

Maintainable Rails

Ryan Bigg

This book is for sale at http://leanpub.com/maintain-rails

This version was published on 2023-02-13

This is a Leanpub book. Leanpub empowers authors and publishers with the

Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get reader

feedback, pivot until you have the right book and build traction once you do.

© 2018 - 2023 Ryan Bigg

http://leanpub.com/maintain-rails
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction . 1

Who is this book for? . 1

Acknowledgements . 2

Preface . 3

Where Rails falls down . 4

Messy controllers . 5

The problems with Active Record Models 6

Views . 12

We can do better . 15

Introduction
Thank you for reading Maintainable Rails.

If you find any misteaks while reading this book, please email them to

me@ryanbigg.com.

If you have a problem to do with your code, then please put the code on GitHub

and link me to it in the email so I can clone it and attempt to reproduce the

problem myself. If you don’t understand something, then it’s more likely that

I’m the idiot and rushed it when I wrote it. Let me know!

This far into the book and there’s already one error. You should expect that it is

not alone. It has friends and their ways are devious. They are coming after your

perception of reality. Beware.

Who is this book for?

This book is best suited for experienced Rails developers. I’ll assume a lot of

knowledge around things like thenormal structure ofRails applications, feature

testing, what at least the concept of a “service object” is, and so on.

If you’re new toRuby, youwill probably understand someof the terms I’musing

here, but to get themost out of this guide you shouldhave someRails experience

under your belt.

Ideally, you should’ve encountered places where using vanilla Rails has hurt

you, your friends and possibly even your family members. But that’s not neces-

Introduction 2

sary because there’s a few examples peppered throughout this guide that will

give you a good inkling. Rails is good, but it is not without its flaws.

Acknowledgements

I’d like to thank Tiya Belayneh, Andy Holland, Tim Riley, Chris Flipse, and Piotr

Solnica for their feedback on early editions of this book. It has been invaluable

to have such dedicated readers reviewing this book. I would also like to thank

Rob Jacoby and Seb Pearce for inspiring me to write this book in the first place.

Thank you to Phil Arndtwhohas been readingmydry-rb +ROMshowcase series

of blog posts1. I’ve pilfered some of those for bits of the early content of this

book. I figured that’s fair, because I wrote both this book and those posts. What

am I going to do? Sue myself?

Thank you to Francois Beausoleil, Bruno Bonamin, Brian Buchalter, Ace Dima-

suhid, Rob Howard, and Michael Kohl, Rocio Diaz-Meco, Sean Liu and Tristan

Penman for reporting errata in this book.

There’s probablymore errata to report, so if you findany, please emailme@ryanbigg.com

with what you find and you too can go on this list of outstanding people.
1https://ryanbigg.com/2020/02/rom-and-dry-showcase-part-1

https://ryanbigg.com/2020/02/rom-and-dry-showcase-part-1
https://ryanbigg.com/2020/02/rom-and-dry-showcase-part-1
https://ryanbigg.com/2020/02/rom-and-dry-showcase-part-1

Preface
When Rails came out, it was revolutionary. There was an order to everything.

Code for your business logic or code that talks to the database obviously belongs

in the model.

Code that presents data in eitherHTML or JSON formats obviously belongs in the

view.

Any special (or complex) view logic goes into helpers.

The thing that ties all of this together is obviously the controller.

It was (and still is) neat and orderly. Getting started with a Rails application is

incredibly easy thanks to everything having a pre-assigned home.

The Rails Way™ enforces these conventions and suggests that this is the One

True Way™ to organise a Rails application. This Rails Way™ suggests that,

despite there being over a decade since Rails was crafted, that there still is no

better way to organise an application than theMVC pattern that Rails originally

came with.

While I agree that this way is still extremely simple and great for getting started

within a Rails application, I do not agree that this is the best way to organise a

Rails application in 2021 with long-termmaintenance in mind.

Preface 4

As a friend of mine, Bo Jeanes2 put it neatly once:

Code is written for the first time only once.

Then there is anywhere between0 and infinite days of having to change

that code, understand that code, move that code, delete that code,

document that code, etc. Rails makes it easy to write that code and to

do some of those things early on, but often harder to do all the those

things on an ongoing basis.

