Fu Cheng

Lodash 4 Cookbook
For lodash 4.17.21

Fu Cheng
This book is available at https://leanpub.com/lodashcookbook

This version was published on 2025-08-09

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2025 Fu Cheng

https://leanpub.com/lodashcookbook
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Fu Cheng by spreading the word about this book on Twitter!
The suggested hashtag for this book is #lodashcookbook.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#lodashcookbook

http://twitter.com
https://twitter.com/search?q=%23lodashcookbook
https://twitter.com/search?q=%23lodashcookbook

Also By Fu Cheng

Text-to-SQL, Spring Al Implementation with RAG
Understanding Java Virtual Threads

Build AI Applications with Spring Al

From Java 17 to Java 21

Build Native Java Apps with GraalVM

From Java 11 to Java 17

ES6 Generators

A Practical Guide for Java 8 Lambdas and Streams

JUnit 5 Cookbook

https://leanpub.com/u/fucheng
https://leanpub.com/text-to-sql
https://leanpub.com/java-virtual-threads
https://leanpub.com/spring-ai
https://leanpub.com/java17to21
https://leanpub.com/build-native-java-apps-graalvm
https://leanpub.com/java11to17
https://leanpub.com/es6generators
https://leanpub.com/java8-lambda-expressions-streams
https://leanpub.com/junit5

To my wife Andrea and my daughters Olivia, Erica, and Youyou

Contents

1.

Introduction e 1
1.1 Installation e 2

1.1.1 Web . . e 2

1.1.2 NodeJS . . . 3
1.2 Lodashfeatures i, 4
1.3 Codesampleconvention, 4
1.4 Aboutthisbook 5
Commonconcepts 6
2.1 Truthyandfalsy............. 6
2.2 SameValueZerot e 6
2.3 Predicates e e 6

2.3.1 12 ool 1= =S 6

2.3.2 MatCheSProPertY « v v v v e i e e e e e e e e e e e e e 7

2.3.3 (oL g00) o =1 g w20 O 8
2.4 Jteratees e e e 10

2.4.1 Iterateeshorthand 11
2.5 thisbinding e 11
Collections e 13
3.1 Each e e 13
3.2 Everyandsome e e 14
3.3 Filterandreject 16
34 SIZE . e 17
35 Includes 18
3.6 Sample 19
3.7 Shuffle 19
3.8 Partition it e e e 20
39 Countby 21
3.10 Groupbyandkeyby......... 22
31 ANVOKEMAD « v v e e e e e e e e e e e e e e e e e 23
312 MapandreducCettt e e 24

BA2 1 MaAD . .t e e e e 24

3.12.2 Reduce e e 25

CONTENTS

313 Search 26
33T Find oo e e e e 27

3132 FANdLAST « v v e e e e e e e e e e 28

314 SOOIt .. e 28
305 flatMap v v e e e e e e 29
4. String Templates 31
4.1 interpolate e 31
4.2 BSCAPE . .t i e 32
4.3 evaluate 32
44 IMPOTES . . o v o e e e 33
4.5 Dataobjectname e 34
5. ReCIpes 35
5.1 Filter an object’s properties 35
5.11 Scenario 35

5.1.2 Solution 35

5.2 Push an array of elementsintoanarray 36
5.2.1 SCENATIO o o e 36

5.2.2 Solution 36

5.3 Processdatafor C3.jspiechart 37
5.3.1 SCeNATIO o o 37

5.3.2 Solution e 38

54 Create a unique array ofobjects. 40
54.1 SCENATIO v it e 40

5.4.2 Solution 40

5.5 Convertanarraytoanobject 41
5.5.1 SCeNATIO oo 41

5.5.2 Solution e 42

6. Thankyou e 43

1. Introduction

This book is about the popular JavaScript utilities library lodash'. Before we discuss
lodash, we should understand why we need a JavaScript utilities library. With the
prevalence of Web 2.02, Ajax3 and Node]S#, JavaScript has become a very important
programming language in both browser-side and server-side. Besides the bad parts®
of JavaScript language, JavaScript itself doesn’t have a rich set of high-level API for
developers to use, which makes common programming tasks hard to complete.

For example, it’s a very common task to iterate an array and process all elements
in this array in sequence. In some old browsers, the JavaScript Array object doesn’t
have the method foreach(). To iterate an array, for loop is required as in Listing 1.1.
process is the function to process elements in the array.

Listing 1.1 Traditional approach to iterate an array

for (var i = 0, n = array.length; i < nj; i++) {
process(array[il);

}

When using the method foreach(), the code in Listing 1.1 can be simplified as in
Listing 1.2.

Listing 1.2 Use forEach() to iterate an array

array.forEach(process);

Comparing code snippets in Listing 1.1 and Listing 1.2, it’s obvious that Listing 1.2
is much simpler to understand and easier to write and maintain than the code in
Listing 1.1. That’s why developers want more high-level APIs. JavaScript itself is
evolving to add more language features and APIs, but the process is not fast enough.
ECMAScript, the specification behind JavaScript, includes nine new methods for
searching and manipulating array contents in 5th edition’. This means developers
can use the method fortach() when the JavaScript engine supports ECMAScript

http:/lodash.com/

2http://en.wikipedia.org/wiki/Web_2.0

3http://en.wikipedia.org/wiki/Ajax_(programming)

4http://nodejs.org

S5Find out the good parts of JavaScript in Douglas Crockford’s excellent book JavaScript: The Good Parts
6http://en.wikipedia.org/wiki/ECMAScript

Thttp://www.ecma-international.org/ecma-262/5.1/

http://lodash.com/
http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Ajax_(programming)
http://nodejs.org/
http://en.wikipedia.org/wiki/ECMAScript
http://www.ecma-international.org/ecma-262/5.1/
http://lodash.com/
http://en.wikipedia.org/wiki/Web_2.0
http://en.wikipedia.org/wiki/Ajax_(programming)
http://nodejs.org/
http://shop.oreilly.com/product/9780596517748.do
http://en.wikipedia.org/wiki/ECMAScript
http://www.ecma-international.org/ecma-262/5.1/

Introduction 2

5. But some old browsers, like IE 8, don’t support ECMAScript 5, which means
developers need to consider cross-platform compatibility issues if supporting old
browsers is a must. ECMAScript 68 specification was published in June 2015 with a
lot of new features and enhancements.

o See a comprehensive ECMAScript 5 & 6 compatibility table here® and here©.

