

Mastering STM32 - Second Edition
A step-by-step guide to the most complete ARM Cortex-M
platform, using the official STM32Cube development
environment

Carmine Noviello

This book is available at http://leanpub.com/mastering-stm32-2nd

This version was published on 2025-02-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015-2024 Carmine Noviello

http://leanpub.com/mastering-stm32-2nd
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help Carmine Noviello by spreading the word about this book on Twitter!

The suggested hashtag for this book is #MasteringSTM32.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#MasteringSTM32

http://twitter.com
https://twitter.com/search?q=%23MasteringSTM32
https://twitter.com/search?q=%23MasteringSTM32

To my wife Anna, who has always blindly supported me in all my projects

To my daughter Giulia, who completely upset my projects

Contents

Preface . i
Who Is This Book For? . ii
How to Integrate This Book? . iii
How Is the Book Organized? . iv
Differences With the First Edition . vii
About the Author . viii
Errata and Suggestions . ix
Book Support . ix
How to Help the Author . ix
Copyright Disclaimer . x
Credits . x

Acknowledgments to the First Edition . xi

I Introduction . 1

1. Introduction to STM32 MCU Portfolio . 2
1.1 Introduction to ARM Based Processors . 2

1.1.1 Cortex and Cortex-M Based Processors . 4
1.1.1.1 Core Registers . 4
1.1.1.2 Memory Map . 7
1.1.1.3 Bit-Banding . 8
1.1.1.4 Thumb-2 and Memory Alignment 11
1.1.1.5 Pipeline . 13
1.1.1.6 Interrupts and Exceptions Handling 14
1.1.1.7 SysTimer . 16
1.1.1.8 Power Modes . 17
1.1.1.9 TrustZoneTM . 18
1.1.1.10 CMSIS . 19
1.1.1.11 Effective Implementation of Cortex-M Features in the

STM32 Portfolio . 20
1.2 Introduction to STM32 Microcontrollers . 21

1.2.1 Advantages of the STM32 Portfolio…. 22

CONTENTS

1.2.2 ….And Its Drawbacks . 23
1.3 A Quick Look at the STM32 Subfamilies . 24

1.3.1 F0 . 26

2. Get In Touch With SM32CubeIDE . 28
2.1 Why Choose STM32CubeIDE as Tool-Chain for STM32 28

2.1.1 Two Words About Eclipse… . 30
2.1.2 … and GCC . 30

2.2 Downloading and Installing the STM32CubeIDE . 31
2.2.1 Windows - Installing the Tool-Chain . 32
2.2.2 Linux - Installing the Tool-Chain . 35
2.2.3 Mac - Installing the Tool-Chain . 36

2.3 STM32CubeIDE overview . 38

3. Hello, Nucleo! . 45
3.1 Create a Project . 45
3.2 Adding Something Useful to the Generated Code . 48
3.3 Connecting the Nucleo to the PC . 53

3.3.1 ST-LINK Firmware Upgrade . 54
3.4 Flashing the Nucleo using STM32CubeProgrammer 55

4. STM32CubeMX Tool . 59
4.1 Introduction to CubeMX Tool . 59

4.1.1 Target Selection Wizard . 60
4.1.1.1 MCU/MPU Selector . 61
4.1.1.2 Board Selector . 62
4.1.1.3 Example Selector . 62
4.1.1.4 Cross Selector . 63

4.1.2 MCU and Middleware Configuration . 64
4.1.2.1 Pinout View & Configuration 65
4.1.2.2 Clock Configuration View . 70

4.1.3 Project Manager . 72
4.1.4 Tools View . 74

4.2 Understanding Project Structure . 75
4.3 Downloading Book Source Code Examples . 83

5. Introduction to Debugging . 86
5.1 What is Behind a Debug Session . 86
5.2 Debugging With STM32CubeIDE . 88

5.2.1 Views in the Debug Perspective . 89
5.2.2 Debug Configurations . 91

CONTENTS

II Diving into the HAL . 95

6. GPIO Management . 96
6.1 STM32 Peripherals Mapping and HAL Handlers . 96

7. Interrupts Management . 102
7.1 NVIC Controller . 102

7.1.1 Vector Table in STM32 . 103

8. Universal Asynchronous Serial Communications . 108
8.1 Introduction to UARTs and USARTs . 108

9. Memory layout . 113
9.1 The STM32 Memory Layout Model . 113

9.1.1 Flash Memory Typical Organization . 113
9.1.2 SRAM Memory Typical Organization . 115

III Appendix .117

B. Troubleshooting guide . 118
GNU MCU Eclipse Installation Issues . 118
Eclipse related issue . 118

Eclipse cannot locate the compiler . 119

C. Nucleo pin-out . 120
Nucleo-G474RE . 121

Arduino compatible headers . 121
Morpho headers . 121

Nucleo-F446RE . 122
Arduino compatible headers . 122
Morpho headers . 122

Nucleo-F401RE . 123
Arduino compatible headers . 123
Morpho headers . 123

Nucleo-F303RE . 124
Arduino compatible headers . 124
Morpho headers . 124

Nucleo-F103RB . 125
Arduino compatible headers . 125
Morpho headers . 125

Nucleo-F072RB . 126
Arduino compatible headers . 126
Morpho headers . 126

CONTENTS

Nucleo-L476RG . 127
Arduino compatible headers . 127
Morpho headers . 127

Nucleo-L152RE . 128
Arduino compatible headers . 128
Morpho headers . 128

Nucleo-L073R8 . 129
Arduino compatible headers . 129
Morpho headers . 129

D. Differences with the 1st edition . 130
Chapter 1 . 130
Chapter 2 . 130
Chapter 3 and 4 . 130
Chapter 5 . 130
Chapter 6 . 131
Chapter 7 . 131
Chapter 8 . 131
Chapter 9 . 131
Chapter 10 . 131
Chapter 11 . 131
Chapter 12-22 . 132
Chapter 23 . 132
Chapter 24 . 132
Chapter 25-26 . 132
Chapter 27 . 132
Chapter 28 . 132

Preface
It was the summer of 2015 when I began to consider the hypothesis of grouping a series of posts on
my personal blog to give shape to a more structured guide about the use of STM32 microcontrollers.
At that time, it was not trivial to set up a complete tool-chain for the STM32 portfolio unless you
could afford a license for ARM Keil. Moreover, STM was migrating from the historical Standard
Peripheral Library (SPL) to the new CubeHAL SDK, and it was not clear which path to follow to
start learning this very interesting product lineup.

I started writing the very first chapters of this book, showing how to set up a complete and free
Eclipse tool-chain based on the GNU MCU Eclipse plug-ins by Liviu Ionescu (now called Eclipse
Embedded CDT and officially supported by the Eclipse Foundation). I decided to use the LeanPub
platform, which allowed me to publish an in-progress book that I could update as soon as I added
a new chapter. From the very first release, many people adopted the text and helped me a lot in
shaping the book structure and its contents. It took me two years to complete the first edition, and
trust me, it was very hard work, especially because things changed day-by-day. Over the years, the
book has been adopted by several universities around the world as an official text in Embedded
System classes. A lot of people contacted me to provide feedback, some asking for help with the text
and some others with the development of their boards, some asking for a revision of the text, and
some others for a revision of the examples, some criticizing the whole book, and others letting me
know that they thank me every time they go to sleep.

Seven years later, things have changed. A lot. STM pushed hard the development of both the
hardware and software ecosystem. The first release of the book was about nine STM32 families
ranging across about 500 P/N. Now, there are eighteen families in the STM32 portfolio, spreading
over more than 1200 P/N. But the huge improvement was on the software part. STM decided to fix
the main issue with the STM32 portfolio: the lack of an official tool-chain. STM acquired Atollic and
its TrueStudio IDE and launched the STM32CubeIDE, which, together with the whole STM32Cube
initiative, represents a quantum leap for the development of STM32-based devices.

This required me to make a deep revision of the text. I started working on this second edition in
the spring of 2021, and it took me about one year to update the text and add new content that was
lacking in the first edition. This is a lot of time, but things changed a lot, even for me, in these years.
A totally different job full of too many responsibilities and a daughter came in the middle, and now
my free time ranges from 5:00 am to 7:00 am, and you can figure out how hard it is to work on a
book with 900 pages in just two hours a day.

Even in the second edition, the book is divided into three parts: an introductory part showing
how to set up the STM32CubeIDE and how to work with it; a part that introduces the basics of
STM32 programming and the main aspects of the official HAL (Hardware Abstraction Layer); and a
more advanced section covering aspects such as the use of a Real-Time Operating System, the boot
sequence, and the memory layout of an STM32 application, and advanced peripherals like USB.

Preface ii

However, this book does not aim to replace official datasheets from STMicroelectronics. A datasheet
is still the main reference about electronic devices, and it is impossible (as well as making little sense)
to arrange the content of tens of datasheets in a book. You have to consider that the official datasheet
of one of the latest - and not the most complex in the portfolio - STM32G4MCU alone is almost three
thousand pages! Hence, this text will offer a hint to start diving into the official documentation from
ST. Moreover, this book will not focus on low-level topics and questions related to the hardware,
leaving this hard work to datasheets. Lastly, this book is not a cookbook about custom and funny
projects: you will find several good tutorials on the web.

Who Is This Book For?

This book is addressed to novices of the STM32 platform interested in learning how to program these
fantastic microcontrollers in less time. However, this book is not for people completely new to the C
language or embedded programming. I assume you have a decent knowledge of C and are not new
to most fundamental concepts of digital electronics and MCU programming. The perfect reader of
this book may be both a hobbyist or a student who is familiar with the Arduino platform and wants
to learn a more powerful and comprehensive architecture, or a professional in charge of working
with an MCU they do not know yet.

Preface iii

What About Arduino?
I received this question many times from several people in doubt about which MCU platform to
learn. The answer is not simple for several reasons.

First of all, Arduino is not a given MCU family or a silicon manufacturer. Arduino is both a brand
and an ecosystem. Today, there are tens of Arduino development boards available on the market,
some with an 8-bit MCU and some others with more powerful 32-bit MCUs, even if it is common
to refer to the Arduino UNO board as “the Arduino”. Arduino UNO is a development board built
around the ATMega328, an 8-bit microcontroller designed by Atmel. However, Arduino is not only a
cold piece of hardware, but it is also a community built around the Arduino IDE (a derived version of
Processing) and the Arduino libraries, which greatly simplify the development process on ATMega
MCUs. This large, stable, and continuously growing community has developed hundreds of libraries
to interface with as many hardware devices and thousands of examples and applications.

So, the question is: “Is Arduino good for professional applications or for those wanting to develop the
next mainstream product on Kickstarter?”. The answer is: “YES, definitely.” I myself have developed
a couple of custom boards for a customer, and since these boards were based on the ATMega328
IC (the SMD version), the firmware was developed using the Arduino IDE. So, it is not true that
Arduino is only for hobbyists and students.

However, if you are looking for something more powerful than an 8-bit MCU or if you want to
increase your knowledge about firmware programming (the Arduino environment hides too much
detail about what’s under the hood), the STM32 is probably the best choice for you. Thanks to
a development environment based on Eclipse and GCC, you will not have to invest a fortune to
start developing STM32 applications. Moreover, if you are building a cost-sensitive device, where
each PCB square inch makes a difference for you, consider that the STM32F0 value line is also
known as the 32-bit MCU for 32 cents. This means that the low-cost STM32 line has a price perfectly
comparable with 8-bit MCUs but offers a lot more computing power, hardware capabilities, and
integrated peripherals.

https://www.arduino.cc/
https://www.arduino.cc/en/Main/Products
https://processing.org/

How to Integrate This Book?

This book does not aim to be a fully comprehensive guide to STM32 microcontrollers but is
essentially a guide to developing applications using the official ST HAL. It is strongly suggested
to integrate it with a book about the ARM Cortex-M architecture, and the series by Joseph Yiu¹ is
the best source for every Cortex-M developer.

¹http://amzn.to/1P5sZwq

https://www.arduino.cc/
https://www.arduino.cc/en/Main/Products
https://processing.org/
https://www.arduino.cc/
https://www.arduino.cc/en/Main/Products
https://processing.org/
http://amzn.to/1P5sZwq
http://amzn.to/1P5sZwq

Preface iv

How Is the Book Organized?

The book is divided into twenty-eight chapters covering the following topics.

Chapter 1 gives a brief and preliminary introduction to the STM32 platform. It presents the
main aspects of these microcontrollers, introducing the reader to the ARM Cortex-M architecture.
Moreover, the key features of each STM32 subfamily (L0, F1, etc.) are briefly explained. The chapter
also introduces the development board used throughout this book as the testing board for the
presented topics: the Nucleo.

Chapter 2 shows how to set up the STM32CubeIDE to start developing STM32 applications. The
chapter is divided into three different branches, each one explaining the tool-chain setup process for
the Windows, Linux, and Mac OS X platforms.

Chapter 3 is dedicated to showing how to build the first application for the STM32 Nucleo
development board. This is a really simple application: a blinking LED, which is, without a doubt,
the Hello World application of hardware.

Chapter 4 is about the STM32CubeMX tool, our main companion every time we need to start a new
application based on STM32MCUs. The chapter gives a hands-on presentation of the tool, explaining
its characteristics and how to configure the MCU peripherals according to the features we need.

Chapter 5 introduces the reader to debugging, showing a brief view of STM32CubeIDE’s debugging
capabilities. Finally, the reader is introduced to an important topic: I/O retargeting.

Chapter 6 gives a quick overview of the ST CubeHAL, explaining how peripherals aremapped inside
the HAL using handlers to the peripheral memory-mapped region. Next, it presents the HAL_GPIO

libraries and all the configuration options offered by STM32 GPIOs.

Chapter 7 explains the mechanisms underlying the NVIC controller: the hardware unit integrated
in every STM32 MCU, which is responsible for the management of exceptions and interrupts. The
HAL_NVIC module is introduced extensively, and the differences between Cortex-M0/0+ and Cortex-
M3/4/7 are highlighted.

Chapter 8 gives a practical introduction to the HAL_UART module used to program the UART
interfaces provided by all STM32 microcontrollers. Moreover, a quick introduction to the difference
between UART and USART interfaces is given. Two ways to exchange data between devices using
a UART are presented: polling and interrupt-oriented modes. Finally, we present in a practical way
how to use the integrated VCP of every Nucleo board and how to retarget the printf()/scanf()
functions using the Nucleo’s UART.

Chapter 9 talks about the DMA controller, showing the differences between several STM32 families,
like the more powerful and recent DMAMUX available in STM32L4+/L5/Gx/H7 families. A more
detailed overview of the internals of an STM32 MCU is presented, describing the relations between
the Cortex-M core, DMA controllers, and slave peripherals. Moreover, it shows how to use the
HAL_DMAmodule in both polling and interrupt modes. Finally, a performance analysis ofmemory-to-
memory transfers is presented.

Preface v

Chapter 10 introduces the clock tree of an STM32 microcontroller, showing the main functional
blocks and how to configure them using the HAL_RCC module. Moreover, the CubeMX Clock
configuration view is presented, explaining how to change its settings to generate the right clock
configuration.

Chapter 11 is a walkthrough into timers, one of the most advanced and highly customizable
peripherals implemented in every STM32 microcontroller. The chapter will guide the reader step-
by-step through this subject, introducing the most fundamental concepts of basic, general-purpose,
and advanced timers. Moreover, several advanced usage modes (master/slave, external trigger, input
capture, output compare, PWM, etc.) are illustrated with practical examples.

Chapter 12 provides an overview of theAnalog to Digital (ADC) peripheral. It introduces the reader
to the concepts underlying SARADCs and then explains how to program this useful peripheral using
the designated CubeHAL module. Moreover, this chapter provides a practical example that shows
how to use a hardware timer to drive ADC conversions in DMA mode.

Chapter 13 briefly introduces the Digital to Analog (DAC) peripheral. It provides the most
fundamental concepts underlying R-2R DACs and how to program this useful peripheral using the
designated CubeHAL module. This chapter also shows an example detailing how to use a hardware
timer to drive DAC conversions in DMA mode.

Chapter 14 is dedicated to the I²C bus. The chapter starts by introducing the essentials of the
I²C protocol and then shows the most relevant routines from the CubeHAL to use this peripheral.
Moreover, a complete example that explains how to develop I²C slave applications is also shown.

Chapter 15 is dedicated to the SPI bus. The chapter starts by introducing the essentials of the SPI
specification and then shows the most relevant routines from the CubeHAL to use this fundamental
peripheral.

Chapter 16 talks about the CRC peripheral, briefly introducing the math behind its calculation, and
shows the related CubeHAL module used to program it.

Chapter 17 is about IWDT and WWDT timers, and it briefly introduces their role and how to use
the related CubeHAL modules to program them.

Chapter 18 talks about the RTC peripheral and its main functionalities. The most relevant CubeHAL
routines to program the RTC are also shown.

Chapter 19 introduces the reader to the power management capabilities offered by STM32F and
STM32L microcontrollers. It starts by showing how Cortex-M cores handle low-power modes,
introducing WFI and WFE instructions. Then it explains how these modes are implemented in STM32
MCUs. The corresponding HAL_PWR module is also described.

Chapter 20 analyzes the activities involved during the compilation and linking processes, which
define the memory layout of an STM32 application. A bare-bone application is shown, and a
complete and working linker script is designed from scratch, showing how to organize the STM32
memory space. Moreover, the usage of CCM RAM is presented, as well as other important Cortex-M
functionalities like vector table relocation.

Preface vi

Chapter 21 introduces the internal flash memory and its related controller available in all STM32
microcontrollers. It illustrates how to configure and program this peripheral, showing the related
CubeHAL routines. Moreover, a walk-through of the STM32F7 bus and memory organization
introduces the reader to the architecture of these high-performing MCUs.

Chapter 22 describes the operations performed by STM32 microcontrollers at startup. The whole
booting process is described, and some advanced techniques (like the vector table relocation in
Cortex-M0 microcontrollers) are explained. Moreover, a custom and secure bootloader is shown,
which can upgrade the on-board firmware through the USART peripheral. The bootloader uses the
AES algorithm to encrypt the firmware.

Chapter 23 is dedicated to the FreeRTOS Real-Time Operating System. It introduces the reader
to the most relevant concepts underlying an RTOS and shows how to use the main FreeRTOS
functionalities (like threads, semaphores, mutexes, and so on) using the CMSIS-RTOS v2 layer
developed by ST on top of the FreeRTOS API. Moreover, some advanced techniques like the tickless
mode in low-power design and the handling of concurrency with the C stdlib are shown.

Chapter 24 introduces the reader to some advanced debugging techniques. The chapter starts by
explaining the role of the fault-related exceptions in Cortex-M based cores and how to interpret the
related hardware registers to go back to the source of fault. Moreover, all STM32CubeIDE advanced
debugging tools are presented, such as watchpoints, expressions, and SWV-related tools. Finally, a
brief introduction to SEGGER J-LINK professional debuggers is given, and how to use them in the
Eclipse tool-chain.

Chapter 25 briefly introduces the reader to the FatFs middleware. This library allows for manipu-
lating structured filesystems created with the widespread FAT12/16/32 filesystem. The chapter also
shows how ST engineers have integrated this library into the CubeHAL. Finally, it provides an
overview of the most relevant FatFs routines and configuration options.

Chapter 26 describes a solution to interface Nucleo boards to the Internet by using the W5500
network processor. The chapter shows how to develop Internet- and web-based applications using
STM32 microcontrollers even if they do not provide a native Ethernet peripheral. Moreover, the
chapter introduces the reader to possible strategies to handle dynamic content in static web pages.
Finally, an application of the FatFs middleware is shown in order to store web pages and the like on
an external SD card.

Chapter 27 introduces one of the widespread communication protocols: USB 2.0. The chapter will
guide the reader through the fundamentals of the USB specification, both from the hardware and the
communication protocol points of view. Moreover, the STM32 USB Device Stack is deeply explained
with practical examples about USB-CDC and USB-HID classes.

Chapter 28 shows how to start a new custom PCB design using an STM32 MCU. This chapter is
mainly focused on hardware-related aspects such as decoupling, signal routing techniques, and so
on. Moreover, it shows how to use CubeMX during the PCB design process and how to generate the
application skeleton when the board design is complete.

Preface vii

During the book, you will find some horizontal rulers with “badges” like the one above. This means
that the instructions in that part of the book are specific to a given family of STM32 microcontrollers.
Sometimes you could find a badge with a specific MCU type: this means that instructions are
exclusively related to that MCU. A black horizontal ruler (like the one below) closes the specific
section. This means that the text returns to being generic for the whole STM32 platform.

You will also find several asides, each one starting with an icon on the left. Let us explain them.

This a warning box. The text contained explains important aspects or gives important in-
structions. It is strongly recommended to read the text carefully and follow the instructions.

This is an information box. The text contained clarifies some concepts introduced before.

This is a tip box. It contains suggestions to the reader that could simplify the learning process.

This a discussion box, and it is used to talk about the subject in a broader way.

This a bug-related box, used to report some specific and/or un-resolved bug (both hardware
and software).

Differences With the First Edition

Every next release is never a complete refactoring of the previous one. And this is also true for
technical books. This second edition has some major differences from the first edition:

• It is updated to the recent evolutions of the STM32 portfolio.
• It was completely changed to cover the STM32CubeIDE tool-chain, which is different from the
one shown in the first edition (even if both are based on Eclipse and GCC).

• It fixes several errors (some really severe).
• It introduces completely new topics not available in the first edition.

If you want to have a detailed list of the differences in each chapter, then you can jump to Appendix
D.

Preface viii

About the Author

When someone asks me about my career and my studies, I like to say that I am a high-level
programmer that someday started fighting against bits.

I began my career in informatics when I was only a young boy with an 80286 PC, but unlike all
those who started programming in BASIC, I decided to learn a quite uncommon language: Clipper.
Clipper was a language mostly used to write software for banks, and a lot of people suggested that
I should start with this programming language (uh?!?). When visual environments like Windows
3.1 started to become more common, I decided to learn the foundations of Visual Basic and I wrote
several programs with it (one of them, a program for patient management for medical doctors, made
it to the market) until I began college, where I started programming in Unix environments and
programming languages like C/C++. One day, I discovered what would become the programming
language of my life: Python. I have written hundreds of thousands of lines of code in Python, ranging
fromweb systems to embedded devices. I think Python is an expressive and productive programming
language, and it is always my first choice when I have to code something.

For about eight years, I worked as a research assistant at the National Research Council in Italy
(CNR), where I spent my time coding web-based and distributed content management systems. In
2010, my professional life changed dramatically. For several reasons that I will not detail here, I found
myself slingshot into a world I had always considered obscure: electronics. I first started developing
firmware on low-cost MCUs, then designing custom PCBs. In 2010, I co-founded a company that
produced wireless sensors and control boards used for small-scale automation. Unfortunately, this
company was unlucky and did not reach the success we wanted.

In 2013, I was introduced to the STM32 world during a presentation day at the ST headquarters
in Naples. Since then, I have successfully used STM32 microcontrollers in several products I have
designed, ranging from industrial automation to security tokens. Even thanks to the success of this
book, I currently work mainly as a full-time hardware consultant for some Italian companies.

In 2016, I joined Bit4id, a worldwide leader in the sector of PKI systems. I started as a hardware
consultant to help develop a Bluetooth smart card reader, and I ended up a few years later becoming
the head of the most relevant company’s Business Unit, managing a total business of ∼€12M,
thousands of customers, more than 30 brilliant engineers, salespeople, and a complete production
for ∼2M devices every year. To support this switch to a more management role, I attended an MBA
in one of the EU business schools. Do I like this new life in a management role? Next question??!?!
:-D

In 2021, my first daughter appeared in my life. Well, since then things changed a lot, as you can
figure out. My spare time reduced a lot, and this is one of the reasons why the second edition of the
book is really late ;-)

Preface ix

Errata and Suggestions

I am aware of the fact that there are several errors in the text. Unfortunately, English is not my
mother tongue, and this is one of the main reasons I like lean publishing: being an in-progress book,
I have all the time to check and correct them. I have decided that once this book reaches completion,
I will look for a professional editor to help me fix all the mistakes in my English. However, feel free
to contact me to signal what you find.

On the other hand, I am totally open to suggestions and improvements about the book content. I
like to think that this book will save your day every time you need to understand an aspect related
to STM32 programming, so feel free to suggest any topic you are interested in or to signal parts of
the book which are not clear or well explained.

You can reach me through this book’s website: http://www.carminenoviello.com/en/mastering-
stm32/²

Book Support

I have set up a small forum on my personal website as support site for the topics presented in
this book. For any question, please subscribe here: http://www.carminenoviello.com/en/mastering-
stm32/³.

It is impossible for me to answer questions sent privately by e-mail, since they are often
variations on the same topic. I hope you understand.

How to Help the Author

If you want to help me, you may consider:

• giving me feedback about unclear things or errors contained both in the text and examples;
• writing a small review about what you think⁴ of this book in the feedback section⁵;
• using your favorite social network or blog to spread the word. The suggested hashtag for this
book on Twitter is #MasteringSTM32⁶;

²http://www.carminenoviello.com/en/mastering-stm32/
³http://www.carminenoviello.com/en/mastering-stm32/
⁴Negative feedback is also welcome ;-)
⁵https://leanpub.com/mastering-stm32/feedback
⁶https://twitter.com/search?q=%23MasteringSTM32

http://www.carminenoviello.com/en/mastering-stm32/
http://www.carminenoviello.com/en/mastering-stm32/
http://www.carminenoviello.com/en/mastering-stm32/
http://www.carminenoviello.com/en/mastering-stm32/
https://leanpub.com/mastering-stm32/feedback
https://twitter.com/search?q=%23MasteringSTM32
http://www.carminenoviello.com/en/mastering-stm32/
http://www.carminenoviello.com/en/mastering-stm32/
https://leanpub.com/mastering-stm32/feedback
https://twitter.com/search?q=%23MasteringSTM32

Preface x

Copyright Disclaimer

This book contains references to several products and technologies whose copyright is owned by
their respective companies, organizations or individuals.