We benefit by being patient in that first period and maybe trading off

some of that efficiency for a clarity and momentum for the life of the

project.

A decade of Ruby development has produced some great alternatives to Rails’

MVC directory structure that are definitely worthwhile to consider.

In this guide, I want to show an alternative viewpoint on how a Rails application

should be organised in order to increase its maintainability.

These are the best pieces that I’ve found to work for me and others.

This research for how to construct a better Rails application comes out of 15

years worth of developing Rails applications.

To best understand why this alternative architecture is a better approach, we

must first understand the ways in which Rails has failed.

Where Rails falls down

The Original Rails Way™ falls down in at least three major areas in my opinion.

Three major areas that have to do with organization. Coincidentally (or not),
2https://twitter.com/bjeanes

https://twitter.com/bjeanes
https://twitter.com/bjeanes

Preface 5

these three areas are themajorhighlights of thewayRails suggests youorganize

applications: models, controllers, and views.

Let’s start with controllers.

Messy controllers

The controller’s actions talk to the model, asking the model to create, read,

update or delete records in a database. And then this controller code might

do more: send emails, enqueue background jobs, make requests to external

services. There is no pre-determined, widely agreed-upon location for this

logic; the controller is the de facto place. A controller action can often have

request logic, business logic, external API calls and response logic all tied up

in the one method, typically inside the action itself.

If this logic is not inside of the actions themselves, it is then likely found in

private methods at the bottom of the controller. This leads to a common anti-

pattern seen in Rails applications, one called the “iceberg controller”. What

appears to be a small handful of clean actions is actually masking 100+ lines of

privatemethods defined underneath. It is not immediately clear from scanning

through these private methods which private method is used in which action.

Or even if they are used at all!

Testing all these intertwining parts individually is hardwork. Tomake sure that

it all works together, you often have to write many feature and/or request tests

to test the different ways that the controller action is called and utilized. The

logic of the controller’s actions – those calls out to the model – get intimately

acquainted with the logic for handling the request and response for that action.

The lines between the incoming request, the business logic and the outgoing

response becomeblurred. The controller’s responsibilities are complex because

Preface 6

there is no other sensible place for this code to go.

The problems with Active Record Models

Controllers are bad, but models are worse. In order to remove complexity from

controllers, it has been suggested tomove that logic to themodels instead – the

“Fat model, skinny controller” paradigm.

An Active Record model is responsible for at least the following things:

• Mapping database rows to Ruby objects

• Containing validation rules for those objects

• Managing the CRUD operations of those objects in the database (through

inheritance from ActiveRecord::Base)

• Providing a place to put code to run before those CRUD operations (call-

backs)

• Containing complicated database queries

• Containing business logic for your application

• Defining associations between different models

If youwere to colour each responsibility of yourmodel, it might look something

like this:

Preface 7

Normal model

Or really, it might look like this:

Preface 8

Normal model

In traditional Rails models, all of this gets muddled together in the model,

making it very hard to disentangle code that talks to the database and code that

is working with plain-Ruby objects.

For instance, if you saw this code:

class Project < ApplicationRecord has_many :tickets

def contributors tickets.map(&:user).uniq end end

You might know instinctively that this code is going to make a database call to

the tickets association for the Project instance, and then for each of these Ticket

objects it’s going to call its usermethod, which will load a User record from the

Preface 9

database.

Someone unfamiliar with Rails – like, say, a junior Ruby developer with very

little prior Rails exposure –might think this is bog-standard Ruby code because

that’s exactly what it looks like. That is what Rails is designed to look like.

There’s something called tickets, and you’re calling a map method on it, so

they might guess that tickets is an array. Then uniq further indicates that. But

tickets is an associationmethod, and so a database query ismade to load all the

associated tickets.

This kind of code is very, very easy to write in a Rails application because Rails

applications are intentionally designed to be easy. “Look at all the things I’m

not doing”3 and “provide sharp knives”4 and all that.

