Instead of explicitly visiting all nodes outside the subtree, we:

1. Split the heap into two parts:
 - `H_in`: the subtree rooted at x (the “protected” part — no decrease).
 - `H_out`: the remaining forest (all other trees).
2. Maintain for each heap component (tree root) a reduction field `red[root]` that represents the global decrease applied to that entire component.
3. When we later merge the two parts, we correct the key of the protected subtree’s root to preserve the real minimum order.

Data Fields

Each root in the binomial forest stores:

- `offset[root]` — the total global shift (reduction or addition) applied to all keys in its component.
- Each node keeps its usual:
 - `base[v]` — original key,

- `add[v]` — lazy increment field (from Section A),
- `parent[v]` — pointer to parent node.

⊕ Operation — `decreaseOutside(x, k)`

1. Split the heap into:

- the subtree `H_in` rooted at `x`;
- the remaining forest `H_out`.

Apply the global decrease:

`offset[H_out] -= k`

2. (this conceptually subtracts `k` from all nodes outside the subtree).

3. When re-merging `H_in` and `H_out`:

- the root of `H_in` preserves its original offset (since it was not decreased);

when linking two roots `r1` and `r2`, always compare

`key(r) = base[r] + add[r] + offset[root_of_tree(r)]`

- so that comparisons remain consistent even under different offsets.

🔍 Operation — `Return(x)`

To return the current key of node `x`:

1. Start from `x`, follow parent pointers to its root `r`.

2. Accumulate along the path:

- o all $\text{add}[v]$ values (as in Section A),
- o plus the $\text{offset}[r]$ of the root.

Return:

```
key(x) = base[x] +  $\sum$  add[a] (ancestors a from root→x) +  
offset[root(x)]
```

3.

Correctness

- The split ensures that only the complement of the subtree receives the global decrease.
- Each tree root stores an offset that affects all its descendants uniformly.
- During merges, we perform a rebase step: when a tree with offset α becomes a child of another tree with offset β , we keep the parent's offset as the unified value and store a lazy difference $(\alpha - \beta)$ at the losing root, preserving logical consistency.

Complexities

Operation	Time	Description
<code>increase(u, k)</code>	$O(1)$	As before — add to $\text{add}[u]$.
<code>decreaseOutside(x, k)</code>	$O(\log n)$	Split + offset update + merge.

Return(x) $O(\log n)$ Sum of local adds + root offset.

Space $O(n)$ One offset per root, one add per node.

Summary

This approach:

- Keeps all logic inside the heap structure (no auxiliary trees or arrays).
- Handles both increase and decrease through small constant-size fields (add, offset).
- Preserves min-heap order automatically, since every comparison uses base + add + offset.
Thus, `decreaseOutside` is supported in $O(\log n)$ time with $O(n)$ total space.

Question 3 part a (binary search trees)

Section A — Problem Statement (Sequence with insert, get, shift)

Goal

Design a data structure that maintains an ordered sequence of elements and supports the following operations efficiently.

Universe & Notation

- The element domain is arbitrary (denote it by Σ).

- Sequence length at any time is $n \geq 0$.
- Indices are 1-based unless stated otherwise.
- Let $A[1..n]$ denote the current sequence.

Operations (to be supported)

- **insertLast(x)**
 - Effect: Append element $x \in \Sigma$ to the end of the sequence.
 - Post-state: Sequence becomes $A[1..n] \cdot x$ (length $n \leftarrow n+1$).
- **get(i)**
 - Input: Index i .
 - Precondition: $1 \leq i \leq n$.
 - Output: Return the element $A[i]$.
 - No modification to the sequence.
- **shift(i, x)**
 - Input: Index i , element $x \in \Sigma$.
 - Precondition: $1 \leq i \leq n+1$.
 - Effect: Insert x at position i , shifting the current suffix $A[i]$, $A[i+1]$, ..., $A[n]$ one step to the right.
 - Post-state:
 - If $i \leq n$: new sequence is $A[1..i-1] \cdot x \cdot A[i..n]$.
 - If $i = n+1$: equivalent to `insertLast(x)`.