ARTTM Accelerator, STM32, ST-LINK, STM32Cube, STM32CubeIDE, STM32Programmer and the
STM32 logo with the white butterfly on the cover of this book are copyright ©ST Microelectronics
NV.

ARM, Cortex, Cortex-M, CoreSight, CoreLink, Thumb, Thumb-2, TrustZone, AMBA, AHB, APB,
Keil are registered trademarks of ARM Holdings.

GCC, GDB and other tools from the GNUCollection Compilers mentioned in this book are copyright
© Free Software Foundation.

Eclipse is copyright of the Eclipse community and all its contributors.

During the rest of the book, I will mention the copyright of tools and libraries I will introduce. If I
have forgotten to attribute copyrights for products and software used in this book and you think I
should add them here, please e-mail me through the LeanPub platform.

Credits

The cover of this book was designed by Alessandro Migliorato (AleMiglio⁷)

⁷https://99designs.it/profiles/alemiglio

https://99designs.it/profiles/alemiglio
https://99designs.it/profiles/alemiglio

Acknowledgments to the First Edition
Even if there is just my name on the cover, this book would not have been possible without the help
of a lot of people who have contributed during its development.

First and foremost, I big thank you to Alan Smith, manager of the ST Microelectronics site in Naples
(Arzano - Italy). Alan, with persistence and great determination, came to my office more than three
years ago bringing a couple of Nucleo boards with him. He said to me: You must know STM32!. This
book was born almost that day!

I would like to thank several people that silently and actively contributed to this work. Enrico
Colombini (aka Erix⁸) helped me a lot during the early stages of this book, by reviewing several parts
of it. Without his initial support and suggestions, probably this book would have never seen the end.
For a self-publishing and in-progress author the early feedback is paramount to better understand
how to arrange a so complex work.
Ubaldo de Feo (aka @ubi⁹ also helped me a lot by providing technical feedback and by performing
an excellent proof-reading of some chapters.
Another special thanks goes to Davide Ruggiero, from ST Microelectronics in Naples, who helped
me by reviewing several examples and editing the chapter about CRC peripheral (Davide is a
mathematician and he better knows how to approach formulas :-)). Davide also actively contributed
by donating me some wine bottles: without adequate fuel you cannot write a 900 pages book!
Some english speaking people tried to help me with my poor english, dedicating a lot of time and
effort to several parts of the text. So a big thank you to: Omar Shaker, Roger Berger, J. Clarke,William
Den Beste, J.Behloul, M.Kaiser. I hope not to forget anyone.

A big thanks also to all early adopters of the book, especially to those ones that bought it when it
was made of just few chapters. This fundamental encouragement gave me the necessary energies to
complete a so long and hard work.

Regards,
Carmine I.D. Noviello

⁸http://www.erix.it
⁹http://ubidefeo.com

http://www.erix.it/
http://ubidefeo.com/
http://www.erix.it/
http://ubidefeo.com/

I Introduction

1. Introduction to STM32 MCU
Portfolio

This chapter gives a brief introduction to the entire STM32 portfolio. Its goal is to introduce the reader
to this rather complex family of microcontrollers subdivided in seventeen distinct sub-families.
These share a set of characteristics and present features specific to the given series. Moreover, a
quick introduction to the Cortex-M architecture is presented. Far from wanting to be a complete
reference to either the Cortex-M architecture or STM32 microcontrollers, it aims at being a guide
for the readers in choosing the microcontroller that best suits their development needs, considering
that, with more than 1200 MCUs to choose from, it is not easy to decide which one fits the bill.

1.1 Introduction to ARM Based Processors

With the term ARM we nowadays refer to both a multitude of families of Reduced Instruction
Set Computing (RISC) architectures and several families of complete cores which are the building
blocks (hence the term core) of CPUs produced by many silicon manufacturers. When dealing
with ARM based processors, a lot of confusion may arise since there are many different ARM
architecture revisions (ARMv6, ATMv6-M, ARMv7-M, ARMv7-A, ARMv8-M and so on) and many
core architectures, which are in turn based on an ARM architecture revision. For the sake of clarity,
for example, a processor based on the Cortex-M4 core is designed on the ARMv7-M architecture.

An ARM architecture is a set of specifications regarding the instruction set, the execution model,
the memory organization and layout, the instruction cycles and more, which precisely describes
a machine that will implement said architecture. If your compiler is able to generate assembly
instructions for that architecture, it is able to generate machine code for all those actual machines
(aka, processors) implementing that given architecture.

Cortex-M is a family of physical cores designed to be further integrated with vendor-specific silicon
devices to form a finished microcontroller. The way a core works is not only defined by its related
ARM architecture (eg. ARMv7-M), but also by the integrated peripherals and hardware capabilities
defined by the silicon manufacturer. For example, the Cortex-M4 core architecture is designed to
support bit-data access operations in two specific memory regions using a feature called bit-banding,
but it is up to the actual implementation to add such feature or not. The STM32F1 is a family ofMCUs
based on the Cortex-M3 core that implements this bit-banding feature. Figure 1.1 clearly shows the
relation between a Cortex-M3 based MCU and its Cortex-M3 core.

Introduction to STM32 MCU Portfolio 3

Figure 1.1: The relation between a Cortex-M3 core and a Cortex-M3 based MCU

ARM Holdings is a British company, subsidiary of the Softbank Japanese holding, that develops the
instruction set and architecture for ARM-based products but does not manufacture devices. This
is an important aspect of the ARM world, and the reason why there are many manufacturers of
silicon that develop, produce and sell microcontrollers based on the ARM architectures and cores.
ST Microelectronics is one of them, and it is currently one of few manufacturers selling a complete
portfolio of Cortex-M based processors.

ARM Holdings neither manufactures nor sells CPU devices based on its own designs, but rather
licenses the processor architecture to interested parties. ARM offers a variety of licensing terms,
varying in cost and deliverables. When referring to Cortex-M cores, it is also common to talk about
Intellectual Property (IP) cores, meaning a chip design layout which is considered the intellectual
property of one party, namely ARM Holdings.

Thanks to this business model and to important features such as low power capabilities, low
production costs of some architectures and so on, ARM is the most widely used instruction set
architecture in terms of quantity. ARM based products have become extremely popular. More than
160 billion ARM processors have been produced as of 2020. ARM based processors equip about 95%
of the world’s mobile devices. A lot of mainstream and popular 64-bit and multi-cores CPUs, used
in devices that have become icons in the electronic industry (i.e.: Apple’s iPhone), are based on an
ARM core. In recent years, Apple announced the Apple M1, which is an ARM-based SoC (based on
ARMv8.5-A architecture) designed by Apple itself as a Central Processing Unit (CPU) and Graphics
Processing Unit (GPU) for its Macintosh computers and iPad Pro tablets.

Introduction to STM32 MCU Portfolio 4

Being a sort of widespread standard, there are a lot of compilers and tools, as well as Operating
Systems (Linux is the most used OS on Cortex-A processors) which support these architectures,
offering developers plenty of opportunities to build their applications.

1.1.1 Cortex and Cortex-M Based Processors

ARM Cortex is a wide set of 32/64-bit architectures and cores really popular in the embedded world.
Cortex microcontrollers are divided into three main subfamilies:

• Cortex-A, which stands for Application, is a series of processors providing a range of
solutions for devices undertaking complex computing tasks, such as hosting a rich Operating
System (OS) platform (Linux and its derivative Android are the most common ones), and
supporting multiple software applications. Cortex-A cores equip the processors found in most
of mobile devices, like phones and tablets. In this market segment we can find several silicon
manufacturers ranging from those who sell catalogue parts (TI, Freescale and STM with the
STM32MP1) to those who produce processors for other licensees. Among the most common
cores in this segment, we can find popular Cortex-A7 and Cortex-A9 32-bit processors (they
are still common on several cheap Single Board Computers (SBC)), as well as the latest ultra-
performance 64-bit Cortex-A77 and Cortex-A78 cores.

• Cortex-M, which stands for eMbedded, is a range of scalable, compatible, energy efficient
and easy to use processors designed for the low-cost embedded market. The Cortex-M family
is optimized for cost and power sensitive MCUs suitable for applications such as Internet of
Things, connectivity, motor control, smart metering, human interface devices, automotive and
industrial control systems, domestic household appliances, consumer products and medical
instruments. In this market segment, we can find many silicon manufacturers who produce
Cortex-M processors: ST Microelectronics is one of them.

• Cortex-R, which stand for Real-Time, is a series of processors offering high-performance
computing solutions for embedded systems where reliability, high availability, fault tolerance,
maintainability and deterministic real-time response are essential. Cortex-R series processors
deliver fast and deterministic processing and high performance, while meeting challenging
real-time constraints. They combine these features in a performance, power and area optimized
package, making them the trusted choice in reliable systems demanding fault tolerance.

The next sections will introduce the main features of Cortex-M processors, especially from the
embedded developer point of view.

1.1.1.1 Core Registers

Like all RISC architectures, Cortex-M processors are load/storemachines, which perform operations
only on CPU registers except¹ for two categories of instructions: load and store, used to transfer
data between CPU registers and memory locations.

¹This is not entirely true, since there are other instructions available in the ARMv6/7 architecture that access memory locations, but for
the purpose of this discussion it is best to consider that sentence to be true.

Introduction to STM32 MCU Portfolio 5

Figure 1.2 shows the core Cortex-M registers. Some of them are available only in the higher
performance series like M3, M4 and M7. R0-R12 are general-purpose registers and can be used
as operands for ARM instructions. Some general-purpose registers, however, can be used by the
compiler as registers with special functions. R13 is the Stack Pointer (SP) register, which is also said
to be banked. This means that the register content changes according to the current CPU mode
(privileged or unprivileged). This function is typically used by Real Time Operating Systems (RTOS)
to do context switching.

Figure 1.2: ARM Cortex-M core registers

For example, consider the following C code using the local variables “a”, “b”, “c”:

...

uint8_t a,b,c;

a = 3;

b = 2;

c = a * b;

...

Introduction to STM32 MCU Portfolio 6

Compiler will generate the following ARM assembly code²:

1 movs r3, #3 ;move "3" in register r3

2 strb r3, [r7, #7] ;store the content of r3 in "a"

3 movs r3, #2 ;move "2" in register r3

4 strb r3, [r7, #6] ;store the content of r3 in "b"

5 ldrb r2, [r7, #7] ;load the content of "a" in r2

6 ldrb r3, [r7, #6] ;load the content of "b" in r3

7 smulbb r3, r2, r3 ;multiply "a" with "b" and store result in r3

8 strb r3, [r7, #5] ;store the result in "c"

As we can see, all the operations always involve a register. Instructions at lines 1-2 move the number
3 into the register r3 and then store its content (that is, the number 3) inside the memory location
given by the register r7 plus an offset of 7 memory locations - that is the place where a variable is
stored. The same happens for the variable b at lines 3-4. Then lines 5-7 load the content of variables
a and b and perform the multiplication. Finally, line 8 stores the result in the memory location of
variable c.

Figure 1.3: Cortex-M fixed memory address space

²That assembly code was generated compiling in thumb mode with any optimization disabled, invoking GCC in the following way: $
arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -fverbose-asm -save-temps -O0 -g -c file.c

Introduction to STM32 MCU Portfolio 7

1.1.1.2 Memory Map

ARM defines a standardized memory address space common to all Cortex-M cores, which ensures
code portability among different silicon manufacturers. The address space is 4GB wide, and it is
organized in several sub-regions with different logical functionalities. Figure 1.3 shows the memory
layout of a Cortex-M processor ³.

The first 512MB are dedicated to code area. STM32 devices further divide this area in some sub-
regions as shown in Figure 1.4. Let us briefly introduce them.

Figure 1.4: Memory layout of Code Area on STM32 MCUs

All Cortex-M processors map the code area starting at address 0x0000 0000⁴. This area also includes
the pointer to the beginning of the stack (usually placed in SRAM) and the vector table, as we will
see in Chapter 7. The position of the code area is standardized among all other Cortex-M vendors,
even if the core architecture is sufficiently flexible to allow manufacturers to arrange this area in
a different way. In fact, for all STM32 devices an area starting at address 0x0800 0000 is bound to
the internal MCU flash memory, and it is the area where program code resides. However, thanks to
a specific boot configuration we will explore in Chapter 22, this area is also aliased from address
0x0000 0000. This means that it is perfectly possible to refer to the content of the flash memory both
starting at address 0x0800 0000 and 0x0000 0000 (for example, a routine located at address 0x0800

³Although the memory layout and the size of sub-regions (and therefore also their addresses) are standardized between all Cortex-M cores,
some functionalities may differ. For example, Cortex-M7 does not provide bit-band regions, and some peripherals in the Private Peripheral Bus
region differ. Always consult the reference manual for the architecture you are considering.

⁴To increase readability, all 32-bit addresses in this book are written splitting the upper two bytes from the lower ones. So, every time you
see an address expressed in this way (0x0000 0000) you have to interpret it just as one common 32-bit address (0x00000000). This rule does
not apply to C and assembly source code.

Introduction to STM32 MCU Portfolio 8

16DC can also be accessed from 0x0000 16DC).

The last two sections are dedicated to System memory and Option bytes. The first one is a ROM
region reserved to bootloaders. Each STM32 family (and their sub-families - low density, medium
density, and so on) provides a bootloader pre-programmed into the chip during production. As we
will see in Chapter 22, this bootloader can be used to load code from several peripherals, including
USARTs, USB and CAN bus. TheOption bytes region contains a series of bit flags which can be used
to configure several aspects of the MCU (such as flash read protection, hardware watchdog, boot
mode and so on) and are related to the specific STM32 microcontroller.

Going back to the whole 4GB address space, the next main region is the one bounded to the internal
MCU SRAM. It starts at address 0x2000 0000 and can potentially extend to 0x3FFF FFFF. However,
the actual end address depends on the effective amount of internal SRAM. For example, in the case
of an STM32F103RB MCU with 20KB of SRAM, we have a final address of 0x2000 4FFF⁵. Trying to
access a location outside of this area will cause a Bus Fault exception (more about this later).

The next 0.5GB of memory is dedicated to the mapping of peripherals. Every peripheral provided
by the MCU (timers, I²C and SPI interfaces, USARTs, and so on) has an alias in this region. It is up
to the specific MCU to organize this memory space.

The next 2GB area is dedicated to external SRAM or flash. Cortex-M devices can execute code and
load/store data from external memory, which extend the internal memory resources, through the
EMI/FSMC interface. Some STM32 devices, like the STM32F7, are able to execute code from external
memory without performance bottlenecks, thanks to an L1 cache and the ARTTM Accelerator.

The final 0.5 GB of memory is allocated to the internal (core) Cortex processor peripherals, plus
a reserved area for future enhancements to Cortex processors. All Cortex processor registers are
at fixed locations for all Cortex-based microcontrollers. This allows code to be more easily ported
between different STM32 variants and indeed other vendors’ Cortex-based microcontrollers.

1.1.1.3 Bit-Banding

In embedded applications, it is quite common to work with single bits of a word using bit masking.
For example, suppose that we want to set or clear the 3rd bit (bit 2) of an unsigned byte. We can
simply do this using the following C code:

...

uint8_t temp = 0;

temp |= 0x4;

temp &= ~0x4;

...

Bitmasking is usedwhenwewant to save space inmemory (using one single variable and assigning a
different meaning to each of its bits) or we have to deal with internal MCU registers and peripherals.

⁵The final address is computed in the following way: 20K is equal to 20 * 1024 bytes, which in base 16 is 0x5000. But addresses start from
0, hence the final address is 0x2000 0000 + 0x4FFF.

Introduction to STM32 MCU Portfolio 9

Considering the previous C code, we can see that the compiler will generate the following ARM
assembly code⁶:

#temp |= 0x4;

a: 79fb ldrb r3, [r7, #7]

c: f043 0304 orr.w r3, r3, #4

10: 71fb strb r3, [r7, #7]

#temp &= ~0x4;

12: 79fb ldrb r3, [r7, #7]

14: f023 0304 bic.w r3, r3, #4

18: 71fb strb r3, [r7, #7]

As we can see, such a simple operation requires three assembly instructions (fetch, modify, save).
This leads to two types of problems. First of all, there is a waste of CPU cycles related to those
three instructions. Second, that code works fine if the CPU is working in single task mode, and
we have just one execution stream, but, if we are dealing with concurrent execution, another task
(or simply an interrupt routine) may affect the content of the memory before we complete the “bit
mask” operation (that is, for example, an interrupt occurs between instructions at lines 0xC-0x10 or
0x14-0x18 in the above assembly code).

Bit-banding is the ability to map each bit of a given area of memory to a whole word in the aliased
bit-banding memory region, allowing atomic access to such bit. Figure 1.5 shows how the Cortex
CPU aliases the content of memory address 0x2000 0000 to the bit-banding region 0x2200 0000-1c.
For example, if we want to modify (bit 2) of 0x2000 0000memory location we can simply access to
0x2200 0008 memory location.

Figure 1.5: Memory mapping of SRAM address 0x2000 0000 in bit-banding region (first 8 of 32 bits shown)

This is the formula to compute the addresses for alias regions:

bit_band_address = alias_region_base + (region_base_offset x 32) + (bit_number x 4)

⁶That assembly code was generated compiling in thumb mode with any optimization disabled, invoking GCC in the following way: $
arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -fverbose-asm -save-temps -O0 -g -c file.c

Introduction to STM32 MCU Portfolio 10

For example, considering the memory address of Figure 1.5, to access bit 2 :

alias_region_base = 0x22000000

region_base_offset = 0x20000000 - 0x20000000 = 0

bit_band_address = 0x22000000 + 0*32 + (0x2 x 0x4) = 0x22000008

ARM defines two bit-band regions for Cortex-M3/4 based MCUs, each one is 1MBwide and mapped
to a 32Mbit bit-band alias region. Each consecutive 32-bit word in the “alias” memory region refers
to each consecutive bit in the “bit-band” region (which explains that size relationship: 1Mbit <->
32Mbit). The first one starts at 0x2000 0000 and ends at 0x200F FFFF, and it is aliased from 0x2200

0000 to 0x23FF FFFF. It is dedicated to the bit access of SRAM memory locations. Another bit-
banding region starts at 0x4000 0000 and ends at 0x400F FFFF, as shown in Figure 1.6.

Figure 1.6: Memory map and bit-banding regions

This other region is dedicated to the memory mapping of peripherals. For example, ST maps the
GPIO Output Data Register (GPIO->ODR) of GPIOA peripheral from 0x4002 0014. This means that
each bit of the word addressed at 0x4002 0014 allows modifying the output state of a GPIO (from
LOW to HIGH and vice versa). So if we want to modify the status of PIN5 of GPIOA port⁷, using
the previous formula we have:

alias_region_base = 0x42000000

region_base_offset = 0x40020014 - 0x40000000 = 0x20014

bit_band_address = 0x42000000 + 0x20014*32 + (0x5 x 0x4) = 0x42400294

We can define two macros in C that allow to easily compute bit-band alias addresses:

⁷Anyone who has already played with Nucleo boards, knows that user LED LD2 (the green one) is connected to that port pin.

Introduction to STM32 MCU Portfolio 11

1 // Define base address of bit-band

2 #define BITBAND_SRAM_BASE 0x20000000

3 // Define base address of alias band

4 #define ALIAS_SRAM_BASE 0x22000000

5 // Convert SRAM address to alias region

6 #define BITBAND_SRAM(a,b) ((ALIAS_SRAM_BASE + ((uint32_t)&(a)-BITBAND_SRAM_BASE)*32 + (b*4)))

7

8 // Define base address of peripheral bit-band

9 #define BITBAND_PERI_BASE 0x40000000

10 // Define base address of peripheral alias band

11 #define ALIAS_PERI_BASE 0x42000000

12 // Convert PERI address to alias region

13 #define BITBAND_PERI(a,b) ((ALIAS_PERI_BASE + ((uint32_t)a-BITBAND_PERI_BASE)*32 + (b*4)))

Still using the above example, we can quickly modify the state of PIN5 of the GPIOA port as follows:

1 #define GPIOA_PERH_ADDR 0x40020000

2 #define ODR_ADDR_OFF 0x14

3

4 uint32_t *GPIOA_ODR = GPIOA_PERH_ADDR + ODR_ADDR_OFF;

5 uint32_t *GPIOA_PIN5 = BITBAND_PERI(GPIOA_ODR, 5);

6

7 *GPIOA_PIN5 = 0x1; // Turns GPIO HIGH

1.1.1.4 Thumb-2 and Memory Alignment

Historically, ARM processors provide 32-bit instructions set. This not only allows for a rich set of
instructions, but also guarantees the best performance during the execution of instructions involving
arithmetic operations and memory transfers between core registers and SRAM. However, a 32-bit
instruction set has a cost in terms of memory footprint of the firmware. This means that a program
written with a 32-bit Instruction Set Architecture (ISA) requires a higher amount of bytes of flash
storage, which impacts on power consumption and overall costs of the MCU (silicon wafers are
expensive, and manufacturers constantly shrink chips size to reduce their cost).

To address such issues, ARM introduced the Thumb 16-bit instruction set, which is a subset of the
most commonly used 32-bit one. Thumb instructions are each 16 bits long and are automatically
“translated” to the corresponding 32-bit ARM instruction that has the same effect on the processor
model. This means that 16-bit Thumb instructions are transparently expanded (from the developer
point of view) to full 32-bit ARM instructions in real time, without performance loss. Thumb code is
typically 65% the size of ARM code and provides 160% the performance of the latter when running
from a 16-bit memory system; however, in Thumb, the 16-bit opcodes have less functionality. For
example, only branches can be conditional, and many opcodes are restricted to accessing only half
of all of the CPU’s general-purpose registers.
Afterwards, ARM introduced theThumb-2 instruction set, which is amix of 16 and 32-bit instruction

Introduction to STM32 MCU Portfolio 12

sets in one operation state. Thumb-2 is a variable length instruction set and offers a lot more
instructions compared to the Thumb one, achieving similar code density.

Figure 1.7: Difference between aligned and unaligned memory access

Cortex-M3/4/7 were designed to support the full Thumb and Thumb-2 instruction sets, and some of
them support other instruction sets dedicated to Floating Point operations (Cortex-M4/7) and Single
Instruction Multiple Data (SIMD) operations (also known as NEON instructions).

Another interesting feature of Cortex-M3/4/7 cores is the ability to do unaligned access to memory.
ARM based CPUs are traditionally capable of accessing byte (8-bit), half word (16-bit) and word
(32-bit) signed and unsigned variables, without increasing the number of assembly instructions as
it happens on 8-bit MCU architectures. However, early ARM architectures were unable to perform
unaligned memory access, causing a waste of memory locations.

To understand the problem, consider the left diagram in Figure 1.7. Here we have eight variables.
With memory aligned access we mean that to access the word variables (1 and 4 in the diagram), we
need to access addresseswhich aremultiples of 32-bits (4 bytes). That is, a word variable can be stored
only in 0x2000 0000, 0x2000 0004, 0x2000 0008 and so on. Every attempt to access a location which
is not a multiple of 4 causes a UsageFaults exception. So, the following ARM pseudo-instruction is
not correct:

STR R2, 0x20000002

The same applies for half word access: it is possible to access to memory locations stored at multiple
of 2 bytes: 0x2000 0000, 0x2000 0002, 0x2000 0004 and so on. This limitation causes fragmentation
inside the RAM memory. To solve this issue, Cortex-M3/4/7 based MCUs are able to perform
unaligned memory access, as shown in the right diagram in Figure 1.7. As we can see, variable
4 is stored starting at address 0x2000 0007 (in early ARM architectures this was only possible with
single byte variables). This allows us to store variable 5 in memory location 0x2000 000b, causing
variable 8 to be stored in 0x2000 000e. Memory is now packed, and we have saved 4 bytes of SRAM.

However, unaligned access is restricted to the following ARM instructions:

• LDR, LDRT
• LDRH, LDRHT
• LDRSH, LDRSHT

Introduction to STM32 MCU Portfolio 13

• STR, STRT
• STRH, STRHT

1.1.1.5 Pipeline

Whenever we talk about instructions execution, we are making a series of non-trivial assumptions.
Before an instruction is executed, the CPU has to fetch it frommemory and decode it. This procedure
consumes several CPU cycles, depending on the memory and core CPU architecture, which is added
to the actual instruction cost (that is, the number of cycles required to execute the given instruction).

Modern CPUs introduce a way to parallelize these operations in order to increase their instructions
throughput (the number of instructions which can be executed in a unit of time). The basic
instruction cycle is broken up into a series of steps, as if the instructions traveled along a pipeline.
Rather than processing each instruction sequentially (one at a time, finishing one instruction before
starting with the next one), each instruction is split into a sequence of stages so that different steps
can be executed in parallel.

Figure 1.8: Three stage instruction pipeline

All Cortex-M based microcontrollers introduce a form of pipelining. The most common one is the 3-
stage pipeline, as shown in Figure 1.8. 3-stage pipeline is supported by Cortex-M0/3/4. Cortex-M0+
cores, which are dedicated to low-power MCUs, provide a 2-stage pipeline (although pipelining
helps reducing the time cost related to the instruction’s fetch/decode/execution cycle, it introduces
an energy cost which must be minimized in low-power applications). Cortex-M7 cores provide a
6-stage pipeline.

