

Lisp Web Tales
My attempts at learning web development, foolishly using common
lisp, and even more foolishly, writing about it in public

Pavel Penev

This book is for sale at http://leanpub.com/lispwebtales

This version was published on 2013-11-24

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License

http://leanpub.com/lispwebtales
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Tweet This Book!
Please help Pavel Penev by spreading the word about this book on Twitter!

The suggested hashtag for this book is #lispwebtales.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#lispwebtales

http://twitter.com
https://twitter.com/search?q=%23lispwebtales
https://twitter.com/search?q=%23lispwebtales

Contents

Preface . i

Introduction . ii
Why Lisp . ii
Whats in the book . ii
Who is this for . ii
What you need to get started . iii
Typographic conventions . iii

1 The basics . 1
Raw example . 1
A simple blog . 3
The source code . 3
Source walk-through . 6
Conclusion . 12

Appendix A: Getting started . 13
Linux . 13
Windows . 15

Appendix B: Recomended reading . 17
Online tutorials . 17
Cliki: The Common Lisp wiki . 17
IRC . 17

Preface
I am an enthusiast if there was ever such a thing. So this is an enthusiasts book, written out of joy and
curiosity, and as an escapist pleasure in a time when the outside world is closing in on me, and my time for
lisp is running short. Exams, graduation, the eventual job search, and employment as a Blub coder is what is
in front of me for 2013.

To me Lisp is one of the most fun and easy to use languages out there, it has challenged me intellectually,
and provoked my thinking in all sorts of directions, from basic software design, to how software communities
work. All of these questions have led me to believe that the right course for me personally is to continue
to learn Common Lisp and its history. I will not be a worse programmer if I continue to invest effort into
mastering it, just the opposite. The same is true for all sorts of languages and platforms, and some of them I
am also investing my self in, such as GNU Emacs, Linux, and as horribly flawed as it is, the web. Whatever
my day jobs might be in the future, I will continue my hobbyist practice as a programmer, and until I find a
better tool, I will continue to use and love Common Lisp.

This book is in a way an attempt at maintaining that practice and getting my skill level up. It has taken a lot
of research and experimentation, and helped me improve my writing. So even if it fails to attract an audience,
and even if left unfinished, it is well worth the effort.

Pavel Penev, March 2013

Introduction

Why Lisp

Today we have more programming languages than we can count. Somehow, Lisp still manages to stand out, at
least for me. I’ve been obsessed with the lisp family of languages for four years now, and I’ve been especially
interested in Common Lisp, which I consider to be the best general purpose dialect. It is an easy language
to pick up, and a difficult language to master. So far, every day spend learning lisp has been a huge plus for
me, so all those difficulties have been worth it. Lisp is fun, challenging and rewarding of such efforts. No
language I’ve picked up since or before has felt the same way, they were all either needlessly complex(most
of the complexity in lisp is there for a reason), or too simplistic and lacking in sophistication when that is
needed.

As for how practical this language is for web development, It’s as practical as you make it. Lisp is the perfect
language for the gray areas where were we still haven’t quite figured out how to do things. I believe the web
is one such area, and experimentation and playful exploration of ideas is vital. This is what Lisp was designed
for, not for the web specifically, but for what it is, a new playground where flexibility and creativity have
room to grow.

Common Lisp has been a faithful ally in my self-education. Maybe it can be one for you too.

Whats in the book

The book is a set of tutorials and examples. It uses the Common Lisp language and some of the libraries we’ll
be using for the examples and tutorials include:

• The Hunchentoot web server
• The Restas web framework
• The SEXML library for outputting XML and HTML
• Closure-template for HTML templating
• Postmodern for PostgreSQL access, and cl-reddis as a simple datastore
• Various utilities

Who is this for

This book is for anyone interested in Lisp and web apps. I assume you have some familiarity with both
subjects, but I don’t assume you are a Lisp expert, you can just read a few tutorials to get the basics and get
back to my book to get started with web apps. I’ve linked some of them in Appendix B. So you need to know
what (+ a b) means, I won’t explain html and css to you, and HTTP shouldn’t be a scary mystical acronym
to you. Also some knowledge of databases would be good. In other words, I assume you are a programmer,
know the basics and just want to play around with Lisp.