- Length update: $n \leftarrow n+1$.

Required Performance Targets

- Each operation `insertLast`, `get`, `shift` must run in $O(\log n)$ time (worst-case or amortized; specify your chosen model).
- Space usage over n elements is $O(n)$.
- The interface must handle up to Q operations with the above bounds.

Correctness Requirements

- `get(i)` must return exactly the element at logical position i after all prior updates.
- `shift(i, x)` must preserve the relative order of all pre-existing elements.
- Edge conditions must be validated (e.g., index bounds).

Inputs & Outputs (abstract API)

- Inputs: A sequence of operation calls of the forms
 - `insertLast(x)`
 - `get(i)`
 - `shift(i, x)`
- Outputs: For each `get(i)` call, output exactly one element $\in \Sigma$. Other operations produce no output.

Notes & Conventions

- Duplicates are allowed: elements of Σ need not be distinct.
- The data structure should be generic over Σ (no assumptions on value range).
- If you adopt amortized bounds, clearly state the potential argument or accounting method (outside of this section).

Robustness (Index Policy)

- If a call violates the precondition (e.g., i out of range), the behavior is undefined or should raise an explicit error (choose and document one policy).

Solution question 3 part a

Solution — Sequence with `insertLast`, `get`, `shift`

Data Structure (High-Level)

Maintain the sequence in an implicit balanced binary tree (e.g., AVL or 2–3 tree) where inorder yields the current order of elements.

Each node stores:

- `val` — the element,
- `left`, `right` — child pointers,
- `size` — number of elements in the subtree (order-statistics key).

Any worst-case balanced option is fine (AVL or 2–3). We describe with AVL terminology; the same logic holds for a 2–3 tree.

Invariants & Helpers

Invariants

- `size(u) = size(u.left) + 1 + size(u.right)`
- Inorder traversal equals the current sequence.

Helper primitives (both $O(\log n)$ worst case):

- `split(T, k) ⇒ returns (L, R) where L holds the first k elements (positions 1..k), and R holds the rest (k+1..). Structure remains balanced.`
- `join(A, B) ⇒ concatenation preserving order: inorder is exactly inorder(A) · inorder(B); structure remains balanced.`

Order-statistics query (kth) in $O(\log n)$

`kth(T, k):`

```
let L = size(T.left)

if k == L+1: return T.val

if k <= L:   return kth(T.left, k)

else:         return kth(T.right, k - L - 1)
```

⊕ Operation `insertLast(x)` — Append

Idea: Concatenate a single-node tree at the end.

`T ← join(T, node(x))`

- Correctness: By `join`, the inorder becomes previous sequence followed by `x`.

- Time: $O(\log n)$.

Operation `get(i)` — Access by index

Idea: Order-statistics descent using subtree sizes.

```
return kth(T, i)
```

- Correctness: By the definition of `kth`, we return exactly the element at logical position `i`.
- Time: $O(\log n)$.

Operation `shift(i, x)` — Insert at position `i`

Goal: Insert `x` before the current element at position `i` (1-based). If `i = n+1`, this is exactly `insertLast(x)`.

Using `split/join`:

```
(L, R) ← split(T, i-1)      // L: positions 1..i-1,   R:  
positions i..n  
  
X      ← node(x)           // single-node tree  
  
T      ← join( join(L, X), R )
```

- Correctness:

- `split` isolates the prefix `A[1..i-1]` from the suffix `A[i..n]`.

- Concatenating L , X , then R yields the sequence $A[1..i-1] \cdot x \cdot A[i..n]$.
- Time: $O(\log n)$ for one split and two join calls.