When dealing with pipelines, branching is an issue to be addressed. Program execution is all
about taking different paths; this is achieved through branching (if equal goto). Unfortunately,
branching causes the invalidation of pipeline streams, as shown in Figure 1.9. The last two
instructions have been loaded into the pipeline, but they are discarded due to the optional branch
path being taken (we usually refer to them as branch shadows)

Introduction to STM32 MCU Portfolio 14

Figure 1.9: Branching in program execution related to pipelining

Even in this case there are several techniques to minimize the impact of branching. They are often
referred as branching prediction techniques. The idea behind these techniques is that the CPU starts
fetching and decoding both the instructions following the branching and the ones that would be
reached if the branch were to happen (in Figure 1.9 both MOV and ADD instructions). There are,
however, other ways to implement a branch prediction scheme. If you want to look deeper into
this subject, this post⁸ from the official ARM support forum is a good starting point.

1.1.1.6 Interrupts and Exceptions Handling

Interrupts and exception management is one of the most powerful features of Cortex-M based
processors. Interrupts and exceptions are asynchronous events that alter the program flow. When an
exception or an interrupt occurs, the CPU suspends the execution of the current task, saves its context
(that is, its stack pointer) and starts the execution of a routine designed to handle the interrupting
event. This routine is called Exception Handler in case of exceptions and Interrupt Service Routine
(ISR) in case of an interrupt. After the exception or interrupt has been handled, the CPU resumes
the previous execution flow, and the previous task can continue its execution⁹.

⁸https://bit.ly/1k7ggh6
⁹With the term task we refer to a series of instructions which constitute the main flow of execution. If our firmware is based on an OS,

the scenario could be a bit more articulated. Moreover, in case of low-power sleep mode, the CPU may be configured to go back to sleep after
an interrupt management routine is executed. We will analyse these more complex scenarios in following chapters.

https://bit.ly/1k7ggh6
https://bit.ly/1k7ggh6

Introduction to STM32 MCU Portfolio 15

Table 1.1: Cortex-M exception types

In the ARM architecture, interrupts are one type of exception. Interrupts are usually generated from
on-chip peripherals (e.g., a timer) or external inputs (e.g., a tactile switch connected to a GPIO),
and in some cases they can be triggered by software. Exceptions are, instead, related to software
execution, and the CPU itself can be a source of exceptions. These could be fault events such as an
attempt to access an invalid memory location, or events generated by the Operating System, if any.

Each exception (and hence interrupt) has a number which uniquely identifies it. Table 1.1 shows
the predefined exceptions common to all Cortex-M cores, plus a variable number of user-defined
ones related to interrupts management. This number reflects the position of the exception handler
routine inside the vector table, where the actual address of the routine is stored. For example, position

Introduction to STM32 MCU Portfolio 16

15 contains the memory address of a code area containing the exception handler for the SysTick
interrupt, generated when the SysTick timer reaches zero.

Other than the first three, each exception can be assigned a priority level, which defines the
processing order in case of concurrent interrupts: the lower the number, the higher the priority.
For example, suppose we have two interrupt routines related to external inputs A and B. We can
assign a higher-priority interrupt (lower number) to input A. If the interrupt related to A arrives
while the processor is serving the interrupt from input B the execution of B is suspended, allowing
the higher priority interrupt service routine to be executed immediately.

Both exceptions and interrupts are processed by a dedicated unit called Nested Vectored Interrupt
Controller (NVIC). The NVIC has the following features:

• Flexible exception and interrupt management: NVIC is able to process both interrupt
signals/requests coming from peripherals and exceptions coming from the processor core,
allowing us to enable/disable them in software (except for NMI¹⁰).

• Nested exception/interrupt support: NVIC allows the assignment of priority levels to
exceptions and interrupts (except for the first three exception types), giving the possibility
to categorize interrupts based on user needs.

• Vectored exception/interrupt entry: NVIC automatically locates the position of the exception
handler related to an exception/interrupt, without need of additional code.

• Interrupt masking: developers are free to suspend the execution of all exception handlers
(except for NMI), or to suspend some of them on a priority level basis, thanks to a set of
dedicated registers. This allows the execution of critical tasks in a safe way, without dealing
with asynchronous interruptions.

• Deterministic interrupt latency: one interesting feature of NVIC is the deterministic latency
of interrupt processing, which is equal to 12 cycles for all Cortex-M3/4 cores, 15 cycles for
Cortex-M0, 16 cycles for Cortex-M0+, regardless of the processor’s current status.

• Relocation of exception handlers: as we will later in the book, exception handlers can be
relocated to other flash memory locations as well as totally different - even external - non-
read-only memory. This offers a great degree of flexibility for advanced applications.

1.1.1.7 SysTimer

Cortex-M based processors can optionally provide a System Timer, also known as SysTick. The good
news is that all STM32 devices provide one, as shown in Table 1.3.
SysTick is a 24-bit down-counting timer used to provide a system tick for Real Time Operating
Systems (RTOS) like FreeRTOS. It is used to generate periodic interrupts to scheduled tasks.
Programmers can define the update frequency of SysTick timer by setting its registers. SysTick timer
is also used by the STM32 HAL to generate precise delays, even if we aren’t using an RTOS. More
about this timer in Chapter 11.

¹⁰Also the Reset exception cannot be disabled, even if it is improper to talk about the Reset exception disabling, since it is the first exception
generated after the MCU resets. As we will see in Chapter 7, the Reset exception is the actual entry point of every STM32 application.

Introduction to STM32 MCU Portfolio 17

1.1.1.8 Power Modes

The current trend in the electronics industry, especially when it comes to mobile devices design,
is all about power management. Reducing power consumption to minimum is the main goal of
all hardware designers and programmers involved in the development of battery-powered devices.
Cortex-M processors provide several levels of power management, which can be divided into two
main groups: intrinsic features and user-defined power modes.

With intrinsic features we refer to those native capabilities related to power consumption defined
during the design of both the Cortex-M core and the whole MCU. For example, Cortex-M0+ cores
only define two pipeline stages in order to reduce power consumption during instructions prefetch.
Another native behavior related to power management is the high code density of the Thumb-2
instruction set, which allows developers to choose MCUs with smaller flash memory to lower power
needs.

Figure 1.10: Cortex-M power consumption at different power modes

Traditionally, Cortex-M processors provide user-defined power modes via System Control Register
(SCR). The first one is the Run mode (see Figure 1.10), which has the CPU running at its full
capabilities. In Run mode, power consumption depends on clock frequency and used peripherals.
Sleep mode is the first low-power mode available to reduce power consumption. When activated,
most functionalities are suspended, CPU frequency is lowered, and its activities are reduced to those
necessary for it to wake up. In Deep sleep mode all clock signals are stopped, and the CPU needs an
external event to wake up from this state.

However, these power modes are only general models, which are further implemented in the actual
MCU. For example, consider Figure 1.11 displaying the power consumption of an STM32F2 MCU

Introduction to STM32 MCU Portfolio 18

running at 80MHZ @30°C¹¹. As we can see, the maximum power consumption is reached in Run-
mode with the ARTTM accelerator disabled. Enabling the ARTTM accelerator we can save up to
10mAh while also achieving better computing performances. This clearly shows that the real MCU
implementation can introduce different power levels.

Figure 1.11: STM32F2 power consumption at different power modes

STM32Lx families provide several further intermediate power levels, allowing to precisely select the
preferred power mode and hence MCU performance and power consumption.
We will go in more depth about this topic in Chapter 19.

1.1.1.9 TrustZoneTM

ARM recently introduced two new Cortex-M processor cores named Cortex-M23 and Cortex-M33,
both based on the ARMv8-M architecture. These new cores inherit a feature already present on the
majority of Cortex-A processors: the ARM TrustZoneTM. The TrustZoneTM is an optional Security
Extension that is designed to provide a foundation for improved system security in a wide range of
embedded applications. The concept of TrustZoneTM technology is not new. The processor can run in
Secure andNon-secure states, withNon-secure software able to access toNon-securememory region
only. By acting on the memory mapping configuration, it is possible to define regions of memory
address space where the access to that region (both when executing code andwhen accessing to data)
is possible just when the processor runs in Secure mode. ARM TrustZoneTM technology enables the
system and the software to be partitioned into Secure and Normal worlds. Secure software can
access both Secure and Non-secure memories and hardware resources, while Normal software can
only access Non-secure memories and resources. These security states are orthogonal to the existing
Thread and Handler modes (more about these two running modes later in the text), enabling both a
Thread and Handler mode in both Secure and Non-secure states.

¹¹Source ST AN3430

http://www.st.com/st-web-ui/static/active/cn/resource/technical/document/application_note/DM00033348.pdf

Introduction to STM32 MCU Portfolio 19

ARM TrustZone technology does not cover all aspects of security. For example, it does not include
cryptography. In designs with the ARMv8-M architecture with TrustZoneTM, components that are
critical to the security of the system can be placed in the Secure world. For example, these critical
components may include:

• A Secure boot loader
• Secret keys
• Flash programming support
• High value assets

The remaining applications are usually placed in the Normal world.

1.1.1.10 CMSIS

One of the key advantages of the ARM platform (both for silicon vendors and application developers)
is the existence of a complete set of development tools (compilers, run-time libraries, debuggers, and
so on) which are reusable across several vendors.

ARM is also actively working on a way to standardize the software infrastructure among the MCUs
vendors. Cortex Microcontroller Software Interface Standard (CMSIS) is a vendor-independent
hardware abstraction layer for the Cortex-M processor series and specifies debugger interfaces. The
CMSIS consists of the following components:

• CMSIS-CORE: API for the Cortex-M processor core and peripherals. It provides a standardized
interface for Cortex-M0/0+/3/4/7/23/33.

• CMSIS-Driver: defines generic peripheral driver interfaces for middleware making them
reusable across supported devices. The API is RTOS independent and connects microcontroller
peripherals to middleware which implements, amongst other things, communication stacks,
file systems or graphical user interfaces.

• CMSIS-DSP: DSP Library Collection with over 60 Functions for various data types: fixed-point
(fractional q7, q15, q31) and single precision floating-point (32-bit). The library is available for
Cortex-M0, Cortex-M3, and Cortex-M4. The Cortex-M4 implementation is optimized for the
SIMD instruction set.

• CMSIS-RTOS API: Common API for Real-Time Operating Systems. It provides a standardized
programming interface which is portable to many RTOS and therefore enables software
templates, middleware, libraries, and other components which can work across supported
RTOS systems. We will talk about this API layer in Chapter 23.

• CMSIS-Pack: describes, using an XML based package description file named “PDSC”, the user
and device relevant parts of a file collection (namely “software pack”) which includes source,
header, library files, documentation, flash programming algorithms, source code templates
and example projects. Development tools and web infrastructures use the PDSC file to extract
device parameters, software components, and evaluation board configurations.

Introduction to STM32 MCU Portfolio 20

• CMSIS-SVD: System View Description (SVD) for Peripherals. Describes the peripherals of a
device in an XML file and can be used to create peripheral awareness in debuggers or header
files with peripheral registers and interrupt definitions.

• CMSIS-DAP: Debug Access Port. Standardized firmware for a Debug Unit that connects to the
CoreSight Debug Access Port. CMSIS-DAP is distributed as a separate package and well suited
for integration on evaluation boards.

• CMSIS-NN: Neural Networks. Due to the increase of power computing in latest Cortex-
M4/7 cores, neural network-based solutions are becoming increasingly popular even for
embedded machine learning applications. CMSIS-NN is a collection of efficient neural network
kernels developed to maximize the performance and minimize the memory footprint of neural
networks on Cortex-M processor cores.

However, this initiative from ARM is evolving by its own, and it is mostly related to the evolving of
the ARM Keil tool-chain. The support to all components from ST is still limited to some APIs, as we
will see in following chapters. The official ST HAL is the main way to develop applications for the
STM32 platform, which presents a lot of peculiarities between MCUs of different families. Moreover,
it is quite clear that the main objective of silicon vendors is to retain their customers and avoid their
migration to other MCUs platform (even if based on the same ARM Cortex core). So, we are really
far from having a complete and portable layer that works on all ARM based MCUs available on the
market.

1.1.1.11 Effective Implementation of Cortex-M Features in the STM32 Portfolio

Some of the features presented in the previous paragraphs are optional and may not be available in
a given MCU. Tables 1.2 and 3 summarize the Cortex-M instructions and components available in
the STM32 Portfolio. These could be useful during the selection of an STM32 MCU.

Table 1.2: ARM Cortex-M instruction variations

Introduction to STM32 MCU Portfolio 21

Table 1.3: ARM Cortex-M optional components

1.2 Introduction to STM32 Microcontrollers

STM32 is a broad range of microcontrollers divided in seventeen sub-families, each one with its
features. ST started the market production of this portfolio in 2007, beginning with the STM32F1
series, which is still in production. Figure 1.12 shows the internal die of an STM32F103 MCU, one
of the most widespread STM32 MCUs¹². All STM32 microcontrollers have a Cortex-M core, plus
some distinctive ST features (like the ARTTM accelerator). Internally, each microcontroller consists
of the processor core, static RAM, flash memory, debugging interface, and various other peripherals.
Some MCUs provide additional types of memory (EEPROM, CCM, etc.), and a whole line of devices
targeting low-power applications is continuously growing.

¹²This picture is taken from Zeptobars.ru, a really fantastic blog. Its authors decap (that is, remove the protective casing) integrated circuits
in acid and publish images of what’s inside the chip. I love those images, because they show what humans were able to achieve in electronics.

http://bit.ly/1FfqHsv

Introduction to STM32 MCU Portfolio 22

Figure 1.12: Internal die of an STM32F103 MCU

The remaining paragraphs in this chapter will introduce the reader to STM32 microcontrollers,
giving a complete overview of all STM32 subfamilies.

1.2.1 Advantages of the STM32 Portfolio….

The STM32 platform provides several advantages for embedded developers. This paragraph tries to
summarize the relevant ones.

• They are Cortex-M based MCUs: this could still not be clear to those of you who are new
to this platform. Being Cortex-M based microcontrollers ensures that you have several tools
available on the market to develop your applications. ARM has become a sort of standard in
the embedded world (this is especially true for Cortex-A processors; in the Cortex-M market
segment there are still several good alternatives: PIC, MSP430, etc.) and 160 billions of devices
sold by 2020 is a strong guarantee that investing on this platform is a good choice.

• Free ARM based tool-chain: thanks to the diffusion of ARM based processors, it is possible to
work with completely free tool-chains, without investing a lot of money to start working with
this platform, which is extremely important if you are a hobbyist or a student.

• Know-how reuse: STM32 is a quite extensive portfolio, which is based on a common
denominator: their main CPU platform. This ensures, for example, that know-how acquired

Introduction to STM32 MCU Portfolio 23

working on a given STM32Fx CPU can easily be applied to other devices from the same family.
Moreover, working with Cortex-M processors allows you to reuse much of the acquired skills
if you (or your purchase team) decide to switch to Cortex-M MCUs from other vendors (in
theory).

• Official development environment: ST invested a lot in recent years in building-up a
complete development environment. They made too many mistakes in the past, by funding
several projects around that ended in nothing. CooCox IDE and SW4STM32 where two
previous attempts by ST to support open-source communities in growing-up a complete tool-
chain for its microcontrollers, but they failed miserably. Finally, ST understood that this was
discouraging a lot of people from adopting the STM32 portfolio, and so they decided to acquire
Atollic in order to use their TrueSTUDIO IDE as the official tool-chain for the STM32 family
of microcontrollers.

• Pin-to-pin compatibility: most of STM32 MCUs are designed to be pin-to-pin compatible
inside the extensive STM32 portfolio. This is especially true for LQFP64-100 packages, and it is
a big plus. You will have less responsibility in the initial choice of the right microcontroller for
your application, knowing that you can eventually jump to another family in case you find it
does not fit your needs.

• 5V tolerant: Most STM32 pins are 5V tolerant. This means that you can interface other
devices that do not provide 3.3V I/O without using level shifters (unless speed is key to
your application, a level shifter always introduce a parasitic capacitance that reduced the
commutation frequency).

• 32 cents for 32 bit¹³: STM32F0 is the right choice if you want to migrate from 8/16-bit MCUs
to a powerful and coherent platform, while keeping a comparable target price. You can use an
RTOS to boost your application and write much better code.

• Integrated bootloader: STM32MCUs are shipped with an integrated bootloader, which allows
to reprogram the internal flash memory using some communication peripherals (USART, I²C,
etc.). For some of you this will not be a killer feature, but it can dramatically simplify the work
of people developing devices as professionals.

1.2.2 ….And Its Drawbacks

This book is not a brochure, or a document made by marketing people. Nor is the author an ST
employee or is he having business with ST. So, it is right to say that there are some pitfalls regarding
this platform.

• Learning curve: STM32’s learning curve can be quite steep, especially for inexperienced users.
If you are completely new to embedded development, the process of learning how to develop
STM32 applications can be frustrating. Even if ST is doing a great job at trying to improve the
overall documentation and the official libraries, it is still hard to deal with this platform, and
this is a shame. Historically, ST documentation has not been the best one for inexperienced
people, being too cryptic and lacking clear examples.

¹³Due to the silicon market crisis in the twenties, this slogan is no longer valid. The crazy situation of the IC industry pushed prices of
low-cost ICs (which are the most affected ones) by more than 25%. However, misery loves company and for low-cost applications STM32F0
family is still an interesting series to evaluate, unless a 8-bit solution is suitable for you.

Introduction to STM32 MCU Portfolio 24

• Fragmented and dispersive documentation: ST is actively working on improving its official
documentation for the STM32 platform. You can find a lot of huge datasheets on ST’s website,
but there is still a lack of good documentation especially for its HAL. Recent versions of the
CubeHAL provide one or more “CHM” files¹⁴, which are automatically generated from the
documentation inside the CubeHAL source code. However, those files are not sufficient to
start programming with this framework, especially if you are new to the STM32 ecosystem
and the Cortex-M world.

• Buggy and non-performing HAL: frankly speaking, the official HAL from ST improved a
lot over the years but it is still evolving, and it is quite common to find some severe bugs
especially in advanced and less widespread modules of the HAL, like it happened to this author
with the HAL_PCD module (I spent two months to identify a nasty bug affecting the USB HAL
library on an STM32L052 MCU). ST is actively working on fixing the HAL bugs, but it seems
we are still far from a “stable release”. Moreover, their software release lifecycle is too old
and not appropriate for the times we live in: bug fixes are released after several months, and
sometimes the fix bares more issues than the broken code itself. Finally, the CubeHAL is far
from being considered an optimized library. The HAL is designed to be abstracted from the
underlying family and the specific MCU and this requires that HAL routines are full of if-
then-else statement. For time-critical applications ST released the CubeHAL-LL library, which
is essentially a set of macros to simplify the manipulation of peripherals’ registers. Again, do
not forget that you are the pilot and you have to rule all those tools.

1.3 A Quick Look at the STM32 Subfamilies

If you are new to the STM32 world and if you already own an STM32 development kit or
a custom device that you are impatient to start using, then it is safe to skip this long (and
quite tedious :-)) paragraph and to jump to the next one.

As you read, the STM32 is a rather complex product lineup, spanning over seventeen product
sub-families. Figure 1.13 summarizes the current STM32 portfolio. The diagrams aggregate the
subfamilies in four macro groups: High-performance, Mainstream, Ultra Low-Power and Wireless
MCUs.

High-performance microcontrollers are those STM32 MCUs dedicated to CPU-intensive and mul-
timedia applications. They are Cortex-M3/4F/7 based MCUs, with maximum clock frequencies
ranging from 120MHz (F2) up to 550MHz (H7). SomeMCUs in this group provide ARTTM Accelerator,
an ST technology that allows 0-wait execution from flash memory.

¹⁴a CHM file is a typical Microsoft file format used to distribute documentation in HTML format in just one file. It is really common on
the Windows OS, and you can find several good free tools on MacOS and Linux to read them.

Introduction to STM32 MCU Portfolio 25

Figure 1.13: STM32 portfolio

Mainstream MCUs are developed for cost-sensitive applications, where the cost of the MCU must
be even less than 1$/pc and space is a strong constraint. In this group we can find Cortex-M0/0+/3/4
based MCUs, with maximum clock frequencies ranging from 48MHz (F0) to over 170MHz (G4).

The Ultra Low-Power group contains those STM32 families of MCUs addressing low-power appli-
cations, used in battery-powered devices which need to reduce total power consumption to low
levels ensuring longer battery life. In this group we can find both Cortex-M0+ based MCUs, for
cost-sensitive applications, and Cortex-M4F based microcontrollers with Dynamic Voltage Scaling
(DVS), a technology which allows to optimize the internal CPU voltage according to its frequency.
Moreover, ST recently introduced in this category also MCUs with the new Cortex-M33 core,
dedicated to application where security is a strong constraint. MCUs from this group range from
32MHz Cortex-M0+ up to 160MHz Cortex-M33.

WirelessMCUs are the brand-new lineup of dual-core STM32 microcontrollers dedicated to wireless
connectivity. They cover Sub-GHz as well as 2.4GHz frequency range operation. They are easy to
use, reliable and perfectly tailored for a wide range of industrial and consumer applications. These

Introduction to STM32 MCU Portfolio 26

MCUs feature a Cortex-M0+ core (named Network Processor) dedicated to the radio management
and a user-programmable Cortex-M4 core (named Application Processor) for the main embedded
application. STM32Wx solutions are compatible withmultiple protocols, from point-to-point &mesh
to wide-area networks.  

The following paragraphs give a brief description of each STM32 family, introducing its main
features. The most important ones will be summarized inside tables. Tables were arranged by the
author of this book, inspired by the official ST documentation.

1.3.1 F0

Table 1.4: STM32F0 features

The STM32F0 series is the most cost-effective line of MCU from the STM32 portfolio. It is designed
to have a street price able to compete with some 8/16-bit MCUs from other vendors, offering a more
advanced and powerful platform.
The most important features of this series are:

• Core:
– ARM Cortex-M0 core at a maximum clock rate of 48 MHz.
– Cortex-M0 options include the SysTick Timer.

• Memory:
– Static RAM from 4 to 32 KB.
– Flash from 16 to 256 KB.
– Each chip has a factory-programmed 96-bit unique device identifier number.

• Peripherals:
– Each F0-series device features a range of peripherals which vary from line to line (see
Table 1.4 for a quick overview).

Introduction to STM32 MCU Portfolio 27

• Oscillator source consists of internal RC (8 MHz, 40 kHz), optional external HSE (4 to 32 MHz),
LSE (32.768 to 1000 kHz).

• IC packages: LQFP, TSSOP20¹⁵, UFBGA, UFQFPN, WLCSP (see Table 1.4 for more about this).
• Operating voltage range is 2.0V to 3.6V with the possibility to go down to 1.8V ±8%.

¹⁵F0/G0/L0 are the only STM32 families that provides this convenient package.

2. Get In Touch With SM32CubeIDE
Before we can start developing applications for the STM32 platform, we need a complete tool-chain.
A tool-chain is a set of programs, compilers and tools that allows us:

• to write down our code and to navigate inside source files of our application;
• to navigate inside the application code, allowing us to inspect variables, function definition-
s/declarations, and so on;

• to compile the source code using a cross-platform compiler;
• to upload and debug our application on the target development board (or a custom board we
have made).

To accomplish these activities, we essentially need:

• an IDE with integrated source editor and navigator;
• a cross-platform compiler able to compile source code for the ARM Cortex-M platform;
• a debugger that allows us to execute step by step debugging of firmware on the target board;
• a tool that allows to interact with the integrated hardware debugger of our Nucleo board (the
ST-LINK interface) or the dedicated programmer (e.g., a JTAG adapter).

In this chapter I will show how to install and to run the STM32CubeIDE tool-chain on Windows,
Mac OS and Linux and I will provide to you an essential overview of the main functionalities of the
Eclipse IDE.

2.1 Why Choose STM32CubeIDE as Tool-Chain for
STM32

It has been a long time since the first edition of this book, and a lot of things are changed.
Traditionally, STM32 lacked an official development environment fully, directly and actively
maintained by ST. In the past years, ST tried to support several open source and community-based
projects, all based on the free Eclipse/GCC tool-chains. However, none of these projects (CooCox,
AC6) reached a real maturity level and this represented one of the major roadblocks in starting to
work with STM32 microcontrollers.

The first edition of this book was characterized by the fact that it showed how to setup a complete,
cross-platform and totally free tool-chain from scratch. It was an Eclipse-based tool-chain with the

Get In Touch With SM32CubeIDE 29

addition of a set of plug-ins, named Eclipse Embedded CDT¹, developed and maintained by Liviu
Ionescu, who did a really excellent work in providing support for the GCCARM tool-chain. Without
those plug-ins it was almost impossible to develop and run code with Eclipse for the STM32 platform.
This project is now one of the official Eclipse Foundation projects, and it is still a good development
environment to work with, especially if you are used to work with different Cortex-M platform.

At the end of 2017 STM decided to acquire Atollic², the company behind the TrueStudio IDE, a
commercial distribution of Eclipse CDT and ARM GCC with the addition of dedicated plug-ins
to develop embedded applications for ARM Cortex-M microcontrollers. After the acquisition of
Atollic, ST decided to release the TrueStudio IDE for free for all STM32 developers, and the IDE was
renamed in STM32CubeIDE. As we will see in this book, STM32CubeIDE is much more than a flavor
of Eclipse CDT. ST invested a lot in integrating all the STM32-related tools inside just one piece of
software, without requiring to developers to deal with the installation of several non-integrated tools
scattered around the STM website. Moreover, STM finally completed the porting of all fundamental
development tools to Linux and MacOS, allowing programmers to work with their favorite OS. This
represents a true quantum leap for the STM32 platform, and nowadays I cannot see any real reason
to use other development environments, unless you have strong requirements related to your very
specific application (for example, to develop electronics for the automotive/aerospace industry). For
this and other reasons better explained next, this edition of the book will be entirely based on the
STM32CubeIDE.

