Denis Kalinin

Mastering
Advanced Scala

Mastering Advanced Scala
Exploring the deep end of functional programming

Denis Kalinin
This book is for sale at http://leanpub.com/mastering-advanced-scala

This version was published on 2020-01-06

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2016 - 2020 Denis Kalinin

http://leanpub.com/mastering-advanced-scala
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Preface e 1
Advanced language features 3
Implicit parameters. 3
Implicit cONVersions 4
Type erasure and type tags 5
Existential types 5
Typeclasses 6
Using Simulacrum 9
Exploring ScalaZ 10
ScalaZ disjunctions 10
ScalaZ Task 13

ScalaZ ACLOT o o o 15

a b w N

Preface

Over the past decade, Scala has evolved into a huge ecosystem that consists of thousands of projects.
In this respect, it is similar to other popular languages and technologies - they all tend to grow bigger
over time. However, by appealing to different kinds of people, Scala developed an unusually high
degree of diversity inside a single and seemingly monolithic world.

There are libraries and frameworks that can be mastered in a couple of weeks. Implementation
details behind these libraries may be relatively advanced, but for an end user who simply wants to
get their work done they are extremely approachable.

One example of a very approachable framework written in Scala is Play". It was highly inspired by
Rails, so most Rails/Django/Grails developers will feel at home there.

o If you are new to Scala, I usually recommend starting with Play and learn the language

while using the framework. This approach lied the foundation for my first book “Modern

Web Development with Scala™, which is also available on Leanpub.

In addition to Play, there are many other Scala tools that follow similar ideas. For example, take a
look at the following fragment of code:

DB.readOnly { implicit session =>
val maybeUser = sql'select * from users where user_code = $userCode".
map(User. fromRS) .single().apply()
VI

This code uses Scalike]DBC?, which provides DSL-like API via implicits, currying and several other
techniques, but even people unfamiliar with Scala can correctly guess what’s happening here.

There is also the standard library that provides many useful abstractions such asOption, Future, Try
out of the box. Some people say that some standard classes are not as good as they should be, but I
would argue that on the whole, the standard library gives a very pleasant and coherent impression.

Sometimes, however, all of this is just not enough.

My observations show that after developers get familiar with the language and tools, they start
looking for ways to improve their code even further. Usually it is possible to achieve but requires
mastering some advanced techniques and libraries.

'https://playframework.com/
*https://leanpub.com/modern-web-development-with- scala

*http://scalikejdbc.org/

https://playframework.com/
https://leanpub.com/modern-web-development-with-scala
https://leanpub.com/modern-web-development-with-scala
http://scalikejdbc.org/
https://playframework.com/
https://leanpub.com/modern-web-development-with-scala
http://scalikejdbc.org/

Preface 2

These techniques and libraries are the main focus of this book.

Just as with my first book, I tried to make the explanation as practical as possible. Instead of
concentrating on implementations of abstract concepts, we will be using existing libraries and tools
such as ScalaZ and Cats. In particular, Cats will illustrate important category theory abstractions
while ScalaZ will be used more or less as an improvement over the standard library. I also included
several other libraries sometimes based on Cats and ScalaZ to show how purely functional concepts
can be used in real projects.

Please note that although book doesn’t expect any familiarity with category theory, it does expect
that you already know Scala. If this is not the case, I would recommend leaving this book aside and
picking “Modern Web Development with Scala” instead.

If, however, you already have some experience with Scala and want to know more, turn the page
and let’s get started!

O O B W N

Advanced language features

We will start with discussing some less known features available in the Scala programming language.
Some of them are useful on their own and some serve as a basis for implementing other abstractions.

Implicit parameters

Let’s recall that there are two types of implicits in Scala:

« implicit parameters
« implicit conversions

Implicit parameters are simple. If you declare a function parameter as implicit, the callers of your
function will be able to avoid passing this parameter provided that they have an eligible value of a
compatible type marked as implicit. For example, the following method:

def sayHello(implicit name: String): String = s"Hello $name"
can be called as parameterless as long as the scope contains an implicit value of type String:

implicit val name = "Joe"

println(sayHello)

When declaring a method taking a parameter of a user defined type, you can define an implicit
value inside the object companion of this type and this value will be used by default. For example
if you define your class and method as follows:

class Person(val name: String)
object Person {

implicit val person: Person = new Person('"User")

def sayHello(implicit person: Person): String = s"Hello ${person.name}"

the caller will always be able to call sayHello without declaring anything. This is a neat trick,
but implicit resolution rules are slightly more involved than that. It turns out that in addition to
defining an implicit default for a parameter of type Person, you can also define an implicit default
for a parameter of type F [Person] (for example, Option[Person], List[Person] and so on). And if
the companion object contains corresponding implicit values, they could be used as well:

Bw N

O O b W N

Advanced language features 4

object Person {
implicit val maybePerson: Option[Person]| = Some(Person("User"))

}
def sayHello(implicit person: Option[Person]): String = /* ... */

As a result, users can define or import implicit values in the scope, but the compiler also checks
object companions of associated types. We will see why this is convenient when we get to type
classes.

