Mastering Core Data
With Swift

Written by Bart Jacobs

Mastering Core Data With Swift

Bart Jacobs

This book is for sale at
http://leanpub.com/mastering-core-data-with-swift

This version was published on 2017-11-29

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2017 Code Foundry BVBA

http://leanpub.com/mastering-core-data-with-swift
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Welcome e 1
Xcode9and Swift4d 1
WhatYou'llLearn 1
HowtoUseThisBook 2

1WhatlIsCoreData 3
Core Data Manages an Object Graph 3
WhentoUseCoreData, 4
CoreData &SQLite. e 5
Core Data Goes Much Further 5
Drawbacks e 5

2BuildingNotes 7

3 Exploring the Core DataStack 9
Managed Object Model 10
Managed Object Context 11
Persistent Store Coordinator 12
How Does Core DataWork 13

4 Creating the Project 19

5 Setting Up the Core DataStack 23
Managed ObjectContext 29
Managed Object Model 31
Persistent Store Coordinator 32

AddingaDataModel L 35

CONTENTS

Setting Up the Core Data Stack

Welcome

Welcome to Mastering Core Data With Swift. In this book, you'll learn
the ins and outs of Apple’s popular Core Data framework. Even though
we'll be building an iOS application, the Core Data framework is available
on iOS, tvOS, macOS, and watchOS, and the contents of this book apply
to each of these platforms.

Xcode 9 and Swift 4

In this book, we use Xcode 9 and Swift 4. Xcode 8 and Swift 3 introduced
a number of significantimprovements that make working with Core Data
more intuitive and more enjoyable. Make sure to have Xcode 8 or Xcode
9 installed to follow along. Everything you learn in this book applies to
both Swift 3 and Swift 4.

What You'll Learn

Before we start writing code, we take a look at the Core Data framework
itself. We find out what Core Data is and isn’t, and we explore the heart
of every Core Data application, the Core Data stack.

In this book, we build Notes, an iOS application that manages a list of
notes. Notes is a simple iOS application, yet it contains all the ingredients
we need to learn about the Core Data framework, from creating and
deleting records to managing many-to-many relationships.

We also take a close look at the brains of a Core Data application, the
data model. We discuss data model versioning and migrations. These
concepts are essential for every Core Data application.

Welcome 2

Core Data records are represented by managed objects. You learn how
to create them, fetch them from a persistent store, and delete them if
they’re no longer needed.

Mastering Core Data With Swift also covers a few more advanced
topics. Even though these topics are more advanced, they're essential if
you work with Core Data. We talk in detail about the NSFetchedResultsCon-
troller class and, at the end of this book, | introduce you to the brand
new NSPersistentContainer class, a recent addition to the framework.

Last but not least, we take a deep dive into Core Data and concurrency,
an often overlooked topic. This is another essential topic for anyone
working with Core Data. Don't skip this.

That's a lot to cover, but I'm here to guide you along the way. If you have
any feedback or questions, reach out to me via email (bart@cocoacasts.com)
or Twitter (@_bartjacobs). I'm here to help.

How to Use This Book

If you'd like to follow along, | recommend downloading the source files
that come with this book. The chapters that include code each have a
starter project and a finished project. This makes it easy to follow along
or pick a random chapter from the book.

If you're new to Core Data, then | recommend reading every chapter of
the book. Over the years, | have taught thousands of developers about
the Core Data framework. From that experience, | developed a roadmap
for teaching Core Data. This book is the result of that roadmap.

Not everyone likes books. If you prefer video, then you may be interested
in a video course in which | teach the Core Data framework. The content
is virtually identical. The only difference is that you can see how | build
Notes using the Core Data framework. You can find the video course on
the Cocoacasts website'.

! https://cocoacasts.com/mastering-core-data-with-swift-3/

https://cocoacasts.com/mastering-core-data-with-swift-3/
https://cocoacasts.com/mastering-core-data-with-swift-3/

1 What Is Core Data

Developers new to Core Data often don't take the time to learn about
the framework. Not knowing what Core Data is, makes it hard and
frustrating to wrap your head around the ins and outs of the framework.
I'd like to start by spending a few minutes exploring the nature of Core
Data and, more importantly, explain to you what Core Data is and isn't.

