

Mastering Core Data With Swift

Bart Jacobs

This book is for sale at
http://leanpub.com/mastering-core-data-with-swift

This version was published on 2017-11-29

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2017 Code Foundry BVBA

http://leanpub.com/mastering-core-data-with-swift
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Welcome . 1
Xcode 9 and Swift 4 . 1
What You’ll Learn . 1
How to Use This Book . 2

1 What Is Core Data . 3
Core Data Manages an Object Graph 3
When to Use Core Data . 4
Core Data & SQLite . 5
Core Data Goes Much Further . 5
Drawbacks . 5

2 Building Notes . 7

3 Exploring the Core Data Stack . 9
Managed Object Model . 10
Managed Object Context . 11
Persistent Store Coordinator . 12
How Does Core Data Work . 13

4 Creating the Project . 19

5 Setting Up the Core Data Stack 23
Managed Object Context . 29
Managed Object Model . 31
Persistent Store Coordinator . 32
Adding a Data Model . 35

CONTENTS

Setting Up the Core Data Stack . 39

Welcome
Welcome toMastering Core Data With Swift. In this book, you’ll learn
the ins and outs of Apple’s popular Core Data framework. Even though
we’ll be building an iOS application, the Core Data framework is available
on iOS, tvOS, macOS, and watchOS, and the contents of this book apply
to each of these platforms.

Xcode 9 and Swift 4

In this book, we use Xcode 9 and Swift 4. Xcode 8 and Swift 3 introduced
anumber of significant improvements thatmakeworkingwith CoreData
more intuitive and more enjoyable. Make sure to have Xcode 8 or Xcode
9 installed to follow along. Everything you learn in this book applies to
both Swift 3 and Swift 4.

What You’ll Learn

Before we start writing code, we take a look at the Core Data framework
itself. We find out what Core Data is and isn’t, and we explore the heart
of every Core Data application, the Core Data stack.

In this book, we build Notes, an iOS application that manages a list of
notes. Notes is a simple iOS application, yet it contains all the ingredients
we need to learn about the Core Data framework, from creating and
deleting records to managing many-to-many relationships.

We also take a close look at the brains of a Core Data application, the
datamodel. We discuss data model versioning andmigrations. These
concepts are essential for every Core Data application.

Welcome 2

Core Data records are represented by managed objects. You learn how
to create them, fetch them from a persistent store, and delete them if
they’re no longer needed.

Mastering Core Data With Swift also covers a few more advanced
topics. Even though these topics are more advanced, they’re essential if
you work with Core Data. We talk in detail about the NSFetchedResultsCon-

troller class and, at the end of this book, I introduce you to the brand
new NSPersistentContainer class, a recent addition to the framework.

Last but not least, we take a deep dive into Core Data and concurrency,
an often overlooked topic. This is another essential topic for anyone
working with Core Data. Don’t skip this.

That’s a lot to cover, but I’m here to guide you along the way. If you have
any feedback or questions, reachout tome via email (bart@cocoacasts.com)
or Twitter (@_bartjacobs). I’m here to help.

How to Use This Book

If you’d like to follow along, I recommend downloading the source files
that come with this book. The chapters that include code each have a
starter project and a finished project. This makes it easy to follow along
or pick a random chapter from the book.

If you’re new to Core Data, then I recommend reading every chapter of
the book. Over the years, I have taught thousands of developers about
the Core Data framework. From that experience, I developed a roadmap
for teaching Core Data. This book is the result of that roadmap.

Not everyone likes books. If you prefer video, then youmay be interested
in a video course in which I teach the Core Data framework. The content
is virtually identical. The only difference is that you can see how I build
Notes using the Core Data framework. You can find the video course on
the Cocoacasts website1.

1https://cocoacasts.com/mastering-core-data-with-swift-3/

https://cocoacasts.com/mastering-core-data-with-swift-3/
https://cocoacasts.com/mastering-core-data-with-swift-3/

1 What Is Core Data
Developers new to Core Data often don’t take the time to learn about
the framework. Not knowing what Core Data is, makes it hard and
frustrating to wrap your head around the ins and outs of the framework.
I’d like to start by spending a few minutes exploring the nature of Core
Data and, more importantly, explain to you what Core Data is and isn’t.

Core Data is a framework developed and maintained by Apple. It’s been
around formore than a decade and first made its appearance onmacOS
with the release of OS X Tiger in 2005. In 2009, the company made the
framework available on iOS with the release of iOS 3. Today, Core Data
is available on iOS, tvOS, macOS, and watchOS.

