Mastering MVVM
With Swift

Written by Bart Jacobs

Mastering MVVM With Swift

Bart Jacobs
This book is for sale at http://leanpub.com/mastering-mvvm-with-swift

This version was published on 2017-11-29

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2017 Code Foundry BVBA

http://leanpub.com/mastering-mvvm-with-swift
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Welcome e 1
Xcode9and Swift4d 1
WhatYou'lllLearn 1
HowtoUseThisBook 2

1IsMVCDead e 4
WhatlIsIt? e 6
Advantages 10
Problems e 11
AnExample e 11
How CanWe Solve This?. 12

2HowDoesMVVMWork 15
Advantagesof MVWM 16
BasicRules 17
It's Timeto Refactor 23

3MeetCloudy 24
Application Architecture Lo oo 28

4 What Is Wrong WithCloudy 44
Day View Controller, 44
Week View Controller 46
Locations View Controller 48
Settings View Controller, 48

What's Next e e e e e e 49

Welcome

Welcome to Mastering MVVM With Swift. I'm glad to see you here. In
this book, you learn the ins and outs of the Model-View-ViewModel
pattern. The goal of this book is to provide you with the ingredients
you need to implement the Model-View-ViewModel pattern in your own
projects.

Xcode 9 and Swift 4

This book uses Xcode 9 and Swift 4. If you want to follow along, make
sure you have Xcode 9 installed on your machine.

What You'll Learn

This book covers much more than the Model-View-ViewModel pattern.
We start with an overview of the Model-View-ViewModel pattern and we
compare it with the popular Model-View-Controller pattern, a pattern
you're probably already familiar with.

In the remainder of the book, we refactor Cloudy, a weather application
powered by the Model-View-Controller pattern. We refactor Cloudy to
use the Model-View-ViewModel pattern instead. This will show you how
to apply the Model-View-ViewModel pattern in a production application.
The refactoring operation will show you exactly what needs to change to
move from MVC to MVVM, highlighting the benefits and challenges that
go with this migration.

Along the way, you learn what view models are, how to create them, and
how to use them in view controllers. We further simplify the view con-
trollers of the project using protocol-oriented programming. Protocols
and MVVM work very well together.

Welcome 2

Later in the book, we write unit tests for the view models we created. One
of the key benefits of the Model-View-ViewModel pattern is improved
testability and that's something | want to show you first-hand. Writing
unit tests for view models is really easy.

The Model-View-ViewModel pattern really shines with the help of bind-
ings. | first show you how to create a custom bindings solution. This is
an important step as it will show you how the Model-View-ViewModel
pattern and bindings work under the hood.

Later in the book, we take it a step further by taking advantage of RxSwift
and RxCocoa. You don't need to be familiar with reactive programming
to understand these chapters. We primarily focus on the Model-View-
ViewModel pattern and how it plays together with bindings. The Model-
View-ViewModel pattern works with any bindings solution.

We end this book with a quick recap of what we gained from using the
Model-View-ViewModel pattern instead of the Model-View-Controller
pattern. The changes we apply to Cloudy are pretty dramatic and I'm
sure you'll appreciate the benefits the Model-View-ViewModel pattern
has to offer.

This book covers a lot of ground, but I'm here to guide you along the
way. If you have any feedback or questions, reach out to me via email
(bart@cocoacasts.com) or Twitter (@_bartjacobs). I'm here to help.

How to Use This Book

If you'd like to follow along, | recommend downloading the source files
that come with this book. The chapters that include code each have a
starter project and a finished project. This makes it easy to follow along
or pick a random chapter from the book. If you'’re new to the Model-
View-ViewModel pattern, then | recommend reading every chapter of
the book.

Not everyone likes books. If you prefer video, then you may be interested
in a video course in which | teach the Model-View-ViewModel pattern.

Welcome 3

The content is virtually identical. The only difference is that you can see
how | refactor Notes using the Model-View-ViewModel pattern. You can
find the video course on the Cocoacasts website'.

! https://cocoacasts.com/mastering-model-view-viewmodel-with-swift/

https://cocoacasts.com/mastering-model-view-viewmodel-with-swift/
https://cocoacasts.com/mastering-model-view-viewmodel-with-swift/

11s MVC Dead

Model-View-Controller, or MVC for short, is a widely used design
pattern for architecting software applications. Cocoa applications are
centered around the Model-View-Controller pattern and many of Apple’s
frameworks make heavy use of the Model-View-Controller pattern.

Last year, | was working on the next major release of Samsara?, a
meditation application I've been developing for the past few years. The
settings view is an important aspect of the application.

