
Free sample questions 
 
Question 1 part a (sorting) 
 

🧮 Question (Part A): Partially Sorted Heap Levels 

 

🧠 Problem Statement 

We are given a binary heap (complete binary tree) that contains n elements.​
 The heap has the following special property: 

●​ All even-numbered levels (level 0, 2, 4, …) are sorted from left to right.​
 

●​ All odd-numbered levels (level 1, 3, 5, …) are not sorted in any way.​
 

It is also known that the average value of all elements in the heap equals 
n^100. 

 

🎯 Task 

Design the most efficient algorithm possible to sort all n elements of the heap 
into non-decreasing order, given the above structure. 

 

⏱️ Required Analysis 

1.​ Describe the time complexity of your algorithm using asymptotic 
notation (O, Θ, Ω).​
 

2.​ Justify why the chosen algorithm is asymptotically optimal under the 
given conditions.​
 

 

📋 Output 



Provide only the algorithm design and asymptotic analysis —​
 no implementation code is required. 

 

solution question 1 part a 
 
🧩 Solution (Part A): Using the Bounded Average for Linear-Time Sorting 

🧠 Given Conditions 

●​ The heap has n elements.​
 

●​ All even levels are sorted; odd levels are not.​
 

●​ The average value of all elements equals n^100.​
 

Therefore, if all values are non-negative integers, the total sum is​
​
 Σ a_i = n · n^100 = n^101 

●​  implying that the maximum possible value satisfies max ≤ n^101.​
 

Hence, all keys lie within a polynomial range 

0 ≤ a_i ≤ n^101 
 

which allows the use of linear-time integer sorting. 

 

⚙️ Algorithm: Radix (LSD) or Counting Sort 

We ignore the internal heap structure and exploit the bounded domain. 

1.​ Representation.​
 Represent each integer a_i in base B = n (or equivalently, B = 
2^{⌈log₂ n⌉}).​
 



Number of digits.​
 Since U ≤ n^101, the number of base-B digits is​
​
 log_B(U) = log_n(n^101) = 101 

2.​  — a fixed constant.​
 

3.​ Sorting process.​
 Perform LSD Radix Sort, where each pass uses a stable Counting Sort 
on one digit.​
 

○​ Each Counting Sort costs O(n + B) = O(n) (since B = n).​
 

○​ Total number of passes = 101 (constant).​
 

○​ Total running time: O(101 · n) = O(n).​
 

4.​ Memory usage.​
 Each pass uses auxiliary arrays of size O(B) = O(n), so total space is 
O(n).​
 

 

🧮 Complexity Summary 

Operation Time Space               Notes 

Counting Sort (per pass) O(n)   O(n)               Stable 

101 passes total O(n)   O(n)         Constant factor 

Final merged result O(n)        —           Sorted array 

 

🧾 Correctness 

●​ Counting Sort guarantees stable sorting within each digit.​
 

●​ LSD Radix Sort preserves global nondecreasing order across all 101 
digits.​
 



●​ Since U is polynomially bounded and the number of passes is constant, 
the final array is globally sorted in linear time.​
 

 

⚠️ Edge Cases 

●​ If negative integers exist, shift all keys by +|min| to make them 
non-negative, or sort positive and negative parts separately, each in 
linear time, and merge.​
 

●​ If keys are non-integers, Radix/Counting does not apply directly — 
revert to the O(n log n) comparison-based method.​
 

 

✅ Final Result 

Under the assumption of non-negative integer keys with an average value of 
n^100,​
 the key domain is polynomially bounded (U ≤ n^101), so: 

Total sorting time:  Θ(n) 
Total space:         Θ(n) 
 

This is asymptotically optimal for integer sorting and strictly better than the 
Θ(n log n) bound of comparison-based methods. 

 

Question 1 part b (sorting) 
🧮 Question: Sorted Dynamic Array with Partial Sorting 

🧠 Problem Statement 

We maintain a sorted dynamic array that supports element insertions.​
 Initially, the array is empty and has a fixed capacity of 1. 

Each insertion works as follows: 



1.​ If there is free space, the new element is inserted into the array in its 
correct sorted position.​
 

2.​ If the array becomes full after the insertion:​
 

○​ Sort the newly inserted right half of the array.​
 

○​ Merge the right half with the already sorted left half.​
 

○​ Double the array’s capacity.​
 

○​ Copy all elements into the new larger array.​
 

 

⚙️ Operations 

●​ insert(x) – inserts element x into the sorted dynamic array, following 
the above rules.​
 

 

🎯 Required Analysis 

1.​ Find the worst-case time complexity of a single insertion operation.​
 

2.​ Determine the total time complexity for performing n insertions starting 
from an empty array.​
 

 

⏱️ Expected Output 

Express both results using asymptotic notation (Θ, O, Ω) and provide clear 
justification for the growth rate. 

 

 

 



Solution question 1 part b 

 
🧩 Solution: Sorted Dynamic Array with Partial Sorting 

✅ Assumptions & Invariant 

●​ We maintain an array with capacity C (starting at 1), size t (0 ≤ t ≤ C).​
 

●​ Invariant between rebuilds:​
 

○​ The left half [0 .. ⌊C/2⌋−1] is sorted.​
 

○​ The right half [⌊C/2⌋ .. t−1] contains the recently appended 
elements (not necessarily sorted).​
 

●​ When the array becomes full (t = C), we finish sorting the current block 
and rebuild.​
 

 

⚙️ Algorithm: insert(x) 

1.​ If t < C (has room):​
 

○​ append x to position t.​
 

○​ t ← t + 1.​
 

○​ (No shifting; we do not maintain global sortedness 
continuously—only at rebuilds.)​
 

2.​ If t = C (trigger rebuild):​
 

○​ Let L := A[0 .. C/2−1] (already sorted by the previous 
rebuild), R := A[C/2 .. C−1] (unsorted block just filled).​
 

○​ Sort R by any comparison sort: Θ((C/2) log(C/2)) = Θ(C log 
C).​
 



○​ Merge L and sorted R into a single sorted array of size C: Θ(C).​
 

○​ Allocate new array of capacity 2C and copy the C sorted elements: 
Θ(C).​
 

○​ Set C ← 2C, t remains C/2 + C/2 = C after the merge-copy 
(array is now globally sorted again, left half will serve as the next 
“frozen” sorted prefix).​
 

After each rebuild, the entire prefix of length t is sorted; between 
rebuilds, only the left half is sorted, and we accumulate unsorted 
elements in the right half until the next rebuild. 

