Refactoring Tweaks Workbook

Contents

FOTEWOT et e s e e ese e e e e s eseseeee s e s eseeeesesee s eseeeeseeee e seeeeseese e s e s aeeese e eseeseseeeeseseeseeeese e seeseeseneesenae il
PLOEACE oot iv
Who Should Read This WorkbDOoK? ... v
HOW £0 REAA TS BOOKooooeeeeee e ee e eses e enaes v
Code CRAllenges.....ouu v aa st R s an0n I
0L CRIEIIEE T 4
0GE ChATLENEE 2. e .
0L CRAIICIEE 3o 6
0L CRITEIIEE e 8
e ChATLENEE 5. e "
O CRAIINEE § oo .
0L CRITIIEE e 2
Code Challenge SOIUTIONS ...ttt ssssssssassssssssssasssssass 13
e CRAIIENGE 1= SOMIEION 1o s
COE CAllENEE 2 = SOMEON oo 28
C0GE Challenge 3 - SOMIEION oo e 46
Code CRAIIENGE 4 = SOMION e 66
COE CAllENEE 5 = SOMEOM e 8
GO Challenge 6 = SOIUEON oo o1
e CRAIIENGE 7 = OGO e 105
ADOUE ThE ATTROT et 113

Contents

Building code is your proficiency exercise routine. Code challenges
exercise your problem solving, programmatic thought processes,

and quality chops.

My intent in writing both the book and workbook is to help
you fine-tune your refactoring proficiencies. We all refactor.
[t is a natural process in programming. No one and no code-

base is immune to improvement.

Your goal is to constantly improve your code building process-
es and codebase. As your craftmanship skills advance, you will
steadily build-in quality. The effect directly and positively im-
pacts your bottom line, profitability, and competitive advan-
tage. You are reducing your costs and time as well as making
your code more reusable, readable, and maintainable.

Practice hones your skills. Period. It doesn’t matter if you are
an athlete, musician, engineer, programmer, plumber, or car-
penter. Skills are not learned through absorption or osmosis.

Refactoring Tweaks Workbook

rogramming requires
Ppractice. Osmosis and

memorization will not
make you a better developer.

This workbook fine-tunes your
refactoring skills. You will gain
real, practice programming skills
that you can use in your proj-
ects...right now.

And the solutions are a cable
from my head to yours.

Let’s get to work.

Listen to me. You need to exercise knowledge. In doing so, you actively build the mental

muscles necessary to advance yourself in this profession.

This Code Challenge Workbook intends to stretch your programming chops. Each chal-

lenge presents you with the opportunity to pmctice refaetoring. AsS you actively work on

these Challenges, you improve and build your programming proﬁeiencies.

My goals are to help you gain and fine-tune real, practical skills that you can use right now

in your projects.

Who Should Read This Workbook?

This book is for anyone who wants to build better code.

Do you build software solutions? Then code refactoring is a necessary skill that propels

you forward. There is a significant difference between code that works right now and

quality code that you can maintain and reuse for years.

Regardless of your title or years of experience, refactoring is a continuous learning pro-

CeCSS.

If you build solutions in code, then this Code Challenges Workbook and the Refaetoring

Tweaks book are for you.

How to Read This Book

The Code Challenge Workbook includes two distinct sections: Code Challenges and

Preface

Refactoring Tweaks Workbook

Solutions.

Code Challenges Section

The Code Challenges section is where you get to practice. Each challenge gives you a
snippet of code. Each snippet has multiple quality improvement opportunities. Your
task is to do the refactoring process:

1. Review the code
2. Identify each of the problematic areas
3. Determine why it could be better

4. 'Then rewrite the code.
Try to do these on your own without ﬂipping to the Solutions section.

Remember, osmosis and memorization will not build your programming skills. Pro-
gramming is a thinking profession first and then an active building profession second.
You can’t cheat mastery or craftsmanship. There are no shortcuts. It takes work and
practice.

