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“Before we talk about models, let’s ask: is this series even fore-
castable?. In other words, before jumping to build a model, we
should ask: is there enough signal to forecast at all?”

— Forecasting Proverb
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Chapter 1 traced the evolution of forecasting from ancient civilizations to modern data-
driven methods, revealing how the quest to anticipate the future has advanced from symbolic
divination to sophisticated machine learning modeling. It outlined the foundational prin-
ciples of time series analysis, explored early mathematical contributions from figures like
Yule, Slutsky, and Wold, and highlighted how stochastic processes, autoregression, and
decomposition theories reshaped our understanding of dynamic systems. The chapter also
reviewed the institutionalization of forecasting, from ARIMA models and state-space filters
to the emergence of machine learning and hybrid techniques in the 21st century. Finally, it
emphasized that accurate forecasting is not just about model selection but about recognizing
the nature and limits of predictability embedded in the data itself. With this historical and
conceptual foundation, we now turn to the building blocks of practical forecasting, starting
with how to formally diagnose, prepare, and model time-series data.

Before embarking on any time series forecasting endeavor, a crucial yet often overlooked
question must be addressed: Is the series we are analyzing actually forecastable?

This chapter explores the fundamental nature of forecasting, examining when forecasting
methods are appropriate and when alternative approaches should be considered. We
investigate the philosophical and practical limits of predictability, distinguishing genuine
forecasting problems from other predictive tasks such as classification, anomaly detection,
and cross-sectional regression.

Time series vary dramatically in their inherent predictability, from highly predictable
patterns with clear seasonal cycles and stable trends to nearly random processes that defy
meaningful prediction. Understanding these limitations is not merely academic; it has
profound practical implications for businesses and researchers. By learning to quantify
forecastability and recognize when forecasting is likely to succeed or fail, forecasters
can avoid wasted effort, inappropriate models, and misleading predictions. This chapter
provides the conceptual foundation and practical tools needed to assess when forecasting is
the right approach and what level of accuracy can reasonably be expected, enabling more
informed decision-making in the face of an uncertain future.

The Nature of Forecasting

Forecasting is commonly defined as the process of making informed statements or predic-
tions about future events or conditions that are not yet known. It is fundamentally about
anticipating what has yet to happen, typically by analyzing existing data, identifying patterns
or trends, and extrapolating them forward. In practice, forecasting is often described as an
art and a science, combining quantitative analysis with expert intuition to predict future
outcomes. For example, operations research and business scholars note that a forecast
may involve statistical models (e.g. time-series extrapolation or causal models) adjusted
by managerial judgment. In essence, forecasters use the best available information from
the present and past to make rational estimates about the future, recognizing that these
estimates are provisional and subject to error. A key element in the nature of forecasting is
uncertainty. Forecasts are only needed when there is uncertainty about what will happen. If
an outcome is predetermined or fully controllable, there is no need to forecast it. Indeed,
Rob J. Hyndman, a leading scholar of forecasting, defines the discipline as a probabilistic
endeavor focused on predicting future values of a time series while explicitly quantifying
uncertainty. In his seminal work, "Forecasting: Principles and Practice" [48], he emphasizes:
"Forecasting is not about eliminating uncertainty, but understanding it and communicating
it through prediction intervals." In statistical terms, this often means providing prediction
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intervals or ranges of possible outcomes, not just single-valued predictions. The economist
Frank H. Knight famously distinguished measurable risk from true uncertainty, essentially
defining uncertainty as our ’inability to forecast the likelihood of events happening in the
future’ [61]. This highlights the philosophical reality that not all aspects of the future are
knowable - some future events (for example, unexpected innovations, crises, or 'black swan’
events) lie beyond the realm of calculable probability. No matter how much data is collected,
there is always residual uncertainty about the future.

Because of these limits, scholars have long pointed out the need for epistemological humility
in forecasting. As early as the 20th century, critics noted that forecasting can be notori-
ously difficult, especially in social and economic domains, leading economist John Kenneth
Galbraith to quip that the only function of economic forecasting is to make astrology look
respectable [33]. Although meant humorously, Galbraith’s remark underscores a real point:
forecasts often have wide margins of error, and even expert forecasters cannot predict the
main turning points. The occurrence of unexpected shocks (a dramatic example being the
COVID-19 pandemic) illustrates why even the best models should be viewed as indicative
rather than infallible. In other words, a forecast is a reasoned judgment about the future,
not a definitive claim of truth. To manage this, forecasters typically update their predictions
as new information arises and design scenarios or contingency plans to cope with the
possibility that reality may diverge from their central forecast.

Furthermore, science philosophy offers insight into the predictive limits of our knowledge.
Explanation is not the same as prediction — a scientific theory might explain why certain
events occur, yet still fail to predict the next occurrence of those events. As an example,
Joshua Epstein argues that a model can greatly enhance understanding of a phenomenon
without necessarily producing accurate forecasts; he notes that plate tectonic theory
explains why earthquakes occur even though it cannot predict the exact time and location
of the next earthquake [30].

Complex systems, such as economies, ecosystems, or climate, often exhibit nonlinear
dynamics and intricate feedback loops, making precise long-term forecasting exceptionally
difficult. One of the key reasons for this unpredictability lies in their sensitivity to initial
conditions. Even a minuscule variation at the beginning can lead to drastically different
outcomes over time. This concept is famously encapsulated by the "butterfly effect," a
term coined by the meteorologist Edward Lorenz. While studying weather models, Lorenz
discovered that tiny differences in initial data, such as rounding off a number, could result
in entirely different weather predictions. The metaphor he used was that the flap of
a butterfly’s wings in Brazil could theoretically trigger a tornado in Texas weeks later.
This vividly illustrates how small, seemingly insignificant inputs can cascade into massive,
unpredictable changes in complex systems.

Lorenz’s meteorological work revealed that there is a horizon of about two weeks beyond
which detailed weather forecasts become unreliable due to the chaotic nature of atmospheric
dynamics [65]. This finding, now widely accepted in the weather and climate community,
exemplifies an inherent limit of predictability in certain systems: beyond a certain point, the
future state of the system diverges so much that no forecast can be confident. Forecasters
thus must grapple not only with statistical uncertainty, but with fundamental limits of
predictability imposed by the nature of the system itself.

Different academic disciplines bring additional perspectives to what forecasting entails
and how it should be approached. Climate science provides a clear cross-disciplinary
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view on forecasting under deep uncertainty. Climate scientists distinguish between a
forecast/prediction and a projection to emphasize the role of assumptions and scenarios.
A projection is defined as a 'potential future evolution’ of a system, often calculated using
simulation models, and is explicitly conditional on assumptions about factors such as future
emissions or policies.

In contrast, a prediction would imply a more definite expectation. In long-range climate
forecasting (such as projecting global temperatures by 2100), scientists present multiple
scenario-based projections rather than a single deterministic forecast, precisely because
the actual outcome will depend on uncertain human choices and natural variability. This
practice reflects a broader epistemological stance: instead of claiming certainty, climate
forecasters acknowledge the limits of knowledge by exploring a range of plausible futures
and attaching confidence levels or probabilities to them. Even in shorter-term environmental
forecasts (such as seasonal rainfall or river flows), language and methodology often highlight
uncertainty — for example, hydrologists might provide probability distributions for flood
occurrence rather than a yes/no prediction, recognizing that many variables can change.
The climate science approach thus enriches the nature of forecasting with the concepts of
scenarios, ensemble predictions, and uncertainty quantification as core components.

These developments illustrate the growing interest in data-driven forecasting, particularly
through machine learning. However, they do not change the fundamental reality: When
a time series lacks structure, no model, regardless of complexity, can reliably predict its
future.

This reinforces the distinction between forecasting tools and forecastability itself. Advanced
models can only succeed when the underlying data exhibit temporal patterns, signal reg-
ularity, or memory. When time series are dominated by noise or contain few exploitable
dynamics, even the most sophisticated methods will fail.

Later chapters in this book will explore various forecasting models, from statistical to
machine learning to deep learning. Here, our focus remains on the foundational question:
is there anything to forecast at all?

In general, a rich understanding of the nature of forecasting emerges from these varied
points of view. Forecasting is not simply about guessing the future; it is a disciplined process
of gathering evidence, quantifying uncertainty, and making reasoned projections in the face
of limited knowledge. It operates at the intersection of data and uncertainty, requiring both
analytical tools and thoughtful judgment. Philosophically, it confronts profound questions
about what can be known and how confidently we can extend our knowledge beyond the
present. Practically, it has become an indispensable activity in nearly every field, from
scientists predicting climate change, engineers planning infrastructure, to business leaders
projecting sales, each incorporating the principles of uncertainty, model limitations, and
continuous learning. By integrating statistical models with an awareness of uncertainty
and drawing on cross-disciplinary insights (from climate science scenarios to Al pattern
recognition), forecasters aim to make the best possible statements about the future.

The nature of forecasting, therefore, is one of blending knowledge and humility. It is the
art of making the uncertain future a little more knowable while never losing sight of the
uncertainties that remain at its core.



2.1.1

2.1 The Nature of Forecasting 45

When Is a Problem a Forecasting Problem (and When Is It Not)?

Forecasting generally refers to predicting future values or events based on historical and
current data, typically in a time-ordered sequence. In contrast to a random guess, a forecast
is based on data and a logical analysis of trends. For example, forecasting might involve
estimating the sales of the next quarter by analyzing past sales trends, seasonality, and
other temporal patterns. A concise definition by Hyndman & Athanasopoulos [48] is that
forecasting is about predicting the future as accurately as possible, given all available
information, including historical data and knowledge of future events that could affect
forecasts. In essence, forecasting is a specialized form of predictive modeling that explicitly
deals with time-indexed sequential data and seeks to extrapolate observed patterns into the
future.

The key assumptions underlying forecasting are that historical patterns and relationships
will persist (at least approximately) into the future. Time-series forecasting methods work by
identifying components such as trend (long-term increase / decrease), seasonality (repeating
cycles), and autocorrelations in the data, under the assumption that these can be projected
forward. Time-series forecasting assumes that historical patterns will continue in the future
and uses statistical techniques to extrapolate those patterns. This assumption is what
enables forecasts, but it is also a potential weakness: If a system undergoes a major change
or regime change, the old patterns may no longer hold. Sudden changes in conditions or
unforeseen events can alter historical trends and degrade the accuracy of the forecast. In
other words, forecasting works best in relatively stable environments or in places where
changes are gradual and can be anticipated.

Most statistical forecasting methods rely on the concept of stationarity, the idea that the
underlying statistical properties of the series (mean, variance) do not change over time.
A strictly stationary time series has a constant distribution over time. In practice, many
time series are not stationary (they have trends, seasonal effects, or evolving variances),
but forecasters often transform or model these components to achieve stationarity in the
residuals. Stationarity is important because many forecasting models theoretically require
a stationary process to make reliable predictions.

If one naively regresses one non-stationary time series on another, it can lead to spurious
results that appear to fit well in the sample but fail to predict future points. Thus, a fore-
caster will check for stationarity and apply techniques such as differencing or detrending
to stabilize the series before modeling. The takeaway is that forecasting assumes a de-
gree of continuity and stability in the data-generating process (after suitable modeling of
trends/seasonality), so that the future can be viewed as a logical extension of the past.

Another assumption (or prerequisite) for forecasting is the availability of sufficient historical
data. Without enough past observations, it is difficult to detect meaningful patterns or train
a predictive model. In cases where no historical data exist (e.g. a completely new product
or an unprecedented situation), statistical forecasting methods cannot be directly applied;
one must resort to judgmental estimates or analogies. For example, Hyndman [48] notes
that when faced with a complete lack of historical data or a uniquely new market condition,
judgmental forecasting (expert opinion, scenario analysis) may be the only option. Although
judgmental methods produce a ’forecast’, the lack of data-driven pattern means that the
problem is not a traditional forecasting exercise in the modeling sense - it becomes more of
an expert prediction problem.

In summary, forecasting is characterized by time-ordered data, an aim to predict future time
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points, and an assumption that underlying patterns (trend, seasonality, correlations) will
continue into the forecast horizon (absent external disruptions).

Criteria for When Forecasting is Appropriate

Not every prediction problem is a forecasting problem. Certain criteria should be met for
forecasting methods to be appropriate:

¢ Sequential, Time-Indexed Data: The data should be recorded over time with a
meaningful chronological order (e.g., daily stock prices, monthly sales, yearly popu-
lation). Forecasting is inherently temporal; the order of observations matters, and
we care about predicting at future time steps. If shuffling the data would destroy its
meaning, that is a sign the sequence is important. In forecasting problems, the context
of each observation is its position in time relative to others.

¢ Presence of Temporal Structure: There should be evidence of temporal patterns
or dependencies that can be exploited for prediction. This could include trends (long-
term increases or decreases), seasonal cycles (regular patterns such as weekly sales
spikes or annual climate effects), or autocorrelation (where past values influence
future values). If the series shows such a structure (for example, a strong seasonal
pattern in sales each year), forecasting models can leverage it to project forward.
Forecasting methods such as time series decomposition, exponential smoothing, or
ARIMA explicitly model these patterns. Without any temporal structure (if the data
were pure noise), the best a forecast can do is predict the long-term mean or the
last observed value, which yields little informational gain. In short, forecasting is
appropriate when past behavior of the time series is a reasonable guide to its future
behavior

e Stationarity (after Accounting for Patterns): As noted above, many forecasting
techniques assume stationarity or work better under stationarity. This does not mean
that the raw series must be stationary (a few real-world series are), but it means that
we can transform or model the series in a way that the residuals are stationary. For
example, a non-stationary series with a trend can often be differentiated to achieve
stationarity. Forecasting is most reliable when the statistical properties of the process
are stable over time (or have been made stable through modeling). When a series is
(at least approximately) stationary, the relationships estimated from historical data can
be expected to hold in future periods. If you identify that the series is prone to drastic,
non-repeating changes, the use of standard forecasting models becomes questionable.

¢ Sufficient Historical Data and Seasonality Coverage: There should be enough
historical observations to detect the patterns mentioned above. The required amount
varies by context, but as a rule, you would like multiple cycles of any seasonal period
(e.g. 2-3 years of monthly data to capture annual seasonality) and enough data points
to reliably estimate model parameters. Forecasting methods struggle with extremely
short series because one cannot distinguish signal from noise or seasonality from
one-offs with just a few points. The more data (and the more repetitions of patterns)
available, the more justifiable a forecasting approach becomes.

¢ Forecast Horizon within Reasonable Bounds: Forecasting is suitable when the goal
is to predict future values for a given horizon (short-term, medium-term, long-term)
and that horizon is such that historical data is still informative for it. Generally, the
farther out one tries to forecast, the more uncertainty and the less one can rely on past
patterns. If the required horizon is so far beyond the historical data (e.g. forecasting
50 years ahead based on 5 years of data), the problem might be ill-posed for standard
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forecasting (and might require scenario planning instead). However, deciding the
horizon is part of formulating a forecasting problem, and most forecasting methods
allow various horizons (with diminishing accuracy as it extends).

¢ Domain Knowledge Supports Forecasting: Often, an understanding of the domain
can confirm that forecasting is appropriate. For example, in energy demand forecast-
ing, we know that there are daily and weekly cycles and trends due to population
growth; thus, using past demand to forecast future demand is sensible. If domain
knowledge suggests that the system is largely driven by random external shocks or
one-time events, a pure forecasting approach (which extrapolates patterns) may not
be the right tool.

In practice, if a dataset and question meet these criteria, time-indexed data with temporal
dependencies, a stable or modeled-as-stable process, and a need to predict future values,
then it qualifies as a forecasting problem. The forecaster would then choose a time series
model (such as ARIMA, exponential smoothing, or a machine learning model designed
for sequence data) and generate forecasts with uncertainty estimates. Many textbooks
emphasize identifying the structure of the time series (trend, seasonality, etc.) as a first
step in deciding that a forecasting model can be applied. These assumptions distinguish
forecasting from other types of predictive tasks. When these assumptions hold reasonably
well, we have the necessary conditions for treating a problem as a forecasting problem.

If these conditions are not met, the problem may not qualify as a forecasting problem. Let
us illustrate these points with industry-specific examples.