Correctness Argument (Sketch)

- Structure: The implicit tree stores only local sizes; inorder order is preserved by construction.
- split soundness: For any k , the inorder of the left result is the first k elements; the right result is the remaining suffix. No elements are duplicated or lost.
- join soundness: Inorder of $\text{join}(A, B)$ is exactly concatenation of their inorders; no reordering occurs.
- Operations:
 - `insertLast` is a direct concatenation \rightarrow append is correct.
 - `get` follows the unique path determined by subtree sizes \rightarrow returns the element at index.
 - `shift` uses `split` at $i-1$ then concatenates a singleton before the old suffix \rightarrow inserts at the desired position and preserves relative order.

Complexity

- Each primitive `split` / `join` / `kth` runs in $O(\log n)$ worst case (AVL height or 2-3 height is $\Theta(\log n)$).
- Therefore:

- `insertLast` — $O(\log n)$
- `get` — $O(\log n)$
- `shift` — $O(\log n)$ (**one split + two join**)

Space is $O(n)$ for n elements (balanced tree nodes), plus $O(1)$ auxiliary per operation.

If persistent (copy-on-write) nodes are used, each update allocates only $O(\log n)$ new nodes while sharing the rest.

Edge Policy

- Indices are 1-based.
- Precondition checks (recommended):
 - `get(i)`: require $1 \leq i \leq n$.
 - `shift(i, x)`: require $1 \leq i \leq n+1$.
 - On violation: raise a well-defined error.

Notes

- You may implement `split/join` directly for AVL or leverage a 2–3 tree where concatenation and splitting are particularly natural; both give the same asymptotic guarantees.
- This section provides the solution design only (no code).

Question 3 part b (binary search trees)

Section A — Problem Statement (Sequence with `insertLast`, `get`, `Duplicate`)

Goal

Design a data structure that maintains an ordered sequence and supports efficient append, random access by index, and interval duplication.

Universe & Notation

- Element domain: arbitrary Σ .
- Sequence length: $n \geq 0$.
- Indices are 1-based.
- Current sequence: $A[1..n]$.
- For $1 \leq i \leq j \leq n$, denote the contiguous block by $A[i..j]$.

Operations to Support

- `insertLast(x)`
 - Effect: Append $x \in \Sigma$ to the end of the sequence.
 - Post-state: $A \leftarrow A \cdot x$, length $n \leftarrow n+1$.
- `get(k)`
 - Input: index k .
 - Precondition: $1 \leq k \leq n$.
 - Output: Return $A[k]$.

- No modification to the sequence.
- **Duplicate(*i, j*)**
 - Input: indices *i, j* with $1 \leq i \leq j \leq n$.
 - Effect: Insert a second copy of the block $A[i..j]$ immediately after position *j*.
 - Formally: After the operation,

$$A \leftarrow A[1..i-1] \cdot A[i..j] \cdot A[i..j] \cdot A[j+1..n]$$
and $n \leftarrow n + (j - i + 1)$.

Correctness Requirements

- **get(*k*)** returns exactly the element located at logical position *k* after all prior updates.
- **Duplicate(*i, j*)** places two consecutive copies of the pre-state block $A[i..j]$ at positions $i..j$ and $j+1..j+(j-i+1)$ in the post-state, while preserving the relative order of all other elements.
- Multiple operations must compose correctly on the evolving sequence.

Performance Targets

- Each operation must run in $O(\log n)$ time (worst-case or amortized; specify the chosen model elsewhere).
- Space over *n* elements: $O(n)$.
- Additional space per update call (metadata / restructuring): $O(\log n)$.

Preconditions & Edge Policy

- **insertLast(*x*)**: always valid.

- `get(k)`: require $1 \leq k \leq n$.
- `Duplicate(i, j)`: require $1 \leq i \leq j \leq n$.
- On violation: behavior is undefined or raise a well-specified error (choose one policy).
- Corner cases to be handled: $i = 1, j = n, i = j$.

Inputs & Outputs (abstract API)

- Inputs:
 - `insertLast(x)`
 - `get(k)`
 - `Duplicate(i, j)`
- Outputs: For each `get(k)`, output exactly one element $\in \Sigma$. Other operations produce no direct output.