Solutions Section

The Solutions section is where you and I walk through the refactoring process rogether.
Step-by-step, bit-by-bit, we work together. This section provides you with the why and
then the how. It includes extra tips and insights within the context of what we are refac-
roring,.

Call-out Key

Throughout the workbook, I provide asides and call-outs to share additional information
or to emphasize an important point. This key will help you to quickly identify the in-
tent.

Master Tip

The buiiseye is a master tip or insight that I'm sharing with

you. Each of these will give more of the why to further solidify

your understanding and implementation.

Preface

Refactoring Tweaks Workbook

Additional Information

The coffee cup provides you with additional information, such
as a definition or clarification. For example, if I'm teaching
you about the context of post type, I may explain why it exists
and how it’s used to classify content.

Question or Thought Experiment

The question circle challenges you to think and consider why.
These are meant to inspire you to rethink how you do stuft.

3’5 Doing It Wrong

The rocket ship plummeting towards the ground means
“Whoopsie, you're doing it wrong”. At times, you may think
of going in a particular direction, but that direction has prob-
lems. This call-out helps you see Why that direction will cause
you woes.

Credit Time

The ringing bell is to give credit to someone who has contrib-

uted to this book, the way I think, or this profession.

Code Examples

Throughout the book, code examples are provided. Refactoring is language and placform
independent. In other words, these strategies you will learn work for PHP, JavaSeripr,
Perl, Python, C#, Visual Basic, etc. Refactoring is a process. It doesn’t care what high
level language you use to express your code.

The code examples are real code snippets taken from various codebases. To keep it con-
cise, a .. is used as a placeholder for code that has been removed for brevity.

Preface

Refactoring Tweaks Workbook

Terminology
WordPress has two different meanings for the term post:
« All content that is stored in the database table wp_posts is considered a post.

- Each post gets a more descriptive classification called a post type. Post types can
be post, page, revision, attachment, navigation menu, or custom post type.

Ah confusing, I know. To avoid confusion, let’s change the first definition and term it
content. Therefore, the content is a record out of the wp_posts database table and can be

any pOSt typ€.

Preface

Code
Chaﬂenges

Doing. Building. These activities fine-tune your programming

chops.

[t Works

Do you want to step out and maintain it?

.3

YTy

AL)

AR

w

vy

™ o\
¥ N

YNy

Reusable and maintainable

,,,,,,,

/,.// AN

PP SSAAN L S R

NN

iy
AN

Refactoring Tweaks Workbook

Let’s put your new found skills and knowledge to work. These refactoring code challeng-
es are real code snippets that are from various codebases. Using the Refactoring Tweaks

book, do the following tasks:
1. Identify each of refactoring tweak opportunity.
2. Note why you think each could be improved.
3. Then refactor each one.
4. Compare to the solutions provided.

Have fun!

Code Challenges

Refactoring Tweaks Workbook

Code Challenge 1

ROH up your SlCCVCS and see hO\V many refactoring tweak opportunties you can ﬁl’ld.

<?php

/*
* Check if custom post type exists, to provide data
*/
function prefix_is_post_type($type) {
global $wp_query;

if($type == get_post_type($wp_query->post->ID)) return true;
return false;

Code Challenge I

Refactoring Tweaks Workbook

Code Challenge 2

Look hard. There are several of them in this one function.

<?php

/* This function grabs the custom header from the current theme so that it can be
displayed. */
function prefix_get_header_image() {

$theme_slug prefix_actual_current_theme();

$mods get_option(“theme_mods_{$theme_slug}”);

if (isset($mods[‘header_image’']) &&

‘remove-header’ != $mods[‘header_image’'] &&
‘random-default-image’ != $mods[‘header_image’'] &&
‘random-uploaded-image’ != $mods[‘header_image’']) {

return $mods[‘header_image’];

}

return false;

Code Challenge 2

Refactoring Tweaks Workbook

Code Challenge 3

Don’t be intimidated by the lines of code in this one function. That’s a clue.