Core Data is the M in MVC, the model layer of your application. Even
though Core Data can persist data to disk, data persistence is actually
an optional feature of the framework. Core Data is first and foremost a
framework for managing an object graph.

You’ve probably heard and read about Core Data before taking this
course. That means that you may already know that Core Data is not
a database and that it manages your application’s object graph. Both
statements are true. But what do they really mean?

Core Data Manages an Object Graph

Remember that Core Data is first and foremost an object graph man-
ager. But what is an object graph?

An object graph is nothingmore than a collection of objects that are con-
nected with one another. The Core Data framework excels at managing
complex object graphs.

1 What Is Core Data 4

What Is an Object Graph

The Core Data framework takes care of managing the life cycle of the
objects in the object graph. It can optionally persist the object graph to
disk and it also offers a powerful interface for searching the object graph
it manages.

But Core Data is much more than that. The framework adds a number
of other compelling features, such as input validation, data model ver-
sioning, and change tracking.

Even though Core Data is a perfect fit for a wide range of applications,
not every application should use Core Data.

When to Use Core Data

If you’re in need of a lightweight model layer, then Core Data shouldn’t
be your first choice. There are many, lightweight libraries that provide
this type of functionality.

1 What Is Core Data 5

And if you’re looking for a SQLite wrapper, then Core Data is also not
what you need. For a lightweight, performant SQLite wrapper, I highly
recommend Gus Mueller’s2 FMDB3. This robust, mature library provides
an object-oriented interface for interacting with SQLite.

Core Data & SQLite

Core Data is an excellent choice if you want a solution that manages the
model layer of your application. Developers new to Core Data are often
confused by the differences between SQLite and Core Data.
If you wonder whether you need Core Data or SQLite, you’re asking the
wrong question. Remember that Core Data is not a database.
SQLite is a lightweight database that’s incredibly performant, and, there-
fore, a good fit for mobile applications. Even though SQLite is advertised
as a relational database, it’s important to realize that the developer is in
charge of maintaining the relationships between records stored in the
database.

Core Data Goes Much Further

CoreData provides an abstraction that allows developers to interactwith
the model layer in an object-oriented manner. Every record you interact
with is an object.
Core Data is responsible for the integrity of the object graph. It ensures
the object graph is kept up to date.

Drawbacks

Even though Core Data is a fantastic framework, there are several
drawbacks. These drawbacks are directly related to the nature of Core
Data and how it works.

2https://github.com/ccgus
3https://github.com/ccgus/fmdb

https://github.com/ccgus
https://github.com/ccgus/fmdb
https://github.com/ccgus
https://github.com/ccgus/fmdb

1 What Is Core Data 6

Performance

Core Data can only do its magic because it keeps the object graph it
manages in memory. This means that it can only operate on records
once they are in memory. This is very different from performing a SQL
query on a database. If you want to delete thousands of records, Core
Data first needs to load each record into memory. It goes without saying
that this results in memory and performance issues if done incorrectly.

Multithreading

Another important limitation is the threading model of Core Data. The
framework expects to be run on a single thread. Fortunately, Core
Data has evolved dramatically over the years and the framework has
put various solutions in place to make working with Core Data in a
multithreaded environment much safer and much easier.

For applications that need tomanage a complex object graph, Core Data
is a great fit. If you only need to store a handful of unrelated objects, then
you may be better off with a lightweight solution or the user defaults
system.

2 Building Notes
Notes is a simple application for iOS that manages a list of notes. You
can add notes, update notes, and delete notes.

Building Notes

Users can also take advantage of categories to organize their notes. A
user can add, update, and delete categories. Each category has a color

2 Building Notes 8

to make it easier to see what category a note belongs to. A note can
belong to one category and a category can have multiple notes.

A note has zero or more tags. The tags of a note are listed below
the title of the note. Adding, updating, and removing tags is pretty
straightforward.

The user’s notes are sorted by last modified date. The most recently
modified note appears at the top of the table view.

Even thoughNotes is a simple application, it’s ideal for learning the ropes
of the Core Data framework. The data model contains the ingredients
of a typical Core Data application with one-to-many and many-to-many
relationships.

In this book, we primarily focus on the aspects that relate to Core Data.
We won’t focus on building the user interface unless it’s necessary to
explain a concept of theCoreData framework. That isNotes in a nutshell.