¢ Finance: In finance, many asset price series lack a strong temporal structure, mak-
ing forecasting challenging. A prime example is stock market returns, which often
resemble a random walk: Past price changes do not reliably predict future changes.
According to the Efficient Market Hypothesis, new information is quickly absorbed into
prices, so the price movement of tomorrow is essentially independent of the movement
of today[70]. This implies little to no autocorrelation in stock returns, meaning short-
term price forecasts have no skill beyond coin-flip accuracy. However, not all financial
time series are devoid of predictable structure. Volatility (the variability of returns)
famously exhibits autocorrelation and mean reversion — periods of high volatility tend
to be followed by a return to more normal volatility. This volatility clustering means
that risk metrics can be predicted with some precision. In fact, ARCH / GARCH models
(Engle [28]; Bollerslev [10]) leverage this temporal dependence in variance to predict
future volatility. For example, a GARCH model will predict tomorrow’s volatility to be
high if today’s returns were highly volatile, capturing the persistence of risk. Credit
risk metrics also show temporal structure: default rates and credit spreads usually
exhibit serial correlation (a high default rate this year often implies a higher than
average default rate next year) [91]. These credit risk variables often mean-revert
over business cycles, so models can be built to forecast their future values as eco-
nomic conditions revert to the norm. In summary, financial variables that behave like
random walks (e.g., asset prices in an efficient market) violate the 'temporal structure’
criterion and are hard to forecast, while those with mean-reverting or cyclical patterns
(volatility, credit risk indicators) meet the criteria and can be forecast with some
success using time series models [29].

o Energy: The energy sector provides textbook cases of series rich in temporal structure
and thus amenable to forecasting. Electricity load (power demand) is a prime example:
it shows clear daily cycles (high demand during day, lower at night), weekly patterns
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(weekday vs. weekend usage), and seasonal variation (e.g. peaks in summer or
winter due to cooling/heating) superimposed on any long-term trend. Such multiple
seasonalities and trends constitute strong temporal structure that forecasting models
can exploit. In fact, electric load often involves two prominent seasonal periods - a
24-hour daily cycle and an annual cycle — that can be explicitly modeled. Because
these patterns repeat with some regularity, forecasting techniques (from classical
time series models to machine learning) excel at predicting future electricity demand
based on past observations. Empirical studies and global competitions have confirmed
the forecastability of energy loads. For instance, participants in the Global Energy
Forecasting Competitions [45] achieve high accuracy by incorporating calendar effects
and weather variables that drive predictable demand swings. Research by Hyndman
[31], Hong [47], and others [27] consistently shows that methods capturing seasonality
and temperature-dependence (e.g. weather-based regression, exponential smoothing
with multiple seasonal periods, neural networks with calendar features) yield very
accurate load forecasts. In short, the electric power domain meets the key criteria
(stationary seasonal patterns and dependable relationships with exogenous factors
like temperature), making it one where forecasting is highly appropriate and effective.

2.1.1.2 When Forecasting May Not Be Appropriate

There are many predictive problems for which forecasting methods (as defined above) are
not the right approach — in such cases, other approaches (classification, anomaly detection,
etc.) should be considered instead. Key situations where a problem would not be considered
a forecasting problem include the following:

e No Meaningful Temporal Order: If the data are not a time series or sequence, or
if the order of observations can be permuted without affecting the analysis, then it’s
not a forecasting scenario. For example, predicting whether an email is spam based
on its content is a classification problem - there is no time component involved in the
prediction (even though emails arrive over time, the prediction does not use temporal
patterns). Similarly, if you have a dataset of customer attributes to predict who will
churn, you might use the time of observation as just another feature, but you are
not forecasting a time-dependent sequence for each customer; you are classifying
customers into “will churn” or “will not churn.” Similarly, if one tries to predict an
outcome that doesn’t evolve over time (like a static physical constant or a one-off
event), time-series forecasting is not. In such cases, applying time series forecasting
techniques would be inappropriate. The absence of sequential structure means we
should use other predictive modeling methods (classification, static regression, etc.)
instead of forecasting.

o Predicting Categories or Classes (Classification Tasks): If the outcome of interest
is a categorical label or class (e.g. will a machine fail or not, which product a customer
will buy, what category an observation falls into), this usually is not a forecasting
problem, but a classification problem. Forecasting typically produces a numeric or
continuous output (or occasionally a continuous probability or count) for future time
points, rather than a discrete class label. For instance, forecasting might estimate the
value of a stock price tomorrow, whereas a classification would predict whether the
stock will go up or down (two classes) - the latter is not a forecasting problem per
se, but rather a classification or binary prediction problem, even though it is about
the future. Forecasting typically produces a numeric time-indexed prediction (e.g.
next quarter’s sales), whereas predicting a class label (e.g. bull vs bear market) is
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a classification task, even if it concerns the future. Therefore, a question like “Will
stock X go up or down tomorrow?’ is better treated with classification methods, not
time series forecasting. Likewise, forecasting in a call center context might predict
the number of calls next hour, while an event prediction might classify the hour as
“busy (yes/no)” based on a threshold. If the core question is framed as identifying a
class/category, then methods like logistic regression or decision trees (classification
algorithms) are appropriate, not time series forecasts.

¢ Lack of Temporal Pattern or Signal: If the time series data is essentially random or
has no discernible pattern, forecasting becomes trivial or meaningless. For example,
a purely random sequence (when formal tests would deem it ‘white noise’) has no
structure to extrapolate; the best forecast is essentially the average (or last observed
value) with very large uncertainty. One cannot meaningfully improve on that with
fancy models. In such cases, we might say the problem doesn’t qualify as forecasting
in a useful sense, because there is no pattern to forecast. Another example: if data are
dominated by high volatility or wild fluctuations that are not predictable (sometimes
termed a chaotic or near-random process), then a forecasting model will have little
utility beyond perhaps predicting an overall range. Without a stable pattern, treating
it as a forecasting problem might lead to large errors. Financial return series often
appear nearly random - the best forecast may just be ‘no change’. In practice, analysts
might then shift focus to nowcasting (predicting the present from partial data) or
simply reporting descriptive stats rather than forecasting far ahead.

¢ Data Dominated by Anomalies or Regime Changes: When the historical data
is highly irregular due to anomalies (outliers, one-off events) or if there has been
a recent regime shift, forecasting methods that rely on historical patterns may be
unsuitable. For instance, consider a time series of website traffic where most days
follow a predictable pattern, but occasionally a viral event causes a huge spike. A
forecasting model might be thrown off by those spikes (as they violate the regular
pattern) — forecasting in such a case might either under-predict spikes or over-predict
normal days if it tries to account for the spike. If anomalies are frequent or dominate
the series, one might focus on anomaly detection methods instead of forecasting future
values. Additionally, if a structural break has occurred - say a new policy or technology
fundamentally changed the process last month - then using data from before that
break to forecast after it can be very misleading. Forecasting assumes continuity; a
regime change breaks that continuity. In those scenarios, it might be better to handle
the segments separately or use scenario analysis instead of naive forecasting. As an
example, many economic forecasts failed at the beginning of the COVID-19 pandemic
because models based on years of stable economic growth could not account for the
abrupt regime shift; new approaches or human judgment had to be introduced. Time
series methods are sensitive to outliers and sudden changes, and forecasts ‘'may not
be accurate if significant changes occur in the business environment’. When such
conditions apply, one should be skeptical of forecasting; the problem might need
reformulation or alternative techniques.

e Primarily Cross-Sectional or Static Problems: If the main predictive problem
involves understanding the relationships between variables at a point in time (cross-
sectional data) rather than predicting over time, it is not a forecasting problem.
For example, predicting someone’s credit score from their income and debt is a
regression problem in cross-sectional data, not a time series forecast — although it’s a
prediction, it’s not about future time-indexed data. Similarly, image recognition (such
as classifying photos) or regression tasks such as predicting the price of a house from
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features are not forecasting problems because they do not involve extrapolating a time
series. In such cases, trying to force a forecasting approach (which expects sequential
data) would be inappropriate.

¢ Event Prediction vs. Time Series Forecast: A special case is predicting the
occurrence of specific events (which might be one-time or irregular) — for example,
predicting when a machine will break down or whether a customer will default on
a loan. If the goal is to estimate time-to-event or the probability of an event by a
certain date, one might use survival analysis or probabilistic classification, rather
than standard time series forecasting. Forecasting could be used if one converts
the problem (e.g. forecasting the number of failures in each future time interval),
but predicting a one-off event occurrence is usually not formulated as a time series
forecasting task. It’s more of a classification or hazard modeling task. Thus, if your
prediction target is an event occurrence (yes/no or time until event) rather than a
value at each time interval, you are generally outside the realm of classical forecasting.
In other words, if time order is irrelevant to the prediction, then traditional regression
or classification approaches suffice.

In essence, a problem does not qualify as forecasting if it lacks a time-indexed quantitative
target or if the primary aim is something other than predicting a future value of a series. As
a simple rule of thumb: if you can ask the question "What will the value / amount of X be
at time t + h?’ (for some future horizon h), it is a forecasting problem. If the question is
instead 'Which category does X belong to?’ or ’'Is X abnormal?’ or "What is the relationship
between Y and Z?’ without a future-time element, it is not a forecasting problem. Instead, it
could be a classification, anomaly detection, or regression (non-temporal) problem. Even
within time-series analysis, there are tasks like clustering or classification of time series,
but these are distinct from forecasting. For example, clustering time series groups similar
historical patterns; classification of time series might assign labels to entire sequences (like
identifying which category a given time series belongs to); these tasks analyze time series
data, but do not produce forecasts of future values.

Finally, it is worth noting that sometimes a predictive task can be approached in multiple
ways. For instance, one could predict an electricity outage by either forecasting the load
on the grid (a time series of load and flag when it exceeds a threshold) or by directly
classifying days as outage vs. normal based on predictors. If one chooses the latter route
(direct classification), then one is not using a forecasting approach. The right formulation
depends on the nature of the data and the question. If temporal dynamics are complex and
informative, a forecasting formulation is warranted; if not, a static predictive model might
suffice.

Forecasting vs. Other Predictive Modeling Approaches

Classification involves predicting a discrete class label for each example, rather than a
numeric value over time. In classification, the order of observations is usually irrelevant;
what matters is the features of each instance. A classic example is classifying images or
emails — each instance is independent and has a label. Time can be a feature in classification
(for example, fraud detection might use time of transaction as a feature), but the goal is not
to predict a future numeric sequence, it is to assign a category.

Forecasting is a technique that takes data and predicts the future value of the data by looking
at their unique trends. Forecasting factors in a variety of inputs predicts future behavior, not
just a number. In forecasting, there is typically no separate output variable apart from the



2.1 The Nature of Forecasting 51

time series itself — we use the past values of a series (and possibly time-related exogenous
variables) to predict its future values. In classification, we often have several input features
to predict a separate target variable. For example, forecasting might tell us the expected
total employee turnover rate next year (a numeric value %) based on past rates. In contrast,
a classification approach might identify which specific employees are likely to quit in the
next year (each employee classified as stay/leave). The latter is not a forecasting problem
because it deals with individual outcomes and categories, not a time-indexed projection of a
single series. In some cases, classification is used for event prediction, such as predicting
whether an event (equipment failure, churn, a disease outbreak) will happen in a given
period.

Although this is a form of future prediction, it is not what statisticians would call 'forecasting’
in the time series sense - it’s a yes/no (or categorical) prediction typically handled by logistic
regression or other classification models. One could transform an event prediction into a
forecasting task by forecasting event counts or probabilities over time, but fundamentally if
the question is "Will event X happen (by time T)?’, it is treated as a classification or survival
analysis problem. Key differences between forecasting and classification:

1. Output: Forecasting outputs a numeric (often continuous) prediction for each future
time point (or period). Classification outputs a class label (or class probability) for
each instance, which may or may not have a time dimension.

2. Inputs: Forecasting usually uses the time index and past values (and perhaps external
regressors) as input. Classification uses a feature vector for each instance (which
could include time as one feature, but not necessarily a history of the label).

3. Temporal dependence: Forecasting explicitly accounts for temporal order and
dependency; classification typically assumes independent instances (or at most uses
time in a limited way, like a sequence of events in a time series classification task,
which is different from forecasting future values).

4. Use case: Forecasting answers How much / what value will we have when...? while
the classification answers “which category does this instance belong to?” or “will this
event occur or not?”.

To illustrate, consider anomaly detection on a time series versus forecasting (which we
discuss in more detail below). If one wanted to identify whether the next data point will
be an anomaly, one could frame it as a classification problem (“anomalous” vs. “normal”
point) using features of recent data, which is different from forecasting the value of the next
point. The classification formulation yields a probability of anomaly, whereas forecasting
yields an expected value (with confidence intervals) of the next point. They address different
questions.

Event prediction often overlaps with classification. For example, predicting whether a user
will click on an ad in the next hour is basically a binary classification (click or not), although
it has a time element (‘'in the next hour’). Forecasting might instead predict how many
clicks in total to expect in the next hour (numeric count). So, if you are predicting whether
something happens or which category it falls into, you are in classification territory, not
classical forecasting.

There are also hybrid scenarios, such as forecasting the probability of an event over time.
For example, one could forecast the probability that a machine fails each month for the next
12 months. That is a form of prediction (the result is a numerical probability at each future
time), but it is closely related to an event prediction model. Often such problems are tackled
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with time-to-event models or hazard functions rather than traditional time-series forecasts,
underscoring that they straddle the line between forecasting and classification.

In summary, a classification task is not a forecasting task if the end goal is a label/category
rather than a time-indexed value. If your data and question are better expressed as "Which
of these categories / outcomes will occur’ than "What will the value be on date X’, you
probably do not have a forecasting problem.

Forecasting vs. Anomaly Detection

Anomaly detection (also called outlier detection) is the identification of unusual observations
or patterns that do not conform to the expected behavior of the data. In time series contexts,
anomaly detection might be used to flag sudden spikes, drops, or deviations from the
normal pattern. Although anomaly detection often uses time series data, it is fundamentally
different from forecasting: the goal is not to predict future values but to evaluate whether
current or past values are abnormal.

One way to see the difference is in the output: forecasting produces a predicted future
sequence; anomaly detection produces alerts or scores for data points indicating how
anomalous they are. In fact, anomaly detection can be one tool to decide when forecasting
is unreliable - if an anomaly is detected, one might exclude it from model fitting or treat it
specially.

Methods for anomaly detection in time series often involve comparing the observed data to
an expected pattern (which could be derived from a forecast or a smoothing of past data).
For example, a simple approach might forecast the next value and then if the actual comes
in very different, flag an anomaly. However, more advanced anomaly detection methods
do not necessarily require producing explicit forecasts; instead, they might use statistical
properties or machine learning on features of the series. Hyndman et al. [55] provide
an example of large-scale anomaly detection: they compute feature vectors for a large
number of time series (features capturing seasonality strength, entropy, etc.) and then
identify outliers in that feature space to find unusual time series. In that approach, no
explicit forecasting of each series is done; they directly look for ‘unusual’ characteristics in
historical data.

To contrast tasks, consider a server monitoring context. If you have metrics collected over
time (CPU usage each minute on many servers), a forecasting problem would be: “Predict
the CPU usage for the next hour for each server.” An anomaly detection problem would
be: 'Flag any servers that are acting abnormally right now (or in the past hour).” The
latter might use the recent time series data to detect anomalies, but it is not trying to
extrapolate that series into the future; rather, it is identifying deviations from expected
behavior. In Hyndman et al.’s anomaly detection approach, 'we wish to identify servers
that are behaving unusually’ by computing features of each time series and applying outlier
detection in feature space [55]. This is inherently about understanding the present/past
behavior relative to normal, not about predicting the future.

Why forecasting might not be appropriate when anomaly detection is the goal: If your
primary interest is to spot anomalies, applying a forecasting model might be unnecessary or
even counterproductive. You could use forecasting as a component (i.e. forecast and see
if actual deviates beyond a threshold), but the focus is on the deviation, not the forecast
itself. Also, anomaly detection often involves unsupervised or semi-supervised techniques
that do not require a forecast horizon. They look at statistical properties (mean, variance,
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expected range) of recent data and flag points outside the expected range. In contrast,
forecasting is a supervised learning problem (we train on past data to predict future data).
Another scenario is where data are dominated by anomalies, for example, network traffic
data during a cyberattack. In such a case, trying to forecast the traffic might be futile
because the normal pattern is completely disrupted; instead, one should detect and respond
to the anomaly. Forecasting assumes normal conditions (or conditions that can be modeled);
anomaly detection explicitly targets the abnormal conditions. They serve different objectives:
forecasting for planning ahead under normal variability, anomaly detection for monitoring,
and alerting when unusual events occur. In the literature, the separation of these tasks is
well recognized. Time-series analysis encompasses not only forecasting, but also other tasks
such as anomaly detection, clustering, and classification. When a time series contains a lot
of irregularities, one might first apply anomaly detection to cleanse the data or understand
them, rather than directly forecasting. If anomalies are frequent, one might argue that the
underlying process is not predictable enough to forecast, shifting the focus to exploratory
or diagnostic analysis instead of predictive analysis.

In summary, an anomaly detection problem is not a forecasting problem because the output
and intent differ: anomaly detection finds ‘'when / what’ is strange in the data we have’,
while forecasting asks ‘what is going to happen next’. If you find yourself more interested in
identifying outlier points or sudden changes (perhaps for root cause analysis or alerting)
than in predicting the next few points, then you are dealing with an anomaly detection task
(or a monitoring task) rather than a forecasting task. That said, the two can interact: robust
forecasting methods need to handle anomalies (often by pre-processing or modeling them
separately), and conversely, forecasting methods can be used to aid anomaly detection (by
providing an expected value to compare against). For example, one could forecast electricity
consumption for the next hour and flag it as an anomaly if the actual consumption deviates
beyond, say, 3 standard deviations of the forecast error. This is a common technique in
engineering: forecast-based anomaly detection. But again, the end goal distinguishes the
tasks: if the end goal is the flag / alert, it is anomaly detection; if the end goal is the
predicted value, it is forecasting.

Forecasting vs. Regression (General Predictive Modeling)

At first glance, forecasting might seem like just a special case of a regression problem -
after all, we are predicting a numerical value (continuous output), which is what regression
does. In fact, in machine learning terms, time series forecasting is indeed often treated as a
regression problem where the features are time-indexed (lags of the series, time indicators,
etc.) and the target is the future value.

The crucial difference is the temporal order and dependence of the observations. In a
standard regression problem, we assume that training examples are independent (IID
assumption). For example, you might have a dataset of houses with features (size, location,
etc.) and target (price), and you fit a regression model to predict price from features. You
can randomly shuffle the data during training; there is no inherent order.