Developers rely on JavaScript libraries to make daily development easier. The goal
of libraries is to become the bridge between JavaScript runtime and developers.
Developers can enjoy the high-level APIs provided by those libraries. Libraries are
responsible for handling implementation details about how to use the low-level
JavaScript APIs efficiently.

You may have heard about or even used another JavaScript utilities library Under-
scorell. Underscore provides a rich set of common APIs in the namespace _. Lodash
also uses namespace _ and it’s a drop-in replacement of Underscore with more
features and performance improvements. If you already use Underscore, you can
simply replace the Underscore with lodash, everything should just work.

This book is for the latest lodash 4.17.21 version.

1.1 Installation

Lodash is just a plain old JavaScript library, so it’s very easy to install and use.

1.1.1 Web

In a web application, we can just download the lodash release JavaScript file and
include it in the HTML page, then use _ in the JavaScript code.

Listing 1.3 Install lodash in HTML page

<script src="lodash.js"></script>

We can also use links provided by CDN servers to load lodash. CDN servers usually
have different versions of lodash to choose from. Listing 1.4 shows how to use

8http://www.ecma-international.org/ecma-262/6.0/

9http://kangax.github.io/compat-table/ess/
10http://kangax.github.io/compat-table/es6/
11http:/funderscorejs.org/

http://www.ecma-international.org/ecma-262/6.0/
http://kangax.github.io/compat-table/es5/
http://kangax.github.io/compat-table/es6/
http://underscorejs.org/
http://underscorejs.org/
http://www.ecma-international.org/ecma-262/6.0/
http://kangax.github.io/compat-table/es5/
http://kangax.github.io/compat-table/es6/
http://underscorejs.org/

Introduction 3

cdnjs!? to load lodash. cdnjs also provides the minified JavaScript version with
source mapping file.

Listing 1.4 Load lodash from cdnjs

<script src="//cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.21/1lodash.js">
</script>

No Bower support in v4

Bower support has been removed in v4 in favor of npm. But we can still use
Bower to download lodash v4.

1.1.2 NodeJS

In Node]S, we can install lodash using npm!3 or yarn!4; see Listing 1.5 and Listing
1.6.

Listing 1.5 Install lodash using npm

$ npm install --save lodash

$ npm install --save lodash@4.17.21

Listing 1.6 Install lodash using yarn

$ yarn add lodash

$ yarn add lodash@4.17.21

Then we can use require to import lodash package, see Listing 1.7.

12https://cdnjs.com/libraries/lodash.js
13http://npmjs.org
14https://yarnpkg.com/en/

https://cdnjs.com/libraries/lodash.js
http://npmjs.org/
https://yarnpkg.com/en/
https://cdnjs.com/libraries/lodash.js
http://npmjs.org/
https://yarnpkg.com/en/

Introduction 4

Listing 1.7 Use lodash in NodeJS

var _ = require('lodash'); // Require the whole lodash package

var forEach = require('lodash/forEach'); // Require only forEach

It’s recommended to only install NodeJS modules of actually used modules. For
example, if the code only uses _. foreach method, then install the lodash. foreach
module only.

Listing 1.8 Use lodash modules

$ npm install --save lodash.foreach

var forEach = require('lodash.foreach');

1.2 Lodash features

Lodash focuses on providing core features that are frequently used for JavaScript
built-in objects, including:

* Arrays
* Objects
* Functions
* Strings

Some of those features may have been included in the latest version of ECMAScript
specification. Some platforms may have also implemented extra features. If the
underlying platform already supports a certain feature, lodash just uses the native
implementation to improve performance.

1.3 Code sample convention

All code samples in this book are written in ECMAScript 6 JavaScript syntax and
tested on Node]S 6.9.4. Most of the code is written as Jest!> test cases to verify the
result. For those code that are not written as Jest code, the result of execution is
provided below the actual code as a comment; see Listing 1.9.

15https://facebook.github.iofjest

https://facebook.github.io/jest
https://facebook.github.io/jest

Introduction 5

Listing 1.9 Code sample convention

_.min([1, 2, 3]1);
/] -> 1

As in the Listing 1.9 above, _.min([1, 2, 3]); is the actual code, 1 after // -> is the
execution result.

The complete source code of this book can be found on GitHub!S.

1.4 About this book

Lodash is a well-documented JavaScript library with comprehensive official doc-
umentation!’. This book is a simple and concise guide on how to use lodash in
practice. It covers core features and most frequently used functions.

18https://github.com/VividcodelO/lodash4cookbook
17https:/lodash.com/docs

https://github.com/VividcodeIO/lodash4cookbook
https://lodash.com/docs
https://lodash.com/docs
https://github.com/VividcodeIO/lodash4cookbook
https://lodash.com/docs

2. Common concepts

Before diving into details of lodash functions, we start from some common concepts
in lodash.

2.1 Truthy and falsy

Truthy and falsy values are very important when using lodash predicates. false, o,
"r(empty string), null, undefined and NaN are falsy values in JavaScript. All other
values are truthy values.

2.2 SameValueZero

SameValueZero! is the algorithm of how to compare two values in lodash. It’s similar
to JavaScript “strict equality comparison” (===), except the handling of NaN. It always
makes developers confused as NaN === NaN returns false. SameValueZero removes
that confusion, so naN is the same to NaN in SameValueZero algorithm.

2.3 Predicates

Predicate functions only return truthy or falsy values. They are used frequently in
lodash. For example, when filtering a collection, a predicate function is required to
determine what kind of elements should be kept.

Predicate functions can be written as plain old JavaScript functions. Lodash also
provides some helper functions to generate predicate functions for common use
cases.

2.3.1 matches

_.matches(source) takes a source object and creates a new function which performs
a deep comparison between the given object and the source object. _.matches sup-
ports comparison of different types of data, including booleans, numbers, strings,

Lhttp://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero

http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero

Common concepts 7

Date Objects, RegExp Objects, object objects and arrays. Listing 2.1 shows how
_.matches works by comparing strings and objects.