Introduction iii

What you need to get started

A lisp implementation, preferably sbcl(recommended for Linux users) or ccl(recommended for Mac and
Windows users), and Quicklisp, the Common Lisp package manager. I’ve written a quick “getting started”
tutorial in Appendix A. And the links in Appendix B have additional information.

You will also need a text editor which supports matching parenthesis, so no notepad. Appendix A has
some recommendations, but the best way to use Lisp is with Emacs and the Slime environment. A similar
environment is available for Vim users with the Slimv plugin. If you don’t already know Emacs or Vim, you
can leave learning it for later, and just use any old code editor and the command line. If you are serious about
Lisp though, consider picking up Emacs eventually.

Appendix B also has a lot of links you can go to to find more about Lisp, including tutorials, books, wikis and
places you can ask your questions.

Typographic conventions

Inline code:

This code is inlined: (lambda () (format t "Hello World")).

This is a code block in a file:

1 (defun hello-world ()

2 (format t "Hello World"))

The following characters represent various prompts:

A * represents a lisp REPL, => marks the returned result:

1 * (format nil "Hello World")

2 => "Hello World"

$ is a unix shell, # is a root shell, or code executed with sudo:

1 # apt-get install foo

2 $ foo --bar baz

> is a windows cmd.exe prompt:

1 > dir C:\

1 The basics

Raw example

Here is a complete hello-world web application, saved in the file hello-world.lisp:

1 ;;;; hello-world.lisp

2

3 (ql:quickload "restas")

4

5 (restas:define-module #:hello-world

6 (:use :cl :restas))

7

8 (in-package #:hello-world)

9

10 (define-route hello-world ("")

11 "Hello World")

12

13 (start '#:hello-world :port 8080)

This apps basically returns a page with the text “hello world” to any request at the “/” uri. It can be run from
the command line using sbcl or ccl like this:

1 $ sbcl --load hello-world.lisp

or

1 $ ccl --load hello-world.lisp

Or loaded from the lisp prompt:

1 * (load "hello-world.lisp")

Now you can open the page http://localhost:8080/¹ and see the result.

Detailed explanation

I’ll do an almost line by line explanation of what is happening.

¹http://localhost:8080/

http://localhost:8080/
http://localhost:8080/

The basics 2

1 (ql:quickload "restas")

All examples in this book will be using the hunchentoot web server, and the RESTAS web framework built
on top of it.

As you can read in the Appendix A, the way we install and load libraries with Quicklisp is with the quickload
function. The ql: part simply means that the function is in the ql package, which is a short name for the
quicklisp package. Lisp packages often have such short alternative names, called nicknames. This line simply
loads Restas, and installs it if it isn’t already present. Since hunchentoot is a dependency for Restas, it gets
loaded as well.

1 (restas:define-module #:hello-world

2 (:use :cl :restas))

3

4 (in-package #:hello-world)

Restas applications live in modules, which are similar to ordinary common lisp packages(and in fact, a package
is being generated behind the scenes for us), we define them with the macro define-module from the restas
package. It has the same syntax as common lisps defpackage. We give our module the name hello-world

and specify that we want all public symbols in the cl and restas packages to be imported into our module.
We then set the current package to hello-world. All the code after this form to the end of the file will be in
that package.

Symbols starting with #: are uninterned, meaning they have no package, we just want to use its namestring,
which is "HELLO-WORLD". Uninterned symbols are useful if you want a lightweight string to name something,
in this case a package.

The following form (:use :cl :restas)means that all the “public” symbols from the packages cl(a standard
package containing all lisp functions, variables, classes etc) and restas get imported into our hello-world
package, so we don’t have to write restas:define-route and can simply say define-route.

1 (define-route hello-world ("")

2 "Hello World")

Restas apps are based on uri handlers called routes. Routes in their simplest form shown here, have: * A name
(hello-world in this case) * An uri template. in this case the empty string "", meaning it will match the / uri
* A body generating a response, in this case the string “hello world” returned to the client.

There are a few more details to routes, but we’ll get to them in a bit.

1 (start '#:hello-world :port 8080)

The Restas function start is used to initializes a module, and starts a hunchentoot web server. As a first
argument we give it the symbol naming our module with our application defined in it and pass a port number
as a keyword parameter. Note that the symbol must be quoted ith a '. Again, there is quite a bit more to this
function, but for now, we just need to get our app running.