Time-series forecasting violates this assumption because each ‘example’ (time step) is
related to previous ones. You cannot shuffle time series data without destroying the very
structure you need to model. So regression models can be used for forecasting, but
they must be applied in a time-aware way (often called time series regression). A simple
connection between the two is: ’A regression problem in which the input variables are
ordered by time is called a time series forecasting problem.’ In other words, if you take a



54 Chapter 2. The Forecastability of Time Series: Understanding the Limits

regression model and feed it lagged values of a time series as input to predict the next value,
you are essentially doing time-series forecasting via regression. The mathematics might be
similar (minimizing errors), but the problem framework and validation differ. Forecasting
requires respecting the time order (no peeking into future values during model training)
and often updating the model as new data arrive. One way to distinguish forecasting from
generic regression is by asking the question being asked. In forecasting, the question is:
What will y be at time ¢t + h given what we know up to time t? In regression, a typical
question is "What is y for a given set of characteristics X?’ — There is no requirement that
these features come from past values of y or that there’s a time gap. In forecasting, we
usually use autoregression (past values of y as characteristics) or exogenous variables that
themselves can be predicted or assumed known. In regression, we often have a fixed data
set and are concerned with associations at one point in time or in a cross-sectional sense.

When is a regression not a forecasting problem? If you have a regression setup where
the target is continuous but not a future value of a time series, then it is not forecasting. For
example, predicting a person’s weight from their height and age is a regression problem,
not a prediction, because you are not extrapolating their weight over time; you are just
mapping characteristics to an outcome. Even if you collect such data over time from many
people, the regression itself does not use the temporal ordering of weight for one individual;
it uses different individuals or conditions as data points.

On the other hand, if you treat “time” as just another input in a regression model (such
as the year as a feature to predict some value), you are implicitly making a forecast if you
extrapolate beyond the range of the data. However, regression models without explicit time
series structure might fail to capture things like autocorrelation. Traditional forecasting
methods (ARIMA, exponential smoothing) incorporate the idea that residuals should be
uncorrelated and use lagged terms to account for correlation. A naive regression that
ignores these could yield overly optimistic results (because it might effectively use future
information by not accounting for serial correlation in residuals).

Another aspect is evaluation and training: In forecasting, one must take care to train on
past data and evaluate on future data (e.g., using a rolling origin evaluation or holdout
of the last h points), whereas in general regression tasks, one might do random train-
test splits. For forecasting, random splits are usually invalid because they mix past and
future. So, the modeling and validation process is specialized. In summary, forecasting is a
subset of regression problems, one that involves time-ordered data and often autoregressive
modeling. All forecasting problems can be seen as regression problems (predicting a
number), but not all regression problems are forecasting problems. The telltale sign is the
dependency on the previous output and the focus on future (out-of-sample) time points. If
your regression problem can be reframed as ‘predict y:1 from y,y:—1,... etc.” or similar,
then it is a forecasting problem. If it cannot (because the target is not explicitly a future
time-indexed value or because the inputs are not past values of the same series), then
you are dealing with a general regression problem, not a time-series forecast. In practice,
forecasters often use regression models within forecasting (for example, adding regression
terms for holidays or using machine learning regression algorithms on lagged features),
but they always respect the temporal ordering of data and evaluate on future time points.
As a result, forecasting can be seen as a specialized regression problem with a sequential
dependency constraint. When that constraint is not present, one should not force a forecast
interpretation.
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Definition and Criteria

Forecasting is the process of predicting future values of a time series based on historical

data. It assumes that historical patterns, such as trends and seasonality, will persist.
Use forecasting when:

e Data are sequential and time-indexed
e Temporal patterns (e.g., trends, cycles, autocorrelation) are present
e Stationarity or transformations to stationarity are feasible

Avoid forecasting when:

e The target is a class label (classification)
¢ No meaningful patterns or too many structural breaks exist
e You're detecting rare or unusual events (use anomaly detection instead)

Forecasting vs. Other Methods

Task Goal Time Series? | Output Type
Forecasting Predict future values | Yes Numeric (continuous)
Regression Predict from features | Optional Numeric
Classification Assign labels Often no Categorical

Anomaly Detection | Flag irregularities Often yes Boolean/Score

Where Forecasting Excels

Examples of domains where forecasting methods are particularly effective.

1. Demand Planning: Forecasting is indispensable in demand planning for businesses.

When customer demand follows relatively stable patterns (trend growth or seasonal
cycles), forecasting can predict future sales with reasonable confidence. This empow-
ers companies to manage production, staffing and supply procurement proactively.
For example, retail sales often exhibit seasonality (holiday peaks, summer slowdowns)
that forecasting models capture to ensure shelves are stocked appropriately. In
such settings, forecasts directly inform operational decisions, and even moderate
accuracy improvements can translate into substantial cost savings and service-level
improvements.

. Supply Chain: In supply chain management, accurate demand forecasts enable

optimal inventory and capacity planning, which in turn reduces costs and improves
service. Companies with more accurate forecasting methods have been shown to
reduce inventory holding costs by up to 20-50%, since they can avoid overstocking
and understocking. A well-known example is forecasting for intermittent, slow-moving
items (such as spare parts or low-volume products). Traditional methods struggle
with lumpy demand, but specialized forecasting techniques help here. Croston’s
method (Croston, 1972) [22] is a classic forecasting approach tailored to intermittent
demand. Updates estimates of the size and interval of the demand only when a
nonzero demand occurs, effectively smoothing sporadic demand over time. Studies
in operations research have found that the Croston method (and its variants) can
outperform simple exponential smoothing in intermittent demand series, leading to
more accurate forecasts. This improved forecast accuracy translates into tangible
benefits: manufacturers and distributors can hold the right amount of safety stock
and reorder at the right times, minimizing stock shortages while avoiding excess
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inventory. In practice, implementing such forecast-driven inventory optimization has
yielded significant cost reductions along with higher fill rates (product availability).
Thus, supply chains greatly benefit from forecasting, especially in balancing supply
with uncertain demand, a core challenge where better predictions directly equate to
efficiency and profit.

3. Energy Load Forecasting: Electricity demand exhibits a strong temporal structure:
daily and weekly cycles, seasonal effects, and weather dependencies. Forecasting
is critical for grid management, pricing, and operational planning. Utilities rely on
models that incorporate temperature, time-of-day, day-of-week, and calendar features
to predict future load with high accuracy. Accurate load forecasts help balance supply
and demand, reduce the dependence on costly reserve capacity, and support the
integration of renewable energy sources.

¢ Demand Planning: Sales, inventory management
¢ Energy Load Forecasting: Electricity usage with seasonal effects
¢ Finance: Predicting volatility and returns

To summarize this section: Forecasting is distinct in that it predicts a future numerical value
(or distribution of values) for a time-dependent process, whereas classification predicts a
class/category, anomaly detection finds irregularities, and general regression predicts a
value but not necessarily in a time-linked way. Each approach has its place. A problem
qualifies as a forecasting problem when time dynamics is central and we seek to extrapolate
the time series; it does not qualify when the primary output is a category or when time
order is irrelevant or disrupted.

The Business Impact of Forecast Accuracy

Although identifying forecastable time series is crucial, an equally important practical
consideration is the value of improving forecast accuracy. Beyond theoretical metrics such
as RMSE or MAPE, forecast accuracy directly affects business performance and financial
outcomes.

Sales and Revenue Growth

Higher forecast accuracy leads to fewer stockouts and missed opportunities, capturing
demand that could otherwise be lost. Harvard Business Review reports that stockouts cause
an average loss 4% in sales, which means that for a company with $1 billion in annual
revenue, approximately 40 million could be at stake [82]. McKinsey research finds that
Al-driven forecast improvements can reduce product unavailability by up to 65%, leading to
higher sales capture and customer loyalty [20].

Profit Margins and Inventory Cost Reduction

Improved forecasting also minimizes overstock, avoiding costly markdowns and spoilage.
Inventory carrying costs typically range between 20-30% of inventory value per year [39].
Reducing excess inventory, thus, significantly boosts margins. For example, a packaging
manufacturer improved forecast accuracy by 20 percentage points and eliminated excess
inventory of 1 million, while simultaneously improving its order-fill rate from 97.7% to 98%
[40].

Working Capital and Financing Cost Savings

Inventory reduction through better forecasting frees up cash, directly reducing financing
costs or opportunity costs of capital tied to stock. If a company reduces its investment in
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inventory by $10 million and its capital cost is 10%, this translates to immediate savings
of $1 million. Improved forecasting also shortens the cash conversion cycle, improving
liquidity and financial resilience [19].

Stockout Cost Avoidance and Customer Satisfaction

Stockouts not only cause immediate lost sales, but can trigger long-term customer churn
and brand reputation damage. Better forecasts prevent costly emergency actions such as
delayed shipment or late-night production overtime [82]. Maintaining high service levels
through better forecasting has been shown to improve customer retention, repeat sales,
and even allow companies to maintain pricing power [20].

Quantified Real-World Benefits

Company / Study | Forecast Improve-| Benefit
ment
Global Beverage | Advanced demand fore- | Saved $9M annually via produc-
Producer casting tion optimization [56]
McKinsey (Retail / | 10-20% forecast accu- | 3% inventory cost reduction, 2-
CPG) racy increase 3% revenue uplift [20]
IBF Survey (Tech | 1% improvement in | Saved approximately $1M-
Firms) forecast error $1.5M annually [14]
Kraft Heinz 8% forecast accuracy | Improved supply chain efficiency
increase and service [71]

Table 2.1: Examples of forecast accuracy improvements and their financial benefits across
industries.

These examples highlight that forecast accuracy is far more than an academic concern;
it has direct, measurable, and often multi-million-dollar consequences for organizational
performance. Enhancing forecast accuracy not only improves predictive metrics, but also
delivers substantial business value by driving revenue growth, reducing costs, optimizing
working capital, increasing customer satisfaction, and strengthening competitive advantage.

Why Forecastability Matters

So how can we tell if a series is predictable before investing effort in modeling? IN Chapter 1,
we explore how forecasting evolved from mystical divination to scientific modeling. But
before we dive into modeling techniques, we need to face a more fundamental question:
how forecastable are the data in front of us? Forecastability is not about what model you
use —it is about whether there is anything to model in the first place.

Forecastability is a property of the time series itself. It captures the theoretical limit of
how well future values can be predicted given the available information. If a time series is
completely random, no amount of clever modeling will improve your forecast. If it holds
structure, signal, or memory, then the door to predictability opens.

Understanding forecastability helps you answer critical questions.

1. Is this series worth modeling?

2. Should we spend time feature engineering or just use a naive baseline?

3. What is the best achievable accuracy we can hope for?

4. Can we set expectations with stakeholders before burning cycles in modeling?
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forecastability comes from forecasting volatility instead of returns: volatility (variance of
returns) often has long memory and predictable structure (e.g. GARCH effects), so one
might say the volatility process has higher intrinsic forecastability even if price levels do
not. Overall, in economics and finance, forecastability is assessed by the degree to which
past data or other predictors can explain variance in the future - usually this is very low for
asset prices (often no better than coin toss beyond short horizons), whereas macroeconomic
series (like GDP growth or inflation) may have moderate forecastability due to business
cycles, autocorrelation, and causal drivers.

In summary, while terminology may differ, e.g., 'predictability’, 'forecastability’, 'signal
vs. noise’, all disciplines seek to measure how much of the variation of a time series is
explainable and not purely random.

Next, we review the key metrics and theoretical measures that have been developed to
quantify forecastability.

This section surveys key metrics across different theoretical foundations—statistical, spec-
tral, information-theoretic, and algorithmic. Each measure is explained in terms of its
definition, interpretation, and relevance to forecastability. The goal is to provide consistent,
comparable insights into how each diagnostic assesses the potential predictability of a time
series.

Key Measures of Forecastability

How can we assess whether a time series is predictable before investing substantial effort in
modeling? Before committing to a full forecasting pipeline, analysts can apply quantitative
diagnostics to evaluate the forecastability of a series. This section introduces a range
of measures—from classical statistics to modern machine learning tools—that objectively
quantify a series’ predictability.

By using these metrics, we can assess whether a time series carries a meaningful structure
(recall: a pure noise series has no useful signal for forecasting) and decide whether sophisti-
cated modeling is justified. We describe both traditional techniques (e.g., entropy-based
metrics, autocorrelation tests) and practical forecasting skill scores, while also highlighting
newer toolkits that automate forecastability analysis. This blended approach bridges theory,
the limits of predictability, with practice: hands-on tests to check those limits.

Forecastability refers to the inherent predictability of a time series, essentially how well
future values can be inferred from the past. Unlike forecasting methods, which focus on
how to generate predictions, forecastability is a property of the data itself. Quantifies the
theoretical limit of the prediction accuracy achievable, independent of any specific method

[9].

Highly forecastable series exhibit strong patterns or structures that can be learned, while
poorly forecastable series are dominated by randomness or noise. Evaluating forecastability
is critical: It helps determine whether sophisticated models are worthwhile or whether a
series is so noisy that even the best models will yield large errors.

In what follows, we review metrics used to evaluate time series forecastability. We cover
classical approaches (e.g., autocorrelation and variance-based measures from statistics
and econometrics) as well as modern information-theoretic and complexity-based measures
(e.g., entropy, algorithmic complexity) from machine learning and nonlinear dynamics.
Importantly, we focus on the evaluation of the predictability itself, the predictability of the
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series, not on specific forecasting algorithms.

Researchers have devised a wide range of metrics to quantify the predictability of a time
series. These measures span from simple statistical descriptors (such as autocorrelation or
coefficient of variation) to sophisticated information-theoretic quantities (such as entropy
rates and mutual information). Broadly, we can categorize forecastability measures into
model-based (realized) metrics, which depend on a particular forecasting approach, and
intrinsic metrics, which attempt to characterize predictability independent of any specific
model. In the following, we survey key measures, explaining which aspect of “predictability”
each captures. We also note how different measures are applied in practice in domains such
as demand, energy, and finance.

Coefficient of Variation (CV) and ADI-CV Framework

In demand forecasting, particularly within supply chain contexts, the ADI (Average Demand
Interval) and CV (Coefficient of Variation) framework proposed by Syntetos and Boylan [90]
provides a practical method for classifying time series based on their forecastability. This
classification enables practitioners to select appropriate forecasting models in advance.

The formulas are:

ADI=

CV=

=193

where:

n = total number of periods

e n, = number of periods with nonzero demand
e i = mean demand

o = standard deviation of demand

The four demand types are:

¢ Smooth: Low ADI and low CV. Highly predictable demand patterns.

o Intermittent: High ADI, low CV. Forecastable with specialized methods such as
Croston’s, ADIDA, or IMAPA.

e Erratic: Low ADI, high CV. High uncertainty, often driven by price sensitivity or
promotions.

e Lumpy: High ADI and high CV. Extremely difficult to forecast, often related to slow-
moving or event-driven items.
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Figure 2.1: Demand Type Classification Based on ADI and CV.

2.4.2 Variance Ratio and Theoretical Predictability Limits

One fundamental notion of forecastability is the fraction of variance that is predictable.
If we denote the variance of the time series by O‘Z and the variance of the unavoidable
forecast error (i.e. the error of an optimal forecasting method or oracle) by o2, then a basic
predictability index can be defined as follows:

o2
Forecastability = 1 — -5
(o)

Y
In other words, this is the proportion of the variance of the series that can be explained by
the best possible forecast [9].

The concept of using explained variance to measure forecastability was explicitly proposed
by Granger and Newbold [38]. It defines a theoretical upper bound on the R’ of any
forecasting model.

Here, 05 is the variance of the observed time series and o2 is the variance of the forecast

error from an optimal model.

e If the series is pure noise, then o2 ~ 05 ; the forecast explains no additional variance,
so the forecastability approaches 0.

o Ifthe series has a strong deterministic pattern (e.g. trend or seasonality) with minimal
noise, then o2 < o7, and forecastability approaches 1.

Although the true value of o2 is typically unknown (since we rarely have access to an oracle
model), this framework informs many practical metrics.

One such example is the Nash-Sutcliffe Efficiency (NSE), also known as the Coefficient
of Efficiency (CE), widely used in hydrology. NSE is defined as:

MSE
%

NSE=1-

It evaluates how well a forecasting model performs relative to a naive benchmark (e.g.,
using the mean of the series as a constant forecast):
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e NSE = 1 indicates a perfect forecast (all variance explained),
e NSE = 0 means the forecast is no better than the mean,
e NSE < 0 suggests the model performs worse than the naive mean forecast.

Although NSE is a performance measure realized for a given model, it reflects the same
underlying idea of variance-based forecastability. In practice, researchers approximate
intrinsic forecastability by fitting highly flexible models. For example, Wang et al. [97]
estimated the predictability of daily streamflow by applying ARMA models and computing
the variance ratio as a proxy for the optimal forecast error.

Another useful approach to measuring forecastability involves comparing a model’s per-
formance on the original time series versus a randomly shuffled version. Kaboudan [57]
introduced a predictability score based on this idea using genetic programming. The logic
is simple: If a time series has meaningful temporal structure, a forecasting model should
perform better on the original data than on a version with the same values but random
order. A score significantly less than 1 indicates the presence of an exploitable structure; a
score close to 1 suggests little or no forecastable pattern, similar to i.i.d. noise [9].