Listing 2.1 Match by object comparison

const matches = require('lodash/matches');

describe('matches', () => {
it('should match strings', () => {
let f = matches('hello');
expect(f('world')).toBe(false);
expect(f('hello')).toBe(true);
1)

it('should match objects', () => {
let f = matches([{a: 1}, {b: 2}]1);
expect(f([{a: 1}, {b: 3}])).toBe(false);
1)
s

2.3.2 matchesProperty

_.matchesProperty(path, value) takes a property path and the expected value of
this property path to create a new function that checks if the given object’s value
of the same property path matches the expected value. Listing 2.2 shows how _-
.matchesProperty Works by matching simple property name, built-in property and
nested property path.

Listing 2.2 Match by comparing property value

const matchesProperty = require('lodash/matchesProperty');

describe('matchesProperty', () => {
it('should match property name', () => {
let f = matchesProperty('name', 'Alex');
expect(f({name: 'Alex'})).toBe(true);
1)

it('should match built-in property', () => {
let f = matchesProperty('length', 5);
expect(f('hello')).toBe(true);

1)

Common concepts 8

it('should match nested path', () => {
let f = matchesProperty('user.name', 'Alex');
expect(f({user: {name: 'Alex'}})).toBe(true);
1)
s

2.3.3 property

_.property(path) takes a property path and creates a new function which returns
the value of this property path in the given object. _.property can be used to create
predicate functions with property values converted to truthy or falsy values.

Listing 2.3 Extract property value

const property = require('lodash/property');

describe('property', () => {
it('should extract property value', () => {
let f = property('name');
expect(f({name: 'Alex'})).toBe('Alex');
1)
1)

For lodash functions which accept predicates, e.g. _.find and _. filter, predicates
can be specified using functions, strings, and objects.

 If a function is provided, it’s used directly. The predicate matches if the function
returns a truthy value.

* If only a string is provided, it’s used to create a function using _.property as the
predicate.

 If an array that contains a string and a value is provided, the string and the
value are used to create a function using _matchesProperty as the predicate.

« If an object is provided, it’s used to create a function using _.matches as the
predicate.

For example, given an array shown in Listing 2.4,

Common concepts 9

Listing 2.4 Example input JSON array

[
{
"name": "Alex",
"age": 30,
"is_premium": false
})
{
"name": "Bob",
"age": 20,
"is_premium": true
}’
{
"name": "Mary",
"age": 25,
"is_premium": false
}
]

_.find returns the first matching element in the array. A JavaScript function can
be used as the predicate to _. find. In Listing 2.5, we find the first element with age
greater than 18 in the array users. The result is the first element with the name Atex.

Listing 2.5 Find using a function

const find = require('lodash/find");

describe('find with different predicates', () => {
it('should find with a function', () => {
let user = find(users, user => user.age > 18);
expect(user) .toBeDefined();
expect(user.name) .toBe('Alex');
1)
s

If a string is passed as the predicate, it’s treated as a property name of objects in
the array. In Listing 2.6, we find the first element with truthy value of the property
is_premium in the array. The actual used predicate is _.property('is_premium'). The
result is the second element with the name Bob.

Common concepts 10

Listing 2.6 Find using a property value

it('should find with a property value', () => {
let user = find(users, 'is_premium');
expect(user) .toBeDefined();
expect(user.name).toBe('Bob');

1)

If an object is passed as the predicate, it’s treated as a search example. Objects
in returned results must have exactly the same values for all the corresponding
properties provided in the search example. In Listing 2.7, we find the first element
with the value of the property name equals to Alex in the array. The actual used
predicateis_.matches({ name: 'Alex' }).

Listing 2.7 Find using an object

it('should find with an object', () => {
let user = find(users, { name: 'Alex' });
expect(user) .toBeDefined();
expect(user.name).toBe('Alex');

1)

If the name of an argument of a lodash function is predicate, it means this
argument supports the predicate syntax described above.

2.4 lteratees

Iteratees are used by lodash functions which require iterating through a collection.
Iteratee is invoked for each element in the collection and the result is used instead of
the original element. Iteratees are typically used to transform collections. A typical
usage of iteratee is in the function _.map. The second argument of _.map is the
iteratee. The result of applying iteratee to each element in the collection is collected
and returned. In Listing 2.8, we use a function to transform input array [1, 2, 3]
to [3, 6, 91.

Common concepts 11

Listing 2.8 map using an iteratee function

const map = require('lodash/map');

describe('map with iteratees', () => {
it('should map with an iteratee function', () => {
let result = map([1l, 2, 3], n => n *x 3);
expect(result).toEqual([3, 6, 9]);
1)
1)

If the name of an argument of a lodash function is iteratee, it means this
argument is an iteratee function.

2.4.1 Iteratee shorthand

When iteratee functions are required, we can also use the similar syntax as pred-
icate functions to quickly create them. These iteratee shorthands use methods
_.matches, _.matchesProperty Or _.property behind the scene.

In the second invocation of _.map in Listing 2.9, the second argument of _.map must
be an array to indicate that it uses _.matchesProperty.

Listing 2.9 map using an iteratee shorthand

it('should map with iteratee shorthands', () => {
let result = map(users, {name: 'Alex'});
expect(result).toEqual([true, false, false]);

result = map(users, ['name', 'Alex']);
expect(result).toEqual([true, false, false]);

result = map(users, 'name');
expect(result).toEqual(['Alex', 'Bob', 'Mary']);
1)

2.5 this binding

In Lodash 3, we can use the argument thisArg to specify the value of this binding. In
Lodash 4, thisArg has been removed in most methods. To specify the binding object,

Common concepts 12

_.bind should be used explicitly. In Listing 2.10, when the function add is invoked,
this value is bound to obj.

Listing 2.10 map with this binding using _.bind

const map = require('lodash/map');
const bind = require('lodash/bind');

describe('this binding', () => {
it('should bind to this', () => {
const obj = {
val: 10,
add: function(n) {
return this.val + n;
}
s
let result = map([l, 2, 3], bind(obj.add, obj));
expect(result).toEqual([11, 12, 13]);
1)
s

If the name of an argument of a lodash function is thisaArg, then this function
supports binding this value.

3. Collections

A collection is an object that contains iterable elements. In lodash, collections can
be arrays, objects, and strings. Lodash has a rich set of functions to work with
collections.

In this chapter, we use the following JSON array as the sample data fruits for some
code samples.