In the next chapter, we start our journey by exploring the Core Data
stack, the heart of every Core Data application.

3 Exploring the Core Data Stack
Earlier in this book, we learned what Core Data is and isn’t. In this
chapter, we zoom in on the building blocks of the Core Data framework.

As I mentioned earlier, it’s key that you understand how the various
classes that make Core Data tick play together. The star players of the
Core Data framework are:

• the managed object model
• the managed object context
• the persistent store coordinator

This diagram shows how these classes relate to one another. We’ll use
this diagram as a guideline in this chapter.

Core Data Stack

3 Exploring the Core Data Stack 10

Managed Object Model

The managed object model is an instance of the NSManagedObjectModel

class. A typical Core Data application has one instance of the NSManage-

dObjectModel class, but it’s possible to havemultiple. The NSManagedObject-

Model instance represents the data model of the Core Data application.

This diagram shows that the managed object model is connected to the
data model. The data model is represented by a file in the application
bundle that contains the data schema of the application. This is some-
thing we revisit later in this book when we start working with Core Data.

Managed Object Model

The data model is represented by a file in the application bundle that
contains the data schema of the application. The data schema is nothing
more than a collection of entities. An entity can have attributes and
relationships, which make up the data model of the application.

We explore the data model in more detail later. For now, remember
that themanaged objectmodel is an instance of the NSManagedObjectModel

3 Exploring the Core Data Stack 11

class and represents the data model of the Core Data application.

Managed Object Context

Amanaged object context is represented by an instance of the NSManage-

dObjectContext class. A Core Data application has one or more managed
object contexts. Each managed object context manages a collection of
model objects, instances of the NSManagedObject class.

The managed object context receives the model objects through a
persistent store coordinator as you can see in this diagram. A managed
object context keeps a reference to the persistent store coordinator of
the application.

Managed Object Context

The managed object context is the object you interact with most. It
creates, reads, updates, and deletes model objects. From a developer’s
perspective, the NSManagedObjectContext class is theworkhorse of the Core
Data framework.

3 Exploring the Core Data Stack 12

Persistent Store Coordinator

The persistent store coordinator is represented by an instance of the
NSPersistentStoreCoordinator class and it plays a key role in every Core
Data application.

Persistent Store Coordinator

While it’s possible to have multiple persistent store coordinators, most
applications have only one. Very, very rarely is there a need to have
multiple persistent store coordinators in an application.

The persistent store coordinator keeps a reference to the managed ob-
ject model and every parent managed object context keeps a reference
to the persistent store coordinator.

But wait … what’s a parent managed object context? Later in this book,
we take a closer look at parent and child managed object contexts. Don’t
worry about this for now.

The above diagram also tells us that the persistent store coordinator is
connected to one or more persistent stores. What’s a persistent store?

3 Exploring the Core Data Stack 13

Remember that Core Data manages an object graph. The framework is
only useful if the persistent store coordinator is connected to one or
more persistent stores.

Out of the box, Core Data supports three persistent store types:

• a SQLite database
• a binary store
• an in-memory store

Each persistent store type has its pros and cons. Most applications use
a SQLite database as their persistent store. As we saw in the previous
chapter, SQLite is lightweight and very fast. It’s great for mobile and
desktop applications.

Now that we know what the Core Data stack consists of, it’s time to
explore how it operates in an application.

How Does Core Data Work

The heart of the Core Data stack is the persistent store coordinator.
The persistent store coordinator is instantiated first when the Core Data
stack is created.

3 Exploring the Core Data Stack 14

The persistent store coordinator is instantiated first.

But to create the persistent store coordinator, we need a managed
object model. Why is that? The persistent store coordinator needs to
know what the data schema of the application looks like.

3 Exploring the Core Data Stack 15

The persistent store coordinator needs a managed object model.

After setting up the persistent store coordinator and themanaged object
model, the workhorse of the Core Data stack is initialized, themanaged
object context. Remember that a managed object context keeps a
reference to the persistent store coordinator.

3 Exploring the Core Data Stack 16

The managed object context is the workhorse of the Core Data stack.

With the Core Data stack set up, the application is ready to use Core
Data to interact with the application’s persistent store. In most cases,
your application interacts with the persistent store coordinator through
the managed object context.

3 Exploring the Core Data Stack 17

Your application interacts with the persistent store coordinator through the
managed object context.

