Markdown By Example

Markdown By Example

The Markdown-everything
book

Tim Steinbach

This book is for sale at
http://leanpub.com/markdown

This version was published on 2012-11-24

This is a Leanpub book. Leanpub helps authors to
self-publish in-progress ebooks. We call this idea
Lean Publishing.

To learn more about Lean Publishing, go to
http://leanpub.com/manifesto.

To learn more about Leanpub, go to
http://leanpub.com.

©2012 Leanpub

http://leanpub.com/markdown

Contents

7 - Simple text

CONTENTS i

Legal

All company and/or product names may be trade
names, trademarks and/or registered trademarks of
the respective owners with which they are associated.

All links are provided as a convenience and for in-
formational purposes only. They do not constitute an
endorsement or an approval of any of the products,
services or opinions of the corporation, organization
or individual. The author bears no responsibility for
the accuracy, legality or content of the external site or
that if subsequent links.

CONTENTS ii

Sample

This file is only a sample ebook. It includes one free
chapter of the book Markdown By Example' by Tim
Steinbach. The entire book can be bought on the
book’s website.

If you enjoy this sample chapter, please consider
supporting the author!

"http://markdownbyexample.com/

http://markdownbyexample.com/
http://markdownbyexample.com/

7 - Simple text

This chapter contains:

« Headlines
« Emphasis
» Lists

+ Images

« Hyperlinks
« Code

« Output

Relevant source folders:

o /readme/

7 - Simple text 2

Simple text

Since Markdown is supposed to make reading and
writing files easy without stripping the author of the
ability to create well formatted output, a Markdown
file is all about its contents and as little distraction
as possible from formatting. We will take a look at
most of the formatting elements available for regular
Markdown files. A full syntax documentation can be
found at DaringFireball®.

In this chapter we will create a README file for a
fictional piece of software. By the end of it, we will
have used quite a few different ways of formatting
text without ever shifting our focus from content to
the overhead of formatting that is usually required
with HTML or TeX. At all times our README will be
easy-to-read and still create a well-structured result,
ready to be published with our software.

*http://daringfireball.net/projects/markdown/syntax

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

7 - Simple text 3

Headlines

The first step to our first Markdown file is - naturally
- creating a new file. It should use the file extension
.markdown. GitHub has its own .md extension, which
can be used instead. Once we have created the file, it is
time to edit it. The first thing we should do is create a
headline for the entire document. The first and largest
headline is called an H1, the second level is H2, and
so forth up to H6. Headlines can be created in two
different ways: H1 and H2 can just be underlined by
equals signs or hyphens, such as this:

Code 7.1: Headlines

Headline 1

Regular text

For this method of creating headlines, the number
of underlining characters is irrelevant. While this
is a great way of making headlines obvious in your
document, you are limited to H1 and H2 headlines.

a b w N -

7 - Simple text 4

For H3 through H6 you would have to mix the second
way of creating headlines with the aforementioned
underlining method, or decide to use the following
notation exclusively. Headlines can also be created by
prefixing a number of pound signs (#) followed by a
space to the title. The specific number of pound signs
used defines the header level. Code 7.1 from above
could also look like this, without changing the final
result:

Code 7.2: Headlines using the pound symbol

Headline 1

Headline 2

Regular Text

Eventually, it is up to the author to decide which style
is preferred. It should be noted that for the rest of this
book, we will use the pound symbol method.

The following example is designed to include the most
important portions of the Markdown syntax. First,
we will emphasize words, some by printing them in
bold face. Secondly, we will talk about ordered and
unordered lists. After that an image will be added to
our README, before making use of hyperlinks and
code blocks.

© 00 N O O & W N =

I N S S S
O© 00 < O O b W N ~ O

7 - Simple text 5

Code 7.3: Headlines for README

GoodTool

What is GoodTool?

Features

Download

JTnstallation

Screenshot

##+ API example

Access to API factory (Java)

Usage of API factory (Java)

Contact

We can see that our software is called GoodTool,
which is the title for the first headline. We have a
number of second-level and two third-level headlines.