2 https://itunes.apple.com/app/samsara-meditation-yoga-timer/id592333521?mt=8

https://itunes.apple.com/app/samsara-meditation-yoga-timer/id592333521?mt=8
https://itunes.apple.com/app/samsara-meditation-yoga-timer/id592333521?mt=8

1 1s MVC Dead

Profile
Time

20:00

Audio

Silent

Sessions (2)

Open Sessions

Warm Up

Enabled

015

Cool Down

Enabled
1:00
Bells

Name

Samsara'’s Settings View

Done

W,

Tibetan Bell High

From the perspective of the user, the settings view is nothing more than
a collection of controls, labels, and buttons. Under the hood, however,
lives a fat view controller responsible for managing the content of the
table view and the data that's fed to the table view.

Table views are flexible and cleverly designed. A table view asks its data
source for the data it needs to present and it delegates user interaction
to its delegate. That makes them incredibly reusable. Unfortunately, the
more the table view gains in complexity, the more unwieldy the data

source becomes.

1 Is MVC Dead 6

Table views are a fine example of the Model-View-Controller pattern in
action. The model layer hands the data source (mostly a view controller)
the data the view layer (the table view) needs to display. But table views
alsoillustrate how the Model-View-Controller pattern can, and very often
does, fall short. Before we take a closer look at the problem, I'd like to
take a brief look at the Model-View-Controller pattern. What is it, what
makes it so popular, and, more importantly, what are its drawbacks?

What s It?

The MVC pattern breaks an application up into three components or
layers:

+ Model
* View
« Controller

Model

The model layer is responsible for the business logic of the application.
It manages the application state. This also includes reading and writing
data, persisting application state, and it may even include tasks related
to data management, such as networking and data validation.

1 Is MVC Dead 7

The M In MVC

View
The view layer has two important tasks:

* presenting data to the user
 handling user interaction

A core principle of the MVC pattern is the view layer's ignorance with
respect to the model layer. Views are dumb objects. They only know how
to present data to the user. They don't know or understand what they're
presenting. This makes them flexible and easy to reuse.

1 Is MVC Dead 8

The VIn MVC

Controller

The view layer and the model layer are glued together by one or
more controllers. In an iOS application, that glue is a view controller,
an instance of the ulviewController class or a subclass thereof. In a
macOS application, that glue is a window controller, an instance of the
NSWindowController class or a subclass thereof.

1 Is MVC Dead 9

(View) Controller

The C In MVC

A controller knows about the view layer as well as the model layer.
This often results in tight coupling, making controllers the least reusable
components of an application based on the Model-View-Controller pat-
tern. The view and model layers don't know about the controller. The
controller owns the views and the models it interacts with.

1 Is MVC Dead 10

(View) Controller

<+«—— 0OWNs
........ » talks to

Model-View-Controller in a Nutshell

Advantages

Separation of Concerns

The advantage of the MVC pattern is a clear separation of concerns.
Each layer of the Model-View-Controller pattern is responsible for a
clearly defined aspect of the application. In most applications, there's
no confusion about what belongs in the view layer and what belongs in
the model layer.

What goes into controllers is often less clear. The result is that controllers
are frequently used for everything that doesn’t clearly belong in the view
layer or the model layer.

1 1s MVC Dead 11

Reusability

While controllers are often not reusable, view and model objects are
mostly easy to reuse. If the Model-View-Controller pattern is correctly
implemented, the view layer and the model layer should be composed
of reusable components.

Problems

If you've spent any amount of time reading books or tutorials about iOS
or macOS development, then you've probably come across people com-
plaining about the Model-View-Controller pattern. Why is that? What's
wrong with the Model-View-Controller pattern?

A clear separation of concerns is great. It makes your life as a developer
easier. Projects are easier to architect and structure. But that's only part
of the story. A lot of the code you write doesn't belong in the view layer or
the model layer. No problem. Dump it in the controller. Problem solved.
Right? Not really.

An Example

Data formatting is a common task. Imagine that you're developing an
invoicing application. Each invoice has a creation date. Depending on
the locale of the user, the date of an invoice needs to be formatted
differently.

1 Is MVC Dead 12

Model

Controller

Invoice

Creation Date

Creation Date

|

Invoice

July 14 2016 July 14 2016

An Example

The creation date of an invoice is stored in the model layer and the
view displays the formatted date. That's obvious. But who's responsible
for formatting the date? The model? Maybe. The view? Remember that
the view shouldn't need to understand what it's presenting to the user.
But why should the model be responsible for a task related to the user
interface?

Wait a minute. What about our good old controller? Sure. Dump it in the
controller. After thousands of lines of code, you end up with a bunch of
overweight controllers, ready to burst and impossible to test. Isn't MVC
the best thing ever?

How Can We Solve This?

In recent years, another pattern has been gaining traction in the Cocoa
community. It's commonly referred to as the Model-View-ViewModel?