The basics 3

A simple blog

Lets look at a bit more complicated example: a simple blog app. It will be self contained in a single file you
can run from the command line, just like the previous example. Subsequent examples will use ASDF and
Quicklisp. In addition to Restas and Hunchentoot we’ll also be using the SEXML library for html generation.
The blog posts will be stored in memory as a list. The basic features would be:

• View all blog posts on the front page
• Separate pages for each post
• Separate pages for authors, listing all of their posts.
• Admin form for adding posts, protected by crude HTTP authorization.

The source code

Here is the complete source of our app, consisting of slightly over 100 lines of code:

1 ;;;; blogdemo.lisp

2

3 ;;;; Initialization

4

5 (ql:quickload '("restas" "sexml"))

6

7 (restas:define-module #:blogdemo

8 (:use #:cl #:restas))

9

10 (in-package #:blogdemo)

11

12 (sexml:with-compiletime-active-layers

13 (sexml:standard-sexml sexml:xml-doctype)

14 (sexml:support-dtd

15 (merge-pathnames "html5.dtd" (asdf:system-source-directory "sexml"))

16 :<))

17

18 (<:augment-with-doctype "html" "")

19

20 (defparameter *posts* nil)

21

22 ;;;; utility

23

24 (defun slug (string)

25 (substitute #\- #\Space

26 (string-downcase

27 (string-trim '(#\Space #\Tab #\Newline) string))))

28

The basics 4

29 ;;;; HTML templates

30

31 (defun html-frame (title body)

32 (<:html

33 (<:head (<:title title))

34 (<:body

35 (<:a :href (genurl 'home) (<:h1 title))

36 body)))

37

38 (defun render-post (post)

39 (list (<:div

40 (<:h2 (<:a

41 :href (genurl 'post :id (position post *posts* :test #'equal))

42 (getf post :title)))

43 (<:h3 (<:a

44 :href (genurl 'author :id (getf post :author-id))

45 "By " (getf post :author)))

46 (<:p (getf post :content)))

47 (<:hr)))

48

49 (defun render-posts (posts)

50 (mapcar #'render-post posts))

51

52 (defun blogpage (&optional (posts *posts*))

53 (html-frame

54 "Restas Blogdemo"

55 (<:div

56 (<:a :href (genurl 'add) "Add a blog post")

57 (<:hr)

58 (render-posts posts))))

59

60 (defun add-post-form ()

61 (html-frame

62 "Restas Blogdemo"

63 (<:form :action (genurl 'add/post) :method "post"

64 "Author name:" (<:br)

65 (<:input :type "text" :name "author")(<:br)

66 "Title:" (<:br)

67 (<:input :type "text" :name "title") (<:br)

68 "Content:" (<:br)

69 (<:textarea :name "content" :rows 15 :cols 80) (<:br)

70 (<:input :type "submit" :value "Submit"))))

71

72 ;;;; Routes definition

73

The basics 5

74 (define-route home ("")

75 (blogpage))

76

77 (define-route post ("post/:id")

78 (let* ((id (parse-integer id :junk-allowed t))

79 (post (elt *posts* id)))

80 (blogpage (list post))))

81

82 (define-route author ("author/:id")

83 (let ((posts (loop for post in *posts*

84 if (equal id (getf post :author-id))

85 collect post)))

86 (blogpage posts)))

87

88 (define-route add ("add")

89 (multiple-value-bind (username password) (hunchentoot:authorization)

90 (if (and (equalp username "user")

91 (equalp password "pass"))

92 (add-post-form)

93 (hunchentoot:require-authorization))))

94

95 (define-route add/post ("add" :method :post)

96 (let ((author (hunchentoot:post-parameter "author"))

97 (title (hunchentoot:post-parameter "title"))

98 (content (hunchentoot:post-parameter "content")))

99 (push (list :author author

100 :author-id (slug author)

101 :title title

102 :content content) *posts*)

103 (redirect 'home)))

104

105 ;;;; start

106

107 (start '#:blogdemo :port 8080)

This file can be run from the command line like so:

1 $ sbcl --load blogdemo.lisp

or

1 $ ccl --load blogdemo.lisp

Or load it from the Lisp prompt:

The basics 6

1 * (load "blogdemo.lisp")

The username and password for adding new posts, as can be seen in the source, are “user” and “pass”
respectively. Try adding posts, and vary the names of authors. Explore how the app behaves. In later chapters
we will learn how to improve it a bit, but for now, it will do.