However, despite the fact that STM32CubeIDE is now the official development environment by ST,
there are several additional considerations to take in account while evaluating your tool-chain if
you are in doubt about which to choose. Here you can find just a few considerations:

• It is GCC based: GCC is probably the best compiler on the earth, and it gives excellent results
even with ARM based processors. ARM is nowadays the most widespread architecture (thanks
to the embedded systems becoming widespread in the recent years), and many hardware and
software manufacturers use GCC as the base tool for their platform.

• It is cross-platform: if you have a Windows PC, the latest sexy Mac or a Linux server you will
be able to successfully develop, compile and upload the firmware on your development board
with no difference. Nowadays, this is a mandatory requirement.

• Eclipse diffusion: a lot of IDEs for STM32 are also based on Eclipse, which has become a sort
of standard. There are a lot of useful plug-ins for Eclipse that you can download with just one
click. And it is a product that evolves day by day.

• Eclipse It is Open Source: ok. I agree. For such giant pieces of software, it is really hard to try
to understand their internals and modify the code, especially if you are a hardware engineer
committed to transistors and interrupts management. But if you get in trouble with your tool,
it is simpler to try to understand what goes wrong with an open source tool than a closed one.

• Large and growing community: these tools have by now a great international community,
which continuously develops new features and fixes bugs. You will find tons of examples and
blogs, which can help you during your work. Moreover, many companies, which have adopted

¹https://eclipse-embed-cdt.github.io/
²https://www.st.com/content/st_com/en/about/media-center/press-item.html/c2839.html

https://eclipse-embed-cdt.github.io/
https://www.st.com/content/st_com/en/about/media-center/press-item.html/c2839.html
https://eclipse-embed-cdt.github.io/
https://www.st.com/content/st_com/en/about/media-center/press-item.html/c2839.html

Get In Touch With SM32CubeIDE 30

this software as official tools, give economical contribution to the main development. This
guarantees that the software will not suddenly disappear.

• It is free: Yep. I placed this as the last point, but it is not the least. As said before, a commercial
IDE can cost a fortune for a small company or a hobbyist/student. And the availability of free
tools is one of the key advantages of the STM32 platform.

If you are completely new to Eclipse and/or GCC, here are some more specific considerations
regarding these two products.

2.1.1 Two Words About Eclipse…

Eclipse³ is an Open Source and a free Java based IDE. Despite this fact (unfortunately, Java programs
tend to eat a lot of machine resources and to slow down your PC), Eclipse is one of the most
widespread and complete development environments. Eclipse comes in several pre-configured
versions, customized for specific uses. For example, the Eclipse IDE for Java Developers comes
preconfigured to work with Java and with all those tools used in this development platform (Ant,
Maven, and so on). In our case, the STM32CubeIDE is essentially based on the Eclipse IDE for C/C++
Developers.

Eclipse is designed to be expandable thanks to plug-ins. There are several plug-ins available in Eclipse
Marketplace useful for software development for embedded systems. We will install and use most
of them in this book. Moreover, Eclipse is highly customizable. I strongly suggest you to take a look
at its settings, which allow you to adapt it to your needs and flavor.

2.1.2 … and GCC

The GNU Compiler Collection⁴ (GCC) is a complete and widespread compiler suite. It is the only
development tool able to compile several programming languages (front-end) to tens of hardware
architectures that come in several variants. GCC is a really complex piece of software. It provides
several tools to accomplish compilation tasks. These include, in addition to the compiler itself,
an assembler, a linker, a debugger (known as GNU Debugger - GDB), several tools for binary
files inspection, disassembly and optimization. Moreover, GCC is also equipped with the run-time
environment for the C language, customized for the target architecture.

In recent years, several companies, even in the embedded world, have adopted GCC as their
official compiler. For example, NXP uses GCC as cross-compiler for its LPC family of Cortex
microcontrollers.

³http://www.eclipse.org
⁴https://gcc.gnu.org/

http://www.eclipse.org/
https://gcc.gnu.org/
http://www.eclipse.org/
https://gcc.gnu.org/

Get In Touch With SM32CubeIDE 31

What Is a Cross-Compiler?
We usually refer to term compiler as a tool able to generate machine code for the processor
in our PC. A compiler is just a “language translator” from a given programming language
(C in our case) to a low-level machine language, also known as assembly. For example, if we
are working on Intel x86 machine, we use a compiler to generate x86 assembly code from
the C programming language. For the sake of completeness, we have to say that nowadays a
compiler is a more complex tool that addresses both the specific target hardware processor
and the Operating System we are using (e.g., Windows 7).

A cross-platform compiler is a compiler able to generate machine code for a hardware
machine different from the one we are using to develop our applications. In our case,
the GCC ARM Embedded compiler generates machine code for Cortex-M processors while
compiling on an x86 machine with a given OS (e.g., Windows or Mac OSX).

In the ARM world, GCC is the most used compiler especially due the fact that it is used as
main development tool for Linux based Operating Systems for ARM Cortex-A processors (ARM
microcontrollers that equip almost every mobile device). ARM engineers actively maintain the ARM
GCC branch of GCC. STM32CubeIDE uses one of the most recent GCC based tool-chains. Finally,
consider that acquiring knowledge about this suite of compilers can be also useful in future: it is a
skill that can be reused also for other embedded architectures.

2.2 Downloading and Installing the STM32CubeIDE

The STM32CubeIDE can be freely downloaded from the official STMwebsite⁵. The only requirement
is that you register on the STM website providing a valid email address.

In the same webpage you can find the installation packages for all operating systems. You will find
five links, as shown in Figure 2.1⁶. Three links are related to Linux, while the other two are for
Windows and MacOS:

• STM32CubeIDE-Win: this executable package contains the installer for Windows.
• STM32CubeIDE-Mac: this ZIP file contains the DMG file (Apple Disk Image) with the installer
for Mac OSX.

• STM32CubeIDE-DEB: this package contains a Linux Debian installation package (.deb
package). This is for Linux Debian distributions and derived (notably Ubuntu).

• STM32CubeIDE-RPM: this package contains a Linux RedHat installation package (.rpm
package). This is for Linux RedHat distributions and derived (notably CentOS).

• STM32CubeIDE-Lnx: this is a generic Linux tarball containing the STM32CubeIDE and all
necessary tools and libraries. This package is for advanced Linux users, who usually know
how to install by themselves custom applications.

⁵https://www.st.com/en/development-tools/stm32cubeide.html
⁶In this book all screen captures, unless differently required, are based on Mac OS, because it is the OS the author uses to develop STM32

applications (and to write this book). However, they also apply to other Operating Systems.

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html

Get In Touch With SM32CubeIDE 32

Select the porting of STM32CubeIDE for your Operating System by clicking on the pinky icon “Get
Software” in the download section. Once the software is downloaded, follow the instructions in the
next sections.

Figure 2.1: The STM32CubeIDE download page on the official STM website

The next three paragraphs, and their sub-paragraphs, are almost identical. They only differ
on those parts specific for the given OS (Windows, Linux or Mac OS). So, jump to the
paragraph you are interested in, and skip the remaining ones.

2.2.1 Windows - Installing the Tool-Chain

The Windows installation package is contained inside a ZIP file. Once the download has completed,
extract the ZIP archive and run the contained executable file (the executable filename has this
structure: st-stm32cubeide_VERSION_x86_64.exe, where VERSION corresponds to the latest release
of the IDE).
During the installation process, the Windows may display a dialog stating: “Do you want to allow
this app to make changes to your device?” with info “Verified publisher: STMicroelectronics Software
AB”. Accept by clicking on “YES” to let the installer continue.

Get In Touch With SM32CubeIDE 33

Figure 2.2: Windows installer welcome page

After few seconds the “Welcome to…” page of the installer appears, as shown in Figure 2.2. Click on
“Next”, read the license agreement and click on “I Agree” to accept the terms of the agreement.
In the next dialog (see Figure 2.3), it is possible to select the location for the installation. It is
recommended to choose a short path to avoid facing Windows limitations with too long paths for
the workspace. My suggestion is to leave the default path (C:\ST\STM32CubeIDE).

Figure 2.3: Chose Install Location dialog

Get In Touch With SM32CubeIDE 34

Individual Projects will not be stored inside that path. Instead, they are grouped inside
a preferred location named “Workspace”. This is the common Eclipse’s way to store
projects, and the good news is that it is possible to have as many workspaces as you
want: each workspace represents a totally independent environment, both from the stored
projects point-of-view and the IDE configurations. This means that you can customize each
workspace according to your specific needs. Every project, every installed plug-in, every
IDE and tools configurations will be local to that specific workspace. This is also a lot useful
for beginners: it is not that uncommon to mess with the IDE configuration and to break
some relevant configurations. If this the case, you simply need to throw away the current
workspace and to make a new one, without affecting the overall system configuration.

Once the installation path is chosen, click on “Next”. The “Choose Components” dialog is displayed
as shown in Figure 2.4. Unless you are confident with those flags, my suggestion is to leave all of
them checked. The role of those components will be clearer as we progress through the book.
Click on the “Install” button and wait for the completion of the operations. In this step, the installer
will copy in the selected location the IDE and all relevant components: a Java virtual machine, Eclipse
and all it is plug-ins, GCC compiler and debuggers, Windows drivers for ST-LINK debuggers.

Figure 2.4: Choose Components dialog

At the end of the installation step, click on “Finish”.

The next tool to install is the STM32CubeProgrammer. It is a software that uploads the firmware
on the MCU using the ST-LINK interface of our Nucleo, or a dedicated ST-LINK programmer. We
will not use this tool too much in the book, apart for the next chapter. However, this tool comes in
handy very often during the common development life cycle, especially if for small production lots.
So, I think that it is ok to get familiar with this tool.

You can download STM32CubeProgrammer from the official ST page⁷ (the download link is at the
bottom of the page in the “Get Software” section). Once the download is completed, extract the

⁷http://bit.ly/2CK4aFa

http://bit.ly/2CK4aFa
http://bit.ly/2CK4aFa

Get In Touch With SM32CubeIDE 35

.zip package. You will find the SetupSTM32CubeProgrammer-2.9.0.exe file. Run it and follow the
installation instructions.

The tool-chain installation is now complete, and you can jump to the STM32CubeIDE overview
paragraph if you are totally new to the Eclipse IDE.

2.2.2 Linux - Installing the Tool-Chain

The whole installation procedure will assume these requirements:

• A PC running a recent Linux-64bit version:
– Ubuntu Linux 20.04 LTS Desktop or later
– Fedora 29 or later

• Sufficient hardware resources (I suggest having at least 4Gb of RAM and 20Gb of free space
on the Hard Disk); the instructions should be easily arranged for other Linux distributions.

The installer comes in different bundles to suit the various Linux distributions. The bundles are
named st-stm32cubeide_VERSION_ARCHITECTURE.PACKAGE where:

• VERSION is the actual product version and build date (for example: 1.0.0_2026_20190221_1309)
• ARCHITECTURE is the architecture of the target host computer to run STM32CubeIDE (for
example: amd64)

• PACKAGE is the Linux package type to be installed. The supported packages are:
– rpm_bundle.sh for Fedora/CentOS
– deb_bundle.sh for Ubuntu/Debian
– .sh for generic Linux

Proceed as follows:

1. Navigate to the location of the installer file with a command console on the host computer. 2.
Enter the following command in the console window:

1 $ sudo sh ./st-stm32cubeide_VERSION_ARCHITECHURE.PACKAGE

where VERSION, ARCHITECTURE and PACKAGE must be entered after the selected Linux package.

3. Follow the further instructions provided through the console window.

The next tool to install is the STM32CubeProgrammer. It is a software that uploads the firmware
on the MCU using the ST-LINK interface of our Nucleo, or a dedicated ST-LINK programmer. We
will not use this tool too much in the book, apart for the next chapter. However, this tool comes in
handy very often during the common development life cycle, especially if for small production lots.
So, I think that it is ok to get familiar with this tool.

To execute the STM32CubeProgrammer in Linux, it is required you have some packages already
installed on your machine. The needed packages are:

Get In Touch With SM32CubeIDE 36

• libusb-1.0.0-dev

The installation of this packaged changes according to the specific Linux distribution.
In Ubuntu they can be installed with the following commands at the terminal prompt:

$ sudo apt-get install libusb libusb-1.0.0-dev

You can download STM32CubeProgrammer from the official ST page⁸ (the download link is at the
bottom of the page in the “Get Software” section). Once the download is completed, extract the
.zip package. You will find the SetupSTM32CubeProgrammer-2.9.0.linux file. Run it and follow the
installation instructions.

Jump to the STM32CubeIDE overview paragraph if you are totally new to the Eclipse IDE.

2.2.3 Mac - Installing the Tool-Chain

The MacOS installation package is contained inside a ZIP file. Once the download has completed,
extract the ZIP archive and run the contained DMG file (the filename has this structure: st-
stm32cubeide_VERSION_x86_64.dmg, where VERSION corresponds to the latest release of the IDE).
Double-click on the DMG file to let MacOS mount the Apple disk image. The License Agreement
dialog appears, as shown in Figure 2.5.

Figure 2.5: License Agreement dialog

Read the license agreement and click “Agree” to accept the terms of the agreement and to move on
with the software installation. The Install page appears, as shown in Figure 2.6. Before we drag the
large IDE icon inside the Application folder it is important to install the ST-LINK server package
first. So, click on the Install me 1st icon (the classical icon representing a software package inMacOS)
and follow the installation instructions.

⁸http://bit.ly/2CK4aFa

http://bit.ly/2CK4aFa
http://bit.ly/2CK4aFa

Get In Touch With SM32CubeIDE 37

MacOS will prevent you from installing the software, being it download from an untrusted
website and not from the official App Store. However, I assume that you are sufficiently
familiar with MacOS and able to bypass this restriction by going in the MacOS System
Preferences->Security and Privacy settings. Alternatively, you can completely disable
the MacOS Gatekeeper (the component that enforces code signing and verifies downloaded
applications before allowing them to run in recent MacOS releases) by running the following
command at MacOS terminal:

$ sudo spctl --master-disable

Once

completed, you can safely drag the IDE icon inside the Application folder and wait until the
operation completes.

Figure 2.6: Install page dialog

Get In Touch With SM32CubeIDE 38

Read Carefully!
It is very common for MacOS users to fail to run the STM32CubeIDE the first time
they launch the application. The following system warning is shown:

Unfortunately, this error is due to wrong extended attribute permissions, and it is
mostly related to the new path of MacOS X, which is driving MacOS toward a sort of
more advanced iOS. Honestly speaking, being a really old and advanced MacOS user,
I cannot see anything good with this drift.
However, the good news is that you can easily get rid of this issue by opening the
MacOS Terminal and executing the following command at the prompt:

$ xattr -c /Applications/STM32CubeIDE.app

This should fix the issue and you should be able to run the STM32CubeIDE.

The next tool to install is the STM32CubeProgrammer. It is a software that uploads the firmware
on the MCU using the ST-LINK interface of our Nucleo, or a dedicated ST-LINK programmer. We
will not use this tool too much in the book, apart for the next chapter. However, this tool comes in
handy very often during the common development life cycle, especially if for small production lots.
So, I think that it is ok to get familiar with this tool.

You can download STM32CubeProgrammer from the official ST page⁹ (the download link is at the
bottom of the page in the “Get Software” section). Once the download is completed, extract the
.zip package. You will find the SetupSTM32CubeProgrammer-2.9.0.app file. Run it and follow the
installation instructions.

The tool-chain installation is complete, and you can jump to the next paragraph if you are totally
new to the Eclipse IDE.

2.3 STM32CubeIDE overview

Now that we have completed the installation of the tool-chain, we can have a first look to the main
interface and functionalities.

⁹http://bit.ly/2CK4aFa

http://bit.ly/2CK4aFa
http://bit.ly/2CK4aFa

Get In Touch With SM32CubeIDE 39

When you start Eclipse you are asked to indicate a workspace directory, as shown in Figure 2.7. You
are free to point this folder in any location of your hard drive.

Figure 2.7: Eclipse workspace selection dialog

The workspace is a directory on the disk where the Eclipse platform and all the installed plug-ins
store preferences, configurations and temporary information. Subsequent Eclipse invocations will
use this storage to restore the previous state. As the name suggests, it is your “space of work”. It
defines your area of interest during an Eclipse session. Apart from IDE configuration parameters, a
workspace is also a repository for all projects belonging to a given workspace.

Having more than a workspace is mostly a programmer’s choice, who can organize projects and
IDE configurations according to personal needs. If you do not plan to have multiple workspaces,
you can check the flag Use this as the default and do not ask again. Eclipse will automatically open
the workspace during startup.

Anytime you decide to change your mind and want to switch to a new workspace, you can
overwrite the default configuration by clicking on File->Switch workspace->Other…. The
dialog in Figure 2.7 will appear again and you will be able to select a different workspace.

Once the default workspace location is set, click on the Launch button, and wait for the complete
Eclipse startup.

When you start STM32CubeIDE, you might be a bit puzzled by its interface if you are new to Eclipse.
Figure 2.8 shows how Eclipse appears when started for the first time.

Get In Touch With SM32CubeIDE 40

Figure 2.8: The Eclipse interface once started for the first time

Eclipse is a multi-view IDE, organized so that all the functionalities are displayed in one window,
but the user is free to arrange the interface at its needs. When Eclipse starts, a welcome screen is
presented. The content of thatWelcome Tab is called view.

Figure 2.9: How to close theWelcome view by clicking on the X.

To close the Welcome view, click on the cross icon, as shown in Figure 2.9. Once the Welcome view
goes away, the C/C++ perspective appears, as shown in Figure 2.10.

Get In Touch With SM32CubeIDE 41

Figure 2.10: The C/C++ perspective view in eclipse (with a main.c file loaded later)

In case you want to show back the welcome view, click on the icon circled in red on
the main toolbar and shown in the picture below.

In Eclipse a perspective is a way to arrange views in a manner that is related to the functionalities
of the perspective. The C/C++ perspective is dedicated to coding, and it presents all aspects related
to the editing of the source code and its compiling. It is divided into four views.

The view on the left, named Project Explorer, shows all projects inside the workspace. The centered
view, that is the larger one, is the C/C++ editor. Each source file is shown as a tab, and it is possible
to have many tabs opened at the same time.

The views in the bottom of Eclipse window are dedicated to several activities related to compiling,
and they are subdivided into tabs. For example, the Console tab shows the output from the compiler;

Get In Touch With SM32CubeIDE 42

the Problems tab organizes all messages coming from the compiler in a convenient way to inspect
them; the Search tab contains the search results.

The view on the right contains several other tabs. For example, the Outline tab shows the symbols
contained in each source file (functions, variables, and so on), allowing quickly navigation inside
the file content.

There are other views available (and many other ones that are provided by custom plug-ins). Users
can see them by going inside the Window->Show View->Other… menu. Some of them will be
analyzed in later chapters.

Sometimes it happens that a view is “minimized” and it seems to disappear from the IDE.
When you are new to Eclipse, this might lead to frustration trying to understand where it
went.
For example, looking at Figure 2.11 it seems that the Project Explorer view has disappeared,
but it is simply minimized and you can restore it clicking on the icon circled in red.
However, sometimes the view has really been closed. This happens when there is only one
tab active in that view and we close it. In this case you can enable the view again going in
theWindow->Show View->Other… menu.

Figure 2.11: Project Explorer view minimized

To switch between different perspectives, you can use the specific toolbar available in the top-right
side of Eclipse (see Figure 2.12)

Figure 2.12: Perspective switcher toolbar

By default, the other available perspective is Debug, which we will see in more depth later. You can
enable other perspectives by going toWindow->Perspective->Open Perspective->Other…menu.

Get In Touch With SM32CubeIDE 43

Starting from Eclipse 4.6 (aka Neon), the perspective switcher toolbar no longer shows
the perspective name by default, but only the icon associated to the perspective. This
tends to confuse novice users. You can show the perspective name near its icon by
clicking with the right button of the mouse on the toolbar and selecting the Show
Text entry, as shown below.

Eclipse IDE is designed with a main toolbar that adapts its content according to the type of files
selected inside the main perspective view. The most common and relevant icons in the toolbar are
explained in the Table 2.1.

Table 2.1: Main Eclipse’s toolbar icons

As we go forward with the topics of this book, we will have a chance to see other features of Eclipse.

Get In Touch With SM32CubeIDE 44

3. Hello, Nucleo!
No programming book is complete without the classic “Hello, world!” example, and this book is
no exception. In the previous chapter, we set up STM32CubeIDE for developing STM32 embedded
applications. Now, we are ready to dive into coding.

In this chapter, we will create a simple program: a blinking LED. This is a foundational exercise in
embedded programming, and we will use STM32CubeIDE to build a complete application in just
a few steps. For now, we will avoid discussing deeper topics such as the ST Hardware Abstraction
Layer (HAL) and the MCU graphical configurator (commonly known as STM32CubeMX). The focus
is on quickly getting hands-on experience with the development environment.

I understand that some of the details in this chapter may not be entirely clear, especially if you
are new to embedded programming. However, this example will help you become familiar with
the workflow in STM32CubeIDE. In later chapters, particularly the next one, many of these initial
concepts will become clearer. For now, I encourage you to be patient and absorb as much as you can
from the following sections.

3.1 Create a Project

Let us begin by creating our first project: a simple application that makes the Nucleo’s LD2 LED (the
green one) blink.
Start by navigating to File->New->STM32 Project. After a fewmoments, depending on your current
IDE setup, the Target Selection wizard will appear (as shown in Figure 3.1).

If this is your first time launching the Target Selection wizard, it may take a few seconds
to load. During this time, a progress indicator will show as the IDE retrieves MCU and
board specifications from STMicroelectronics’ servers. Since new STM32 microcontrollers
and development boards are frequently released, the tool dynamically updates its database
rather than being preloaded with all available part numbers. Be patient while the software
completes this process.

As we will cover in more detail later, the Target Selectionwizard is a component of a larger toolset,
formerly known as STM32CubeMX. This tool streamlines the process of configuring hardware
peripherals for STM32 microcontrollers and generates the necessary libraries to control them. We
will delve deeper into STM32CubeMX’s key features in the next chapter, so for now, we will keep
the focus on setting up our project.

Next, switch to the Board Selector tab (highlighted in light blue in Figure 3.1). Expand the Type
dropdown menu and choose the Nucleo-64 family of boards. From the resulting list, locate and
select your specific Nucleo-64 board model to proceed.

Hello, Nucleo! 46

Figure 3.1: The Target Selection wizard - STEP 1

As discussed in Chapter 1, this book is entirely based on the Nucleo-64 board. All examples
presented throughout the text have been specifically tested on the boards listed in Table
1.18. However, the primary aim of this book is to teach the core concepts of STM32
programming. In my opinion, it should be fairly straightforward to adapt the examples
to other development boards, such as the Nucleo-32, Nucleo-144, Discovery, or similar
platforms.

Hello, Nucleo! 47

Figure 3.2: Project wizard - STEP 2

Once you have selected your board from the list, click the Next button. In the following window,
enter a name for your project in the Project Name field (for example, hello-nucleo, although you can
choose any name that fits your project). Leave all other options at their default settings, as shown
in Figure 3.1, and click Finish to begin generating the project.

At this stage, STM32CubeIDE will prompt you to initialize all peripherals in their default mode, as
shown in Figure 3.3. But what exactly does this mean?

Figure 3.3: Project wizard - STEP 3

Every development board features a target MCU (the microcontroller where the firmware is
uploaded), which includes internal peripherals like the Real Time Clock (RTC) and is connected
to various external devices via individual GPIO pins. For instance, in almost all of Nucleo-64 boards,
one GPIO pin is connected to the green USER LED, labeled LD2 on the PCB. To utilize these “default”
peripherals, both the internal peripherals and the associated GPIOs need to be correctly configured.
When you select Yes in response to the prompt, you are instructing the IDE to automatically
configure all necessary internal and external peripherals for your Nucleo-64 board. This simplifies
the process by setting up everything required to get started. While later in the book you will learn
how to manually configure each peripheral, for now, to keep things simple, click Yes and allow the
IDE to handle the configuration.

After confirming, STM32CubeIDE will begin generating your project. If this is your first time
creating a project for your specific STM32 MCU family (e.g., STM32F0, STM32F4, etc.), the IDE
may need to download the corresponding Cube Firmware Package. For example, if you are using

Hello, Nucleo! 48

a Nucleo-F401RE board, the IDE will download the stm32cube_fw_f4_v1XXX.zip package for the
STM32F4 family. These firmware packages contain several important components:

• Complete HAL for the STM32 family: the Hardware Abstraction Layer (HAL) is a set of
libraries that enable you to control the microcontroller’s peripherals and core features without
dealing with the MCU’s low-level details. This book is built around the STM32CubeHAL, and
you will develop a strong understanding of this powerful, albeit complex, library.

• Additional Middleware packages: some STM32 MCUs include advanced peripherals that
require additional libraries, provided either by ST or third-party developers. For instance,
programming the USB controller on certain STM32MCUs requires using a complete USB stack,
which is freely available from ST. Each Cube Firmware package includes a set of middleware
libraries, and we will explore several of these in later chapters.

• Examples projects for development boards: ST offers a wide range of example projects for
its development boards. These projects demonstrate how to use specific features of the board
and can serve as valuable references for your own work. To browse these examples, click on
the Example Selector tab in the Target Selection wizard (as shown in Figure 3.1). They can
be an excellent starting point for your development.