3https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmode|

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

1 Is MVC Dead 13

pattern, MVVM for short. The origins of the MVVM pattern lead back
to Microsoft’'s .NET* framework and it continues to be used in modern
Windows development.

How does the Model-View-ViewModel pattern solve the problem we de-
scribed earlier? The Model-View-ViewModel pattern introduces a fourth
component, the view model. The view model is responsible for man-
aging the model and funneling the model's data to the view via the
controller. This is what that looks like.

MVC

<+«— 0OWNSs
........ » talks to

Model-View-ViewModel in a Nutshell

Despite its name, the MVVM pattern includes four components or layers:

* Model

* View

* View Model
« Controller

4https://en.Wikipedia.org/wiki/,NET_Fra mework

https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Framework

1 Is MVC Dead 14

The implementation of a view model is often straightforward. All it does
is translate data from the model to values the view layer can display. The
controller is no longer responsible for this ungrateful task. Because view
models have a close relationship with the models they consume, they're
often considered more model than view.

In the next chapter, we take a closer look at the internals of the Model-
View-ViewModel pattern.

2 How Does MVVM Work

In this chapter, we take a closer look at the internals of the Model-View-
ViewModel pattern. We explore what MVVM is and how it works.

Remember form the previous chapter that the Model-View-ViewModel
pattern consists of four components or layers:

* Model

* View

« View Model
« Controller

. — .
View Model < View Controller

<«—— 0OWNS
........ » talks to

The Model-View-ViewModel Pattern in A Nutshell

Keep this diagram in mind. Let's start by taking a look at the advantages
MVVM has over MVC. Why would you even consider trading the Model-
View-Controller pattern for the Model-View-ViewModel pattern?

2 How Does MVVM Work 16

Advantages of MVVM

We already know that the Model-View-Controller pattern has a few flaws.
With that in mind, what are the advantages MVVM has over MVC?

Better Separation of Concerns

Let me start by asking you a simple question. What do you do with code
that doesn't fit or belong in the view or model layer? Do you put it in the
controller layer? Don't feel guilty, though. This is what most developers
do. The problem is that it inevitably leads to fat controllers that are
difficult to test and manage.

The Model-View-ViewModel pattern presents a better separation of
concerns by adding view models to the mix. The view model translates
the data of the model layer into something the view layer can use. The
controller layer is no longer responsible for this task.

Improved Testability

View (i0S) and window (macOS) controllers are notoriously hard to test
because of their close relation to the view layer. By migrating some
responsibilities, such as data manipulation, to the view model, testing
becomes much easier. As you'll learn in this book, testing view models is
surprisingly easy. Testing? Easy? Absolutely.

Because a view model doesn’t have a reference to the view controller
that owns it, it's easy to write unit tests for a view model. Another benefit
of MVVM is improved testability of view and window controllers. The
controller no longer depends on the model layer, which makes them
easier to test.

Transparent Communication

The responsibilities of the controller are reduced to controlling the
interaction between the view and model layer. The view model provides

2 How Does MVVM Work 17

a transparent interface to the view controller, which it uses to populate
the view layer and interact with the model layer. This results in a
transparent communication between the four components or layers of
your application.

Basic Rules

Before we start implementing the Model-View-ViewModel pattern in an
application, I'd like to highlight six key elements that define the Model-
View-ViewModel pattern. | sometimes refer to these as rules. But once
you understand how the Model-View-ViewModel pattern does its magic,
it's fine to bend or break some of these rules.

Rule #1

First, the view doesn’'t know about the view controller it's owned by.
Remember that views are supposed to be dumb. They only know how
to present what they're given by the view controller to the user. This is a
rule you should never break. Ever.

2 How Does MVVM Work 18

#1

View Controller

<+«—— 0OwWns

The view doesn’t know about the view controller it's owned by.

Rule #2

Second, the view or window controller doesn't know about the model.
This is something that separates MVC from MVVM.

2 How Does MVVM Work 19

#2

— View Model — View Controller

<+«—— 0OwWns

The view controller doesn’t know about the model.

Rule #3

The model doesn't know about the view model it's owned by. This is
another rule that should never be broken. The model should have no

clue who it's owned by.

2 How Does MVVM Work 20

View Model

<+«—— 0OwWns

The model doesn’t know about the view model it's owned by.

Rule #4

The view model owns the model. In a Model-View-Controller application,
the model is usually owned by the view or window controller.

2 How Does MVVM Work 21

#4

View Model

<+«—— 0OwWns

The view model owns the model.

Rule #5

The view or window controller owns the view or window. This relation-
ship remains unchanged.

2 How Does MVVM Work 22

#5

View Controller

<+«—— 0OwWns

The view controller owns the view.