You will rarely, if ever, directly interact with the persistent store coordi-
nator or the managed object model. As I mentioned earlier, the NSMan-

agedObjectContext class is the class you interact with most frequently.

The managed object context is used to create, read, update, and delete
records. When the changes made in the managed object context are
saved, the managed object context pushes them to the persistent store
coordinator, which sends the changes to the corresponding persistent
store.

3 Exploring the Core Data Stack 18

Themanaged object context pushes changes to the persistent store coordinator,
which sends them to the persistent store.

If your application hasmultiple persistent stores, the persistent store co-
ordinator figures out which persistent store needs to store the changes
of the managed object context.

Now that you knowwhat Core Data is and how the Core Data stack is set
up, it’s time to write some code. In the next chapters, we create a Core
Data stack and explore the classes we discussed in this chapter.

4 Creating the Project
Before we set up the Core Data stack, we need to create the project for
Notes. Open Xcode and create a new project based on the Single View
Application template.

Choosing the Single View Application Template

Name the project Notes, set Language to Swift, and, if you’re using
Xcode 8, setDevices to iPhone. Make sureUse Core Data is unchecked.
We’re going to start from scratch.

4 Creating the Project 20

Configuring the Project

Choose where you want to store the project and click Create.

4 Creating the Project 21

Creating the Project

Before we start writing code, I want to do some housekeeping by
modifying the structure of the project. The first thing I do when I start
a new project is create groups for the files and folders of the project.
These are the groups I create in the Project Navigator:

• Application Delegate
• View Controllers

– Root View Controller
• Storyboards
• Resources
• Supporting Files

This is what the result looks like in the Project Navigator. That looks a
lot better. Doesn’t it?

4 Creating the Project 22

Updating the Project Structure

For this project, I’ve set the Deployment Target of the project to 10.0.
In the next chapter, we set up the Core Data stack of the project.

5 Setting Up the Core Data Stack
It’s time to write some code. Had we checked the Use Core Data
checkbox during the setup of the project, Xcodewould have put the code
for the Core Data stack in the application delegate. This is something
I don’t like and we won’t be cluttering the application delegate with the
setup of the Core Data stack.

Instead, we’re going to create a separate class responsible for setting
up and managing the Core Data stack. Create a new group and name it
Managers.

5 Setting Up the Core Data Stack 24

Creating the Managers Group

Create a new Swift file in the Managers group and name the file
CoreDataManager.swift. The CoreDataManager class is in charge of the
Core Data stack of the application.

5 Setting Up the Core Data Stack 25

Choosing the Swift File Template

5 Setting Up the Core Data Stack 26

Creating CoreDataManager.swift

5 Setting Up the Core Data Stack 27

Creating CoreDataManager.swift

Replace the import statement for the Foundation framework with an
import statement for the Core Data framework.

import CoreData

Next, we define the class itself. Note that we mark the CoreDataManager

class as final. It’s not intended to be subclassed.

5 Setting Up the Core Data Stack 28

import CoreData

final class CoreDataManager {

}

We’re going to keep the implementation straightforward. The only infor-
mation we’re going to give the Core Data manager is the name of the
data model. We first create a property for the name of the data model.
The property is of type String.

import CoreData

final class CoreDataManager {

// MARK: - Properties

private let modelName: String

}

Thedesignated initializer of the class accepts the nameof the datamodel
as an argument.

import CoreData

final class CoreDataManager {

// MARK: - Properties

private let modelName: String

// MARK: - Initialization

init(modelName: String) {

5 Setting Up the Core Data Stack 29

self.modelName = modelName

}

}

Remember that we need to instantiate three objects to set up the Core
Data stack:

• a managed object model
• a managed object context
• a persistent store coordinator

Let’s start by creating a lazy property for each of these objects. The
properties aremarked private. But notice that we onlymark the setter of
the managedObjectContext property private. The managed object context
of the Core Data manager should be accessible by other objects that
need access to the Core Data stack. Remember that themanaged object
context is the object we will be working with most frequently. It’s the
workhorse of the Core Data stack.

private(set) lazy var managedObjectContext: NSManagedObjectContext =\

{}()

private lazy var managedObjectModel: NSManagedObjectModel = {}()

private lazy var persistentStoreCoordinator: NSPersistentStoreCoordi\

nator = {}()

Managed Object Context

Let’s start with the implementation of the managedObjectContext property.
We initialize an instance of the NSManagedObjectContext class by invoking
its designated initializer, init(concurrencyType:). This initializer accepts

5 Setting Up the Core Data Stack 30

an argument of type NSManagedObjectContextConcurrencyType. We pass in
mainQueueConcurrencyType, which means the managed object context is
associated with the main queue or the main thread of the application.
We learnmore about threading later in this book. Don’t worry about this
for now.