This idea is closely related to skill scores commonly used in meteorology, where forecasts
are evaluated relative to a naive benchmark (e.g., assuming tomorrow equals today). If a
complex model performs only marginally better than such a baseline, the series is likely to
have low forecastability.

It is important to note that variance-based measures, such as R? or Nash-Sutcliffe efficiency,
typically assume optimality under a least-squares criterion and are best suited to capture
linear patterns. However, many real-world time series contain non-linear dynamics or
regime changes that these measures may miss. That’s why information-theoretic approaches
(discussed later) are often used to detect more complex dependencies.

However, variance-based diagnostics offer a useful starting point. In demand planning, for
instance, the coefficient of variation (CV) is a practical proxy for the signal-to-noise ratio: a
low CV implies more predictable demand, while a high CV suggests greater randomness.
These simple metrics underpin many of the rule-of-thumb forecastability assessments used
in practice.

Autocorrelation Function (ACF): Measuring Linear Predictability

Autocorrelation is a fundamental concept in time series analysis. It measures the correlation
between a value in the series and a lagged version of itself, that is, how well the series
“remembers” its previous values. Formally, the autocorrelation at lag &, denoted p(k), is the
Pearson correlation between y; and y;_.

e If p(1) = 0.9, the series exhibits strong persistence: Each observation is highly corre-
lated with the previous one, making it easier to forecast using simple methods such as
a persistence model (i.e., predicting the next value will be equal to the current one).

e If p(1) =0, the series has no memory (as in white noise), and past values do not provide
useful information for prediction.

A basic measure of linear forecastability is the magnitude of the first autocorrelation:

[p(1)]

A value close to 1 implies high forecastability, while a value close to 0 suggests poor
forecastability using linear models.
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To assess the structure beyond the first delay, analysts commonly examine the autocor-
relation function (ACF), which plots p(k) over multiple delays. A slowly decaying ACF
indicates long memory or seasonality and generally suggests a predictable series, though it
may also imply non-stationarity. In contrast, a flat ACF, where autocorrelations are near
zero at all lags, indicates that the series behaves like white noise.

Loo: Autocorrelation Function (ACF) for AR(1) Series
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Figure 2.2: Example of an autocorrelation function (ACF) plot. Strong autocorrelations at
low lags indicate persistence and high forecastability.

As Box and Jenkins [12] emphasized, if autocorrelations are close to zero at all lags, the
series can be treated as white noise, which means that no structure can be exploited for
forecasting and the best predictor is simply the historical mean.

Summary:

o High autocorrelation with low delays =- strong memory = good short-term forecasta-
bility.

e Slow ACF decay = long memory or seasonality = potentially predictable, but may
require transformation.

e Flat ACF = no structure = poor forecastability.

Partial Autocorrelation and Model Parsimony

While the ACF reveals correlation at increasing lags, the Partial Autocorrelation Function
(PACF) isolates the unique contribution of each lag, removing the influence of intermediate
terms. Closely related to autocorrelation is the concept of partial autocorrelation, which
helps to identify the most relevant lag terms for linear models like ARIMA. If a time series
can be accurately captured by a low-order ARIMA model, that is, with just a few lag terms
and low residual variance, it suggests high forecastability. In contrast, if even the best-fitting
AR(p) model leaves residuals with variance nearly as large as the original series, the data
likely contain little linear structure to exploit.

Hyndman et al. [59] have highlighted the importance of simple characteristics, such as
autocorrelation at lag 1 (ACF1), in assessing the predictability of time series. These features
have been used in time series classification frameworks [79] to distinguish between easy
and difficult series. For example, analysis of M4 forecast competition showed that many
of the hardest-to-predict series had low autocorrelation and highly erratic or intermittent
patterns, often resembling high-frequency noise.
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2.4.5 Variance Ratio as a Measure of Forecastability

2.4.6

Another useful linear diagnostic for forecastability is the variance ratio test, which exam-
ines how the variability of a time series evolves across different time horizons. The idea is
grounded in the behavior of a random walk, where the variance of k-step returns should
grow linearly with the number of steps. That is, for a true random walk:

In contrast, if the k-step variance is less than k times the one-step variance, the series
exhibits mean-reverting behavior—values tend to return to a long-term average, which
can be exploited for forecasting. If the k-step variance is greater than expected, the series
may be trending, implying directional drift and potential long-term predictability.

This relationship is captured by the variance ratio (VR):

k-Var(yii1—yt)

Interpretation:

e VR(k) =~ 1: The series behaves like a random walk — no forecastable structure.
e VR(k) < 1: The series is mean-reverting — deviations tend to self-correct.
e VR(k) > 1: The series is trending — persistence implies potential forecastability.

This approach is widely used in econometrics, particularly in analyzing financial time series.
The Lo and MacKinlay variance ratio test is a formal implementation of this idea and is often
applied to assess whether asset prices follow a random walk, as posited by the Efficient
Market Hypothesis.

INlustrative Examples:

e Mean-reverting: Stock market volatility often spikes and then reverts to the normal
variance ratio < 1.

e Trending: Macroeconomic variables such as inflation or GDP growth can exhibit
persistent trends—variance ratio > 1.

e Random walk: High-frequency exchange rate returns typically yield VR(k) ~ 1.

Detecting significant deviations of VR(k) from 1 provides evidence of a forecastable struc-
ture, especially over multistep horizons where short-term autocorrelations may not reveal
deeper patterns.

In summary, autocorrelation-based metrics capture linear predictability — the degree to
which future values can be predicted by linear projections of the past. They are easy to
compute and interpret. However, purely nonlinear or context-dependent patterns will not
be reflected in simple ACF statistics. Thus, while a strong autocorrelation is a sufficient
indicator of some forecastability (especially short-term), a weak autocorrelation does not
guarantee unpredictability — the series might have nonlinear dependencies that require
other measures to detect.

Information-Theoretic Measures (Entropy and Predictability)

Information theory, introduced by Claude Shannon, offers a powerful framework for quanti-
fying uncertainty and information in dynamical systems. At its core is Shannon entropy,
which measures the average uncertainty (or "surprise") associated with the outcomes of a
random variable.
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For a discrete variable X with possible outcomes {z;,x9,...,2z,} and probability distribution
P(X), the Shannon entropy is defined as:

H(X)= —ZP(azi)logzP(xi)

This value reflects the disorder or unpredictability of the system. For example:

¢ A fair coin has P(heads) = 0.5, yielding H = 1 bit — maximal uncertainty.
e A biased coin with P(heads) = 0.9 has lower entropy, around H = 0.47 bits, reflecting
greater predictability.

Entropy Rate for Time Series

When analyzing temporal data such as financial markets, physiological signals or climate
variables, we generalize the entropy to the concept of the entropy rate, which measures
the average uncertainty per time step in a stochastic process.

For a time series { X, }, the entropy rate is defined as:
Hio = lim ~H(X1, Xo,..., X7)
rate—TgI;OT 1,82y, AT

This accounts for dependencies between observations. Some examples illustrate the concept.

e Maximum entropy rate: A memoryless process (e.g., independent coin flips) has
Hyate = H(X), since each new value is fully independent.

e Low entropy rate: A perfectly regular or deterministic process, such as x; = sin(t), has
Hiate = 0 — future values are almost completely determined by past values.

Entropy Rate as a Fundamental Limit to Forecasting

The entropy rate acts as a theoretical ceiling on forecasting accuracy—similar to a physical
law. It quantifies the average uncertainty (in bits per step) in a time series and directly
determines how predictable the process can be, regardless of the forecasting method or
computational power available.

Understanding Entropy Rate Intuitively

Entropy rate measures how much new information each data point carries, given the past.
The more “surprise” or randomness per step, the harder it is to predict what comes next.
Two illustrative extremes help clarify:

o Low entropy rate (e.g., 0.2 bits/step): A metronome ticking at regular intervals.
Each tick is fully determined by the one before—there is almost no new information,
making the process highly predictable.

o High entropy rate (e.g., 3 bits/step): Cryptographic random numbers. Each number
is independent of the past, yielding maximum surprise. Even with complete knowledge
of prior values, the next is unpredictable.

The Predictability Bound
This intuition can be formalized. For a system with:

e N: number of possible states (e.g., 2 for a coin, 6 for a die),
o Hiate: entropy rate in bits per time step,
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the maximum achievable prediction accuracy Il,,,, is bounded by:

. Hrate
logo N

Hmax S

As entropy increases toward its maximum value log, N, predictability approaches zero.
Conversely, when entropy is near zero, forecasts can be nearly perfect.

Worked Examples

System N | Hypate (bits/step) Il

Fair coin toss 2 1.0 1— 101‘0,'22 =0%
Loaded die* 6 1.5 1— % ~ 41%
Periodic signal | 100 0.01 1— et ~ 99%

Table 2.3: Examples of entropy rate and resulting theoretical predictability. *Loaded die:
non-uniform but not perfectly deterministic.

Key Implications

¢ Perfect prediction is only possible when Hyye = 0 (pure determinism). Example:
Predicting sunrise using celestial mechanics.
e Zero predictability occurs when Hpye = log, N (maximal randomness). Example:
Guessing lottery numbers.
¢ Real-world examples:
- Weather forecasting: Il ~ 60-80% — chaotic but partially deterministic.
- Stock prices: Il.x ~ 10-30% — high entropy due to external and stochastic
factors.

Why This Matters
This inequality helps explain why:

o Weather forecasts degrade over time — chaos accumulates entropy.

¢ Financial markets resist prediction — high entropy reduces signal strength.

e Data compression is possible — low entropy signals are more predictable and redun-
dant.

In summary, the entropy rate is not just a statistic—it defines the theoretical limit of what
any forecasting model can achieve.
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Entropy Rate vs. Predictability Bound

1oy — rlmax:l_Hrate/logzN

0.8
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Normalized Entropy Rate (H ate/l0g2 N)

Figure 2.3: As normalized entropy rate increases, the maximum theoretical predictability
decreases. At full entropy (Hrate = logy N), prediction becomes no better than random
guessing.

Practical Implications
Estimating the entropy rate of a time series allows us to assess its inherent forecastability.

¢ Chaotic systems (e.g., weather): Moderate entropy rates. Predictable over short
horizons, but diverge over time.

e White noise: Maximum entropy. No structure to exploit. II,,x = 0.

¢ Periodic or deterministic signals: Low entropy. Predictability is almost perfect.

I~ 1.

In practice, entropy rates can be estimated using methods such as Lempel-Ziv compression
[103], model-based techniques, or permutation entropy. These tools are used in fields such
as climatology, neuroscience, economics, and engineering to assess the limits of forecasting
and guide model selection.

A seminal example of entropy-based predictability analysis is the work by Song et al. [88],
which studied human mobility patterns. They modeled a person’s sequence of visited
locations as a time series of discrete states and calculated its Shannon entropy. Using
Fano’s inequality, they derived an upper bound on the accuracy with which any algorithm
— regardless of complexity — could predict the next location of the individual. Surprisingly,
despite the apparent randomness of human movement, they found that theoretical pre-
dictability was as high as ~ 93%. This suggests that human mobility, while noisy, is highly
structured.

One of the key challenges in applying Shannon entropy to real-world time series is estimating
the joint distribution over long sequences, which is often computationally infeasible.
Lempel-Ziv Complexity (LZC)

Lempel-Ziv Complexity (LZC) is an algorithmic measure of the complexity and unpre-
dictability of a time series. It estimates how much new information is generated as a
sequence progresses by measuring the rate at which unique patterns (or substrings) appear.

Intuitively, a highly repetitive sequence (e.g., 010101...) is highly compressible and thus
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has low complexity. In contrast, a random sequence (e.g., generated by coin tosses) is not
compressible and has high LZC.

Computation: LZC works by scanning a sequence and counting the number of new
subsequences encountered during parsing. It does not require assumptions of stationarity
or linearity and can be applied to symbolic, binary, or discretized continuous series.

Forecasting implications: - A low LZC value implies the series has many repeated patterns
and is therefore more predictable. - A high LZC suggests a high level of novelty or disorder,
reducing the chances that past patterns can inform future values.

Applications: LZC has been used in mobility modeling, EEG signal classification, mar-
ket data analysis, and entropy estimation for human behavior. It is the basis for many
compression-based entropy estimates, and approximates the entropy rate for symbolic
sequences.

Reference: [103], [88]

Approximate Entropy (ApEn) - Measuring Regularity

Approximate Entropy (ApEn) was introduced by Pincus [78] as a statistic to quantify regu-
larity and unpredictability in time series data. In essence, ApEn measures the likelihood
that if we see a certain pattern of observations, a slightly longer sequence will deviate from
that pattern.

In simpler terms, it asks: How often do similar patterns repeat (versus surprise us by
diverging)? A low ApEn value indicates that the series is very regular: If two segments of
length m match closely, their next values are usually also similar. A high ApEn means that
the series is irregular - even if you find two segments that look like m points, the (m+ 1)th
points might be completely different.

Formally, ApEn is calculated by counting, for each subsequence of length m, the fraction of
other subsequences that remain within a tolerance r; then the same for length m +1 and
the logarithmic difference. The result (ApEn,, ;) is lower when the time series has more
repeated patterns (hence more short-term predictability) and higher when every sequence
of observations is followed by many different outcomes (less predictability).

Advantages ApEn is straightforward to compute and works on short and noisy data (it was
originally applied to medical signals like heart rates). It is a fast, single-number summary of
how predictable the process is on a small scale. It can capture non-linear regularity that
traditional metrics (like variance or autocorrelation) might miss. For example, a random
sequence has a high ApEn (patterns do not repeat), whereas a sinusoidal sequence has
ApEn near 0 (highly regular).

Limitations: ApEn has a known bias: it counts self-matches (each subsequence trivially
matches itself), which causes ApEn to underestimate entropy especially for short series.
It also requires choosing the parameters m (pattern length) and r (tolerance), and the
results can be sensitive to these choices and to the length of the data. In practice, one must
ensure the time series is long enough (relative to m) and pick r (often as a percentage of
the standard deviation of the data) appropriately.

Despite these limitations, ApEn provides a useful a priori indicator of forecastability: if
ApEn is extremely high (close to the maximum for given m), the series may be essentially
as good as random in terms of short-term patterns, warning us that achieving accurate
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forecasts will be difficult. If ApEn is low, the series has a lot of structure that a model might
exploit. However, ApEn is not the final word - it led to improved measures such as sample
entropy.

Python Example — Computing ApEn: The following code computes ApEn for a time series
(using m = 2, » = 0.20) to illustrate how it distinguishes a periodic series from a random
series:

import numpy as np
import plotly.graph_objects as go

# Approximate Entropy function

def approximate_entropy(series, m, r):
N = len(series)
tol = r *x np.std(series)

def _phi(m):
C =11
for i in range(N - m + 1):
seq_i = series[i:i + m]
count = 0
for j in range(N - m + 1):
if np.max(np.abs(series[j:j + m] - seq_i)) <= tol:
count +=1
C.append(count / (N - m + 1))
return np.mean(np.log(C))

return _phi(m) - _phi(m + 1)

# Generate data

np.random.seed(0)

data_periodic = np.sin(np.linspace(0, 2 * np.pi * 5, 100))
data_random = np.random.randn(100)

# Compute entropies
entropy_periodic = approximate_entropy(data_periodic, m=2, r=0.2)
entropy_random = approximate_entropy(data_random, m=2, r=0.2)

# Plot using Plotly
fig = go.Figure()
fig.add_trace(go.Scatter(
y=data_periodic,
mode='1lines’,
name='Periodic Signal (ApEn ~ {:.2f})’.format(entropy_periodic),
line=dict(color="blue’)

fig.add_trace(go.Scatter(
y=data_random,
mode='"1lines’,
name='Random Signal (ApEn ~ {:.2f})’'.format(entropy_random),
line=dict(color="red’)

fig.update_layout(
title='Periodic vs. Random Time Series with Approximate Entropy’,
xaxis_title='Time Index’,
yaxis_title='Value’,
legend=dict(x=0.01, y=0.99),
template='simple_white’
)
fig.show()
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Listing 2.1: Python code for approximate entropy and visualization

As shown in Figure 2.4, the periodic series has significantly lower ApEn compared to the
random series, indicating higher forecastability.

Periodic vs. Random Time Series with Approximate Entropy

—— Periodic Signal (ApEn = 0.15)
1 —— Random Signal (ApEn = 0.49)

Value

T T T T T T T
o] 10 20 30 40 50 60 70 80 90

Time Index

Figure 2.4: Approximate entropy of a periodic signal (low entropy) versus random signal
(high entropy). Low ApEn indicates regularity and high short-term forecastability.

Another widely used information measure is Permutation Entropy (PE). Introduced by
Bandt and Pompe (2002), permutation entropy looks at the order relations of consecutive
values in the time series [5]. For example, for an embedding dimension d (length of pattern),
one looks at sequences of d successive points and records the ordinal rank pattern (e.g.
Zr1q-1 is the largest, x; is the second smallest, etc.). There are d! possible ordinal patterns.
The permutation entropy is the Shannon entropy of the distribution of these ordinal patterns
[9]. If a time series is completely random, all order patterns are (approximately) equally
likely, leading to a high permutation entropy (close to log(d!)). If the series has structure (say
always increasing trends of a certain length), some patterns will be much more common,
and others (“forbidden patterns”) might never occur, yielding a lower entropy. Permutation
entropy has become popular because it is simple, fast to compute, and invariant under
monotonic transformations (use only rank order). It effectively measures the complexity of
the dynamics of the time series. A low permutation entropy indicates a more predictable
series. For example, in financial market analysis, researchers found that major stock indices
exhibit certain forbidden ordinal patterns far more often than pure chance would allow.
This indicates underlying structure in price movements (albeit subtle), and the normalized
permutation entropy was proposed as a model-independent inefficiency (predictability)
measure. In fact, the presence of forbidden patterns in asset prices suggests a deviation
from randomness that could be used for forecasting.