Source walk-through

Lets walk through the various sections of this source code and see how it works.

Initialization

1 (ql:quickload '("restas" "sexml"))

We begin by loading the libraries we’ll be using: Restas and sexml.

1 (restas:define-module #:blogdemo

2 (:use #:cl #:restas))

3

4 (in-package #:blogdemo)

This time our application is named blogdemo.

1 (sexml:with-compiletime-active-layers

2 (sexml:standard-sexml sexml:xml-doctype)

3 (sexml:support-dtd

4 (merge-pathnames "html5.dtd" (asdf:system-source-directory "sexml"))

5 :<))

6

7 (<:augment-with-doctype "html" "")

SEXML is a library for outputting XML using lisp s-expressions as input. It takes an xml dtd and generates a
package with functions for all the necessary tags. In our case, we give it an html5 dtd, and specify the package
named <. This means that we can write code like:

1 (<:p "Hello world")

and get this out:

1 <p>Hello world</p>

A thing to note is that SEXML comes with an html5 dtd file as part of the distribution. The code
(merge-pathnames "html5.dtd" (asdf:system-source-directory "sexml")) is used to find the path to that
file. Don’t worry about how this actually works, essentially it means “give me the path to the file ‘html5.dtd’
in the sexml installation directory”.

And finally, we define our “database” as an empty list named by the variable *posts*:

The basics 7

1 (defparameter *posts* nil)

Utility

I’ve included a section for utility functions, which at this point contains only one function:

1 (defun slug (string)

2 (substitute #\- #\Space

3 (string-downcase

4 (string-trim '(#\Space #\Tab #\Newline)

5 string))))

If you are familiar with Django, you probably know the term ‘slug’. A slug is a string we can use in urls. The
slug function takes a string, such as " Foo Bar BaZ " and converts it to a url friendly string like "foo-bar-baz"
by trimming surrounding white space, converting all the characters to lower case and substituting the spaces
between words for dashes. We’ll be using it to create ID’s for authors in our “database”.

HTML templates

In general the rules for using sexml for html generation are as follows:

1 (<:tagname attributes* content*)

where attributes can be of the form:

1 :key value

and the content can be a string or a list of strings to be inserted into the body of the tag. For example, this
snippet:

1 (<:a :href "/foo/bar" "This is a link to /foo/bar")

Will produce the following HTML: This is a link to /foo/bar

Lets take a look at the various template functions we’ll be using:

The basics 8

1 ;;;; HTML templates

2

3 (defun html-frame (title body)

4 (<:html

5 (<:head (<:title title))

6 (<:body

7 (<:a :href (genurl 'home) (<:h1 title))

8 body)))

html-frame is a function, which takes a title and a body and converts it to an html page whose body has a
link to the home page at the top. We can call it like so:

1 (html-frame "This is a title" "This is a body")

And get the following output as a lisp string(I’ve indented it, and broken it up to separate lines):

1 <html>

2 <head>

3 <title>This is a title</title>

4 </head>

5 <body>

6 <h1>This is a title</h1>

7 This is a body

8 </body>

9 </html>

Of note is the use of the restas function genurl which takes a route, and generates a url that would be
handled by the route function. In this case (genurl 'home) will generate the / url, since that is what the
home route(defined in the next section) handles. This is done because restas applications can me “mounted”
on different points in a url path tree. if the whole application is mounted on the uri /blog, then the same
code(without having to change it) would generate /blog/ as the output.

