
Overview of Magento 2’s Architecture 

Magento’s architecture was designed with the intent of making the source code as 

modularized and extensible as possible. The end goal of that approach is to allow it to be 

easily adapted and customized according to each project’s needs. 

Customizing usually means changing the behavior of the platform’s code. In the 

majority of systems, this means changing the “core” code. In Magento, if you are 

following best practices, this is something you can avoid most of the time, making it 

possible for a store to keep up to date with the latest security patches and feature 

releases in a reliable fashion. 

Magento 2 is a Model View ViewModel (MVVM) system. While being closely related 

to its sibling Model View Controller (MVC), an MVVM architecture provides a more 

robust separation between the Model and the View layers. Below is an explanation of 

each of the layers of a MVVM system: 

• The Model holds the business logic of the application, and depends on an 

associated class—the ResourceModel—for database access. Models rely 

on service contracts to expose their functionality to the other layers of the 

application. 

• The View is the structure and layout of what a user sees on a screen - the 

actual HTML. This is achieved in the PHTML files distributed with 

modules. PHTML files are associated to each ViewModel in the Layout 

XML files, which would be referred to as binders in the MVVM dialect. 

The layout files might also assign JavaScript files to be used in the final 

page. 



• The ViewModel interacts with the Model layer, exposing only the 

necessary information to the View layer. In Magento 2, this is handled by 

the module’s Block classes. Note that this was usually part of the 

Controller role of an MVC system. On MVVM, the controller is only 

responsible for handling the user flow, meaning that it receives requests 

and either tells the system to render a view or to redirect the user to 

another route. 

A Magento 2 module consists of some, if not all, elements of the architecture described 

above. The overall architecture is described below (source): 

 

A Magento 2 module can in turn define external dependencies by using Composer, 

PHP’s dependency manager. In the diagram above, you see that the Magento 2 core 

modules depend on the Zend Framework, Symfony as well as other third-party libraries. 

Below is the structure of Magento/Cms, a Magento 2 core module responsible for 

handling the creation of pages and static blocks. 

http://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/arch_diagrams.html


 

Each folder holds one part of the architecture, as follows: 

• Api: Service contracts, defining service interfaces and data interfaces 

• Block: The ViewModels of our MVVM architecture 

• Controller: Controllers, responsible for handling the user’s flow while 

interacting with the system 



• etc: Configuration XML files—The module defines itself and its parts 

(routes, models, blocks, observers, and cron jobs) within this folder. 

The etc files can also be used by non-core modules to override the 

functionality of core modules. 

• Helper: Helper classes that hold code used in more than one application 

layer. For example, in the Cms module, helper classes are responsible for 

preparing HTML for presentation to the browser. 

• i18n: Holds internationalization CSV files, used for translation 

• Model: For Models and ResourceModels 

• Observer: Holds Observers, or Models which are “observing” system 

events. Usually, when such an event is fired, the observer instantiates a 

Model to handle the necessary business logic for such an event. 

• Setup: Migration classes, responsible for schema and data creation 

• Test: Unit tests 

• Ui: UI elements such as grids and forms used in the admin application 

• view: Layout (XML) files and template (PHTML) files for the front-end 

and admin application 

It is also interesting to notice that, in practice, all of Magento 2’s inner workings live 

inside a module. In the image above, you can see, for instance, Magento_Checkout , 

responsible for the checkout process, and Magento_Catalog , responsible for the 

handling of products and categories. Basically, what this tells us is that learning how to 

work with modules is the most important part of becoming a Magento 2 developer. 

All right, after this relatively brief introduction to the system architecture and module 

structure, let’s do something more concrete, shall we? Next, we will go through the 

traditional Weblog tutorial in order to get you comfortable with Magento 2 and on track 

to become a Magento 2 Developer. Before that, we need to set up a development 

environment. Let’s get to it! 



Setting up the Magento 2 Module Development 

Environment 

At the time of this writing, we were able to use the official Magento 2 DevBox, which is a 

Magento 2 Docker container. Docker on macOS is something I still consider to be 

unusable, at least with a system which heavily depends on fast disk I/O such as Magento 

2. So, we will do it the traditional way: Install all packages natively on our own machine. 