Sample Entropy (SampEn)

Sample Entropy (SampEn) is a refinement of ApEn proposed by Richman and Moorman [83]
to address ApEn biases. SampEn uses a similar conceptual approach to ApEn - quantifying
the probability that two sequences of length m that match (within tolerance r) will also
match at the next point — but makes two critical changes in the algorithm:

1. it excludes self-matches
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"Don’t sharpen your ruler before checking if there’s anything to
measure."

— Forecasting Proverb
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Chapter 2 emphasized that before forecasting begins, we must ask whether a time series
is forecastable at all — whether it contains signal strong enough to rise above noise. It
introduced the concept of forecastability not as a modeling choice, but as a property of the
data itself, grounded in entropy, variability, autocorrelation, and temporal structure.

The chapter 2 details diagnostic tools such as CV-ADI classification, permutation entropy,
and spectral analysis, showing how they can be used to segment series, model classification
strategies, and set realistic expectations. It also underscored a crucial truth: no metric,
however precise, and no model, however powerful, can retrieve a signal that simply is not
there.

With this understanding in place, we now turn to the second core pillar of effective fore-
casting: the accurate measurement of forecast performance. This chapter introduces the
essential landscape of forecasting metrics, examining their mathematical properties, busi-
ness relevance, and limitations. From point forecast errors to probabilistic scoring rules and
shape-aware alignment measures, we explore how the way we measure forecasts shapes
what we build, evaluate, and deploy.

Forecasting performance is only as meaningful as the metrics used to evaluate it. A well-
chosen metric aligns closely with business objectives and the nature of the data, whereas a
poor metric can mislead model selection and optimization. In this chapter, we survey point
forecasting metrics (for single-valued predictions) and probabilistic forecasting metrics (for
distributional predictions), clearly separating their uses. We critically examine the strengths
and weaknesses of each metric and incorporate insights from forecastability measures
(discussed in Chapter 2 ) - such as entropy-based complexity indices - to understand how
the inherent predictability of a time series can guide the selection of metrics.

Point Forecast Accuracy Metrics (Deterministic Forecasts)

Point forecast metrics assess the error between a single forecast value and the actual
outcome. Let y; be the actual value at time ¢ and ¢; the forecast. The most common point
metrics are based on absolute or squared errors (H is the forecast horizon).

e Mean Absolute Error (MAE): %21{11 |yr — 9¢|. The mean absolute error (MAE)
measures the average magnitude of the forecast errors without considering direction.
It is easy to interpret; for example, an MAE of 5 means that forecasts are off by 5
units on average. MAE treats all errors equally, making it more robust to outliers than
squared-error metrics like MSE, which disproportionately penalize larger errors. .

¢ Mean Squared Error (MSE): %Zfil(yt —Qt)Q. The mean squared error (MSE) is
the average of the squared differences between the predictions and the actual values.
Squaring the errors ensures that all deviations are positive and emphasizes larger
errors. This makes MSE useful when large errors are especially costly, but it is also
sensitive to outliers.

e The root mean square error (RMSE) is the square root of the MSE and expresses the
error in the same units as the data RMSE =V MSE = \/% S (ye—9:)2. RMSE is
widely used for its mathematical convenience and sensitivity to large errors. However,
like MSE, it is less robust to outliers.

These scale-dependent metrics are intuitive (in units of y) but cannot be used to compare
errors across series of different scales. However, it is often recommended to report at least
one of such metric for interpretability, and a good practice in many large-scale studies is to
report both MAE and RMSE. One drawback is their sensitivity to outliers: a single large
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error can dominate the MSE/RMSE. MAE, being linear, is more robust to outliers than MSE.
Another drawback is that these raw metrics do not provide context — an RMSE of 10 may be
excellent for a volatile series but terrible for a stable series.

Forecast Bias Metric in Point Forecast Evaluation

Forecast bias is a critical aspect of point forecast evaluation. It reflects the tendency of
a model to systematically overestimate or underestimate the actual values. The metric
commonly used to quantify forecast bias is Mean Error (ME), defined as:

where:

e 1 is the actual observed value at time ¢,
e ¢, is the forecasted value at time ¢,
e H is the number of forecast-observation pairs.

This measure captures the direction of the error, which is important when a practitioner
needs to detect consistent over-forecasting (negative ME) or under-forecasting (positive
ME). A value near zero indicates that the forecasts are unbiased on average. However,
ME does not account for the magnitude or variability of errors and should therefore be
interpreted alongside scale-independent or absolute error measures such as MAE or MASE.

Metric Interpretation

Mean Error (ME) Captures average signed forecast error (bias)
Positive ME: under-forecasting; Negative ME: over-forecasting
ME near 0: unbiased on average

Table 3.1: Mean Error as a bias metric for point forecast evaluation.

Cumulative Forecast Error (CFE)

Cumulative Forecast Error (CFE) measures the total accumulated forecast error over the
evaluation horizon:

H

CFE =) (y:—)
t=1

CFE is a nonaveraged form of ME and highlights the overall directional error over time. It
is especially relevant in applications like inventory management, where cumulative bias can
lead to persistent shortages or surpluses.

Tracking Signal (TS)

The tracking signal (TS) normalizes the CFE using the Mean Absolute Deviation (MAD) and
is used to detect persistent bias.

S _ CFE
- MAD
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A tracking signal outside the range of approximately [—4,+4] typically indicates a need to
revise the forecasting model, as it suggests a consistent bias that is unlikely due to random
variation.

Metric Formula Use Case

CFE > (y+—19:) Total directional error

TS R Normalized bias monitoring

Table 3.2: Common practical extensions for monitoring forecast bias.

Percentage Error Metrics and Pitfalls of MAPE

To compare errors relative to the magnitude of actual values, percentage-based metrics
are common. The Mean Absolute Percentage Error (MAPE) is defined as %0% Zflzl yty%yt .
By expressing errors as a percentage of actuals, MAPE is scale independent and easy to
interpret (“on average, the forecast is off by X%”). The easy interpretation makes MAPE

very popular. However, its appealing simplicity hides serious defects and risks:

e Undefined or Extreme Values for Low Demand: If any actual y; =0, MAPE is
undefined (division by zero). Even very small actual values can blow up the percentage
error. For example, forecasting 10 units when the actual is 1 yields an absolute
percentage error of 900%. In practice, this makes MAPE unusable for series with
ZEeros or near-zeros — a common occurrence in intermittent demand or certain daily
data (e.g., no sales on some days).

o Asymmetry & Bias Favoring Under-Forecasts: MAPE puts actual value in the
denominator, which means over-forecasting (forecast §; too high) is penalized more
severely than under-forecasting by the same amount. In fact, MAPE is asymmetric:
if ¢, is double y;, that contributes 100% error, but if g; is half of 1, that’s only 50%
error. Figure 3.1 illustrates this asymmetry. As a result, optimizing for MAPE tends to
produce under-forecasting — the model learns that it is “safer” to under-predict than
over-predict. This bias is highly undesirable in many business settings. Goodwin &
Lawton [37] formally showed that even the so-called 'symmetric’ version of MAPE
does not eliminate bias.

o Aggregation Issues: A single high-volume series and a low-volume series can have
similar percentage errors, but their absolute importance differs. MAPE gives equal
weight to each period or series regardless of scale. It “masks performance issues
at aggregation” — a large error on a critical high-volume item can be diluted by
many small-percentage errors on low-volume items. Without weighting, MAPE cannot
differentiate which errors matter more to overall business impact

o Non-interpretability at Low Averages: While “10% error” sounds like a clear
statement, if that 10% came mostly from periods of tiny actual values, it might be
misleading in practical terms of units. Business stakeholders often care about absolute
unit errors for impact (e.g. 100 units surplus or short).

In summary, despite MAPE’s popularity, there is now a solid consensus among forecasters
that MAPE is a poor choice, except in limited conditions. A provocative statement by a
leading supply chain analytics firm went as far as: "MAPE has served its duty and should
now retire" (Malte Tichy, [95]).
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Asymmetry of MAPE
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Figure 3.1: Asymmetry of MAPE: MAPE penalizes over-forecasting more heavily than under-
forecasting. Equal errors above the actual value result in higher percentage errors than
those below, creating a bias that incentivizes under-forecasting. As forecasts increase
beyond actual values, the Absolute Percentage Error (APE) can exceed 100% without
bound, while forecasts approaching zero cap the APE at 100%. Despite its popularity, this
asymmetry is a key limitation of MAPE

Several alternatives address MAPE’s issues:

Weighted Absolute Percentage Error (WAPE)

Weighted Absolute Percentage Error (WAPE) — also called the MAD / Mean ratio. This is

Sy e — 9t
T

essentially 100% x . Instead of averaging percentage errors, it divides the total

t=1Yt
absolute error by the total actual demand. WAPE is volume-weighted, so a 10-unit error on
a large-demand item contributes less to the metric than a 10-unit error on a small item.

This directly addresses the aggregation issue — high-volume series dominate the metric as
they should. WAPE is also bounded: if any actual y; = 0, the total actual ) y; might still
be large, so that one zero does not blow up the whole metric. In practice, WAPE behaves
similarly to MAPE for series without intermittency or scale extremes but is much more
stable in real-world use.

Many businesses prefer WAPE and call it 'MAPE’ internally, but it is important to note that
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WAPE is a sum-weighted measure (also sometimes called sMAPE in business, though that
term conflicts with another metric).

MAPE vs WAPE Contribution for Equal Errors
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Figure 3.2: MAPE Vs WAPE Contribution For Equal Errors. This chart illustrates how two
identical forecast errors (10 units) are evaluated under MAPE and WAPE. MAPE treats both
equally, regardless of actual volume. WAPE, by contrast, gives proportionally more weight to
errors in high-volume periods. This makes WAPE a more business-aligned, volume-sensitive
metric.

A rule of thumb: Use WAPE (MAD/Mean) over MAPE for any practical forecast evaluation,
especially in retail or portfolio contexts.

3.1.2.2 Symmetric MAPE (sMAPE)
Symmetric MAPE (sMAPE) is defined as:

SMAPE =

100% Z |y — Ui
T (lyel +19e1)/2

It uses the average of the forecast and the actual in the denominator to bound the error
between 0% and 200%. sMAPE was used as the primary accuracy metric in the M4
Competition (2018).

Although it was theoretically designed to treat under- and over-predictions more’symmetrically’
than MAPE, in practice sMAPE introduces its own form of asymmetry. Specifically, it tends to
punish underforecasting more severely than overforecasting, producing a positive bias—the
opposite of MAPE’s known bias. This arises from the structure of the denominator, which
includes the forecast value: when the forecast is lower than the actual, the denominator
shrinks, inflating the error; when the forecast is higher, the larger denominator suppresses
the error. As shown by Goodwin & Lawton [37], this leads to unequal error penalties for
equal-magnitude deviations above and below the actual value. Figure 3.3 illustrates this
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asymmetry. Moreover, SMAPE is undefined when both y; and ¢, are zero, which can be
problematic in zero-heavy time series. Because SMAPE does not fully resolve the limitations
of MAPE and introduces new issues with interpretability and bias, it is generally not rec-
ommended except for legacy comparisons or where consistency with prior benchmarks is
required.

Asymmetry of sMAPE
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Figure 3.3: Asymmetry of sSMAPE: Although designed to address MAPE’s bias, sMAPE intro-
duces its own asymmetry. It penalizes under-forecasting more heavily than over-forecasting.
For equal errors above and below the actual value, SMAPE produces higher percentage
errors when the forecast is below the actual. This occurs because the denominator, which
averages the forecast and actual, is smaller when the forecast is low, inflating the error. As
forecasts fall below the actual, the Symmetric Absolute Percentage Error (sAPE) rapidly
approaches its upper bound of 200%, while over-forecasting leads to more gradual increases.
This imbalance incentivizes over-forecasting and highlights a key limitation of SMAPE, as
shown by Goodwin & Lawton [37].

Mean Arctangent Absolute Percentage Error (MAAPE):

Mean Arctangent Absolute Percentage Error - a less common but clever alternative proposed
by Kim & Kim [60]:

1 |yt—?)t|>
MAAPE = — H arctan < .
H; |yt
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By taking the arctangent of the percentage error, it transforms the unbounded [0,0) range
of MAPE into a [0,7/2] range (roughly [0°,90°] when interpreted as an angle). This naturally
constrains extreme errors and avoids divergence at y = 0. MAAPE is more robust with
intermittent demand and outliers, although its values are expressed in radians (or degrees)
rather than intuitive percent. Although promising, MAAPE is not yet widely used in industry;
it mainly appears in academic studies of forecasting metrics.

In practice, if percentage errors are desired, using WAPE (MAD/Mean) is the safest general
solution. It retains interpretability (for example, “5% of total demand in error”) and is
never infinite. However, for most cases, the scaled errors described next are even more
informative.

Scale-Independent Metrics Errors (MASE, RMSSE)

Instead of percentages, another approach to achieve scale independence is to scale forecast
errors by the errors of a benchmark method. The most popular is scaling by a naive forecast.
The Mean Absolute Scaled Error (MASE) was introduced by Hyndman & Koehler [54] to
address the flaws in MAPE. MASE is defined as:
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where the denominator is the average one-step naive forecast error in the sample. For
nonseasonal data, ¢/ =1 (last-value naive); for seasonal data, / = season length (seasonal
naive). The idea is to make an error relative to the way a simple naive method would do.
MASE > 1 means the forecast is worse than naive on average;

MASE < 1 indicates that the forecast performs better than the naive method. It also
provides an intuitive scale: for example, a MASE of 0.8 means that the forecast is 20%
better than naive, since 1 — 0.8 = 0.2, or an improvement 20%.

MASE has several advantages: It is well defined for all series (the naive error will only be
zero for a constant series, in which case the forecast error is also zero, so one can define
MASE = 0 in that trivial case). It also treats over- and under-forecast errors equally (being
based on MAE in the numerator) and avoids percentage distortions. It became a de facto
standard in forecasting research (e.g., used in M4 competition alongside sMAPE). That said,
MASE is not perfect:

1. MASE inherits properties of the naive benchmark. If the naive method is too simplistic
(e.g. a non-seasonal naive applied to a seasonal series without adjustment), the
denominator may be large, making MASE appear artificially low (too optimistic). It is
crucial to use a sensible naive - typically last season value - for seasonal data.

2. MASE does not convey an absolute scale of errors. Business users may not intuitively
grasp “MASE = 0.8” as easily as “MAE = 500 units”. It is a relative measure.

3. Aggregating MASE across multiple series requires care. Taking a simple average of
MASE across series can be misleading, since each series has its own scale. Sometimes
a median of MASE values or a weighted average by volume is preferred

4. Since MASE uses MAE, it aligns with optimizing median forecast (MAE is minimized
by median). In intermittent demand contexts, the median might be zero even though
the mean is higher, leading to a situation where always forecasting zero yields a
decent MASE but is clearly a bad business decision. This again underscores that
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metric alignment with business goals is vital: if the cost of underforecasting is high,
an accuracy metric that rewards zero forecasts can be dangerous.

Despite these caveats, MASE remains a robust, scale-free metric. A complementary metric
is Root Mean Squared Scaled Error (RMSSE), which scales the RMSE by the RMSE of a
naive benchmark (often using differenced series for scaling). RMSSE was extensively used
in Mb forecasting competition for retail demand, where a weighted RMSSE (WRMSSE)
was the main evaluation metric. Each series (product-store combination) was assigned
a weight proportional to its sales volume, and the RMSSE for each series (with seasonal
naive reference) was combined into one weighted score. This ensured that accuracy on
high-volume series contributed more to the final score and that scale differences were
normalized via the naive benchmark.

In summary, for point forecasts, we recommend reporting at least one scale-dependent
metric like MAE or RMSE (in meaningful units) and one scale-independent metric like
MASE/RMSSE or WAPE. This gives a balanced view: stakeholders see the typical size of
errors, and as analysts, we see whether our model beats simple baselines and by what
margin. If using percentage-style metrics, prefer WAPE or at least SMAPE / MAAPE to raw
MAPE to avoid the latter’s pitfalls.

While accuracy metrics help evaluate absolute error levels, they don’t tell us whether a
forecast is better than a baseline. This is where relative performance metrics like Forecast
Value Added (FVA) come in.

Forecast Value Added (FVA): Quantifying the impact of the
model

In applied forecasting, especially when replacing judgmental or legacy models, it is crucial
not just to measure accuracy but to demonstrate value over the current baseline. Forecast
Value Added (FVA) is a relative metric introduced by Gilliland [34] to exactly quantify this.

Definition
Let MAE0del and MAEpenchmark D€ the mean absolute errors of the model and the baseline
(e.g., naive, seasonal naive, or expert forecast). Then:

MAE
rMAE = — 2%l RVA = (1-rMAE) x 100

MAEbenChmark

A positive FVA indicates an improvement over the baseline; negative FVA indicates degrada-
tion.