 

🧠 Correctness Sketch 

●​ Base: Initially C=1, after first rebuild (if any), the array of length C is fully 
sorted.​
 

●​ Maintenance: Between rebuilds, the left half remains untouched (thus 
sorted). New items are appended to the right half.​
 

●​ Rebuild step: Sorting R and merging with L yields a globally sorted array 
of length C.​
 

●​ Progress: Capacity doubles; hence rebuilds are finite and happen at 
sizes 1,2,4,8,….​
 

 

⏱️ Complexity Analysis 

●​ Single insertion (non-rebuild): O(1) (pure append).​
 

●​ Single insertion that triggers rebuild at capacity C:​
 

○​ Sorting the right half: Θ(C log C)​
 

○​ Merging halves: Θ(C)​
 



○​ Alloc+copy to capacity 2C: Θ(C)​
 

○​ Worst case: Θ(C log C) (dominated by the sort).​
 

Total for n insertions (starting empty):​
 Rebuilds occur at capacities 1, 2, 4, …, 2^k ≈ n. The cumulative cost is​
​
 Σ_{i=0}^{⌊log₂ n⌋} Θ(2^i · i) = Θ(n log n). 

●​  Non-rebuild inserts contribute O(n) and are dominated.​
 

Amortized per insertion:​
​
 Θ(n log n) / n = Θ(log n). 

●​  

 

📌 Final Results (Asymptotics) 

●​ Worst-case time of a single insert: Θ(C log C) when it triggers a 
rebuild at capacity C.​
 

●​ Total time for n inserts: Θ(n log n).​
 

●​ Amortized time per insert: Θ(log n). 

 

Question 1 part c (sorting) 
🧮 Question (Part C): Dynamic Sorted Array – Alternative Construction 

🧠 Problem Statement 

We wish to build a dynamic sorted array using the following algorithm: 

1.​ Each time a new element x is inserted, it is simply appended to the end 
of the array.​
 



2.​ The left half of the array is always assumed to be sorted, while the right 
half contains the newly inserted unsorted elements.​
 

3.​ For each newly inserted element x, we perform a binary search on the 
left (sorted) half to find the position where x should appear in sorted 
order.​
 

4.​ We then store an auxiliary field in x that records this target position.​
 

5.​ Once the array becomes full, we double its capacity, and for each 
element in the right half, we move it to the position indicated by its 
stored index.​
 

6.​ Any remaining empty locations in the left half are filled in place with the 
corresponding elements during the copy process.​
 

 

🎯 Required Tasks 

1.​ Determine whether this algorithm always produces a correctly sorted 
dynamic array once the array becomes full.​
 

2.​ If it is correct, prove its correctness formally and analyze the total time 
complexity for n insertions.​
 

3.​ If it is not correct, provide a counterexample that shows the failure, 
explain why it occurs, and propose a modification that fixes the 
algorithm while keeping it as efficient as possible.​
 

 

⏱️ Expected Output 

Provide a clear proof or counterexample, supported by asymptotic analysis (Θ, 
O, Ω), and discuss the resulting time complexity of all n insertions. 

 

​
 



Solution question 1 part c 
🧩 Solution (Part C): Dynamic Sorted Array – Alternative Construction 

 

❌ Claim Check: The Proposed Algorithm Is Not Correct 

Counterexample. Consider capacity C = 4 at the moment it becomes full.​
 Left (sorted) half: [2, 100].​
 Right (unsorted) half (in arrival order): [60, 50]. 

Both 60 and 50 fall—by binary search over the left half—into the same target 
interval (2, 100). If we only “store” that interval/position and later place both 
according to their stored positions without ordering them relative to each 
other, we may realize the final layout [2, 60, 50, 100], which is not sorted.​
 Therefore, the algorithm does not guarantee a sorted array upon expansion. 

 

🛠️ Fix That Makes It Correct 

To ensure correctness while keeping the same spirit: 

1.​ Interval assignment: For each element in the right half, compute its 
target interval (via binary search over the left half).​
 

2.​ Intra-interval ordering: Before the rebuild, sort the elements of the right 
half (globally, or per-interval buckets).​
 

3.​ Stable merge by intervals: Rebuild by stable merging each left-half 
segment with its corresponding (now sorted) right-half elements.​
 

This guarantees that within every interval the relative order is ascending, and 
concatenating the intervals yields a globally sorted array. 

 

✅ Correctness (Sketch) 

●​ The left half is sorted by invariant.​
 



●​ After sorting the right half (globally or per-interval), all elements mapped 
to a given interval are in nondecreasing order.​
 

●​ A stable merge of each interval’s left-half elements with its right-half 
elements preserves sortedness within the interval.​
 

●​ Concatenating intervals in left-to-right order yields a fully sorted array. 
✓​
 

 

⏱️ Time Complexity for n Insertions 

We analyze rebuilds at capacities 1, 2, 4, 8, …, 2^k ≈ n. 