Core Data is a framework developed and maintained by Apple. It's been
around for more than a decade and first made its appearance on macOS
with the release of OS X Tiger in 2005. In 2009, the company made the
framework available on iOS with the release of iOS 3. Today, Core Data
is available on iOS, tvOS, macOS, and watchOS.

Core Data is the M in MVC, the model layer of your application. Even
though Core Data can persist data to disk, data persistence is actually
an optional feature of the framework. Core Data is first and foremost a
framework for managing an object graph.

You've probably heard and read about Core Data before taking this
course. That means that you may already know that Core Data is not
a database and that it manages your application’s object graph. Both
statements are true. But what do they really mean?

Core Data Manages an Object Graph

Remember that Core Data is first and foremost an object graph man-
ager. But what is an object graph?

An object graph is nothing more than a collection of objects that are con-
nected with one another. The Core Data framework excels at managing
complex object graphs.

1 What Is Core Data 4

Account A

Project D Project A Project B Project C

What Is an Object Graph

The Core Data framework takes care of managing the life cycle of the
objects in the object graph. It can optionally persist the object graph to
disk and it also offers a powerful interface for searching the object graph
it manages.

But Core Data is much more than that. The framework adds a number
of other compelling features, such as input validation, data model ver-
sioning, and change tracking.

Even though Core Data is a perfect fit for a wide range of applications,
not every application should use Core Data.

When to Use Core Data

If you're in need of a lightweight model layer, then Core Data shouldn't
be your first choice. There are many, lightweight libraries that provide
this type of functionality.

1 What Is Core Data 5

And if you're looking for a SQLite wrapper, then Core Data is also not
what you need. For a lightweight, performant SQLite wrapper, | highly
recommend Gus Mueller's? FMDB3. This robust, mature library provides
an object-oriented interface for interacting with SQLite.

Core Data & SQLite

Core Data is an excellent choice if you want a solution that manages the
model layer of your application. Developers new to Core Data are often
confused by the differences between SQLite and Core Data.

If you wonder whether you need Core Data or SQLite, you're asking the
wrong question. Remember that Core Data is not a database.

SQLite is a lightweight database that's incredibly performant, and, there-
fore, a good fit for mobile applications. Even though SQLite is advertised
as a relational database, it's important to realize that the developer is in
charge of maintaining the relationships between records stored in the
database.

Core Data Goes Much Further

Core Data provides an abstraction that allows developers to interact with
the model layer in an object-oriented manner. Every record you interact
with is an object.

Core Data is responsible for the integrity of the object graph. It ensures
the object graph is kept up to date.

Drawbacks

Even though Core Data is a fantastic framework, there are several
drawbacks. These drawbacks are directly related to the nature of Core
Data and how it works.

2https://github.com/ccgus
3 https://github.com/ccgus/fmdb

https://github.com/ccgus
https://github.com/ccgus/fmdb
https://github.com/ccgus
https://github.com/ccgus/fmdb

1 What Is Core Data 6

Performance

Core Data can only do its magic because it keeps the object graph it
manages in memory. This means that it can only operate on records
once they are in memory. This is very different from performing a SQL
query on a database. If you want to delete thousands of records, Core
Data first needs to load each record into memory. It goes without saying
that this results in memory and performance issues if done incorrectly.

Multithreading

Another important limitation is the threading model of Core Data. The
framework expects to be run on a single thread. Fortunately, Core
Data has evolved dramatically over the years and the framework has
put various solutions in place to make working with Core Data in a
multithreaded environment much safer and much easier.

For applications that need to manage a complex object graph, Core Data
is a great fit. If you only need to store a handful of unrelated objects, then
you may be better off with a lightweight solution or the user defaults
system.

2 Building Notes

Notes is a simple application for iOS that manages a list of notes. You
can add notes, update notes, and delete notes.

Carrier 2:07 PM

-
Notes +

Reminders Nov 6, 13:59
Random Ideas Nov 6, 13:59

Poem Nov 6, 13:59
A Summer's Day
Mastering Core Data With Swift 3 Nov 6, 13:58

Shopping List Nov 6, 13:58

Building Notes

Users can also take advantage of categories to organize their notes. A
user can add, update, and delete categories. Each category has a color

2 Building Notes 8

to make it easier to see what category a note belongs to. A note can
belong to one category and a category can have multiple notes.