However, this code executes onequery to load all the tickets, and thenonequery

per ticket to fetch its users. Ifwe called thismethod in the console, then thequery

output might look like this:

Project Load (0.2ms) SELECT "projects".* FROM "projects" ORDER BY "projects"."id" \

ASC LIMIT ? [["LIMIT", 1]]

Ticket Load (0.1ms) SELECT "tickets".* FROM "tickets" WHERE "tickets"."project_id" \

= ? [["project_id", 1]]

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 1], ["LIMIT", 1]]

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 2], ["LIMIT", 1]]

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 3], ["LIMIT", 1]]

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 1], ["LIMIT", 1]]
3http://youtu.be/Gzj723LkRJY
4http://rubyonrails.org/doctrine/#provide-sharp-knives

http://youtu.be/Gzj723LkRJY
http://youtu.be/Gzj723LkRJY
http://rubyonrails.org/doctrine/#provide-sharp-knives
http://youtu.be/Gzj723LkRJY
http://rubyonrails.org/doctrine/#provide-sharp-knives

Preface 10

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 2], ["LIMIT", 1]]

User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."id" = ? LIMIT ? [[\

"id", 3], ["LIMIT", 1]]

This is a classic N+1 query, which Rails does not stop you from doing. It’s a

classic Active Record footgun / sharp knife. And this is all because Active Record

makes itmuch too easy to call out to thedatabase. This code for Project#contributors

combines business logic intent (“find me all the contributors to this project”)

with database querying and it’s themajor problem with Active Record’s design.

What’s worse, is that you can make a database call wherever a model is used in

a Rails application. If you use a model in a view, a view can make a database

call. A view helper can. Anywhere! Rails’ attitude to this is one of “this is fine”,

because they provide sharp knives and you’re supposed to trust the “omakase

chefs” of the Rails core team. Constant vigilance can be exhausting, however.

Database queries are cheap tomake becauseActiveRecordmakes it so darn easy.

When looking at the performance of a large, in-production Rails application,

the number one thing I come across is slow database queries caused bymethods

just like this. Programmers writing innocent looking Ruby code that triggers

not-so-innocent database activity is something that I’ve had to fix too many

times within a Rails application.

Active Record makes it way too easy to make calls to the database. Once these

database calls are ingrained in the model like this and things start depending

on those calls beingmade, it becomes hard to refactor this code to reduce those

queries. Even tracking down where queries are being made can be difficult due

to the natural implicitness that somemethod calls produce database queries.

Preface 11

Thankfully, there are tools like AppSignal5, Skylight6 and New Relic7 that point

directly at the “smoking guns” of performance hits in a Rails application. Tools

like these are invaluable. It would be nice to not need them somuch in the first

place, however.

The intention here with the contributors method is very innocent: get all the

users who have contributed to the project by iterating through all the tickets

and finding their users. If we had a Project instance (with thousands of tickets8),

running that contributors method would cause thousands of database queries

to be executed against our database.

Of course, there is a way to make this all into two queries through Rails:

class Project < ApplicationRecord

def contributors

tickets.includes(:user).map(&:user).uniq

end

end

This will load all the tickets and their users in two separate queries, rather than

one for tickets and then one for each ticket’s user, thanks to the power of eager

loading. (Which you can readmore about in the Active Record Querying guide9.)

The queries look like this:

5https://appsignal.com
6https://skylight.io
7https://newrelic.com
8https://github.com/rails/rails
9http://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations

https://appsignal.com/
https://skylight.io/
https://newrelic.com/
https://github.com/rails/rails
http://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations
https://appsignal.com/
https://skylight.io/
https://newrelic.com/
https://github.com/rails/rails
http://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations

Preface 12

Ticket Load (0.4ms) SELECT "tickets".* FROM "tickets" WHERE "tickets"."project_id" \

= ? [["project_id", 1]]

User Load (0.4ms) SELECT "users".* FROM "users" WHERE "users"."id" IN (1, 5)

Active Record loads all the ticket objects that it needs to, and then it issues a

query to find all the users that match the user_id values from all the tickets.

You can of course not load all the tickets at the start either, you could load only

the 100 most recent tickets:

class Project < ApplicationRecord

def contributors

tickets.recent.includes(:user).map(&:user).uniq

end

end

class Ticket < ApplicationRecord

scope :recent, -> { limit(100) }

end

But I think this is still too much of a mish-mash of database querying and

business logic. Where is the clear line between database querying and business

logic in this method? It’s hard to tell. This is because Active Record allows us to

do this sort of super-easy querying; intertwining Active Record’s tentacles with

our business logic.