Solution question 3 part b

Solution — Sequence with `insertLast`, `get`, `Duplicate`

Data Structure (Implicit Balanced Tree)

Maintain the sequence in an implicit balanced search tree (AVL or 2-3 tree) where inorder equals the sequence order.

Each node stores:

- `val` — element from Σ .
- `left`, `right` — child pointers.

- **size** — number of elements in the subtree (order statistics).
(For AVL also keep **height**; for 2–3, node degree invariants.)

All updates use persistent path-copy (copy-on-write) so that large blocks can be reused structurally without element-wise copying. This guarantees that `Duplicate(i, j)` runs in $O(\log n)$ time and uses only $O(\log n)$ new nodes.

Core Primitives (Both $O(\log n)$ worst-case)

- `split(T, k) → returns (L, R) where L contains the first k elements (positions 1..k) and R the rest (k+1..n).`
Implementation: descend by comparing k to `size(left)`; rebuild/rotate (AVL) or split nodes (2–3) on the way back, updating `size` (and `height` for AVL).
- `join(A, B) → returns the concatenation whose inorder is exactly inorder(A) · inorder(B).`
Implementation:
 - AVL: if heights differ by ≥ 2 , descend along the taller spine (right of A or left of B), attach, then rebalance on the way up; if heights are close, create a pivot root and rebalance.
 - 2–3: standard `concat`: bubble a separator upward, perform local splits/merges to maintain degrees 2–3.
- `kth(T, k) → order-statistics search using size(left) to return the element at position k.`

All three primitives run in $O(\log n)$ and preserve balance invariants.

⊕ Operation `insertLast(x)` — Append

Rule:

```
T ← join(T, node(x))
```

- **Correctness:** join preserves order and places x after all current elements.
- **Time / Space:** $O(\log n)$ time; $O(\log n)$ new nodes by path-copy.

Operation $\text{get}(k)$ — Random Access

Rule (order statistics):

```
get(k):
```

```
let L = size(T.left)

if k == L+1: return T.val

if k <= L:   descend into T.left with k

else:         descend into T.right with k-L-1
```

- **Correctness:** unique path determined by subtree sizes.
- **Time:** $O(\log n)$.

Operation $\text{Duplicate}(i, j)$ — Interval Duplication

Goal: transform A into

$$A[1..i-1] \cdot A[i..j] \cdot A[i..j] \cdot A[j+1..n].$$

Construction with split/join (no element copying):

1. $(A1, C) \leftarrow \text{split}(T, j) \quad // A1 = A[1..j], C = A[j+1..n]$

2. $(L, M) \leftarrow \text{split}(A[1..i-1], i-1) // L = A[1..i-1], M = A[i..j]$
3. $T \leftarrow \text{join}(\text{join}(L, M), \text{join}(M, C)) // \text{same tree } M \text{ used twice}$

- **Correctness:** by the `join` invariant, `inorder` becomes $\text{inorder}(L) \cdot \text{inorder}(M) \cdot \text{inorder}(M) \cdot \text{inorder}(C)$, i.e., exactly two consecutive copies of the pre-state block $A[i..j]$.
- **Persistence / Structural Sharing:** M is a reused subtree (same pointer) in both places; only $O(\log n)$ nodes are newly created along the touched paths.
- **Time / Space:** $O(\log n)$ time (two `split`, three `join`); $O(\log n)$ extra nodes.

✓ Correctness Sketch

- **Split soundness:** for any k , `split(T, k)` partitions `inorder` into prefix $1..k$ and suffix $k+1..n$ without reordering or loss.
- **Join soundness:** `join(A, B)` preserves both internal orders and places all of A before all of B .
- **insertLast:** direct concatenation with a singleton preserves append semantics.
- **get:** subtree-size descent pinpoints position k .
- **Duplicate:** by composing the two invariants above, the post-state equals $A[1..i-1] \cdot A[i..j] \cdot A[i..j] \cdot A[j+1..n]$.
- **Persistence:** since nodes are not mutated in-place, reusing M twice is safe; later updates affect only their own top-to-leaf paths.