Listing 3.1 Sample data fruits

L
{
"name": "apple",
"price": 0.99,
"onSale": true
3
{
"name": "orange",
"price": 1.99,
"onSale": false
3,
{
"name": "passion fruit",
"price": 4.99,
"onSale": false
3
]
3.1 Each

.each(collection, [1teratee:.1dentity])armi_.eachRight(collection, [iteratee=_-
.identity]) iterate over elements in the collection and invoke the iteratee function.
The difference is that _.eachRight iterates from right to left. _. foreach is an alias of
_.each, While _. forEachRight is an alias of _.eachRright.

Collections 14

Listing 3.2 Iterate collections

const each = require('lodash/each');

describe('each', () => {
it('should support basic diteration', () => {
let sum = 0;
each([1, 2, 3], val => sum += val);
expect(sum).toEqual(6);
})s
1)

3.2 Every and some

.every(collection, [predicate=.1identity]) checks if all elements in the collec-
tion match the given predicate.

Listing 3.3 Check if all elements match certain condition

const every = require('lodash/every');

describe('every', () => {
it('should support arrays with functions', () => {

let result = every([1l, 2, 3, 4], n => n % 2 === 0);
expect(result).toBe(false);
1)

it('should support arrays with property value', () => {
const fruits = [
{
name: 'apple',
price: 1.99,
onSale: true
}’
{
name: 'orange',
price: 0.99,
onSale: true
}
13

let result = every(fruits, ['onSale', true]);

Collections 15

expect(result).toBe(true);
1)

it('should support objects', () => {
const obj = {

a: 1,
b: 2,
c: 3
b5
let result = every(obj, n => n % 2 === 0);
expect(result).toBe(false);
1)
it('should support strings', () => {
let result = every('aaaa', c => c === 'a');
expect(result).toBe(true);
1)

1)

.some(collection, [predicate=.identity]) isthe opposite of _.every which checks
if any element in the collection matches the given predicate. _.some doesn’t need to
iterate the entire collection and the iteration exits as soon as a matching element is
found.

Listing 3.4 Check if any element matches certain condition

const some = require('lodash/some');

describe('some', () => {
it('should support arrays', () => {

let result = some([1l, 2, 3, 4], n => n % 2 === 0);
expect(result).toBe(true);

1)

it('should support strings', () => {
let result = some('hello', ¢ => ¢ === "x');
expect(result).toBe(false);

1)

1)

Collections 16
3.3 Filter and reject

.filter(collection, [predicate=.identity]) filters a collection by returning ele-
rnentsrnatchingt}uagrverlpredicate._.reject(collection, [predicate=_.1identity])
is the opposite of _. filter that returns elements not matching the given predicate.
When _.filter is used to filter objects, only values of matching properties are
returned. If you want to keep the original object structure, use _.pick Or _.omit
instead. When _. filter is used on strings, matching characters are returned in an
array.

Listing 3.5 Filter a collection

const filter = require('lodash/filter');

describe('filter', () => {
it('should support arrays', () => {
let result = filter(['a', 'b', 'c'], c => c > 'b');
expect(result).toEqual(['c']);
1)

it('should support objects', () => {
const obj = {
a: 1
b: 2
c: 3

]

-

b

}s3

let result = filter(obj, n =>n > 1);
expect(result).toEqual([2, 3]);

})s

it('should support strings', () => {
let result = filter('hello', ¢ => ¢ !== "'1");
expect(result).toEqual(['h', 'e', '0']);

1)

1)

Listing 3.6 shows the examples of _.reject.

Collections 17

Listing 3.6 Reject elements in a collection

const reject = require('lodash/reject');

describe('reject', () => {
it('should support arrays', () => {
let result = reject(['a', 'b', 'c'], c => c > 'b");
expect(result).toEqual(['a', 'b']);

1)
1)
_.filter and _.reject always return a new array. The input collection is not
modified. Anew array of filtered or rejected elements, object property values,
or characters is returned.
3.4 Size

.size(collection) gets the size of a collection. For arrays, the size is the array’s
length same as the array’s property length. For objects, the size is the number of
own enumerable properties, i.e. the length of the array returned by _.keys. For
strings, the size is the string’s length.

Listing 3.7 Get the size of a collection

const size = require('lodash/size');

describe('size', () => {
it('should support arrays', () => {
expect(size([1l, 2])).toEqual(2);
s

it('should support objects', () => {
expect(size({

a: 1,
b: 2,
c: 3,
})).toEqual(3);

1)

it('should support strings', () => {

Collections 18

expect(size('hello')).toEqual(5);
1)
1)

3.5 Includes

_.includes(collection, value, [fromIndex=0]) checks if a collection contains the
given value. An optional index can be provided as the starting position to search. If
the collection is an object, values of this object’s properties, i.e. the result of _.vatlues,
are searched instead. _.1includes uses the sameAszero algorithm to check equality.

Listing 3.8 Check if a collection contains the given value

const includes = require('lodash/includes');

describe('includes', () => {
it('should support arrays', () => {
expect(includes(['a', 'b', 'c'], 'a')).toBe(true);

1)

it('should support arrays with index', () => {
expect(includes(['a', 'b', 'c'], 'a', 1)).toBe(false);
1)

it('should support objects', () => {
expect(includes ({

a: 1,
b: 2,
c: 3
}, 1)).toBe(true);

1)

it('should support strings', () => {
expect(includes('hello', 'h')).toBe(true);
1)
1)

Collections 19
3.6 Sample

_.sample(collection) gets asingle random element from a collection. _.sampleSize(collection,
[n=1]) gets n random elements with unique keys from a collection.

Listing 3.9 Get random elements from a collection

_.sample(['a', 'b', 'c']);
// —-> 'a'

_.sample({
a: 1,
b: 2,
c: 3

1)

// —> 1

_.sample('hello');
// => 'h!

_.sampleSize('hello', 2)
// 7> [lhl’ l'LI]

3.7 Shuffle

_.shuffle(collection) shuffles a collection by generating a random permutation.
Lodash uses the Fisher-Yates shuffle! algorithm to shuffle the collection. For objects,
the return value of _.shuffle is a random permutation of the property values.