Implicit conversions

Sometimes you need to change or add new methods to third-party classes. In dynamic languages
this is achieved by “monkey patching”, in C# or Kotlin by writing extension functions, in Scala by
using implicit conversions.

For example, we can write an implicit conversion from a String to Person

case class Person(name: String) {
def greet: String = s"Hello! I'm $name"
}
object Person {
implicit def stringToPerson(str: String): Person = Person(str)

After importing the conversion method into scope, we will be able to treat Strings as Persons - the
compiler will convert types automatically:

import Person.stringToPerson
"Joe" .greet
// Hello! I'm Joe

Since conversions like these are commonly used for adding new methods, Scala also provides a
shortcut:

implicit class StringToPerson(str: String) {
def greet: String = s"Hello! I'm $str"

By using implicit classes we can get rid of most boilerplate.

W N

Advanced language features 5

Type erasure and type tags

Everyone working with JVM knows that type information is erased after compilation and therefore,
it is not available at runtime. This process is known as type erasure, and sometimes it leads to
unexpected error messages.

For example, if we wanted to create an array of a certain type, which is unknown until runtime, we
could write a naive implementation such as this:

def createArray[T]|(length: Int, element: T) = new Array[T](length)
However, because of type erasure, the above code doesn’t compile:

error: cannot find class tag for element type T
def createArray[T](length: Int, element: T) = new Array[T](length)

A

The error message actually suggests a possible solution. We can introduce an additional implicit
parameter of the type ClassTag to pass type information to runtime:

import scala.reflect.ClassTag

def createArray[T](length: Int, element: T)(implicit tag: ClassTag[T]) =
new Array[T](length)

With this little adjustment, the above code compiles and works exactly as we expect:

scala> createArray(5, 1.0)
resi: Array[Double] = Array(0.0, 0.0, 0.0, 0.0, 0.0)

In addition to the syntax shown above, there is also a shortcut that does the same thing:
def createArray[T: ClassTag](length: Int, element: T) = new Array[T](length)

Note that prior to Scala 2.10, you could achieve the same thing with scala.reflect.Manifest. Now
this approach is deprecated and type tags are the way to go.

Existential types

In Java, type parameters were introduced only in version 1.5, and before that generic types literally
didn’t exist. In order to remain backwards compatible with existing code, Java still allows the use
of raw types, so the following code generates a warning but compiles:

=~ O O b W N =

Advanced language features 6

static void print(List list) {
list. forEach(el -> System.out.printlin(el));

}

public static void main(String[] args) {
List<Integer> ints = Arrays.aslList(1, 2, 3);
print(ints);

Even though the el parameter from the lambda expression is inferred as Object, declaring the
function argument as List<Object> wouldn’t accept a list of Integers.

As you probably know, Scala disallows raw types, so the following will result in a compilation error:

scala> def printContents(list: List): Unit = list.foreach(println(_))
<console>:12: error: type List takes type parameters
def printContents(list: List): Unit = list.foreach(printin(_))

A

So, what can we do here if we need a List but don’t care about the element type?

One possibility is to parametrize method:

scala> def printContents[T](list: List[T]): Unit = list.foreach(println(_))
printContents: [T](list: List[T])Unit

This certainly works, but here it seems an overkill. Why define a type parameter if we don’t use it?
A more logical approach is to use an existential type:

scala> def printContents(list: List[_]): Unit = list.foreach(println(_))
printContents: (list: List[_])Unit

Existential types allow us to specify only the part of the type signature we care about and omit
everything else. More formally, List[_] can also be written asList[T forSome { type T}], but the
latter is significantly more verbose.

Initially, existential types were introduced to Scala for Java interoperability, so the 1ist parameter of
the Javaprint will translate into java.util.List[_] in Scala. Now they are used by many functional
libraries and could be used in your code as well.