●​ At capacity C:​
 

○​ Sorting the right half (≈ C/2 items): Θ((C/2) · log(C/2)) = 
Θ(C log C)​
 

○​ Stable merging halves: Θ(C)​
 

○​ Allocating new array of size 2C and copying: Θ(C)​
 

○​ Total per rebuild: Θ(C log C) (dominated by sorting)​
 

●​ Summation over rebuilds:​
 ∑i=0 to ⌊log⁡2n⌋Θ(2i⋅i)  =  Θ(nlog⁡n).. 

●​ Non-rebuild insertions: O(1) each; total O(n) and dominated.​
 

Final bounds: 

●​ n insertions: Θ(n log n)​
 

●​ Amortized per insertion: Θ(log n)​
 

●​ Worst case for an insertion that triggers rebuild at capacity C: Θ(C log 
C) 

 



📌 Summary 

●​ As stated, the algorithm is incorrect (counterexample above).​
 

●​ With the fix (sorting the right half and stable interval-wise merging), it 
becomes correct with total insertion cost Θ(n log n) and amortized 
Θ(log n). 

 

Question 2 part a (heaps) 
🧮 Section A — Formal Question 

You are given a static binomial min-heap containing n elements.​
 No insertions or deletions are allowed. 

Design a data structure that supports the following two operations efficiently: 

1.​ increase(x, k) —​
 Given a pointer to a node x, add the value k to every key in the subtree 
rooted at x.​
 

2.​ Return(x) —​
 Given a pointer to a node x whose original key was x, return its current 
key after all previous increase operations have been applied.​
 

The goal is to achieve the lowest possible time complexity for both operations 
while keeping the total memory usage within O(n). 

 

Solution question part a 

🧠 Formal Solution — Using Only the Heap Structure 

We are given a static binomial min-heap (no insertions or deletions).​
 We will not use any external data structures** — the solution works entirely 
within the heap itself. 

 

⚙️ Data Fields 



Each node v in the heap stores: 

●​ base[v]: its original key.​
 

●​ parent[v]: pointer to its parent node (naturally available in a binomial 
heap).​
 

●​ add[v]: a local increment field, initially 0.​
 

 

➕ Operation — increase(u, k) 

Add k to every node in the subtree rooted at u. 

We simply record this increment locally at u: 

increase(u, k): 

    add[u] += k 

 

Time: O(1) 

 

🔎 Operation — Return(x) 

Return the current key of node x after all previous increase operations. 

We accumulate the increments of all ancestors (including x itself): 

Return(x): 

    sum ← 0 

    v ← x 

    while v ≠ null: 

        sum ← sum + add[v] 

        v ← parent[v] 



    return base[x] + sum 

 

Time: O(height) = O(log n) in a binomial heap.​
 Space: O(n) total (one add field per node). 

 

✅ Correctness 

Each increase(u, k) conceptually adds k to all descendants of u.​
 For any node x, its logical key equals: 

key(x) = base[x] + Σ add[a]   over all ancestors a on the path 
root → x (including x) 

 

The Return(x) operation explicitly sums these contributions, producing the 
exact updated key. 

 

⏱️ Complexity Summary 

Operation Time Space Description 

increase(u,k)    O(1)  O(n)      Adds k to all descendants lazily. 

Return(x) O(log n)  O(n)  Sums increments along path to 
root. 

 

🧩 Notes 

●​ This solution uses only the parent pointers already available in a 
binomial heap.​
 



●​ No additional trees, segment structures, or index arrays are needed.​
 

●​ Optional optimization: during traversal (e.g., inside Return), you may 
“push” the accumulated add down to children to reduce future path 
costs — without affecting asymptotic bounds. 

 

Question 2 part b (heaps) 

➖ Section B — Formal Question (decrease) 

You are given the same static binomial min-heap from Section A (no 
insertions, deletions, or melds).​
 The topology of the forest is fixed, and each node can be referenced by a 
pointer. 

Add support for the following operation, while keeping Return(x) from 
Section A: 

1.​ decrease(x, k) —​
 Given a pointer to a node x and a non-negative number k, subtract k 
from the key of every node in the subtree rooted at x.​
 

Requirements (no solution requested): 

●​ Maintain correctness of Return(x) (it should return the current key of x 
after any sequence of increase/decrease operations).​
 

●​ Aim for the best possible asymptotic time bounds per operation under 
O(n) total space.​
 

●​ The binomial min-heap property must remain logically consistent with 
the updated keys (you do not need to restructure the heap since the 
topology is static).​
 

●​ Clearly state the time and space complexities you achieve for decrease 
and Return.​
 

 

 



Solution question 2 part b 
➖ Formal Solution — Using a Reduction Field and Subtree Splitting 

We are given a static binomial min-heap (a forest of binomial trees).​
 We extend the previous solution to support the decrease(x, k) operation, 
where we must subtract k from all nodes outside the subtree of x, while 
keeping the structure itself unchanged. 