A note has zero or more tags. The tags of a note are listed below
the title of the note. Adding, updating, and removing tags is pretty
straightforward.

The user’s notes are sorted by last modified date. The most recently
modified note appears at the top of the table view.

Even though Notes is a simple application, it's ideal for learning the ropes
of the Core Data framework. The data model contains the ingredients
of a typical Core Data application with one-to-many and many-to-many
relationships.

In this book, we primarily focus on the aspects that relate to Core Data.
We won't focus on building the user interface unless it's necessary to
explain a concept of the Core Data framework. That is Notes in a nutshell.

In the next chapter, we start our journey by exploring the Core Data
stack, the heart of every Core Data application.

3 Exploring the Core Data Stack

Earlier in this book, we learned what Core Data is and isn't. In this
chapter, we zoom in on the building blocks of the Core Data framework.

As | mentioned earlier, it's key that you understand how the various
classes that make Core Data tick play together. The star players of the
Core Data framework are:

+ the managed object model
+ the managed object context
* the persistent store coordinator

This diagram shows how these classes relate to one another. We'll use
this diagram as a guideline in this chapter.

Core Data Stack

managed object context

persistent store coordinator persistent store

data model managed object model

Core Data Stack

3 Exploring the Core Data Stack 10

Managed Object Model

The managed object model is an instance of the NSManagedOb jectModel
class. A typical Core Data application has one instance of the NSManage-
dob jectModel class, butit's possible to have multiple. The NsManagedOb ject -
Model instance represents the data model of the Core Data application.

This diagram shows that the managed object model is connected to the
data model. The data model is represented by a file in the application
bundle that contains the data schema of the application. This is some-
thing we revisit later in this book when we start working with Core Data.

Managed Object Model

Managed Object Model

The data model is represented by a file in the application bundle that
contains the data schema of the application. The data schema is nothing
more than a collection of entities. An entity can have attributes and
relationships, which make up the data model of the application.

We explore the data model in more detail later. For now, remember
that the managed object model is an instance of the NSManagedob jectModel

3 Exploring the Core Data Stack 11

class and represents the data model of the Core Data application.

Managed Object Context

A managed object context is represented by an instance of the NSManage-
dobjectContext class. A Core Data application has one or more managed
object contexts. Each managed object context manages a collection of
model objects, instances of the NSManagedob ject class.

The managed object context receives the model objects through a
persistent store coordinator as you can see in this diagram. A managed
object context keeps a reference to the persistent store coordinator of
the application.

Managed Object Context

managed object context

persistent store coordinator

Managed Object Context

The managed object context is the object you interact with most. It
creates, reads, updates, and deletes model objects. From a developer’s
perspective, the NSManagedob jectContext class is the workhorse of the Core
Data framework.

3 Exploring the Core Data Stack 12

Persistent Store Coordinator

The persistent store coordinator is represented by an instance of the
NSPersistentStoreCoordinator class and it plays a key role in every Core
Data application.

Persistent Store Coordinator

managed object context

persistent store coordinator persistent store

managed object model

Persistent Store Coordinator

While it's possible to have multiple persistent store coordinators, most
applications have only one. Very, very rarely is there a need to have
multiple persistent store coordinators in an application.

The persistent store coordinator keeps a reference to the managed ob-
ject model and every parent managed object context keeps a reference
to the persistent store coordinator.

But wait ... what's a parent managed object context? Later in this book,
we take a closer look at parent and child managed object contexts. Don't
worry about this for now.

The above diagram also tells us that the persistent store coordinator is
connected to one or more persistent stores. What's a persistent store?

3 Exploring the Core Data Stack 13

Remember that Core Data manages an object graph. The framework is
only useful if the persistent store coordinator is connected to one or
more persistent stores.

Out of the box, Core Data supports three persistent store types:

« a SQLite database
* a binary store
* anin-memory store

Each persistent store type has its pros and cons. Most applications use
a SQLite database as their persistent store. As we saw in the previous
chapter, SQLite is lightweight and very fast. It's great for mobile and
desktop applications.