Type classes

The type class pattern is a very powerful technique that allows users to add new behaviour to
existing classes. Instead of relying on inheritance, this approach is based on implicits and doesn’t

o I O O b W N =

Advanced language features 7

require classes to be tied together. Type classes can be found everywhere in third-party libraries and
you should consider utilizing this technique in your code as well.

Typical examples of using type classes include serialization, pretty printing and so on. As an illus-
tration, let’s enhance our types with functionality of printing some customized object information
(similar to what toString() does).

Essentially, what we want to do is be able to call our printInfo() method on both built-in types
and user defined types:

scala> val user = User("Joe", 42)
user: User = User(Joe,42)

scala> user.printInfo()
[User] (Joe, 42)

In order to achieve this goal we will need three things:

« atype class interface with one or several methods
« several concrete type class instances (all marked as implicit)
« an implicit conversion containing the printInfo() method

Let’s start with defining a type class interface, which is easy:

trait InfoPrinter[T] ({
def toInfo(value: T): String

We know that we will be printing text information, so we’re defining a method returning a String.

Then we can define several default InfoPrinter implementations for built-in or library types:

object DefaultInfoPrinters {
implicit val stringPrinter = new InfoPrinter[String] {
override def tolnfo(value: String): String = s"[String] $value"
}
implicit val intPrinter = new InfoPrinter[Int] {

override def toInfo(value: Int): String = s"[Int] $value"

We’re putting everything inside the object for convenience. Also note that we’re marking instances
as implicit. If we didn’t do that, automatic implicit resolution would not work and we would have
to pass these objects manually.

Finally, we can define an implicit conversion that prints object information using the toInfo method:

N O O s~ W N - a b w N =~ O O b W N =

W N

Advanced language features 8

object PrintInfoSyntax {
implicit class PrintInfoOps[T]|(value: T) {
def printInfo()(implicit printer: InfoPrinter[T]): Unit = {
println(printer.tolnfo(value))

This conversion will work as long as for type T there exists a type class instance InfoPrinter[T]
marked as implicit and this instance is available in the scope. Since we already defined instances
for String and Int, we can try them out:

import DefaultInfoPrinters._
import PrintInfoSyntax._

val number = 42
number .printInfo() // prints "[Int] 42"

When users define a custom type A, all they need to do is write an InfoPrinter [A] implementation
and mark it implicit. If they put this implicit value inside the companion object, it will be
automatically available due to implicit resolution rules:

case class User(name: String, age: Int)
object User {
implicit val userPrinter = new InfoPrinter[User] ({
override def tolnfo(value: User): String =
s"[User] (${value.name}, ${value.age})"

Now, we can call printInfo() on User objects and it will work as expected.

When working with Play framework, users need to provide writes[A] implementations for their
classes if they want to enable JSON serialization:

case class UserView(userId: UUID, userCode: String, isAdmin: Boolean)
object UserView {

implicit val writes: Writes[UserView] = Json.writes[UserView]

The writes helper uses a macro to generate necessary code at compile-time, but in any other respect
this is a typical type class example.

O b W N - O O b W N

Bw N

Advanced language features 9

Using Simulacrum

Michael Pilquist wrote an interesting tool called Simulacrum* that can reduce the amount of
boilerplate you need to write to create type classes. It is based on Macro Paradise® and generates
necessary code at compile time.

In order to use it, you need to enable macros and add the library itself in your build.sbt:

"o

addCompilerPlugin("org.scalamacros" % "paradise" % "2.1.0"

cross CrossVersion. full)

libraryDependencies ++= Seq(
"com.github.mpilquist" %% "simulacrum" % "0.14.0"

With Simulacrum, the above example can be rewritten as follows:

import simulacrum._

@typeclass trait InfoPrinter|[T] {
def toInfo(value: T): String

The typeclass annotation creates necessary conversions. Provided that we still have the User
definition from the previous example, we can invoke toInfo on User instances:

import InfoPrinter.ops._

val user = User("Joe", 42)
println(user.tolnfo) // prints "[User] (Joe, 42)"

The advantage of using Simulacrum may not be obvious in simple use cases like our InfoPrinter
type class. However, once you start using type classes more and more, it becomes an invaluable tool.