Before we look at how we generate the blog posts themselves, let me explain how we store them. We store
blog posts as a list of plists, a convention for lists where the odd numbered elements are keys, and the even
numbered elements are values. Plists are useful as lightweight maps, and look like this:

1 '(:author "Author Name"

2 :author "author-name" ; this is a slug string

3 :title "This is a title"

4 :content "This is the body of the blog post")

By convention, keys in plists are common lisp keywords, starting with colons. Elements in a plist can be
accessed with the function getf, which takes a plist and a key as it’s argument. So if we wanted to get the
name of the author from the plist post, we would write (getf post :author). Simple as that. Now lets look
at how we use them:

The basics 9

1 (defun render-post (post)

2 (list (<:div

3 (<:h2 (<:a

4 :href (genurl 'post :id (position post *posts* :test #'equal))

5 (getf post :title)))

6 (<:h3 (<:a

7 :href (genurl 'author :id (getf post :author-id))

8 "By " (getf post :author)))

9 (<:p (getf post :content)))

10 (<:hr)))

11

12 (defun render-posts (posts)

13 (mapcar #'render-post posts))

The function render-post takes a blog post and renders it as html. The genurl’s in this function are a bit
more complicated. In this case genurl has to generate urls to each individual post, which requires additional
information, such as it’s ID. We use the posts position is the list of posts as it’s id, so each post would have a
url like posts/1 or whatever it’s number in the list is. Same is true for the author, except authors are identified
by a slug of their name. so the url would look like author/author-name. This works because routes can handle
more than one url with similar structure, for instance both posts/1 and posts/2 will be handled by the route
post, We’ll see how that works in a minute.

The function render-posts simply takes a list of posts, and renders each one individually, into a list of html
strings. It uses the mapcar function, which might be called map or each in other languages.

1 (defun blogpage (&optional (posts *posts*))

2 (html-frame

3 "Restas Blogdemo"

4 (<:div

5 (<:a :href (genurl 'add) "Add a blog post")

6 (<:hr)

7 (render-posts posts))))

blogpage takes a bunch of blog posts and renders a complete html page with them. By default it renders all
of the posts, but we can give it a subset, as we do when we show only the posts by one author.

And finally, add-post-form generates a page with an html form in it for adding a blog post:

The basics 10

1 (defun add-post-form ()

2 (html-frame

3 "Restas Blogdemo"

4 (<:form :action (genurl 'add/post) :method "post"

5 "Author name:" (<:br)

6 (<:input :type "text" :name "author")(<:br)

7 "Title:" (<:br)

8 (<:input :type "text" :name "title") (<:br)

9 "Content:" (<:br)

10 (<:textarea :name "content" :rows 15 :cols 80) (<:br)

11 (<:input :type "submit" :value "Submit"))))

This is it for html generation.

Routes

Route handlers are the heart of any Restas application. The complete syntax for define-route is:

1 (define-route name (template &key method content-type)

2 declarations*

3 body*)

We’ve seen a very basic usage of this. The blog example doesn’t use the optional declarations, we’ll cover
them later, but the optional method keyword parameter will come in handy when we need to handle POST
data from a form. By default it’s value is :get, but can be any HTTP method. Using this we can have routes
with the same uri template, but different HTTP methods, this makes Restas very well suited for RESTful APIs
as the name suggests. Let’s take a look at the individual routes:

1 (define-route home ("")

2 (blogpage))

Simply displays the home page.

1 (define-route post ("post/:id")

2 (let* ((id (parse-integer id :junk-allowed t))

3 (post (elt *posts* id)))

4 (blogpage (list post))))

The post route handles the case where we are viewing a single blog post. We see that the post route has
an interesting template: "post/:id". If you are familiar with something like Sinatra, you’ll find this syntax
familiar. Parts of a uri template beginning with a colon designate route variables, and can match any uri with
that structure, as I mentioned in the previous section. For example /post/0, /post/1 and /post/2 will all
match and be handled by this route. But so will /post/foo, our app breaks if we go to a url that doesn’t have

The basics 11

an integer url component. We’ll see later how we can fix this, for now, we simply don’t do that. The matched
string also gets bound to a lisp variable in the body of the route, in our case id.

Lets look at the body, each such route template variable is bound to the string that it matched, so we get values
like "0", or "1" or "foo". Using common lisps parse-integen we convert it to an integer, and we look up the
element in the list of posts with the elt function, which takes a list(or any lisp sequence) and gets the item at
the index we suply as a second argument.

We render the post by passing it as a list to blogpage, which returns a string, which in turn, Restas returns to
the browser.

1 (define-route author ("author/:id")

2 (let ((posts (loop for post in *posts*

3 if (equal id (getf post :author-id))

4 collect post)))

5 (blogpage posts)))

The author route is very similar. we have an :id variable as well, but it can be any string, so we don’t worry
about parsing it. We use common lisps powerful loop macro to iterate over all the posts, and if the id we
supply in the url matches the :author-ids of the individual posts, we collect them into a new list. :author-id
is generated as a slug version of the author name, specifically so that we can use it as a key and as a part of a
url.