You can access the code challenge raw code on GitHub.
<?php
class Form {
.
* Render a repeatable group row
* @since 1.0.2

* @param Field $field_group Field group field object
* @param string $remove_disabled Attribute string to disable the remove button

*/
public function render_group_row($field_group, $remove_disabled) {

$field_group->peform_param_callback(‘before_group_row’);
$closed_class = $field_group->options(‘closed’) ? * closed’ : '’;

echo '
<div class="postbox plugin-row plugin-repeatable-grouping’, $closed_class,
‘" data-iterator="', $field_group->index, ‘">';

if ($field_group->args(‘repeatable’)) {

echo ‘<button type="button” ‘, $remove_disabled, ‘data-selector="",
$field_group->id(), ‘_repeat” class="dashicons-before dashicons-no-alt
plugin-remove-group-row”></button>";
}
echo '
<div class="pluginhandle” title="" , esc_attr__(‘Click to toggle’,
‘plugin’), '">
</div>

<h3 class="plugin-group-title pluginhandle-title”>', $field_group-
>replace_hash($field_group->options(‘group_title’)), ‘</h3>

<div class="inside plugin-td plugin-nested plugin-field-1list">";

// Loop and render repeatable group fields

foreach (array_values($field_group->args(‘fields’)) as $field_args) {
if ('hidden’ == $field_args[‘type’]) {

// Save rendering for after the metabox
$this->add_hidden_field($field_args, $field_group);

} else {

$field_group->args(‘show_names’);
$field_group->args(‘context’);

$field_args[‘show_names’]
$field_args[‘context’]

$field = $this->get_field($field_args, $field_group)->render_field();

(jode(jhaﬂengeg

https://gist.github.com/hellofromtonya/4d08c559a538a2c739264719afc3ad7d

Refactoring Tweaks Workbook

if ($field_group->args(‘repeatable’)) {
echo '
<div class="plugin-row plugin-remove-field-row”>
<div class="plugin-remove-row">
<button type="button” ‘, $remove_disabled, ‘data-
selector="", $field_group->id(), ‘_repeat” class="button plugin-remove-group-row
alignright”>', $field_group->options(‘remove_button’), ‘</button>

</div>
</div>
¥
echo '
</div>
</div>

LA
I

$field_group->peform_param_callback(‘after_group_row’);

(jode(jhaﬂengeg

Refactoring Tweaks Workbook

Code Challenge 7

Don’t WOTTY. More fun is coming,.

You can find the following code on GitHub in this gist.

window.PluginName = (function(window, document, $, undefined){
‘use strict’;

var plugin = {

}

plugin.toggleCheckBoxes = function(event) {
event.preventDefault();
var $this = $(this);
var $multicheck = $this.closest(‘.plugin-td’).find(
‘“input[type=checkbox]:not([disabled])’);

// If the button has already been clicked once...
if ($this.data(‘checked’)) {
// clear the checkboxes and remove the flag
$multicheck.prop(‘checked’, false);
$this.data(‘checked’, false);

}
// Otherwise mark the checkboxes and add a flag
else {
$multicheck.prop(‘checked’, true);
$this.data(‘checked’, true);
}

H
return plugin;

})(window, document, jQuery);

Code Challenge 7

https://gist.github.com/hellofromtonya/e389c3ed1f617623c12e0ae5bfd2f6d8

	Foreword
	Preface
	Who Should Read This Workbook?
	How to Read This Book

	Code Challenges
	Code Challenge 1
	Code Challenge 2
	Code Challenge 3
	Code Challenge 4
	Code Challenge 5
	Code Challenge 6
	Code Challenge 7

	Code Challenge Solutions
	Code Challenge 1 - Solution
	Code Challenge 2 - Solution
	Code Challenge 3 - Solution
	Code Challenge 4 - Solution
	Code Challenge 5 - Solution
	Code Challenge 6 - Solution
	Code Challenge 7 - Solution

	About the Author