 

⚙️ Key Idea 

Instead of explicitly visiting all nodes outside the subtree, we: 

1.​ Split the heap into two parts:​
 

○​ H_in: the subtree rooted at x (the “protected” part — no 
decrease).​
 

○​ H_out: the remaining forest (all other trees).​
 

2.​ Maintain for each heap component (tree root) a reduction field 
red[root] that represents the global decrease applied to that entire 
component.​
 

3.​ When we later merge the two parts, we correct the key of the protected 
subtree’s root to preserve the real minimum order.​
 

 

🏗️ Data Fields 

Each root in the binomial forest stores: 

●​ offset[root] — the total global shift (reduction or addition) applied to 
all keys in its component.​
 

●​ Each node keeps its usual:​
 

○​ base[v] — original key,​
 



○​ add[v] — lazy increment field (from Section A),​
 

○​ parent[v] — pointer to parent node.​
 

 

➕ Operation — decreaseOutside(x, k) 

1.​ Split the heap into:​
 

○​ the subtree H_in rooted at x;​
 

○​ the remaining forest H_out.​
 

Apply the global decrease:​
​
 offset[H_out] -= k 

2.​  (this conceptually subtracts k from all nodes outside the subtree).​
 

3.​ When re-merging H_in and H_out:​
 

○​ the root of H_in preserves its original offset (since it was not 
decreased);​
 

when linking two roots r1 and r2, always compare​
​
 key(r) = base[r] + add[r] + offset[root_of_tree(r)] 

○​  so that comparisons remain consistent even under different 
offsets.​
 

 

🔎 Operation — Return(x) 

To return the current key of node x: 

1.​ Start from x, follow parent pointers to its root r.​
 



2.​ Accumulate along the path:​
 

○​ all add[v] values (as in Section A),​
 

○​ plus the offset[r] of the root.​
 

Return:​
​
 key(x) = base[x] + Σ add[a]  (ancestors a from root→x) + 
offset[root(x)] 

3.​  

 

✅ Correctness 

●​ The split ensures that only the complement of the subtree receives the 
global decrease.​
 

●​ Each tree root stores an offset that affects all its descendants uniformly.​
 

●​ During merges, we perform a rebase step: when a tree with offset α 
becomes a child of another tree with offset β, we keep the parent’s offset 
as the unified value and store a lazy difference (α − β) at the losing 
root, preserving logical consistency.​
 

 

⏱️ Complexities 

Operation Time Description 

increase(u, k) O(1) As before — add to add[u]. 

decreaseOutside
(x, k) 

O(log 
n) 

Split + offset update + merge. 



Return(x) O(log 
n) 

Sum of local adds + root offset. 

Space O(n) One offset per root, one add 
per node. 

 

💡 Summary 

This approach: 

●​ Keeps all logic inside the heap structure (no auxiliary trees or arrays).​
 

●​ Handles both increase and decrease through small constant-size 
fields (add, offset).​
 

●​ Preserves min-heap order automatically, since every comparison uses 
base + add + offset.​
 Thus, decreaseOutside is supported in O(log n) time with O(n) total 
space. 

 

Question 3 part a (binary search trees) 

📘 Section A — Problem Statement (Sequence with 
insert, get, shift) 

🎯 Goal 

Design a data structure that maintains an ordered sequence of elements and 
supports the following operations efficiently. 

🧩 Universe & Notation 

●​ The element domain is arbitrary (denote it by Σ).​
 



●​ Sequence length at any time is n ≥ 0.​
 

●​ Indices are 1-based unless stated otherwise.​
 

●​ Let A[1..n] denote the current sequence.​
 

🔧 Operations (to be supported) 

●​ insertLast(x)​
 

○​ Effect: Append element x ∈ Σ to the end of the sequence.​
 

○​ Post-state: Sequence becomes A[1..n]·x (length n ← n+1).​
 

●​ get(i)​
 

○​ Input: Index i.​
 

○​ Precondition: 1 ≤ i ≤ n.​
 

○​ Output: Return the element A[i].​
 

○​ No modification to the sequence.​
 

●​ shift(i, x)​
 

○​ Input: Index i, element x ∈ Σ.​
 

○​ Precondition: 1 ≤ i ≤ n+1.​
 

○​ Effect: Insert x at position i, shifting the current suffix A[i], 
A[i+1], …, A[n] one step to the right.​
 

○​ Post-state:​
 

■​ If i ≤ n: new sequence is A[1..i-1] · x · A[i..n].​
 

■​ If i = n+1: equivalent to insertLast(x).​
 



○​ Length update: n ← n+1.​
 

⏱️ Required Performance Targets 

●​ Each operation insertLast, get, shift must run in O(log n) time 
(worst-case or amortized; specify your chosen model).​
 

●​ Space usage over n elements is O(n).​
 

●​ The interface must handle up to Q operations with the above bounds.​
 

✅ Correctness Requirements 

●​ get(i) must return exactly the element at logical position i after all 
prior updates.​
 

●​ shift(i, x) must preserve the relative order of all pre-existing 
elements.​
 

●​ Edge conditions must be validated (e.g., index bounds).​
 

📥 Inputs & 📤 Outputs (abstract API) 

●​ Inputs: A sequence of operation calls of the forms​
 

○​ insertLast(x)​
 

○​ get(i)​
 

○​ shift(i, x)​
 

●​ Outputs: For each get(i) call, output exactly one element ∈ Σ. Other 
operations produce no output.​
 

📝 Notes & Conventions 



●​ Duplicates are allowed: elements of Σ need not be distinct.​
 

●​ The data structure should be generic over Σ (no assumptions on value 
range).​
 

●​ If you adopt amortized bounds, clearly state the potential argument or 
accounting method (outside of this section).​
 

🔒 Robustness (Index Policy) 

●​ If a call violates the precondition (e.g., i out of range), the behavior is 
undefined or should raise an explicit error (choose and document one 
policy). 

 

Solution question 3 part a 

🧠 Solution — Sequence with insertLast, get, 
shift 

📦 Data Structure (High-Level) 

Maintain the sequence in an implicit balanced binary tree (e.g., AVL or 2–3 tree) 
where inorder yields the current order of elements.​
 Each node stores: 

●​ val — the element,​
 

●​ left, right — child pointers,​
 

●​ size — number of elements in the subtree (order-statistics key).​
 

Any worst-case balanced option is fine (AVL or 2–3). We describe 
with AVL terminology; the same logic holds for a 2–3 tree. 