If we have blog posts by an author named "Pavel Penev", its slug would have been saved it into the database
as "pavel-penev", and if we go to the uri author/pavel-penev, we’ll see all the posts by that author on the
page.

1 (define-route add ("add")

2 (multiple-value-bind (username password) (hunchentoot:authorization)

3 (if (and (equalp username "user")

4 (equalp password "pass"))

5 (add-post-form)

6 (hunchentoot:require-authorization))))

The add route handles displaying a form for the user to submit a blog post. Since we don’t want just anybody
to add posts, we want to add some user authentication, but since this is just a simple example, I won’t bother
with login forms, cookies and sessions, we’ll leave that for a later chapter. For now I’ll use simple HTTP
authorization.

If you are unfamiliar with HTTP authentication, it is a very crude way to log into a web site. The browser
has to supply a username and a password as an HTTP header. The function hunchentoot:authorization

returns them as two separate values, since common lisp supports multiple return values, instead of just
one(as is the case in probably every other language you’ve ever used), we have to bind them using the macro
multiple-value-bind, which is like let for multiple values. It binds the variables username and password and
in the body we check if they are the expected values, in our case “user” and “pass”. If they are, we render our
form, and if not, we tell the browser to ask the user for a username and password using ‘hunchentoot:require-
authorization’.

The basics 12

1 (define-route add/post ("add" :method :post)

2 (let ((author (hunchentoot:post-parameter "author"))

3 (title (hunchentoot:post-parameter "title"))

4 (content (hunchentoot:post-parameter "content")))

5 (push (list :author author

6 :author-id (slug author)

7 :title title

8 :content content) *posts*)

9 (redirect 'home)))

Finally, add/post handles the data send to us by the form generated by add. We specify that the http method
should be POST, and use the function hunchentoot:post-parameter to extract the user submitted values from
the request. The strings "author", "title" and "content" were the names of fields in our form. We bind
them to values, and built a plist using the function list. Note that we add the :author-id key, with a value
generated by applying slug to the author string. The list we push onto the database variable *posts*. push
takes an item, and adds it to the front of a list. At the end we redirect back to the home page. redirect is a
restas function with much the same syntax as genurl but instead of generating a url out of a route name, it
generates the url, and tells the browser to redirect to it.

Conclusion

This concludes the honeymoon chapter. We saw all the very basic ideas: A restas web application is a module,
which is a collection of route functions that handle uri requests. There is quite a bit more to it than that, and
we’ll get to it in the next chapters. The code was kind of bare bones, usually we would like to have an ASDF
system defined, so we can have all the lisp infrastructure available for us (have Quicklisp download all of
our dependencies, have our templates be compiled automatically, and be able to develop interactively). At the
moment our apps are bare scripts, and lisp is not a scripting language, even though you can use it as such. It’s
a powerful interactive system, and we would be fools if we didn’t take advantage of that power.

Appendix A: Getting started

Linux

Getting a Lisp implementation

The two implementations I recommend for use in this book are SBCL and CCL, both are very good, open
source and generate fast code. If you are on windows or OS X, I recommend CCL, SBCL on Linux. I’ve had at
least two people report to me problems with sbcl on OS X and and my tutorials, which is probably because of
improperly built binaries, rather than an actual problem, but if you don’t feel like compiling your SBCL from
source(which I recommend), stick with CCL on those platforms for now.

Most Linux distributions have both CCL and SBCL in their package repositories, for example on Debian
derived systems such as Ubuntu you can install sbcl with apt-get:

1 $ sudo apt-get install sbcl

But I recommend you download and install binaries manually, distributions sometimes patch CL implemen-
tations in order to “fix” something. Also who knows how ancient the version in the package manager is. It is
usually recommended to work with the latest releases of CL implementations.