Rule #6

And finally, the controller owns the view model. It interacts with the
model layer through one or more view models.

2 How Does MVVM Work 23

#60

View Model View Controller

<+«—— 0OwWns

The controller owns the view model.

It's Time to Refactor

You now know enough about the Model-View-ViewModel pattern to use
itin an application. In the remainder of this book, we refactor an existing
application. The application is powered by the Model-View-Controller
pattern and we refactor it in such as way that it uses the Model-View-
ViewModel pattern instead. Let’s get started.

3 Meet Cloudy

In the remainder of this book, we're going to refactor an application
that's built with MVC and make it adopt MVVM instead. This will teach
you two important lessons:

* What are the shortcomings of MVC?
* How can MVVM help resolve these shortcomings?

The application we're going to refactor is Cloudy. Cloudy is a lightweight
weather application that shows the user the weather of their current
location or a saved location. It shows the current weather conditions and
a forecast for the next few days. The weather data is retrieved from the
Dark Sky API°, an easy-to-use weather service.

5https://darksky.net/dev/

https://darksky.net/dev/
https://darksky.net/dev/

3 Meet Cloudy 25

Carrier 4:48 PM < (@) 4
Mon, July 10
4 04:48 PM {é}
]
. _
615 °F -O- 4 MPH
L ardl
[]
Clear

Monday
July 10

56° - 87°

Tuesday
July 11

5 MPH
56° - 80° 5 MPH
Wednesday
July 12
55° - 84° 5 MPH

4 MPH

Thursday
July 13

56° - 86°

Friday
July 14

Meet Cloudy

The user can add locations and switch between locations by bringing up
the locations view controller.

3 Meet Cloudy

Carrier & 4:51 PM

o Locations

CURRENT LOCATION

37.332, -122.031

FAVORITE LOCATIONS

Brussels
New York
London

New Delhi

Managing Locations

1

Done

26

3 Meet Cloudy 27

Carrier & 4:52 PM T ¥
£ Locations Add Location
Q. Toronto [x)]
Toronto

Adding Locations

Cloudy has a settings view to change the time notation, the application’s
units system, and the user can switch between degrees Fahrenheit and
degrees Celcius.

3 Meet Cloudy 28

Carrier & 4:49 PM I 4

Settings

12 Hour

24 Hour

Imperial

Metric

Fahrenheit

Celcius

Managing the Application’s Settings

Application Architecture

In this chapter, | walk you through the source code of Cloudy. You can
follow along by opening the project of this chapter.

Storyboard

The main storyboard is the best place to start. You can see that we have
a container view controller with two child view controllers. The top child

3 Meet Cloudy 29

view controller shows the current weather conditions, the bottom child
view controller displays the forecast for the next few days in a table view.

[] [] » Cloudy) B Cheetah Finished running Cloudy on iPhone
H < & Cloudy Cloudy Storyboards. Main.storyboard : No Selection

Pratotype Cells

50%

Cloudy’s Main Storyboard

] Viewas:iPhone7 («C 1R}

If the user taps the location button in the top child view controller (top
left), the locations view controller is shown. The user can switch between

locations and add new locations using the add location view controller.

3 Meet Cloudy 30

Storyboards | - Main s1oryboard) No Selestion

Label Prototype Cells

Label

[Viewas:iPhone 7 (- (R) 100%

Cloudy’s Main Storyboard

If the user taps the settings button in the top child view controller (top
right), the settings view controller is shown. This is another table view

listing the options we discussed earlier.

3 Meet Cloudy 31

Label Prototype Cells

Label

[Viewas:iPhone 7 (- (R)

Cloudy’s Main Storyboard

View Controllers

If we open the View Controllers group in the Project Navigator, we can

see the view controller classes that correspond with what | just showed
you in the storyboard.

3 Meet Cloudy

32

o0e »p Cl.y ; W Cheetah Cloudy | Build Cloudy: Succeeded | 6.248s = | @ <O B
BER QA G =o B B B Clouay
v & Cloudy [General Resource Tags Info Build Settings Build Phases Build |
v Cloudy
PROJECT
> Application Delegate) » Identity
¥ || Root View Controller TRRGETS ¥ Signing
s RootViewController.swift Cloudy
¥ [SettingsViewController ¥ Deployment Info
s SettingsViewController.swift Setiaymeitiirgdt “
» [Table View Cells
¥ [Weather View Controllers Devices iPhone H
s DayViewController.swift " ——
Main Interface Main i
» WeekViewController.swift
» WeatherViewController.swift Device QOrientation Portrait
> Table View Cells Upside Down
v Locations View Controller Landscape Left
s LocationsViewController.swift Landscape Right
> B8 Protocols Status Bar Style Default |7
> View Models
» [Table View Celis Hide status bar
¥ || Add Location View Controller Requires full screen
< AddLocationViewController.swift
»> Configuration ¥ App lcons and Launch Images
» [storyboards App Icons Source Applcon B
> Extensions
> Resources Launch Images Source Use Asset Catalog...
P I Managers Launch Sereen File LaunchSereen [~]
| Protocols
2 Models ¥ Embedded Binaries
> Supporting Files
> Products
+[® oHE|+ - [©

Cloudy’s View Controllers

The RootviewController classis the container view controller. The bayview-
Controller is the top cild view controller and the weekviewController is
the bottom child view controller. The weatherViewController class is the
superclass of the bayviewController and the weekViewController.