Use Cases

¢ Retail: Evaluate whether a statistical model outperforms human planners or seasonal
naive forecasts at the SKU or store level.

¢ Finance: Compare a predictive ML model with a random walk or a benchmark from
the previous year in revenue forecasting.

¢ Energy: Quantify improvement over historical profiles (e.g., “ the same hour yesterday”
or climatology) in the load or renewable output forecasts.

Pros and Considerations

e  Intuitive: The stakeholders understand how much better the forecast is.
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3.7.2 Aggregation Across Multiple Series

When aggregating errors across N time series, especially with differing scales and impor-
tance, several strategies apply:

e Micro-averaging (volume-weighted): Pool all forecasts and compute an overall
metric. For MAE:
S e |yt — Dt
T
This approach emphasizes series with more data points or higher volume.
¢ Macro-averaging (series-level): Compute the error for each series and take the
mean:

MAEmicro =

N
1
MAEmacro = - ) MAE;
1=1

This treats all series equally, regardless of their scale or volume.
o Weighted averaging: Use domain-specific weights, such as revenue share or recent
sales volume, to reflect business impact.
e Scaled metrics (e.g., MASE, relative RMSE): To allow fair aggregation across
series of different scales, use scale-independent metrics such as:
MAE,; RMSE;

"' RelRMSE; =
MAE naive,s RM SEbenchmark,i

MASE,; =

These can be averaged across all series to assess average relative performance.

¢ Robust aggregation: Consider using the median or trimmed mean of the errors per
series to mitigate the effect of outliers.

¢ Distribution summaries: Plot histograms or box plots of errors per series to under-
stand the full error profile across the portfolio.

3.7.3 Probabilistic Forecast Aggregation

3.8

For distributional forecasts, metrics like CRPS and pinball loss (quantile loss) are aggregated
similarly:

¢ Mean CRPS or quantile loss across all forecasted points is the standard.

¢ Scaled CRPS: Normalize by the CRPS of a naive benchmark for comparability.

¢ Coverage-based aggregation: Compute the overall empirical coverage of prediction
intervals across all time points and series.

1.7.4 Summary
To evaluate models across multiple series and horizons:
e Always report both overall and horizon-specific metrics.

¢ Normalize or weight appropriately when aggregating across heterogeneous series.
e Supplement scalar metrics with distributional and visual summaries.

Improper aggregation can lead to misleading conclusions, particularly when model perfor-
mance varies across subgroups or horizons. Aggregating thoughtfully ensures metrics are
informative, actionable, and aligned with the objectives of the forecast.

Practical Metric Selection Framework

1. Understand the Decision Context: Identify what matters if the forecast is used
in decision making. Is under-forecasting or over-forecasting worse (asymmetry)?
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Are absolute units more important than % error? Is the timeliness of the prediction
critical? For example, in inventory management, stockouts (under-forecast) are worse,
so one might incorporate a service level or use a higher quantile forecast; in budgeting,
over-forecasting revenue might be worse (overly rosy projections).

2. Examine Data Characteristics (Forecastability): Compute basic stats for each
series: volatility (CV), intermittency (count of zeros, ADI), seasonality strength, trend,
entropy measures. This will tell you which series are easy or hard. Hard series might
need special treatment (or at least tempered expectations). Easy series set the bar for
performance (if you can’t get low error there, the model needs improvement).

3. Choose a Primary Scale-Dependent Metric: Typically MAE or RMSE. MAE is often
preferable for business interpretability (and robustness), but RMSE if you really care
about outliers or have normally distributed errors. This will be used to communicate
‘the typical error is... units (or currency)”. Ensure to compute this on the same scale
as decisions (e.g. if daily errors of 100 look bad, but monthly aggregated error is what
matters, maybe focus on monthly MAE).

4. Choose a Primary Scale-Independent Metric: Either a percentage (WAPE) or
a scaled error (MASE/RMSSE). This is used for comparing across series or against
benchmarks. For example, “our model has MASE = 0.8, so 20% better than last year’s
same period” gives a nice sense of value-add. If using percentage, prefer WAPE to
avoid MAPE issues. If you must use MAPE (due to convention), be aware of its issues
and perhaps exclude zero-demand periods from the calculation to avoid infinity — or at
least report a trimmed MAPE.

5. If Probabilistic Forecasts Are Relevant: Include CRPS or an average pinball loss as
a metric. For instance, if you generate 100 simulations or a full predictive distribution,
report the mean CRPS across the test set. If stakeholders care about certain quantiles
(like P90 for risk), report the calibration and pinball loss at P90. Always accompany
these with a plain-language interpretation (“the P90 forecast is on average 10 units
too low or too high, which is acceptable for our risk tolerance” or “our 95% intervals
contained the true value 95% of the time - indicating slight under-dispersion, which
we will address”).

6. Consider Specialized Metrics as Needed: If your use case has specifics like timing
(e.g. peak timing in load forecasting) or alignment (e.g. phase of demand surges),
add a metric for that. E.g., “Mean timing error of peak demand = 1.5 hours”. Or if
you have hierarchical structure, ensure a weighted aggregate metric is reported. If
forecasts will be reconciled, perhaps coherence isn’t a concern; if not, you might at
least quantify the incoherence.

7. Use Multiple Metrics and Visualizations: No single metric gives the full picture.
It’s good practice to present a dashboard of metrics - e.g. MAE, MASE, WAPE,
bias, and maybe a calibration plot or distribution metric. Ensure none of these tell
conflicting stories. If they do (e.g. one model better in MAE, another better in MASE),
dig deeper — maybe one model excels on big items, another on small, etc.

8. Align Metric with Model Optimization if Possible: If you have the freedom to
choose a loss function for training your model, try to match it to the metric. For
example, optimizing a neural network on MAE will directly target median and usually
yield lower MAE. If you care about MASE, you might incorporate a seasonal naive
scale in the loss or use relative error loss. Caution: sometimes you might not optimize
on the final metric due to stability (e.g. MAPE is horrible to optimize, so you might
optimize MASE or MAE instead, which usually correlates well). Always validate that
optimizing your chosen loss actually improves your key metric on a validation set.
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9. Watch out for Gaming and Incentives: Metrics drive behavior. If forecasters or
planning teams are judged by a metric, they may unconsciously game it. For example,
a supply planner who is evaluated on MAPE might intentionally under-forecast to avoid
high percentage errors on slow movers — but that will cause stockouts (a phenomenon
observed in a Blue Yonder simulation where optimizing MAPE alone led to severe stock
issues [95]). To counteract this, use multiple metrics (so you can’t game one without
hurting another) and include ones that capture the undesired side effects (e.g. track
bias separately, service level, etc.). In our example, adding a bias metric or a fill rate
requirement will prevent the planner from over-focusing on MAPE at the expense of
stock.

10. Iterate Based on Results: Once you evaluate your model(s), you might find the
metric choice needs adjustment. Perhaps every model’s MAPE is high due to many
zeros — that might push you to switch to WAPE or segment the evaluation. Or you find
two models have similar MAE but one has much better P90 error - if P90 is critical,
you’d choose that model and realize pinball loss at 0.9 quantile should be a reported
metric.

Implementation Tip. For hands-on implementation, we provide a cross-reference table in
Appendix 6 linking the core forecasting metrics discussed in this chapter to their correspond-
ing functions in popular Python libraries such as scikit-learn, Nixtla’'s UtilsForecast,
scores, and properscoring. This crosswalk enables rapid application of the metrics in
code, ensuring that the theoretical insights presented here are directly translatable into
practice. Whether you are evaluating probabilistic forecasts with CRPS or benchmarking
point accuracy with MAE and MASE, the appendix serves as a practical guide to choosing
the right tool for your pipeline.

Nixtla’s StatsForecast:

StatsForecast by Nixtla [72] is a high-performance library for statistical time series fore-
casting (ARIMA, ETS, etc.), often used for large-scale forecasting. Alongside models, Nixtla
provides a utility module, "Utilsforecast", for evaluation metrics and other tools. The Nixtla
ecosystem (which also includes MLForecast and NeuralForecast) emphasizes efficiency and
accuracy and offers solid documentation (Nixtla’s ‘Nixtlaverse’) [93].

Metrics & Features: StatsForecast itself exposes a convenient cross-validation method
that can generate historical fold forecasts and compute error metrics such as MAE, MAPE,
MASE, RMSE and sMAPE. Under the hood, it relies on Utilsforecast which implements
many metrics. Scale-dependent point metrics supported include MAE, MSE/RMSE, and
others like MAPE and sMAPE (Symmetric MAPE). The library also provides MASE (Mean
Absolute Scaled Error), which requires a seasonal period and training data to compute the
scaling term. MASE is computed relative to the naive forecast error in the sample (requiring
passing train df to metrics). This allows for more robust comparisons between series.

For probabilistic forecasts, Nixtla’s utilsforecast supports quantile-based metrics. It has a
quantile loss (pinball loss) for quantile forecasts, an mqloss for multiquantile average loss,
and computes coverage of prediction intervals. A notable advanced metric is the scaled
CRPS — a variant of CRPS that normalizes the score by the magnitude of the series (as
described by Rangapuram et al. [81]). This provides a single-number metric for the quality
of the distribution forecast considering calibration and sharpness.

In addition, calibration and coverage metrics are offered to assess if the predicted intervals
have the nominal coverage.
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Coverage and Calibration Metrics

In addition to point forecast metrics, assessing the reliability of probabilistic forecasts is crit-
ical—especially when prediction intervals are involved. The utilsforecast library provides
two core metrics for evaluating prediction intervals: coverage and calibration. These help
determine whether the forecasted uncertainty is well-aligned with actual outcomes.
Coverage The coverage metric measures the empirical frequency with which the predicted
intervals contain the observed values. For example, a nominal prediction interval 90% should
ideally contain the true value 90% of the time. This metric computes the proportion of
actual values that fall within the predicted bounds.

¢ Input: Forecasts with upper and lower bounds at specified coverage levels (e.g., 80%,
95%).
e Output: Empirical coverage as a value between 0 and 1.
o Interpretation: Higher values closer to the user-specified confidence level indicate
better coverage.
Calibration The calibration metric measures the absolute difference between the nom-
inal interval level and the actual empirical coverage. Indicates whether the predicted
intervals of a model are well-calibrated - that is, whether they match the target frequency.

e Input: Same as for coverage.
e Output: Absolute deviation from nominal coverage level.
¢ Interpretation: A value close to zero implies good calibration.

Table 3.3: Comparison of coverage and calibration metrics

Metric What it Measures Good Value Means

coverage Empirical proportion of ob-| Close to the nominal level
servations inside the predic- | (e.g., 0.90 for a 90% interval)
tion interval

calibration | Absolute difference between | Close to 0 (indicating perfect
empirical and nominal cover- | calibration)
age

Example Usage:
from utilsforecast.losses import coverage, calibration

from utilsforecast.data import generate_series

# Generate synthetic forecast data with prediction intervals
series = generate_series(n_series=10, n_models=2, level=[80, 95])
models = ['modelQ’, 'modell’]

# Compute coverage
coverage_df = coverage(df=series, models=models, level=[80, 95])

# Compute calibration
calibration_df = calibration(df=series, models=models, level=[80, 95])

Listing 3.1: Python code for computing coverage and calibration with utilsforecast

These metrics provide a clear quantitative assessment of the way well a model captures
forecast uncertainty. Together, they allow practitioners to assess not just the accuracy
of point forecasts but also the reliability of prediction intervals - vital for risk-sensitive
decision-making.
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In summary, Nixtla’s Utilsforecast suite spans standard errors to sophisticated probabilistic
metrics. StatsForecast makes backtesting easy via its cross-validation utility, which itera-
tively retrains models on expanding windows and computes the chosen metrics on each
forecast horizon. This automates the evaluation of the roll origin, producing metrics like
MAPE or MASE in multiple splits. The design emphasizes scalability (working with pandas
or Polars DataFrames and vectorized operations for speed). The Nixtla libraries are actively
maintained, and documentation is available on Nixtla’s site with examples [93].

Advanced and Emerging Metrics

Although traditional metrics such as MAE, RMSE, and CRPS form the backbone of forecast
evaluation, a growing body of research and applied forecasting practice has introduced
more nuanced and task-specific alternatives. These metrics are particularly valuable in
real-world environments where scale, directionality, risk asymmetry, or business cost must
be accounted for.

This section presents advanced metrics—Mean Scaled Interval Score (MSIS), Geomet-
ric Mean Relative Absolute Error (GMRAE), and Median MASE—highlighting their
rationale, formulas, and implementation, particularly in multiseries contexts.

Mean Scaled Interval Score (MSIS)

The Mean Scaled Interval Score (MSIS) is an advanced metric for evaluating the quality
of prediction intervals. It accounts for both the width of the interval and whether the true
value falls inside it. MSIS generalizes the interval score by scaling it relative to a naive
seasonal forecast.

Formula: Given lower and upper prediction bounds ¢; and u; at time ¢, the MSIS at nominal
coverage level « is:

H

MSIS = ;; [(ut —ly)+ z(ft —y) Wy < O} + 2(3/7& —ug)1{y; > Ut}} /Q

where: - H is the forecast horizon, - y; is the observed value, - () is the scaling factor: the
in-sample MAE of the seasonal naive forecast.

Interpretation: - A lower MSIS indicates better forecast interval quality. - It penalizes
wide intervals and poor coverage asymmetrically. - Scaling by ) makes MSIS unit-free and
comparable across series.

def msis(y_true, lower, upper, alpha, naive_errors):
width = upper - lower
penalty_lower (lower - y_true) * (y_true < lower)
penalty_upper = (y_true - upper) x (y_true > upper)
interval_score = width + (2 / alpha) * (penalty_lower + penalty_upper)
scale = np.mean(np.abs(naive_errors)) # seasonal naive MAE
return np.mean(interval_score) / scale

Listing 3.2: Python-style MSIS implementation

Use case: MSIS was used in the M4 competition and is especially useful for evaluating
probabilistic forecasts with intervals across multiple time series. It combines aspects of
accuracy (narrow intervals) and reliability (good coverage), scaled for comparability.

Geometric Mean Relative Absolute Error (GMRAE)

GMRAE uses the geometric mean to aggregate relative errors across multiple series:
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Here, y;, is the forecast from a benchmark (e.g., naive). GMRAE < 1 implies the model
outperforms the benchmark.

1 | import numpy as np

def gmrae(errors_model, errors_benchmark):
4 rae = np.abs(errors_model) / np.abs(errors_benchmark)
5 return np.exp(np.mean(np.log(rae)))

Listing 3.3: Python-style pseudocode for computing GMRAE

Use case: GMRAE is especially effective for comparing performance across heterogeneous
series. Geometric averaging avoids domination by large outliers and satisfies multiplicative
fairness.

3.9.0.3 Median MASE (Mean Absolute Scaled Error)

MASE compares forecast error to the in-sample naive forecast error:

7 2t |y — Gl
1 T
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MASE =

Median MASE aggregates per-series MASE scores by taking the median across all series.

1 | def mase(y_true, y_pred, y_train):

2 scale = np.mean(np.abs(np.diff(y_train)))
: mae = np.mean(np.abs(y_true - y_pred))
4 return mae / scale

6 | def median_mase(all_series_forecasts):

7 mase_scores = []

for y_train, y_true, y_pred in all_series_forecasts:
9 mase_scores.append(mase(y_true, y_pred, y_train))
10 return np.median(mase_scores)

Listing 3.4: Python-style pseudocode for computing Median MASE

Use case: Median MASE is a robust measure in multi-series settings, resistant to outliers
and interpretable: a value < 1 indicates better-than-naive performance in at least half the
series.

3.9.0.4 Summary

Table 3.4: Comparison of Advanced Forecasting Metrics

Metric Relative Aggregation Best for

NSE No Over time Single-series models; hydrology

GMRAE Yes Geometric over series or time | Multi-series benchmarking with ro-
bustness

Median MASE Yes Median over series Typical-case performance across
heterogeneous series
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Each of these metrics offers unique strengths. GMRAE and Median MASE are especially
appropriate when comparing performance across multiple series, where arithmetic means
may be skewed by heterogeneity or outliers. Their mathematical robustness supports more
reliable model comparisons in large-scale forecasting tasks.

Skill Scores and Relative Accuracy

e Theil’s U statistic: A scale-independent benchmark metric that compares forecast
performance to a naive forecast or random walk. U < 1 implies the model outperforms
the benchmark.

o Nash-Sutcliffe Efficiency (NSE): Common in hydrology and energy forecasting,
measuring the proportion of variance explained compared to the mean.

Geometric Aggregates for Fair Comparison

¢ GMRAE (Geometric Mean Relative Absolute Error): Avoids the distortion in-
troduced by arithmetic means when aggregating ratios across heterogeneous series
[25].

e Median MASE: Reduces the influence of extreme outliers in multiseries comparisons.

Directional and Classification-Oriented Metrics

¢ Directional Accuracy: Measures how often the forecast correctly predicts the direc-
tion of change (e.g. P(y: —yt—1 > 0) = P(9: — §:—1 > 0)). Especially useful in financial
or tactical settings.

¢ Precision, Recall, and F1 on Threshold Forecasts: For binary event forecasting
(e.g., demand spike or grid overload), classification-style metrics give meaningful
insights.