Complexity

- `insertLast`, `get`, `Duplicate`: $O(\log n)$ time each.
- Space: $O(n)$ for the stored elements plus $O(\log n)$ new nodes per update (persistent path-copy).
- Bounds hold in the worst case for AVL/2–3 trees.

Edge Handling

- Indices are 1-based.
- Preconditions:
 - `get(k)` requires $1 \leq k \leq n$.
 - `Duplicate(i, j)` requires $1 \leq i \leq j \leq n$.
- Corner cases:
 - $i = 1$ (duplicate from start),
 - $j = n$ (duplicate to end),
 - $i = j$ (duplicate a single element).

All handled uniformly by the same `split/join` pipeline.

Notes

- Either AVL (with explicit rotations) or 2–3 tree (degree-balanced) can be used; both give the same asymptotic guarantees.

Question 3 part c (binary search tree)

Section C — Problem Statement (`halve(i, j)`)

Goal

Extend the sequence data structure (from Sections A–B) with an operation that removes one copy when a block appears twice consecutively.

Universe & Notation

- Element domain: arbitrary Σ .
- Sequence at any time: $A[1..n]$, indices are 1-based.
- For $1 \leq i \leq j \leq n$, let $A[i..j]$ be the contiguous block from i to j (inclusive).
- Let $L = j - i + 1$ denote the block length.

Operation to Support

- `halve(i, j)`
 - Input: indices i, j with $1 \leq i \leq j \leq n$.
 - Effect:

If the block $A[i..j]$ is immediately followed by an identical block of the same length, i.e.

$j + L \leq n$ and $A[i..j] = A[j+1 .. j+L]$,

- then replace the two consecutive copies by a single copy of $A[i..j]$.

Formally, in this case the post-state is

$A \leftarrow A[1..j] \cdot A[j+L+1 .. n]$

- and $n \leftarrow n - L$.
- Otherwise (no immediate duplicate), no change is made to A .
 - No reordering or modification of any other elements occurs.

Correctness Requirements

- When the precondition $A[i..j] = A[j+1..j+L]$ holds, the subsequence at positions $i..j$ in the pre-state appears exactly once at positions $i..j$ in the post-state; elements originally at positions $j+L+1..n$ shift left by L and preserve their relative order and values.
- When the precondition does not hold, the sequence remains bit-wise identical to the pre-state.
- Equality of blocks is element-wise equality over Σ .

Performance Targets

- Each call to `halve(i, j)` must run in $O(\log n)$ time (worst-case or amortized; specify your chosen model elsewhere).
- Additional space per operation: $O(\log n)$ (for auxiliary structure maintenance).
- Total space over n elements: $O(n)$.

Preconditions & Edge Policy

- Require $1 \leq i \leq j \leq n$.

- The duplicate-check uses $L = j - i + 1$ and is meaningful only if $j + L \leq n$; otherwise duplication cannot hold.
- Corner cases to handle explicitly:
 - $i = j$ (single-element duplication),
 - $j = n$ (duplication impossible; no change),
 - $i = 1$ (duplication starting at the first element).
- If an index precondition is violated, behavior is undefined or should raise a well-specified error (choose one consistent policy).

Inputs & Outputs (abstract API)

- Input call: `halve(i, j)`
- Output: No direct output (the sequence may be updated in place).

Solution question 3 part c

 Deterministic Solution — `insertLast`, `get`, `Duplicate`, `halve(i, j)`

Data Structure (Deterministic, Persistent)

Maintain the sequence as an implicit balanced tree (AVL or 2–3 tree) whose inorder equals the sequence order.

Each node stores:

- `val` — element in Σ (only at leaves or single-element nodes, per your variant),
- `left`, `right` — child pointers,
- `size` — number of elements in the subtree (order statistics),

- (AVL: also `height`; 2–3: node degree invariants).

Persistence (copy-on-write): updates never mutate existing nodes; along each update, only the $O(\log n)$ nodes on the touched path are reallocated, and all untouched subtrees are *structurally shared*.

We rely on node identity (pointer/reference equality of subtree roots) as an exact, deterministic notion of “the same block”.