Root View Controller
The root view controller is responsible for several tasks:
+ it fetches the weather data

* it fetches the current location of the user’'s device
* it sends the weather data to its child view controllers

O© 00 9 O O b W N =

RN
N =~ O

3 Meet Cloudy 33

The root view controller delegates the fetching of the weather data to
the DataManager class. This class sends the request to the Dark Sky APl and
converts the JSON response to model objects. | use a simple, lightweight
JSON parser for this task. The implementation of the JSON parser and
the DataManager class are unimportant for this discussion.

In the completion handler of the weatherDataForLocation(latitude: longitude:complet
method of the RootviewController class, the weather data is sent to the
day view controller and the week view controller.

RootViewController.swift

dataManager .weatherDataForLocation(latitude: latitude, longitude: 1lo\
ngitude) { (response, error) in
if let error = error {
print(error)
} else if let response = response {
// Configure Day View Controller
self.dayViewController.now = response

// Configure Week View Controller
self.weekViewController.week = response.dailyData

Model Objects

The model objects we'll be working with are Location, WeatherData and
WeatherDayData. YOu can find them in the Models group.

3 Meet Cloudy

o0e » Cl.y ; W Cheetah

BERQAO=o B
v & Cloudy
v Cloudy

[General

PROJECT
» | Application Delegate

> Configuration TARGETS
Storyboards Cloudy
Extensions
Resources
Managers
Protocols
Models

4 v vVYYYY

= Location.swift
3 WeatherData.swift
s WeatherDayData.swift
> Supporting Files
> Products

+ |© OH|[+ - @

Cloudy | Build Cloudy: Succeeded | 6.248s

=] & Cloudy

Resource Tags Info Build Settings

» ldentity
» Signing
¥ Deployment Info
Deployment Target
Devices iPhone
Main Interface Main

Device Orientation Portrait
Upside Down
Landscape Left
Landscape Right

Status Bar Style Default

Hide status bar

Requires full screen
¥ App lcons and Launch Images
App Icons Source Applcon
Launch Images Source Use Asset Catalog...

Launch Screen File LaunchScreen

¥ Embedded Binaries

Model Objects

< Oa O
Build Phases Build |
]
B
B

The Location structure makes working with locations a bit easier. There's
no magic involved. The weatherData and weatherDayData Structures contain
the weather data that's fetched from the Dark Sky API. Notice that a
WeatherData Object contains an array of weatherDayData instances.

WeatherData.swift

1

3 Meet Cloudy 35

import Foundation
struct WeatherData {
let time: Date

let lat: Double

let long: Double

let windSpeed: Double
let temperature: Double

let icon: String
let summary: String

let dailyData: [WeatherDayData]

The current weather conditions are stored in the weatherData Object and
the forecast for the next few days is stored in an array of weatherDayData
objects.

The root view controller only hands the week view controller the array
of weatherDayData objects, which it displays in a table view.

WeekViewController.swift

var week: [WeatherDayData]?

The day view controller receives the weatherData object from the root view
controller.

DayViewController.swift

var now: WeatherData?

O = W N =

© 00 = O U b W N =

[
W N =~

3 Meet Cloudy 36

Day View Controller

The now property of the DayviewController class stores the weatherData
object. Every time this property is set, the user interface is updated with
new weather data by invoking updateview().

DayViewController.swift

var now: WeatherData? {

didSet {
updateView()

Inupdateview(), we hide the activity indicator view and update the weather
data container, this is nothing more than a view that contains the views
displaying the weather data.

DayViewController.swift

private func updateView() {

activityIndicatorView.stopAnimating()

if let now = now {
updateWeatherDataContainer (withWeatherData: now)

} else {
messagelabel .isHidden = false
messagelabel .text = "Cloudy was unable to fetch weather data\

The implementation of updateWeatherDataContainer (withWeatherData:) iS a

classic example of the Model-View-Controller pattern. The model object

0 N O O & W N =

W W N DNDNDNDDNDMDNDMDNNNDMNNASEAS APPSR
O O 0 N O O b WO N O O 00 N O O b WN -~ O O

3 Meet Cloudy 37

is torn apart and the raw values are transformed and formatted for
display to the user.