SBCL

You can download SBCL at http://www.sbcl.org/platform-table.html

Once you’ve done so, uncompress the archive. The example is shown for x86-64 on Linux:

1 $ tar -jxvf sbcl-1.1.5-x86-64-linux-binary.tar.bz2

Go to the directory:

1 $ cd sbcl-1.1.5-x86-64-linux/

The file INSTALL has information about how to configure the installation, but the default should suit your
needs just fine, type:

1 $ sh install.sh

type sbcl into the command line to see if it works OK. you should get a prompt starting with an *. I have the
habit of typeing (+ 1 2) in order to see if it really works, and I have never gotten an answer different than 3
so far, that’s reliable software :)

Appendix A: Getting started 14

CCL

You can get CCL from http://ccl.clozure.com/download.html The distribution contains both the 64 and 32 bit
binaries. Chapter 2² of the CCL manual contains information on how to obtain and install CCL if you need it.

After you download CCL, uncompressed the archive with the following command:

1 $ tar -xzvf ccl-1.8-linuxx86.tar.gz

CCL is started by a shell script in the ccl/scripts directory, named ccl or ccl64 for the 32 and 64 bit versions
respectively. The way you install CCL is by copying one(or both) of these scripts to a directory on your path,
and editing them to point to the CCL directory you just uncompressed. so for example if my ccl directory is
in my home directory, named /home/pav on Linux:

1 $ sudo cp /home/pav/ccl/scripts/ccl64 /usr/local/bin

I then edit it to point to the ccl directory by setting the value of the variable CCL_DEFAULT_DIRECTORY at the
top of the file to the /home/pav/ccl/.

Since I don’t use the 32 bit version, I rename the file to simply ccl

1 $ sudo mv /usr/local/bin/ccl64 /usr/local/bin/ccl

I then ensure the file is executable:

1 $ sudo chmod +x /usr/local/bin/ccl

type ccl at the command line. The prompt should be ?. Type some expression like (+ 1 2) to see if it works.

Installing Quicklisp

Quicklisp is a package manager for lisp. It handles downloading and installation of libraries. Installing it is
rather easy. More information and documentation can be found at http://www.quicklisp.org/beta/

Download the file http://beta.quicklisp.org/quicklisp.lisp

Load it with sbcl or ccl:

1 $ sbcl --load quicklisp.lisp

This will load the file into lisp and we can proceed to install it. Type the following into the lisp prompt:

²http://ccl.clozure.com/manual/chapter2.html

http://ccl.clozure.com/manual/chapter2.html
http://ccl.clozure.com/manual/chapter2.html

Appendix A: Getting started 15

1 (quicklisp-quickstart:install)

This will install quicklisp in your home directory.

In order to make sure quicklisp is loaded every time you start lisp, type the following:

1 (ql:add-to-init-file)

And you’re done. You can now quickload libraries, for instance the following command will install the Restas
web framework:

1 (ql:quickload "restas")

Recommended editors

• Emacs and Slime: The best option if you already know it, or you are willing to learn it.
• Vim and Slimv: The next best thing. Vim isn’t actually easier to learn than Emacs, but if you already
know it, it can get the job done.

• All the other options pretty much stink, but Kate at least has a built in terminal, so it’s a bit easier to
work with lisp interactively.

Windows

Getting a Lisp implementation

The implementation I recommend on Windows is CCL, you can download it from here³.

After you’ve downloaded the file, uncompress it in the directory C:\ccl.

The ccl folder will have two executables, one named wx86cl for 32 bit systems, and wx86cl64 for 64 bin
systems.

At the command prompt, we can start the application by typing:

1 > c:\ccl\wx86cl

Let’s make it possible to start ccl simply by typing ccl. I’ll demonstrate for the 32 bit version, it is equivalent
for the 64 bit.

First, rename the wx86cl and wx86cl.image files to ccl and ccl.image respectively. Now, we need to set up
the PATH enviromental variable so that windows knows where to find CCL.

For Windows 7, click the Start menu, and right click on Computer and select properties. From the sidebar
select Advanced system settings. At the bottom of the window, click on the Environment Variables button.
In the second pane, called System variables, search for the Path variable, select it, click on Edit. At The end
of the Variable value field, append the following: ;C\ccl\. Click OK. Open a command prompt, and type
ccl, it should greet you with a message. That’s it, you have CCL installed.