// Initialize Managed Object Context

let managedObjectContext = NSManagedObjectContext(concurrencyType: .\

mainQueueConcurrencyType)

Remember that every parent managed object context keeps a reference
to the persistent store coordinator of the Core Data stack. This means
we need to set the persistentStoreCoordinator property of the managed
object context.

// Configure Managed Object Context

managedObjectContext.persistentStoreCoordinator = self.persistentSto\

reCoordinator

And we return the managed object context from the closure.

private(set) lazy var managedObjectContext: NSManagedObjectContext =\

{

// Initialize Managed Object Context

let managedObjectContext = NSManagedObjectContext(concurrencyTyp\

e: .mainQueueConcurrencyType)

// Configure Managed Object Context

managedObjectContext.persistentStoreCoordinator = self.persisten\

tStoreCoordinator

return managedObjectContext

}()

5 Setting Up the Core Data Stack 31

Managed Object Model

Initializing the managed object model is easy. We ask the application
bundle for the URL of the data model and we use the URL to instantiate
an instance of the NSManagedObjectModel class.

// Fetch Model URL

guard let modelURL = Bundle.main.url(forResource: self.modelName, wi\

thExtension: "momd") else {

fatalError("Unable to Find Data Model")

}

// Initialize Managed Object Model

guard let managedObjectModel = NSManagedObjectModel(contentsOf: mode\

lURL) else {

fatalError("Unable to Load Data Model")

}

We return the managed object model from the closure.

private lazy var managedObjectModel: NSManagedObjectModel = {

// Fetch Model URL

guard let modelURL = Bundle.main.url(forResource: self.modelName\

, withExtension: "momd") else {

fatalError("Unable to Find Data Model")

}

// Initialize Managed Object Model

guard let managedObjectModel = NSManagedObjectModel(contentsOf: \

modelURL) else {

fatalError("Unable to Load Data Model")

}

return managedObjectModel

}()

5 Setting Up the Core Data Stack 32

We throw a fatal error if the application is unable to find the data
model in the application bundle or if we’re unable to instantiate the
managed object model. Why is that? Because this should never happen
in production. If the data model isn’t present in the application bundle
or the application is unable to load the data model from the application
bundle, we have bigger problems to worry about.

Notice that we ask the application bundle for the URL of a resource with
anmomd extension. This is the compiled version of the data model. We
discuss the data model in more detail later in this book.

Persistent Store Coordinator

The last piece of the puzzle is the persistent store coordinator. This is
a bit more complicated. We first instantiate an instance of the NSPersis-

tentStoreCoordinator class using the managed object model. But that’s
only the first step.

// Initialize Persistent Store Coordinator

let persistentStoreCoordinator = NSPersistentStoreCoordinator(manage\

dObjectModel: self.managedObjectModel)

The Core Data stack is only functional once the persistent store is added
to the persistent store coordinator. We start by creating the URL for the
persistent store. There are several locations for storing the persistent
store. In this example, we store the persistent store in the Documents
directory of the application’s sandbox. But you could also store it in the
Library directory.

We append sqlite to the name of the data model because we’re going
to use a SQLite database as the persistent store. Remember that Core
Data supports SQLite databases out of the box.

5 Setting Up the Core Data Stack 33

// Helpers

let fileManager = FileManager.default

let storeName = "\(self.modelName).sqlite"

// URL Documents Directory

let documentsDirectoryURL = fileManager.urls(for: .documentDirectory\

, in: .userDomainMask)[0]

// URL Persistent Store

let persistentStoreURL = documentsDirectoryURL.appendingPathComponen\

t(storeName)

Because adding a persistent store is an operation that can fail, we need
to perform it in a do-catch statement. To add a persistent store we
invoke addPersistentStore(ofType:configurationName:at:options:) on the
persistent store coordinator. That’s quite a mouthful.