DayViewController.swift

private func updateWeatherDataContainer(withWeatherData weatherData:\
WeatherData)

e)

e)

weatherDataContainer.isHidden = false

var windSpeed = weatherData.windSpeed
var temperature = weatherData.temperature

let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "EEE, MMMM 4"

datelLabel .text = dateFormatter.string(from: weatherData.time)

let timeFormatter = DateFormatter()

if UserDefaults.timeNotation() == .twelveHour ({
timeFormatter.dateFormat = "hh:mm a"

} else {
timeFormatter.dateFormat = "HH:mm"

}

timelLabel .text = timeFormatter.string(from: weatherData.time)

descriptionLabel.text = weatherData.summary

if UserDefaults.temperatureNotation() != .fahrenheit {
temperature = temperature.toCelcius()

temperaturelLabel .text = String(format: "%.1f °C", temperatur\

} else {
temperaturelLabel .text = String(format: "%.1f °F", temperatur\

32
33
34
35
36
37
38
39
40
41

O &= W N =

3 Meet Cloudy 38

if UserDefaults.unitsNotation() != .imperial {

windSpeed = windSpeed.toKPH()

windSpeedLabel .text = String(format: "%.f KPH", windSpeed)
} else {

windSpeedLabel .text = String(format: "%.f MPH", windSpeed)

iconImageView.image = imageForIcon(withName: weatherData.icon)

Week View Controller

The week view controller looks similar in several ways. The week property
stores the weather data and every time the property is set, the view
controller's view is updated with the new weather data by invoking
updateView().

WeekViewController.swift

var week: [WeatherDayData]? {
didSet {
updateView()

In updateview(), we stop the activity indicator view, stop refreshing the
refresh control, and invoke updatewWeatherDataContainer (withWeatherData:)
if there's weather data we need to show the user.

WeekViewController.swift

0 = O O b W N =~

S G
I I S I S (o)

O O b W N =

3 Meet Cloudy 39

private func updateView() {
activityIndicatorView.stopAnimating()
tableView.refreshControl?.endRefreshing()

if let week = week {
updateWeatherDataContainer (withWeatherData: week)

} else {
messagelabel .isHidden = false
messagelabel .text = "Cloudy was unable to fetch weather data\

IN updateWeatherDataContainer(withWeatherData:), we show the weather
data container, which contains the table view, and reload the table view.

WeekViewController.swift

private func updateWeatherDataContainer(withWeatherData weatherData:\
[WeatherDayData]) {
weatherDataContainer.isHidden = false

tableView.reloadData()

The most interesting aspect of the week view controller is the configu-
ration of table view cells in tableview(_:cellForRowAt:). In this method,
we dequeue a table view cell, fetch the weather data for the day that
corresponds with the index path, and populate the table view cell.

WeekViewController.swift

O N O O & W N~

W W W W W WNDNDDNDNDNDDNNMNNDNDNDNDNDDNDAS AP, 22, s
G b O NP O O 0 N O O WONPTHFO O 00 N0 Ok N~ ©

3 Meet Cloudy 40

func tableView(_ tableView: UITableView, cellForRowAt indexPath: Ind\
exPath) -> UITableViewCell {

guard let cell = tableView.dequeueReusableCell(withIdentifier: W\
eatherDayTableViewCell .reuseldentifier, for: indexPath) as? WeatherD\
ayTableViewCell else { fatalError("Unexpected Table View Cell") }

if let week = week {
// Fetch Weather Data
let weatherData = week[indexPath.row]

var windSpeed = weatherData.windSpeed
var temperatureMin = weatherData.temperatureMin

var temperatureMax = weatherData.temperatureMax

if UserDefaults.temperatureNotation() != .fahrenheit {

temperatureMin = temperatureMin.toCelcius()
temperatureMax = temperatureMax.toCelcius()

// Configure Cell
cell.daylLabel.text = dayFormatter.string(from: weatherData.t\

ime)
cell.datelLabel .text = dateFormatter.string(from: weatherData\
.time)

1o,

let min = String(format: "%.0f°", temperatureMin)

let max = String(format: "%.0f°", temperatureMax)

cell.temperaturelLabel .text = "\(min) - \(max)"

if UserDefaults.unitsNotation() != .imperial {
windSpeed = windSpeed.toKPH()
cell.windSpeedlLabel .text = String(format: "%.f KPH", win\
dSpeed)
} else {

36
37
38
39
40
41
42
43
44
45

3 Meet Cloudy 41

cell.windSpeedlLabel .text = String(format: "%.f MPH", win\
dSpeed)
}

cell.iconlmageView.image = imageForIcon(withName: weatherDat\
a.icon)

}

return cell

As in the day view controller, we take the raw values of the model
objects and format them before displaying the weather data to the user.
Notice that we use several if statements to make sure the weather
data is formatted based on the user’s preferences in the settings view
controller.