7 - Simple text 6

Text emphasis

We begin by filling the headline “What is Good-
Tool?” with contents. Let the description be the
sentence “GoodTool makes system monitoring easier
than ever before and is available for Windows and
Linux operating systems”. Nothing is easier than this
as we simply enter the sentence into our README
file. But we would like to emphasize that this is the
easiest monitoring tool ever by printing the words
“ever before” in bold face. Additionally, the operating
systems Windows and Linux should be emphasized,
but not as much as the “ever before”.

Markdown once again allows us to choose between
two different ways of emphasizing text. We can either
use underscores (_) or asterisks (*). Surrounding text
with one of those characters causes regular emphasis
of the given text. Doubling the surrounding char-
acters causes a stronger emphasis, usually bold face
print.

O b W N -

7 - Simple text 7

Knowing this, it is now easy to accomplish our wishes
from above with the following Markdown code:

Code 7.4: What is GoodTool?

What is GoodTool?

GoodTool makes system monitoring easier than
ever before and is available for _Windows_
and _Linux_ operating systems.

While it is up to the author to choose underscores
and/or asterisks, this book will use underscores for
simple emphasis and double-asterisks for strong em-
phasis. This way the author’s intention becomes very
clear and sometimes it is hard to see the difference
between single or double underscores. The above
mentioned convention clearly avoids this.

O b W N -

7 - Simple text 8

Lists

Next up is the features headline. Here we would like
to list some of the most important features of our soft-
ware. Lists are generally divided into two categories:
ordered lists and unordered lists. The former usually
makes use of Arabic or Roman numbers, the latter can
use any kind of character. For our features list we
will not need an ordered list because it does not really
matter in which order we list them (Markdown does
keep the order of items in your list, but they do not
need to be numbered). Unordered lists can be created
by using one of the prefixes for unordered lists for
each item the list shall contain. Asterisks (*), hyphens
(-) and pluses (+) are completely interchangeable, but
have to be followed by a space. The list of our features
could therefore look like this:

Code 7.5: List of features

Features

* Fast
* Secure
* Easy-to-work-with GUI

O b W N -

7 - Simple text 9

This will create an unordered list of our top three
features. We could have also used hyphens or pluses.
For the “Download” paragraph we will do just that,
the actual links to our software will be added later,
once we learn about hyperlinks.

Code 7.6: List of versions

Download

- Version 1.0
- Version 0.9
- Version 0.8

So far, this is what our README.markdown should
look like: (plus the additional headlines that we have
not yet worked with)

© 00 N O O & W N =

I U SN
O O b W N~ O

17
18
19

7 - Simple text 10

Code 7.7: State of README after adding list of downloadable
versions

GoodTool

What is GoodTool?

GoodTool makes system monitoring easier than
ever before and is available for _Windows_
and _Linux_ operating systems.

Features

* Fast

* Secure

* Easy-to-work-with GUI

Download

- Version 1.0

- Version 0.9
- Version 0.8

O b W N -

7 - Simple text 11

For the installation instructions included in our file,
we would like to use an ordered list. This makes
sense as the user will be guided through the process
and should follow the instructions one step after
another. Luckily, ordered lists are extremely easy in
Markdown. All we need to do is use Arabic numbers
as prefixes. Our installation instructions could then
look like this:

Code 7.8: Installation instructions

Jnstallation

1. Download GoodTool
2. Execute .exe or .sh file
3. Follow screen instructions

The ordered list would automatically be converted
into the corresponding output elements.

7 - Simple text 12

Images

Next, we will need to add a screenshot to our README
file. This is probably the first thing you would not
have added to an ordinary README.txt file. After all,
a text file is supposed to contain nothing but text. The
fact that Markdown files will have to be parsed and
converted comes in handy here, as images will not be
visible while editing our file but will be present in the
resulting output. As we will see, the syntax for adding
images is very similar to that of hyperlinks. Both
somewhat connect to external content and therefore
have almost the same notation.

An image link consists of three parts: the path to
the actual image file, a text used in case the image
cannot be found (alt text), and an image title. The
image path is obviously required and so is the alt text,
because the image file might have been moved or the
given path may be wrong. An image’s title attribute,
however, is optional. The title is usually converted
into a mouseover text in the resulting output of our
Markdown file.

The screenshot of our GUI is called GoodToolGui.png
and will be added to our README like this:

O b W N =

7 - Simple text 13

Code 7.9: Adding screenshot

Screenshot

I [GUI Screenshot] (GoodToolGui.png "Screenshot")

An exclamation mark suggests that the following is
an image. The alt text for our image is in the square
brackets, while the parentheses contain the path to our
image and the optional title.