Now that we know what the Core Data stack consists of, it's time to
explore how it operates in an application.

How Does Core Data Work

The heart of the Core Data stack is the persistent store coordinator.
The persistent store coordinator is instantiated first when the Core Data
stack is created.

3 Exploring the Core Data Stack 14

persistent store coordinator

The persistent store coordinator is instantiated first.

But to create the persistent store coordinator, we need a managed
object model. Why is that? The persistent store coordinator needs to
know what the data schema of the application looks like.

3 Exploring the Core Data Stack 15

persistent store coordinator

data model

managed object model

The persistent store coordinator needs a managed object model.

After setting up the persistent store coordinator and the managed object
model, the workhorse of the Core Data stack is initialized, the managed
object context. Remember that a managed object context keeps a
reference to the persistent store coordinator.

3 Exploring the Core Data Stack 16

managed object context

persistent store coordinator

data model managed object model

The managed object context is the workhorse of the Core Data stack.

With the Core Data stack set up, the application is ready to use Core
Data to interact with the application’s persistent store. In most cases,
your application interacts with the persistent store coordinator through
the managed object context.

3 Exploring the Core Data Stack 17

managed object context

persistent store coordinator persistent store

data model managed object model

Your application interacts with the persistent store coordinator through the
managed object context.

You will rarely, if ever, directly interact with the persistent store coordi-
nator or the managed object model. As | mentioned earlier, the NsSMan-
agedObjectContext class is the class you interact with most frequently.

The managed object context is used to create, read, update, and delete
records. When the changes made in the managed object context are
saved, the managed object context pushes them to the persistent store
coordinator, which sends the changes to the corresponding persistent
store.

3 Exploring the Core Data Stack 18

managed object context

persistent store coordinator persistent store

The managed object context pushes changes to the persistent store coordinator,
which sends them to the persistent store.

If your application has multiple persistent stores, the persistent store co-
ordinator figures out which persistent store needs to store the changes
of the managed object context.

Now that you know what Core Data is and how the Core Data stack is set
up, it's time to write some code. In the next chapters, we create a Core
Data stack and explore the classes we discussed in this chapter.

4 Creating the Project

Before we set up the Core Data stack, we need to create the project for
Notes. Open Xcode and create a new project based on the Single View

Application template.

Choose a template for your new project:

m watchOS tvOS macOS
Application
y b i
1 V¥
Single View App Game
@00 e eee
Page-Based App Tabbed App
Framework & Library
= i

Cocoa Touch
Framework

Cocoa Touch
Static Library

Cancel

Cross-platform

AR

Augmented
Reality App

ad
aoa

Sticker Pack App

NN

Metal Library

-

Document Based
App

()

_

iMessage App

=

)

Master-Detail App

[Next

Choosing the Single View Application Template

Name the project Notes, set Language to Swift, and, if you're using
Xcode 8, set Devices to iPhone. Make sure Use Core Data is unchecked.
We're going to start from scratch.

4 Creating the Project

Choose options for your new project:

Product Name:

Team:

Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Cancel

Configuring the Project

Choose where you want to store the project and click Create.

Notes
Bart Jacobs
Cocoacasts
com.cocoacasts
com.cocoacasts.Notes
Swift

Use Core Data
Include Unit Tests
Include Ul Tests

Previous

20

4 Creating the Project 21

O pe= E = = Desktop & Q
Favorites
Devices
Tags
Source Control: Create Git repository on my Mac
Xcode will place your project under version control
New Folder Options Cancel Create

Creating the Project

Before we start writing code, | want to do some housekeeping by
modifying the structure of the project. The first thing | do when | start
a new project is create groups for the files and folders of the project.
These are the groups | create in the Project Navigator:

Application Delegate
« View Controllers
- Root View Controller
Storyboards
* Resources
+ Supporting Files

This is what the result looks like in the Project Navigator. That looks a
lot better. Doesn't it?