Listing 3.10 Shuffle a collection

_.shuffle(['a', 'b', 'c']);
// _> [lbl, IC', |a|:|

_.shuffle({
a: 1,
b: 2,
c: 3
1)
Lhttps://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

Collections 20

/1 => [1, 2, 3]

_.shuffle('hello');
// _> [lll’ I'Ll’ 'O', |hl’ lel]

Due to the random nature of _.sample, _.sampleSize and _.shuffle, mostlikely
the result will be different when running Listing 3.10 on your local machine.

3.8 Partition

.partition(collection, [predicate=.1identity]) splitsa collection into two groups
based on the result of invoking the predicate on each element. The first group
contains elements for which the predicate returns a truthy value, while the second
group contains elements for which the predicate returns a falsy value.

Listing 3.11 Split a collection into two groups

const partition = require('lodash/partition');
const fruits = require('../data/fruits.json');

describe('partition', () => {
it('should support arrays', () => {
let result = partition(['a', 'b', 'c'], char => char > 'a');
expect(result.length).toBe(2);
expect(result[0]).toEqual(['b', 'c']);
expect(result[1]).toEqual(['a']);
1)

it('should support predicate syntax', () => {
let result = partition(fruits, 'onSale');
expect(result.length).toBe(2);
expect(result[0].length).toBe(1l);
expect(result[1].length).toBe(2);

1)

it('should support strings', () => {
let result = partition('hello', char => char > '1'");
expect(result.length).toBe(2);
expect(result[0]).toEqual(['o']);
expect(result[1]).toEqual(['h', 'e', 'L', '1']);

Collections 21

1)
1)

3.9 Count by

.countBy(collection, [iteratee=.identity]) appliesafunction to each elementin
the collection and counts the number of occurrences of each result. The counting
result is returned as an object with the applied result as the keys and the count as
the corresponding values.

Listing 3.12 Count the number of occurrences

const countBy = require('lodash/countBy"');

describe('countBy', () => {
it('should support arrays', () => {
expect(countBy([1, 2, 3], n => n > 1)).toEqual({

true: 2,
false: 1,
1)
1)
it('should support objects', () => {
expect(countBy ({
a: 1,
b: 1,
c: 2,
}, val => val / 2)).toEqual({
1: 1,
0.5: 2,
1)
1)
it('should support strings', () => {
expect(countBy('hello', char => char === '"1')).toEqual({
true: 2,
false: 3,
1)
1)

1)

Collections 22
3.10 Group by and key by

.groupBy(collection, [iteratee=.identity]) appliesa function to each elementin
the collection and groups the elements by the result. Elements that have the same
result will be in the same group. The grouping result is returned as an object. The
keys in the object are the applied results, while the values are arrays of elements
which generate the corresponding result.

Listing 3.13 Group elements

const groupBy = require('lodash/groupBy');

describe('groupBy', () => {
it('should support arrays', () => {
expect(groupBy([1, 2, 3], n => n > 1)).toEqual({
true: [2, 3],

false: [1],
1)
1)
it('should support objects', () => {
expect(groupBy ({
a: 1,
b: 1,
c: 2,
}, val => val / 2)).toEqual({
1: [2],
0.5: [1, 1],
1)
1)

it('should support strings', () => {
expect(groupBy('hello', char => char === '1'")).toEqual({
true: ['l', 'l'],
false: ['h', 'e', 'o'],
1)
1)
1)

The difference between _.countBy and _.groupBy is that _.countBy only returns the
number of grouped elements.

Collections 23

.keyBy(collection, [iteratee=.1identity])’s behavior is similar to _.groupBy, but
_.keyBy only keeps the last element for each key.

Listing 3.14 Get the last element of grouping

const keyBy = require('lodash/keyBy');

describe('keyBy', () => {
it('should support arrays', () => {
expect(keyBy([1, 2, 3], n => n > 1)).toEqual({
true: 3,
false: 1,
1)
1)

it('should support objects', () => {
expect (keyBy ({
a: 1,
b: 1,
c: 2,
}, val => val / 2)).toEqual({
1: 2,
0.5: 1,
})s
1)

it('should support strings', () => {
expect(keyBy('hello', char => char === '1')).toEqual({
true: 'l’',
false: 'o',
})s
1)
1)

3.11 invokeMap

_.invokeMap(collection, path, [args]) invokes a method on each element in the
collection and returns the results in an array. The method to invoke is specified by
the path, can be the function’s name or the function itself. Additional arguments
can also be provided for the method invocation. In Listing 3.14, when the function
is invoked, this references the current element.

24

Collections

Listing 3.15 Invoke a method on each element in the collection

const invokeMap = require('lodash/invokeMap');

describe('invokeMap', () => {
it('should support method names', () => {
expect(invokeMap(['a', 'b', 'c'], 'toUpperCase')).toEqual(['A', 'B', 'C']\
)3
1)

it('should support extra arguments', () => {
expect(invokeMap([['a', 'b'], ['c', 'd']], 'join', '"))
.toEqual(['ab', 'cd']);
1)

it('should support functions', () => {
expect(invokeMap([{a: 1}, {a: 2}], function(toAdd) {
return this.a + toAdd;
}, 3)).toEqual([4, 5]);
1)
1)

3.12 Map and reduce

Map and reduce are common operations when processing collections. Map trans-
forms a collection into another collection by applying an operation to each element
in the collection. Reduce transforms a collection into a single value by accumulating
results of applying an operation to each element. The result of the last operation is
used as the input of the current operation.

3.12.1 Map

.map(collection, [iteratee=.identity]) isthe generic map function. We can use
the different iteratee syntax.

Collections 25

Listing 3.16 Generic map operation

const map = require('lodash/map');

describe('map', () => {
it('should support arrays', () => {
expect(map([1l, 2, 3], n => n % 2)).toEqual([2, 4, 6]);
1)

it('should support iteratee syntax', () => {
const users = [

{

name: 'Alex',
i
{

name: 'Bob',
}

13
expect(map(users, 'name')).toEqual(['Alex', 'Bob']);
expect(map(users, {name: 'Alex'})).toEqual([true, false]);
1)
s

3.12.2 Reduce

.reduce(collection, [iteratee=.1identity], [accumulator]) hassimilar arguments
list with _.map, except that it accepts an optional value as the initial input of the
first reduce operation. If the initial value is not provided, the first element in the
collection is used instead. The provided iteratee function will be invoked with four
arguments, accumulator, value, index/key and collection. accumulator iS the current
reduced value, while value is the current element in the collection. The returned
result of the iteratee function invocation is passed as the accumulator value of the
next invocation.