Figure 3.4: Cube Firmware Package download dialog

The size of a Cube Firmware package can vary significantly depending on the STM32 family. As
a general rule, the more powerful the STM32 family, the larger the corresponding Cube Firmware
package will be. This is because more advanced MCUs come with additional features, peripherals,
and libraries, all of which require greater support in the firmware package. Consequently, the
download process may take some time. Be patient and let the download complete, as shown by
the progress dialog (see Figure 3.4).

3.2 Adding Something Useful to the Generated Code

Figure 3.5 displays the STM32CubeIDE interface after generating the project. The Project Explorer
view highlights the project structure, and below is a brief overview of the top-level folders, listed
from top to bottom¹:

¹At this stage, we are providing only a high-level introduction to the generated files and folders. A more detailed analysis will follow in
subsequent chapters, so there is no need to delve too deeply into them now.

Hello, Nucleo! 49

Includes

This folder contains all directories associated with GCC Include Folders². These include paths
are necessary for the compiler to locate the header files required for the project.

Core

This folder, part of the Eclipse project structure, houses the core files of the application, in-
cluding multiple .c source files. Among these, src/main.c holds the int main(void) function,
which we will soon modify to customize the behavior of our application.

Drivers

This folder typically contains the header and source files for essential libraries, such as the ST
CubeHAL and CMSIS packages. We will explore these libraries in greater detail in the next
chapter.

hello-nucleo.ioc

This file represents the STM32CubeMX project, which is visually displayed in the Device
Configuration Tool view (the default main view after project generation, as shown in Figure
3.5). The STM32CubeMX interface and its functionalities will be thoroughly examined in next
chapter.

Figure 3.5: The STM32CubeIDE interface after complete project generation

We are now ready to begin working on the core of our application. The project generated by the
IDE already includes all the necessary code to create a functional application. To make the LD2 LED

²In C/C++ projects, the compiler needs to know where to find header files (with the extension .h). These locations are known as include
paths and must be provided to the GCC compiler using the -I option. Fortunately, Eclipse automates this process by managing the include
paths for us, and the Includes folder visually displays the directories where GCC will search for header files.

Hello, Nucleo! 50

blink, we need to add just two lines of code to the main() function, which serves as the entry point³
for our custom application.
In the Project Explorer pane, navigate to Core->Src and double-click on the main.c file. Scroll to
approximately line 66, where the main() function is defined. Here, you will see the invocation of
four key routines⁴:

• HAL_Init(): this function initializes the CubeHAL framework, setting up the microcontroller
for basic operation. We will delve into the details of this function later in the book.

• SystemClock_Config(): this function configures the microcontroller’s clock settings. STM32
MCUs offer various clock sources, and this function selects one for the MCU to use. This is a
relevant topic, which will be explored in depth in Chapter 10.

• MX_GPIO_Init(): this function initializes the GPIO pins based on the configuration defined in
STM32CubeMX. In this case, it configures the GPIO pin connected to the LD2 LED. We will
cover GPIO in more detail in Chapter 6.

• MX_USART2_UART_Init(): initializes the UART2 peripheral, which is connected to the ST-LINK
interface on all Nucleo boards. More on UART configuration can be found in Chapter 8.

Following these initialization routines, you will find an infinite while loop. This loop is where the
ongoing operations of the firmware are executed. To make the LED blink, we will add two function
calls just after this loop begins, around lines 101-102.

Filename: src/main.c

66 int main(void)

67 {

68 /* USER CODE BEGIN 1 */

69

70 /* USER CODE END 1 */

71

72 /* MCU Configuration--*/

73

74 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

75 HAL_Init();

76

77 /* USER CODE BEGIN Init */

78

79 /* USER CODE END Init */

80

81 /* Configure the system clock */

82 SystemClock_Config();

83

³While experienced firmware developers know that the main() function is not the true entry point of an STM32 application (the firmware
execution starts much earlier with setup routines that establish the execution environment), from an application perspective, the process begins
inside the main() function. The STM32 boot process will be covered in detail in a later chapter.

⁴If you are using a development board other than a Nucleo-64, you might see additional routines invoked within the main() function. This
is due to the presence of extra peripherals on your board. When STM32CubeIDE asked if you wanted to initialize all peripherals in their default
modes, we selected “Yes”. Therefore, do not worry if your main() function differs slightly from the one shown here.

Hello, Nucleo! 51

84 /* USER CODE BEGIN SysInit */

85

86 /* USER CODE END SysInit */

87

88 /* Initialize all configured peripherals */

89 MX_GPIO_Init();

90 MX_USART2_UART_Init();

91 /* USER CODE BEGIN 2 */

92

93 /* USER CODE END 2 */

94

95 /* Infinite loop */

96 /* USER CODE BEGIN WHILE */

97 while (1)

98 {

99 /* USER CODE END WHILE */

100 /* USER CODE BEGIN 3 */

101 HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

102 HAL_Delay(500);

103 }

104 /* USER CODE END 3 */

You may have noticed that the code generated by CubeMX includes several commented
regions like this:

/* USER CODE BEGIN 1 */

...

/* USER CODE END 1 */

What is the purpose of these comments? CubeMX is designed so that if you make changes
to the hardware configuration and regenerate the project code, the custom code you have
added will not be overwritten. By placing your code inside these “guarded regions,” CubeMX
ensures that your modifications are preserved during code regeneration.

However, it is important to mention that CubeMX is not always foolproof. Occasionally,
it can mishandle the generated files, causing user-added code to be lost. To avoid this, I
recommend generating a separate project whenever you make significant changes and then
copying and pasting your modified code into the appropriate sections. This approach gives
you complete control over your code and ensures nothing gets unintentionally overwritten.

The code is straightforward. The HAL_GPIO_TogglePin() function toggles the logical state of the pin
connected to the LD2 LED (which corresponds to PIN 5 of GPIO port A on all Nucleo-64 boards).
The HAL_Delay() function creates a delay of 500 milliseconds using a busy-wait loop. As a result,
the LD2 LED will blink at a rate of 1Hz, meaning it will toggle on and off every second.

Hello, Nucleo! 52

How do we know which pin the LED is connected to? ST provides schematics⁵ for
the Nucleo board, which can be found here. These schematics are originally created
using Altium Designer, a high-end CAD tool commonly used in professional settings.
Fortunately for us, ST also provides a convenient PDF version of the schematics. By
examining page 4, we can see that the LD2 LED is connected to the PA5 pin⁶, as
illustrated in Figure 3.6.

Figure 3.6: LD2 connection to PA5

PA5 stands for PIN5 of the GPIOA port, which is the standardway to reference aGPIO
pin in STM32 nomenclature. Moreover, STM32CubeMX automatically generates
macros LD2_GPIO_Port and LD2_Pin, that resolve to the GPIOA port and pin 5,
respectively.

We are now ready to compile the project. To do so, navigate to Project->Build Project from the
menu. After a short while, the output console should display something similar to the following⁷.

arm-none-eabi-size hello-nucleo.elf

arm-none-eabi-objdump -h -S hello-nucleo.elf > "hello-nucleo.list"

arm-none-eabi-objcopy -O binary hello-nucleo.elf "hello-nucleo.bin"

text data bss dec hex filename

8224 20 1636 9880 2698 hello-nucleo.elf

Finished building: default.size.stdout

Finished building: hello-nucleo.bin

Finished building: hello-nucleo.list

15:22:52 Build Finished. 0 errors, 0 warnings. (took 5s.769ms)

⁵http://bit.ly/1FAVXSw
⁶Except for the Nucleo-F302RB, where LD2 is connected to PB13 port. More about this next.
⁷The number of bytes required for each binary section (text, bss, and so on) may differ from your output. This variation is due to

differences in HAL implementations across different STM32 series and the compiler’s optimization settings. Don’t worry about these details
for now — they will be explained more thoroughly in later chapters.

http://bit.ly/1FAVXSw
http://bit.ly/1FAVXSw

Hello, Nucleo! 53

3.3 Connecting the Nucleo to the PC

Once the test project has been successfully compiled, you can connect the Nucleo board to your
computer using a USB cable. Connect the cable to the micro-USB port, labeled VCP in Figure 3.7.
Upon connection, you should see at least two LEDs illuminate.

Read Carefully
Ensure that the USB port you are using can supply sufficient power to the board. It is highly
recommended to use a USB port capable of providing at least 500mA or a self-powered
external hub to avoid power issues.

Figure 3.7: A Nucleo board and its main interfaces

The first LED you will notice is LD1, labeled ST-LINK LED in Figure 3.7. This is a red/green LED
that indicates ST-LINK activity. When the board is connected to the computer, the LED glows green.
During a debugging session or when uploading firmware to the MCU, it alternates between green
and red, signaling activity.

Another LED that turns ON when the board is connected is LD3, labeled POWER LED in Figure 3.7.
This red LED indicates that USB enumeration has been completed, meaning the ST-LINK interface
has been recognized by the computer’s operating system as a USB peripheral. The target MCU on
the board is powered only when this LED is on, signifying that the ST-LINK interface also controls
power to the MCU.

If you have not yet flashed your board with custom firmware, you will also see the LD2 LED, a
green LED labeled USER LED in Figure 3.7, blinking. This happens because ST preloads the board

Hello, Nucleo! 54

with firmware that causes LD2 to blink. You can change the blinking frequency by pressing the blue
switch labeled USER BTN in Figure 3.7.

We are going to replace the preloaded firmwarewith the custom firmwarewe have created. However,
before proceeding, it is important to ensure that the ST-LINK debugger on your Nucleo board is
equipped with the latest ST-LINK 2.1 firmware.

3.3.1 ST-LINK Firmware Upgrade

Warning
Read this section carefully. Do not skip this step!

Based on my experience with multiple Nucleo boards, most of them come preloaded with an
outdated ST-LINK firmware. To ensure compatibility with the latest STM32CubeIDE, you must
update the ST-LINK firmware to the leastest version.

Updating the firmware is a simple process using STM32CubeIDE. First, connect your Nucleo board
via a USB cable. Then, navigate toHelp->ST-LINKUpgrade. This will launch the ST-LINKUpgrade
tool, as shown in Figure 3.8.

The upgrade procedure can be easily carried on with the STM32CubeIDE. Connect your Nucleo
board using a USB cable and go to Help->ST-LINK Upgrade. The ST-LINK Upgrade program
appears, as shown in Figure 3.8

Figure 3.8: The ST-LINK Upgrade program

Click on Refresh device list: your connected Nucleo board should appear as ST-LINK/V2-1 or ST-
LINK/V3. Next, click on Open in update mode. The ST-LINK Upgrade tool will then indicate
whether your Nucleo board’s firmware needs to be updated by displaying the current version, as
shown in Figure 3.8. If an update is required, click on theUpgrade button and wait for the firmware
to be updated.

Hello, Nucleo! 55

Error in upgrading the ST-LINK firmware
The update process may sometimes fail when you click on theOpen in update mode button.
The ST-LINK Upgrade tool may show an error message like Error connecting to device ST-
LINK/V2-1 (error 0x1); check the USB connection and refresh device list, even if the board
is properly connected. This issue often arises due to insufficient power supply to the board.
To resolve this, try using a self-powered USB hub or switching to a different USB port. This
error is particularly common on recent iMacs when the board is connected through an Apple
keyboard’s integrated USB port.

3.4 Flashing the Nucleo using STM32CubeProgrammer

In Chapter 2, we installed STM32CubeProgrammer, and now it is time to use it. First, launch the
program and connect your Nucleo board to the PC using a USB cable. Click the refresh button,
highlighted in red in Figure 3.9. Once STM32CubeProgrammer detects the board, its serial number
will appear in the Serial number field, as shown in the figure.

Figure 3.9: The ST-LINK interface serial number as shown by STM32CubeProgrammer tool

Read Carefully
If you see “Old ST-LINK Firmware” instead of the serial number, it means that the ST-LINK
firmware needs to be updated. Click the Firmware upgrade button located at the bottom
of the ST-LINK Configuration pane, and follow the instructions described in the previous
section.

Once the ST-LINK interface has been correctly identified, click the Connect button. After a short
moment, the contents of the flash memory will be displayed, as shown in Figure 3.10.

Now we are ready to upload the example firmware to the board. Click the Erase & programming
icon (the second green icon on the left). In the File programming section, click Browse. Navigate
to your Eclipse workspace directory (by default, %HOMEPATH%\STM32CubeIDE\workspace_1.X.0 on
Windows, or ∼/STM32CubeIDE/workspace_1.X.0 on Linux and macOS, where 1.X.0 corresponds to
your specific STM32CubeIDE version). Then, go to the hello_nucleo\Debug sub-folder and select
the hello_nucleo.elf file.

Ensure that both the Verify programming and Run after programming options are checked, then
click Start Programming to begin flashing the firmware. Once the process is complete, the green
LD2 LED on your Nucleo board will start blinking.

Hello, Nucleo! 56

Congratulations: welcome to the STM32 world ;-)

Figure 3.10: The STM32CubeProgrammer interface when connected to the Nucleo board

Hello, Nucleo! 57

Eclipse intermezzo
Eclipse provides convenient tools for navigating through source code, eliminating the need to
manually jump between files to find function definitions. For instance, if you want to see how the
MX_GPIO_Init() function is implemented, simply highlight the function call, right-click, and select
Open Declaration from the menu, as shown in the image below.

Alternatively, you can hold down the Ctrl key (or CMD⌘ on macOS) while clicking on the symbol
to navigate to its definition. Additionally, Eclipse allows you to easily navigate through the opened
source files during symbol exploration using the dedicated navigation buttons on the toolbar, as
illustrated here:

Another useful feature in Eclipse is the ability to expand complex macros. To do this, right-click
on the macro and select Explore macro expansion. A contextual window like the one below will
appear, showing how the macro is expanded.

However, at times, Eclipse may run into issues with its indexing, making it difficult or impossible
to navigate the source code. If this happens, you can force Eclipse to rebuild its index by going to
Project->C/C++ Index->Rebuild.

Hello, Nucleo! 58

4. STM32CubeMX Tool
Gone are the days when configuring an 8-bit microcontroller peripheral could be accomplished
with just a few assembly instructions. While there remains a dedicated group of developers who
still write embedded software entirely in assembly¹, the most valuable resource in modern project
development is time. Working with complex hardware platforms like the STM32 requires every bit
of assistance to streamline the process. In modern 32-bit microcontrollers—especially those with
a large number of I/O pins—even controlling something as basic as a GPIO can require sifting
through dozens of pages in a thousand-page datasheet. Believe it or not, trying to initialize advanced
peripherals like the DCMI or ETH interface on an STM32H7 without the support of the ST HAL can be
incredibly frustrating. Moreover, fully understanding the available configuration options for a GPIO
often demands a thorough grasp of all peripherals supported by that specific STM32 part number,
including its pinout and configuration. Fortunately, ST provides a powerful and user-friendly tool
that abstracts away many of the peripheral configuration complexities: STM32CubeMX.

STM32CubeMX² is the Swiss Army knife for every STM32 developer and is particularly indis-
pensable for those new to the STM32 platform. It is a sophisticated software tool, freely provided
by ST, and available both as a standalone application and as an integrated component within
STM32CubeIDE.

In this chapter, we will explore how CubeMX works and how to generate fully functioning projects
from scratch using its code generation capabilities. By doing so, we can produce efficient code
that is ready for integration with the rest of the STM32Cube HAL. However, this chapter should
not be considered a replacement for the official official ST documentation for CubeMX tool³, a
comprehensive guide exceeding 350 pages that covers its functionalities in depth.

4.1 Introduction to CubeMX Tool

CubeMX is the primary tool for configuring the microcontroller selected for our project. It is used
not only to define the appropriate hardware connections but also to generate the code necessary for
configuring the ST HAL (Hardware Abstraction Layer).

CubeMX is anMCU-centric application, meaning that all actions within the tool revolve around the
following key aspects:

• STM32 MCU family: The specific family of the microcontroller (e.g., F0, F1, and so on).
¹One day, someonemay explain to these developers that—except for a few rare cases—modern compilers typically generate more optimized

assembly code from C than could be written manually. However, these practices seem largely confined to ultra-low-cost 8-bit microcontrollers
like the PIC12 and similar devices.

²Throughout the rest of this book, the name STM32CubeMX will be referred to simply as CubeMX.
³https://bit.ly/3k8HeE2

https://bit.ly/3k8HeE2
https://bit.ly/3k8HeE2

STM32CubeMX Tool 60

• Package type: The physical package of the MCU (e.g., LQFP48, BGA144, etc.).
• Hardware peripherals: The peripherals required for the project (e.g., USART, SPI, etc.) and
how these are mapped to the microcontroller pins.General MCU configuration: Settings such
as clock configuration, power management, and NVIC (Nested Vectored Interrupt Controller)
settings.

In addition to these hardware-specific features, CubeMX also handles several software-related
aspects:

• ST HAL management: It manages the ST HAL specific to the selected MCU family (e.g.,
CubeF0, CubeF1, etc.).

• Middleware configuration: It allows the integration of additional software libraries, known
as Middleware, which might be necessary to manage specific peripherals or complex software
stacks (e.g., FatFs, LwIP, FreeRTOS, etc.).

• Development environment configuration: CubeMX helps set up the project for the develop-
ment environment you will be using to build the firmware (e.g., IAR EWARM, Keil MDK-ARM,
STM32CubeIDE)⁴.

Project generation in CubeMX involves two key phases. The first phase is selecting the correct STM32
MCU or development board using the Target Selectionwizard. The second phase is configuring the
MCU and any required Middleware libraries to meet your project’s needs. Let us explore these two
phases in detail.

4.1.1 Target Selection Wizard

We first used CubeMX in Chapter 3⁵ to generate the hello-nucleo, our initial STM32 project. As we
saw, project generation begins with the Target selection view. The view is organized in a tabbed
window, with four main tabs (see Figure 4.1): MCU/MPU Selector, Board Selector, Example Selector
and Cross Selector. Let us take a closer look at each of these tabs and their functions.

⁴The standalone version of CubeMX can generate project code and configuration files for various commercial IDEs, not just the official
STM32CubeIDE. However, this book will focus exclusively on using CubeMX within STM32CubeIDE.

⁵ch3-hello-nucleo-project

STM32CubeMX Tool 61

Figure 4.1: CubeMXMCU/MPU Selector

4.1.1.1 MCU/MPU Selector

The first tab, MCU/MPU Selector, allows users to choose a microcontroller from the entire STM32
portfolio. Several filters are available to help identify the right microcontroller for your application:

• Core: This filter narrows the selection to MCUs with specific Cortex-M cores (e.g., M0, M4,
etc.).

• Series: Filters MCUs by STM32 series (e.g., F0, F4, etc.).
• Line: Further refines the selection by sub-family, such as the Value Line.
• Package: Filters MCUs based on the desired physical package (e.g., LQFP, WLCSP, etc.).
• Other: Offers additional filters based on budgetary price, the number of I/O pins, and the size
of FLASH, SRAM, and EEPROM memories.

• Peripheral: Allows you to filter for MCUs with specific integrated peripherals.

STM32CubeMX Tool 62

Figure 4.2: CubeMX Board Selector

4.1.1.2 Board Selector

The Board Selector tab allows users to filter among all official ST development boards (see Figure
4.2). Several filters help to identify the right development board:

• Type: Restricts the selection to boards from a specific family (e.g., Nucleo-64, Discovery,
Evaluation Board, etc.).

• MCU/MPU Series: Filters boards based on the MCU series they use (e.g., F0, F4, etc.).
• Other: Offers two filters to limit the selection based on budgetary price or oscillator frequency
(though the latter is not particularly useful, in the author’s opinion).

• Peripheral: Filters boards according to the desired integrated peripherals.

4.1.1.3 Example Selector

Over the years, ST has developed thousands of examples demonstrating how to use individual
peripherals or Middleware extensions in the STM32 lineup. The Example Selector tab allows users
to filter through more than 5.000 examples (see Figure 4.3). Several filters help to identify the
appropriate example:

• Name: Restricts the example list to those with a specific project name (each example is typically
available for multiple MCUs and/or development boards).

• Keyword: Filters the examples list based on a given search keyword.

STM32CubeMX Tool 63

• Board: Selects examples for a specific target development board.
• MCU/MPU: Filters examples for a specific target MCU.
• Project Type: Allows selection between Application, Demonstration, and Example projects;
though in my humble opinion, this distinction is somewhat arbitrary.

• Based on driver: Filters examples based on whether they were developed using CubeHAL,
CubeHAL-LL, or a combination of both; more on this later.

• Middleware: Selects examples that showcase the use of a particular Middleware library.
• MCU/MPU Library: This filter can be somewhat confusing, as it is used to select examples
demonstrating how to program specific peripherals.

• Board Support Package Library: Many STM32 development kits include additional peripher-
als, such as LCD displays, DCMI cameras, MEMS sensors, etc. To support these, ST provides
useful Board Support Package (BSP) libraries. These free libraries are handy when you need
to control a similar peripheral on a custom board. This filter allows selection of examples that
use a specific BSP library.

Figure 4.3: CubeMX Example Selector

4.1.1.4 Cross Selector

If you are used to working with microcontrollers from other suppliers (e.g., Microchip, Renesas)
and are considering porting your design to an STM32 microcontroller, the Cross Selector tool can

STM32CubeMX Tool 64

help you identify a suitable alternative. However, in my opinion, this tool is especially effective
when searching for a replacement within the STM32 lineup itself. This can be particularly useful if
a specific STM32 MCU is unavailable in the market—an increasingly common issue these days.

The Cross Selector tool (as shown in Figure 4.4) provides amatch percentage, indicating how closely
the suggested alternative matches your current MCU. Nevertheless, always keep the datasheet on
hand and carefully verify even secondary specifications, such as the physical behavior of GPIOs
(e.g., voltage tolerance, slew rate, etc.).

Figure 4.4: CubeMX Cross Selector

4.1.2 MCU and Middleware Configuration

Once the project has been generated, STM32CubeIDE automatically opens a file in the project
folder named <project-name>.ioc. This file is the main CubeMX project file, containing all the
configurations made within CubeMX. Based on this file, CubeMX generates the corresponding
project structure, including all the source files and libraries required to work with the selected
peripherals and Middleware components.

When the .ioc file is opened, CubeMX displays the Device Configuration Tool, as shown in Figure
4.5.

STM32CubeMX Tool 65

Figure 4.5: CubeMX Device Configuration Tool view

At the top of the CubeMX window, you will see a contextual menu with a light and dark blue theme.
This menu is divided into four main tabs, each offering a dedicated view. Let us briefly introduce
them.

4.1.2.1 Pinout View & Configuration

The Pinout & Configuration view is the first tab, and it is further divided into sub-parts.
On the right side, you will find the MCU representation with the selected peripherals and GPIOs,
referred to by ST as the Pinout view. This view allows for easy navigation within the MCU
configuration and provides a convenient way to configure the microcontroller.

Pins⁶ colored in bright green are enabled. This means CubeMX will generate the necessary code to
configure the pin based on the bound peripherals. For example, in the project configuration shown
in Figure 4.5, for pin PA5, CubeMX will generate C code to set it up as a generic output pin to drive
the LD2 LED⁷. Meanwhile, for pin PA2, CubeMX will generate code to configure it as a USART TX
pin.

⁶In this context, pin and signal can be used interchangeably.
⁷On some Nucleo boards, the LD2 LED is connected to different pins. For example, on the Nucleo-F302, LD2 is wired to the PB13 pin.

Always consult the manual for your specific board before configuring it.

STM32CubeMX Tool 66

A pin is colored in orange when the corresponding peripheral is not enabled. For instance, in
Figure 4.6, the PA2[^ch4-pb3-pin] and PA3 pins are enabled, and CubeMX will generate C code to
initialize them, but since the associated peripheral (USART2) is not enabled, no USART-related code
will be generated to configure the peripheral.

Light-yellow pins are power source pins, and their configuration cannot be changed.
BOOT and RESET pins are colored in khaki, and their configuration is fixed as well.

Figure 4.6: Alternate mapping of peripherals

A contextual tool-tip is displayed when hovering the mouse pointer over the MCU pins (see Figure
4.7). For example, the contextual tool-tip for pin PB3 informs us that the signal is mapped to the Serial
Wire Debug (SWD) interface, where it functions as the Serial Wire Output (SWO) pin. Additionally,
the pin number (55 in this case) is also shown.

Figure 4.7: Contextual tool-tips help understanding signal usage

STM32 MCUs with a high pin count allow peripheral signals to be mapped to different pins. For
example, in an STM32F401xE MCU, the SPI2 MOSI signal can be mapped to either pin PC2 or PB14.
CubeMX makes it easy to view these alternative pin mappings with a Ctrl+click on the pin. If an
alternative pin exists, it will be highlighted in blue (the alternative is only shown if the pin is not in a
reset state—that is, if it is enabled). For instance, in Figure 4.6, a Ctrl+click on pin PC2 will highlight
the PB14 signal in blue⁸.

This feature is particularly useful during the layout of a board. If routing a signal to a specific pin is

⁸Note that in recent CubeMX versions, the Ctrl+click behavior has slightly changed. To display the alternative pin, you need to press and
hold the mouse after a Ctrl+click until the alternative pin starts blinking. It is not very intuitive the first time you use it.

STM32CubeMX Tool 67

either impossible or inconvenient, or if the pin is needed for another function, using an alternative
pin can simplify the board design.

Figure 4.8: Alternate function of a pin

In the same way, most MCU pins can support alternate functionalities. A contextual menu appears
when clicking on a pin, allowing you to select the function you want to enable for that signal.

This flexibility, however, can lead to conflicts between signal functions. CubeMX attempts to resolve
these conflicts automatically by assigning the signal to a different pin. Pinned signals are those
whose functionality is locked to a specific pin, preventing CubeMX from choosing an alternative.
If a conflict prevents a peripheral from being used, the pin mode in the Chip View is disabled, and
the pin is colored orange. To mark an I/O as pinned, right-click on a pin and select the Pin locking
option.