Service-Level and Business Impact Metrics

¢ Fill Rate: Fraction of periods in which the forecast inventory met the actual demand.
Highly actionable in inventory planning.

e Cost-Based Metrics: Domain-specific loss functions converting forecast errors into
economic cost (e.g., underforecasting penalty X lost sales + overforecasting x holding
cost).

Takeaway

These advanced metrics often align more directly with business goals and user-facing per-
formance. While they are not universally applicable, they should be part of the forecaster’s
toolkit, especially when deploying models in production where accuracy must translate into
actionable performance.

Metric Trait Reference: Selecting Metrics by Properties

Choosing a forecasting metric requires more than statistical intuition - it must align with
the characteristics of the data, the goals of modeling and the risks of the business. While
the previous sections covered individual metrics in depth, this summary matrix synthesizes
their comparative traits.

Table 3.8 presents a high-level checklist of properties across key metrics, helping practi-
tioners quickly identify:
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Metric

MAE

RMSE

MAPE

WAPE

sMAPE

MAAPE

MASE

RMSSE

CRPS

Pinball Loss

Winkler Score

Scale-Free

=
=
=
=
=
=
=
=
-

Which metrics are robust to low or zero values
Which are scale-independent or bounded
Whether a metric favors mean or median-based predictions
Whether a metric is a proper scoring rule (incentivizing honest uncertainty estimation)
Which metrics can safely handle intermittent demand
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Proper

Target

Median

Mean

Mean

Mean

Mean

Mean

Median

Mean

Dist'n

Quantile

Interval

Intermittent

A\ Acceptable

A\ Sensitive
Poor

® Preferred
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Figure 3.8: The matrix summarizes the key properties of common forecast metrics, helping
practitioners quickly identify which are suitable based on data characteristics and modeling

objectives.

This compact view enables modelers and business stakeholders to select metrics that are not
just statistically valid but also fit for purpose — resilient, interpretable, and operationally

aligned.

Quick Metric Selection Guide

In practice, choosing the right forecast accuracy metric depends on the characteristics of
your time series, the business context, and the type of model output (point vs. probabilistic).
The table below serves as a concise decision aid to help practitioners select appropriate
metrics based on common forecast scenarios.
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If your data or use case
has...

Then consider using...

Why?

Forecast errors in raw units | MAE, RMSE Easy to interpret
matter
Large errors are especially | RMSE, RMSSE Heavily penalizes outliers

undesirable

Different series have differ-
ent scales

MASE, WAPE, RMSSE

Scale-free comparisons

Many zeros or small values

WAPE, MAAPE, MASE

MAPE breaks on zeros

Need to compare against a
naive or baseline model

MASE, FVA, Theil’'s U

Relative accuracy

Probabilistic forecasts (e.g.,
intervals, distributions)

CRPS, Pinball Loss, Win-
kler Score

Proper scoring rules

Business impact from
under/over-forecasting is
asymmetric

Quantile Loss (e.g., P90,
P10)

Customizes penalty by quantile

Demand is intermittent or
lumpy

MAAPE, WAPE, Service
Level

Robust to gaps and erratic val-
ues

Forecast timing or shape
matters

DTW, DILATE, TDI

Captures event timing and pro-
file similarity

Hierarchical data structure | WRMSSE, Coherence | Accounts for aggregation con-
Measures sistency

Extreme risks or safety-| CRPS, Interval Coverage, | Focus on uncertainty and tail ac-

critical systems Tail Quantile Loss curacy

Table 3.5: Quick reference for selecting forecasting metrics based on data traits and decision
context.

Chapter Summary

In this chapter, we explore a wide range of forecasting metrics and their proper use:

1. Point forecast metrics such as MAE and RMSE measure typical errors in units of the
forecast variable, while scale-free metrics such as MASE, RMSSE, and WAPE allow
comparison between series and against benchmarks. We stressed caution against
MAPE due to its bias and instability, suggesting alternatives (WAPE, sMAPE, MAAPE)
that mitigate those issues.

2. Probabilistic metrics such as CRPS and pinball loss evaluate the quality of forecast
uncertainty estimates, ensuring that models not only hit the target on average but
also assess their confidence correctly. We introduced the Winkler score for inter-
val forecasts and highlighted the importance of proper scoring rules for comparing
probabilistic forecasts on a sound footing

3. Temporal shape metrics (DTW, DILATE, TDI, etc.) were discussed as advanced tools
for special situations where forecast timing and shape matter more than exact values.
These can be valuable for training modern deep learning models and diagnosing per-
formance on events/patterns, though they complement rather than replace traditional
metrics.

4. Hierarchical metrics such as WRMSSE illustrate how to evaluate forecasts at aggre-
gate levels, using weighting and scaling to ensure fairness and relevance at each level.
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"Before teaching your model to predict the future, learn how well it
understands the past."

— Forecasting Proverb
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Chapter ?? emphasized the crucial role of robust performance evaluation in time series
forecasting. We detailed best practices for constructing reliable and reproducible evaluation
frameworks, highlighting methods such as time-sensitive cross-validation, rolling-origin
evaluation, blocked resampling, and realistic backtesting procedures that closely mirror
practical forecasting environments. In this chapter, we shift our focus from evaluating
forecasts to examining the modeling techniques themselves. We begin our exploration with
classical forecasting methods, specifically addressing two foundational and widely-utilized
approaches: Auto-Regressive Integrated Moving Average (ARIMA) models and Exponential
Smoothing (ETS) methods.

ARIMA models, grounded in statistical theory, represent a versatile approach to capturing
and modeling temporal dependencies within time-series data. Building upon foundational
insights from Yule, Slutsky, and Wold, the seminal work by Box and Jenkins synthesized
earlier approaches into a comprehensive framework known as the ARIMA model. ARIMA
systematically integrates autoregressive processes (AR), differencing to achieve stationarity
(the integrated or I component), and moving average (MA) elements to effectively model
diverse time-series dynamics, including trends, cyclical behaviors, and stochastic variations.

Indeed, while various classical time-series models might seem like a 'grab bag’ of different
types, ARIMA models offer a more general class that can encompass many of these. They
provide a systematic framework for forecasting any given time series by understanding its
underlying statistical properties and dependencies. This systematic approach, formalized
by Box and Jenkins, allows a comprehensive methodology for identification, fitting, and
diagnostic checking, ultimately leading to robust forecasts.

In this chapter, we explore the ARIMA modeling methodology in depth, covering its his-
torical and theoretical underpinnings, practical implementations, methods for parameter
estimation, and key considerations in achieving stationarity and invertibility, crucial for
reliable forecasting.

Exponential smoothing methods provide an intuitive yet powerful alternative to ARIMA,
known for their simplicity, interpretability, and flexibility in capturing trends and seasonality.
Initially popularized by Brown and Holt-Winters, these models have evolved to encompass a
comprehensive family capable of handling additive or multiplicative trends and seasonal
patterns. This chapter will systematically dissect the theoretical underpinnings of exponen-
tial smoothing, including single, double, and triple exponential smoothing approaches, their
assumptions, smoothing parameters estimation, and adaptive techniques to accommodate
structural changes in data.

ARIMA models can be seen as generalized random walk models fine-tuned to eliminate all
residual autocorrelation, and also as generalized exponential smoothing models that can
incorporate long-term trends and seasonality. They are arguably the most general class
of forecasting models for time series that can be stationarized by transformations such as
differencing, logging, or deflating.

Together, ARIMA and exponential smoothing represent the foundational pillars of classical
time series forecasting. They not only offer robust baseline models, but also provide critical
insights into the structure and predictability of the underlying data, setting the stage for
more advanced modeling techniques covered in subsequent chapters.
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Introduction

Time-series forecasting is a critical task across finance, economics, retail, and many other
fields. Classical statistical models have long provided robust and interpretable approaches
for forecasting. In particular, Autoregressive Integrated Moving Average (ARIMA) models
and exponential smoothing methods (including simple exponential smoothing, Holt’s lin-
ear method, Holt-Winters seasonal method and the ETS framework) are two of the most
widely used and enduring approaches [tanthiamhuat2023forecasting]. These methods
represent complementary philosophies: ARIMA models seek to explain the autocorrelation
structure of the data, while exponential smoothing focuses on capturing the trend and
seasonal patterns in the data [tanthiamhuat2023forecasting].

Despite the emergence of advanced machine learning and algorithms, ARIMA and exponen-
tial smoothing remain fundamental due to their theoretical rigor, interpretability, and strong
forecast performance in many settings. This chapter provides an in-depth exploration of
classical time series models with a focus on ARIMA and exponential smoothing. We will
cover the intuition and mathematical formulations of ARIMA (including its special cases AR,
MA, ARMA, ARIMA, and seasonal ARIMA) and of exponential smoothing methods (including
simple exponential smoothing, Holt’s linear trend method, Holt-Winters seasonal methods,
and the state-of-the-art ETS framework). We discuss the historical development of these
models, their underlying assumptions, and how they have evolved over time.

Practical implementation is highlighted with examples using real-world data. We also
introduce multivariate extensions like Vector Autoregression (VAR) for handling multiple
time series, and state-space models, which provide a unifying theoretical framework for
time series (and underlie the ETS approach). Throughout, Python code snippets illustrate
how to implement these models using libraries.

The goal is to blend theory with practice, giving a comprehensive understanding of both
how these models work and how to apply them to real data. By the end of this chapter,
the reader should have a strong grasp of: (a) the intuition and mathematics behind ARIMA
and exponential smoothing models; (b) when and why to use each approach; (c) how to
implement them in Python on real datasets; and (d) extensions to more complex scenarios
(seasonality, multiple time series, etc.).

We also cite foundational literature - including Box & Jenkins’ work on ARIMA and the
seminal work of Brown, Holt, Winters and Pegels on exponential smoothing, as well as
modern sources like Hyndman & Athanasopoulos’s Forecasting: Principles and Practice.
With a firm grounding in these classical models, one can build a solid foundation for more
advanced forecasting techniques.

ARIMA Models and the Box-Jenkins Methodology

As discussed in Chapter 1 The theoretical foundations of ARIMA modeling trace back to
pivotal early statistical contributions in time series analysis. George Udny Yule, in his
landmark 1927 paper, laid essential groundwork by demonstrating how autoregressive
(AR) processes, where current values of a series depend linearly on its past values, could
generate realistic cyclic patterns observed in economic data.

Complementing Yule’s findings, Eugen Slutsky independently showed in the same period
that applying moving averages (MA), which are linear combinations of past random shocks,
could similarly produce cyclical fluctuations, even when starting from purely random data.
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Herman Wold further strengthened these concepts in 1938 by proving the decomposition
theorem, illustrating that any stationary time series could be expressed uniquely as an
infinite moving average of past innovations. Collectively, these seminal ideas provided the
theoretical scaffolding upon which modern ARIMA models would eventually be built.

Contrary to common perception, ARIMA did not emerge fully formed in the 1970s. Rather,
it synthesized these earlier innovations into a comprehensive and practical methodology.
George Box and Gwilym Jenkins, in their influential 1970 book, "Time Series Analysis:
Forecasting and Control," [12] popularized the systematic modeling framework now known
as the Box-Jenkins methodology. This approach clearly articulated a structured procedure
for identifying, fitting, diagnosing, and forecasting ARIMA models, thereby transforming
scattered theoretical insights into an actionable forecasting toolkit widely adopted in
academia and industry.

Autoregressive (AR) and Moving Average (MA) Components

An autoregressive (AR) model specifies that the current value of a time series can be
explained by its own previous values. Formally, an AR model of order p, denoted AR(p), is
written as:

X =1 Xp—1+ P2 Xy o+ +opXi—p+e,

where X; is the value of the series at time ¢, ¢1,...,¢, are the model parameters, and ¢; is
a random error (noise) term. In an AR(p), the intuition is that the series has memory of
its previous values p - for example, an AR(1) means X; depends linearly on just the last
value X;_ ;. AR models were among the first stochastic time series models studied; notably,
Yule (1927) used an AR(2) model to analyze sunspot data. This pioneering work introduced
the idea of explaining cycles in time series via autoregression, and it was later extended
by Walker (1931) and others who developed the Yule-Walker equations for estimating AR
parameters (see chapter 1 for more details).

A moving average (MA) model, by contrast, expresses X; as a linear combination of past
error terms (shocks or innovations). An MA model of order ¢, denoted MA(q), is:

Xi=p+er+016i—1+02gi o4+ 04614

where 1 is the mean of the series (which can be taken as 0 after de-meaning or differencing),
01,...,04 are parameters, and ¢; again is white-noise error. In an MA(qg), the series is a
weighted sum of the last ¢ random shocks. The term “moving average” can be misleading
here - it does not mean a rolling mean of past observations, but rather a rolling sum of
past errors. The effect of a shock ¢;_;, persists for k£ periods in an MA(q) model. Early work
by Slutzky (1927) and Wold (1938) explored moving average representations of economic
time series. In fact, Wold’s Theorem in 1938 established that any stationary time series
can be decomposed into an (infinite) moving average of past shocks plus a deterministic
part — providing a theoretical justification for using AR and MA components to model time
series. Autoregressive Moving Average (ARMA) models: In practice, a pure AR or pure MA
model may not be sufficient for many series. The ARMA(p, q) model combines both AR(p)
and MA(q) components:

Xi=01 Xp1+-+opXop+er + 0161+ + 0461,
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This parsimonious model can capture a wide range of autocorrelation patterns with relatively
few parameters. The AR part accounts for persistence in the levels of the series, while
the MA part accounts for short-term shock effects. ARMA models assume that the series
is stationary (its statistical properties do not change over time). If the original series is
nonstationary (e.g., has a trend or changing variance), we may first differencing it to achieve
stationarity, which leads to the ’integrated’ part of ARIMA.

Differencing and the Integrated (I) Component

A time series is said to be stationary if its statistical properties—such as mean, variance,
and autocorrelation—remain constant over time. In other words, the process has no trend,
no changing variance (heteroskedasticity), and exhibits a consistent level of fluctuation (or
"wiggliness").

However, many real-world time series exhibit nonstationary behavior. This includes patterns
like trends, drift, or random walk characteristics. Before applying an ARIMA model, it is
often necessary to transform such series into a stationary form.

Differencing is a fundamental technique used to achieve stationarity. It involves computing
the differences between observations to remove trends and stochastic components.

e The first difference of a series is defined as:
VX=X — X1

This operation removes linear trends or random walk behavior.
e A seasonal difference of period m is:

vm)(t = Xt - Xt—m

This helps eliminate repeating seasonal effects every m time periods.

The “I” in ARIMA stands for Integrated, referring to a series that becomes stationary only
after differencing. A time series that must be differenced d times to become stationary is
called an integrated series of order d. This transformation effectively resolves the unit root
problem, where shocks to the system result in permanent effects and induce a stochastic
trend.

By differencing, we model the changes in the series rather than the level itself. These
changes often exhibit more stable statistical properties. For instance, consider a random
walk:

Xi =Xy 1+¢

Its first difference is:
VXt = Xt — Xt—l — €¢

which is simply white noise—i.e., a stationary process with zero mean and constant variance.

The differencing operation can also be expressed using the backshift operator B, defined by
BX,; = X,;_1. Using this notation:

VX;=(1-B)X; and V?X;=(1-B)>X;

This shows how differencing removes deterministic trends by transforming the series into
its first or second differences, effectively modeling the local rate of change or acceleration.
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In an ARIMA(p,d,q) model, the integrated component reflects the application of (1 — B)? to
the series before fitting an ARMA(p, ¢) model. The value of d is typically selected through
statistical tests such as the Augmented Dickey-Fuller (ADF) or KPSS test, or by visual
inspection of the series and its autocorrelation structure.

Understanding ARIMA (p,d,q) Models

An ARIMA(p,d,q) model is essentially an ARMA(p,q) model applied after differencing the
series d times. The differenced series is then "integrated" back by accumulating these
differences to generate forecasts. Simply put, ARIMA generalizes ARMA models by explicitly
accommodating nonstationary data through differencing steps:

e If d =1, the ARIMA model first differencing (VX3).
e If d =2, it involves second-order differencing, etc.

Typically, the number of non-seasonal differences (d) will be 0, 1, or 2. Similarly, the number
of seasonal differences (D) should generally not be greater than 1. The sum of non-seasonal
and seasonal differencing orders (d+D) should ideally not exceed 2, as higher orders can
introduce unnecessary complexity and potential ‘overdifferencing’ issues.

Including the differencing parameter d significantly expands the ARMA framework, making
it suitable for a broader variety of real-world series, particularly those with clear trends.

Examples:

¢ Random Walk: A random walk is inherently nonstationary, but its first differences
are stationary (white noise). Thus, it can be represented as an ARIMA(0, 1,0) model
with a constant (drift).

¢ An ARIMA(0,2,0) model (without a constant) corresponds to a randomly varying local
trend, where the second difference is white noise. This is often used for data whose
local trend is stochastic.

International Airline Passengers Data (1949-1960): This classic data set exhibits both
a pronounced upward trend and clear seasonal cycles. To achieve stationarity and effectively
model it with ARIMA, one might:

o Take a first difference (d = 1) to handle the trend.
e Apply seasonal differencing (D = 1 with period s = 12) to manage seasonality.
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Airline Passengers Data (1949-1960)
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Figure A.1: Monthly airline passengers dataset (1949-1960).This classic time series shows
the monthly totals of international airline passengers, highlighting a clear upward trend and
pronounced seasonal fluctuations. Originally analyzed by Box and Jenkins in their seminal
book "Time Series Analysis: Forecasting and Control" (1970), the dataset is frequently used
to illustrate foundational concepts and methodologies in ARIMA modeling and forecasting.