Collections 26

Listing 3.17 Use _.reduce to sum the values in an array

const reduce = require('lodash/reduce');

describe('reduce', () => {
it('should support no initial value', () => {
let result = reduce([1l, 2, 3],
(accumulator, value) => accumulator + value);
expect(result).toEqual(6);
1)

it('should support initial value', () => {
let result = reduce([1l, 2, 3],
(accumulator, value) => accumulator + value, 100);
expect(result).toEqual(106);
1)
1)

.reduceRight(collection, [iteratee=.1identity], [accumulator] is similar to_-
.reduce) except _.reduceRight iterates all the elements from right to left.

Listing 3.18 Reduce elements from right to left

const reduceRight = require('lodash/reduceRight');
const reduce = require('lodash/reduce');

describe('reduceRight', () => {
it('should support strings', () => {
let result = reduceRight('hello',
(accumulator, value) => accumulator.toUpperCase() + value);
expect(result).toEqual('OLLEh'");

result = reduce('hello',
(accumulator, value) => accumulator.toUpperCase() + value);
expect(result).toEqual('HELL0");
1)
1)

3.13 Search

Search is a very common task in programming. Search is performed on iterable
collections with given conditions. The return result is the first element in the

Collections 27

collection matching the condition, or undefined if no matching element is found.

3.13.1 find

.find(collection, [predicate=.1identity], [fromIndexzo])iStYKEgenerinUIuiion
to search in collections. When invoking _. find, the collection itself and the search
condition should be provided. We can also provide an optional starting index for the
search. _.find supports the same predicate syntax. If a function is provided as the
predicate, the function is invoked for each element in the array until the function
returns a truthy value. The function is invoked with three arguments: the currently
iterated element, index or key of the element and the collection itself.

Listing 3.19 Find

const find = require('lodash/find");
const fruits = require('../data/fruits.json');

describe('find', () => {
it('should support function predicates', () => {
let result = find(fruits, fruit => fruit.price <= 2);
expect(result).toBeDefined();
expect(result.name).toEqual('apple');
})s

it('should support property predicates', () => {
let result = find(fruits, 'onSale');
expect(result).toBeDefined();
expect(result.name).toEqual('apple');

result = find(fruits, ['name', 'orange']);
expect(result).toBeDefined();
expect(result.name).toEqual('orange');

1)

it('should support object predicates', () => {
let result = find(fruits, {
name: 'passion fruit',
onSale: false,
})s
expect(result).toBeDefined();
expect(result.name).toEqual('passion fruit');
1)
1)

Collections 28

3.13.2 findLast

.findLast(collection, [predicate=.1identity], [fromIndex=collection.length-1])
is similar to _.find, but _.findLast iterates over all elements of the collection in
reverse order. For arrays, it searches from the last element. For strings, it searches
from the last character. For objects, it searches from the last element of the array of
property names returned by _.keys.

Listing 3.20 Find in reverse order

const findLast = require('lodash/findLast');

describe('findLast', () => {
it('should support strings', () => {
expect(findLast('hello', char => char < 'f')).toEqual('e');
1)
1)

3.14 Sort

.sortBy(collection, [iteratee=.identity]) Sorts a collection in ascending order
with results after applying the iteratee function to each element in the collection.
The sort is stable, which means it preserves original order for elements with
equality. We can use multiple iteratees as sort conditions. If multiple elements in
the collection have the same value for the first property name, those elements are
sorted using the second property name, and so on.

Listing 3.21 Sort a collection

const sortBy = require('lodash/sortBy');

describe('sortBy', () => {
it('should support simple sort', () => {
expect(sortBy([3, 2, 1])).toEqual([1l, 2, 3]);
1)

it('should support function predicates', () => {
let result = sortBy([-3, 2, 1], val => Math.abs(val));
expect(result).toEqual([1, 2, -3]);

1)

Collections 29

it('should support multiple conditions', () => {
const users = [
{
name: 'David',
age: 28,
}’
{

name: 'Alex',

13
let result = sortBy(users, 'age', 'name');
expect(result[0].name).toEqual('Bob');
expect(result[1].name).toEqual('David');
expect(result[2].name).toEqual('Alex");
1)
1)

3.15 flatMap

.flatMap(collection, [iteratee=.1identity]) invokes an iteratee function to each
element in a collection. The result of each iteratee function invocation is an array.
Allresult arrays are concatenated and flattened into a single array as the final result.

.flatMapDeep(collection, [iteratee=.identity]) is similar to _.flatMap except
that _.flatMapDeep recursively flattens the result array until it’s completely flat-
tened.

.flatMapDepth(collection, [iteratee=.identity], [depth=1]) issimilarto _.flatMapDeep
except that it only flattens the result at the given times. The default value of depth
is 1, so _.flatMapDepth(array, iteratee) 1S the same as _.flatMap(array, titeratee).

Collections

Listing 3.22 Example of _.flatMap and _. flatMapDeep

30

const flatMap = require('lodash/flatMap');
const flatMapDeep = require('lodash/flatMapDeep');

describe('flatMap', () => {
it('should support basic operation', () => {
const map = value => [value + 1, value - 1];
let result = flatMap([1l, 2], map);
expect(result).toEqual([2, 0, 3, 1]);
1)

it('should support recursion', () => {
const map = value => [[value + 1], [value - 1]];
let result = flatMap([1l, 2], map);
expect(result).toEqual([[2], [0], [3]1, [1]]1);

result = flatMapDeep([1, 2], map);
expect(result).toEqual([2, 0, 3, 1]);
1)
1)

4. String Templates

If youwant to generate strings from a template, _.template([string='"1, [options={}])
is a simple yet powerful function to do that. It can be used by libraries and
applications to avoid long string concatenations. Grunt uses _. template to support
templates in configuration files!. It can also be used in applications to generate
HTML markups, messages, emails and more.

Listing 10.1 Basic usage of string templates

let tpl = _.template('Hello, <%= name %>. Current time is <%= new Date() %>.'\
)5
tpl({
name: 'Alex'
1)

// —-> 'Hello, Alex. Current time is Fri Jun 23 2017 20:07:19 GMT+1200 (NZST).'