4 Creating the Project

ene »
B E==ZQA O
¥ . Notes
v Notes

¥ | Application Delegate
2 AppDelegate.swift
v View Controllers
v Root View Controller

» ViewController.swift

v Storyboards
Main.storyboard
LaunchScreen.storyboard

¥ | Resources
Assets.xcassets

v Supporting Files
Info.plist

> Products

+ |©

Notes) W Cheetah

= o B

Motes: Ready | Today at 09:56

g < & Notes
Info Build Settings
PROJECT
¥ Deployment Target
TARGETS I0S Deployment Target 10.0 ™~
#% Notes

¥ Configurations
Name

» Debug
P Release

-+

Use Release

¥ Localizations

English — Development Language

+

Use Base Internationalization

Updating the Project Structure

22

@ <O 30O

No Configurations Set
Mo Configurations Set

E for command-line builds

2 Files Localized

For this project, I've set the Deployment Target of the project to 10.0.
In the next chapter, we set up the Core Data stack of the project.

5 Setting Up the Core Data Stack

It's time to write some code. Had we checked the Use Core Data
checkbox during the setup of the project, Xcode would have put the code
for the Core Data stack in the application delegate. This is something
| don't like and we won't be cluttering the application delegate with the
setup of the Core Data stack.

Instead, we're going to create a separate class responsible for setting
up and managing the Core Data stack. Create a new group and name it
Managers.

5 Setting Up the Core Data Stack

24

o0 ® » /5 Notes) M Cheetah Notes | Build Notes: Succeeded | 20.514s = @l =0
BE QA MAOG=o B8 & Notes
¥ = Notes Info Build Settings
v Notes
PROJECT
> Application Delegate ¥ Deployment Target
. Notes
> View Controllers =
» " Storyboards TARGETS i0S Deployment Target 10.0 B
> Resources 75 Notes
> Supporting Files
> Products
» Debug No Configurations Set
» Release Ne Configurations Set
+
Use Release g for command-line builds
¥ Localizations
English — Development Language 2 Files Localized
+
Use Base Internationalization
+ [® ORA| + 5

Creating the Managers Group

Create a new Swift file in the Managers group and name the file
CoreDataManager.swift. The CoreDataManager class is in charge of the

Core Data stack of the application.

5 Setting Up the Core Data Stack

Choose a template for your new file:

m watchOS tvOS macOS S)]

Source

3 m
Cocoa Touch Ul Test Case Unit Test Case Swift File Objective-C File

Class Class Class

h C Cr N

Header File C File C++ File Metal File

User Interface

Storyboard View Empty Launch Screen

Cancel) Next

Choosing the Swift File Template

5 Setting Up the Core Data Stack

oo
oo
ojg)
olo|
olal
<

Favorites
Devices

Tags

New Folder

Save As: CoreDataManager i
Tags:
Managers <
| 2
>
| 2
| 2
| 2
b
Group Managers

Targets E2 /A Notes

Creating CoreDataManager.swift

Cancel

26

5 Setting Up the Core Data Stack

(] @ 3 #M% Notes) W Cheetah Notes | Build Notes: Succeeded | 20.514s = @
B EH T QN © = 3|88 < & Notes Notes Managers) = CoreDataManager.swift) No Selection
v & Notes 1
v Notes // CoreDataManager.swift
. /f Notes
» | Application Delegate 1
P [View Controllers // Created by Bart Jacobs on 85/07/2017.
»> Storyboards /f Copyright ® 2017 Cocoacasts. All rights reserved.
» [Resources "
4 Managers

import Foundation

h CoreDataManager.swift

» | Supporting Files
> Products

Creating CoreDataManager.swift

&

27

o e

Replace the import statement for the Foundation framework with an

import statement for the Core Data framework.

import CoreData

Next, we define the class itself. Note that we mark the CorebataManager

class as final. It's not intended to be subclassed.

5 Setting Up the Core Data Stack 28

import CoreData

final class CoreDataManager ({

We're going to keep the implementation straightforward. The only infor-
mation we're going to give the Core Data manager is the name of the
data model. We first create a property for the name of the data model.
The property is of type String.

import CoreData
final class CoreDataManager {
// MARK: - Properties

private let modelName: String

The designated initializer of the class accepts the name of the data model
as an argument.

import CoreData

final class CoreDataManager ({
// MARK: - Properties
private let modelName: String
// MARK: - Initialization

init(modelName: String) ({

5 Setting Up the Core Data Stack 29

self.modelName = modelName

Remember that we need to instantiate three objects to set up the Core
Data stack:

* a managed object model
* a managed object context
* a persistent store coordinator

Let's start by creating a lazy property for each of these objects. The
properties are marked private. But notice that we only mark the setter of
the managedobjectContext property private. The managed object context
of the Core Data manager should be accessible by other objects that
need access to the Core Data stack. Remember that the managed object
context is the object we will be working with most frequently. It's the
workhorse of the Core Data stack.

private(set) lazy var managedObjectContext: NSManagedObjectContext =\
{10

private lazy var managedObjectModel: NSManagedObjectModel = {}()

private lazy var persistentStoreCoordinator: NSPersistentStoreCoordi\
nator = {}()

Managed Object Context

Let's start with the implementation of the managedOb jectContext property.
We initialize an instance of the NSManagedob jectContext class by invoking
its designated initializer, init(concurrencyType:). This initializer accepts

5 Setting Up the Core Data Stack 30

an argurnern oftype NSManagedOb jectContextConcurrencyType. We passin
mainQueueConcurrencyType, Which means the managed object context is
associated with the main queue or the main thread of the application.
We learn more about threading later in this book. Don't worry about this
for now.

// Initialize Managed Object Context
let managedObjectContext = NSManagedObjectContext(concurrencyType: .\
mainQueueConcurrencyType)

Remember that every parent managed object context keeps a reference
to the persistent store coordinator of the Core Data stack. This means
we need to set the persistentStoreCoordinator property of the managed
object context.

// Configure Managed Object Context
managedOb jectContext .persistentStoreCoordinator = self.persistentSto\
reCoordinator

And we return the managed object context from the closure.

private(set) lazy var managedObjectContext: NSManagedObjectContext =\

{
// Initialize Managed Object Context

let managedObjectContext = NSManagedObjectContext(concurrencyTyp\
e: .mainQueueConcurrencyType)

// Configure Managed Object Context
managedOb jectContext.persistentStoreCoordinator = self.persisten\
tStoreCoordinator

return managedOb jectContext

1O

5 Setting Up the Core Data Stack 31

Managed Object Model

Initializing the managed object model is easy. We ask the application
bundle for the URL of the data model and we use the URL to instantiate
an instance of the NSManagedOb jectModel class.

// Fetch Model URL
guard let modelURL = Bundle.main.url(forResource: self.modelName, wi\
thExtension: "momd") else ({

fatalError("Unable to Find Data Model")

// Initialize Managed Object Model
guard let managedObjectModel = NSManagedObjectModel (contentsOf: mode\
IURL) else {

fatalError("Unable to Load Data Model")

We return the managed object model from the closure.

private lazy var managedObjectModel: NSManagedObjectModel = {
// Fetch Model URL
guard let modelURL = Bundle.main.url(forResource: self.modelName\
, withExtension: "momd") else {
fatalError("Unable to Find Data Model")

// Initialize Managed Object Model
guard let managedObjectModel = NSManagedObjectModel(contentsOf: \
modelURL) else {
fatalError("Unable to Load Data Model™)

return managedOb jectModel

Q)

5 Setting Up the Core Data Stack 32

We throw a fatal error if the application is unable to find the data
model in the application bundle or if we're unable to instantiate the
managed object model. Why is that? Because this should never happen
in production. If the data model isn’t present in the application bundle
or the application is unable to load the data model from the application
bundle, we have bigger problems to worry about.

Notice that we ask the application bundle for the URL of a resource with
an momd extension. This is the compiled version of the data model. We
discuss the data model in more detail later in this book.

Persistent Store Coordinator

The last piece of the puzzle is the persistent store coordinator. This is
a bit more complicated. We first instantiate an instance of the NsPersis-
tentStoreCoordinator class using the managed object model. But that's
only the first step.

// Initialize Persistent Store Coordinator
let persistentStoreCoordinator = NSPersistentStoreCoordinator(manage\
dObjectModel: self.managedObjectModel)

The Core Data stack is only functional once the persistent store is added
to the persistent store coordinator. We start by creating the URL for the
persistent store. There are several locations for storing the persistent
store. In this example, we store the persistent store in the Documents
directory of the application’s sandbox. But you could also store it in the
Library directory.