Locations View Controller

The locations view controller manages a list of locations and it displays
the coordinates of the device’s current location. If the user selects a
location from the list, Cloudy asks the Dark Sky API for that location’s
weather data and displays it in the weather view controllers.

The user can add a new location by tapping the plus button in the top
left. This summons the add location view controller. The user is asked to
enter the name of a city. Under the hood, the add location view controller
uses the Core Location framework to perform a forward geocoding
request. Cloudy is only interested in the coordinates of any matches the
Core Location framework returns.

Settings View Controller

Despite the simplicity of the settings view, the SettingsViewController
class is almost 200 lines long. Later in this book, we attempt to use the

0 < O O B W N =~

o I O O P+ W N =

[=Y
B W N =S O O

3 Meet Cloudy 42

Model-View-ViewModel pattern to make its implementation shorter and
more transparent.

The settingsViewController class has a delegate, which it notifies when-
ever a setting changes.

SettingsViewController.swift

protocol SettingsViewControllerDelegate {

func controllerDidChangeTimeNotation(controller: SettingsViewCon\
troller)

func controllerDidChangeUnitsNotation(controller: SettingsViewCo\
ntroller)

func controllerDidChangeTemperatureNotation(controller: Settings\
ViewController)

}

The root view controller is the delegate of the settings view controller
and it tells its child view controllers to reload their user interface when-
ever a setting changes.

RootViewController.swift

extension RootViewController: SettingsViewControllerDelegate {

func controllerDidChangeTimeNotation(controller: SettingsViewCon\
troller) ({
dayViewController.reloadData()
weekViewController.reloadData()

func controllerDidChangeUnitsNotation(controller: SettingsViewCo\
ntroller) {
dayViewController.reloadData()
weekViewController.reloadData()

15
16
17
18
19
20
21

O© 00 9 O O P W N =~

RGN
= o

3 Meet Cloudy 43

func controllerDidChangeTemperatureNotation(controller: Settings\
ViewController) ({
dayViewController.reloadData()
weekViewController.reloadData()

Time to Write Some Code

That's all you need to know about Cloudy for now. In the next chapter,
we focus on several aspects in more detail and discuss which bits we
plan to refactor with the help of the Model-View-ViewModel pattern.

If you want to run Cloudy, you need to add your Dark Sky API key to
Configuration.swift. Signing up for a developer account is free and it
only takes a minute.

Configuration.swift

struct API {

static let APIKey = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
static let BaseURL = URL(string: "https://api.darksky.net/foreca\
st/")!

static var AuthenticatedBaseURL: URL {
return BaseURL.appendingPathComponent (APIKey)

O = W N =

4 What Is Wrong With Cloudy

Now that you have an idea of the ins and outs of Cloudy, I'd like to
take a few minutes to highlight some of Cloudy’s issues. Keep in mind
that Cloudy is a small project. The problems we're going to fix with the
Model-View-ViewModel pattern are less apparent, which is why I'd like
to highlight them before we fix them.

Day View Controller

We start with the day view controller. The first thing to point out is
that the view controller keeps a reference to the model. This is a classic
example of the Model-View-Controller pattern. Even though there isn't
anything inherently wrong with this, when we adopt the Model-View-
ViewModel pattern, this will change.

DayViewController.swift

var now: WeatherData? {
didSet {
updateView()
}

The second and most important problem is the implementation of
the updateWeatherDataContainer (withWeatherData:) method. Thisis another
pattern that's typical for the Model-View-Controller pattern. The raw
values of the model data are transformed and formatted before they're
displayed to the user.

DayViewController.swift

4 What Is Wrong With Cloudy

private func updateWeatherDataContainer(withWeatherData weatherData:\

WeatherData) {

weatherDataContainer.isHidden = false

var windSpeed = weatherData.windSpeed
var temperature = weatherData.temperature

let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "EEE, MMMM 4"

datelLabel .text = dateFormatter.string(from: weatherData.time)

let timeFormatter = DateFormatter()

if UserDefaults.timeNotation() == .twelveHour {
timeFormatter.dateFormat = "hh:mm a"
} else {

timeFormatter.dateFormat "HH :mm"

timelLabel .text = timeFormatter.string(from: weatherData.time)

descriptionLabel .text = weatherData.summary

if UserDefaults.temperatureNotation() != .fahrenheit {
temperature = temperature.toCelcius()

temperaturelLabel . text

} else {

temperaturelabel .text = String(format: "%.1f °F", temperatur\

if UserDefaults.unitsNotation() != .imperial {
windSpeed = windSpeed.toKPH()
windSpeedLabel .text = String(format: "%.f KPH", windSpeed)

String(format: "%.1f °C", temperatur\

45

36
37
38
39
40
41

O = W N =

4 What Is Wrong With Cloudy 46

} else {
windSpeedLabel .text = String(format: "%.f MPH", windSpeed)

}

iconImageView.image = imageForIcon(withName: weatherData.icon)

}

Should the view controller be in charge of this task? Maybe. Maybe not.
But is there a more elegant solution? Absolutely.