“https://github.com/mpilquist/simulacrum
*http://docs.scala-lang.org/overviews/macros/paradise.html

https://github.com/mpilquist/simulacrum
http://docs.scala-lang.org/overviews/macros/paradise.html
https://github.com/mpilquist/simulacrum
http://docs.scala-lang.org/overviews/macros/paradise.html

g b W N~

Exploring Scalaz

In this section we will look at one popular functional library called ScalaZ® and explore how its
abstractions are often better than the standard library or more mainstream counterparts. Let’s start
with looking at ScalaZ disjunctions, which are often used as a replacement for scala.util.Either.

ScalaZ disjunctions

The Either type allows us to store the exception for later inspection if something goes wrong. If we
have a method that works correctly only 60% of the time, we can define its return type as Either
like this:

def queryNextNumber: Either[Exception, Long] = {
val source = Math.round(Math.random * 100)
if (source <= 60) Right(source)

else Left(new Exception("The generated number is too big!"))

Later, we can pattern match the value of type Either to determine whether we have a successfully
calculated value or an error. The problem here is that Either before Scala 2.12 didn’t really have any
bias. In the example above, we used Right as a value storage and Left as an exception storage, but
it is only a convention. The Either itself doesn’t have map/flatMap methods, so in order to use it in
for comprehensions, we would need to switch to Either projections and it is not as convenient as it
should be. For details, check out Daniel Westheide’s excellent post about The Either Type’.

Note that most code examples can be found in the book repository on GitHub?®. To see more
information about the project organization, please refer to Appendix A.

The Try type, which was added in Scala 2.10, solves the problems mentioned above, but also
introduces one serious limitation. Unlike Either, its left type is fixed as Throwable. Therefore, you
cannot create your own error type and use it as a method result in Try.

Interestingly, ScalaZ offers an alternative to scala.util.Either which is right-biased, works great
in for comprehensions and comes with some additional utilities.

The usual way to start working with ScalaZ is to import all its definitions with the following:

“https://github.com/scalaz/scalaz
"http://danielwestheide.com/blog/2013/01/02/the-neophytes- guide- to- scala- part-7-the-either-type. html
*https://github.com/denisftw/advanced- scala-code

https://github.com/scalaz/scalaz
http://danielwestheide.com/blog/2013/01/02/the-neophytes-guide-to-scala-part-7-the-either-type.html
https://github.com/denisftw/advanced-scala-code
https://github.com/scalaz/scalaz
http://danielwestheide.com/blog/2013/01/02/the-neophytes-guide-to-scala-part-7-the-either-type.html
https://github.com/denisftw/advanced-scala-code

g b W N =

a b W N =

Exploring ScalaZ 11

import scalaz. Scalaz. _

—_

Then, you can use ScalaZ disjunctions in a way similar to scala.util.Either:

def queryNextNumber: Exception \/ Long = {
val source = Math.round(Math.random * 100)
if (source <= 60) \/.right(source)
else \/.left(new Exception("The generated number is too big!"))

Alternatively, you can use \/[Exception, Long] instead of Exception \/ Long. Also, \/.right is
the same as \/- and \/.left is the same as -\/.

Unlike scala.util.Either, ScalaZ disjunctions are right biased, so you can use them easily in for
comprehensions.

Replacing Try

The Try type has a convenient feature of safely absorbing thrown exceptions. Not surprisingly, a
similar functionality is also supported by disjunctions:

def queryNextNumber: Throwable \/ Long = \/.fromTryCatchNonFatal {
val source = Math.round(Math.random * 100)
if (source <= 60) source
else throw new Exception("The generated number is too big!")

The fromTryCatchNonFatal method will happily catch all non-fatal exceptions and put them into an
instance of \/. Note that here we changed our signature from Exception \/ Long to Throwable \/
Long and basically ended up with a more verbose version of Try. In reality, however, disjunctions
are more flexible than that.

Let’s create our own Exception subclass that will be able to store a generated number in addition to
an error message:

class GenerationException(number: Long, message: String)
extends Exception(message)

Instead of fromTryCatchNonFatal, we need to use the fromTryCatchThrowable method. It works in a
similar way, but in order to infer the return type correctly, it also requires that a NonNothing implicit
value is defined in the scope:

=~ O O b W N =

WD

Exploring ScalaZ 12

implicit val geNotNothing = NotNothing.isNotNothing[CGenerationException]

def queryNextNumber: GenerationException \/ Long = \/.fromTryCatchThrowable {
val source = Math.round(Math.random * 100)
if (source <= 60) source

else throw new GenerationException(source, "The generated number is too big!")