CubeMX also offers a convenient feature: the ability to define custom labels for individual MCU
signals. By right-clicking on an enabled pin, you can select Enter User Label. A contextual pop-up
will appear, as shown in Figure 4.9. The label can be in the format LABEL [Comment]. The LABEL part
is used to generate a corresponding macro inside the main.h file, while the [Comment] part is simply
a note for the developer, displayed in the Pinout View.

Figure 4.9: How to add custom label to MCU I/Os

As an alternative to the Pinout view, the System view provides an overview of all components that can
be configured in software: GPIOs, peripherals, DMA, NVIC, Middleware, and additional software
components. Clickable buttons allow you to open the configuration options for a given component

STM32CubeMX Tool 68

through the Mode and Configuration panels. The color of the button icon reflects the status of the
component’s configuration.

Table 4.1: CubeMX way to show components list in the Configuration Pane

On the left side of the Pinout &Configuration view, we have theCategories list (also referred to as the
Components list in the official ST documentation). This list can be displayed either in alphabetical
order or by categories. By default, it contains the list of peripherals andMiddleware components that

STM32CubeMX Tool 69

the target MCU supports, providing a convenient way to enable/disable and configure the desired
peripherals and Middleware. Selecting an entry from this list opens two additional panels (Mode
and Configuration) that allow users to set the functional mode and configure the initialization
parameters, which will be included in the generated code.

Table 4.1 shows the icons and color scheme used in the component list view and the corresponding
color scheme in the Mode panel.

• Case 1: Indicates that the peripheral is available and currently disabled, and all its possible
modes are selectable. For example, for a USART interface, all possible modes (Asynchronous,
Synchronous, IrDA, etc.) are available.

• Case 2: Shows that the peripheral is disabled due to a conflict with another peripheral.
This means that both peripherals use the same GPIOs, making it impossible to use them
simultaneously. Hovering over it will display the conflicting peripheral. For instance, with
an STM32F401RE MCU, you cannot use I2S2 and SPI2 pins at the same time.

• Case 3: Indicates that the peripheral is configured (at least one mode is set), and all other modes
are still available. A green check mark signifies that all parameters are properly configured,
while a fuchsia cross indicates incomplete configurations.

• Case 4: Shows that the peripheral is not configured (no mode is set), and at least one of its
modes is unavailable.

• Case 5: Indicates that the peripheral is not configured (nomode is set), and nomode is available.
Hovering over the peripheral name will display a tooltip describing the conflict.

STM32CubeMX Tool 70

4.1.2.2 Clock Configuration View

Figure 4.10: The CubeMX clock view

The Clock Configuration view is the pane where all configurations related to clock management are
handled. Here, you can configure both the core clock and the peripheral clocks. All clock sources and
PLL (Phase-Locked Loop) configurations are presented in a graphical format (see Figure 4.10). At
first glance, the number of configuration options might seem overwhelming to new users. However,
with a bit of practice, this becomes the easiest way to manage the STM32 clock configuration, which
is considerably more complex compared to 8-bit MCUs.

If your board design requires an external source for the High-Speed clock (HSE), the Low-Speed
clock (LSE), or both, you must first enable these in the Pinout view under the System Core->RCC
section, as shown in Figure 4.11.

STM32CubeMX Tool 71

Figure 4.11: HSE and LSE enabling in CubeMX

Once this is accomplished, you will be able to modify clock sources in the Clock Configuration view.

The clock tree configuration will be explored in detail in Chapter 10. To avoid confusion at this stage,
it is recommended to leave all parameters as they are automatically configured by CubeMX.

Overclocking
A common hacking practice is to overclock theMCU core by adjusting the PLL configuration
to run at a higher frequency. The author strongly discourages this practice, as it can not only
cause permanent damage to the microcontroller but also lead to abnormal behavior that is
difficult to debug.

Do not change any settings unless you are absolutely sure of what you are doing.

STM32CubeMX Tool 72

4.1.3 Project Manager

Figure 4.12: The Project Manager view

The Project Manager view contains project-wide configurations related to the workspace, tool-chain,
source code generation, and the type of HAL library used. This view is divided into three main
sections:

• Project: This section includes general project settings such as the project name, its location on
the filesystem, the tool-chain, and the CubeHAL libraries version.

• Code Generator: This section offers additional options related to CubeMX code generation,
such as how HAL *.c/h files are included in the project, how the template file structure is
maintained when changes are applied to the project settings, and more.

• Advanced Settings: This section covers more advanced project options, mainly related to the
type of CubeHAL used to generate initialization code for a given peripheral. You can choose
between CubeHAL and the more optimized Cube-LL library. Additionally, you can opt not to
generate code for specific peripherals or middleware components, allowing the programmer to
add custom code if desired.

STM32CubeMX Tool 73

What is the Cube Low-Layer API?
With the advent of the STCube initiative, ST completely redesigned the SDK for the STM32 series
by introducing the Hardware Abstraction Layer (HAL) library and phasing out the old Standard
Peripheral Library (SPL), which had been quite popular in the ST community. Despite its popularity,
the SPL lacked many features needed for the more modern and powerful STM32 MCUs. However,
over the years, the HAL library has received a lot of criticism—not just because it had numerous
bugs in its early stages, but more importantly, because it is not considered an example of optimized
code for embedded application development.

The CubeHAL is not a high-performance library, and for a simple reason: it is designed to be abstract
and to simplify porting user code between MCUs within the same series or across different STM32
series. This results in a library filled with if and then statements, as well as unnecessary code
when working with a specific microcontroller. But this is the trade-off when prioritizing streamlined
development and, more importantly, the adoption of complex microcontroller architectures like
those in the STM32 portfolio. The HAL APIs are divided into two categories: generic APIs, which
provide common functionality across all STM32 series, and extension APIs, which offer specific,
customized functions for a particular line or part number. HAL drivers provide a complete set
of ready-to-use APIs to simplify user application development. These drivers are feature-oriented
rather than IP-oriented. For instance, the timer APIs are split into several categories based on IP
functions, such as basic timers, capture, and pulse width modulation (PWM). The HAL driver layer
also implements run-time failure detection by checking the input values of all functions, enhancing
the firmware’s robustness.

In recent years, ST responded to criticism of the HAL library’s performance by introducing the Cube
Low-Layer (abbreviated as LL) set of drivers. As the name suggests, the LL library was created to
be highly optimized, giving programmers responsibility for managing the specific characteristics
of a given STM32 series and part number. LL drivers offer hardware services based on the exact
capabilities of the STM32 peripherals. These services mirror the hardware’s functionality and
provide atomic operations, which must follow the programming model outlined in the product
line’s reference manual. Consequently, LL services are not based on standalone processes and do not
require extra memory resources for state management, counters, or data pointers. All operations are
performed by directly manipulating the associated peripheral registers. Unlike the HAL, LL APIs
are not provided for peripherals where optimized access is not a key feature, or for those requiring
significant software configuration and/or a complex upper-level stack (such as USB). LL-based code
consists primarily of a sequence of C macros that expand into a series of statements, minimizing the
use of branches and unpredictable instructions that could hinder performance.

This book does not cover topics related to the LL library, as doing so would require a completely
different approach and a narrow focus on a few STM32 part numbers. Instead, this book aims to be
general, providing an overview of the most relevant features for designing powerful and complex
electronic boards. If you need precise control over every aspect of a peripheral to achieve the most
optimized code, the LL library is for you. However, I suggest starting with CubeHAL for firmware
design, especially if you are not an experienced firmware developer, and transitioning to LL only
when necessary.

STM32CubeMX Tool 74

4.1.4 Tools View

The Tools view contains additional configuration panes, some of which are specific to more
advanced STM32 MCUs, such as the STM32MP1 series. However, for all STM32 microcontrollers,
the Power Consumption Calculator (PCC) is available. This feature of CubeMX, when provided
with a microcontroller, a battery model, and a user-defined power sequence, estimates the following
parameters:

• Average power consumption.
• Battery life.
• Average DMIPS.

Users can also add custom batteries through a dedicated interface.
For each step in the power sequence, the user can select VBUS as a potential power source instead
of the battery, which will affect the battery life estimation. If power consumption measurements are
available at different voltage levels, CubeMX will also offer a selection of voltage values.

The PCC view will be explored in a following chapter.

Figure 4.13: The CubeMX Tools view

STM32CubeMX Tool 75

4.2 Understanding Project Structure

Once the configuration of the MCU, its peripherals, and Middleware components is completed,
CubeMX can be used to generate the C project skeleton for you. Code generation can be initiated in
two ways:

• By saving the CubeMX project (the .ioc file), which automatically triggers the code generation
process.

• By going to the Project->Generate Code menu (with the .ioc file selected in the main
perspective) or by clicking the corresponding icon in the Eclipse toolbar (see Table 2.1).

CubeMX will generate all the necessary files and organize them according to the structure shown
in Figure 4.14.

At first, the generated project structure might seem overwhelming, especially if you are new to
embedded programming or dealing with such complex architectures⁹. But do not worry! In the
following chapters, we will dive into the details of each auto-generated source file. However, to start
programming without feeling lost, it is helpful to take a quick look at the main project folders and
their contents. Figure 4.14 will serve as a good reference for this walkthrough.

Binaries

This folder contains the final binary file generated by the compiler at the end of the build
process. The file is in the Executable and Linkable Format (ELF), a common object file format
in Linux-based operating systems. This folder is part of Eclipse CDT’s project organization,
and its content is somewhat redundant, as the same binary file can also be found inside the
Debug folder.

Includes

This folder serves two purposes. It is a graphical representation of all Include paths for the
compiler (i.e., the directories where GCC will look for C header files (.h)). Additionally, it can
be used to add references to other include files without dealing directly with compiler-specific
arguments and include paths. For more information on this topic, refer to the Eclipse CDT
documentation.

Core

This folder contains all application-specific files. The files within this folder, along with its
subfolders, are specific to the project settings and MCU configuration in CubeMX. The Core

folder should house all files necessary for application development, though Eclipse allows you
to rearrange these files into different folders if needed. However, there is a significant drawback:
modifying the structure of the Core folder will prevent you from updating the source code
when making changes in CubeMX. For this reason, it is recommended to leave the Core folder
structure unchanged, at least during the early stages of the project.
Several files within the Core folder serve a special role in the project. Let us take a closer look
at them.

⁹Well… It is never a good idea to start learning embedded programming with an STM32H7 ;-P.

STM32CubeMX Tool 76

Figure 4.14: The typical structure of CubeMX project

Core/Inc/main.h

This file is the companion header file to main.c. It contains, among other things, macro
declarations for all labels associated with individual peripherals configured using CubeMX.

Core/Inc/stm32XXxx_hal_conf.h

This file translates the HAL configurations into C code through various macro definitions.
These macros are used to instruct the HAL about the enabled MCU functionalities. You will
find many commented macros, like the ones shown below:

STM32CubeMX Tool 77

Filename: Core/Inc/stm32XXxx_hal_conf.h

55 #define HAL_UART_MODULE_ENABLED

56 /*#define HAL_USART_MODULE_ENABLED */

57 /*#define HAL_IRDA_MODULE_ENABLED */

58 /*#define HAL_SMARTCARD_MODULE_ENABLED */

59 /*#define HAL_SMBUS_MODULE_ENABLED */

60 /*#define HAL_WWDG_MODULE_ENABLED */

61 /*#define HAL_PCD_MODULE_ENABLED */

62 #define HAL_GPIO_MODULE_ENABLED

63 #define HAL_EXTI_MODULE_ENABLED

64 #define HAL_DMA_MODULE_ENABLED

65 #define HAL_I2C_MODULE_ENABLED

66 #define HAL_RCC_MODULE_ENABLED

67 #define HAL_FLASH_MODULE_ENABLED

68 #define HAL_PWR_MODULE_ENABLED

69 #define HAL_CORTEX_MODULE_ENABLED

They are used to selectively include HAL modules at compile time. When you need a module, you
can simply uncomment the corresponding macro, as long as the necessary .c/.h files are already
included in the project. We will explore the other macros defined in this file throughout the rest of
the book.

Core/Inc/stm32XXxx_it.h and Core/Src/stm32XXxx_it.c

These two files are essential components of the project. They store all the Interrupt Service
Routines (ISRs) generated by CubeMX. Depending on the CubeMX configuration, these files
contain definitions for several functions. In the case of the hello-nucleo project from Chapter
3, the main relevant function is void SysTick_Handler(void). This function is the ISR for the
SysTick timer, which is invoked whenever the SysTick timer reaches 0. But where is this ISR
actually invoked?

Filename: Core/Src/stm32XXxx_it.c

123 /**

124 * @brief This function handles System tick timer.

125 */

126 void SysTick_Handler(void)

127 {

128 /* USER CODE BEGIN SysTick_IRQn 0 */

129

130 /* USER CODE END SysTick_IRQn 0 */

131 HAL_IncTick();

132 /* USER CODE BEGIN SysTick_IRQn 1 */

133

134 /* USER CODE END SysTick_IRQn 1 */

135 }

STM32CubeMX Tool 78

The answer to this question gives us an opportunity to explore one of the most fascinating features
of Cortex-M processors: the Nested Vectored Interrupt Controller (NVIC). Table 1.1 in Chapter 1 lists
the Cortex-M exception types. As you may recall, we mentioned that interrupts in a Cortex-M CPU
are a special type of exception. Cortex-M defines the SysTick_Handler as the fifteenth exception in
the NVIC vector array. But where is this array defined? Inside the Core/Startup folder, there is a
special file written in assembly, commonly referred to as the startup file. By opening this file, we
can observe the minimal vector table for a Cortex processor, as shown below:

Filename: Core/Startup/startup_stmXXxx.s

116 /**

117 * The minimal vector table for a Cortex M4. Note that the proper constructs

118 * must be placed on this to ensure that it ends up at physical address

119 * 0x0000.0000.

120 ***/

121 .section .isr_vector,"a",%progbits

122 .type g_pfnVectors, %object

123 .size g_pfnVectors, .-g_pfnVectors

124

125

126 g_pfnVectors:

127 .word _estack

128 .word Reset_Handler

129

130 .word NMI_Handler

131 .word HardFault_Handler

132 .word MemManage_Handler

133 .word BusFault_Handler

134 .word UsageFault_Handler

135 .word 0

136 .word 0

137 .word 0

138 .word 0

139 .word SVC_Handler

140 .word DebugMon_Handler

141 .word 0

142 .word PendSV_Handler

143 .word SysTick_Handler

144

145 /* External Interrupts */

Line 145 is where the SysTick_Handler() is defined as the ISR for the SysTick timer.

STM32CubeMX Tool 79

Please note that startup files may vary slightly between different ST HALs. The line
numbers mentioned here could differ from those in the startup file for your specific MCU.
Additionally, the MemManage Fault, Bus Fault, Usage Fault, and Debug Monitor exceptions
are not available (and the corresponding vector entries are RESERVED—see Table 1.1 in
Chapter 1) in Cortex-M0/0+ based processors. However, the first fifteen exceptions in NVIC
are always the same for all Cortex-M0/0+ and Cortex-M3/4/7 based MCUs.

Core/Src/stm32XXxx_hal_msp.c

This is another crucial file to analyze. First, let us clarify the meaning of “MSP.” It stands for
MCU Support Package, and it defines all the initialization functions required to configure
the on-chip peripherals according to the user configuration (such as pin allocation, clock
enablement, DMA usage, and interrupts). To explain this further, consider that a peripheral
is essentially composed of two things: the peripheral itself (e.g., the SPI2 interface) and the
hardware pins associated with this peripheral.

Figure 4.15: The relation between MSP files and the HAL

The ST HAL is designed so that the SPI module (and other modules) of the HAL is generic and
abstracted from specific I/O settings, which may vary depending on the MCU package and the user-
defined hardware configuration. Therefore, ST developers have left it to the user to “fill” this part
of the HAL with the necessary code to configure the peripheral, using a form of callback routines.
This code resides inside the Core/Src/stm32XXxx_hal_msp.c file (see Figure 4.15).

Let us open it. Here, we can find the definition of the function void HAL_UART_MspInit():

STM32CubeMX Tool 80

Filename: Core/Src/stm32XXxx_hal_msp.c

86 void HAL_UART_MspInit(UART_HandleTypeDef* huart)

87 {

88 GPIO_InitTypeDef GPIO_InitStruct = {0};

89 if(huart->Instance==USART2) {

90 /* USER CODE BEGIN USART2_MspInit 0 */

91

92 /* USER CODE END USART2_MspInit 0 */

93 /* Peripheral clock enable */

94 __HAL_RCC_USART2_CLK_ENABLE();

95

96 __HAL_RCC_GPIOA_CLK_ENABLE();

97 /**USART2 GPIO Configuration

98 PA2 ------> USART2_TX

99 PA3 ------> USART2_RX

100 */

101 GPIO_InitStruct.Pin = USART_TX_Pin|USART_RX_Pin;

102 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;

103 GPIO_InitStruct.Pull = GPIO_NOPULL;

104 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

105 GPIO_InitStruct.Alternate = GPIO_AF4_USART2;

106 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

107 }

108 }

As you can see, HAL_UART_MspInit() is responsible for the actual configuration of the pin pairs
associated with the USART peripheral (specifically, PA2 and PA3). Figure 4.16 illustrates the call
hierarchy of the HAL_UART_MspInit() function: it is invoked by the generic HAL function HAL_-

UART_Init(), which, in turn, is called in main.c by the function MX_USART2_UART_Init().

Figure 4.16: The Call Hierarchy of the function HAL_UART_MspInit()

The last file we need to analyze is Core/Src/main.c. This file essentially contains four routines: Sys-
temClock_Config(void), MX_GPIO_Init(void), MX_USART2_UART_Init(void), and int main(void).
The first function, SystemClock_Config(void), initializes the core and peripheral clocks. Although
its explanation is beyond the scope of this chapter, the code is not too difficult to understand if you
are familiar with clock configurations.

The function MX_GPIO_Init(void) configures the GPIOs connected to the LD2 pin and the B1 pin (the
pin connected to the blue switch on the Nucleo board). Chapter 6 will explore GPIO configuration
in detail.

Lastly, we have the main(void) function, as shown below.

STM32CubeMX Tool 81

Filename: Core/Src/main.c

66 int main(void) {

67 /* MCU Configuration--*/

68

69 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

70 HAL_Init();

71

72 /* Configure the system clock */

73 SystemClock_Config();

74

75 /* Initialize all configured peripherals */

76 MX_GPIO_Init();

77 MX_USART2_UART_Init();

78

79 /* Infinite loop */

80 while (1)

81 {

82 HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);

83 HAL_Delay(500);

84 }

85 }

The code is self-explanatory. First, the HAL is initialized by calling the HAL_Init() function. Then,
the clocks, GPIOs, and USART2 are initialized. Finally, the application enters an infinite loop—this
is where your application code should be placed.

Peripheral Initialization and Deinitialization
If you examine the file Core/Src/stm32XXxx_hal_msp.c, you will find the definition of the
HAL_UART_MspDeInit() function. Similar to HAL_UART_MspInit(), the HAL_UART_MspDeInit()
function is invoked by the HAL function HAL_UART_DeInit(). As a good programming
practice, it is recommended to always de-initialize a peripheral when it is no longer in use.
For most peripherals, the deinitialization procedure involves setting the associated GPIOs
to a high-impedance state (to avoid power leakage) and stopping any ongoing peripheral
activity by shutting down its clock source. The CubeHAL is designed to properly handle
peripheral deinitialization.

To keep things simple, proper deinitialization procedures are omitted inmost of the examples
in this text. However, remember that in embedded programming, the more control you have,
the lower the risk of encountering unwanted behaviors.

Core/Src/syscalls.c

ARM GCC, and by extension the entire STM32 development environment, relies on a reduced
version of the standard C run-time library for embedded systems called newlib nano. Every

STM32CubeMX Tool 82

time we compile our firmware for an STM32 microcontroller, pieces of the newlib nano library
are linked with CubeHAL and our source code. newlib nano allows the use of some traditional
C library functions in embedded applications. For instance, it is perfectly possible to use
standard I/O functions like printf() and scanf(), even if the board does not have a screen
or keyboard. However, some of the newlib nano functions rely on lower-level routines (called
system calls or syscalls) that handle hardware-specific features. The Core/Src/syscalls.c file
contains a dummy implementation of these routines; without them, the linking process would
fail.
In upcoming chapters, we will learn how to customize certain syscalls to implement advanced
debugging capabilities. We will explore several ways to establish communication between the
board and a host PC, using methods such as the Instrumentation Trace Macrocell (ITM), ARM
Semihosting, or even a simple UART communication.

Core/Src/sysmem.c

Similar to syscalls.c, this file contains a functional implementation of the _sbrk() routine. In
UNIX-based environments, this syscall controls the amount of memory allocated to a process’s
data segment (the heap). In Chapter 20, we will explore the memory layout of a typical STM32
application in detail, which will help us understand the logic behind _sbrk() and how to
customize it for specific needs.

Drivers

This folder contains both the CMSIS-CORE package and the CubeHAL library. By default,
CubeMX places only the necessary files for using the peripherals enabled via the Device
Configuration Tool in this folder and its subfolders. The CMSIS-CORE package implements
the basic run-time system for a Cortex-M device and provides access to the processor core and
peripherals through convenient C macros. Specifically, it defines:

• HAL for Cortex-M processor registers, offering standardized definitions for SysTick, NVIC,
System Control Block registers, MPU registers, FPU registers, and core access functions.

• System exception names to interface with system exceptions in a standardized way, avoiding
compatibility issues.

• Methods for organizing header files to make it easier to learn new Cortex-Mmicrocontroller
products and improve software portability. This includes consistent naming conventions for
device-specific interrupts.

• Methods for system initialization provided by MCU vendors. For instance, the standardized
SystemInit() function is crucial for configuring the clock system when the device starts.

• Intrinsic functions used to generate CPU instructions that are not supported by standard C
functions.

• A global variable called SystemCoreClock, which helps easily determine the system clock
frequency.

The most relevant subfolder in the CMSIS-CORE package is CMSIS/Include. It contains several
core_<cpu>.h files (where <cpu> is replaced by cm0, cm3, etc.). These files define the core peripherals
and provide helper functions to access the core registers (SysTick, NVIC, ITM, DWT, etc.). These
files are generic and can be used with all Cortex-M based MCUs.

STM32CubeMX Tool 83

Debug

This folder contains all the intermediate files (relocatable files, map files, etc.) generated by
Eclipse and the GCC compiler to produce the final binary file in ELF or another binary format.
The name Debug comes from the name of the active Build Configuration. Build configurations
is a feature supported by all modern IDEs, allowing multiple project configurations within the
same project. Every Eclipse project has at least two build configurations: Debug and Release.
The former is used to generate a binary suitable for debugging, while the latter generates
optimized firmware for production.
It is safe to delete this folder entirely if needed.

STM32XXxx_FLASH.ld and STM32XXxx_RAM.ld

These files (note that the _RAM.ld file may not be present in projects for some STM32 MCUs)
are linker scripts that describe the memory layout of the application. They define the amount
of FLASH and RAM memory and, more importantly, how these memories are organized at
runtime. In Chapter 20, we will explore the memory layout of a typical STM32 application in
detail. This will help us understand the content of these files and how to customize them as
needed.

4.3 Downloading Book Source Code Examples

All examples presented in this book are available for download from its GitHub repository:
http://github.com/cnoviello/mastering-stm32-2nd¹⁰.

The examples are organized by Nucleo model, as shown in Figure 4.17. You can clone the entire
repository using the git command:

$ git clone https://github.com/cnoviello/mastering-stm32-2nd.git

Alternatively, you can download only the repository content as a .zip package following this link¹¹.
The repository is divided into nine subfolders, each corresponding to one of the Nucleo boards used
to build the examples in this book.
Now, you need to import the relevant Eclipse projects for your Nucleo board into your Eclipse
workspace.

Open Eclipse and switch to a new workspace. Go to File->Import…. The Import dialog will appear.
Select General->Existing Project into Workspace and click the Next button. Then, browse to the
folder containing the example projects for your Nucleo board by clicking the Browse button. Once
the main folder is selected, a list of the contained projects will appear. Check all the projects you are
interested in andmake sure to select Search for nested projects andCopy projects intoworkspace,
as shown in Figure 4.18. Finally, click the Finish button.

¹⁰http://github.com/cnoviello/mastering-stm32-2nd
¹¹https://github.com/cnoviello/mastering-stm32-2nd/archive/refs/heads/main.zip

http://github.com/cnoviello/mastering-stm32-2nd
https://github.com/cnoviello/mastering-stm32-2nd/archive/refs/heads/main.zip
http://github.com/cnoviello/mastering-stm32-2nd
https://github.com/cnoviello/mastering-stm32-2nd/archive/refs/heads/main.zip

STM32CubeMX Tool 84

Figure 4.17: The content of the GitHub repository containing all the book examples

Figure 4.18: Eclipse project import wizard

Now you can see all the imported projects inside the Project Explorer pane.

STM32CubeMX Tool 85

Each project corresponds to a given chapter, and all the examples discussed in that chapter
are available within the same project. To switch between different examples, simply select the
corresponding Build Configuration, as shown in Figure 4.19.

Figure 4.19: How to switch to a different project configuration to select other chapter’s examples

5. Introduction to Debugging
“Coding is all about debugging”, a friend once told me. And this is profoundly true. No matter how
well we write our code, sooner or later, we will encounter software bugs (and let us not even start on
the nightmare of hardware bugs!). Mastering the art of debugging embedded software is essential
to becoming a happy and effective embedded developer.