If we adopt the Model-View-ViewModel pattern, the view controller will
no longer be responsible for data manipulation. Moreover, the view
controller won't know about and have direct access to the model. It will
receive a view model from the root view controller and use the view
model to populate its view. That's the task it was designed for, controlling
a view.

Week View Controller

The week view controller suffers from the same problems. It keeps a
strong reference to the array of weatherDayData Objects and uses them to
populate the table view.

WeekViewController.swift

var week: [WeatherDayData]? {
didSet {
updateView()
}
}

Inthe tableview(cellForRowAt:) method, aweatherDayData instance is fetched
from the array and it's used to populate a table view cell. The raw
values of the model data are transformed and formatted before they're
displayed to the user.

WeekViewController.swift

O N O O & W N~

W W W W W WNDNDDNDNDNDDNNMNNDNDNDNDNDDNDAS AP, 22, s
G b O NP O O 0 N O O WONPTHFO O 00 N0 Ok N~ ©

4 What Is Wrong With Cloudy 47

func tableView(_ tableView: UITableView, cellForRowAt indexPath: Ind\
exPath) -> UITableViewCell {

guard let cell = tableView.dequeueReusableCell(withIdentifier: W\
eatherDayTableViewCell .reuseldentifier, for: indexPath) as? WeatherD\
ayTableViewCell else { fatalError("Unexpected Table View Cell") }

if let week = week {
// Fetch Weather Data
let weatherData = week[indexPath.row]

var windSpeed = weatherData.windSpeed
var temperatureMin = weatherData.temperatureMin

var temperatureMax = weatherData.temperatureMax

if UserDefaults.temperatureNotation() != .fahrenheit {

temperatureMin = temperatureMin.toCelcius()
temperatureMax = temperatureMax.toCelcius()

// Configure Cell
cell.daylLabel.text = dayFormatter.string(from: weatherData.t\

ime)
cell.datelLabel .text = dateFormatter.string(from: weatherData\
.time)

1o,

let min = String(format: "%.0f°", temperatureMin)

let max = String(format: "%.0f°", temperatureMax)

cell.temperaturelLabel .text = "\(min) - \(max)"

if UserDefaults.unitsNotation() != .imperial {
windSpeed = windSpeed.toKPH()
cell.windSpeedlLabel .text = String(format: "%.f KPH", win\
dSpeed)
} else {

36
37
38
39
40
41
42
43
44
45

4 What Is Wrong With Cloudy 48

cell.windSpeedlLabel .text = String(format: "%.f MPH", win\
dSpeed)
}

cell.iconlmageView.image = imageForIcon(withName: weatherDat\
a.icon)

}

return cell

}

We also see several if statements to make sure the raw values are
formatted correctly, based on the user’s preferences.

The Model-View-Controller pattern has a few other consequences. The
week view controller has a couple of properties of type DateFormatter to
format the model data that's displayed in the table view. If we use the
Model-View-ViewModel pattern, we can clean this up too. Whenever |
see aDateFormatter property in aview controller, | know it's time for some
refactoring.

Locations View Controller

Later in this book, we focus on the locations view controller. It will
show you how user interaction is handled by the Model-View-ViewModel
pattern. This is a bit more complicated. However, once you understand
the ins and outs of the Model-View-ViewModel pattern, this won't be
difficult to understand. | promise you that the result is pure elegance.

Settings View Controller

There doesn't seem to be anything wrong with the settings view con-
troller. It's true that it doesn’'t look too bad, but | assure you that it'll look
a lot better after we've given the settings view controller a facelift using
protocols and MVVM.

4 What Is Wrong With Cloudy 49

What's Next

In the next chapters, you create your very first view model. We start with
the view model for the day view controller.

	Table of Contents
	Welcome
	Xcode 9 and Swift 4
	What You'll Learn
	How to Use This Book

	1 Is MVC Dead
	What Is It?
	Advantages
	Problems
	An Example
	How Can We Solve This?

	2 How Does MVVM Work
	Advantages of MVVM
	Basic Rules
	It's Time to Refactor

	3 Meet Cloudy
	Application Architecture

	4 What Is Wrong With Cloudy
	Day View Controller
	Week View Controller
	Locations View Controller
	Settings View Controller
	What's Next