 

🧰 Invariants & Helpers 



Invariants 

●​ size(u) = size(u.left) + 1 + size(u.right)​
 

●​ Inorder traversal equals the current sequence.​
 

Helper primitives (both O(log n) worst case): 

●​ split(T, k) ⇒ returns (L,R) where L holds the first k elements 
(positions 1..k), and R holds the rest (k+1..). Structure remains 
balanced.​
 

●​ join(A,B) ⇒ concatenation preserving order: inorder is exactly 
inorder(A) · inorder(B); structure remains balanced.​
 

Order-statistics query (kth) in O(log n) 

kth(T, k): 

  let L = size(T.left) 

  if k == L+1: return T.val 

  if k <= L:   return kth(T.left, k) 

  else:        return kth(T.right, k - L - 1) 

 

 

➕ Operation insertLast(x) — Append 

Idea: Concatenate a single-node tree at the end. 

T ← join(T, node(x)) 

 

●​ Correctness: By join, the inorder becomes previous sequence followed 
by x.​
 



●​ Time: O(log n).​
 

 

🔎 Operation get(i) — Access by index 

Idea: Order-statistics descent using subtree sizes. 

return kth(T, i) 

 

●​ Correctness: By the definition of kth, we return exactly the element at 
logical position i.​
 

●​ Time: O(log n).​
 

 

📍 Operation shift(i, x) — Insert at position i 

Goal: Insert x before the current element at position i (1-based). If i = n+1, 
this is exactly insertLast(x). 

Using split/join: 

(L, R)  ← split(T, i-1)     // L: positions 1..i-1,   R: 
positions i..n 

X       ← node(x)           // single-node tree 

T       ← join( join(L, X), R ) 

 

●​ Correctness:​
 

○​ split isolates the prefix A[1..i-1] from the suffix A[i..n].​
 



○​ Concatenating L, X, then R yields the sequence A[1..i-1] · x · 
A[i..n].​
 

●​ Time: O(log n) for one split and two join calls.​
 

 

✅ Correctness Argument (Sketch) 

●​ Structure: The implicit tree stores only local sizes; inorder order is 
preserved by construction.​
 

●​ split soundness: For any k, the inorder of the left result is the first k 
elements; the right result is the remaining suffix. No elements are 
duplicated or lost.​
 

●​ join soundness: Inorder of join(A,B) is exactly concatenation of their 
inorders; no reordering occurs.​
 

●​ Operations:​
 

○​ insertLast is a direct concatenation → append is correct.​
 

○​ get follows the unique path determined by subtree sizes → 
returns the element at index.​
 

○​ shift uses split at i-1 then concatenates a singleton before 
the old suffix → inserts at the desired position and preserves 
relative order.​
 

 

⏱️ Complexity 

●​ Each primitive split / join / kth runs in O(log n) worst case (AVL 
height or 2–3 height is Θ(log n)).​
 

●​ Therefore:​
 



○​ insertLast — O(log n)​
 

○​ get — O(log n)​
 

○​ shift — O(log n) (one split + two join)​
 

Space is O(n) for n elements (balanced tree nodes), plus O(1) auxiliary per 
operation.​
 If persistent (copy-on-write) nodes are used, each update allocates only 
O(log n) new nodes while sharing the rest. 

 

🧪 Edge Policy 

●​ Indices are 1-based.​
 

●​ Precondition checks (recommended):​
 

○​ get(i): require 1 ≤ i ≤ n.​
 

○​ shift(i,x): require 1 ≤ i ≤ n+1.​
 

○​ On violation: raise a well-defined error.​
 

 

📝 Notes 

●​ You may implement split/join directly for AVL or leverage a 2–3 tree 
where concatenation and splitting are particularly natural; both give the 
same asymptotic guarantees.​
 

●​ This section provides the solution design only (no code).​
 

​
 

 



Question 3 part b (binary search trees) 

📘 Section A — Problem Statement (Sequence with 
insertLast, get, Duplicate) 

🎯 Goal 

Design a data structure that maintains an ordered sequence and supports 
efficient append, random access by index, and interval duplication. 

🧩 Universe & Notation 

●​ Element domain: arbitrary Σ.​
 

●​ Sequence length: n ≥ 0.​
 

●​ Indices are 1-based.​
 

●​ Current sequence: A[1..n].​
 

●​ For 1 ≤ i ≤ j ≤ n, denote the contiguous block by A[i..j].​
 

🔧 Operations to Support 

●​ insertLast(x)​
 

○​ Effect: Append x ∈ Σ to the end of the sequence.​
 

○​ Post-state: A ← A · x, length n ← n+1.​
 

●​ get(k)​
 

○​ Input: index k.​
 

○​ Precondition: 1 ≤ k ≤ n.​
 

○​ Output: Return A[k].​
 



○​ No modification to the sequence.​
 

●​ Duplicate(i, j)​
 

○​ Input: indices i, j with 1 ≤ i ≤ j ≤ n.​
 

○​ Effect: Insert a second copy of the block A[i..j] immediately 
after position j.​
 

○​ Formally: After the operation,​
 A ← A[1..i-1] · A[i..j] · A[i..j] · A[j+1..n]​
 and n ← n + (j − i + 1).​
 

✅ Correctness Requirements 

●​ get(k) returns exactly the element located at logical position k after all 
prior updates.​
 

●​ Duplicate(i, j) places two consecutive copies of the pre-state block 
A[i..j] at positions i..j and j+1..j+(j−i+1) in the post-state, while 
preserving the relative order of all other elements.​
 

●​ Multiple operations must compose correctly on the evolving sequence.​
 

⏱️ Performance Targets 

●​ Each operation must run in O(log n) time (worst-case or amortized; 
specify the chosen model elsewhere).​
 

●​ Space over n elements: O(n).​
 

●​ Additional space per update call (metadata / restructuring): O(log n).​
 

🔒 Preconditions & Edge Policy 

●​ insertLast(x): always valid.​
 



●​ get(k): require 1 ≤ k ≤ n.​
 

●​ Duplicate(i, j): require 1 ≤ i ≤ j ≤ n.​
 

●​ On violation: behavior is undefined or raise a well-specified error 
(choose one policy).​
 

●​ Corner cases to be handled: i = 1, j = n, i = j.​
 

📥 Inputs & 📤 Outputs (abstract API) 

●​ Inputs:​
 

○​ insertLast(x)​
 

○​ get(k)​
 

○​ Duplicate(i, j)​
 

●​ Outputs: For each get(k), output exactly one element ∈ Σ. Other 
operations produce no direct output. 