The Role of the Drift Term

In ARIMA models, especially when differencing is applied, the drift term acts much like
a constant growth rate or slope. It functions analogously to an intercept, but its effect
accumulates over time after differencing has been performed. Essentially, it accounts for
a consistent, deterministic upward or downward trend in the series that persists even
after accounting for past values and random shocks. When differencing reverses the non-
stationarity, this drift term becomes a predictable linear increase (or decrease) in the
expected value of the original series over time.

Mathematically, consider a simple Random Walk with Drift, which is an ARIMA(0,1,0) model
with a drift term:
Xt :Xt_1+6+€t

where ¢ is the constant drift term and ¢; is white noise. If we repeatedly substitute, we can
see its effect on the original series Xj;:

t
Xt :X0+t(5+261
i=1

Taking the expectation (average value) of this equation:
E[X:] = Xo+to

This clearly shows that the drift term ¢ introduces a deterministic linear trend to the
expected value of X;. Without the drift (§ = 0), the expected value of a differenced series
would remain constant, meaning the original series would exhibit a stochastic trend without
a consistent direction.

Deterministic vs Stochastic Trends.

e A deterministic trend arises from the drift term. It implies that the trend is pre-
dictable and linear over time.
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¢ A stochastic trend arises from the accumulation of random shocks (the integrated
white noise). It reflects uncertainty in the long-run path of the series.

When modeling real-world time series:

e Include a drift if the series shows a consistent long-term direction even after differ-
encing.

o Prefer stochastic trends (i.e., no drift) when long-term movements are driven by
unpredictable innovations.

In Practice. Software like forecast::auto.arima() or pmdarima includes options to test
whether a drift improves model fit (often via AICc). Including drift in an ARIMA model is
especially helpful for economic series like GDP or stock indices, where the cumulative effect
of a small trend is meaningful.

Note: Drift is only defined when d > 1; for stationary models (d = 0), the intercept plays a
similar role.

Pro Tip: Drift and Long-Term Forecasts The inclusion or exclusion of a drift term
significantly impacts long-term forecasts from ARIMA models. A drift term will cause
long-term forecasts of a differenced series to follow a straight line with a constant slope.
For an undifferenced series, this translates to a linear trend. Omitting a necessary drift
can lead to underprediction (or overprediction) if there is consistent underlying growth,
while including an unnecessary drift can introduce an artificial trend into your long-term
forecasts.

The Box-Jenkins Methodology

The Box-Jenkins methodology: Box and Jenkins (1970) revolutionized time series forecasting
by formalizing a three-step iterative process for ARIMA modeling:

Identification - Comprehensive Guide to ACF and PACF for ARIMA Model Identifica-
tion

Use plots of the data, along with its autocorrelation function (ACF) and partial autocorre-
lation function (PACF), to assess whether differencing is required to achieve stationarity
and to help identify initial estimates for parameters p and q. The process of identifying
appropriate orders for AR and MA terms relies heavily on analyzing the specific patterns
and characteristic’signatures’ these functions exhibit for a stationarized series.

For instance, if the ACF decays slowly and remains significantly positive for many lags, this
typically indicates non-stationarity (e.g., presence of a trend), necessitating differencing.
Seasonal patterns identified through spikes in the ACF/PACF at multiples of the seasonal
period suggest that a seasonal ARIMA (SARIMA) model may be suitable.

Stationarity can also be formally assessed using statistical tests such as the augmented
Dickey-Fuller (ADF) test. To further clarify the practical use of ACF and PACF in ARIMA
model selection, this section offers a comprehensive visual and theoretical guide, highlight-
ing common patterns and their implications for model order specification.

Introduction to ACF and PACF

The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are
foundational tools in time series analysis. They help diagnose temporal dependencies and
guide the selection of models in the Box-Jenkins methodology for ARIMA modeling. These
plots visually indicate the nature and extent of correlations across lags in a univariate time



A.2 ARIMA Models and the Box-Jenkins Methodology 157

series, supporting effective identification of AR (Autoregressive) and MA (Moving Average)
components.

Theoretical Foundations
Autocorrelation Function (ACF)

The ACF measures the linear correlation between observations at different time lags:

~ Cov(y,yi—k)
ACF(k) = \/Var(y,)Var(y:—)

High autocorrelation at lag k& suggests that past values retain predictive information, which
is especially useful when identifying MA terms in an ARIMA model.

Partial Autocorrelation Function (PACF)

PACF measures the correlation between y; and y;_j, after removing the effects of intermedi-
ate lags:

Yt = O1Yi—1 + Q2Yr—2+ -+ OpYr—r + €

The coefficient ¢, in this regression corresponds to the PACF at lag k. A significant spike at
lag k implies a direct relationship not mediated by shorter lags.

Typical ACF and PACF Patterns

e AR(p): An AR(p) process shows a PACF that cuts off sharply after lag p. Its ACF, on
the other hand, dies out gradually, often with positive autocorrelation at lag 1. This is
an ‘AR signature’.

o MA(g): MA(q) An MA(q) process has an ACF that cuts off sharply after lag q. Its PACF,
by contrast, dies out more gradually, often with negative autocorrelation at lag 1. This
is an 'MA signature.’

e In ARMA(p,q), both ACF and PACF typically decay gradually without sharp cutoffs.
This mixed behavior makes identification less straightforward. For nonseasonal models,
it is often advisable to favor simpler pure AR or MA models unless the data clearly
indicate a need for a combined approach.

INlustrative Examples

Example: Airline Passengers Dataset This dataset (1949-1960) exhibits strong seasonal
behavior. The ACF shows significant spikes at lags 12, 24, etc., while the PACF plot cuts off
after lag 1 or 2, suggesting a SARIMA(p,d,q)(P,D,Q)12 model.

A.2.5 Python Implementation Examples

A.2.5.1 Using statsmodels
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot acf, plot pacf

data = pd.read csv(
"https://raw.githubusercontent.com/valeman/Mastering—Modern-Time—Series—Forecasting—1T
parse_dates=['Month’], index col="Month’
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fig, axes = plt.subplots(1l, 2, figsize=(15, 5))
plot acf(data[ 'Passengers’], lags=30, ax=axes[0])
plot pacf(data[ 'Passengers’], lags=30, ax=axes[1])
plt.show()

A.2.5.2 Using StatsForecast

from statsforecast.utils import plot series
from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA

data = pd.read csv(
"https://raw. githubusercontent.com/valeman/Mastering—Modern-Time—Series—Forecasting—1I
parse_dates=[ 'Month’ ]

aa = AutoARIMA(season length=12)

sf = StatsForecast(models=[aa], freq="M’, n jobs=—1)

sf.fit (df=data.reset index (), id col="Month’, target col=’Passengers’)
sf.plot _acf(’Passengers’, max lags=24)

sf.plot pacf(’Passengers’, max lags=24)

A.2.5.3 Using ETNA

from etna.datasets import TSDataset
from etna.analysis import plot acf, plot pacf
import pandas as pd

# Load and rename dataset to match EINA format

data = pd.read csv(
"https://raw.githubusercontent.com/valeman/Mastering—Modern-Time—Series—Forecasting—1I
parse_dates=[ 'Month’ ]

)

data = data.rename(columns={'Month’: ’‘timestamp’, ’'Passengers’: ’target’})

# Convert to ETNA-compatible format
ts = TSDataset.to dataset(data)
ts dataset = TSDataset(ts, freq="M’)

# Plot ACF and PACF
plot acf(ts dataset, lags=24)
plot pacf(ts dataset, lags=24)
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Rules of Thumb for Identifying Nonseasonal AR/MA Orders (from Robert Nau)

Use ACF and PACF plots to identify AR and MA terms in nonseasonal data:
¢ MA(q) Signature: If the ACF cuts off sharply at lag & (i.e., significant at k,
then near-zero beyond), and the PACF decays gradually, then set ¢ = k and
p=0.
o AR(p) Signature: If the PACF cuts off sharply at lag %, and the ACF decays
gradually, then set p =k and ¢ =0.
e AR(1) vs MA(1): If there is a single spike at lag 1 in both ACF and PACF:
— If positive, set p=1 and ¢ = 0 (AR(1) signature).
- If negative, set p =0 and ¢ =1 (MA(1) signature).

Guidelines for Model Parsimony:
e You should virtually never need p > 3 or ¢ > 3 in a business application.
e Typically, p+ ¢ < 3, and usually only one of them is non-zero.

Important Note: Do not pay attention to isolated spikes in the ACF or PACF plot
beyond lag 3 if you are working with nonseasonal data.

Using ACF/PACF in Box-Jenkins Methodology

1. Identification: Use ACF and PACF to suggest model orders. ACF cutoff — MA(q);
PACF cutoff — AR(p).

2. Estimation: Fit ARIMA(p,d, q) with selected orders.

3. Diagnostics: Examine residual ACF/PACF plots for remaining structure; if residuals
resemble white noise, the model is adequate.

Confidence Intervals and Overfitting

ACF and PACEF plots include 95% confidence bounds. Spikes outside these bands indicate
statistically significant lags. Overfitting can be suspected when:

e Many small spikes appear near the confidence bounds.
e Higher-order lags are included with no clear pattern.
e Residual ACF shows lingering autocorrelation.

Common Pitfalls
¢ Non-stationarity: Long decay in ACF indicates a need for differencing.
e Seasonality: Regular spikes in ACF at fixed intervals (e.g., lag 12) require seasonal

modeling.
o Short Series: Wider confidence intervals make identifying significant lags unreliable.

Advanced Considerations

e High Noise: Random noise masks true dependencies; models should be conservatively
chosen.

o Low Noise: Makes patterns in ACF/PACF more obvious but may tempt overfitting.

o Long Series: Provides more accurate estimation of autocorrelations.

Recommended Datasets for Practice

e Monash Time Series Repository: Benchmarks across many domains.
¢ Dunnhumby Complete Journey: Realistic retail data with seasonal dynamics.



A.9 Practical Guide to ARIMA Model Selection 209

# ADF Test (Original Series)

adf original = adfuller(series)
print(f"ADF_Statistic_(original):_{adf original[0]:.4f}")
print(f"p—value_(original):_{adf original[1]:.4f}")

# Differenced series
diff series = series.diff ().dropnal()

# ADF Test (Differenced Series)

adf diff = adfuller(diff series)

print (f"ADF_Statistic_(differenced):_{adf diff[0]:.4f}")
print(f"p—value_(differenced): _{adf diff[1]:.4f}")

# Fit models
h =12

manual model = ARIMA(order=(1, 1, 1), seasonal order=(1, 1, 1, 12))
sf manual = StatsForecast(models=[manual model], freq="M")
sf manual. fit (df)

auto model = AutoARIMA(season length=12)
sf auto = StatsForecast(models=[auto model], freq="M’")
sf auto. fit (df)

# Forecast
y_pred manual = sf manual. predict (h=h)
y _pred auto = sf auto.predict(h=h)

# Evaluation

truth = df. tail(h)['y’].values

print("™MAE_(Manual): ", mean absolute error(truth, y pred manual[ 'AirPassengers’].values))
print("™MAE_(Auto):", mean absolute error(truth, y pred auto[ ’'AirPassengers’].values))

# Plot forecasts

fig = go.Figure()

fig.add trace(go.Scatter(x=df[’'ds’], y=df[’y’], mode=’lines’, name=’'Observed’))

fig.add trace(go.Scatter(x=y pred manual[ ‘ds’], y=y pred manual[ 'AirPassengers’], mode="1
fig.add trace(go.Scatter(x=y pred auto[’ds’], y=y pred auto[ 'AirPassengers’], mode=’lines

fig.update layout(title="Manual_SARIMA_vs,_AutoARIMA_Forecast’,
xaxis title='Date’, yaxis title=’Passengers’)
fig .show()

Practical Guide to ARIMA Model Selection

Choosing an appropriate ARIMA model is a highly iterative and diagnostic-driven process.
While automatic procedures like AutoARIMA exist, a firm grasp of classical identifica-
tion methods enables better judgment, more interpretable models, and greater robust-
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ness—especially in edge cases. This guide synthesizes best practices, rules of thumb, and
structural knowledge from Robert Nau and the Box-Jenkins methodology to support effective
model selection in applied settings.

The Iterative ARIMA Model Selection Workflow

The ARIMA modeling process can be structured into five conceptual stages:

1. Initial Data Inspection and Transformation
Examine the time series visually for trends, level shifts, seasonality, or variance
instability. Apply transformations such as logging or inflation-adjustment as needed.
2. Achieve Stationarity
Use differencing (nonseasonal and seasonal) to eliminate stochastic trends. Check for
unit roots (e.g., via the Augmented Dickey-Fuller test). Aim to make the mean and
variance constant over time.
3. Identify AR and MA Orders
Analyze ACF and PACEF plots of the differenced series:

e ACF that cuts off and PACF that decays -> MA model (set q)
e PACF that cuts off and ACF that decays -> AR model (set p)
o Spikes in both ACF and PACF -> possible underdifferencing

4. Estimate and Diagnose
Fit the model and check:

e Residuals should resemble white noise (uncorrelated, constant variance)
e Highest-order coefficients should be statistically significant (e.g., |t| > 2)
¢ Residual ACF/PACF spikes may suggest increasing p or ¢

5. Compare and Refine
Evaluate competing models with AIC/BIC. Prefer simpler models with well-behaved
residuals. Iterate through previous steps if necessary.

Guiding Principles:

o Parsimony: Use the simplest model that fits the data well.
¢ White Noise Residuals: This is the ultimate diagnostic goal.
o Iterate as Needed: You may need to revisit earlier steps as new insights emerge.
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Model Type Common Characteristics / Use | Typical ARIMA
Cases Form

Random Walk

Strong trend, no mean reversion; use
for price series or cumulative metrics

ARIMA(0,1,0)

Random Walk with Drift

Trending behavior with constant av-
erage increment

ARIMA(0,1,0)+c

Mean-Reverting AR

Stationary process with memory and
restoring force

ARIMA(p,0,0)+c

Shock-Absorbing MA

Stationary process driven by recent
shocks, short memory

ARIMA(0,0,q)

Random Trend

Second-order nonstationarity; useful
for stochastic trends

ARIMA(0,2,0)

Mixed Dynamics (ARMA)

Gradual decay in both ACF and
PACF; often overparameterized un-
less clearly justified

ARIMA(p,0,9)

Common Seasonal

ARIMA

Seasonal differencing and short mem-
ory patterns

ARIMA(0,1,1)(0,1,1)p

Seasonal AR Model with
Trend

Seasonally differenced trend + au-
toregressive structure

ARIMA(p,0,0)(0,1,1)p
+cC

AutoARIMA

Automated model search based on
AIC/BIC; good for large-scale fore-
casting

Data-driven

Table A.2: Common ARIMA Models and Their Use Cases
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A.9.2 Typical ARIMA Signatures and Use Cases

ARIMA Model Selection Process

1. Initial Data Inspection & Transformation
Visualize, apply transformations (e.g. logarithms)

v

2. Achieve Stationarity
Apply differencing until stationary

3. Identify AR/MA Orders
Analyze ACF and PACF plots

v

4. Model Estimation & Diagnostic Checking
Fit model, verify residuals are white noise

v

5. Overall Model Comparison & Selection
Compare models using criteria (e.g., AIC, BIC)

@ Key Principles 2

* Parsimony: Keep the model as simple as possible

* Residuals as White Noise: The ultimate goal is for the
model’s residuals to be white noise

* Iterative Process: Model bujlding is rarely linear, you may
\_ need to return to step 1 or 2) S

Figure A.8: A structured five-stage flowchart for selecting ARIMA models in time series
forecasting. It begins with data inspection and transformation, followed by achieving station-
arity, identifying AR/MA orders using ACF and PACF plots, estimating and diagnosing the
model, and finally comparing models using information criteria like AIC or BIC. Emphasized
guiding principles include model parsimony, ensuring residuals resemble white noise, and
embracing the iterative nature of the modeling process.
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Chapter Summary and Conclusions

In this chapter, we developed a comprehensive understanding of ARIMA modeling, covering
both its theoretical foundation and practical application. Beginning with an overview of
ARIMA's historical development and place within the broader family of time series models,
we explored how autoregression (AR), integration (I), and moving average (MA) components
combine to model various types of nonstationary data.

Key topics included:

e The role of differencing in achieving stationarity and the meaning of the “integrated”
component.

e Interpreting ARIMA(p, d, q) models through ACF and PACF patterns.

¢ Rules of thumb and diagnostics for selecting appropriate AR and MA orders.

o Diagnostic checking of residuals for model validation, including coefficient significance
and residual autocorrelation.

¢ Understanding unit roots and the implications of overdifferencing or inappropriate
model complexity.

e Common ARIMA and SARIMA model forms, including their typical use cases in prac-
tice.

¢ A high-level model selection workflow designed to guide iterative model building and
refinement.

Throughout, we emphasized core modeling principles: parsimony, the goal of white noise
residuals, and the necessity of an iterative model selection process.

Looking Ahead: In the next chapter, we turn to Exponential Smoothing models—an
alternative forecasting approach that models level, trend, and seasonality directly rather
than through differencing and lag relationships. We will explore how ETS (Error-Trend-
Seasonal) models relate to ARIMA, when to prefer them, and how to use them effectively in
forecasting tasks.