In this chapter, we will begin by exploring the fundamental debugging features provided by
STM32CubeIDE. As we will see, STM32CubeIDE includes a robust set of debugging tools that
make identifying and fixing bugs or unexpected behavior a much more manageable task. STMi-
croelectronics has done an excellent job integrating these tools directly into Eclipse, making them
straightforward and intuitive to use. Unlike in the past, when developers had to rely on external
programs or specialized hardware, today all you need is a simple, affordable ST-LINK debug probe
and STM32CubeIDE.

This chapter offers an introductory look at the debugging process, but it is important to note that
debugging—especially for complex systems—could easily warrant its own book, even for relatively
simple architectures like the STM32. In Chapter 24, we will delve deeper into advanced debugging
techniques, focusing on the Cortex-M exception mechanism, a key feature of this platform.

5.1 What is Behind a Debug Session

Before we dive into how to start a debug session and perform common debugging tasks—such as
adding breakpoints, step-by-step execution, and step-into operations, it is helpful to first take a quick
look at the software and hardware tools involved. Figure 5.1 provides an overview of the debugging
setup happening behind the scenes.

In a GCC-based development environment, the primary tool for performing debugging operations
is the GNU Debugger (GDB). GDB is a command-line tool with an integrated shell and a wide array
of commands and options. It shares the same design philosophy as GCC: it is abstracted from the
specifics of the target architecture (whether it be x86, MIPS, ARM, etc.), the programming language
(C, C++, etc.), or the host operating system (Windows, Linux, macOS, etc.).

To maintain this level of portability across various architectures, GDB is built with a clear separation
between its frontend (the core of GDB responsible for binary manipulation, interpreting debug
information in object files, etc.) and its backend, which handles the details of the target hardware and
software architecture. As a result, GDB operates in a client-server model, where the client (frontend)
communicates with the server (backend) using a defined protocol over a network connection. This
connection can be established either between two separate machines or within the same machine.

Introduction to Debugging 87

Figure 5.1: How OpenOCD interacts with a Nucleo board

For embedded architectures like the Cortex-M, it is common that the server part is not provided
within the ARM-GCC distribution. This is because a debug session always involves a dedicated
debug adapter—a piece of hardware that translates, both physically and logically, “high-level”
commands into JTAG or SWD signals and instructions. For all Nucleo boards, this adapter is the
integrated ST-LINK interface¹.

To accommodate this, ST provides a dedicated backend server for GDB, called ST-LINK GDB Server,
which communicates with the ST-LINK adapter via a USB connection using libusb or any API-
compatible library that allows user-space applications to interface with USB devices. Thanks to a set
of configuration files included in STM32CubeIDE distributions, ST-LINK GDB Server understands
how to interface with the specific target MCU (e.g., STM32F030, STM32F401), its specific Debug
Access Port (DAP), its unique FLASH memory², bus architecture, and more.

When a debug session starts, the following main steps occur³:

1. STM32CubeIDE runs the ST-LINK GDB Server in the background, passing several command-
line arguments that specify parameters like the path to STM32CubeProgrammer, the TCP/IP
port to accept connections from the GDB client, the type of debug mode (SWD, JTAG), debug
port speed, andmore⁴. If the ST-LINKGDB Server successfully communicates with the ST-LINK
probe and the target board, it waits for commands on the designated TCP/IP port (usually port
61234).

2. STM32CubeIDE then executes the GDB client, which connects to the remote GDB server (the
ST-LINK GDB Server) using the provided TCP/IP port.

3. STM32CubeIDE loads the binary file into the target MCU’s FLASH memory and starts the
firmware execution.

¹The Nucleo ST-LINK debugger is designed to be used as a standalone adapter to debug an external device (e.g., a board you have designed
that features an STM32 MCU). Refer to your Nucleo board’s documentation for configuration details.

²A common misconception about the STM32 platform is that all STM32 devices have a standardized method for accessing internal FLASH
memory. This is incorrect, as each STM32 family has distinct peripheral capabilities, including internal flash. As a result, ST-LINK GDB Server
must provide drivers to handle all STM32 devices.

³These steps provide a simplified overview of the operations carried out during a debug session. Many details are omitted, as a full
description would require in-depth knowledge of Cortex-M internals, STM32-specific details, and a solid understanding of the GDB framework.

⁴The complete list of command-line arguments is documented in the user manual available here: https://bit.ly/3EfV2aH.

https://bit.ly/3EfV2aH

Introduction to Debugging 88

Finally, Eclipse-CDT provides all the necessary logic to control GDB in the background, allowing
the user to perform typical debugging tasks through a graphical interface without needing to know
any GDB shell commands.

5.2 Debugging With STM32CubeIDE

Eclipse provides a dedicated perspective for debugging, designed to offer the essential tools required
during the debugging process. This perspective can also be customized with additional plug-ins as
needed (more about this later).

Figure 5.2: The Debug icon to start debugging in Eclipse

To start a new debug session, simply click on the Debug icon in the Eclipse toolbar, as shown in
Figure 5.2. Eclipse will prompt you to switch to theDebug Perspective. Click Yes (it is recommended
to check the Remember my decision checkbox). Eclipse will then switch to the Debug Perspective,
as shown in Figure 5.3.

Figure 5.3: The Debug Perspective

Introduction to Debugging 89

5.2.1 Views in the Debug Perspective

Let us explore the purpose of each view in the Debug Perspective. The top-left view is called Debug,
and it displays all active debugging sessions. This is a tree-view, and when the firmware execution
is paused, it shows the complete call stack, providing a quick way to navigate through it.

Figure 5.4: The variables inspection pane in the Debug Perspective

The top-right view contains several sub-panes. TheVariables pane allows you to inspect the contents
of variables within the current stack frame (i.e., the selected procedure in the call stack). Right-
clicking on a variable lets you further customize how the variable is displayed. For instance, you
can change its numeric representation from decimal (the default) to hexadecimal or binary. You
can also cast the variable to a different data type, which is particularly useful when working with
raw data, such as a stream of bytes that represent a specific type. Additionally, you can navigate to
the memory address where the variable is stored by selecting View Memory… from the contextual
menu.

TheBreakpoint pane lists all breakpoints used in the application. A breakpoint is a hardware feature
that stops the firmware execution when the Program Counter (PC) reaches a specified instruction.
When this happens, the debugger halts, and Eclipse displays the context of the stopped instruction.
Each Cortex-M-based MCU has a limited number of hardware breakpoints. Table 5.1 summarizes
the maximum breakpoints and watchpoints⁵ available for each Cortex-M family.

⁵Awatchpoint is a more advanced debugging primitive that allows you to define conditional breakpoints over data and peripheral registers.
This means theMCU halts its execution only if a variable satisfies a specified condition (e.g., var == 10). We will explore watchpoints in greater
detail in Chapter 24.

Introduction to Debugging 90

Table 5.1: Available breakpoints/watchpoints in Cortex-M cores

Cortex-M Breakpoints Watchpoints
M0/0+ 4 2
M3/4/7/33 8 4

Figure 5.5: How to add a breakpoint at a given line number

Eclipse makes it easy to set up breakpoints directly from the editor view, located at the center of
the Debug Perspective. To place a breakpoint, simply double-click on the grey stripe to the left of
the editor, next to the instruction where you want to halt the MCU’s execution. A blue bullet will
appear, as shown in Figure 5.5.

When the program counter reaches the first assembly instruction corresponding to that line of code,
the execution halts, and Eclipse highlights the corresponding line, as shown in Figure 5.3. After
inspecting the code, you have several options to resume execution. Table 5.2 explains the function
of the most important icons on the Eclipse debug toolbar.

Table 5.2: Most relevant icons on the Eclipse debug toolbar

Icon Description

This icon is used ignore all breakpoints and continue the execution without interruptions.

This icon is used to do a soft reset of MCU, without stopping the debug and relaunch it again.

This icon terminates the debug session, starts a build of the project and restart debug session.

This icon resumes the debug session after the MCU reached a breakpoint or an explicit pause by
the user.

This icon halts the code execution to the next C statement.

This icon causes the end of the debug session. GDB is terminated and the target board is halted.

Introduction to Debugging 91

Table 5.2: Most relevant icons on the Eclipse debug toolbar

Icon Description

This icon is the first one of two icons used to do step-by-step debugging. When we execute the
firmware line-by-line, it could be important to enter inside a called routine. This icon allows to do
this, otherwise the next icon is what needed to execute the next instruction inside the current
stack frame.

This icon has - unfortunately - a counterintuitive name. It is called step over, and its name might
suggest “skip the next instruction” (that is, go over). But this icon is the one used to execute the
next instruction. Its name comes from the fact that, unlike the previous icon, it executes a called
routine without entering inside it.

By clicking on this icon, the execution will resume and the MCU will keep running till the exit
(that is, the return) from the current routine. The execution will stop exactly to next instruction in
the calling function.

Finally, in the views on the right, you will find two more useful views: SFR and Registers. These
display the contents of both the hardware registers specific to the STM32 MCU and the Cortex-
M core registers. These views can be extremely helpful for understanding the current state of a
peripheral or the Cortex-M core itself. In Chapter 24, where we discuss debugging, we will explore
how to handle Cortex-M exceptions and learn how to interpret the contents of several important
Cortex-M registers.

5.2.2 Debug Configurations

Eclipse is a highly configurable and generic IDE, allowing the creation of multiple debug configura-
tions that can easily be adapted to different development scenarios.
So far, we have started debug sessions by simply clicking on the corresponding icon in the toolbar
(see Figure 5.2). However, when we do this for the first time, STM32CubeIDE automatically
configures the debug operations for us.

Introduction to Debugging 92

Figure 5.6: Debug Contextual Menu

By clicking on the down arrow next to the debug icon, you can access the debug contextual menu
(see Figure 5.6). From there, selecting Debug Configurations… allows you to manage all debug
configurations, as shown in Figure 5.7.

Figure 5.7: Debug Configurations Dialog

The view is divided into two main panes. On the left, there is a tree pane containing several
configuration types. We are particularly interested in the STM32 Cortex-M C/C++ Application.
By expanding this entry, you will see the debug configuration that was created automatically (the
configuration name corresponds to the project name).
On the right, there is a tabbed pane with several tabs. The most notable ones areMain, Debugger,

Introduction to Debugging 93

and Startup.

The Main tab primarily contains the project name and specifies which binary file to load onto the
target MCU to begin a debug session.

The Debugger tab includes several important options for configuring the debug session. Some of
these options are advanced topics that we will cover in later chapters. Here, we will focus on the
most critical ones.

• GDB Connection Settings: This group of settings configures the GDB Server. You can select
whether to connect to a local or remote server, specify its IP address, and set the port number.
It is strongly recommended to leave all options at their default values.

• Debug Probe: STM32CubeIDE supports three different debug probes: the standard ST-LINK,
SEGGER J-Link, and OpenOCD. In this text, we assume the use of the ST-LINK debug probe
integrated into the Nucleo board. However, we will discuss the other two in a later chapter.

• Interface: These settings allow you to choose which MCU debug port to use. Most STM32
MCUs support both JTAG and SWD interfaces. In this book, we assume the use of the SWD
interface.

The Reset Behavior section requires a deeper explanation. Occasionally, you may encounter issues
where the MCU cannot be flashed or debugged using ST-LINK. One noticeable symptom is that the
ST-LINK LD1 LED (which usually blinks red and green while debugging) stops blinking and remains
frozen, with both LEDs ON.

When this occurs, it indicates that the ST-LINK debugger is unable to access the target MCU’s debug
port (via the SWD interface), or that the flash is locked, preventing debugger access.

There are typically three causes for this condition:

• The SWD pins have been reconfigured as general-purpose GPIOs (this often happens after
resetting pin configurations in CubeMX).

• The MCU is in a deep low-power mode that has disabled the debug port.
• An issue with the option bytes configuration—perhaps the flash has been write-protected, or
read protection level 1 has been enabled.

To resolve this issue, the ST-LINK debugger must be forced to connect to the target MCU while
keeping its nRST pin low. This procedure is known as connection under reset and can be performed
by selecting one of the Reset Behavior options, which are described next.

• Connect under reset (default): The ST-LINK reset line is activated, and the ST-LINK connects
in SWD or JTAG mode while the reset is active. Once connected, the reset line is deactivated.

• Software system reset: A system reset is triggered by writing to the RCC register in software.
This resets the core and peripherals, and can also reset the entire system as the target’s reset
pin asserts itself.

Introduction to Debugging 94

• Hardware reset: The ST-LINK reset line is activated and then deactivated (a pulse on the reset
line), after which the ST-LINK connects in SWD or JTAG mode.

• Core reset: A core reset is triggered by writing to a Cortex-M register in software (not possible
on Cortex®‑M0/0+/33 cores). This resets only the core, without affecting the peripherals or the
reset pin.

• None: This option is used for attaching to a running target where the program has already
been loaded into the device. There should be no file programming command in the Startup
tab.

The Startup tab configures how the debug session begins. The Initialization Commands field can be
customized with GDB or GDB server monitor commands, which are sent to the GDB server before
loading the program. For example, when using the ST-LINK GDB server, the command monitor

flash mass_erase can be added if a full FLASH memory erase is required before loading.

The Load Image and Symbols list box should include the file(s) to be debugged. The Runtime
Options section contains checkboxes for setting the start address, setting a breakpoint, and enabling
exception handling and resuming. The Set breakpoint at checkbox is enabled by default, with the
field displaying main. This means that a breakpoint is automatically set at the main() function when
debugging begins. As a result, execution halts at main() at the start of every debug session.

Three exception checkboxes make it easier to identify problems during debugging:

• Exception on divide by zero: Enabled by default to catch divide-by-zero errors during
debugging.

• Exception on unaligned access: Can be enabled to trigger exceptions for unaligned memory
access.

• Halt on exception: Enabled by default to halt program execution whenever an exception
occurs during debugging.

II Diving into the HAL

6. GPIO Management
All STM32microcontrollers include a variable number ofGeneral Purpose Input/Output (GPIO) pins,
with the exact count depending on several factors:

• The package type chosen (e.g., LQFP48, BGA176).
• The specific microcontroller family (e.g., F0, F1, etc.).
• The use of external crystals for high-speed and low-speed external oscillators (HSE and LSE).

GPIOs are the primary means through which an MCU interfaces with external devices. On every
electronic board, varying numbers of I/Os are used to control peripherals (e.g., LEDs) or to exchange
data through different communication protocols (UART, USB, SPI, etc.).

This chapter begins our exploration of CubeHAL with one of its simplest modules: HAL_GPIO.
Although we have already used functions from this module in earlier examples, now is the time to
delve into the full range of capabilities offered by this widely-used and straightforward peripheral.
Before discussing specific HAL features, however, it is useful to understand how STM32 peripherals
are mapped to logical addresses and represented within the HAL library.

6.1 STM32 Peripherals Mapping and HAL Handlers

Every STM32 peripheral is interconnected to the MCU core by several orders of buses, as shown in
Figure 6.1¹.

¹Here, to simplify this topic, we are considering the bus organization of one of the simplest STM32 microcontrollers, the STM32F072.
STM32F4 and STM32F7, for example, have a more advanced bus interconnection system, which is outside the scope of this book. Please,
always refer to the reference manual of your MCU.

GPIO Management 97

Figure 6.1: Bus architecture of an STM32F072 microcontroller

• The System bus connects the system bus of the Cortex-M core to a Bus Matrix, which manages
arbitration between the core and the DMA. Both the core and the DMA act as masters.

• The DMA bus connects the Advanced High-performance Bus (AHB) master interface of the
DMA to the Bus Matrix, which controls CPU and DMA access to SRAM, flash memory, and
peripherals.

• The Bus Matrix manages access arbitration between the core system bus and the DMA master
bus, using a Round Robin algorithm. It consists of two masters (CPU, DMA) and four slaves
(FLASH memory interface, SRAM, AHB1 with an AHB-to-Advanced Peripheral Bus (APB)
bridge, and AHB2). AHB peripherals are connected to the system bus through this Bus Matrix,
enabling DMA access.

• The AHB to APB bridge provides fully synchronous connections between the AHB and the
APB bus, where most peripherals are connected.

As we will see in a later chapter, each of these buses is connected to different clock sources, which
determine the maximum speed for the peripherals connected to each bus².

In Chapter 1, we learned that peripherals are mapped to a specific region of the 4GB address space,
starting from 0x4000 0000 and extending up to 0x5FFF FFFF. This region is further divided into
several sub-regions, each mapped to a specific peripheral, as shown in Figure 6.2.

²If the above description seems complex, do not worry; these concepts will become clearer as you progress through the chapter. Additional
detail will also be covered in the chapter dedicated to the DMA.

GPIO Management 98

Figure 6.2: Memory map of peripheral regions for an STM32F072 microcontroller

The organization of this memory space, and thus the mapping of peripherals, is specific to each
STM32 microcontroller. For instance, in an STM32F072 microcontroller, the AHB2 bus is mapped to
the address range from 0x4800 0000 to 0x4800 17FF. This range spans 6144 bytes. Within this range,
the space is further divided into sub-regions, each corresponding to a specific peripheral. Continuing
with this example, the GPIOA peripheral (which manages all pins connected to PORT-A) is mapped
from 0x4800 0000 to 0x4800 03FF, meaning it occupies 1KB of the aliased peripheral memory.

The way this memory-mapped space is organized depends on the specific peripheral. Table 6.1³
provides the memory layout of a GPIO peripheral.

Figure 6.3: GPIO MODER register memory layout

³Both Table 6.1 and Figure 6.1 are sourced from the ST STM32F072 Reference Manual (https://bit.ly/2XzzJ3s).

GPIO Management 99

Table 6.1: GPIO peripheral memory map for an STM32F072 microcontroller

A peripheral is controlled by modifying and reading each register within these mapped regions. For
example, with the GPIOA peripheral, to enable the PA5 pin as an output, we configure the MODER

GPIO Management 100

register so that bits [11:10] are set to 01 (which corresponds to General purpose output mode),
as shown in Figure 6.3. Next, to pull the pin high, we set the corresponding bit [5] inside the
Output Data Register (ODR), which, according to Table 6.1, is mapped to the GPIOA + 0x14memory
location—equivalent to 0x4800 0000 + 0x14.

The following minimal example demonstrates how to use pointers to access the GPIOA peripheral
mapped memory in an STM32F072 MCU.

int main(void) {

volatile uint32_t *GPIOA_MODER = 0x0, *GPIOA_ODR = 0x0;

GPIOA_MODER = (uint32_t*)0x48000000; // Address of the GPIOA->MODER register

GPIOA_ODR = (uint32_t*)(0x48000000 + 0x14); // Address of the GPIOA->ODR register

//This ensures that the peripheral is enabled and connected to the AHB1 bus

__HAL_RCC_GPIOA_CLK_ENABLE();

*GPIOA_MODER = *GPIOA_MODER | 0x400; // Sets MODER[11:10] = 0x1

*GPIOA_ODR = *GPIOA_ODR | 0x20; // Sets ODR[5] = 0x1, that is pulls PA5 high

while(1);

}

It is important to clarify once again that each STM32 family (e.g., F0, F1, etc.) and each member
within a given family (e.g., STM32F072, STM32F103, etc.) provides its own subset of peripherals,
mapped to specific addresses. Furthermore, the implementation of these peripherals varies between
STM32 series.

One of the roles of the HAL is to abstract from specific peripheral mappings. This is achieved by
defining various handlers for each peripheral. A handler is simply a C struct, used as a reference
to point to the actual peripheral address. Let us examine one of these handlers.

In previous chapters, we configured the PA5 pin with the following code:

/*Configure GPIO pin : PA5 */

GPIO_InitStruct.Pin = GPIO_PIN_5;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

Here, the GPIOA variable is a pointer of type GPIO_TypeDef defined in this way:

GPIO Management 101

typedef struct {

volatile uint32_t MODER;

volatile uint32_t OTYPER;

volatile uint32_t OSPEEDR;

volatile uint32_t PUPDR;

volatile uint32_t IDR;

volatile uint32_t ODR;

volatile uint32_t BSRR;

volatile uint32_t LCKR;

volatile uint32_t AFR[2];

volatile uint32_t BRR;

} GPIO_TypeDef;

The GPIOA pointer is defined so that it points⁴ to the address 0x4800 0000:

GPIO_TypeDef *GPIOA = 0x48000000;

GPIOA->MODER |= 0x400;

GPIOA->ODR |= 0x20;

⁴This is not entirely accurate, as the HAL, to save RAM space, defines GPIOA as a macro (#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)).

7. Interrupts Management
Hardware management involves handling asynchronous events, most of which originate from
hardware peripherals. For example, a timer reaching a configured period value or a UART indicating
the arrival of data. Other events are triggered by external interactions, such as a user pressing a
switch that, unpredictably, causes the board to hang, leading to a day spent troubleshooting.

All microcontrollers offer a feature called interrupts. An interrupt is an asynchronous event that
temporarily halts the current code execution based on priority (higher-priority interrupts can
suspend lower-priority ones). The code that responds to the interrupt is called the Interrupt Service
Routine (ISR).

Interrupts enable multiprogramming: the hardware handles them by saving the current execution
context (such as the stack frame, the Program Counter (PC), and a few other essentials) before
switching to the ISR. Interrupts are essential in Real-Time Operating Systems (RTOS) for introducing
tasks. Without hardware support, a true preemptive system — one that switches between multiple
execution contexts without losing the current execution flow — would be impossible.

Interrupts can be triggered by both hardware and software. The ARM architecture differentiates
between these: interrupts originate from hardware, while exceptions originate from software (e.g.,
an access to an invalid memory location). In ARM terminology, an interrupt is a specific type of
exception.

Cortex-M processors include a dedicated unit for exception management, called theNested Vectored
Interrupt Controller (NVIC). This chapter focuses on programming this essential hardware com-
ponent to manage interrupts. Exception handling, however, will be covered in Chapter 24, which
discusses advanced debugging techniques.

7.1 NVIC Controller

The NVIC is a dedicated hardware unit within Cortex-M-based microcontrollers responsible for
handling exceptions. Figure 7.1 illustrates the relationship between the NVIC unit, the processor
core, and peripherals. Here, we distinguish between two types of peripherals: those that are external
to the Cortex-M core but internal to the STM32 MCU (e.g., timers, UARTs), and peripherals that are
entirely external to the MCU. Interrupts from the latter type of peripherals are triggered by MCU
I/O, which can be configured either as general-purpose I/O (e.g., a tactile switch connected to a pin
configured as an input) or to interface with an external advanced peripheral (e.g., I/Os configured to
exchange data with an Ethernet PHY via the RMII interface). A dedicated programmable controller,
called the External Interrupt/Event Controller (EXTI), manages the connection between external I/O
signals and the NVIC controller, as we will see shortly.

Interrupts Management 103

Figure 7.1: The relation between the NVIC controller, the Cortex-M core, and STM32 peripherals

As mentioned, ARM differentiates between system exceptions, which originate within the CPU
core, and hardware exceptions from external peripherals, also known as Interrupt Requests (IRQ).
Programmers manage exceptions by writing specific ISRs, typically coded at a higher level (most
often in C). The processor knows where to locate these routines using an indirect table containing
the memory addresses of the Interrupt Service Routines. This table is commonly referred to as the
vector table, and each STM32 microcontroller defines its own. Let us examine this in depth.

7.1.1 Vector Table in STM32

All Cortex-M processors reserve a fixed set of fifteen exceptions common to all Cortex-M families.
However, not all of these exceptions are currently defined (they are marked as RESERVED in
the official ARM documentation), and only a subset is available in Cortex-M0/0+ cores. We first
encountered these exceptions in Chapter 1. For convenience, Table 7.1 below provides the same
information. Let us review these exceptions (we will cover fault exceptions in more detail in Chapter
24 on advanced debugging).

• Reset: This exception is raised immediately after the CPU resets. Its handler serves as the entry
point for the running firmware. In an STM32 application, everything starts from this exception.
The handler includes assembly-coded functions that initialize the execution environment, such
as the main stack, the .bss area, and more. Chapter 22 on the booting process covers this in
depth.

• NMI: This is a special exception with the highest priority after the Reset exception. Like Reset, it
cannot be masked and is typically associated with critical, non-deferrable activities. In STM32
microcontrollers, it is linked to the Clock Security System (CSS). CSS is a diagnostic feature that
detects failure of the external clock, called HSE. If this occurs, HSE is disabled (automatically
enabling the internal HSI), and an NMI interrupt is raised to alert the software of an HSE failure.
More details are provided in Chapter 10.

• Hard Fault: This is the general fault exception, related to software interrupts. When other fault
exceptions are disabled, it acts as a catch-all for all types of exceptions (e.g., if a memory access

Interrupts Management 104

to an invalid location raises a Bus Fault and that exception is disabled, the Hard Fault exception
will handle it).

• Memory Management Fault¹: This occurs when code attempts to access an illegal location or
violates a rule of the Memory Protection Unit (MPU). This is covered further in Chapter 20.

• Bus Fault²: This occurs when the AHB interface receives an error response from a bus slave
(also called prefetch abort if it is an instruction fetch, or data abort if it is a data access). It can
also be caused by illegal accesses (e.g., accessing a non-existent SRAM memory location).

• Usage Fault³: This occurs due to program errors such as illegal instructions, alignment issues,
or attempts to access a non-existent co-processor.

• SVCCall: This is not a fault condition but is raisedwhen the Supervisor Call (SVC) instruction is
executed. RTOS uses this exception to perform privileged operations (a task requiring privileged
operations executes the SVC instruction, and the OS performs the requested operation, similar
to a system call in other OSes).

• DebugMonitor⁴: This exception is raised for software debug eventswhen the core is inMonitor
Debug-Mode. It also handles debug events like breakpoints andwatchpoints for software-based
debugging.