 

Solution question 3 part b  

🧠 Solution — Sequence with 
insertLast, get, Duplicate 

🧱 Data Structure (Implicit Balanced Tree) 

Maintain the sequence in an implicit balanced search tree (AVL or 2–3 tree) 
where inorder equals the sequence order.​
 Each node stores: 

●​ val — element from Σ.​
 

●​ left, right — child pointers.​
 



●​ size — number of elements in the subtree (order statistics).​
 (For AVL also keep height; for 2–3, node degree invariants.)​
 

All updates use persistent path-copy (copy-on-write) so that large 
blocks can be reused structurally without element-wise copying. 
This guarantees that Duplicate(i, j) runs in O(log n) time and 
uses only O(log n) new nodes. 

 

🧩 Core Primitives (Both O(log n) worst-case) 

●​ split(T, k) → returns (L, R) where L contains the first k elements 
(positions 1..k) and R the rest (k+1..n).​
 Implementation: descend by comparing k to size(left); rebuild/rotate 
(AVL) or split nodes (2–3) on the way back, updating size (and height 
for AVL).​
 

●​ join(A, B) → returns the concatenation whose inorder is exactly​
 inorder(A) · inorder(B).​
 Implementation:​
 

○​ AVL: if heights differ by ≥2, descend along the taller spine (right of 
A or left of B), attach, then rebalance on the way up; if heights are 
close, create a pivot root and rebalance.​
 

○​ 2–3: standard concat: bubble a separator upward, perform local 
splits/merges to maintain degrees 2–3.​
 

●​ kth(T, k) → order-statistics search using size(left) to return the 
element at position k.​
 

All three primitives run in O(log n) and preserve balance invariants. 

 

➕ Operation insertLast(x) — Append 



Rule:​
 T ← join(T, node(x)) 

●​ Correctness: join preserves order and places x after all current 
elements.​
 

●​ Time / Space: O(log n) time; O(log n) new nodes by path-copy.​
 

 

🔎 Operation get(k) — Random Access 

Rule (order statistics): 

get(k): 

  let L = size(T.left) 

  if k == L+1: return T.val 

  if k <= L:   descend into T.left with k 

  else:        descend into T.right with k-L-1 

 

●​ Correctness: unique path determined by subtree sizes.​
 

●​ Time: O(log n).​
 

 

📀 Operation Duplicate(i, j) — Interval Duplication 

Goal: transform A into​
 A[1..i-1] · A[i..j] · A[i..j] · A[j+1..n]. 

Construction with split/join (no element copying): 

1.​ (A1, C) ← split(T, j) // A1 = A[1..j], C = A[j+1..n]​
 



2.​ (L, M) ← split(A1, i-1) // L = A[1..i-1], M = A[i..j]​
 

3.​ T ← join( join(L, M), join(M, C) ) // same tree M used twice​
 

●​ Correctness: by the join invariant, inorder becomes​
 inorder(L) · inorder(M) · inorder(M) · inorder(C),​
 i.e., exactly two consecutive copies of the pre-state block A[i..j].​
 

●​ Persistence / Structural Sharing: M is a reused subtree (same pointer) in 
both places; only O(log n) nodes are newly created along the touched 
paths.​
 

●​ Time / Space: O(log n) time (two split, three join); O(log n) extra 
nodes.​
 

 

✅ Correctness Sketch 

●​ Split soundness: for any k, split(T,k) partitions inorder into prefix 
1..k and suffix k+1..n without reordering or loss.​
 

●​ Join soundness: join(A,B) preserves both internal orders and places 
all of A before all of B.​
 

●​ insertLast: direct concatenation with a singleton preserves append 
semantics.​
 

●​ get: subtree-size descent pinpoints position k.​
 

●​ Duplicate: by composing the two invariants above, the post-state 
equals​
 A[1..i-1] · A[i..j] · A[i..j] · A[j+1..n].​
 

●​ Persistence: since nodes are not mutated in-place, reusing M twice is 
safe; later updates affect only their own top-to-leaf paths.​
 

 



⏱️ Complexity 

●​ insertLast, get, Duplicate: O(log n) time each.​
 

●​ Space: O(n) for the stored elements plus O(log n) new nodes per 
update (persistent path-copy).​
 

●​ Bounds hold in the worst case for AVL/2–3 trees.​
 

 

🔒 Edge Handling 

●​ Indices are 1-based.​
 

●​ Preconditions:​
 

○​ get(k) requires 1 ≤ k ≤ n.​
 

○​ Duplicate(i, j) requires 1 ≤ i ≤ j ≤ n.​
 

●​ Corner cases:​
 

○​ i = 1 (duplicate from start),​
 

○​ j = n (duplicate to end),​
 

○​ i = j (duplicate a single element).​
 All handled uniformly by the same split/join pipeline.​
 

 

📝 Notes 

●​ Either AVL (with explicit rotations) or 2–3 tree (degree-balanced) can be 
used; both give the same asymptotic guarantees.​
 

 

 



Question 3 part c (binary search tree) 

📗 Section C — Problem Statement (halve(i, j)) 

🎯 Goal 

Extend the sequence data structure (from Sections A–B) with an operation that 
removes one copy when a block appears twice consecutively. 