Core Primitives (all worst-case $O(\log n)$)

- `split(T, k) → (L, R)`
L contains positions $1 \dots k$, R contains $k+1 \dots$ Implement by descending with `size(left)` and (AVL) rotations / (2–3) local splits; recompute `size` (and `height`) on the way up.
- `join(A, B) → T`
Concatenation preserving order: `inorder` is exactly $\text{inorder}(A) \cdot \text{inorder}(B)$. Implement by height/degree-aware glueing and rebalancing.
- `kth(T, k)`
Order-statistics search via `size(left)` to return the element at index k .

These are deterministic and preserve balance invariants.

`insertLast(x)` — Append ($O(\log n)$)

$T \leftarrow \text{join}(T, \text{node}(x))$

Correctness: x appears after all existing elements.

`get(k)` — Random Access ($O(\log n)$)

Standard order-statistics descent using subtree sizes.

⌚ Duplicate(i, j) — Interval Duplication ($O(\log n)$)

Let $1 \leq i \leq j \leq n$, $L = j - i + 1$. Build using split/join with structural sharing:

```
(A, C) = split(T, j)           // A = A[1..j], C = A[j+1..n]
(LFT, M) = split(A, i-1)       // LFT = A[1..i-1], M = A[i..j]
T         = join( join(LFT, M), join(M, C) )
```

Key property (deterministic): because the structure is persistent, the second copy of $A[i..j]$ is the exact same subtree M (same root identity). No elementwise copying occurs.

☒ halve(i, j) — Deterministic Version ($O(\log n)$)

Intent: If the block $A[i..j]$ is *immediately* followed by an *identical* block of the same length, keep one copy; otherwise, do nothing.

Deterministic criterion: use subtree identity (pointer/reference equality) — *no hashing*.

Let $L = j - i + 1$. If $j + L > n$, duplication cannot hold \Rightarrow no-op.
Otherwise:

1. Isolate the two candidate blocks (three splits):

```
(A, R) = split(T, j + L)      // A = [1..j+L], R = [j+L+1..n]
(P, Q2) = split(A, j)         // P = [1..j], Q2 = [j+1..j+L] (2nd block)
```

```
(LFT, M1) = split(P, i-1)      // LFT = [1..i-1], M1 =  
[i..j] (1st block)
```

Now the sequence is factored as: LFT | M1 | Q2 | R.

2. Deterministic equality test (no probability):

```
IF root(M1) === root(Q2)      // pointer/reference equality  
  
    // They are the exact same (shared) subtree created by  
    Duplicate  
  
THEN  
  
    T ← join( join(LFT, M1), R ) // remove the second copy  
  
ELSE  
  
    T ← join( join( join(LFT, M1), Q2 ), R ) // restore  
    original
```

Because nodes are immutable (persistent), `root(M1) === root(Q2)` iff the two blocks are *structurally the same object*, which in this design arises exactly when they were produced by a prior `Duplicate` and have not been modified.

Correctness (deterministic)

- Splits preserve order and partition the sequence into four consecutive segments without loss.
- Pointer-equality is an exact, deterministic predicate for “same block” under persistence.
- Joins preserve order; thus:
 - If equal: M1 | Q2 replaced by M1 ⇒ post-state is A[1..j] · A[j+L+1..n].

- If not equal: rejoining LFT | M1 | Q2 | R restores the original sequence.

Complexity

- $3 \times \text{split} + 2 \times (\text{or } 3 \times) \text{ join} \Rightarrow O(\log n) \text{ worst-case time};$
- $O(\log n)$ new nodes (path-copy) in persistence;
- Total space remains $O(n)$.

Scope of the deterministic predicate

This `halve(i, j)` collapses exact duplicates that were created by the data structure itself (via `Duplicate`) because only then the two blocks share the same persistent subtree. Identical blocks formed by coincidental edits elsewhere will not be collapsed (by design), preserving worst-case $O(\log n)$ deterministically and avoiding any probabilistic hashing.