If an image is to be used on several occasions there is
an easy way of dealing with this: image references.
Instead of using an image’s path and title each time
we would like to display said image, we can define it
once and use references to the definition. References
are usually defined at the very bottom of a document
and have a syntax consisting of ID, path, and title. Our
screenshot could have been defined as a reference:

Code 7.10: Screenshot as image reference

Screenshot

' [GUI Screenshot] [screenshot]

[screenshot]: GoodToolGui.png "Screenshot"

7 - Simple text 14

We have replaced the parentheses in our image tag
with the reference ID of the image we would like
to use. At the bottom of our document we have
then defined said reference ID with the path and title
that we had previously used inside the parentheses
of our image tag. Now we could very easily reuse
the screenshot reference without having to remember
the image’s path. And should its path ever change
- for example, if somebody moved all images into a
separate folder - it will only have to be altered once.
There is no need for a risky “search and replace all”
operation in your text editor. Since we will only have
a single image in our example, we opt for the first
version of the image tag, which saves us from having
to add the reference to the end of our file.

7 - Simple text 15

Hyperlinks

Hyperlinks (or just links) are references to other con-
tent. This other content might be an anchor in
the same document or external contents such as an
Internet URL to a website or an image. For now,
we will only look at links to external content because
Markdown does not directly support internal anchors.
These have to be realized by adding custom HTML
code to our file, something that will be covered in the
chapter Markdown and HTML.

In our README file, we need links to external con-
tents under two headlines: Downloads and Contact.
While linking directly to files under the Downloads
heading, we will link to our website and offer a
link to our email address under Contact. Creating
a hyperlink is very simple and should already seem
familiar since it closely resembles the syntax used for
images (and vice versa). Earlier, we added a list of
downloadable versions. The last of the three, version
0.8, we will use to link directly to the 0.8 file.

O O B W N -

7 - Simple text 16

Code 7.11: Directly linking to a file

Download

- Version 1.0

- Version 0.9

- Version [0.8](http://rmrf.eu/
gt/0_8.zip "Link to 0.8")

As we can see, creating a hyperlink looks just like the
image tag, except there is no exclamation mark prefix.
This is the only difference between the two! Again,
the link title is optional.

Similar to our screenshot example, we may also want
to create references to our links and use those instead
of directly embedding the URL into our link. Just like
the reference to an image, a link reference works by
creating an ID and defining it (usually at the end of
the document). For the remaining two versions we
define the following links:

© 00 N O O & W N =

7 - Simple text 17

Code 7.12: Linking directly and by reference

Download

- Version [1.0][2]

- Version [0.9][1]

- Version [0.8](http://rmrf.eu/
gt/0_8.zip "Link to 0.8")

[1]: http://rmrf.eu/gt/0_9.zip "Link to ©.9"
[2]: http://rmrf.eu/gt/1_@.zip "Link to 1.0"

As we can see, the parentheses have been replaced
by a second pair of square brackets. Inside these
we find reference IDs, which have been defined not
unlike an image would have be defined. It is not
necessary to number the links but you can use any ID
you wish. We could very well have named the links
[Version10File] and [Version09File] instead. The only
requirement with reference IDs is the fact that they
must be unique within the document.

7 - Simple text 18

e)

When using references, IDs must
be unique among hyperlinks and
pictures. There cannot be an image
using the same ID as a hyperlink.

Sometimes it is not necessary to hide a link behind
a title and the actual URL should be displayed to the
reader. This might be the case when referring to a
website or an email address. Under our Contact head-
line we will be using “Automatic Links”, hyperlinks
whose URL and title are identical. We would like the
reader to know the URL to our website as well as our
email address, instead of requiring them to click on
the link title. This could be achieved by defining a
link with both the title and target location to the same
value, using one of the linking methods we have used
before. But using automatic links, the work is done
for us:

Sw N e

7 - Simple text 19

Code 7.13: Contact using automatic links

Contact

Go to our website <http://rmrf.eu/>
or email to <steinbach.tim@googlemail.com>

By surrounding the URL and email address with angle
brackets, we define them as automatic links. These
will be turned into just what we indented - Links with
identical title and location.