🧩 Universe & Notation 

●​ Element domain: arbitrary Σ.​
 

●​ Sequence at any time: A[1..n], indices are 1-based.​
 

●​ For 1 ≤ i ≤ j ≤ n, let A[i..j] be the contiguous block from i to j 
(inclusive).​
 

●​ Let L = j − i + 1 denote the block length.​
 

🔧 Operation to Support 

●​ halve(i, j)​
 

○​ Input: indices i, j with 1 ≤ i ≤ j ≤ n.​
 

○​ Effect:​
 

If the block A[i..j] is immediately followed by an identical block of the same 
length, i.e.​
​
 j + L ≤ n  and  A[i..j] = A[j+1 .. j+L], 

■​  then replace the two consecutive copies by a single copy 
of A[i..j].​
 



Formally, in this case the post-state is​
​
 A ← A[1..j] · A[j+L+1 .. n] 

■​  and n ← n − L.​
 

■​ Otherwise (no immediate duplicate), no change is made to 
A.​
 

○​ No reordering or modification of any other elements occurs.​
 

✅ Correctness Requirements 

●​ When the precondition A[i..j] = A[j+1..j+L] holds, the 
subsequence at positions i..j in the pre-state appears exactly once at 
positions i..j in the post-state; elements originally at positions 
j+L+1..n shift left by L and preserve their relative order and values.​
 

●​ When the precondition does not hold, the sequence remains bit-wise 
identical to the pre-state.​
 

●​ Equality of blocks is element-wise equality over Σ.​
 

⏱️ Performance Targets 

●​ Each call to halve(i, j) must run in O(log n) time (worst-case or 
amortized; specify your chosen model elsewhere).​
 

●​ Additional space per operation: O(log n) (for auxiliary structure 
maintenance).​
 

●​ Total space over n elements: O(n).​
 

🔒 Preconditions & Edge Policy 

●​ Require 1 ≤ i ≤ j ≤ n.​
 



●​ The duplicate-check uses L = j − i + 1 and is meaningful only if j + 
L ≤ n; otherwise duplication cannot hold.​
 

●​ Corner cases to handle explicitly:​
 

○​ i = j (single-element duplication),​
 

○​ j = n (duplication impossible; no change),​
 

○​ i = 1 (duplication starting at the first element).​
 

●​ If an index precondition is violated, behavior is undefined or should 
raise a well-specified error (choose one consistent policy).​
 

📥 Inputs & 📤 Outputs (abstract API) 

●​ Input call: halve(i, j)​
 

●​ Output: No direct output (the sequence may be updated in place). 

 

Solution question 3 part c 

🧠 Deterministic Solution — insertLast, get, 
Duplicate, halve(i, j) 

📦 Data Structure (Deterministic, Persistent) 

Maintain the sequence as an implicit balanced tree (AVL or 2–3 tree) whose 
inorder equals the sequence order.​
 Each node stores: 

●​ val — element in Σ (only at leaves or single-element nodes, per your 
variant),​
 

●​ left, right — child pointers,​
 

●​ size — number of elements in the subtree (order statistics),​
 



●​ (AVL: also height; 2–3: node degree invariants).​
 

Persistence (copy-on-write): updates never mutate existing nodes; along each 
update, only the O(log n) nodes on the touched path are reallocated, and all 
untouched subtrees are structurally shared.​
 We rely on node identity (pointer/reference equality of subtree roots) as an 
exact, deterministic notion of “the same block”. 

 

🔧 Core Primitives (all worst-case O(log n)) 

●​ split(T, k) → (L, R)​
 L contains positions 1..k, R contains k+1... Implement by descending 
with size(left) and (AVL) rotations / (2–3) local splits; recompute 
size (and height) on the way up.​
 

●​ join(A, B) → T​
 Concatenation preserving order: inorder is exactly inorder(A) · 
inorder(B). Implement by height/degree–aware glueing and 
rebalancing.​
 

●​ kth(T, k)​
 Order-statistics search via size(left) to return the element at index k.​
 

These are deterministic and preserve balance invariants. 

 

➕ insertLast(x) — Append (O(log n)) 

T ← join(T, node(x)) 

 

Correctness: x appears after all existing elements. 

 

🔎 get(k) — Random Access (O(log n)) 



Standard order-statistics descent using subtree sizes. 

 

🧯 Duplicate(i, j) — Interval Duplication (O(log 
n)) 

Let 1 ≤ i ≤ j ≤ n, L = j − i + 1. Build using split/join with structural 
sharing: 

(A,   C)  = split(T, j)        // A = A[1..j],   C = A[j+1..n] 

(LFT, M)  = split(A, i-1)      // LFT = A[1..i-1], M = A[i..j] 

T         = join( join(LFT, M), join(M, C) ) 

 

Key property (deterministic): because the structure is persistent, the second 
copy of A[i..j] is the exact same subtree M (same root identity). No 
elementwise copying occurs. 

 

✂️ halve(i, j) — Deterministic Version (O(log n)) 

Intent: If the block A[i..j] is immediately followed by an identical block of 
the same length, keep one copy; otherwise, do nothing.​
 Deterministic criterion: use subtree identity (pointer/reference equality) — no 
hashing. 