In Listing 10.1, the input argument of _.template is the template itself. In the
template, <%= and %> are the delimiters to wrap variables to be evaluated at runtime.
_.template returns a new function. After invoking the returned function with a
context object that contains actual values of template variables, it returns the
generated string. If no value is assigned to a variable, an empty string will be used.

_.template supports three types of delimiters, interpolate, escape and evaluate.

4.1 interpolate

interpolate delimiters allow to interpolate variables. The default regular expression
pattern to declare interpolated variables is /<%=([\s\S]+?)%>/g. Simple variables
and complex expressions are both supported. The regular expression pattern of
interpolate delimiters can be customized by the property interpolate of the options
object.

Lhttp://gruntjs.com/api/grunt.template

http://gruntjs.com/api/grunt.template
http://gruntjs.com/api/grunt.template

String Templates 32

Listing 10.2 Use interpolate delimiters

let tpl = _.template('Hello, <%= name %>, the total amount is <%= order.amoun\
t + 10 %.');
tpl({

name: 'Alex',

order: {

amount: 100,

+

1)

// —-> 'Hello, Alex, the total amount is 110.'

4.2 escape

It’s common to use _.template to generate HTML markups. escape delimiters allow
to interpolate variables and escape the result values. The default regular expression
pattern to declare escaped variables is /<%-([\s\S]+?)%>/g. The pattern can be
customized by the property escape of the options object.

Listing 10.3 Use escape delimiters

let tpl = _.template('<div><%- markup %></div>"');
tpl({

markup: 'Hello'
1)

// —> '<div>Hello</div>"'

4.3 evaluate

evaluate delimiters allow executions of JavaScript code. This kind of delimiters is
useful when adding logic to templates, e.g. adding condition checks or loops to
the template. The default regular expression pattern to declare JavaScript code is
/<%([\s\S1+?)%>/g. The pattern can be customized by the property evaluate of the
options object.

String Templates 33

Listing 10.4 Use evaluate delimiters

let tpl = _.template('<% if (a > 0) { %> Good! <% } else { %> Bad! <% } %>');
tpl({
a: 1
1)
// -> ' Good! '
tpl({
a: -1
s
// —-> ' Bad! '

4.4 imports

Besides from the context object passed to the function created by _.template, a
default object can also be passed to _.template as an additional source when
evaluating variables. The object is specified using the property imports of the
options object. The default values in the imported object can be overridden by
values in the context object.

Listing 10.5 Use extra imports

let tpl = _.template('Hi, <%= user %>, you should pay <%= amount * discount %
>,
{
imports: {
discount: 0.8,

b

b
1)
tpl({
user: 'Alex',
amount: 100
1)
// —-> 'Hi, Alex, you should pay 80.'
tpl({
user: 'Bob',
amount: 100,
discount: 0.9
1)
// —-> 'Hi, Bob, you should pay 90.'

String Templates 34

The default imports object contains only the lodash object itself with the key _, so
lodash methods can be used directly in the expressions.

4.5 Data object name

By default, when evaluating variables in the template, variables use the same
names as in the context object. The property variable of the options object sets a
name to the context object, then variable names should be changed accordingly.

Listing 10.6 Use different variable object name

var tpl = _.template('Hello, <%= user.name %>.', {
variable: 'user',

1)

tpl({
name: 'Alex'

1)

// —-> 'Hello, Alex.'

In Listing 10.6, the context object’s name is set to user, SO user.name accesses the
property name of the context object.

5. Recipes

This chapter gives some recipes about how to do common tasks using Lodash.

5.1 Filter an object’s properties

5.1.1 Scenario

Filter a given object by removing certain properties.

5.1.2 Solution

Although _.filter and _.reject can be applied to objects, they cannot be used for
this scenario, because _.filter and _.reject return an array of property values
after filtering. _.pick, _.pickBy, _.omit and _.omitBy should be used instead.

Listing 11.1 Filter a given object by removing certain properties

let fruits = {

apple: {
name: 'Apple',
price: 2.99

})

orange: {
name: 'Orange',
price: 1.99

}7

banana: {
name: 'Banana',
price: 0.5

+

+s

_.pickBy(fruits, fruit => fruit.price > 2);
// —-> { apple: { name: 'Apple', price: 2.99 } }

_.pickBy(fruits, (fruit, key) => key != 'apple');

Recipes 36

// -> { orange: { name: 'Orange', price: 1.99 },
// banana: { name: 'Banana', price: 0.5 } }

_.pick(fruits, 'apple');
// => { apple: { name: 'Apple', price: 2.99 } }

When a predicate function is passed to _.pickBy Or _.omitBy, it’s invoked with three
arguments: property value, property name and the object itself.

5.2 Push an array of elements into an array

5.2.1 Scenario

Given an array of elements, push those elements into another array.

5.2.2 Solution

If using Array’s push method, the whole array will be pushed as a single element.

Listing 11.2 Use Array’s push method

let array = [1, 2, 3];
array.push([4, 5, 6]);
console.log(array);

// -> [1, 2, 3, [4, 5, 6]]

The first solution is to use _.spread to wrap the push method to accept arrays as
arguments.

Listing 11.3 Use _.spread to wrap push method

let array = [1, 2, 3];

let push = _.bind(_.spread(Array.prototype.push), array);
push([4, 5, 6]);

console.log(array);

// -> [1, 2, 3, 4, 5, 6]

The second solution is to push the array first, then use _. flatten to flatten the array.

Recipes 37

Listing 11.4: Use _.flatten to flatten the array

let array = [1, 2, 3];
array.push([4, 5, 6]);
_.flatten(array);

// -> [1, 2, 3, 4, 5, 6]

5.3 Process data for C3.js pie chart

5.3.1 Scenario

C3.js! is a popular chart library based on d3.js?. C3.js can create pie chart® based
on data input. But when there are many items in the data set, the pie chart itself
becomes very hard to read.

Listing 11.5 is the basic code to create a pie chart with 1ee items.

Listing 11.5 Basic code of create a pie chart

function generateData(num) {
var data = [];
for (var i = 0; i < num; i++) {
data.push(['data' + i, (i <= 20 ? 1000 : 0) + Math.random() * 10]);
+

return data;

let chart = c3.generate({
bindto: '#chart',

data: {
columns: generateData(100),
type: 'pie'

}

1)

Below is how this chart looks like.