³http://ccl.clozure.com/download.html

http://ccl.clozure.com/download.html
http://ccl.clozure.com/download.html

Appendix A: Getting started 16

Installing Quicklisp

Quicklisp is a package manager for lisp. It handles downloading and installation of libraries. Installing it is
rather easy. More information and documentation can be found at http://www.quicklisp.org/beta/

Download the file http://beta.quicklisp.org/quicklisp.lisp

Open a command prompt, and go to the directory where you downloaded it:

1 > chdir path\to\download\directory

Load it with ccl:

1 > ccl --load quicklisp.lisp

This will load the file into lisp and we can proceed to install it. Type the following into the lisp prompt:

1 (quicklisp-quickstart:install)

This will install quicklisp in your home directory.

In order to make sure quicklisp is loaded every time you start lisp, type the following:

1 (ql:add-to-init-file)

You can now install lisp libraries using the ql:quickload command. Note that some libraries we’ll be using
depend on haveing OpenSSL installed, so make sure you install it, a third party installer is available from
here⁴

Restart CCL, to test if it worked:

1 ? (quit)

2 > ccl

3 ? (ql:quickload "restas")

If it started downloading and installing Restas, you’re done. You can now quickload libraries.

Recommended editors

• Emacs and Slime: The best option if you already know it, or you are willing to learn it.
• Lisp Cabinet: A bundle of Emacs and various lisp implementations, an easy way to install Lisp and
Emacs, with various customizations.

• Vim and Slimv: The next best thing. Vim isn’t actually easier to learn than Emacs, but if you already
know it, it can get the job done.

• Sublime Text2: Seems to be acceptable for editing lisp code.
• LispIDE: Barely qualifies as an IDE, but is an option you can look into.
• Notepad++: Popular code editor for Windows. Minimally acceptable as a lisp editor.

⁴http://slproweb.com/products/Win32OpenSSL.html

http://slproweb.com/products/Win32OpenSSL.html
http://slproweb.com/products/Win32OpenSSL.html

Appendix B: Recomended reading

Online tutorials

A lisp tutorial I like is Lisp in small parts⁵

If you are new to programming, people usually recommend the free bookCommon Lisp: AGentle Introduction
to Symbolic Computation⁶.

For experienced hackers new to lisp, Practical Common Lisp⁷ is probably the best way to learn the language.

Cliki: The Common Lisp wiki

Almost all information you would want about Common Lisp can be found on Cliki⁸.

Cliki pages of note: Getting started⁹

Online tutorials¹⁰

Recomended libraries¹¹

IRC

I(and many lispers) hang out on irc on the Freenode¹² server. Channels I frequent include #lispweb and #lisp.
You can also find help on #clnoobs.

Check out a bunch of other lisp-related channels on cliki¹³.

⁵http://lisp.plasticki.com/
⁶http://www-2.cs.cmu.edu/~dst/LispBook/
⁷http://www.gigamonkeys.com/book/
⁸http://cliki.net
⁹http://www.cliki.net/Getting%20Started
¹⁰http://www.cliki.net/Online%20Tutorial
¹¹http://www.cliki.net/Current%20recommended%20libraries
¹²http://freenode.net/
¹³http://www.cliki.net/IRC

http://lisp.plasticki.com/
http://www-2.cs.cmu.edu/~dst/LispBook/
http://www-2.cs.cmu.edu/~dst/LispBook/
http://www.gigamonkeys.com/book/
http://cliki.net
http://www.cliki.net/Getting%20Started
http://www.cliki.net/Online%20Tutorial
http://www.cliki.net/Current%20recommended%20libraries
http://freenode.net/
http://www.cliki.net/IRC
http://lisp.plasticki.com/
http://www-2.cs.cmu.edu/~dst/LispBook/
http://www.gigamonkeys.com/book/
http://cliki.net
http://www.cliki.net/Getting%20Started
http://www.cliki.net/Online%20Tutorial
http://www.cliki.net/Current%20recommended%20libraries
http://freenode.net/
http://www.cliki.net/IRC

	Table of Contents
	Preface
	Introduction
	Why Lisp
	Whats in the book
	Who is this for
	What you need to get started
	Typographic conventions

	The basics
	Raw example
	A simple blog
	The source code
	Source walk-through
	Conclusion

	Appendix A: Getting started
	Linux
	Windows

	Appendix B: Recomended reading
	Online tutorials
	Cliki: The Common Lisp wiki
	IRC