Views

Views in a typical Rails application are used to define logic for how to present

data frommodels once this data has been fetched by controllers.

Preface 13

We’ve already discussed how Active Record allows you to execute additional

queries in any context that amodel is used. Typically additional queries like the

tickets and contributors ones above will be executed in a view. There’s no clear

barrier between models and views to prevent this from happening.

This sort of “leakage” makes it very hard for views to be used in complete

isolation from a database. Themoment a view uses amodel is themoment that

the view is now potentially tied to a database. For example: could you look at a

view and quickly knowhowmany, if any, database queries were being executed?

Probably not.

To define any sort of Ruby logic for views, Rails recommends using view helpers.

Perhaps we want to render a particular avatar for users:

module UsersHelper

def avatar

image_tag(user.avatar_url || "anonymous.png")

end

end

And thenwewere touse this inour viewover at app/views/projects/show.html.erb:

<% @project.tickets.each do |ticket| %>

<%= avatar(ticket.author) %>

<% end %>

This code is defined in a helper file at app/helpers/users_helper.rb, but is used in

a completely separate directory, under a completely different namespace. The

distance between where the code is defined and where it is used is very far apart.

Preface 14

On top of all that, helpers are then shared across all views. So while the helper

is defined in UsersHelper, it will be available for all views. If you define a helper

in UsersHelper, then it is also available under views at app/views/tickets, or

app/views/projects, too.

Because of this “wide sharing” of view helpers, we don’t know if changing it

is going to have ramifications elsewhere in our application. If we change it for

this one context, will it potentially break other areas? We cannot know without

looking through our code diligently.

Presenters

A common way to approach solving this problem is through the presenter

pattern. Presenters define classes that then “accentuate” models. They’re

typically used to include presentational logic for models – things that would

be “incorrect” to put in a model, but okay to put in a view.

By using a presenter, we have a clear indicator of where the presenter’smethod

is used: look for things like UserPresenter.new(user), and then that’ll be where it

is used.

Here’s our avatar example, but this time in a presenter:

classUserPresenter def avatar image_tag(user.avatar_url || “anonymous.png”)

end end

To use this, wewould then need to initialize a new instance of this presenter per

user object:

<%@project.tickets.eachdo |ticket|%><%=UserPresenter.new(ticket.author).avatar

%> <% end %>

This thenmuddles together the Ruby andHTML code of our view. Away to solve

Preface 15

this could be to move that preparation of the data into a helper:

moduleTicketsHelper def author_avatar(author)UserPresenter.new(author).avatar

end end

Then in the view:

<%@project.tickets.eachdo |ticket|%><%=author_avatar(ticket.author)

%> <% end %>

We have now got the logic for rendering an avatar spread over three different

points:

1. The view

2. The presenter

3. The helper

This is not a very clear way to organize this code, and the more this pattern is

used, the more confusing your application will get.

Views in a default Rails application leave us with no alternative other than to

create a sticky combined mess of logic between our ERB files and helper files

that are globally shared.

We can do better

It should bepossible to render a viewwithout relying on amodel to be connected

to a database. Being able to reach into the database from your views should be

hard work. Your business logic should have everything it needs to work by the

stage a view is being rendered. This will then make it easier to test the view in

isolation from the other components of your application.

Preface 16

The source of these frustrations is the Active Record pattern and Rails’ strict ad-

herence to it. A class containing only business logic and being passed some data

should not need to know also about how that data is validated, any “callbacks”

or how that data is persisted too. If a class knows about all of those things, it

has too many responsibilities.

The Single Responsibility Principle says that a class or a module should only be

responsible for one aspect of the application’s behaviour. It should only have

one reason to change. An Active Recordmodel of anymeaningful size hasmany

different reasons to change. Maybe there’s a validation that needs tweaking, or

an association to be added. How about a scope, a class method or a plain old

regular method, like the contributors one? All more reasons why changes could

happen to the class.