Let L = j − i + 1. If j + L > n, duplication cannot hold ⇒ no-op. 
Otherwise: 

1.​ Isolate the two candidate blocks (three splits):​
 

(A,    R)  = split(T, j + L)     // A = [1..j+L], R = 
[j+L+1..n] 

(P,   Q2)  = split(A, j)         // P = [1..j],  Q2 = 
[j+1..j+L]  (2nd block) 



(LFT, M1)  = split(P, i-1)       // LFT = [1..i-1], M1 = 
[i..j]   (1st block) 

 

Now the sequence is factored as: LFT | M1 | Q2 | R. 

2.​ Deterministic equality test (no probability):​
 

IF  root(M1) === root(Q2)        // pointer/reference equality 

    // They are the exact same (shared) subtree created by 
Duplicate 

THEN 

    T ← join( join(LFT, M1), R ) // remove the second copy 

ELSE 

    T ← join( join( join(LFT, M1), Q2 ), R ) // restore 
original 

 

Because nodes are immutable (persistent), root(M1) === root(Q2) iff the 
two blocks are structurally the same object, which in this design arises exactly 
when they were produced by a prior Duplicate and have not been modified. 

Correctness (deterministic) 

●​ Splits preserve order and partition the sequence into four consecutive 
segments without loss.​
 

●​ Pointer-equality is an exact, deterministic predicate for “same block” 
under persistence.​
 

●​ Joins preserve order; thus:​
 

○​ If equal: M1 | Q2 replaced by M1 ⇒ post-state is A[1..j] · 
A[j+L+1..n].​
 



○​ If not equal: rejoining LFT | M1 | Q2 | R restores the original 
sequence.​
 

Complexity 

●​ 3× split + 2× (or 3×) join ⇒ O(log n) worst-case time;​
 

●​ O(log n) new nodes (path-copy) in persistence;​
 

●​ Total space remains O(n).​
 

Scope of the deterministic predicate 

This halve(i, j) collapses exact duplicates that were created by the data 
structure itself (via Duplicate) because only then the two blocks share the 
same persistent subtree. Identical blocks formed by coincidental edits 
elsewhere will not be collapsed (by design), preserving worst-case O(log n) 
deterministically and avoiding any probabilistic hashing. 

 

 

​
 

  
 

​
 
 

  
 

 


	🧠 Problem Statement 
	🎯 Task 
	⏱️ Required Analysis 
	📋 Output 
	🧠 Given Conditions 
	⚙️ Algorithm: Radix (LSD) or Counting Sort 
	🧮 Complexity Summary 
	🧾 Correctness 
	⚠️ Edge Cases 
	✅ Final Result 
	🧠 Problem Statement 
	⚙️ Operations 
	🎯 Required Analysis 
	⏱️ Expected Output 
	✅ Assumptions & Invariant 
	⚙️ Algorithm: insert(x) 
	🧠 Correctness Sketch 
	⏱️ Complexity Analysis 
	📌 Final Results (Asymptotics) 
	🎯 Required Tasks 
	⏱️ Expected Output 
	 

	❌ Claim Check: The Proposed Algorithm Is Not Correct 
	🛠️ Fix That Makes It Correct 
	✅ Correctness (Sketch) 
	⏱️ Time Complexity for n Insertions 
	📌 Summary 
	🧠 Formal Solution — Using Only the Heap Structure 
	⚙️ Data Fields 
	➕ Operation — increase(u, k) 
	🔎 Operation — Return(x) 
	✅ Correctness 
	⏱️ Complexity Summary 
	🧩 Notes 
	➖ Section B — Formal Question (decrease) 
	⚙️ Key Idea 
	🏗️ Data Fields 
	➕ Operation — decreaseOutside(x, k) 
	🔎 Operation — Return(x) 
	✅ Correctness 
	⏱️ Complexities 
	💡 Summary 
	🎯 Goal 
	🧩 Universe & Notation 
	🔧 Operations (to be supported) 
	⏱️ Required Performance Targets 
	✅ Correctness Requirements 
	📥 Inputs & 📤 Outputs (abstract API) 
	📝 Notes & Conventions 
	🔒 Robustness (Index Policy) 
	📦 Data Structure (High-Level) 
	🧰 Invariants & Helpers 
	➕ Operation insertLast(x) — Append 
	🔎 Operation get(i) — Access by index 
	📍 Operation shift(i, x) — Insert at position i 
	✅ Correctness Argument (Sketch) 
	⏱️ Complexity 
	🧪 Edge Policy 
	📝 Notes 
	🎯 Goal 
	🧩 Universe & Notation 
	🔧 Operations to Support 
	✅ Correctness Requirements 
	⏱️ Performance Targets 
	🔒 Preconditions & Edge Policy 
	📥 Inputs & 📤 Outputs (abstract API) 
	🧱 Data Structure (Implicit Balanced Tree) 
	🧩 Core Primitives (Both O(log n) worst-case) 
	➕ Operation insertLast(x) — Append 
	🔎 Operation get(k) — Random Access 
	📀 Operation Duplicate(i, j) — Interval Duplication 
	✅ Correctness Sketch 
	⏱️ Complexity 
	🔒 Edge Handling 
	📝 Notes 
	📗 Section C — Problem Statement (halve(i, j)) 
	🎯 Goal 
	🧩 Universe & Notation 
	🔧 Operation to Support 
	✅ Correctness Requirements 
	⏱️ Performance Targets 
	🔒 Preconditions & Edge Policy 
	📥 Inputs & 📤 Outputs (abstract API) 
	📦 Data Structure (Deterministic, Persistent) 
	🔧 Core Primitives (all worst-case O(log n)) 
	➕ insertLast(x) — Append (O(log n)) 
	🔎 get(k) — Random Access (O(log n)) 
	🧯 Duplicate(i, j) — Interval Duplication (O(log n)) 
	✂️ halve(i, j) — Deterministic Version (O(log n)) 
	Correctness (deterministic) 
	Complexity 
	Scope of the deterministic predicate 