We don’t have to define a NotNothing value, but in this case we will have to specify type parameters
explicitly, like this:

def queryNextNumber: GenerationException \/ Long =
\/ . fromTryCatchThrowable[Long, GenerationException] {
/S

If you try invoking the queryNextNumber method several times, you will see that it actually works
as expected:

scala> DangerousService.queryNextNumber

res2: scalaz.\/[services.GenerationException,lLong] \/-(9)

scala> DangerousService.queryNextNumber

res3: scalaz.\/[services.GenerationException,Long] = \
-\/(services.GenerationException: The generated number is too big!)

Sequencing disjunctions
Sometimes you end up with a collection of disjunctions:

val 1lst = List(queryNextNumber, queryNextNumber, queryNextNumber)

If this is the case, you may want to get the disjunction of a collection. In order to do that, simply use
the sequence method, which was added to List via the first import:

import scalaz. Scalaz. _

—_

val 1stD = lst.sequence
// 1stD: \/[GenerationException, List[Long]]

If all numbers are generated successfully, you will get a \/- containing a List[Long]. If there is an
exception, you will get a -\/ with a GenerationException.

W N - SO O B W N -

© 00 N O O b W N =

Exploring ScalaZ 13

ScalaZ Task

The Scala standard library provides scala.concurrent . Future as a very convenient way to deal with
asynchronous code. The Future, however, has one feature that often confuses people. In particular,
when you wrap your code inside Future.apply, it starts executing immediately.

Let’s define a simple method that we will use for emulating a sample computation:

def performAction(num: Int): Unit =
println(s"Task #$num is executing in ${Thread.currentThread().getName}")

Now, let’s wrap the call of this method inside of scala.concurrent.Future and see what happens:

import scala.concurrent.ExecutionContext.Implicits.global

val resultF = Future {
per formAction(Q)
}

// Task #0 is executing in ForkJoinPool-1-worker-5

Our task started executing in a worker pool immediately. Alternatively, we can execute our code in
the current thread using Future. successful, but this merely lifts a resulting value to Future without
making the code asynchronous:

val result2F = Future.successful {
per formAction(1)

}

// Task #1 is executing in main

Quite often, this is exactly what you want. However, sometimes you need more control over when
the task starts running. And if this is the case, the scalaz.concurrent.Task should be used instead:

val result2T = Task.now {
per formAction(2)

}

// Task #2 is executing in main

val result3T = Task {
per formAction(3)

}
// * nothing happened *

O U kW N

Exploring ScalaZ 14

The Task . now method lifts a value to a Task by executing logic in the current thread. The Task.apply
method schedules execution in a thread pool. You can pass the ExecutorService as the second
argument or use ScalaZ’s default thread pool. Either way, the task will not run until it’s manually
started. In other words, the sequence of commands inside Task . apply is a pure computation without
side effects.

It is also possible to lift a computation into a Task lazily by means of the delay method:

val resultdT = Task.delay {
per formAction(4)

This method is guaranteed to be stack-safe and therefore, it’s often used in recursive algorithms. We
will get to the topic of stack-safety in later chapters, but for now, let’s concentrate on the Task itself.

Obviously, we can use map/flatMap combinations or put Tasks into for comprehensions and do
everything that we usually do with monads.

As for running Tasks, there are many methods covering every imaginable use case. Here are only
some of them:

method description
unsafePer formSync executes the task synchronously
unsafePer formAsync executes the task asynchronously

unsafePer formSyncAttempt executes the task synchronously wrapping results or
exceptions in ScalaZ disjunction

Note that unlike scala.concurrent.Future, neither unsafePer formSync, nor unsafePer formSync
swallow exceptions. If you want to prevent them, you need to either use attempt-methods or wrap
your code in something like \/. fromTryCatchNonFatal.

Converting callbacks into Tasks

Sometimes you have to work with Java code that relies on callbacks for doing anything asyn-
chronous. For example, AsyncHttpClient can be used for performing non-blocking requests:

val asyncHttpClient = new DefaultAsyncHttpClient()
asyncHttpClient.prepareGet("https://httpbin.org/get") .execute().
toCompletableFuture.whenComplete { (response, exc) => {

Y2

The problem here is that it returnsL istenableFuture, which can be converted into Java’sCompletableFuture.