An Active Record model flies in the face of the Single Responsibility Principle.

I would go as far as to say this: Active Record leads you to writing code that is

hard tomaintain from the very first time you set foot in a Rails application. Just

look at any sizable Rails application. The models are usually the messiest part

and I really believe Active Record – both the design pattern and the gem that

implements that pattern – is the cause.

Having a well-defined boundary between different pieces of code makes it

easier to work with each piece. Active Record does not encourage this.

Validations and persistence should be their own separate responsibilities and

separated into different classes, as should business logic. There should be

specific, dedicated classes that only have the responsibility of talking to the

database. Clear lines between the responsibilities here makes it so much easier

to work with this code.

It becomes easier then to say: this class works with only validations and this

other class talks to the database. There’s no muddying of the waters between

Preface 17

the responsibilities of the classes. Each class has perhaps not one reason to

change, but at least fewer reasons to change than Active Record classes.

It’s possible to build a Rails application with distinct classes for validations,

persistence and logic that concerns itself with data from database records. It’s

possible to build one that does not combine a heap ofmessy logic in a controller

action, muddling it in with request and response handling.

Just because DHH & friends decided in 2006 that there was One True Way™ to

build a Rails application – it does notmean that now in 2021, a full 15 years later,

that we need to hew as close to that as possible. We can explore other pathways.

This is a book dedicated to charting that exploration, leading to a brighter future

for your Rails application.

The way we’re going to improve upon the default Rails architecture is with two

suites of gems: those from the dry-rb10 suite, and those from the rom-rb11 suite.

We’ll be using these gems to clearly demarcate the lines between responsibili-

ties for our application.

We’ll have particular classes thatwill separate the code that validates user input

from the code that talks to a database.

We’ll take apart the intermingling of request-response handling and business

logic from within our controllers, and move that out to another set of distinct

classes.

We’ll move code that would typically be in a view or a helper, into yet another

type of distinct class: one called a view component.

And with this, we’ll move forward into that bright future that’ll lead to your

Rails applications being maintainable.
10https://dry-rb.org/
11https://rom-rb.org

https://dry-rb.org/
https://rom-rb.org/
https://dry-rb.org/
https://rom-rb.org/

Preface 18

Here’s the plan for this book:

Chapter 1 starts out with an empty directory. We’ll fill out this directory with a

few plain Ruby files, showing how it is possible to get started with ROMwithout

using Rails at all. We’ll also spend this time getting familiar with some of the

concepts of ROM such as relations, and repositories.

Chapter 2 will have us installing ROM into a new Rails application and config-

uring the first model: a model called Project. This chapter will give you a pretty

good idea of how separated the code is within a project that uses ROM. We’ll

bring relations and repositories into a Rails application.

Chapter 3 will look at how we can connect the parts that we build in Chapter

1 to a Rails controller. You’ll be surprised at how not-different this looks to a

regular controller.

Chapter 4 will continue the work from Chapter 2, adding an index and a show

action to that controller. We’ll be using some more ROM methods in this

chapter too.

Chapter 5 covers validations within this application, proving that the model

isn’t the only place validations can live. We’ll also look at how we can present

the validation messages back to the user once a validation fails.

Chapter 6 talks about service objects, discussing the pitfalls of common service

object design and presents a better alternative in a concept called “operations”.

Chapter 7 introduces the second and third models of the application: a Ticket

model and a User model. It’s in this chapter that we’ll look at how we can

approach the problem of the Project#contributorsmethod in a different way.

In the book’s “epilogue”, there is some short homework for you (yes, that

Preface 19

means you) to do. You should do this homework to practiceworkingwith aROM-

powered application, just so you can experience how easy it is to use. Doing it

yourself is much better than following the bouncing ball of a technical guide

like this.

The final part of the book’s “epilogue” discusses a radically different architec-

ture for a Rails application, where Rails is the dumb host to an application’s

business logic.

So without further ado, let’s get started using this ROM thing. You really will be

amazed at the cleanliness of the code.

	Table of Contents
	Introduction
	Who is this book for?
	Acknowledgements

	Preface
	Where Rails falls down
	Messy controllers
	The problems with Active Record Models
	Views
	We can do better