7 - Simple text 20

Code

The last thing we would like to add is an example
on how to use our tool’s API for programmers who
would like to extend or simply control the application.
First, we will provide a short one-liner that will show
the reader how they can acquire access to our APL
Code statements which are only a few lines long,
can easily be expressed in Markdown by surrounding
them with grave accents (‘) aka “backticks”. Gen-
erally, this is the preferred way of expressing code
statements which can be fit into a single line. In
the case that source code contains backticks, the ones
defining the code statement will be doubled. For
longer statements, there is a more readable way of
creating code blocks - ordinary indentation. All lines
that have been indented by exactly four spaces are
considered part of a code block.

© 0 1 O U W N R

7 - Simple text 21

Code 7.14: Code blocks in Markdown

Single line statements
“Code statement™

~ N

““Code statement that includes character™
Code block

Code Block

Indented

By Four

Spaces

If there are multiple code blocks without any regular
text in between them, they can be split with the end-
of-block (EOB) character, since they would otherwise
all be considered part of the same code block. This
is important as Markdown takes pride in keeping
the resulting HTML well-formed and structured, and
having multiple independent code examples within
the same block would not conform to being well-
formed and structured at all. The EOB character is
a circumflex (") in an otherwise empty line.

© 00 N O O & W N =

7 - Simple text 22

Code 7.15: EOB character separated code blocks

Multiple code blocks
Code
Block1
Still Code Block 1

Code Block 2

Still Code Block 2

In our own README file we could create the API
examples as follows: Accessing the API is a one-
line statement, we will surround with backticks. The
second example will be an actual use case of the
API which will contain more than one line. We
will therefore prefer the indentation syntax for the
example with multiple lines of code.

© 00 N O O & W N =

SN
N N O

7 - Simple text 23

Code 7.16: API examples

API examples

###%# Access to API factory (Java)

Get the API factory:
“GoodTool api = GoodTool.getAPI();"

Usage of API factory (Java)
Set monitoring of only one CPU thread:

GoodTool api = GoodTool.getAPI();
api.setMonitoredThreads(1);

And this is it, the snippets will now be treated as code
blocks. This is particularly important when applying
CSS styles to code blocks. For more information,
please read the HTML/CSS chapter.

7 - Simple text 24

Output

At this point, our README file is complete and this
chapter is coming to an end. We have used headlines,
used emphasis to highlight parts of our text, listed
items in ordered and unordered lists, added images,
links, and even source code. Now it is time to find out
what the result of our (not so) hard work is. We run
our Markdown file against bluecloth (one of the Ruby
gems we installed earlier) and have a look. In order
to run bluecloth and fetch the resulting HTML into
a file (it sends the HTML directly into our Terminal
session), we need to call it with our Markdown file
being the first parameter and its result being streamed
into a new file.

Code 7.17: Bluecloth will generate HTML code

$ bluecloth README.markdown > README.html

Provided the README file is in our current working
directory (if not, cd into it), we will get a nice HTML
file. Open it with your browser and it should look
something like Figure 7.1.

7 - Simple text 25

GoodTool
What is GoodTool?

‘GoodTool mkes syster

itoring easier than ever before and s avallble fo Windows and Linic operating systems.

Features

API examples

Access to API factory (Java)

Figure 7.1: Resulting output

Not so bad after all, is it? And our Markdown file is
still perfectly readable, unlike the HTML file created
by bluecloth!

If you still have trouble with Markdown syntax, there
is an additional example called “instructions” in the
GitHub repository for this book. In this example there
are two files, one with instructions and one with a

7 - Simple text 26

possible solution. At this point it should be noted
that comments in Markdown use the same notation as
HTML comments (because they are effectively HTML
comments) as the file for you to work on is full of
comments.

The next chapter will be a “cheat sheet”, a short recol-
lection of the Markdown syntax, short and compact.
This way there is no need to flip through all the past
chapters trying to find a certain formatting syntax.

The following chapter will then use the README we
just created and make modifications by using HTML
and CSS directly. This will allow us to effectively
design the output our Markdown converter produces.
This chapter will also serve as an introduction to the
rest of the book, which makes heavy use of not only
Markdown but also HTML, CSS, and even JavaScript.

	Contents
	7 - Simple text