• PendSV: This exception is used in RTOS. Unlike the SVCall exception, which is executed
immediately after an SVC instruction, PendSV can be delayed, allowing the RTOS to complete
higher-priority tasks.

• SysTick: This exception is also commonly used in RTOS tasks. Every RTOS requires a timer
to periodically interrupt the current code execution and switch to another task. All STM32
microcontrollers provide a SysTick timer within the Cortex-M core. Although other timers
can be used for scheduling, the dedicated SysTick timer ensures portability across STM32
families (as not all timers are externally available in all models due to MCU die optimization).
Additionally, even if an RTOS is not used, it is important to note that ST CubeHAL relies on the
SysTick timer for time-related activities (and assumes that the SysTick timer is configured
to generate an interrupt every 1 ms).

The remaining exceptions that can be defined for a given MCU are related to IRQ handling. Cortex-
M0/0+ cores support up to 32 external interrupts, Cortex-M3/4/7 cores allow silicon manufacturers
to define up to 240 interrupts, and Cortex-M33 cores support up to 480 IRQ lines.

Where can we find the list of usable interrupts for a specific STM32 microcontroller? The primary
source of information is the MCU’s datasheet, which details the available interrupts. However, we
can also refer to the vector table provided by ST in its HAL. This table is defined in the startup file for
our MCU, located in the Core/Startup folder of our project as an assembly file with a .s extension
(e.g., for an STM32F446RET MCU, the file is startup_stm32f446retx.s). Opening this file, we can
find the complete vector table for that MCU, starting around line 128 (see the example in Chapter
4).

¹This exception is not available in Cortex-M0/0+ based microcontrollers.
²This exception is not available in Cortex-M0/0+ based microcontrollers.
³This exception is not available in Cortex-M0/0+ based microcontrollers.
⁴This exception is not available in Cortex-M0/0+ based microcontrollers.

Interrupts Management 105

Table 7.1: Cortex-M exception types

Even though the vector table contains the addresses of the handler routines (it is, in fact, an indirect
table), the Cortex-M core requires a method to locate the vector table in memory. By convention,
the vector table begins at the hardware address 0x0000 0000 in all Cortex-M processors.

If our firmware places the vector table in internal flash memory (a common scenario), it will start at
address 0x0800 0000 in all STM32 MCUs. However, as noted in Chapter 1, the 0x0800 0000 address
is automatically aliased to 0x0000 0000 when the CPU boots up⁵.

⁵Except for the Cortex-M0, other Cortex-M cores allow the vector table position in memory to be relocated. It is also possible to configure
the MCU to boot from different memory regions besides internal flash. These advanced topics will be discussed in Chapter 20 on memory
layout and in Chapter 22 on the booting process. To simplify, we will assume here that the vector table position is fixed at 0x0000 0000.

Interrupts Management 106

Figure 7.2 illustrates the organization of the vector table in memory. The first entry in this array is
the address of the Main Stack Pointer (MSP) within the SRAM. Typically, this address corresponds
to the end of SRAM, calculated as its base address plus its size (more on STM32 memory layout in
Chapter 20). From the second entry onward, the table lists the addresses for exception and interrupt
handlers. Thus, the vector table length is 48 entries for Cortex-M0/0+ based microcontrollers and
256 entries for Cortex-M3/4/7.

Figure 7.2: The minimal layout of the vector table in an STM32 MCU based on a Cortex-M3/4/7 core

It is important to clarify some details about the vector table.

1. The names of the exception handlers are simply conventions, and you are free to rename them
if you prefer different names. They are merely symbols (similar to variables and functions in a
program). However, keep in mind that CubeMX generates ISRs with specific names following
ST conventions, so if you rename a handler, youmust also update the ISR name in the CubeMX-
generated code.

2. As mentioned, the vector table must be located at the beginning of flash memory, where the
processor expects it. This placement is handled by the GCC linker, which positions the vector
table at the start of the flash section when generating the absolute file — the binary file we
upload to flash memory. In Chapter 20, we will explore the content of the STM32XXxx_FLASH.ld
file, which includes the directives that instruct GNU LD on this configuration.

Interrupts Management 107

8. Universal Asynchronous Serial
Communications

The electronics industry today offers a wide range of serial communication protocols and hardware
interfaces. Many of these focus on achieving high data transmission rates, as seen in recent
standards such as USB 2.0 and 3.x, as well as FireWire (IEEE 1394). While some standards have
been around for years, they remain prevalent, particularly for communication between modules on
the same circuit board. One such enduring interface is the Universal Synchronous/Asynchronous
Receiver/Transmitter, commonly abbreviated as USART.

Almost every modern microcontroller includes at least one UART peripheral. In the STM32
microcontroller family, nearly all models provide at least two UART/USART interfaces, with many
offering more — some supporting up to eight interfaces, depending on the I/O capacity of the specific
MCU package.

In this chapter, we will explore how to program this versatile peripheral using the CubeHAL library.
We will examine application development with UART in both polling and interrupt modes, with the
third operational mode, DMA, covered in greater detail in the next chapter.

8.1 Introduction to UARTs and USARTs

Before diving into the analysis of the functions provided by the HAL to manage universal serial
devices, it is helpful to first examine the UART/USART interface and its communication protocol.

When we want to exchange data between two (or more) devices, we have two primary options:
transmit data in parallel—using a set of communication lines equal to the data word size (e.g.,
eight lines for an 8-bit word)—or transmit each bit of the word sequentially over a single line.
A UART/USART device translates a parallel sequence of bits, typically grouped in a byte, into a
continuous stream of signals transmitted over a single wire.

When information flows between two devices over a common channel, both devices (referred to
here as the sender and the receiver) must agree on the timing, which determines how long it takes
to transmit each individual bit. In synchronous transmission, the sender and receiver share a
common clock signal, generated by one of the devices—typically the one acting as the master in
this communication system.

Universal Asynchronous Serial Communications 109

Figure 8.1: A serial communication between two devices using a shared clock source

In Figure 8.1, we see a typical timing diagram¹ illustrating Device A sending one byte (0b01101001)
serially to Device B using a common reference clock. This shared clock synchronizes the start of
sampling for the bit sequence: when the master device begins clocking the designated line, it signals
the start of a bit sequence transmission.

In synchronous transmission, the transmission speed and duration are dictated by the clock
frequency, which determines how quickly a single byte can be transmitted over the communication
channel². However, if both devices agree on the timing of each bit is transmission and the start and
stop points for sampling transmitted bits, they can avoid using a dedicated clock line. This setup is
referred to as asynchronous transmission.

Figure 8.2: The timing diagram of a serial communication without a dedicated clock line

Figure 8.2 illustrates the timing diagram of an asynchronous transmission. The idle state (when no
transmission is occurring) is represented by a high signal level. Transmission begins with a START
bit, marked by a low-level signal. The receiver detects the negative edge, and 1.5 bit periods after
this transition (as shown in Figure 8.7.1s T1.5bit), it starts sampling the incoming bits.

Eight data bits are sampled sequentially, with the least significant bit (LSB) typically transmitted
first. Following the data bits, an optional parity bit may be included for error checking. This parity
bit is often omitted if the transmission channel is assumed to be noise-free or if error checking is
handled in higher protocol layers. The transmission concludes with a STOP bit, which lasts for 1.5
bit periods.

¹A Timing Diagram is a representation of a set of signals over time.
²However, keep in mind that the maximum transmission speed is influenced by several factors, such as the electrical characteristics of the

channel, the ability of each device involved in transmission to sample high-speed signals, and other related parameters.

Universal Asynchronous Serial Communications 110

Figure 8.3: The signaling difference between a USART and a UART

AUniversal Synchronous Receiver/Transmitter (USART) interface is a device capable of transmitting
data words serially using two I/Os — one acting as the transmitter (TX) and one as the receiver (RX)
— plus an additional I/O as a clock line. In contrast, a Universal Asynchronous Receiver/Transmitter
(UART) requires only two I/Os, TX and RX (see Figure 8.3). Conventionally, we refer to the first
interface as USART and to the second as UART.

While a UART/USART defines the signaling method, it does not specify voltage levels. This means
that an STM32 UART/USART will use the voltage levels of the MCU’s I/Os, typically close to VDD
(commonly known as TTL voltage levels). Translating these voltage levels for serial communication
beyond the board requires other communication standards. For example, EIA-RS232 and EIA-RS485
are two popular standards that define not only signaling voltages but also timing, signal meaning,
and the physical specifications of connectors. Additionally, UART/USART interfaces can facilitate
data exchange across other physical and logical serial interfaces. For instance, the FT232RL is a
widely-used IC that maps a UART to a USB interface, as illustrated in Figure 8.4.

The presence of a dedicated clock line or an agreed transmission frequency does not ensure that
the receiver can process data at the same rate as the sender. For this reason, some communication
standards, such as RS232 and RS485, allow the use of a dedicated Hardware Flow Control line.
For example, two devices communicating over an RS232 interface may share two additional lines,
Request To Send (RTS) and Clear To Send (CTS). The sender sets its RTS line, signaling the receiver
to monitor its data input line. When ready to receive data, the receiver raises its complementary
CTS line, signaling the sender to start transmission and to monitor the receiver’s data output line.

Universal Asynchronous Serial Communications 111

Figure 8.4: A typical circuit based on FT232RL used to convert a 3.3V TTL UART interface to USB

STM32 microcontrollers offer a variable number of USART interfaces, which can be configured to
operate in both synchronous and asynchronous modes. Some STM32 MCUs also provide interfaces
limited to UART functionality. Table 8.1 lists the UART/USART interfaces available on STM32
MCUs featured in all Nucleo boards used in this text. Most USARTs also support automaticHardware
Flow Control, compatible with both the RS232 and RS485 standards.

All Nucleo-64 boards are designed so that the USART2 of the target MCU is connected to the ST-
LINK interface³. When the ST-LINK drivers are installed, an additional driver for the Virtual COM
Port (VCP) is also installed, enabling access to the target MCU’s USART2 over USB without the need
for a dedicated TTL/USB converter. By using a terminal emulation program, we can communicate
with our Nucleo board to exchange messages and data.

The CubeHAL library distinguishes between APIs for managing UART and USART interfaces.
Functions and data types for USARTs are prefixed with HAL_USART and located in stm32xxx_hal_us-

art.{c,h}, while those for UARTs use the HAL_UART prefix and reside in stm32xxx_hal_uart.{c,h}.
Since both modules are conceptually similar, and UART is the most common form of serial
interconnection between modules, this book will focus on the HAL_UART module.

³Note that this may not apply if you are using a Nucleo-32 or Nucleo-144 board. Consult the ST documentation for details.

Universal Asynchronous Serial Communications 112

Table 8.1: The list of available USARTs and UARTs on all Nucleo boards

9. Memory layout
Every time we compile our firmware using the GCC ARM tool-chain, a series of non-trivial things
takes place. The compiler translates the C source code in the ARM assembly and organizes it to
be flashed on a given STM32 MCU. Every microprocessor architecture defines an execution model
that needs to be “matched” with the execution model of the C programming language. This means
that several operations are performed during bootstrap, whose task is to prepare the execution
environment for our application: the stack and heap creation, the initialization of data memory, the
vector table initialization are just some of the activities performed during startup. Moreover, some
STM32 microcontrollers provide additional memories, or allow to interface external ones using the
FSMC controller, that can be assigned to specific tasks during the firmware lifecycle.

This chapter aims to throw light to those questions that are common to a lot of STM32 developers.
What does it happen when the MCU resets? Why providing the main() function is mandatory? And
how long does it take to execute since the MCU resets? How to store variables in flash instead of
SRAM? How to use the STM32 CCM memory?

9.1 The STM32 Memory Layout Model

In Chapter 1 we have analyzed the typical memory layout of an STM32 microcontroller. Figure 1.4
shows that the first 1GB address space is divided between the FLASH and the SRAM memories.
These memory areas are in turn subdivided in some several sub-regions. Let us analyze the way
they are organized in a typical STM32 application by taking as reference the Figure 20.1.

9.1.1 Flash Memory Typical Organization

In an STM32 microcontroller, the internal flash memory is mapped starting from the address 0x0800
0000¹. In Chapter 7 we learned that the very initial bytes of flash memory are dedicated to theMain
Stack Pointer (MSP). The MSP contains the address in SRAM where the stack begins. The Cortex-M
architecture gives maximum freedom of placing the stack in the SRAM memory as well as in other
internal memories (for example, the CCM RAM available in some STM32 MCUs) or external ones
(connected to the FSMC controller). This explains the need for the MSP.
The Cortex-M architecture defines that the memory locations right after the MSP are dedicated to
the vector table, a sequence of 32-bit addresses pointing to the ISR routines. The length of this table
depends on the Cortex-M architecture, as seen in Table 7.1.

Apart from these architectural constraints, that can be “relaxed” in such a way as we will see later in
this chapter, the compiler is free to arrange the rest of flash memory according to the programming

¹Remember that, as we will see next, the Cortex-M architecture defines the 0x0000 0000 address as the memory location where starting
to place MSP and vector table. This means that the flash starting address (0x0800 0000) is aliased to 0x0000 0000.

Memory layout 114

language execution model. In a typical ARM-GCC C application, usually the rest of flash memory
is used to store program code, read-only data (also known as const data, since variables declared
as const are automatically placed in this memory) and initialization data, that is the initialization
values of variables in SRAM.

Figure 20.1: The typical layout of flash and SRAM memories

From the compiler point of view, these sections are traditionally named in a different way inside
the application binary. For example, the section containing assembly code is named .text, .rodata
is the one containing const variables and strings, while the section for initialized data is named
.data. These names are also common to other computer architectures, like x86 and MIPS. Others
are specific of “microcontrollers world”. For example, the .isr_vector section is the one designated
to store the vector table in Cortex-M based MCUs. The number and the naming of these sections
is, however, well defined and they adhere to a more general specification called ARM Embedded

Memory layout 115

Application Binary Interface (EABI). This specification states how many and what kind of sections
an ELF² binary file must provide, so that all the firmware application can be properly loaded and
executed on a given Cortex-M architecture.

9.1.2 SRAMMemory Typical Organization

The internal SRAM memory is mapped starting from the 0x2000 0000 address and it is also
organized in several sub-regions. A variable-sized region starting from the end of SRAM and
growing downwards (that is, its base address has the highest SRAM address) is dedicated to the
stack. This happens because Cortex-M cores use a stack memory model called full-descending stack.
The base stack pointer, that is the MSP, is computed at compile time, and it is stored at 0x0800 0000

flash memory location, as seen before. Once we call a function, a new stack frame is pushed on the
stack. This means that the pointer to the current stack frame (SP) is automatically decremented at
every function call (this means that the ARM assembly push instruction automatically decrements
it).

The SRAM is also used to store variable data, and this region usually starts at beginning of
SRAM (0x2000 0000). This region is in turn divided between initialized and un-initialized data.
To understand the difference, let us consider this code fragment:

...

uint8_t var1 = 0xEF;

uint8_t var2;

...

var1 and var2 are two global variables. var1 is an initialized variable (we fix its starting value at
compile time), while the value var2 is un-initialized: during the very first instructions after an MCU
reset, a set of dedicated routines initialize them by setting var2 to zero and var1 to the value stored
in .data section inside the flash memory. We will study these operations later in this chapter.

Finally, the SRAM memory could contain another growing region: the heap. It stores variables that
are allocated dynamically during the execution of the firmware (by using the C malloc() routine or
similar). This area can be in turn organized in several sub-regions, according to the allocator used (in
the next chapter we will see how FreeRTOS provides several allocators to handle dynamic memory
allocation). The heap grows upwards (that is, the base address is the lowest in its region) and it has
a fixed maximum size.

Since every STM32 MCU has its own quantity of SRAM and flash, and since every program has
a variable number of instructions and variables, the dimension and location in memory of these
sections differ among several MCUs. Before we can see how to instruct the compiler to generate the
binary file for the specific MCU, we have to understand all the steps and tools involved during the
generation of object files.

²ELF is acronym for Executable and Linkable Format and it is a common standard file format for executable files, object code, shared
libraries, and core dumps. It is the typical file format of UNIX like systems (Linux andMacOS use this format too) andARMbased environments.

Memory layout 116

III Appendix

B. Troubleshooting guide
Here you can find common issues already reported from other readers. Before posting from any kind
of problem you can encounter, it is a good think to have a look here.

GNU MCU Eclipse Installation Issues

Several readers are reporting me issues in installing GNU MCU Eclipse plug-ins. During the
installation, Eclipse cannot access to the packages repository, and the following error appears:

This error is caused by Java, which does not support natively strong encryption due to limitations
to cryptographic algorithms in some countries. The workaround is described in this stackoverflow
answer: http://stackoverflow.com/a/38264878. Essentially, you need to download an additional
package (http://bit.ly/2jiC7GE) from the Java website; extract the “.zip” file and copy the content
of the UnlimitedJCEPolicyJDK8 directory inside the following dir:

• In Windows: C:\Program Files\Java\jre1.8.0_121\lib\security

• In Linux:/usr/lib/jvm/java-8-oracle/lib/security
• InMacOS: /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/jre/lib/se-
curity

Restart Eclipse. You should be able to install GNU MCU Eclipse plug-ins now.

Eclipse related issue

This section contains a list of frequently issues related with the Eclipse IDE.

B. Troubleshooting guide 119

Eclipse cannot locate the compiler

This is a problem that happens frequently onWindows. Eclipse cannot find the compiler installation
folder, and it generates compiling errors like the ones shown below.

This happens because the GNU MCU plug-in cannot locate the GNU cross-compiler folder. To
address this issue, open the Eclipse preferences clicking on theWindow->Preferences menu, then
go to C/C++->Build->Global Tools Paths section. Ensure that the Build tools folder path points to
the directory containing the Build Tools (C:\STM32Toolchain\Build Tools\bin if you followed the
instructions in Chapter 3, or arrange the path accordingly), and the Toolchain folder paths point to
the GCC ARM installation folder (C:\STM32Toolchain\gcc-arm\bin). The following image shows
the right configuration:

C. Nucleo pin-out
In the next paragraphs, you can find the correct pin-out for all Nucleo boards. The pictures are taken
from the mbed.org website³.

Nucleo Release
Nucleo-G474RE
Nucleo-F446RE
Nucleo-F401RE
Nucleo-F303RE
Nucleo-F103RB
Nucleo-F072RB
Nucleo-L476RG
Nucleo-L152RE
Nucleo-L073RZ

³https://developer.mbed.org/platforms/?tvend=10

https://developer.mbed.org/platforms/?tvend=10
https://developer.mbed.org/platforms/?tvend=10

C. Nucleo pin-out 121

Nucleo-G474RE

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 122

Nucleo-F446RE

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 123

Nucleo-F401RE

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 124

Nucleo-F303RE

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 125

Nucleo-F103RB

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 126

Nucleo-F072RB

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 127

Nucleo-L476RG

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 128

Nucleo-L152RE

Arduino compatible headers

Morpho headers

C. Nucleo pin-out 129

Nucleo-L073R8

Arduino compatible headers

Morpho headers

D. Differences with the 1st edition
The next paragraphs report all differences between the 1st and 2nd edition of the book.

Chapter 1

• New paragraphs about:
– ARM TrustZone
– STM32G0, STM32G4, STM32L5, STM32U5 families
– Minor modifications to the text removing no longer updated information and adapting
some parts to more recent evolutions of the STM32 portfolio

• Updated paragraphs about:
– STM32F7 and STM32H7 series

Chapter 2

Chapter 2 was completely rewritten to cover STM32CubeIDE installation on Windows, MacOS and
Linux.

Chapter 3 and 4

Chapter 3 and 4 were completely rewritten according to the project generation procedure of the
STM32CubeIDE tool-chain and the new STM32CubeMX 6.x

Chapter 5

Chapter 5 was completely rewritten to cover STM32CubeIDE debug capabilities. The first edition
of the book was based on the usage of OpenOCD acting as GDB server. While the STM32CubeIDE
still offers the possibility to use OpenOCD as alternative to the ST-LINK GDB Server, I cannot see
any notably reason to not use the official ST tooling. Finally, the I/O retargeting (that is, the usage
of standard C printf()/scanf() routines) is now shown in this chapter instead of the Chapter 8.

D. Differences with the 1st edition 131

Chapter 6

Chapter 6 was adapted so that all examples, figures and tables are related to the STM32F072RBMCU,
since the STM32F030 is no longer used as platform for book examples.
Fixed some errors in the text.

Chapter 7

Chapter 7 was updated to cover some feature of the Cortex-M33 cores, used on STM32U5 and
STM32L5 families.
Fixed some errors in the text.

Chapter 8

Chapter 8 was updated to cover more recent CubeMX features. Example 3 was improved with a
better implementation of the circular buffer. Fixed some errors in the text.

Chapter 9

Chapter 9 was updated to cover recent STM32 MCUs with the more advanced DMAMUX module.
All examples were updated accordingly.
The Chapter was updated to cover more recent CubeMX features.
Fixed some errors in the text.

Chapter 10

Chapter 10 was updated with all recent STM32 MCUs. Moreover, the new Nucleo-64 boards with
integrated ST-LINK v3 debugger are documented in a separated section.
The Chapter was updated to cover more recent CubeMX features.
Fixed some errors in the text.

Chapter 11

Chapter 11 was updated to cover more recent CubeMX features. Some examples were improved
with a better implementation. Fixed some errors in the text.

D. Differences with the 1st edition 132

Chapter 12-22

Chapters 12-22 were updated to cover more recent CubeMX features and more recent STM32 MCUs.
Fixed several errors in the text.

Chapter 23

Chapter 23 was updated to cover FreeRTOS 10.x features and the new CMSIS-RTOS v2 layer.
Moreover, some new advanced topics have been added. For example, it is now deeply explained
how to configure the project to enable re-entrancy of the newlib C run-time library.

Chapter 24

Chapter 24 was completely rewritten to cover the advanced debugging features offered by the
STM32CubeIDE tool-chain.

Chapter 25-26

Chapters 25-26 were updated to cover more recent CubeMX features and more recent STM32 MCUs.
Fixed several errors in the text.

Chapter 27

Chapters 27 is totally new.

Chapter 28

Chapters 28 were updated to cover more recent CubeMX features. Fixed several errors in the text.

	Table of Contents
	Preface
	Who Is This Book For?
	How to Integrate This Book?
	How Is the Book Organized?
	Differences With the First Edition
	About the Author
	Errata and Suggestions
	Book Support
	How to Help the Author
	Copyright Disclaimer
	Credits

	Acknowledgments to the First Edition
	I Introduction
	Introduction to STM32 MCU Portfolio
	Introduction to ARM Based Processors
	Cortex and Cortex-M Based Processors
	Core Registers
	Memory Map
	Bit-Banding
	Thumb-2 and Memory Alignment
	Pipeline
	Interrupts and Exceptions Handling
	SysTimer
	Power Modes
	TrustZoneTM
	CMSIS
	Effective Implementation of Cortex-M Features in the STM32 Portfolio

	Introduction to STM32 Microcontrollers
	Advantages of the STM32 Portfolio….
	….And Its Drawbacks

	A Quick Look at the STM32 Subfamilies
	F0

	Get In Touch With SM32CubeIDE
	Why Choose STM32CubeIDE as Tool-Chain for STM32
	Two Words About Eclipse…
	… and GCC

	Downloading and Installing the STM32CubeIDE
	Windows - Installing the Tool-Chain
	Linux - Installing the Tool-Chain
	Mac - Installing the Tool-Chain

	STM32CubeIDE overview

	Hello, Nucleo!
	Create a Project
	Adding Something Useful to the Generated Code
	Connecting the Nucleo to the PC
	ST-LINK Firmware Upgrade

	Flashing the Nucleo using STM32CubeProgrammer

	STM32CubeMX Tool
	Introduction to CubeMX Tool
	Target Selection Wizard
	MCU/MPU Selector
	Board Selector
	Example Selector
	Cross Selector

	MCU and Middleware Configuration
	Pinout View & Configuration
	Clock Configuration View

	Project Manager
	Tools View

	Understanding Project Structure
	Downloading Book Source Code Examples

	Introduction to Debugging
	What is Behind a Debug Session
	Debugging With STM32CubeIDE
	Views in the Debug Perspective
	Debug Configurations

	II Diving into the HAL
	GPIO Management
	STM32 Peripherals Mapping and HAL Handlers

	Interrupts Management
	NVIC Controller
	Vector Table in STM32

	Universal Asynchronous Serial Communications
	Introduction to UARTs and USARTs

	Memory layout
	The STM32 Memory Layout Model
	Flash Memory Typical Organization
	SRAM Memory Typical Organization

	III Appendix
	B. Troubleshooting guide
	GNU MCU Eclipse Installation Issues
	Eclipse related issue
	Eclipse cannot locate the compiler

	C. Nucleo pin-out
	Nucleo-G474RE
	Arduino compatible headers
	Morpho headers

	Nucleo-F446RE
	Arduino compatible headers
	Morpho headers

	Nucleo-F401RE
	Arduino compatible headers
	Morpho headers

	Nucleo-F303RE
	Arduino compatible headers
	Morpho headers

	Nucleo-F103RB
	Arduino compatible headers
	Morpho headers

	Nucleo-F072RB
	Arduino compatible headers
	Morpho headers

	Nucleo-L476RG
	Arduino compatible headers
	Morpho headers

	Nucleo-L152RE
	Arduino compatible headers
	Morpho headers

	Nucleo-L073R8
	Arduino compatible headers
	Morpho headers

	D. Differences with the 1st edition
	Chapter 1
	Chapter 2
	Chapter 3 and 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12-22
	Chapter 23
	Chapter 24
	Chapter 25-26
	Chapter 27
	Chapter 28