We append sqlite to the name of the data model because we're going
to use a SQLite database as the persistent store. Remember that Core
Data supports SQLite databases out of the box.

5 Setting Up the Core Data Stack 33

// Helpers
let fileManager = FileManager.default
let storeName = "\(self.modelName).sqlite"

// URL Documents Directory

let documentsDirectoryURL = fileManager.urls(for: .documentDirectory\
, in: .userDomainMask)[Q]

// URL Persistent Store

let persistentStoreURL = documentsDirectoryURL.appendingPathComponen\
t(storeName)

Because adding a persistent store is an operation that can fail, we need
to perform it in a do-catch statement. To add a persistent store we
invoke addPersistentStore(ofType:configurationName:at:options:) ON the
persistent store coordinator. That's quite a mouthful.

This method accepts four arguments:

the type of the persistent store, SQLite in this example
* an optional configuration

the location of the persistent store

+ an optional dictionary of options

do {

// Add Persistent Store

let options = [NSMigratePersistentStoresAutomaticallyOption : t\
rue, NSInferMappingModelAutomaticallyOption : true]

try persistentStoreCoordinator.addPersistentStore(ofType: NSSQLi\
teStoreType, configurationName: nil, at: persistentStoreURL, options\
: options)

} cateh {}

5 Setting Up the Core Data Stack 34

The second parameter, the configuration, isn't important for this dis-
cussion. The fourth argument, the options dictionary, is something we
discuss later in this book.

If the persistent store coordinator cannot find a persistent store at
the location we specified, it creates one for us. If a persistent store
already exists at the specified location, it's added to the persistent
store coordinator. This means that the persistent store is automatically
created the first time a user launches your application. The second time,
Core Data looks for the persistent store, finds it at the specified location,
and adds it to the persistent store coordinator. The framework handles
this for you.

In the catch clause, we print the error to the console if the operation
failed. We return the persistent store coordinator from the closure.

private lazy var persistentStoreCoordinator: NSPersistentStoreCoordi\
nator = {

// Initialize Persistent Store Coordinator

let persistentStoreCoordinator = NSPersistentStoreCoordinator(ma\
nagedOb jectModel: self.managedObjectModel)

// Helpers
let fileManager = FileManager.default
let storeName = "\(self.modelName).sqglite"

// URL Documents Directory
let documentsDirectoryURL = fileManager.urls(for: .documentDirec\
tory, in: .userDomainMask)[0]

// URL Persistent Store
let persistentStoreURL = documentsDirectoryURL.appendingPathComp\
onent(storeName)

do {
// Add Persistent Store
try persistentStoreCoordinator.addPersistentStore(ofType: NS\

5 Setting Up the Core Data Stack 35

SQLiteStoreType, configurationName: nil, at: persistentStoreURL, opt\

ions: nil)

} cateh {
fatalError("Unable to Add Persistent Store")

}

return persistentStoreCoordinator

1O

We now have a working Core Data stack, but we're currently assuming
that everything is working fine all the time. Later in this book, we make
the Core Data manager more robust. Right now we just want to set up a
Core Data stack to make sure we have something to work with.

Adding a Data Model

Before we can take the Core Data manager for a spin, we need to add a
data model to the project. Create a new group for the data model and
name it Core Data.

5 Setting Up the Core Data Stack 36

o0e » #\ Notes) W Cheetah

B E==ZQA O
v & Notes

v Notes

Application Delegate
View Controllers
Storyboards

Resources

4 vYyvyvy

Managers
= CoreDataManager.swift

re Data
| 2 Supporting Files
> Products

OH

&
1

Notes | Build Notes: Succeeded | 20.514s

<

1
1
I
i
/H
e
I/

g Notes Notes Managers ; = CoreDataManager.swift) No Selection

CoreDataManager.swift
Notes

Created by Bart Jaccbs on 12/87/2817.
Copyright ® 2017 Cocoacasts. All rights reserved.

import CoreData

final class CoreDataManager {

// MARK: - Properties
private let modelName: String
/1 MARK: -

private(set) lazy var managedObjectContext: NSManagedObjectContext = {
// Initialize Managed Object Context
let managedObjectContext = NSManagedObjectContext{concurrencyType: .mainQueueConcurrency