This method accepts four arguments:

• the type of the persistent store, SQLite in this example
• an optional configuration
• the location of the persistent store
• an optional dictionary of options

do {

// Add Persistent Store

let options = [NSMigratePersistentStoresAutomaticallyOption : t\

rue, NSInferMappingModelAutomaticallyOption : true]

try persistentStoreCoordinator.addPersistentStore(ofType: NSSQLi\

teStoreType, configurationName: nil, at: persistentStoreURL, options\

: options)

} catch {}

5 Setting Up the Core Data Stack 34

The second parameter, the configuration, isn’t important for this dis-
cussion. The fourth argument, the options dictionary, is something we
discuss later in this book.

If the persistent store coordinator cannot find a persistent store at
the location we specified, it creates one for us. If a persistent store
already exists at the specified location, it’s added to the persistent
store coordinator. This means that the persistent store is automatically
created the first time a user launches your application. The second time,
Core Data looks for the persistent store, finds it at the specified location,
and adds it to the persistent store coordinator. The framework handles
this for you.

In the catch clause, we print the error to the console if the operation
failed. We return the persistent store coordinator from the closure.

private lazy var persistentStoreCoordinator: NSPersistentStoreCoordi\

nator = {

// Initialize Persistent Store Coordinator

let persistentStoreCoordinator = NSPersistentStoreCoordinator(ma\

nagedObjectModel: self.managedObjectModel)

// Helpers

let fileManager = FileManager.default

let storeName = "\(self.modelName).sqlite"

// URL Documents Directory

let documentsDirectoryURL = fileManager.urls(for: .documentDirec\

tory, in: .userDomainMask)[0]

// URL Persistent Store

let persistentStoreURL = documentsDirectoryURL.appendingPathComp\

onent(storeName)

do {

// Add Persistent Store

try persistentStoreCoordinator.addPersistentStore(ofType: NS\

5 Setting Up the Core Data Stack 35

SQLiteStoreType, configurationName: nil, at: persistentStoreURL, opt\

ions: nil)

} catch {

fatalError("Unable to Add Persistent Store")

}

return persistentStoreCoordinator

}()

We now have a working Core Data stack, but we’re currently assuming
that everything is working fine all the time. Later in this book, we make
the Core Data manager more robust. Right now we just want to set up a
Core Data stack to make sure we have something to work with.

Adding a Data Model

Before we can take the Core Data manager for a spin, we need to add a
data model to the project. Create a new group for the data model and
name it Core Data.

5 Setting Up the Core Data Stack 36

Creating the Core Data Group

Create a new file and choose the Data Model template from the iOS >
Core Data section.

5 Setting Up the Core Data Stack 37

Choosing the Data Model Template

Name the data model Notes and click Create.

5 Setting Up the Core Data Stack 38

Naming the Data Model Notes

5 Setting Up the Core Data Stack 39

Creating the Data Model

Notice that the extension of the data model is xcdatamodeld. This is
different from the extension we used earlier in the managedObjectModel

property. The xcdatamodeld file isn’t included in the compiled applica-
tion. The xcdatamodeld file is compiled into an momd file and it’s the
latter that’s included in the compiled application. Only what is absolutely
essential is included in themomd file.

Setting Up the Core Data Stack

OpenAppDelegate.swift and instantiate an instance of the CoreDataMan-

ager class in the application(_:didFinishLaunchingWithOptions:) method.
We print the value of the managedObjectContext property to the console to

5 Setting Up the Core Data Stack 40

make sure the Core Data stack was successfully set up.

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

// MARK: - Properties

var window: UIWindow?

// MARK: - Application Life Cycle

func application(_ application: UIApplication, didFinishLaunchin\

gWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -\

> Bool {

let coreDataManager = CoreDataManager(modelName: "Notes")

print(coreDataManager.managedObjectContext)

return true

}

}

Build and run the application and inspect the output in the console. The
output should looks something like this.

<NSManagedObjectContext: 0x6180001cdd40>

Great. That seems to work. In the next chapter, we use dependency
injection to pass the Core Data manager from the application delegate
to the root view controller.

	Table of Contents
	Welcome
	Xcode 9 and Swift 4
	What You'll Learn
	How to Use This Book

	1 What Is Core Data
	Core Data Manages an Object Graph
	When to Use Core Data
	Core Data & SQLite
	Core Data Goes Much Further
	Drawbacks

	2 Building Notes
	3 Exploring the Core Data Stack
	Managed Object Model
	Managed Object Context
	Persistent Store Coordinator
	How Does Core Data Work

	4 Creating the Project
	5 Setting Up the Core Data Stack
	Managed Object Context
	Managed Object Model
	Persistent Store Coordinator
	Adding a Data Model
	Setting Up the Core Data Stack