At the same time, everything else in your code probably uses promise-like structures such as ScalaZ

© 00 N O O b W N =

Exploring ScalaZ 15

Tasks or standard Futures. In this case, you can convert a callback handler into a Task using the
Task .async method. This method has the following signature:

def async[A](register: ((Throwable \/ A) => Unit) => Unit): Task[A]

The important part here is (Throwable \/ A) => Unit. Once we pass this function literal to
Task.async, we will be able to dump the results into this function literal. Where do we get these
results? Obviously, from the whenComplete callback:

val result6T = Task.async[String](handler => {
asyncHttpClient.prepareGet("https://httpbin.org/get").execute().
toCompletableFuture.whenComplete { (response, exc) => {
if (exc == null) {
handler (\/.right(response.getResponseBody(Charset. forName("UTF-8"))))
} else handler(\/.left(exc))
1}

1)
// result6T: Task[\/[Throwable, String]]

If an exception occurs, the whenComplete method will receive a non-null instance of Throwable,
which we can use to initialize the left side of a resulting disjunction. Otherwise, we need to pass the
response body to initialize the right side of \/.

ScalaZ Actor

In essence, actors are units that interact with each other by sending and receiving immutable objects
called messages. Received messages are added to the mailbox and processed one by one.

The most popular Scala implementation of the actor model is Akka. It’s a full-featured, extremely
high-performant toolkit that is used for building application infrastructure. Not surprisingly, many
popular frameworks such as Spark and Play use Akka underneath.

The central abstraction in Akka is the Actor trait. This trait has one abstract method called receive
which is a PartialFunction[Any, Unit].

o N O O b W N =

Exploring ScalaZ 16

case class Message(text: String)

class MyActor extends Actor {
override def receive = {
case message: Message =>
println(s"Received message: ${message.text}")

Here, we're defining an actor that is able to work with messages of the Message type. However, what
will happen if the actor receives something else? Nothing really: unsupported messages are silently
swallowed and might potentially cause subtle logical bugs that remain unnoticed for weeks or
months. We could somehow improve this situation by adding a “catch-all” case printing a warning,
but wouldn’t it be better to have an actor parametrized with the message type?

It turns out that with ScalaZ actors you can have that. ScalaZ actors are parametrized with the
message type. They are also very minimalistic and lightweight: their entire implementation almost
fits one screen. Since they lack many of Akka features (supervision, network transparency etc), they
are not meant to be a substitution for Akka. Rather, they should be considered when a full-blown
actor system based on Akka seems an overkill.

Creating ScalaZ actors is easy:

val actor = Actor.actor((message: Message) => {

println(s"Received message: ${message.text}")

D)

The only thing that is required is a handler function. Optionally, you can add an error handler and
a strategy. The strategy specifies how the actor will handle messages and ScalaZ provides several
strategies out of the box:

method description

Strategy.DefaultStrategy executes evaluations using a default thread pool

Strategy.Sequential executes evaluations in the current thread

Strategy.Naive spawns a new thread for every evaluation

Strategy.Id doesn’t execute evaluations

Strategy . SwingWorker executes evaluations using the pool of Swing worker
threads

It is important that the actor instance defined above has a type of Actor [Message], so any attempt
to send a message of a wrong type will result in a compile error.

o N O O b W N =

© 00 N O O b W N =

-~
(\»)

Exploring ScalaZ 17

Isolating the mutable state

Many experts argue that actors shouldn’t be used for concurrency tasks. Indeed, for use cases like
the one shown above, Futures and Tasks would probably be a better fit. Actors, however, are great
at managing internal (mutable) state.

If you are interested in going deeper into this topic, I recommend starting with a blog post
called “Don’t use Actors for concurrency” written by Chris Stucchio. Also, check out the
comment section below the post.

Since we always define our Akka actors in a class, using mutable state there is a no-brainer:

class MyActor extends Actor
private var counter = 0
override def receive = {
case message: Message =>
counter += 1

println(s"#$counter: ${message.text}")

However, we can do pretty much the same thing with ScalaZ Actors using classes and closures:

class MyActor {
private var counter = 0
def handler(message: Message): Unit = {
counter += 1

println(s"#$counter: ${message.text}")

}
object MyActor

def create: Actor[Message| = Actor.actor(new MyActor().handler)

In this case, each newly created instance of an Actor will have its own copy of counter.

*https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html

https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html
https://www.chrisstucchio.com/blog/2013/actors_vs_futures.html

	Table of Contents
	Preface
	Advanced language features
	Implicit parameters
	Implicit conversions
	Type erasure and type tags
	Existential types
	Type classes
	Using Simulacrum

	Exploring ScalaZ
	ScalaZ disjunctions
	ScalaZ Task
	ScalaZ Actor