// Configure Managed Dbject Context
managedObjectContext.persistentStoreCoordinator = self.persistentStoreCoordinator

return managedObjectContext
H)

private lazy var managedObjectMcdel: NSManagedObjectModel = {
// Fetch Model URL
guard let modelURL = Bundle.main.url{forResource: self.modelName, withExtension: "momd"]
fatalError("Unable to Find Data Model")
}

// Initialize Managed Object Model

guard let managedObjectModel = NSManagedObjectModel(contentsOf: modelURL) else {
fatalError("Unable to Load Data Model")

}

return managedObjectModel
H

Creating the Core Data Group

Create a new file and choose the Data Model template from the iOS >
Core Data section.

5 Setting Up the Core Data Stack

Choose a template for your new file:

37

watchOS tvOS macOS

‘ Core Data

Data Model

Mapping Model

‘ Apple Watch
Storyboard WatchKit Settings
Bundle
\ Resource
[L

APNS =

Alndiflinntinem. Annnt Dokalaes

Cancel

an ICORLCila

[

APNS

Notification
Simulation File

[\

GEQJSON o

Choosing the Data Model Template

Name the data model Notes and click Create.

Deanmart Lint

Next

5 Setting Up the Core Data Stack

"
EE
]
L

£

Faverites
Devices

Tags

New Folder

Save As: Notes ~
Tags:
Core Data <
| 2
>
| 2
>
| 2
b
| 2
Group Core Data

Targets A\ Notes

Naming the Data Model Notes

Cancel

38

5 Setting Up the Core Data Stack 39

[] @ | 3 M Notes) M Cheetah Notes | Build Notes: Succeeded | 20.514s = @l BT
B EH T QN © = 3|88 < & Notes Notes Core Data) 7 Not & Notes.xcd del) (@ Detault
¥ & Notes ENTIT ;
e ¥ Entities
v Notes
FETCH REQUESTS =
| Application Delegate Entity ~ Abstract Class
> View Controllers CONFIGURATIONS
> Storyboards @ Default
> Resources
v Managers
s CoreDataManager.swift
¥ [Core Data
. Notes.xcdatamodeld
[= Supporting Files
> Products
[= IS (+} .
+ |® ([E | outline Style Add Entity Add Attribute Editor Style

Creating the Data Model

Notice that the extension of the data model is xcdatamodeld. This is
different from the extension we used earlier in the managedob jectModel
property. The xcdatamodeld file isn't included in the compiled applica-
tion. The xcdatamodeld file is compiled into an momd file and it's the
latter that's included in the compiled application. Only what is absolutely
essential is included in the momd file.

Setting Up the Core Data Stack

Open AppDelegate.swift and instantiate an instance of the corebataMan-
ager class in the application(_:didFinishLaunchingWithOptions:) method.
We print the value of the managedOb jectContext property to the console to

5 Setting Up the Core Data Stack 40
make sure the Core Data stack was successfully set up.

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate ({

// MARK: - Properties
var window: UIWindow?
// MARK: - Application Life Cycle

func application(_ application: UIApplication, didFinishLaunchin\
gWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -\
> Bool {
let coreDataManager = CoreDataManager(modelName: "Notes")
print(coreDataManager .managedOb jectContext)

return true

Build and run the application and inspect the output in the console. The
output should looks something like this.

<NSManagedOb jectContext: 0x6180001cdd40>

Great. That seems to work. In the next chapter, we use dependency
injection to pass the Core Data manager from the application delegate
to the root view controller.

	Table of Contents
	Welcome
	Xcode 9 and Swift 4
	What You'll Learn
	How to Use This Book

	1 What Is Core Data
	Core Data Manages an Object Graph
	When to Use Core Data
	Core Data & SQLite
	Core Data Goes Much Further
	Drawbacks

	2 Building Notes
	3 Exploring the Core Data Stack
	Managed Object Model
	Managed Object Context
	Persistent Store Coordinator
	How Does Core Data Work

	4 Creating the Project
	5 Setting Up the Core Data Stack
	Managed Object Context
	Managed Object Model
	Persistent Store Coordinator
	Adding a Data Model
	Setting Up the Core Data Stack