Thttp://c3js.org/
2http://d3js.org/
3http://c3js.org/samples/chart_pie.html

http://c3js.org/
http://d3js.org/
http://c3js.org/samples/chart_pie.html
http://c3js.org/
http://d3js.org/
http://c3js.org/samples/chart_pie.html

Recipes 38

AR
il |'L'\\\\\

Z

ay
NS

M data0 datal [data2 M data3 [data4 M datab data6 M data7 data8 [data9
M datal0 datai1 M data1i2 M datai3 [l datai4 M dataibs datai6 [M data17
data18 [data1l9 M data20 data21 [data22 M data23 M data24 M data25
data26 [data27 data28 [data29 M data30 data31 [data32 M data33
M data34 M data35 data36 [data37 data38 W data39 M data40 data41
M data42 M data4d3 [datad44 [H datad4s data46 [data47 datad48 [data49
Il data50 data51 [l data52 M data53 M data54 [data55 data56 M data57
data58 [datab59 [M data60 data61 [data62 [H data63 [data64 M data6s
data66 M data67 data68 W data69 M data70 data71 M data72 M data73
M data74 M data75 data76 M data77 data78 [data79 [H data80 data81
M data82 M data83 M data84 [data85 data86 [data87 dataB88 [data89
M dataS0 data91 [data92 [l data93 [data94 M datag8s data96 [data97
data98 [data99

Unreadable pie chart with 100 items

5.3.2 Solution

One solution is to process the data set first by limiting the number of items. For
example, we can only get top 20 items from the data set and all the rest items are
summed into a new item called others. By doing this, the created chart will be more
readable.

In Listing 11.6, use _.sortBy to sort the data array first based on the second element
of the item array. Items in the data array are all arrays, [1] can be used to access
the second element in the item array. After the data array is sorted, use _.take to
find the top 20 items in the sorted array, then use _.1last to find the last one. This
last item is used as the threshold to partition the data array. Then we use partition
to divide the data array into two groups. The first group groups[0] contains items
we want to keep, the second group groups[1] contains items we want to merge. For
the second group, we use _.sum to calculate the sum of all the items to merge. The
merged item is pushed to the result data array with name others and sum.

Recipes 39

Listing 11.6 Use lodash to process data

function processData(data) {
var threshold = _(data).sortBy('[1]').take(20).last();
if (threshold) {
var groups = _.partition(data, function(item) {
return item[1] >= threshold[1];
1)
if (_.size(groups[1]) > 0) {
groups[0].push(['Others', _.sum(groups[1], '[1]1')]1);
}
return groups[0];

}

return data;

After using Listing 11.6 code to process the data first, the chart is much easier to
read, see below.

M data0 [datal M data2 M data3 [data4 M data5 [data6 W data7 [data8 [data9
M data10 [datal1 [l datai2 [l data1l3 [l datal5 [datal6 [data1l7 [data18
[data19 M data20 M Others

Pie chart with items merged

Recipes 40

5.4 Create a unique array of objects

5.4.1 Scenario

Given an array of objects in Listing 11.7, remove duplicate values from the array.

Listing 11.7 An array of objects with duplicate values

I

{
"name": "Alex",
"age": 30
}’
{
"name": "Bob",
"age'": 28
}’
{
"name": "Alex",
"age'": 30
b
]
5.4.2 Solution

_.uniqg and unigBy functions can be used to remove duplicate values from an array,
but it only uses SameAsZero algorithm to compare values. To perform the deep
comparison for elements in the array of Listing 11.7, we need to convert each
element into a single value. For example, if the property name is the unique key
for each element, use _.unigBy(array, 'name'). If there is no unique key, you can
convert the element into a JSON string.

Listing 11.8 Compare array elements as JSON strings

_.unigBy(array, element => JSON.stringify(element));

JSON serialization may generate different results for objects with the same value
due to the undermined property enumeration order. For a more consistent result,
we should create our own object serialization format. In Listing 11.9, we concate-
nate name and age properties as the serialization format to determine uniqueness.

Recipes 41

Listing 11.9 Compare array elements using custom serialization format

_.uniq(array, element => element.name + element.age);

5.5 Convert an array to an object

5.5.1 Scenario
Given an array of objects with IDs, convert the array to an object with IDs as the
keys and array elements as the values.

For example, given an array in Listing 11.10, convert it to an object shown in Listing
11.11.

List 11.10 An array of objects with IDs

[
{
"id": "user0O01l",
"name": "Alex"
}’
{
"id": "user002",
"name": "Bob"
}
]

List 11.11 Conversion result of Listing 11.10

{

"user0O1": {
"id": "useroo0l",
"name'": "Alex"

I

"user0o2": {
"id": "useroo2",
"name'": "Bob"

}

Recipes 42

5.5.2 Solution

One solution is to use _.each to iterate the array and set each property in the result
object, see Listing 11.12.

List 11.12 Solution to use _.each

let result = {};

_.each(array, function(obj) {
result[obj.id] = obj;

1)

A better solution is to use _.reduce, see Listing 11.13.

List 11.13 Solution to use _.reduce

_.reduce(array, function(result, obj) {
result[obj.id] = obj;
return result;

D)

6. Thank you

Thank you for reading sample chapters of this book. You can purchase the complete
book at Leanpub?.

Lhttps://leanpub.com/lodashcookbook

https://leanpub.com/lodashcookbook
https://leanpub.com/lodashcookbook

	Table of Contents
	Introduction
	Installation
	Web
	NodeJS

	Lodash features
	Code sample convention
	About this book

	Common concepts
	Truthy and falsy
	SameValueZero
	Predicates
	matches
	matchesProperty
	property

	Iteratees
	Iteratee shorthand

	this binding

	Collections
	Each
	Every and some
	Filter and reject
	Size
	Includes
	Sample
	Shuffle
	Partition
	Count by
	Group by and key by
	invokeMap
	Map and reduce
	Map
	Reduce

	Search
	find
	findLast

	Sort
	flatMap

	String Templates
	interpolate
	escape
	evaluate
	imports
	Data object name

	Recipes
	Filter an object's properties
	Scenario
	Solution

	Push an array of elements into an array
	Scenario
	Solution

	Process data for C3.js pie chart
	Scenario
	Solution

	Create a unique array of objects
	Scenario
	Solution

	Convert an array to an object
	Scenario
	Solution

	Thank you

